



Pandas Cookbook


 

 

 

 

 

 

 

 

 

 


Recipes for Scientific Computing, Time Series Analysis and Data Visualization using Python


 

 

 

 

 

 

 

 

 

 


Theodore Petrou


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





BIRMINGHAM - MUMBAI






Pandas Cookbook


Copyright © 2017 Packt Publishing

 

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

 

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 

First published: October 2017

 

Production reference: 1181017

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78439-387-8


 


www.packtpub.com






Credits






	
Author

Theodore Petrou



	

Copy Editor


Tasneem Fatehi





	
Reviewers
Sonali Dayal

Kuntal Ganguly

Shilpi Saxena


	
Project Coordinator
 

Manthan Patel



	
Commissioning Editor
 

Veena Pagare

	
Proofreader
 

Safis Editing



	
Acquisition Editor
 

Tushar Gupta

	
Indexer
 

Tejal Daruwale Soni



	
Content Development Editor

Snehal Kolte



	
Graphics
 

Tania Dutta



	

Technical Editor
 


 Sayli Nikalje



	
Production Coordinator
 

Deepika Naik















About the Author



Theodore Petrou
  is a data scientist and the founder of Dunder Data, a professional educational company focusing on exploratory data analysis. He is also the head of Houston Data Science, a meetup group with more than 2,000 members that has the primary goal of getting local data enthusiasts together in the same room to practice data science. Before founding Dunder Data, Ted was a data scientist at Schlumberger, a large oil services company, where he spent the vast majority of his time exploring data.

Some of his projects included using targeted sentiment analysis to discover the root cause of part failure from engineer text, developing customized client/server dashboarding applications, and real-time web services to avoid the mispricing of sales items. Ted received his masters degree in statistics from Rice University, and used his analytical skills to play poker professionally and teach math before becoming a data scientist. Ted is a strong supporter of learning through practice and can often be found answering questions about pandas on Stack Overflow.





Acknowledgements


I would first like to thank my wife, Eleni, and two young children, Penelope, and Niko, who endured extended periods of time without me as I wrote.

I’d also like to thank Sonali Dayal, whose constant feedback helped immensely in structuring the content of the book to improve its effectiveness. Thank you to Roy Keyes, who is the most exceptional data scientist I know and whose collaboration made Houston Data Science possible. Thank you to Scott Boston, an extremely skilled pandas user for developing ideas for recipes. Thank you very much to Kim Williams, Randolph Adami, Kevin Higgins, and Vishwanath Avasarala, who took a chance on me during my professional career when I had little to no experience. Thanks to my fellow coworker at Schlumberger, Micah Miller, for his critical, honest, and instructive feedback on anything that we developed together and his constant pursuit to move toward Python.

Thank you to Phu Ngo, who critically challenges and sharpens my thinking more than anyone. Thank you to my brother, Dean Petrou, for being right by my side as we developed our analytical skills through poker and again through business. Thank you to my sister, Stephanie Burton, for always knowing what I’m thinking and making sure that I’m aware of it. Thank you to my mother, Sofia Petrou, for her ceaseless love, support, and endless math puzzles that challenged me as a child. And thank you to my father, Steve Petrou, who, although no longer here, remains close to my heart and continues to encourage me every day.





About the Reviewers



Sonali Dayal
 is a masters candidate in biostatistics at the University of California, Berkeley. Previously, she has worked as a freelance software and data science engineer for early stage start-ups, where she built supervised and unsupervised machine learning models as well as data pipelines and interactive data analytics dashboards. She received her bachelor of science (B.S.) in biochemistry from Virginia Tech in 2011.

 


Kuntal Ganguly
 is a big data machine learning engineer focused on building large-scale data-driven systems using big data frameworks and machine learning. He has around 7 years of experience building several big data and machine learning applications.

Kuntal provides solutions to AWS customers in building real-time analytics systems using managed cloud services and open source Hadoop ecosystem technologies such as Spark, Kafka, Storm, Solr, and so on, along with machine learning and deep learning frameworks such as scikit-learn, TensorFlow, Keras, and BigDL. He enjoys hands-on software development, and has single-handedly conceived, architectured, developed, and deployed several large scale distributed applications. He is a machine learning and deep learning practitioner and very passionate about building intelligent applications.

Kuntal is the author of the books: Learning Generative Adversarial Network
 and R Data Analysis Cookbook - Second Edition,
 Packt Publishing.

 


Shilpi Saxena
 is a seasoned professional who leads in management with an edge of being a technology evangelist--she is an engineer who has exposure to a variety of domains (machine-to-machine space, healthcare, telecom, hiring, and manufacturing). She has experience in all aspects of the conception and execution of enterprise solutions. She has been architecturing, managing, and delivering solutions in the big data space for the last 3 years, handling high performance geographically distributed teams of elite engineers. Shilpi has around 12+ years (3 years in the big data space) experience in the development and execution of various facets of enterprise solutions, both in the product/services dimensions of the software industry. An engineer by degree and profession who has worn various hats--developer, technical leader, product owner, tech manager--and has seen all the flavors that the industry has to offer. She has architectured and worked through some of the pioneer production implementation in big data on Storm and Impala with auto scaling in AWS. LinkedIn: http://in.linkedin.com/pub/shilpi-saxena/4/552/a30






www.PacktPub.com


For support files and downloads related to your book, please visit 
www.PacktPub.com

 . Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at 
www.PacktPub.com 

 and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com

 for more details. At 
www.PacktPub.com

 , you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.


 



https://www.packtpub.com/mapt
 Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.





Why subscribe?



	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser







Customer Feedback


Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1784393878
 . If you'd like to join our team of regular reviewers, you can email us at customerreviews@packtpub.com
 . We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!





Table of Contents




	
Preface

	
What this book covers


	
What you need for this book

	
Running a Jupyter Notebook






	
Who this book is for

	
How to get the most out of this book






	
Conventions


	
Assumptions for every recipe


	
Dataset Descriptions


	
Sections

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Reader feedback


	
Customer support

	
Downloading the example code


	
Downloading the color images of this book


	
Errata


	
Piracy


	
Questions










	
Pandas Foundations

	
Introduction


	
Dissecting the anatomy of a DataFrame

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Accessing the main DataFrame components

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Understanding data types

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Selecting a single column of data as a Series

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Calling Series methods

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Working with operators on a Series

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Chaining Series methods together

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Making the index meaningful

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Renaming row and column names

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Creating and deleting columns

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also










	
Essential DataFrame Operations

	
Introduction


	
Selecting multiple DataFrame columns

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Selecting columns with methods

	
Getting ready


	
How it works...


	
How it works...


	
There's more...


	
See also






	
Ordering column names sensibly

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Operating on the entire DataFrame

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Chaining DataFrame methods together

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Working with operators on a DataFrame

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Comparing missing values

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Transposing the direction of a DataFrame operation

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Determining college campus diversity

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also










	
Beginning Data Analysis

	
Introduction


	
Developing a data analysis routine

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...

	
Data dictionaries






	
See also






	
Reducing memory by changing data types

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Selecting the smallest of the largest

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Selecting the largest of each group by sorting

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Replicating nlargest with sort_values

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Calculating a trailing stop order price

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also










	
Selecting Subsets of Data

	
Introduction


	
Selecting Series data

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Selecting DataFrame rows

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Selecting DataFrame rows and columns simultaneously

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Selecting data with both integers and labels

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Speeding up scalar selection

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Slicing rows lazily

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Slicing lexicographically

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...










	
Boolean Indexing

	
Introduction


	
Calculating boolean statistics

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Constructing multiple boolean conditions

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Filtering with boolean indexing

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Replicating boolean indexing with index selection

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Selecting with unique and sorted indexes

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Gaining perspective on stock prices

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Translating SQL WHERE clauses

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Determining the normality of stock market returns

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Improving readability of boolean indexing with the query method

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Preserving Series with the where method

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Masking DataFrame rows

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Selecting with booleans, integer location, and labels

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also










	
Index Alignment

	
Introduction


	
Examining the Index object

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Producing Cartesian products

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Exploding indexes

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Filling values with unequal indexes

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Appending columns from different DataFrames

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Highlighting the maximum value from each column

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Replicating idxmax with method chaining

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Finding the most common maximum

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...










	
Grouping for Aggregation, Filtration, and Transformation

	
Introduction


	
Defining an aggregation

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Grouping and aggregating with multiple columns and functions

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Removing the MultiIndex after grouping

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Customizing an aggregation function

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Customizing aggregating functions with *args and **kwargs

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Examining the groupby object

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Filtering for states with a minority majority

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Transforming through a weight loss bet

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Calculating weighted mean SAT scores per state with apply

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Grouping by continuous variables

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Counting the total number of flights between cities

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Finding the longest streak of on-time flights

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also










	
Restructuring Data into a Tidy Form

	
Introduction


	
Tidying variable values as column names with stack

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Tidying variable values as column names with melt

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Stacking multiple groups of variables simultaneously

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Inverting stacked data

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Unstacking after a groupby aggregation

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Replicating pivot_table with a groupby aggregation

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Renaming axis levels for easy reshaping

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Tidying when multiple variables are stored as column names

	
Getting ready...


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Tidying when multiple variables are stored as column values

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Tidying when two or more values are stored in the same cell

	
Getting ready...


	
How to do it..


	
How it works...


	
There's more...






	
Tidying when variables are stored in column names and values

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Tidying when multiple observational units are stored in the same table

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also










	
Combining Pandas Objects

	
Introduction


	
Appending new rows to DataFrames

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Concatenating multiple DataFrames together

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Comparing President Trump's and Obama's approval ratings

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Understanding the differences between concat, join, and merge

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Connecting to SQL databases

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also










	
Time Series Analysis

	
Introduction


	
Understanding the difference between Python and pandas date tools

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Slicing time series intelligently

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Using methods that only work with a DatetimeIndex

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Counting the number of weekly crimes

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Aggregating weekly crime and traffic accidents separately

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Measuring crime by weekday and year

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Grouping with anonymous functions with a DatetimeIndex

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Grouping by a Timestamp and another column

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Finding the last time crime was 20% lower with merge_asof

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...










	
Visualization with Matplotlib, Pandas, and Seaborn

	
Introduction


	
Getting started with matplotlib

	
Getting ready

	
Object-oriented guide to matplotlib






	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Visualizing data with matplotlib

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


	
See also






	
Plotting basics with pandas

	
Getting ready


	
How to do it..


	
How it works...


	
There's more...


	
See also






	
Visualizing the flights dataset

	
Getting ready


	
How to do it...


	
How it works...


	
See also






	
Stacking area charts to discover emerging trends

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Understanding the differences between seaborn and pandas

	
Getting ready


	
How to do it...


	
How it works...


	
See also






	
Doing multivariate analysis with seaborn Grids

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...






	
Uncovering Simpson's paradox in the diamonds dataset with seaborn

	
Getting ready


	
How to do it...


	
How it works...


	
There's more...


















Preface


The popularity of data science has skyrocketed since it was called The Sexiest Job of the 21st Century
 by the Harvard Review in 2012. It was ranked as the number one job by Glassdoor in both 2016 and 2017. Fueling this skyrocketing popularity for data science is the demand from industry. Several applications have made big splashes in the news, such as Netflix making better movie recommendations, IBM Watson defeating humans at Jeopardy, Tesla building self-driving cars, Major League Baseball teams finding undervalued prospects, and Google learning to identify cats on the internet.



Nearly every industry is finding ways to use data science to build new technology or provide deeper insights. Due to such noteworthy successes, an ever-present aura of hype seems to encapsulate data science. Most of the scientific progress backing this hype stems from the field of machine learning, which produces the algorithms that make the predictions responsible for artificial intelligence.



The fundamental building block for all machine learning algorithms is, of course, data. As companies have realized this, there is no shortage of it. The business intelligence company, Domo, estimates that 90% of the world's data has been created in just the last two years.
 Although machine learning gets all the attention, it is completely reliant on the quality of the data that it is fed. Before data ever reaches the input layers of a machine learning algorithm, it must be prepared, and for data to be prepared properly, it needs to be explored thoroughly for basic understanding and to identify inaccuracies. Before data can be explored, it needs to be captured.



To summarize, we can cast the data science pipeline into three stages--data capturing, data exploration, and machine learning. There are a vast array of tools available to complete each stage of the pipeline. Pandas is the dominant tool in the scientific Python ecosystem for data exploration and analysis. It is tremendously capable of inspecting, cleaning, tidying, filtering, transforming, aggregating, and even visualizing (with some help) all types of data. It is not a tool for initially capturing the data, nor is it a tool to build machine learning models.


For many data analysts and scientists who use Python, the vast majority of their work will be done using pandas. This is likely because the initial data exploration and preparation tend to take the most time. Some entire projects consist only of data exploration and have no machine learning component. Data scientists spend so much time on this stage that a timeless lore has arisen--Data scientists spend 80% of their time cleaning the data and the other 20% complaining about cleaning the data.


Although there is an abundance of open source and free programming languages available to do data exploration, the field is currently dominated by just two players, Python and R. The two languages have vastly different syntax but are both very capable of doing data analysis and machine learning. One measure of popularity is the number of questions asked on the popular Q&A site, Stack Overflow (https://insights.stackoverflow.com/trends
 ):




While this is not a true measure of usage, it is clear that both Python and R have become increasingly popular, likely due to their data science capabilities. It is interesting to note that the percentage of Python questions remained constant until the year 2012, when data science took off. What is probably most astonishing about this graph is that pandas questions now make up a whopping one percent of all the newest questions on Stack Overflow.

One of the reasons why Python has become a language of choice for data science is that it is a fairly easy language to learn and develop, and so it has a low barrier to entry. It is also free and open source, able to run on a variety of hardware and software, and a breeze to get up and running. It has a very large and active community with a substantial amount of free resources online. In my opinion, Python is one of the most fun languages to develop programs with. The syntax is so clear, concise, and intuitive but like all languages, takes quite a long time to master.

As Python was not built for data analysis like R, the syntax may not come as naturally as it does for some other Python libraries. This actually might be part of the reason why there are so many Stack Overflow questions on it. Despite its tremendous capabilities, pandas code can often be poorly written. One of the main aims of this book is to show performant and idiomatic pandas code.

For all its greatness, Stack Overflow, unfortunately perpetuates misinformation and is a source for lots of poorly written pandas. This is actually not the fault of Stack Overflow or its community. Pandas is an open source project and has had numerous major changes, even recently, as it approaches its tenth year of existence in 2018. The upside of open source, though, is that new features get added to it all the time.


The recipes in this book were formulated through my experience working as a data scientist, building and hosting several week-long data exploration bootcamps, answering several hundred questions on Stack Overflow, and building tutorials for my local meetup group. The recipes not only offer idiomatic solutions to common data problems, but also take you on journeys through many real-world datasets, where surprising insights are often discovered. These recipes will also help you master the pandas library, which will give you a gigantic boost in productivity. There is a huge difference between those who have only cursory knowledge of pandas and those who have it mastered. There are so many interesting and fun tricks to solve your data problems that only become apparent if you truly know the library inside and out. Personally, I find pandas to be a delightful and fun tool to analyze data with, and I hope you enjoy your journey along with me
 . If you have questions, please feel free to reach out to me on Twitter: @TedPetrou
 .





What this book covers



Chapter 1
 , Pandas Foundations, 
 covers the anatomy and vocabulary used to identify the components of the two main pandas data structures, the Series and the DataFrame. Each column must have exactly one type of data, and each of these data types is covered. You will learn how to unleash the power of the Series and the DataFrame by calling and chaining together their methods.


Chapter 2
 , Essential DataFrame Operations
 , focuses on the most crucial and common operations that you will perform during data analysis.


Chapter 3
 , Beginning Data Analysis
 , helps you develop a routine to get started after reading in your data. Other interesting discoveries will be made.


Chapter 4
 , Selecting Subsets of Data
 , covers the many varied and potentially confusing ways of selecting different subsets of data.


Chapter 5
 , Boolean Indexing
 , covers the process of querying your data to select subsets of it based on Boolean conditions.


Chapter 6
 , Index Alignment
 , targets the very important and often misunderstood index
 object. Misuse of the Index is responsible for lots of erroneous results, and these recipes show you how to use it correctly to deliver powerful results.


Chapter 7
 , Grouping for Aggregation, Filtration, and Transformation
 , covers the powerful grouping capabilities that are almost always necessary during a data analysis. You will build customized functions to apply to your groups.


Chapter 8
 , Restructuring Data into Tidy Form
 , explains what tidy data is and why it’s so important, and then it shows you how to transform many different forms of messy datasets into tidy ones.


Chapter 9
 , Combining Pandas Objects
 , covers the many available methods to combine DataFrames and Series vertically or horizontally. We will also do some web-scraping to compare President Trump's and Obama's approval rating and connect to an SQL relational database.


Chapter 10
 , Time Series Analysis
 , covers advanced and powerful time series capabilities to dissect by any dimension of time possible.


Chapter 11
 , Visualization with Matplotlib, Pandas, and Seaborn
 , introduces the matplotlib library, which is responsible for all of the plotting in pandas. We will then shift focus to the pandas plot
 method and, finally, to the seaborn
 library, which is capable of producing aesthetically pleasing visualizations not directly available in pandas.





What you need for this book


Pandas is a third-party package for the Python programming language and, as of the printing of this book, is on version 0.20. Currently, Python has two major supported releases, versions 2.7 and 3.6. Python 3 is the future, and it is now highly recommended that all scientific computing users of Python use it, as Python 2 will no longer be supported in 2020. All examples in this book have been run and tested with pandas 0.20 on Python 3.6.

In addition to pandas, you will need to have the matplotlib version 2.0 and seaborn version 0.8 visualization libraries installed. A major dependence for pandas is the NumPy library, which forms the basis of most of the popular Python scientific computing libraries.

There are a wide variety of ways in which you can install pandas and the rest of the libraries mentioned on your computer, but by far the simplest method is to install the Anaconda distribution. Created by Continuum Analytics, it packages together all the popular libraries for scientific computing in a single downloadable file available on Windows, Mac OSX, and Linux. Visit the download page to get the Anaconda distribution (https://www.anaconda.com/download
 ).

In addition to all the scientific computing libraries, the Anaconda distribution comes with Jupyter Notebook, which is a browser-based program for developing in Python, among many other languages. All of the recipes for this book were developed inside of a Jupyter Notebook and all of the individual notebooks for each chapter will be available for you to use.

It is possible to install all the necessary libraries for this book without the use of the Anaconda distribution. For those that are interested, visit the pandas Installation
 page (http://pandas.pydata.org/pandas-docs/stable/install.html
 ).





Running a Jupyter Notebook


The suggested method to work through the content of this book is to have a Jupyter Notebook up and running so that you can run the code while reading through the recipes. This allows you to go exploring on your own and gain a deeper understanding than by just reading the book alone.

Assuming that you have installed the Anaconda distribution on your machine, you have two options available to start the Jupyter Notebook:


	Use the program Anaconda Navigator

	Run the jupyter notebook
 command 
 from the Terminal/Command Prompt



The Anaconda Navigator is a GUI-based tool that allows you to find all the different software provided by Anaconda with ease. Running the program will give you a screen like this:




As you can see, there are many programs available to you. Click Launch
 to open the Jupyter Notebook. A new tab will open in your browser, showing you a list of folders and files in your home directory:




Instead of using the Anaconda Navigator, you can launch Jupyter Notebook by opening up your Terminal/Command Prompt and running the jupyter notebook
  command 
 like this:




It is not necessary to run this command from your home directory. You can run it from any location, and the contents in the browser will reflect that location.

Although we have now started the Jupyter Notebook program, we haven't actually launched a single individual notebook where we can start developing in Python. To do so, you can click on the New
 button on the right-hand side of the page, which will drop down a list of all the possible kernels available for you to use. If you just downloaded Anaconda, then you will only have a single kernel available to you (Python 3).  After selecting the Python 3
 kernel, a new tab will open in the browser, where you can start writing Python code:




You can, of course, open previously created notebooks instead of beginning a new one. To do so, simply navigate through the filesystem provided in the Jupyter Notebook browser home page and select the notebook you want to open. All Jupyter Notebook files end in .ipynb
 . For instance, when you navigate to the location of the notebook files for this book, you will see all of them like this:








Who this book is for


This book contains nearly 100 recipes, ranging from very simple to advanced. All recipes strive to be written in clear, concise, and modern idiomatic pandas code. The How it works...
 sections contain extremely detailed descriptions of the intricacies of each step of the recipe. Often, in the There's more...
 section, you will get what may seem like
 an entirely new recipe. This book is densely packed with an extraordinary amount of pandas code.

As a generalization, the recipes in the first six chapters tend to be simpler and more focused on the fundamental and essential operations of pandas than the last five chapters, which focus on more advanced operations and are more project-driven. Due to the wide range of complexity, this book can be useful to both the novice and everyday user alike. It has been my experience that even those who use pandas regularly will not master it without being exposed to idiomatic pandas code. This is somewhat fostered by the breadth that pandas offers. There are almost always multiple ways of completing the same operation, which can have users get the result they want but in a very inefficient manner. It is not uncommon to see an order of magnitude or more performance difference between two sets of pandas solutions to the same problem.

The only real prerequisite for this book is fundamental knowledge of Python. It is assumed that the reader is familiar with all the common built-in data containers in Python, such as lists, sets, dictionaries, and tuples.





How to get the most out of this book


There are a couple of things you can do to get the most out of this book. First, and most importantly, you should download all the code, which will be stored in Jupyter Notebooks. While reading through each recipe, run each step of code in the notebook. Make sure you explore on your own as you run through the code. Second, have the pandas official documentation open (http://pandas.pydata.org/pandas-docs/stable/
 ) in one of your browser tabs. The pandas documentation is an excellent resource containing over 1,000 pages of material. There are examples for most of the pandas operations in the documentation, and they will often be directly linked
  from the See also
 section. While it covers the basics of most operations, it does so with trivial examples and fake data that don't reflect situations that you are likely to encounter when analyzing datasets from the real world.





Conventions


In this book, you will find a few text styles that distinguish between different kinds of information. Most commonly you will see blocks of code during each recipe that will look like this:

>>> employee = pd.read_csv('data/employee')

>>> max_dept_salary = employee.groupby('DEPARTMENT')['BASE_SALARY'].max()

The pandas Series and DataFrames are stylized differently when output in the notebook. The pandas Series have no special formatting and are just raw text. They will appear directly preceding the line of code that creates them in the code block itself, like this:

>>> max_dept_salary.head()

DEPARTMENT
Admn. & Regulatory Affairs      140416.0
City Controller's Office         64251.0
City Council                    100000.0
Convention and Entertainment     38397.0
Dept of Neighborhoods (DON)      89221.0
Name: BASE_SALARY, dtype: float64

DataFrames, on the other hand, are nicely stylized in the notebooks and appear as images outside of the code box, like this:

>>> employee.pivot_table(index='DEPARTMENT', 

                         columns='GENDER', 

                         values='BASE_SALARY').round(0).head()




Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: In order to find the average BASE_SALARY
 by GENDER
 , you can use the pivot_table
 method.


New terms
 and important words
 are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "In a Jupyter notebook, when holding down S
 hift
  
 + 
 Tab
  + 
 Tab
  with the cursor placed somewhere in the object, a window of the docsstrings will pop out making the method far easier to use.
 "
  

Tips and tricks appear like this.

Warnings or important notes appear in a box like this.





Assumptions for every recipe


It should be assumed that at the beginning of each recipe, pandas, NumPy, and matplotlib are imported into the namespace. For plots to be embedded directly within the notebook, you must also run the magic command %matplotlib inline
 . Also, all data is stored in the 
 data
  
 directory and is most commonly stored as a CSV file, which can be read directly with the read_csv
 function.

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> %matplotlib inline



>>> my_dataframe = pd.read_csv('data/dataset_name.csv')





Dataset Descriptions


There are about two dozen datasets that are used throughout this book. It can be very helpful to have background information on each dataset as you complete the steps in the recipes. A detailed description of each dataset may be found in the dataset_descriptions
 Jupyter Notebook found at https://github.com/PacktPublishing/Pandas-Cookbook
 . For each datastet, there will be a list of the columns, information about each column and notes on how the data was procured.





Sections


In this book, you will find several headings that appear frequently (Getting ready, How to do it…, How it works…, There's more…, and See also).

 

To give clear instructions on how to complete a recipe, we use these sections as follows:





Getting ready


This section tells you what to expect in the recipe, and describes how to set up any software or any preliminary settings required for the recipe.





How to do it...


This section contains the steps required to follow the recipe.





How it works...


This section usually consists of a detailed explanation of what happened in the previous section.





There's more...


This section consists of additional information about the recipe in order to make the reader more knowledgeable about the recipe.





See also


This section provides helpful links to other useful information for the recipe.





Reader feedback


Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important to us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply email feedback@packtpub.com
 , and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors
 .





Customer support


Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.





Downloading the example code


You can download the example code files for this book from your account at http://www.packtpub.com
 . If you purchased this book elsewhere, you can visit http://www.packtpub.com/support
 and register to have the files e-mailed directly to you.

You can download the code files by following these steps:


	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the SUPPORT
 tab at the top.

	Click on Code Downloads & Errata
 .

	Enter the name of the book in the Search
 box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download
 .



You can also download the code files by clicking on the Code Files
 button on the book's webpage at the Packt Publishing website. This page can be accessed by entering the book's name in the search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:


	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux



The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Pandas-Cookbook
 . We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/
 . Check them out!





Downloading the color images of this book


We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/PandasCookbook_ColorImages.pdf
 .





Errata


Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books--maybe a mistake in the text or the code--we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata
 , selecting your book, clicking on the Errata Submission Form
 link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
 and enter the name of the book in the search field. The required information will appear under the Errata
 section.





Piracy


Piracy of copyrighted material on the internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com
 with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.





Questions


If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com
 , and we will do our best to address the problem.







Pandas Foundations


In this chapter, we will cover the following:


	Dissecting the anatomy of a DataFrame

	Accessing the main DataFrame components

	Understanding data types

	Selecting a single column of data as a Series

	Calling Series methods

	Working with operators on a Series

	Chaining Series methods together

	Making the index meaningful

	Renaming row and column names

	Creating and deleting columns







Introduction


The goal of this chapter is to introduce a foundation of pandas by thoroughly inspecting the Series and DataFrame data structures. It is vital for pandas users to know each component of the Series and the DataFrame, and to understand that each column of data in pandas holds precisely one data type.

In this chapter, you will learn how to select a single column of data from a DataFrame, which is returned as a Series. Working with this one-dimensional object makes it easy to show how different methods and operators work. Many Series methods return another Series as output. This leads to the possibility of calling further methods in succession, which is known as method chaining
 .

The Index component of the Series and DataFrame is what separates pandas from most other data analysis libraries and is the key to understanding how many operations work. We will get a glimpse of this powerful object when we use it as a meaningful label for Series values. The final two recipes contain simple tasks that frequently occur during a data analysis.





Dissecting the anatomy of a DataFrame


Before diving deep into pandas, it is worth knowing the components of the DataFrame. Visually, the outputted display of a pandas DataFrame (in a Jupyter Notebook) appears to be nothing more than an ordinary table of data consisting of rows and columns. Hiding beneath the surface are the three components--the index
 , columns
 , and data
  (also known as values
 ) that you must be aware of in order to maximize the DataFrame's full potential.





Getting ready


This recipe reads in the movie dataset into a pandas DataFrame and provides a labeled diagram of all its major components.





How to do it...



	Use the read_csv
 function to read in the movie dataset, and display the first five rows with the head
 method:



>>> movie = pd.read_csv('data/movie.csv')

>>> movie.head()


	Analyze the labeled anatomy of the DataFrame:










How it works...


Pandas first reads the data from disk into memory and into a DataFrame using the excellent and versatile read_csv
 function. The output for both the columns and the index is in bold font, which makes them easy to identify. By convention, the terms index label
 and column name
 refer to the individual members of the index and columns, respectively. The term index
 refers to all the index labels as a whole just as the term columns
 refers to all the column names as a whole.

The columns and the index serve a particular purpose, and that is to provide labels for the columns and rows of the DataFrame. These labels allow for direct and easy access to different subsets of data. When multiple Series or DataFrames are combined, the indexes align first before any calculation occurs. Collectively, the columns and the index are known as the axes
 .

A DataFrame has two axes--a vertical axis (the index)
 and a horizontal axis(the columns)
 . Pandas borrows convention from NumPy
 and uses the integers 0/1 as another way of referring to the vertical/horizontal axis.

DataFrame data (values) is always in regular font and is an entirely separate component from the columns or index. Pandas uses NaN
 (not a number
 ) to represent missing values. Notice that even though the color
 column has only string values, it uses NaN to represent a missing value.

The three consecutive dots in the middle of the columns indicate that there is at least one column that exists but is not displayed due to the number of columns exceeding the predefined display limits.

The Python standard library contains the csv
 module, which can be used to parse and read in data. The pandas read_csv
 function offers a powerful increase in performance and functionality over this module.





There's more...


The head
 method accepts a single parameter, n
 , which controls the number of rows displayed. Similarly, the tail
 method returns the last n
 rows.





See also



	Pandas official documentation of the read_csv
 function (http://bit.ly/2vtJQ9A
 )







Accessing the main DataFrame components


Each of the three DataFrame components--the index, columns, and data--may be accessed directly from a DataFrame. Each of these components is itself a Python object with its own unique attributes and methods. It will often be the case that you would like to perform operations on the individual components and not on the DataFrame as a whole.





Getting ready


This recipe extracts the index, columns, and the data of the DataFrame into separate variables, and then shows how the columns and index are inherited from the same object.





How to do it...



	Use the DataFrame attributes index
 , 

columns


 , and values
 to assign the index, columns, and data to their own variables:



>>> movie = pd.read_csv('data/movie.csv')

>>> index = movie.index

>>> columns = movie.columns

>>> data = movie.values


	Display each component's values:



>>> index

RangeIndex(start=0, stop=5043, step=1)



>>> columns

Index(['color', 'director_name', 'num_critic_for_reviews',
       ...
       'imdb_score', 'aspect_ratio', 'movie_facebook_likes'],

       dtype='object')



>>> data

array([['Color', 'James Cameron', 723.0, ..., 7.9, 1.78, 33000],
       ..., 
       ['Color', 'Jon Gunn', 43.0, ..., 6.6, 1.85, 456]],

       dtype=object)


	Output the type of each DataFrame component. The name of the type is the word following the last dot of the output:



>>> type(index)

pandas.core.indexes.range.RangeIndex



>>> type(columns)

pandas.core.indexes.base.Index



>>> type(data)

numpy.ndarray


	Interestingly, both the types for both the index and the columns appear to be closely related. The built-in issubclass
 method checks whether RangeIndex
 is indeed a subclass of Index
 :



>>> issubclass(pd.RangeIndex, pd.Index)

True





How it works...


You may access the three main components of a DataFrame with the index
 , columns
 , and values
 attributes. The output of the columns
 attribute appears to be just a sequence of the column names. This sequence of column names is technically an Index
 object. The output of the function type
 is the fully qualified class name
 of the object.

The fully qualified class name of the object for the variable columns
 is pandas.core.indexes.base.Index
 . It begins with the package name, which is followed by a path of modules and ends with the name of the type. A common way of referring to objects is to include the package name followed by the name of the object type. In this instance, we would refer to the columns as a pandas Index
 object.

The built-in subclass
 function checks whether the first argument inherits from the second. The Index
 and RangeIndex
 objects are very similar, and in fact, pandas has a number of similar objects reserved specifically for either the index or the columns. The index and the columns must both be some kind of Index
 object. Essentially, the index and the columns represent the same thing, but along different axes. They’re occasionally referred to as the row index
 and column index
 .

In this context, the Index
 objects refer to all the possible objects that can be used for the index or columns. They are all subclasses of pd.Index
 . Here is the complete list of the Index
 objects: CategoricalIndex
 , MultiIndex
 , IntervalIndex
 , Int64Index
 , UInt64Index
 , Float64Index
 , RangeIndex
 , TimedeltaIndex
 , DatetimeIndex
 , PeriodIndex
 .

A RangeIndex
 is a special type of Index
 object that is analogous to Python's range
 object. Its entire sequence of values is not loaded into memory until it is necessary to do so, thereby saving memory. It is completely defined by its start, stop, and step values.





There's more...


When possible, Index
 objects are implemented using hash tables that allow for very fast selection and data alignment. They are similar to Python sets in that they support operations such as intersection and union, but are dissimilar because they are ordered with duplicates allowed.

Python dictionaries and sets are also implemented with hash tables that allow for membership checking to happen very fast in constant time, regardless of the size of the object.

Notice how the values
 DataFrame attribute returned a NumPy n-dimensional array, or ndarray
 . Most of pandas relies heavily on the ndarray
 . Beneath the index, columns, and data are NumPy ndarrays
 . They could be considered the base object for pandas that many other objects are built upon. To see this, we can look at the values of the index
 and columns
 :

>>> index.values

array([   0,    1,    2, ..., 4913, 4914, 4915])



>>> columns.values

array(['color', 'director_name', 'num_critic_for_reviews',

 ...

 'imdb_score', 'aspect_ratio', 'movie_facebook_likes'],

 dtype=object)





See also



	Pandas official documentation 
of
 Indexing and Selecting data
 (http://bit.ly/2vm8f12
 )

	
A look inside pandas design and development
 slide deck from pandas author, Wes McKinney (http://bit.ly/2u4YVLi
 )







Understanding data types


In very broad terms, data may be classified as either continuous or categorical. Continuous data is always numeric and represents some kind of measurement, such as height, wage, or salary. Continuous data can take on an infinite number of possibilities. Categorical data, on the other hand, represents discrete, finite amounts of values such as car color, type of poker hand, or brand of cereal.

Pandas does not broadly classify data as either continuous or categorical.  Instead, it has precise technical definitions for many distinct data types. The following table contains all pandas data types, with their string equivalents, and some notes on each type:




	
Common data type name

	
NumPy/pandas object

	
Pandas string name

	
Notes




	
Boolean




	

np.bool



	

bool



	
Stored as a single byte.





	
Integer




	

np.int



	

int



	
Defaulted to 64 bits. Unsigned ints are also available - np.uint
 .





	
Float


	

np.float



	

float



	
Defaulted to 64 bits.





	
Complex


	

np.complex



	

complex



	
Rarely seen in data analysis.





	
Object


	

np.object



	

O
 , object



	
Typically strings but is a catch-all for columns with multiple different types or other Python objects (tuples, lists, dicts, and so on).







	
Datetime


	

np.datetime64, pd.Timestamp



	

datetime64



	
Specific moment in time with nanosecond precision.





	
Timedelta


	

np.timedelta64, pd.Timedelta



	

timedelta64



	
An amount of time, from days to nanoseconds.





	
Categorical


	

pd.Categorical



	

category



	
Specific only to pandas. Useful for object columns with relatively few unique values.











Getting ready


In this recipe, we display the data type of each column in a DataFrame. It is crucial to know the type of data held in each column as it fundamentally changes the kind of operations that are possible with it.





How to do it...



	Use the dtypes
 attribute to display each column along with its data type:



>>> movie = pd.read_csv('data/movie.csv')

>>> movie.dtypes

color                       object
director_name               object
num_critic_for_reviews     float64
duration                   float64
director_facebook_likes    float64
                            ...   
title_year                 float64
actor_2_facebook_likes     float64
imdb_score                 float64
aspect_ratio               float64
movie_facebook_likes         int64
Length: 28, dtype: object


	Use the get_dtype_counts
 method to return the counts of each data type:



>>> movie.get_dtype_counts()

float64    13
int64       3
object     12





How it works...


Each DataFrame column must be exactly one type. For instance, every value in the column aspect_ratio
 is a 64-bit float, and every value in movie_facebook_likes
 is a 64-bit integer. Pandas defaults its core numeric types, integers, and floats to 64 bits regardless of the size necessary for all data to fit in memory. Even if a column consists entirely of the integer value 0, the data type will still be int64
 . get_dtype_counts
 is a convenience method for directly returning the count of all the data types in the DataFrame.


Homogeneous data
 is another term for referring to columns that all have the same type. DataFrames as a whole may contain heterogeneous data
 of different data types for different columns.

The object data type is the one data type that is unlike the others. A column that is of object data type may contain values that are of any valid Python object. Typically, when a column is of the object data type, it signals that the entire column is strings. This isn't necessarily the case as it is possible for these columns to contain a mixture of integers, booleans, strings, or other, even more complex Python objects such as lists or dictionaries. The object data type is a catch-all for columns that pandas doesn’t recognize as any other specific type.





There's more...


Almost all of pandas data types are built directly from NumPy. This tight integration makes it easier for users to integrate pandas and NumPy operations. As pandas grew larger and more popular, the object data type proved to be too generic for all columns with string values. Pandas created its own categorical data type to handle columns of strings (or numbers) with a fixed number of possible values.





See also



	Pandas official documentation for dtypes
 (http://bit.ly/2vxe8ZI
 )

	NumPy official documentation for
 Data types
 (http://bit.ly/2wq0qEH
 )







Selecting a single column of data as a Series


A Series is a single column of data from a DataFrame. It is a single dimension of data, composed of just an index and the data.





Getting ready


This recipe examines two different syntaxes to select a Series, one with the indexing operator and the other using dot notation.





How to do it...



	Pass a column name as a string to the indexing operator to select a Series of data:



>>> movie = pd.read_csv('data/movie.csv')

>>> movie['director_name']


	Alternatively, you may use the dot notation to accomplish the same task:



>>> movie.director_name


	Inspect the Series anatomy:




	Verify that the output is a Series:



>>> type(movie['director_name'])

pandas.core.series.Series





How it works...


Python has several built-in objects for containing data, such as lists, tuples, and dictionaries. All three of these objects use the indexing operator to select their data. DataFrames are more powerful and complex containers of data, but they too use the indexing operator as the primary means to select data. Passing a single string to the DataFrame indexing operator returns a Series.

The visual output of the Series is less stylized than the DataFrame. It represents a single column of data. Along with the index and values, the output displays the name, length, and data type of the Series.

Alternatively, while not recommended and subject to error, a column of data may be accessed using the dot notation with the column name as an attribute. Although it works with this particular example, it is not best practice and is prone to error and misuse. Column names with spaces or special characters cannot be accessed in this manner. This operation would have failed if the column name was director name
 . Column names that collide with DataFrame methods, such as count
 , also fail to be selected correctly using the dot notation. Assigning new values or deleting columns with the dot notation might give unexpected results. Because of this, using the dot notation to access columns should be avoided with production code.





There's more...


Why would anyone ever use the dot notation syntax if it causes trouble? Programmers are lazy, and there are fewer characters to type. But mainly, it is extremely handy when you want to have the autocomplete intelligence available. For this reason, column selection by dot notation will sometimes be used in this book. The autocomplete intelligence is fantastic for helping you become aware of all the possible attributes and methods available to an object.

The intelligence will fail to work when attempting to chain an operation after use of the indexing operator from step 1 but will continue to work with the dot notation from step 2. The following screenshot shows the pop-up window that appears after the selection of the director_name
  with the dot notation. All the possible attributes and methods will appear in a list after pressing Tab
  following the dot:




In a Jupyter notebook, when holding down Shift
 + Tab
 + Tab
 with the cursor placed somewhere in the object, a window of the docsstrings will pop out making the method far easier to use. This intelligence again disappears if you try to chain an operation after selecting a column with the indexing operator.

Yet another reason to be aware of the dot notation is the proliferation of its use online at the popular question and answer site Stack Overflow. Also, notice that the old column name is now the name
 of the Series and has actually become an attribute:

>>> director = movie['director_name']

>>> director.name

'director_name'

It is possible to turn this Series into a one-column DataFrame with the to_frame
 method. This method will use the Series name as the new column name:

>>> director.to_frame()





See also



	To understand how Python objects gain the capability to use the indexing operator, see the Python documentation on the __getitem__
 special method (http://bit.ly/2u5ISN6
 )

	Refer to the Selecting multiple DataFrame columns
 recipe from Chapter 2
 , Essential DataFrame operations








Calling Series methods


Utilizing the single-dimensional Series is an integral part of all data analysis with pandas. A typical workflow will have you going back and forth between executing statements on Series and DataFrames. Calling Series methods is the primary way to use the abilities that the Series offers.





Getting ready


Both Series and DataFrames have a tremendous amount of power. We can use the dir
 function to uncover all the attributes and methods of a Series. Additionally, we can find the number of attributes and methods common to both Series and DataFrames. Both of these objects share the vast majority of attribute and method names:

>>> s_attr_methods = set(dir(pd.Series))

>>> len(s_attr_methods)

442



>>> df_attr_methods = set(dir(pd.DataFrame))

>>> len(df_attr_methods)

445



>>> len(s_attr_methods & df_attr_methods)

376

This recipe covers the most common and powerful Series methods. Many of the methods are nearly equivalent for DataFrames.





How to do it...



	After reading in the movies dataset, let's select two Series with different data types. The director_name
 column contains strings, formally an object data type, and the column actor_1_facebook_likes
 contains numerical data, formally float64
 :



>>> movie = pd.read_csv('data/movie.csv')

>>> director = movie['director_name']

>>> actor_1_fb_likes = movie['actor_1_facebook_likes']


	Inspect the head
 of each Series:



>>> director.head()

0        James Cameron
1       Gore Verbinski
2           Sam Mendes
3    Christopher Nolan
4          Doug Walker
Name: director_name, dtype: object



>>> actor_1_fb_likes.head()

0     1000.0
1    40000.0
2    11000.0
3    27000.0
4      131.0
Name: actor_1_facebook_likes, dtype: float64


	The data type of the Series usually determines which of the methods will be the most useful. For instance, one of the most useful methods for the object data type Series is value_counts
 , which counts all the occurrences of each unique value:



>>> director.value_counts()

Steven Spielberg        26
Woody Allen             22
Martin Scorsese         20
Clint Eastwood          20
                        ..
Fatih Akin               1
Analeine Cal y Mayor     1
Andrew Douglas           1
Scott Speer              1
Name: director_name, Length: 2397, dtype: int64


	The value_counts
  method is typically more useful for Series with object data types but can occasionally provide insight into numeric Series as well. Used with actor_1_fb_likes
 , it appears that higher numbers have been rounded to the nearest thousand as it is unlikely that so many movies received exactly 1,000 likes:



>>> actor_1_fb_likes.value_counts()

1000.0     436
11000.0    206
2000.0     189
3000.0     150
          ... 
216.0        1
859.0        1
225.0        1
334.0        1
Name: actor_1_facebook_likes, Length: 877, dtype: int64


	Counting the number of elements in the Series may be done with the size
 or shape
 parameter or the len
 function:



>>> director.size

4916

>>> director.shape

(4916,)

>>> len(director)

4916


	Additionally, there is the useful but confusing count
 method that returns the number of non-missing values:



>>> director.count()

4814

>>> actor_1_fb_likes.count()

4909


	Basic summary statistics may be yielded with the min
 , max
 , mean
 , median
 , std
 , and sum
 methods:



>>> actor_1_fb_likes.min(), actor_1_fb_likes.max(), \

    actor_1_fb_likes.mean(), actor_1_fb_likes.median(), \

    actor_1_fb_likes.std(), actor_1_fb_likes.sum()

(0.0, 640000.0, 6494.488490527602, 982.0, 15106.98, 31881444.0)


	To simplify step 7, you may use the describe
 method to return both the summary statistics and a few of the quantiles at once. When describe
 is used with an
 object data type column, a completely different output is returned:




>>> actor_1_fb_likes.describe()

count      4909.000000
mean       6494.488491
std       15106.986884
min           0.000000
25%         607.000000
50%         982.000000
75%       11000.000000
max      640000.000000
Name: actor_1_facebook_likes, dtype: float64



>>> director.describe()

count                 4814

unique                2397

top       Steven Spielberg

freq                    26

Name: director_name, dtype: object


	The quantile
 method exists to calculate an exact quantile of numeric data:



>>> actor_1_fb_likes.quantile(.2)

510



>>> actor_1_fb_likes.quantile([.1, .2, .3, .4, .5,

                               .6, .7, .8, .9])

0.1      240.0
0.2      510.0
0.3      694.0
0.4      854.0
        ...   
0.6     1000.0
0.7     8000.0
0.8    13000.0
0.9    18000.0
Name: actor_1_facebook_likes, Length: 9, dtype: float64


	Since the count
 method in step 6 returned a value less than the total number of Series elements found in step 5, we know that there are missing values in each Series. The isnull
  method may be used to determine whether each individual value is missing or not. The result will be a Series of booleans the same length as the original Series:



>>> director.isnull()

0       False
1       False
2       False
3       False
        ...  
4912     True
4913    False
4914    False
4915    False
Name: director_name, Length: 4916, dtype: bool


	It is possible to replace all missing values within a Series with the fillna
 method:



>>> actor_1_fb_likes_filled = actor_1_fb_likes.fillna(0)

>>> actor_1_fb_likes_filled.count()

4916


	To remove the Series elements with missing values, use dropna
 :



>>> actor_1_fb_likes_dropped = actor_1_fb_likes.dropna()

>>> actor_1_fb_likes_dropped.size

4909





How it works...


Passing a string to the indexing operator of a DataFrame selects a single column as a Series. The methods used in this recipe were chosen because of how frequently they are used in data analysis.

The steps in this recipe should be straightforward with easily interpretable output. Even though the output is easy to read, you might lose track of the returned object. Is it a scalar value, a tuple, another Series, or some other Python object? Take a moment, and look at the output returned after each step. Can you name the returned object?

The result from the head
 method in step 1 is another Series. The value_counts
  method also produces a Series but has the unique values from the original Series as the index and the count as its values. In step 5, size
 and count
 return scalar values, but shape
 returns a one-item tuple.

It seems odd that the shape
 attribute returns a one-item tuple, but this is convention borrowed from NumPy, which allows for arrays of any number of dimensions.

In step 7, each individual method returns a scalar value, and is outputted as a tuple. This is because Python treats an expression composed of only comma-separated values without parentheses as a tuple.

In step 8, describe
 returns a Series with all the summary statistic names as the index and the actual statistic as the values.

In step 9, quantile
 is flexible and returns a scalar value when passed a single value but returns a Series when given a list.

From steps 10, 11, and 12, isnull
 , fillna
 , and dropna
 all return a Series.





There's more...


The value_counts
  method is one of the most informative Series methods and heavily used during exploratory analysis, especially with categorical columns. It defaults to returning the counts, but by setting the normalize
 parameter to True
 , the relative frequencies are returned instead, which provides another view of the distribution:

>>> director.value_counts(normalize=True)

Steven Spielberg        0.005401
Woody Allen             0.004570
Martin Scorsese         0.004155
Clint Eastwood          0.004155
                          ...   
Fatih Akin              0.000208
Analeine Cal y Mayor    0.000208
Andrew Douglas          0.000208
Scott Speer             0.000208
Name: director_name, Length: 2397, dtype: float64

In this recipe, we determined that there were missing values in the Series by observing that the result from the count
 method did not match the size
 attribute. A more direct approach is to use the hasnans
 attribute:

>>> director.hasnans

True

There exists a complement of isnull
 : the notnull
 method, which returns True
 for all the non-missing values:

>>> director.notnull()

0        True
1        True
2        True
3        True
        ...  
4912    False
4913     True
4914     True
4915     True
Name: director_name, Length: 4916, dtype: bool





See also



	To call many Series methods in succession, refer to the Chaining Series methods together
 recipe in this chapter







Working with operators on a Series


There exist a vast number of operators in Python for manipulating objects. Operators are not objects themselves, but rather syntactical structures and keywords that force an operation to occur on an object. For instance, when the plus operator is placed between two integers, Python will add them together. See more examples of operators in the following code:

>>> 5 + 9   # plus operator example adds 5 and 9

14



>>> 4 ** 2  # exponentiation operator raises 4 to the second power

16



>>> a = 10  # assignment operator assigns 10 to a



>>> 5 <= 9  # less than or equal to operator returns a boolean

True

Operators can work for any type of object, not just numerical data. These examples show different objects being operated on:

>>> 'abcde' + 'fg' 

'abcdefg'



>>> not (5 <= 9)

False



>>> 7 in [1, 2, 6]

False



>>> set([1,2,3]) & set([2,3,4])

set([2,3])

Visit tutorials point (http://bit.ly/2u5g5Io
 ) to see a table of all the basic Python operators. Not all operators are implemented for every object. These examples all produce errors when using an operator:

>>> [1, 2, 3] - 3

TypeError: unsupported operand type(s) for -: 'list' and 'int'



>>> a = set([1,2,3])     

>>> a[0]               



TypeError: 'set' object does not support indexing



Series and DataFrame objects work with most of the Python operators.





Getting ready


In this recipe, a variety of operators will be applied to different Series objects to produce a new Series with completely different values.





How to do it...



	Select the imdb_score
 column as a Series:



>>> movie = pd.read_csv('data/movie.csv')

>>> imdb_score = movie['imdb_score']

>>> imdb_score

0       7.9
1       7.1
2       6.8
       ... 
4913    6.3
4914    6.3
4915    6.6
Name: imdb_score, Length: 4916, dtype: float64


	Use the plus operator to add one to each Series element:



>>> imdb_score + 1

0       8.9
1       8.1
2       7.8
       ... 
4913    7.3
4914    7.3
4915    7.6
Name: imdb_score, Length: 4916, dtype: float64


	The other basic arithmetic operators minus (-
 ), multiplication (*
 ), division (/
 ), and exponentiation (**
 ) work similarly with scalar values. In this step, we will multiply the series by 2.5
 :



>>> imdb_score * 2.5

0       19.75
1       17.75
2       17.00
        ...  
4913    15.75
4914    15.75
4915    16.50
Name: imdb_score, Length: 4916, dtype: float64


	Python uses two consecutive division operators (//
 ) for floor division and the percent sign (%
 ) for the modulus operator, which returns the remainder after a division. Series use these the same way:



>>> imdb_score // 7

0       1.0
1       1.0
2       0.0
       ... 
4913    0.0
4914    0.0
4915    0.0
Name: imdb_score, Length: 4916, dtype: float64


	There exist six comparison operators, greater than (>
 ), less than (<
 ), greater than or equal to (>=
 ), less than or equal to (<=
 ), equal to (==
 ), and not equal to (!=
 ). Each comparison operator turns each value in the Series to True
 or False
 based on the outcome of the condition:



>>> imdb_score > 7

0        True
1        True
2       False
        ...  
4913    False
4914    False
4915    False
Name: imdb_score, Length: 4916, dtype: bool



>>> director = movie['director_name']

>>> director == 'James Cameron'

0        True
1       False
2       False
        ...  
4913    False
4914    False
4915    False
Name: director_name, Length: 4916, dtype: bool





How it works...


All the operators used in this recipe apply the same operation to each element in the Series. In native Python, this would require a for-loop to iterate through each of the items in the sequence before applying the operation. Pandas relies heavily on the NumPy
 library, which allows for vectorized computations, or the ability to operate on entire sequences of data without the explicit writing of for loops. Each operation returns a Series with the same index, but with values that have been modified by the operator.





There's more...


All of the operators used in this recipe have method equivalents that produce the exact same result. For instance, in step 1, imdb_score + 1
 may be reproduced with the add
 method. Check the following code to see the method version of each step in the recipe:

>>> imdb_score.add(1)              # imdb_score + 1

>>> imdb_score.mul(2.5)            # imdb_score * 2.5

>>> imdb_score.floordiv(7)         # imdb_score // 7

>>> imdb_score.gt(7)               # imdb_score > 7

>>> director.eq('James Cameron')   # director == 'James Cameron'

Why does pandas offer a method equivalent to these operators? By its nature, an operator only operates in exactly one manner. Methods, on the other hand, can have parameters that allow you to alter their default functionality:




	
Operator Group

	
Operator

	
Series method name




	Arithmetic
	
+
 , -
 , *
 , /
 , //
 , %
 , **

	
add
 , sub
 , mul
 , div
 , floordiv
 , mod
 , pow




	Comparison
	
<
 , >
 , <=
 , >=
 , ==
 , !=

	

lt
 , gt
 , le
 , ge
 , eq
 , ne










You may be curious as to how a Python Series object, or any object for that matter, knows what to do when it encounters an operator. For example, how does the expression imdb_score * 2.5
 know to multiply each element in the Series by 2.5
 ? Python has a built-in, standardized way for objects to communicate with operators using special methods
 . 

Special methods are what objects call internally whenever they encounter an operator. Special methods are defined in the Python data model, a very important part of the official documentation, and are the same for every object throughout the language. Special methods always begin and end with two underscores. For instance, the special method __mul__
 is called whenever the multiplication operator is used. Python interprets the imdb_score * 2.5
 expression as imdb_score.__mul__(2.5)
 .

There is no difference between using the special method and using an operator as they are doing the exact same thing. The operator is just syntactic sugar for the special method.





See also



	Python official documentation on operators (http://bit.ly/2wpOId8
 )

	Python official documentation on the data model (http://bit.ly/2v0LrDd
 )







Chaining Series methods together


In Python, every variable is an object, and all objects have attributes and methods that refer to or return more objects. The sequential invocation of methods using the dot notation is referred to as method chaining
 . Pandas is a library that lends itself well to method chaining, as many Series and DataFrame methods return more Series and DataFrames, upon which more methods can be called. 





Getting ready


To motivate method chaining, let's take a simple English sentence and translate the chain of events into a chain of methods. Consider the sentence, A person drives to the store to buy food, then drives home and prepares, cooks, serves, and eats the food before cleaning the dishes.


A Python version of this sentence might take the following form:

>>> person.drive('store')\

          .buy('food')\

          .drive('home')\

          .prepare('food')\

          .cook('food')\

          .serve('food')\

          .eat('food')\

          .cleanup('dishes')

In the preceding code, the person
 is the object calling each of the methods, just as the person is performing all of the actions in the original sentence. The parameter passed to each of the methods specifies how the method operates.

Although it is possible to write the entire method chain in a single unbroken line, it is far more palatable to write a single method per line. Since Python does not normally allow a single expression to be written on multiple lines, you need to use the backslash line continuation character. Alternatively, you may wrap the whole expression in parentheses. To improve readability even more, place each method directly under the dot above it. This recipe shows similar method chaining with pandas Series.





How to do it...



	Load in the movie dataset, and select two columns as a distinct Series:



>>> movie = pd.read_csv('data/movie.csv')

>>> actor_1_fb_likes = movie['actor_1_facebook_likes']

>>> director = movie['director_name']


	One of the most common methods to append to the chain is the head
 method. This suppresses long output. For shorter chains, there isn't as great a need to place each method on a different line:



>>> director.value_counts().head(3)

Steven Spielberg    26
Woody Allen         22
Clint Eastwood      20
Name: director_name, dtype: int64


	A common way to count the number of missing values is to chain the sum
 method after isnull
 :



>>> actor_1_fb_likes.isnull().sum()

7


	All the non-missing values of actor_1_fb_likes
 should be integers as it is impossible to have a partial Facebook like. Any numeric columns with missing values must have their data type as float
 . If we fill missing values from actor_1_fb_likes
 with zeros, we can then convert it to an integer with the astype
 method:



>>> actor_1_fb_likes.dtype

dtype('float64')



>>> actor_1_fb_likes.fillna(0)\

                    .astype(int)\

                    .head()

0     1000
1    40000
2    11000
3    27000
4      131
Name: actor_1_facebook_likes, dtype: int64





How it works...


Method chaining is possible with all Python objects since each object method must return another object that itself will have more methods. It is not necessary for the method to return the same type of object.

Step 2 first uses value_counts
 to return a Series and then chains the head
 method to select the first three elements. The final returned object is a Series, which could also have had more methods chained on it.

In step 3, the isnull
 method creates a boolean Series. Pandas numerically evaluates False
 /True
 as 0/1, so the sum
 method returns the number of missing values.

Each of the three chained methods in step 4 returns a Series. It may not seem intuitive, but the astype
 method returns an entirely new Series with a different data type





There's more...


Instead of summing up the booleans in step 3 to find the total number of missing values, we can take the mean of the Series to get the percentage of values that are missing:

>>> actor_1_fb_likes.isnull().mean()

0.0014

As was mentioned at the beginning of the recipe, it is possible to use parentheses instead of the backslash for multi-line code. Step 4 may be rewritten this way:

>>> (actor_1_fb_likes.fillna(0)

                     .astype(int)

                     .head())

Not all programmers like the use of method chaining, as there are some downsides. One such downside is that debugging becomes difficult. None of the intermediate objects produced during the chain are stored in a variable, so if there is an unexpected result, it will be difficult to trace the exact location in the chain where it occurred.

The example at the start of the recipe may be rewritten so that the result of each method gets preserved as/in a unique variable. This makes tracking bugs much easier, as you can inspect the object at each step:

>>> person1 = person.drive('store')

>>> person2 = person1.buy('food')

>>> person3 = person2.drive('home')

>>> person4 = person3.prepare('food')

>>> person5 = person4.cook('food')

>>> person6 = person5.serve('food')

>>> person7 = person6.eat('food')

>>> person8 = person7.cleanup('dishes')





Making the index meaningful


The index of a DataFrame provides a label for each of the rows. If no index is explicitly provided upon DataFrame creation, then by default, a RangeIndex
 is created with labels as integers from 0 to n-1, where n is the number of rows.





Getting ready


This recipe replaces the meaningless default row index of the movie dataset with the movie title, which is much more meaningful.





How to do it...



	Read in the movie dataset, and use the set_index
 method to set the title of each movie as the new index:



>>> movie = pd.read_csv('data/movie.csv')

>>> movie2 = movie.set_index('movie_title')

>>> movie2


	Alternatively, it is possible to choose a column as the index upon initial read with the index_col
 parameter of the read_csv
 function:



>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')








How it works...


A meaningful index is one that clearly identifies each row. The default RangeIndex is not very helpful. Since each row identifies data for exactly one movie, it makes sense to use the movie title as the label. If you know ahead of time which column will make a good index, you can specify this upon import with the index_col
 parameter of the read_csv
 function.

By default, both set_index
 and read_csv
 drop the column used as the index from the DataFrame. With set_index
 , it is possible to keep the column in the DataFrame by setting the drop
 parameter to False
 .





There's more...


Conversely, it is possible to turn the index into a column with the reset_index
 method. This will make movie_title
 a column again and revert the index back to a RangeIndex
 . reset_index
 always puts the column as the very first one in the DataFrame, so the columns may not be in their original order:

>>> movie2.reset_index()





See also



	Pandas official documentation on RangeIndex
 (http://bit.ly/2hs6DNL
 )







Renaming row and column names


One of the most basic and common operations on a DataFrame is to rename the row or column names. Good column names are descriptive, brief, and follow a common convention with respect to capitalization, spaces, underscores, and other features.





Getting ready


In this recipe, both the row and column names are renamed.





How to do it...



	Read in the movie dataset, and make the index meaningful by setting it as the movie title:



>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')


	The rename
 DataFrame method accepts dictionaries that map the old value to the new value. Let's create one for the rows and another for the columns:



>>> idx_rename = {'Avatar':'Ratava', 'Spectre': 'Ertceps'} 

>>> col_rename = {'director_name':'Director Name', 

                  'num_critic_for_reviews': 'Critical Reviews'} 


	Pass the dictionaries to the rename
 method, and assign the result to a new variable:



>>> movie_renamed = movie.rename(index=idx_rename, 

                                 columns=col_rename)

>>> movie_renamed.head()








How it works...


The rename
 DataFrame method allows for both row and column labels to be renamed at the same time with the index
 and columns
 parameters. Each of these parameters may be set to a dictionary that maps old labels to their new values.





There's more...


There are multiple ways to rename row and column labels. It is possible to reassign the index and column attributes directly to a Python list. This assignment works when the list has the same number of elements as the row and column labels. The following code uses the tolist
 method on each Index object to create a Python list of labels. It then modifies a couple values in the list and reassigns the list to the attributes index
 and columns
 :

>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> index = movie.index

>>> columns = movie.columns



>>> index_list = index.tolist()

>>> column_list = columns.tolist()



# rename the row and column labels with list assignments

>>> index_list[0] = 'Ratava'

>>> index_list[2] = 'Ertceps'

>>> column_list[1] = 'Director Name'

>>> column_list[2] = 'Critical Reviews'



>>> print(index_list)

['Ratava', "Pirates of the Caribbean: At World's End", 'Ertceps', 'The Dark Knight Rises', ... ]



>>> print(column_list)

['color', 'Director Name', 'Critical Reviews', 'duration', ...]



# finally reassign the index and columns

>>> movie.index = index_list

>>> movie.columns = column_list





Creating and deleting columns


During a data analysis, it is extremely likely that you will need to create new columns to represent new variables. Commonly, these new columns will be created from previous columns already in the dataset. Pandas has a few different ways to add new columns to a DataFrame.





Getting ready


In this recipe, we create new columns in the movie dataset by using the assignment and then delete columns with the drop
 method.





How to do it...



	The simplest way to create a new column is to assign it a scalar value. Place the name of the new column as a string into the indexing operator. Let's create the has_seen
 column in the movie dataset to indicate whether or not we have seen the movie. We will assign zero for every value. By default, new columns are appended to the end:



>>> movie = pd.read_csv('data/movie.csv')

>>> movie['has_seen'] = 0


	There are several columns that contain data on the number of Facebook likes. Let's add up all the actor and director Facebook likes and assign them to the actor_director_facebook_likes
 column:



>>> movie['actor_director_facebook_likes'] =  \

        (movie['actor_1_facebook_likes'] + 

         movie['actor_2_facebook_likes'] + 

         movie['actor_3_facebook_likes'] + 

         movie['director_facebook_likes'])


	From the Calling Series method
 recipe in this chapter, we know that this dataset contains missing values. When numeric columns are added to one another as in the preceding step, pandas defaults missing values to zero. But, if all values for a particular row are missing, then pandas keeps the total as missing as well. Let's check if there are missing values in our new column and fill them with 0:



>>> movie['actor_director_facebook_likes'].isnull().sum()

122

>>> movie['actor_director_facebook_likes'] = \

    movie['actor_director_facebook_likes'].fillna(0)


	There is another column in the dataset named cast_total_facebook_likes
 . It would be interesting to see what percentage of this column comes from our newly created column, actor_director_facebook_likes
 . Before we create our percentage column, let's do some basic data validation. Let's ensure that cast_total_facebook_likes
 is greater than or equal to actor_director_facebook_likes
 :



>>> movie['is_cast_likes_more'] = \

         (movie['cast_total_facebook_likes'] >=             

          movie['actor_director_facebook_likes'])


	
is_cast_likes_more
 is now a column of boolean values. We can check whether all the values of this column are True
 with the all
 Series method:



>>> movie['is_cast_likes_more'].all()

False


	It turns out that there is at least one movie with more actor_director_facebook_likes
 than cast_total_facebook_likes
 . It could be that director Facebook likes are not part of the cast total likes. Let's backtrack and delete column actor_director_facebook_likes
 :



>>> movie = movie.drop('actor_director_facebook_likes',

                       axis='columns')


	Let's recreate a column of just the total actor likes:



>>> movie['actor_total_facebook_likes'] = \

         (movie['actor_1_facebook_likes'] + 

          movie['actor_2_facebook_likes'] + 

          movie['actor_3_facebook_likes'])



>>> movie['actor_total_facebook_likes'] = \

         movie['actor_total_facebook_likes'].fillna(0)


	Check again whether all the values in cast_total_facebook_likes
 are greater than the actor_total_facebook_likes
 :



>>> movie['is_cast_likes_more'] = \

         (movie['cast_total_facebook_likes'] >= 

          movie['actor_total_facebook_likes'])

    

>>> movie['is_cast_likes_more'].all()

True


	Finally, let's calculate the percentage of the cast_total_facebook_likes
  that come from actor_total_facebook_likes
 :



>>> movie['pct_actor_cast_like'] = \

         (movie['actor_total_facebook_likes'] / 

          movie['cast_total_facebook_likes'])


	Let's validate that the min and max of this column fall between 0 and 1:



>>> (movie['pct_actor_cast_like'].min(), 

     movie['pct_actor_cast_like'].max())

(0.0, 1.0)


	We can then output this column as a Series. First, we need to set the index to the movie title so we can properly identify each value.



>>> movie.set_index('movie_title')['pct_actor_cast_like'].head()

movie_title
Avatar                                        0.577369
Pirates of the Caribbean: At World's End      0.951396
Spectre                                       0.987521
The Dark Knight Rises                         0.683783
Star Wars: Episode VII - The Force Awakens    0.000000
Name: pct_actor_cast_like, dtype: float64





How it works...


Many pandas operations are flexible, and column creation is one of them. This recipe assigns both a scalar value, as seen in Step 1, and a Series, as seen in step 2, to create a new column.

Step 2 adds four different Series together with the plus operator. Step 3 uses method chaining to find and fill missing values. Step 4 uses the greater than or equal comparison operator to return a boolean Series, which is then evaluated with the all
 method in step 5 to check whether every single value is True
 or not.

The drop
 method accepts the name of the row or column to delete. It defaults to dropping rows by the index names. To drop columns you must set the axis
 parameter to either 1 or columns
 . The default value for axis is 0 or the string index.


Steps 7 and 8 redo the work of step 3 to step 5 without the director_facebook_likes
 column. Step 9 finally calculates the desired column we wanted since step 4. Step 10 validates that the percentages are between 0 and 1.





There's more...


It is possible to insert a new column into a specific place in a DataFrame besides the end with the insert
 method. The insert
 method takes the integer position of the new column as its first argument, the name of the new column as its second, and the values as its third. You will need to use the get_loc
  Index method to find the integer location of the column name.

The insert
 method modifies the calling DataFrame in-place, so there won't be an assignment statement. The profit of each movie may be calculated by subtracting
 budget
 from
 gross
 and inserting it directly after
 gross
 with the following:

>>> profit_index = movie.columns.get_loc('gross') + 1

>>> profit_index

9



>>> movie.insert(loc=profit_index,

                 column='profit',

                 value=movie['gross'] - movie['budget'])

An alternative to deleting columns with the drop method is to use the del
 statement:

>>> del movie['actor_director_facebook_likes']





See also



	Refer to the Appending new rows to DataFrames
 recipe from Chapter 9
 , Combining Pandas Objects
  for adding and deleting rows, which is a less common operation

	Refer to the Developing a data analysis routine
 recipe from Chapter 3
 , Beginning Data Analysis








Essential DataFrame Operations


In this chapter, we will cover the following topics:


	Selecting multiple DataFrame columns

	Selecting columns with methods

	Ordering column names sensibly

	Operating on the entire DataFrame

	Chaining DataFrame methods together

	Working with operators on a DataFrame

	Comparing missing values

	Transposing the direction of a DataFrame operation

	Determining college campus diversity







Introduction


This chapter covers many fundamental operations of the DataFrame. Many of the recipes will be similar to those in Chapter 1
 , Pandas Foundations
 which primarily covered operations on a Series.





Selecting multiple DataFrame columns


Selecting a single column is accomplished by passing the desired column name as a string to the indexing operator of a DataFrame. This was covered in the Selecting a Series
 recipe in Chapter 1
 , Pandas Foundations
 . It is often necessary to focus on a subset of the current working dataset, which is accomplished by selecting multiple columns.





Getting ready


In this recipe, all the actor
 and director
 columns will be selected from the movie
 dataset.





How to do it...



	Read in the movie dataset, and pass in a list of the desired columns to the indexing operator:



>>> movie_actor_director = movie[['actor_1_name', 'actor_2_name',

                                  'actor_3_name', 'director_name']]

>>> movie_actor_director.head()





	There are instances when one column of a DataFrame needs to be selected. This is done by passing a single element list to the indexing operator:



>>> movie[['director_name']].head()








How it works...


The DataFrame indexing operator is very flexible and capable of accepting a number of different objects. If a string is passed, it will return a single-dimensional Series. If a list is passed to the indexing operator, it returns a DataFrame of all the columns in the list in the specified order

Step 2 shows how to select a single column as a DataFrame rather than as a Series. Most commonly, a single column is selected with a string, resulting in a Series. When a DataFrame is the desired output, simply put the column name in a single-element list.





There's more...


Passing a long list inside the indexing operator might cause readability issues. To help with this, you may save all your column names to a list variable first. The following code achieves the same result as step 1:

>>> cols = ['actor_1_name', 'actor_2_name',

            'actor_3_name', 'director_name']

>>> movie_actor_director = movie[cols]

One of the most common exceptions raised when working with pandas is KeyError
 . This error is mainly due to mistyping of a column or index name. This same error is raised whenever a multiple column selection is attempted without the use of a list:

>>> movie['actor_1_name', 'actor_2_name',

          'actor_3_name', 'director_name']

KeyError

: ('actor_1_name', 'actor_2_name',

           'actor_3_name', 'director_name')

This is a common error to encounter, as it is easy to forget to place the desired columns in a list. You might be wondering what exactly is going on here. The four string names separated by commas are technically a tuple object. Normally, tuples are written with open and closing parentheses, but it isn't necessary:

>>> tuple1 = 1, 2, 3, 'a', 'b'

>>> tuple2 = (1, 2, 3, 'a', 'b')

>>> tuple1 == tuple2

True

Pandas is trying to find a column name exactly equal to the tuple, ('actor_1_name', 'actor_2_name', 'actor_3_name', 'director_name')
 . It fails and raises a KeyError
 .





Selecting columns with methods


Although column selection is usually done directly with the indexing operator, there are some DataFrame methods that facilitate their selection in an alternative manner. select_dtypes
 and filter
 are two useful methods to do this.





Getting ready


You need to be familiar with all pandas data types and how to access them. The Understanding data types
 recipe in Chapter 1
 , Pandas Foundations
 , has a table with all pandas data types.





How it works...



	Read in the movie dataset, and use the title of the movie to label each row. Use the get_dtype_counts
 method to output the number of columns with each specific data type:



>>> movie = pd.read_csv('data/movie.csv',

                        index_col='movie_title')

>>> movie.get_dtype_counts()

float64    13
int64       3
object     11
dtype: int64


	Use the select_dtypes
 method to select only the integer columns:



>>> movie.select_dtypes(include=['int']).head()





	If you would like to select all the numeric columns, you may simply pass the string number
  to the include
 parameter:



>>> movie.select_dtypes(include=['number']).head()





	An alternative method to select columns is with the filter
 method. This method is flexible and searches column names (or index labels) based on which parameter is used. Here, we use the like
 parameter to search for all column names that contain the exact string, facebook
 :



>>> movie.filter(like='facebook').head()





	The filter
 method allows columns to be searched through regular expressions with the regex
 parameter. Here, we search for all columns that have a digit somewhere in their name:



>>> movie.filter(regex='\d').head()








How it works...


Step 1 lists the frequencies of all the different data types. Alternatively, you may use the dtypes
 attribute to get the exact data type for each column. The select_dtypes
 method takes a list of data types in its include
 parameter and returns a DataFrame with columns of just those given data types. The list values may be either the string name of the data type or the actual Python object.

The filter
 method selects columns by only inspecting the column names and not the actual data values. It has three mutually exclusive parameters, items
 , like
 , and regex
 , only one of which can be used at a time. The like
 parameter takes a string and attempts to find all the column names that contain that exact string somewhere in the name. To gain more flexibility, you may use the regex
 parameter instead to select column names through a regular expression. This particular regular expression, \d
 , represents all digits from zero to nine and matches any string with at least a single digit in it.

Regular expressions are character sequences that represent search patterns to be used to select different parts of the text. They allow for very complex and highly specific pattern matching.





There's more...


The filter
 method comes with another parameter, items
 , which takes a list of exact column names. This is nearly an exact duplication of the indexing operator, except that a KeyError
 will not be raised if one of the strings does not match a column name. For instance, movie.filter(items=['actor_1_name', 'asdf'])
 runs without error and returns a single column DataFrame.

One confusing aspect of select_dtypes
 is its flexibility to take both strings and Python objects. The following table should clarify all the possible ways to select the many different column data types. There is no standard or preferred method of referring to data types in pandas, so it's good to be aware of both ways:




	

Python object



	

String



	

Notes






	

np.number



	

number



	
Selects both integers and floats regardless of size





	

np.float64, np.float_, float



	

float64
 , float_
 , float



	
Selects only 64-bit floats





	

np.float16, np.float32, np.float128



	

float16
 , float32
 , float128



	
Respectively selects exactly 16, 32, and 128-bit floats





	

np.floating



	

floating



	
Selects all floats regardless of size





	

np.int0, np.int64, np.int_, int



	

int0
 , int64
 , int_
 , int



	
Selects only 64-bit integers





	

np.int8, np.int16, np.int32



	

int8
 , int16
 , int32



	
Respectively selects exactly 8, 16, and 32-bit integers





	

np.integer



	

integer



	
Selects all integers regardless of size





	

np.object



	

object
 , O



	
Select all object data types





	

np.datetime64



	

datetime64
 , datetime



	
All datetimes are 64 bits





	

np.timedelta64



	

timedelta64
 , timedelta



	
All timedeltas are 64 bits





	

pd.Categorical



	

category



	
Unique to pandas; no NumPy equivalent







Because all integers and floats default to 64 bits, you may select them by simply using the string, int,
 or float
 as you can see from the preceding table. If you want to select all integers and floats regardless of their specific size use the string number
 .





See also



	Refer to the Understanding data types
 recipe from Chapter 1
 , Pandas Foundations


	The rarely used select
 method may also select columns based on their names (
 http://bit.ly/2fchzhu
 ) 








Ordering column names sensibly


One of the first tasks to consider after initially importing a dataset as a DataFrame is to analyze the order of the columns. This basic task is often overlooked but can make a big difference in how an analysis proceeds. Computers have no preference for column order and computations are not affected either. As human beings, we naturally view and read columns left to right, which directly impacts our interpretations of the data. Haphazard column arrangement is similar to haphazard clothes arrangement in a closet. It does no good to place suits next to shirts and pants on top of shorts. It's far easier to find and interpret information when column order is given consideration.

There are no standardized set of rules that dictate how columns should be organized within a dataset. However, it is good practice to develop a set of guidelines that you consistently follow in order to ease the analysis. This is especially true if you work with a group of analysts who share lots of datasets.





Getting ready


The following is a simple guideline to order columns:


	Classify each column as either discrete or continuous

	Group common columns within the discrete and continuous columns

	Place the most important groups of columns first with categorical columns before continuous ones



This recipe shows you how to order the columns with this guideline. There are many possible orderings that are sensible.





How to do it...



	Read in the movie dataset, and scan the data:



>>> movie = pd.read_csv('data/movie.csv')

>>> movie.head()





	Output all the column names and scan for similar discrete and continuous columns:



>>> movie.columns

Index(['color', 'director_name', 'num_critic_for_reviews',

       'duration', 'director_facebook_likes',

       'actor_3_facebook_likes', 'actor_2_name',
       'actor_1_facebook_likes', 'gross', 'genres',

       'actor_1_name', 'movie_title', 'num_voted_users',

       'cast_total_facebook_likes', 'actor_3_name',

       'facenumber_in_poster', 'plot_keywords',
       'movie_imdb_link', 'num_user_for_reviews', 'language',

       'country', 'content_rating', 'budget', 'title_year',

       'actor_2_facebook_likes', 'imdb_score', 'aspect_ratio',

       'movie_facebook_likes'], dtype='object')


	The columns don't appear to have any logical ordering to them. Organize the names sensibly into lists so that the guideline from the previous section is followed:



>>> disc_core = ['movie_title', 'title_year',

                 'content_rating', 'genres']

>>> disc_people = ['director_name', 'actor_1_name', 

                   'actor_2_name', 'actor_3_name']

>>> disc_other = ['color', 'country', 'language', 

                  'plot_keywords', 'movie_imdb_link']



>>> cont_fb = ['director_facebook_likes', 'actor_1_facebook_likes', 

               'actor_2_facebook_likes', 'actor_3_facebook_likes',

               'cast_total_facebook_likes', 'movie_facebook_likes']



>>> cont_finance = ['budget', 'gross']

>>> cont_num_reviews = ['num_voted_users', 'num_user_for_reviews',

                        'num_critic_for_reviews']

>>> cont_other = ['imdb_score', 'duration',

                  'aspect_ratio', 'facenumber_in_poster']


	Concatenate all the lists together to get the final column order. Also, ensure that this list contains all the columns from the original:



>>> new_col_order = disc_core + disc_people + \

                    disc_other + cont_fb + \

                    cont_finance + cont_num_reviews + \

                    cont_other

>>> set(movie.columns) == set(new_col_order)

True


	Pass the list with the new column order to the indexing operator of the DataFrame to reorder the columns:



>>> movie2 = movie[new_col_order]

>>> movie2.head()








How it works...


To select a subset of columns from a DataFrame, use a list of specific column names. For instance, movie[['movie_title', 'director_name']]
 creates a new DataFrame with only the movie_title
 and director_name
 columns. Selecting columns by name is the default behavior of the indexing operator for a pandas DataFrame.

Step 3 neatly organizes all of the column names into separate lists based on their type (discrete or continuous) and by how similar their data is. The most important columns, such as the title of the movie, are placed first.

Step 4 concatenates all of the lists of column names and validates that this new list contains the same exact values as the original column names. Python sets are unordered and the equality statement checks whether each member of one set is a member of the other. Manually ordering columns in this recipe is susceptible to human error as it's easy to mistakenly forget a column in the new column list.

Step 5 completes the reordering by passing the new column order as a list to the indexing operator. This new order is now much more sensible than the original.





There's more...


There are alternative guidelines for ordering columns besides the simple suggestion mentioned earlier. Hadley Wickham's seminal paper on Tidy Data suggests placing the fixed variables first, followed by measured variables. As this data does not emanate from a controlled experiment, there is some flexibility in determining which variables are fixed and which ones are measured. Good candidates for measured variables are those that we would like to predict such as gross
 , the total revenue, or the imdb_score
 . For instance, in this ordering, we can mix discrete and continuous variables. It might make more sense to place the column for the number of Facebook likes directly after the name of that actor. You can, of course, come up with your own guidelines for column order as the computational parts are unaffected by it.

Quite often, you will be pulling data directly from a relational database. A very common practice for relational databases is to have the primary key (if it exists) as the first column and any foreign keys directly following it.

Primary keys uniquely identify rows in the current table. Foreign keys uniquely identify rows in other tables.





See also



	Hadley Wickham's paper on Tidy Data
 (http://bit.ly/2v1hvH5
 )







Operating on the entire DataFrame


In the Calling Series methods
 recipe in Chapter 1
 , Pandas Foundations
 , a variety of methods operated on a single column or Series of data. When these same methods are called from a DataFrame, they perform that operation for each column at once.





Getting ready


In this recipe, we explore a variety of the most common DataFrame attributes and methods with the movie dataset.





How to do it...



	Read in the movie dataset, and grab the basic descriptive attributes, shape
 , size
 , and ndim
 , along with running the len
 function:



>>> movie = pd.read_csv('data/movie.csv')

>>> movie.shape

(4916, 28)



>>> movie.size

137648



>>> movie.ndim

2



>>> len(movie)

4916


	Use the count
 method to find the number of non-missing values for each column. The output is a Series that now has the old column names as its index
 :



>>> movie.count()

color                     4897

director_name             4814
num_critic_for_reviews    4867
duration                  4901
                          ... 
actor_2_facebook_likes    4903
imdb_score                4916
aspect_ratio              4590
movie_facebook_likes      4916
Length: 28, dtype: int64


	The other methods that compute summary statistics such as min
 , max
 , mean
 , median
 , and std
 all return similar Series, with column names in the index and their computational result as the values:



>>> movie.min()

num_critic_for_reviews     1.00
duration                   7.00
director_facebook_likes    0.00
actor_3_facebook_likes     0.00
                           ... 
actor_2_facebook_likes     0.00
imdb_score                 1.60
aspect_ratio               1.18
movie_facebook_likes       0.00
Length: 16, dtype: float64


	The describe
 method is very powerful and calculates all the descriptive statistics and quartiles in the preceding steps all at once. The end result is a DataFrame with the descriptive statistics as its index
 :



>>> movie.describe()





	It is possible to specify exact quantiles in the describe
 method using the percentiles
 parameter:



>>> movie.describe(percentiles=[.01, .3, .99])








How it works...


Step 1 gives basic information on the size of the dataset. The shape
 attribute returns a two-element tuple of the number of rows and columns. The size
 attribute returns the total number of elements in the DataFrame, which is just the product of the number of rows and columns. The ndim
 attribute returns the number of dimensions, which is two for all DataFrames. Pandas defines the built-in len
 function to return the number of rows.

The methods in step 2 and step 3 aggregate each column down to a single number. Each column name is now the index label in a Series with its aggregated result as the corresponding value.

If you look closely, you will notice that the output from step 3 is missing all the object columns from step 2. The reason for this is that there are missing values in the object columns and pandas does not know how to compare a string value with a missing value. It silently drops all of the columns for which it is unable to compute a minimum.

In this context, silently means that no error was raised and no warning thrown. This is a bit dangerous and requires users to have a good familiarity with pandas.

The numeric columns have missing values as well but have a result returned. By default, pandas handles missing values in numeric columns by skipping them. It is possible to change this behavior by setting the skipna
 parameter to False
 . This will cause pandas to return NaN
 for all these aggregation methods if there exists at least a single missing value.

The describe
 method displays the main summarizations all at once and can expand its summary to include more quantiles by passing a list of numbers between 0 and 1 to the percentiles
 parameter. It defaults to showing information on just the numeric columns. See the Developing a data analysis routine
 recipe for more on the describe
 method.





There's more...


To see how the skipna
 parameter affects the outcome, we can set its value to False
 and rerun step 3 from the preceding recipe. Only numeric columns without missing values will calculate a result:

>>> movie.min(skipna=False)

num_critic_for_reviews     NaN

duration                   NaN

director_facebook_likes    NaN
actor_3_facebook_likes     NaN
                          ... 
actor_2_facebook_likes     NaN
imdb_score                 1.6
aspect_ratio               NaN
movie_facebook_likes       0.0
Length: 16, dtype: float64





Chaining DataFrame methods together


Whether you believe method chaining is a good practice or not, it is quite common to encounter it during data analysis with pandas. The Chaining Series methods together
 recipe in Chapter 1
 , Pandas Foundations
 , showcased several examples of chaining Series methods together. All the method chains in this chapter will begin from a DataFrame. One of the keys to method chaining is to know the exact object being returned during each step of the chain. In pandas, this will nearly always be a DataFrame, Series, or scalar value.





Getting ready


In this recipe, we count all the missing values in each column of the move dataset.





How to do it...



	To get a count of the missing values, the isnull
 method must first be called to change each DataFrame value to a boolean. Let's call this method on the movie dataset:



>>> movie = pd.read_csv('data/movie.csv')

>>> movie.isnull().head()





	We will chain the sum
 method that interprets True
 /False
 booleans as 1/0. Notice that a Series is returned:



>>> movie.isnull().sum().head()

color                       19
director_name              102
num_critic_for_reviews      49
duration                    15
director_facebook_likes    102
dtype: int64


	We can go one step further and take the sum of this Series and return the count of the total number of missing values in the entire DataFrame as a scalar value:



>>> movie.isnull().sum().sum()

2654


	A slight deviation is to determine whether there are any missing values in the DataFrame. We use the any
 method here twice in succession to do this:



>>> movie.isnull().any().any()

True





How it works...


The isnull
 method returns a DataFrame the same size as the calling DataFrame but with all values transformed to booleans. See the counts of the following data types to verify this:

>>> movie.isnull().get_dtype_counts()

bool    28

dtype: int64

As booleans evaluate numerically as 0/1, it is possible to sum them by column, as done in step 2. The resulting Series itself also has a sum
 method, which gets us the grand total of missing values in the DataFrame.

In step 4, the any
 DataFrame method returns a Series of booleans indicating if there exists at least one True
 for each column. The any
 method is chained again on this resulting Series of booleans to determine if any of the columns have missing values. If step 4 evaluates as True
 , then there is at least one missing value in the entire DataFrame.





There's more...


Most of the columns in the movie dataset with object data type contain missing values. By default, the aggregation methods, min
 , max
 , and sum
 , do not return anything, as seen in the following code snippet, which selects three object columns and attempts to find the maximum value of each one:

>>> movie[['color', 'movie_title', 'color']].max()

Series([], dtype: float64)

To force pandas to return something for each column, we must fill in the missing values. Here, we choose an empty string:

>>> movie.select_dtypes(['object']).fillna('').min()

color                                                          Color

director_name                                          Etienne Faure
actor_2_name                                           Zubaida Sahar
genres                                                       Western
actor_1_name                                           Oscar Jaenada
movie_title                                                 Æon Flux
actor_3_name                                           Oscar Jaenada
plot_keywords                                    zombie|zombie spoof
movie_imdb_link    http://www.imdb.com/title/tt5574490/?ref_=fn_t...
language                                                        Zulu
country                                                 West Germany
content_rating                                                     X
dtype: object

For purposes of readability, method chains are often written as one method call per line with the backslash character at the end to escape new lines. This makes it easier to read and insert comments on what is returned at each step of the chain:

>>> # rewrite the above chain on multiple lines

>>> movie.select_dtypes(['object']) \

         .fillna('') \

         .min()

It is atypical to aggregate a column of all strings, as the minimum and maximum values are not universally defined. Attempting to call methods that clearly have no string interpretation, such as finding the mean or variance, will not work.





See also



	Refer to the Chaining Series methods together
 recipe in Chapter 1
 , Pandas Foundations








Working with operators on a DataFrame


A primer on operators was given in the Working with operators on a Series
 recipe
 from Chapter 1
 , Pandas Foundations
 , which will be helpful here. The Python arithmetic and comparison operators work directly on DataFrames, as they do on Series.





Getting ready


When a DataFrame operates directly with one of the arithmetic or comparison operators, each value of each column gets the operation applied to it. Typically, when an operator is used with a DataFrame, the columns are either all numeric or all object (usually strings). If the DataFrame does not contain homogeneous data, then the operation is likely to fail. Let's see an example of this failure with the college dataset, which contains both numeric and object data types. Attempting to add 5
 to each value of the DataFrame raises a TypeError
 as integers cannot be added to strings:

>>> college = pd.read_csv('data/college.csv')

>>> college + 5

TypeError

: Could not operate 5 with block values must be str, not int

To successfully use an operator with a DataFrame, first select homogeneous data. For this recipe, we will select all the columns that begin with UGDS_
 . These columns represent the fraction of undergraduate students by race. To get started, we import the data and use the institution name as the label for our index, and then select the columns we desire with the filter
 method:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds_ = college.filter(like='UGDS_')

>>> college_ugds_.head()




This recipe uses multiple operators with a DataFrame to round the undergraduate columns to the nearest hundredth. We will then see how this result is equivalent to the round
 method.





How to do it...



	To begin our rounding adventure with operators, we will first add .00501
 to each value of college_ugds_
 :



>>> college_ugds_ + .00501





	Use the floor division operator, //
 , to round to the nearest whole number percentage:



>>> (college_ugds_ + .00501) // .01





	To complete the rounding exercise, divide by 100:



>>> college_ugds_op_round = (college_ugds_ + .00501) // .01 / 100

>>> college_ugds_op_round.head()





	Now use the round
 DataFrame method to do the rounding automatically for us. NumPy rounds numbers that are exactly halfway between either side to the even side. Due to this, we add a small fraction before rounding:



>>> college_ugds_round = (college_ugds_ + .00001).round(2)


	Use the equals
 DataFrame method to test the equality of two DataFrames:



>>> college_ugds_op_round.equals(college_ugds_round)

True





How it works...


Step 1 uses the plus operator, which attempts to add a scalar value to each value of each column of the DataFrame. As the columns are all numeric, this operation works as expected. There are some missing values in each of the columns but they stay missing after the operation.

Mathematically, adding .005
 should be enough so that the floor division in the next step correctly rounds to the nearest whole percentage. The trouble appears because of the inexactness of floating point numbers:

>>> .045 + .005

0.049999999999999996

There is an extra .00001
 added to each number to ensure that the floating point representation has the first four digits the same as the actual value. This works because the maximum precision of all the points in the dataset is four decimal places.

Step 2 applies the floor division operator, //
 , to all the values in the DataFrame. As we are dividing by a fraction, in essence, it is multiplying each value by 100
 and truncating any decimals. Parentheses are needed around the first part of the expression, as floor division has higher precedence than addition. Step 3 uses the division operator to return the decimal to the correct position.

In step 4, we reproduce the previous steps with the round
 method. Before we can do this, we must again add an extra .00001
 to each DataFrame value for a different reason from step 1. NumPy and Python 3 round numbers that are exactly halfway between either side to the even number. This ties to the even
 (http://bit.ly/2x3V5TU) technique is not usually what is formally taught in schools. It does not consistently bias numbers to the higher side (http://bit.ly/2zhsPy8).

It is necessary here to round up so that both DataFrame values are equal. The equals
 method determines if all the elements and indexes between two DataFrames are exactly the same and returns a boolean.





There's more...


Just as with Series, DataFrames have method equivalents of the operators. You may replace the operators with their method equivalents:

>>> college_ugds_op_round_methods = college_ugds_.add(.00501) \

                                                 .floordiv(.01) \

                                                 .div(100)

>>> college_ugds_op_round_methods.equals(college_ugds_op_round)

True





See also



	What every computer scientist should know about floating-point arithmetic (http://bit.ly/2vmYZKi
 )







Comparing missing values


Pandas uses the NumPy NaN (np.nan
 ) object to represent a missing value. This is an unusual object, as it is not equal to itself. Even Python's None
 object evaluates as True
 when compared to itself:

>>> np.nan == np.nan

False

>>> None == None

True

All other comparisons against np.nan
 also return False
 , except not equal to:

>>> np.nan > 5

False

>>> 5 > np.nan

False

>>> np.nan != 5

True





Getting ready


Series and DataFrames use the equals operator, ==
 , to make element-by-element comparisons that return an object of the same size. This recipe shows you how to use the equals operator, which is very different from the equals
 method.

As in the previous recipe, the columns representing the fraction of each race of undergraduate students from the college dataset will be used:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds_ = college.filter(like='UGDS_')





How to do it...



	To get an idea of how the equals operator works, let's compare each element to a scalar value:



>>> college_ugds_ == .0019





	This works as expected but becomes problematic whenever you attempt to compare DataFrames with missing values. This same equals operator may be used to compare two DataFrames with one another on an element-by-element basis. Take, for instance, college_ugds_
 compared against itself, as follows:




>>> college_self_compare = college_ugds_ == college_ugds_

>>> college_self_compare.head()





	At first glance, all the values appear to be equal, as you would expect. However, using the all
 method to determine if each column contains only True
 values yields an unexpected result:



>>> college_self_compare.all()

UGDS_WHITE    False
UGDS_BLACK    False
UGDS_HISP     False
UGDS_ASIAN    False
UGDS_AIAN     False
UGDS_NHPI     False
UGDS_2MOR     False
UGDS_NRA      False
UGDS_UNKN     False
dtype: bool


	This happens because missing values do not compare equally with one another. If you tried to count missing values using the equal operator and summing up the boolean columns, you would get zero for each one:



>>> (college_ugds_ == np.nan).sum()

UGDS_WHITE    0
UGDS_BLACK    0
UGDS_HISP     0
UGDS_ASIAN    0
UGDS_AIAN     0
UGDS_NHPI     0
UGDS_2MOR     0
UGDS_NRA      0
UGDS_UNKN     0
dtype: int64


	The primary way to count missing values uses the isnull
 method:



>>> college_ugds_.isnull().sum()

UGDS_WHITE    661
UGDS_BLACK    661
UGDS_HISP     661
UGDS_ASIAN    661
UGDS_AIAN     661
UGDS_NHPI     661
UGDS_2MOR     661
UGDS_NRA      661
UGDS_UNKN     661
dtype: int64


	The correct way to compare two entire DataFrames with one another is not with the equals operator but with the equals
 method:



>>> college_ugds_.equals(college_ugds_)

True





How it works...


Step 1 compares a DataFrame to a scalar value while step 2 compares a DataFrame with another DataFrame. Both operations appear to be quite simple and intuitive at first glance. The second operation is actually checking whether the DataFrames are identically labeled indexes and thus the same number of elements. The operation will fail if this isn't the case. See the Producing Cartesian products
 recipe from Chapter 6
 , Index Alignment
 , for more information.

Step 3 verifies that none of the columns in the DataFrames are equivalent to each other. Step 4 further shows the non-equivalence of np.nan
 and itself. Step 5 verifies that there are indeed missing values in the DataFrame. Finally, step 6 shows the correct way to compare DataFrames with equals
 method, which always returns a boolean scalar value.





There's more...


All the comparison operators have method counterparts that allow for more functionality. Somewhat confusingly, the eq
 DataFrame method does element-by-element comparison, just like the equals operator.The eq
 method is not at all the same as the equals
 method. It merely does a similar task as the equals operator. The following code duplicates step 1:

>>> college_ugds_.eq(.0019)    # same as college_ugds_ == .0019 

Inside the pandas.testing
 sub-package, a function exists that developers must use when creating unit tests. The assert_frame_equal
 function raises an AssertionError
 if two DataFrames are not equal. It returns None
 if the two passed frames are equal:

>>> from pandas.testing import assert_frame_equal

>>> assert_frame_equal(college_ugds_, college_ugds_) 

Unit tests are a very important part of software development and ensure that the code is running correctly. Pandas contains many thousands of unit tests that help ensure that it is running properly. To read more on how pandas runs its unit tests, see the Contributing to pandas
  section in the documentation (http://bit.ly/2vmCSU6)
 .





Transposing the direction of a DataFrame operation


Many DataFrame methods have an axis
 parameter. This important parameter controls the direction in which the operation takes place. Axis parameters can only be one of two values, either 0 or 1, and are aliased respectively as the strings index
 and columns
 .





Getting ready


Nearly all DataFrame methods default the axis
 parameter to 0/index. This recipe shows you how to invoke the same method, but with the direction of its operation transposed. To simplify the exercise, only the columns that reference the percentage race of each school from the college dataset will be used.





How to do it...



	Read in the college dataset; the columns that begin with UGDS_
 represent the percentage of the undergraduate students of a particular race. Use the filter
 method to select these columns:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds_ = college.filter(like='UGDS_')

>>> college_ugds_.head()





	Now that the DataFrame contains homogenous column data, operations can be sensibly done both vertically and horizontally. The count
 method returns the number of non-missing values. By default, its axis
 parameter is set to 0:



>>> college_ugds_.count()

UGDS_WHITE    6874
UGDS_BLACK    6874
UGDS_HISP     6874
UGDS_ASIAN    6874
UGDS_AIAN     6874
UGDS_NHPI     6874
UGDS_2MOR     6874
UGDS_NRA      6874
UGDS_UNKN     6874

As the axis
 parameter is almost always set to 0, it is not necessary to do the following, but for purposes of understanding, Step 2 is equivalent to both college_ugds_.count(axis=0)
 and college_ugds_.count(axis='index')
 .


	Changing the axis
 parameter to 1/columns transposes the operation so that each row of data has a count of its non-missing values:



>>> college_ugds_.count(axis='columns').head()

INSTNM

Alabama A & M University               9
University of Alabama at Birmingham    9
Amridge University                     9
University of Alabama in Huntsville    9
Alabama State University               9


	Instead of counting non-missing values, we can sum all the values in each row. Each row of percentages should add up to 1. The sum
 method may be used to verify this:



>>> college_ugds_.sum(axis='columns').head()

INSTNM
Alabama A & M University               1.0000
University of Alabama at Birmingham    0.9999
Amridge University                     1.0000
University of Alabama in Huntsville    1.0000
Alabama State University               1.0000


	To get an idea of the distribution of each column, the median
 method can be used:



>>> college_ugds_.median(axis='index')

UGDS_WHITE    0.55570
UGDS_BLACK    0.10005
UGDS_HISP     0.07140
UGDS_ASIAN    0.01290
UGDS_AIAN     0.00260
UGDS_NHPI     0.00000
UGDS_2MOR     0.01750
UGDS_NRA      0.00000
UGDS_UNKN     0.01430





How it works...


The direction of operation is one of the more confusing aspects of pandas, and threads abound on the internet to discuss its interpretation. Many novice pandas users have difficulty remembering the meaning of the axis
 parameter. Luckily, there are only two potential directions that an operation can complete in pandas. A simple brute force solution of trying both directions until achieving the desired result is one possibility. I remember the meaning of the axis
 parameter by thinking of 1 as looking like a column, and any operation with axis=1
 returns a new column of data (has the same number of items that a column does).

This is confirmed in step 3, where the result (without the head
 method) returns a new column of data and could be easily appended as a column to the DataFrame, if necessary. The other steps with axis
 equal to 1/index return a new row of data.





There's more...


The cumsum
 method with axis=1
 accumulates the race percentages across each row. It gives a slightly different view of the data. For example, it is very easy to see the exact percentage of white, black, and Hispanic together for each school:

>> college_ugds_cumsum = college_ugds_.cumsum(axis=1)

>>> college_ugds_cumsum.head()








See also



	Pandas official documentation for cumsum
 (http://bit.ly/2v3B6EZ
 )







Determining college campus diversity


Many articles are written every year on the different aspects and impacts of diversity on college campuses. Various organizations have developed metrics attempting to measure diversity. US News is a leader in providing rankings for many different categories of colleges, with diversity being one of them. Their top 10 diverse colleges with Diversity Index are given as follows:

>> pd.read_csv('data/college_diversity.csv', index_col='School')








Getting ready


Our college dataset classifies race into nine different categories. When trying to quantify something without an obvious definition, such as diversity
 , it helps to start with something very simple. In this recipe, our diversity metric will equal the count of the number of races having greater than 15% of the student population.





How to do it...



	 Read in the college dataset, and filter for just the undergraduate race columns:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds_ = college.filter(like='UGDS_')


	Many of these colleges have missing values for all their race columns. We can count all the missing values for each row and sort the resulting Series from the highest to lowest. This will reveal the colleges that have
 missing values:



>>> college_ugds_.isnull()\

                 .sum(axis=1)\

                 .sort_values(ascending=False)\

                 .head()

INSTNM

Excel Learning Center-San Antonio South         9
Philadelphia College of Osteopathic Medicine    9
Assemblies of God Theological Seminary          9
Episcopal Divinity School                       9
Phillips Graduate Institute                     9
dtype: int64


	Now that we have seen the colleges that are missing all their race columns, we can use the dropna
 method to drop all rows that have all nine race percentages missing. We can then count the remaining missing values:



>>> college_ugds_ = college_ugds_.dropna(how='all')

>>> college_ugds_.isnull().sum()

UGDS_WHITE    0
UGDS_BLACK    0
UGDS_HISP     0
UGDS_ASIAN    0
UGDS_AIAN     0
UGDS_NHPI     0
UGDS_2MOR     0
UGDS_NRA      0
UGDS_UNKN     0
dtype: int64


	There are no missing values left in the dataset. We can now calculate our diversity metric. To get started, we will use the greater than or equal DataFrame method, ge
 , to convert each value to a boolean:



>>> college_ugds_.ge(.15)





	From here, we can use the sum
 method to count the True
 values for each college. Notice that a Series is returned:



>>> diversity_metric = college_ugds_.ge(.15).sum(axis='columns')

>>> diversity_metric.head()

INSTNM
Alabama A & M University               1
University of Alabama at Birmingham    2
Amridge University                     3
University of Alabama in Huntsville    1
Alabama State University               1
dtype: int64


	To get an idea of the distribution, let's use the value_counts
 method on this Series:



>>> diversity_metric.value_counts()

1    3042
2    2884
3     876
4      63
0       7
5       2
dtype: int64


	Amazingly, two schools have more than 15% in five different race categories. Let's sort the diversity_metric
 Series to find out which ones they are:



>>> diversity_metric.sort_values(ascending=False).head()

INSTNM
Regency Beauty Institute-Austin          5
Central Texas Beauty College-Temple      5
Sullivan and Cogliano Training Center    4
Ambria College of Nursing                4
Berkeley College-New York                4
dtype: int64


	It seems a little suspicious that schools can be that diverse. Let's look at the raw percentages from these top two schools. The .loc
 indexer is used to specifically select based on the index label:



>>> college_ugds_.loc[['Regency Beauty Institute-Austin', 

                       'Central Texas Beauty College-Temple']]





	It appears that several categories were aggregated into the unknown and two or more races column. Regardless of this, they both appear to be quite diverse. We can see how the top 10 US News schools fared with this basic diversity metric:



>>> us_news_top = ['Rutgers University-Newark',

                   'Andrews University', 

                   'Stanford University', 

                   'University of Houston',

                   'University of Nevada-Las Vegas']



>>> diversity_metric.loc[us_news_top]

INSTNM
Rutgers University-Newark         4
Andrews University                3
Stanford University               3
University of Houston             3
University of Nevada-Las Vegas    3
dtype: int64





How it works...


Step 2 counts and then displays the schools with the highest number of missing values. As there are nine columns in the DataFrame, the maximum number of missing values per school is nine. Many schools are missing values for each column. Step 3 removes rows that have all their values missing. The dropna
 method in step 3 has the how
 parameter, which is defaulted to the string any
 but may also be changed to all
 . When set to any
 , it drops rows that contain one or more missing values. When set to all
 , it only drops rows where all values are missing.

In this case, we conservatively drop rows that are missing all values. This is because it's possible that some missing values simply represent 0 percent. This did not happen to be the case here, as there were no missing values after the dropna
 was performed. If there were still missing values, we could have run the fillna(0)
 method
 to fill all the remaining values with 0.

Step 4 begins our diversity metric calculation using the greater than or equal to method, ge
 . This results in a DataFrame of all booleans, which is summed horizontally by setting axis='columns'
 .

The value_counts
 method is used in step 5 to produce a distribution of our diversity metric. It is quite rare for schools to have three races with 15% or more of the undergraduate student population. Step 7 and step 8 find two schools that are the most diverse based on our metric. Although they are diverse, it appears that many of the races are not fully accounted for and are defaulted into the unknown and two or more categories.

Step 9 selects the top five schools from the US News article. It then selects their diversity metric from our newly created Series. It turns out that these schools also score highly with our simple ranking system.





There's more...


Alternatively, we can find the schools that are least diverse by ordering them by their maximum race percentage:

>>> college_ugds_.max(axis=1).sort_values(ascending=False).head(10)

INSTNM

Dewey University-Manati                               1.0
Yeshiva and Kollel Harbotzas Torah                    1.0
Mr Leon's School of Hair Design-Lewiston              1.0
Dewey University-Bayamon                              1.0
Shepherds Theological Seminary                        1.0
Yeshiva Gedolah Kesser Torah                          1.0
Monteclaro Escuela de Hoteleria y Artes Culinarias    1.0
Yeshiva Shaar Hatorah                                 1.0
Bais Medrash Elyon                                    1.0
Yeshiva of Nitra Rabbinical College                   1.0
dtype: float64

We can also determine if any school has all nine race categories exceeding 1%:

>>> (college_ugds_ > .01).all(axis=1).any()

True





See also



	US News Campus Ethnic Diversity 2015-2016 (http://bit.ly/2vmDhWC
 )







Beginning Data Analysis


In this chapter, we will cover the following topics:


	Developing a data analysis routine

	Reducing memory by changing data types

	Selecting the smallest of the largest

	Selecting the largest of each group by sorting

	Replicating nlargest
 with sort_values


	Calculating a trailing stop order price







Introduction


It is important to consider the steps that you, as an analyst, take when you first encounter a dataset after importing it into your workspace as a DataFrame. Is there a set of tasks that you usually undertake to first examine the data? Are you aware of all the possible data types? This chapter begins by covering the tasks you might want to undertake when first encountering a new dataseset. The chapter proceeds by answering common questions that are not that trivial to do in pandas. 





Developing a data analysis routine


Although there is no standard approach when beginning a data analysis, it is typically a good idea to develop a routine for yourself when first examining a dataset. Similar to common routines that we have for waking up, showering, going to work, eating, and so on, a beginning data analysis routine helps one quickly get acquainted with a new dataset. This routine can manifest itself as a dynamic checklist of tasks that evolves as your familiarity with pandas and data analysis expands.


Exploratory Data Analysis
 (EDA
 ) is a term used to encompass the entire process of analyzing data without the formal use of statistical testing procedures. Much of EDA involves visually displaying different relationships among the data to detect interesting patterns and develop hypotheses.





Getting ready


This recipe covers a small but fundamental part of EDA: the collection of metadata
 and univariate descriptive statistics
 in a routine and systematic way. It outlines a common set of tasks that can be undertaken when first importing any dataset as a pandas DataFrame. This recipe may help form the basis of the routine that you can implement when first examining a dataset.

Metadata describes the dataset, or more aptly, data about the data. Examples of metadata include the number of columns/rows, column names, data types of each column, the source of the dataset, the date of collection, the acceptable values for different columns, and so on. Univariate descriptive statistics are summary statistics about individual variables (columns) of the dataset, independent of all other variables.





How to do it...


First, some metadata on the college
 dataset will be collected, followed by basic summary statistics of each column:


	Read in the dataset, and view the first five rows with the head
 method:



>>> college = pd.read_college('data/college.csv')

>>> college.head()





	Get the dimensions of the DataFrame with the shape
 attribute:



>>> college.shape

>>> (7535, 27)


	List the data type of each column, number of non-missing values, and memory usage with the info
 method:



>>> college.info()





	Get summary statistics for the numerical columns and transpose the DataFrame for more readable output:



>>> college.describe(include=[np.number]).T





	Get summary statistics for the object and categorical columns:



>>> college.describe(include=[np.object, pd.Categorical]).T








How it works...


After importing your dataset, a common task is to print out the first few rows of the DataFrame for manual inspection with the head
 method. The shape
 attribute returns the first piece of metadata, a tuple containing the number of rows and columns.

The primary method to get the most metadata at once is the info
 method. It provides each column name, the number of non-missing values, the data type of each column, and the approximate memory usage of the DataFrame. For all DataFrames, columns values are always one data type. The same holds for relational databases. DataFrames, as a whole, might be composed of columns with different data types.

Internally, pandas stores columns of the same data type together in blocks. For a deeper dive into pandas internals, see Jeff Tratner's slides (http://bit.ly/2xHIv1g).

Step 4 and step 5 produce univariate descriptive statistics on different types of columns. The powerful describe
 method produces different output based on the data types provided to the include
 parameter. By default, describe
 outputs a summary for all the numeric (mostly continuous
 ) columns and silently drops any categorical
 columns. You may use np.number
  or the string number
 to include both integers and floats in the summary. Technically, the data types are part of a hierarchy where number resides above integers and floats. Take a look at the following diagram to understand the NumPy data type hierarchy better:




Broadly speaking, we can classify data as being either continuous or categorical. Continuous data is always numeric and can usually take on an infinite number of possibilities such as height, weight, and salary. Categorical data represents discrete values that take on a finite number of possibilities such as ethnicity, employment status, and car color. Categorical data can be represented numerically or with characters.

Categorical columns are usually going to be either of type np.object
 or pd.Categorical
 . Step 5 ensures that both of these types are represented. In both step 4 and step 5, the output DataFrame is transposed with the T
 attribute. This eases readability for DataFrames with many columns.





There's more...


It is possible to specify the exact quantiles returned from the describe
 method when used with numeric columns:

>>> college.describe(include=[np.number], 

                     percentiles=[.01, .05, .10, .25, .5,

                                  .75, .9, .95, .99]).T








Data dictionaries


A crucial part of a data analysis involves creating and maintaining a data dictionary. A data dictionary is a table of metadata and notes on each column of data. One of the primary purposes of a data dictionary is to explain the meaning of the column names. The college dataset uses a lot of abbreviations that are likely to be unfamiliar to an analyst who is inspecting it for the first time.

A data dictionary for the college dataset is provided in the following college_data_dictionary.csv
 file:

>>> pd.read_csv('data/collge_data_dictionaray.csv')




As you can see, it is immensely helpful in deciphering the abbreviated column names. DataFrames are actually not the best place to store data dictionaries. A platform such as Excel or Google Sheets with easy ability to edit values and append columns is a better choice. Minimally, a column to keep track of notes on the data should be included in a data dictionary. A data dictionary is one of the first things that you can share as an analyst to collaborators.

It will often be the case that the dataset you are working with originated from a database whose administrators you will have to contact in order to get more information. Formal electronic databases generally have more formal representations of their data, called schemas
 . If possible, attempt to investigate your dataset with people who have expert knowledge on its design.





See also



	NumPy data hierarchy documentation (http://bit.ly/2yqsg7p
 )







Reducing memory by changing data types


Pandas does not broadly classify data as either continuous or categorical but has precise technical definitions for many distinct data types.





Getting ready


This recipe changes the data type of one of the object columns from the college dataset to the special pandas Categorical data type to drastically reduce its memory usage.





How to do it...



	After reading in our college dataset, we select a few columns of different data types that will clearly show how much memory may be saved:




>>> college = pd.read_csv('data/college.csv')



>>> different_cols = ['RELAFFIL', 'SATMTMID', 'CURROPER',



                      'INSTNM', 'STABBR']



>>> col2 = college.loc[:, different_cols]



>>> col2.head()







	Inspect the data types of each column:



>>> col2.dtypes

RELAFFIL      int64
SATMTMID    float64
CURROPER      int64
INSTNM       object
STABBR       object
dtype: object


	Find the memory usage of each column with the memory_usage
 method:



>>> original_mem = col2.memory_usage(deep=True)

>>> original_mem

Index           80
RELAFFIL     60280
SATMTMID     60280
CURROPER     60280
INSTNM      660240
STABBR      444565
dtype: int64


	There is no need to use 64 bits for the RELAFFIL
 column
 as it contains only 0/1 values. Let's convert this column to an 8-bit (1 byte) integer with the astype
 method:



>>> col2['RELAFFIL'] = col2['RELAFFIL'].astype(np.int8)


	Use the dtypes
 attribute to confirm the data type change:



>>> col2.dtypes

RELAFFIL       int8
SATMTMID    float64
CURROPER      int64
INSTNM       object
STABBR       object
dtype: object


	Find the memory usage of each column again and note the large reduction:



>>> college[different_cols].memory_usage(deep=True)

Index           80 

RELAFFIL      7535 

SATMTMID     60280 

CURROPER     60280 

INSTNM      660240

STABBR      444565


	To save even more memory, you will want to consider changing object data types to categorical if they have a reasonably low cardinality (number of unique values). Let's first check the number of unique values for both the object columns:



>>> col2.select_dtypes(include=['object']).nunique()

INSTNM    7535
STABBR      59
dtype: int64


	The STABBR
 column is a good candidate to convert to Categorical as less than one percent of its values are unique:



>>> col2['STABBR'] = col2['STABBR'].astype('category')

>>> col2.dtypes

RELAFFIL        int8
SATMTMID     float64
CURROPER       int64
INSTNM        object
STABBR      category
dtype: object


	Compute the memory usage again:



>>> new_mem = col2.memory_usage(deep=True)

>>> new_mem

Index           80
RELAFFIL      7535
SATMTMID     60280
CURROPER     60280
INSTNM      660699
STABBR       13576
dtype: int64


	Finally, let's compare the original memory usage with our updated memory usage. The RELAFFIL
 column is, as expected, an eighth of its original, while the STABBR
 column has shrunk to just three percent of its original size:



>>> new_mem / original_mem

Index       1.000000
RELAFFIL    0.125000
SATMTMID    1.000000
CURROPER    1.000000
INSTNM      1.000695
STABBR      0.030538
dtype: float64





How it works...


Pandas defaults integer
 and float
 data types to 64 bits regardless of the maximum necessary size for the particular DataFrame. Integers, floats, and even booleans may be coerced to a different data type with the astype
 method and passing it the exact type, either as a string or specific object, as done in step 4.

The RELAFFIL
 column
 is a good choice to cast to a smaller integer type as the data dictionary explains that its values must be 0/1. The memory for RELAFFIL
 is now an eighth of CURROPER
 , which remains as its former type.

The memory units displayed are in bytes and not bits. One byte is equivalent to 8 bits, so when RELAFFIL
 was changed to an 8-bit integer, it uses one 1 byte of memory and as there are 7,535 rows, its memory footprint is equivalent to 7,535 bytes.

Columns that are object data type, such as INSTNM
 , are not like the other pandas data types. For all the other pandas data types, each value in that column is the same data type. For instance, when a column has the int64
 type,
 every individual column value is also int64
 . This is not true for columns that are object data type. Each individual column value can be of any type. Object data types can have a mix of strings, numerics, datetimes, or even other Python objects such as lists or tuples. For this reason, the object data type is sometimes referred to as a catch-all
 for a column of data that doesn't match any of the other data types. The vast majority of the time, though, object data type columns will all be strings.

Relational database management systems such as Microsoft's SQL Server or PostgreSQL have specific data types for characters such as varchar
 , text
 , or nchar
 that also usually specify a maximum number of characters. Pandas object data type is a much broader data type. Every value in an object column can be of any data type.

Therefore, the memory of each individual value in an object data type column is inconsistent. There is no predefined amount of memory for each value like the other data types. For pandas to extract the exact amount of memory of an object data type column, the deep
 parameter must be set to True
 in the memory_usage
 method.

Object columns are targets for the largest memory savings. Pandas has an additional categorical data type that is not available in NumPy. When converting to category
 , pandas internally
 creates a mapping from integers to each unique string value. Thus, each string only needs to be kept a single time in memory. As you can see, this simple change of data type reduced memory usage by 97%.

You might also have noticed that the index uses an extremely low amount of memory. If no index is specified during DataFrame creation, as is the case in this recipe, pandas defaults the index to a RangeIndex
 . The RangeIndex
 is very similar to the built-in range function. It produces values on demand and only stores the minimum amount of information needed to create an index.





There's more...


To get a better idea of how object data type columns differ from integers and floats, a single value from each one of these columns can be modified and the resulting memory usage displayed. The CURROPER
 and INSTNM
 columns
 are of int64
 and object types,
 respectively:

>>> college.loc[0, 'CURROPER'] = 10000000

>>> college.loc[0, 'INSTNM'] = college.loc[0, 'INSTNM'] + 'a'

>>> college[['CURROPER', 'INSTNM']].memory_usage(deep=True)

Index           80
CURROPER     60280
INSTNM      660345

Memory usage for CURROPER
 remained the same since a 64-bit integer is more than enough space for the larger number. On the other hand, the memory usage for INSTNM
 increased by 105 bytes by just adding a single letter to one value.

Python 3 uses Unicode, a standardized character representation intended to encode all the world's writing systems. Unicode uses up to 4 bytes per character. It seems that pandas has some overhead (100 bytes) when making the first modification to a character value. Afterward, increments of 5 bytes per character are sustained.

Not all columns can be coerced to the desired type. Take a look at the MENONLY
 column,
 which from the data dictionary appears to contain only 0/1 values. The actual data type of this column upon import unexpectedly turns out to be float64
 . The reason for this is that there happen to be missing values, denoted by np.nan
 . There is no integer representation for missing values. Any numeric column with even a single missing value must be a float. Furthermore, any column of an integer
 data type will automatically be coerced to a float if one of the values becomes missing:

>>> college['MENONLY'].dtype

dtype('float64')



>>> college['MENONLY'].astype(np.int8)

ValueError

: Cannot convert non-finite values (NA or inf) to integer

Additionally, it is possible to substitute string names in place of Python objects when referring to data types. For instance, when using the include
 parameter in the describe
 DataFame method, it is possible to pass a list of either the formal object NumPy/pandas object or their equivalent string representation. These are available in the table at the beginning of the Selecting columns with methods
 recipe in Chapter 2
 , Essential DataFrame Operations
 ,. For instance, each of the following produces the same result:

>>> college.describe(include=['int64', 'float64']).T

>>> college.describe(include=[np.int64, np.float64]).T

>>> college.describe(include=['int', 'float']).T 

>>> college.describe(include=['number']).T      

These strings can be similarly used when changing types:

>>> college['MENONLY'] = college['MENONLY'].astype('float16')

>>> college['RELAFFIL'] = college['RELAFFIL'].astype('int8')

The equivalence of a string and the outright pandas or NumPy object occurs elsewhere in the pandas library and can be a source of confusion as there are two different ways to access the same thing.

Lastly, it is possible to see the enormous memory difference between the minimal RangeIndex
 and Int64Index
 , which stores every row index in memory:

>>> college.index = pd.Int64Index(college.index)

>>> college.index.memory_usage() # previously was just 80

60280 





See also



	Pandas official documentation on data types (http://bit.ly/2vxe8ZI
 )







Selecting the smallest of the largest


This recipe can be used to create catchy news headlines such as Out of the top 100 best universities, these 5 have the lowest tuition
 or From the top 50 cities to live, these 10 are the most affordable
 . During an analysis, it is possible that you will first need to find a grouping of data that contains the top n
 values in a single column and, from this subset, find the bottom m
 values based on a different column.





Getting ready


In this recipe, we find the five lowest budget movies from the top 100 scoring movies by taking advantage of the convenience methods, nlargest
 and nsmallest
 .





How to do it...



	Read in the movie dataset, and select the columns, movie_title
 , imdb_score
 , and budget
 :



>>> movie = pd.read_csv('data/movie.csv')

>>> movie2 = movie[['movie_title', 'imdb_score', 'budget']]

>>> movie2.head()





	Use the nlargest
 method
 to select the top 100 movies by imdb_score
 :



>>> movie2.nlargest(100, 'imdb_score').head()





	Chain the nsmallest
 method
 to return the five lowest budget films among those with a top 100 score:



>>> movie2.nlargest(100, 'imdb_score').nsmallest(5, 'budget')








How it works...


The first parameter of the nlargest
 method, n
 , must be an integer and selects the number of rows to be returned. The second parameter, columns
 , takes a column name as a string. Step 2 returns the 100 highest scoring movies. We could have saved this intermediate result as its own variable but instead, we chain the nsmallest
 method to it in step 3, which returns exactly five rows, sorted by budget
 .





There's more...


It is possible to pass a list of column names to the columns
 parameter of the nlargest
 /nsmallest
 methods. This would only be useful to break ties in the event that there were duplicate values sharing the nth ranked spot in the first column in the list.





Selecting the largest of each group by sorting


One of the most basic and common operations to perform during a data analysis is to select rows containing the largest value of some column within a group. For instance, this would be like finding the highest rated film of each year or the highest grossing film by content rating. To accomplish this task, we need to sort the groups as well as the column used to rank each member of the group, and then extract the highest member of each group.





Getting ready


In this recipe, we will find the highest rated film of each year.





How to do it...



	Read in the movie dataset and slim it down to just the three columns we care about, movie_title
 , title_year
 , and imdb_score
 :



>>> movie = pd.read_csv('data/movie.csv')

>>> movie2 = movie[['movie_title', 'title_year', 'imdb_score']]


	Use the sort_values
 method to sort the DataFrame by title_year
 . The default behavior sorts from the smallest to largest. Use the ascending
 parameter to invert this behavior by setting it equal to True
 :



>>> movie2.sort_values('title_year', ascending=False).head()





	Notice how only the year was sorted. To sort multiple columns at once, use a list. Let's look at how to sort both year and score:



>>> movie3 = movie2.sort_values(['title_year','imdb_score'],

                                 ascending=False)

>>> movie3.head()





	Now, we use the drop_duplicates
 method to keep only the first row of every year:



>>> movie_top_year = movie3.drop_duplicates(subset='title_year')

>>> movie_top_year.head()








How it works...


In step 1, we slim the dataset down to concentrate on only the columns of importance. This recipe would work the same with the entire DataFrame. Step 2 shows how to sort a DataFrame by a single column, which is not exactly what we wanted. Step 3 sorts multiple columns at the same time. It works by first sorting all of title_year
 and then, within each distinct value of title_year
 , sorts by imdb_score
 .

The default behavior of the drop_duplicates
 method is to keep the first occurrence of each unique row, which would not drop any rows as each row is unique. However, the subset
 parameter alters it to only consider the column (or list of columns) given to it. In this example, only one row for each year will be returned. As we sorted by year and score in the last step, the highest scoring movie for each year is what we get.





There's more...


It is possible to sort one column in ascending order while simultaneously sorting another column in descending order. To accomplish this, pass in a list of booleans to the ascending
 parameter that corresponds to how you would like each column sorted. The following sorts title_year
 and content_rating
  in descending order and budget
  in ascending order. It then finds the lowest budget film for each year and content rating group:

>>> movie4 = movie[['movie_title', 'title_year',

                    'content_rating', 'budget']]

>>> movie4_sorted = movie4.sort_values(['title_year', 

                                        'content_rating', 'budget'], 

                                        ascending=[False, False, True])

>>> movie4_sorted.drop_duplicates(subset=['title_year', 

                                          'content_rating']).head(10)




By default, drop_duplicates
 keeps the very first appearance, but this behavior may be modified by passing the keep
 parameter last
 to select the last row of each group or False
 to drop all duplicates entirely.





Replicating nlargest with sort_values


The previous two recipes work similarly by sorting values in slightly different manners. Finding the top n
 values of a column of data is equivalent to sorting the entire column descending and taking the first n
 values. Pandas has many operations that are capable of doing this in a variety of ways.





Getting ready


In this recipe, we will replicate the Selecting the smallest from the largest
 recipe
 with the sort_values
 method and explore the differences between the two.





How to do it...



	Let's recreate the result from the final step of the Selecting the smallest from the largest
 recipe:



>>> movie = pd.read_csv('data/movie.csv')

>>> movie2 = movie[['movie_title', 'imdb_score', 'budget']]

>>> movie_smallest_largest = movie2.nlargest(100, 'imdb_score') \

                                   .nsmallest(5, 'budget')

>>> movie_smallest_largest





	Use sort_values
 to replicate the first part of the expression and grab the first 100
 rows with the head
 method:



>>> movie2.sort_values('imdb_score', ascending=False).head(100)


	Now that we have the top 100 scoring movies, we can use sort_values
 with head
 again to grab the lowest five by budget
 :



>>> movie2.sort_values('imdb_score', ascending=False).head(100) \

          .sort_values('budget').head()








How it works...


The sort_values
 method can nearly replicate nlargest
 by chaining the head
 method after the operation, as seen in step 2. Step 3 replicates nsmallest
 by chaining another sort_values
 and completes the query by taking just the first five rows with the head
 method.

Take a look at the output from the first DataFrame from step 1 and compare it with the output from step 3. Are they the same? No! What happened? To understand why the two results are not equivalent, let's look at the tail of the intermediate steps of each recipe:

>>> movie2.nlargest(100, 'imdb_score').tail()




>>> movie2.sort_values('imdb_score', ascending=False) \

          .head(100).tail()




The issue arises because more than 100 movies exist with a rating of at least 8.4
 . Each of the methods, nlargest
 and sort_values
 , breaks ties differently, which results in a slightly different 100-row DataFrame. 





There's more...


If you look at the nlargest
 documentation, you will see that the keep
 parameter
 has three possible values, first
 , last
 , and False
 . From my knowledge of other pandas methods, keep=False
 should allow all ties to remain part of the result. Unfortunately, pandas raises an error when attempting to do this. I created an issue with pandas development team on GitHub to make this enhancement (http://bit.ly/2fGrCMa
 ).





Calculating a trailing stop order price


There is essentially an infinite number of strategies to trade stocks. One basic type of trade that many investors employ is the stop order. A stop order is an order placed by an investor to buy or sell a stock that executes whenever the market price reaches a certain point. Stop orders are useful to both prevent huge losses and protect gains.

For the purposes of this recipe, we will only be examining stop orders used to sell currently owned stocks. In a typical stop order, the price does not change throughout the lifetime of the order. For instance, if you purchased a stock for $100 per share, you might want to set a stop order at $90 per share to limit your downside to 10%.

A more advanced strategy would be to continually modify the sale price of the stop order to track the value of the stock if it increases in value. This is called a trailing stop order
 . Concretely, if the same $100 stock increases to $120, then a trailing stop order 10% below the current market value would move the sale price to $108.

The trailing stop order never moves down and is always tied to the maximum value since the time of purchase. If the stock fell from $120 to $110, the stop order would still remain at $108. It would only increase if the price moved above $120.





Getting ready


This recipe requires the use of the third party package pandas-datareader which fetches stock market prices online. It does not come pre-installed with the Anaconda distribution. To install this package simply visit the command line and run conda install pandas-datareader
 . If you don't have Anaconda, you can install it by running pip install pandas-datareader
 . This recipe determines the trailing stop order price given an initial purchase price for any stock.





How to do it...



	To get started, we will work with Tesla Motors (TSLA) stock
 and presume a purchase on the first trading day of 2017:



>>> import pandas_datareader as pdr

>>> tsla = pdr.DataReader('tsla', data_source='google',

                          start='2017-1-1')

>>> tsla.head(8)





	For simplicity, we will work with the closing price of each trading day:



>>> tsla_close = tsla['Close']


	Use the cummax
 method to track the highest closing price until the current date:



>>> tsla_cummax = tsla_close.cummax()

>>> tsla_cummax.head(8)

Date
2017-01-03    216.99
2017-01-04    226.99
2017-01-05    226.99
2017-01-06    229.01
2017-01-09    231.28
2017-01-10    231.28
2017-01-11    231.28
2017-01-12    231.28
Name: Close, dtype: float64


	To limit the downside to 10%, we multiply tsla_cummax
 by 0.9. This creates the trailing stop order:





>>> tsla_trailing_stop = tsla_cummax * .9

>>> tsla_trailing_stop.head(8)

Date
2017-01-03    195.291
2017-01-04    204.291
2017-01-05    204.291
2017-01-06    206.109
2017-01-09    208.152
2017-01-10    208.152
2017-01-11    208.152
2017-01-12    208.152
Name: Close, dtype: float64





How it works...


The cummax
 method works by retaining the maximum value encountered up to and including the current value. Multiplying this series by 0.9, or whatever cushion you would like to use, creates the trailing stop order. In this particular example, TSLA increased in value and thus, its trailing stop has also increased.





There's more...


This recipe gives just a taste of how useful pandas may be used to trade securities and stops short of calculating a return for if and when the stop order triggers. It is possible to turn this recipe into a function that accepts the ticker symbol, purchase date, and stop percentage and returns the trailing stop prices:

>>> def set_trailing_loss(symbol, purchase_date, perc):

        close = pdr.DataReader(symbol, 'google',

                               start=purchase_date)['Close']

        return close.cummax() * perc



>>> msft_trailing_stop = set_trailing_loss('msft', '2017-6-1', .85)

>>> msft_trailing_stop.head()

Date

2017-06-01    59.585
2017-06-02    60.996
2017-06-05    61.438
2017-06-06    61.642
2017-06-07    61.642
Name: Close, dtype: float64

A very similar strategy may be used during a weight-loss program. You can set a warning any time you have strayed too far away from your minimum weight. Pandas provides you with the cummin
 method to track the minimum value. If you keep track of your daily weight in a series, the following code provides a trailing weight loss of 5% above your lowest recorded weight to date:

>>> weight.cummin() * 1.05





See also



	Pandas official documentation of the two other accumulation methods, cumsum
 (http://bit.ly/2v3B6EZ
 ) and cumprod
 (http://bit.ly/2uHBWGt
 )









Selecting Subsets of Data


In this chapter, we will cover the following topics:


	Selecting Series data

	Selecting DataFrame rows

	Selecting DataFrame rows and columns simultaneously

	Selecting data with both integers and labels

	Speeding up scalar selection

	Slicing rows lazily

	Slicing lexicographically







Introduction


Every dimension of data in a Series or DataFrame is labeled through an Index object. It is this Index that separates pandas data structures from NumPy's n-dimensional array. Indexes provide meaningful labels for each row and column of data, and pandas users have the ability to select data through the use of these labels. Additionally, pandas allows its users to select data by the integer location of the rows and columns. This dual selection capability, one using labels and the other using integer location, makes for powerful yet confusing syntax to select subsets of data.

Selecting data through the use of labels or integer location is not unique to pandas. Python dictionaries and lists are built-in data structures that select their data in exactly one of these ways. Both dictionaries and lists have precise instructions and limited use-cases for what may be passed to the indexing operator. A dictionary's key (its label) must be an immutable object, such as a string, integer, or tuple. Lists must either use integers or slice objects for selection. Dictionaries can only select one object at a time by passing the key to the indexing operator. In some sense, pandas is combining the ability to select data using integers, as with lists, and labels, as with dictionaries.





Selecting Series data


Series and DataFrames are complex data containers that have multiple attributes that use the indexing operator to select data in different ways. In addition to the indexing operator itself, the .iloc
 and .loc
 attributes
 are available and use the indexing operator in their own unique ways. Collectively, these attributes are called the indexers
 .

The indexing terminology can get confusing. The term indexing operator
 is used here to distinguish it from the other indexers. It refers to the brackets, []
 directly after a Series or DataFrame. For instance, given a Series s
 , you can select data in the following ways: s[item]
 and s.loc[item]

 . The first uses the indexing operator. The second uses the .loc
 indexer.

Series and DataFrame indexers allow selection by integer location (like Python lists) and by label (like Python dictionaries). The .iloc
 indexer
 selects only by integer location and works similarly to Python lists. The .loc
 indexer
 selects only by index label, which is similar to how Python dictionaries work.





Getting ready


Both .loc
 and .iloc
 work with Series and DataFrames. This recipe shows how to select Series data by integer location with .iloc
 and by label with .loc
 . These indexers not only take scalar values, but also lists and slices.





How to do it...



	Read in the college dataset with the institution name as the index, and select a single column as a Series with the indexing operator:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> city = college['CITY']

>>> city.head()

INSTNM
Alabama A & M University                   Normal
University of Alabama at Birmingham    Birmingham
Amridge University                     Montgomery
University of Alabama in Huntsville    Huntsville
Alabama State University               Montgomery
Name: CITY, dtype: object


	The .iloc
 indexer makes selections only by integer location. Passing an integer to it returns a scalar value:



>>> city.iloc[3]

Huntsville


	To select several different integer locations, pass a list to .iloc
 . This returns a Series:



>>> city.iloc[[10,20,30]]

INSTNM
Birmingham Southern College                            Birmingham
George C Wallace State Community College-Hanceville    Hanceville
Judson College                                             Marion
Name: CITY, dtype: object


	To select an equally spaced partition of data, use slice notation:



>>> city.iloc[4:50:10]

INSTNM
Alabama State University              Montgomery
Enterprise State Community College    Enterprise
Heritage Christian University           Florence
Marion Military Institute                 Marion
Reid State Technical College           Evergreen
Name: CITY, dtype: object


	Now we turn to the .loc
 indexer, which selects only with index labels. Passing a single string returns a scalar value:



>>> city.loc['Heritage Christian University']

Florence


	To select several disjoint labels, use a list:



>>> np.random.seed(1)

>>> labels = list(np.random.choice(city.index, 4))

>>> labels

['Northwest HVAC/R Training Center',
 'California State University-Dominguez Hills',
 'Lower Columbia College',
 'Southwest Acupuncture College-Boulder']



>>> city.loc[labels]

INSTNM

Northwest HVAC/R Training Center                Spokane
California State University-Dominguez Hills      Carson
Lower Columbia College                         Longview
Southwest Acupuncture College-Boulder           Boulder
Name: CITY, dtype: object


	To select an equally spaced partition of data, use slice notation. Make sure that the start and stop values are strings. You can use an integer to specify the step size of the slice:



>>> city.loc['Alabama State University':

             'Reid State Technical College':10]

INSTNM

Alabama State University              Montgomery
Enterprise State Community College    Enterprise
Heritage Christian University           Florence
Marion Military Institute                 Marion
Reid State Technical College           Evergreen
Name: CITY, dtype: object





How it works...


The values in a Series are referenced by integers beginning from 0. Step 2 selects the fourth element of the Series with the .loc
 indexer. Step 3 passes a three-item integer list to the indexing operator, which returns a Series with those integer locations selected. This feature is an enhancement over a Python list, which is incapable of selecting multiple disjoint items in this manner.

In step 4, slice notation with start
 , stop
 , and step
 values specified is used to select an entire section of a Series.

Steps 5 through 7 replicate steps 2 through 4 with the label-based indexer, .loc
 .  The labels must be exact matches of values in the index. To ensure our labels are exact, we choose four labels at random from the index in step 6 and store them to a list before selecting their values as a Series. Selections with the .loc
  indexer always include the last element, as seen in step 7.





There's more...


When passing a scalar value to the indexing operator, as with step 2 and step 5, a scalar value is returned. When passing a list or slice, as in the other steps, a Series is returned. This returned value might seem inconsistent, but if we think of a Series as a dictionary-like object that maps labels to values, then returning the value makes sense. To select a single item and retain the item in its Series, pass in as a single-item list rather than a scalar value:

>>> city.iloc[[3]]

INSTNM

University of Alabama in Huntsville    Huntsville

Name: CITY, dtype: object

Care needs to be taken when using slice notation with .loc
 . If the start
 index appears after the stop
 index, then an empty Series is returned without an exception raised:

>>> city.loc['Reid State Technical College':

             'Alabama State University':10]

Series([], Name: CITY, dtype: object)





See also



	Pandas official documentation on indexing (http://bit.ly/2fdtZWu
 )







Selecting DataFrame rows


The most explicit and preferred way to select DataFrame rows is with the .iloc
 and .loc
 indexers. They are capable of selecting rows or columns independently and simultaneously.





Getting ready


This recipe shows you how to select rows from a DataFrame using the .iloc
 and .loc
 indexers.





How to do it...



	Read in the college dataset, and set the index as the institution name:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college.head()





	Pass an integer to the .iloc
 indexer
 to select an entire row at that position:



>>> college.iloc[60]

CITY                  Anchorage
STABBR                       AK
HBCU                          0
                        ...    
UG25ABV                  0.4386
MD_EARN_WNE_P10           42500
GRAD_DEBT_MDN_SUPP      19449.5
Name: University of Alaska Anchorage, Length: 26, dtype: object


	To get the same row as the preceding step, pass the index label to the .loc
 indexer:



>>> college.loc['University of Alaska Anchorage']

CITY                  Anchorage
STABBR                       AK
HBCU                          0
                        ...    
UG25ABV                  0.4386
MD_EARN_WNE_P10           42500
GRAD_DEBT_MDN_SUPP      19449.5
Name: University of Alaska Anchorage, Length: 26, dtype: object


	To select a disjointed set of rows as a DataFrame, pass a list of integers to the .iloc
 indexer:



>>> college.iloc[[60, 99, 3]]





	The same DataFrame from step 4 may be reproduced using .loc
 by passing it a list of the exact institution names:



>>> labels = ['University of Alaska Anchorage',

              'International Academy of Hair Design',

              'University of Alabama in Huntsville']

>>> college.loc[labels]


	Use slice notation with .iloc
 to select an entire segment of the data:



>>> college.iloc[99:102]





	Slice notation also works with the .loc
 indexer and is inclusive of the last label:



>>> start = 'International Academy of Hair Design'

>>> stop = 'Mesa Community College'

>>> college.loc[start:stop]





How it works...


Passing a scalar value, a list of scalars, or a slice object to the .iloc
 or .loc
 indexers causes pandas to scan the index labels for the appropriate rows and return them. If a single scalar value is passed, a Series is returned. If a list or slice object is passed, then a DataFrame is returned.





There's more...


In step 5, the list of index labels can be selected directly from the DataFrame returned in step 4 without the need for copying and pasting:

>>> college.iloc[[60, 99, 3]].index.tolist()

['University of Alaska Anchorage',
 'International Academy of Hair Design',
 'University of Alabama in Huntsville']





See also



	Refer to the Examining the Index object
 recipe from Chapter 6
 , Index Alignment








Selecting DataFrame rows and columns simultaneously


Directly using the indexing operator is the correct method to select one or more columns from a DataFrame. However, it does not allow you to select both rows and columns simultaneously. To select rows and columns simultaneously, you will need to pass both valid row and column selections separated by a comma to either the .iloc
 or .loc
 indexers.





Getting ready


The generic form to select rows and columns will look like the following code:

>>> df.iloc[rows, columns]

>>> df.loc[rows, columns]

The rows
 and columns
 variables
 may be scalar values, lists, slice objects, or boolean sequences.

Passing a boolean sequence to the indexers is covered in Chapter 5
 , Boolean Indexing
 .

In this recipe, each step shows a simultaneous row and column selection using .iloc
 and its exact replication using .loc
 .





How to do it...



	Read in the college dataset, and set the index as the institution name. Select the first three rows and the first four columns with slice notation:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college.iloc[:3, :4]

>>> college.loc[:'Amridge University', :'MENONLY']





	Select all the rows of two different columns:



>>> college.iloc[:, [4,6]].head()

>>> college.loc[:, ['WOMENONLY', 'SATVRMID']].head()





	Select disjointed rows and columns:



>>> college.iloc[[100, 200], [7, 15]]

>>> rows = ['GateWay Community College',

            'American Baptist Seminary of the West']

>>> columns = ['SATMTMID', 'UGDS_NHPI']

>>> college.loc[rows, columns]





	Select a single scalar value:



>>> college.iloc[5, -4]

>>> college.loc['The University of Alabama', 'PCTFLOAN']

-.401


	Slice the rows and select a single column:



>>> college.iloc[90:80:-2, 5]

>>> start = 'Empire Beauty School-Flagstaff'

>>> stop = 'Arizona State University-Tempe'

>>> college.loc[start:stop:-2, 'RELAFFIL']

INSTNM
Empire Beauty School-Flagstaff     0
Charles of Italy Beauty College    0
Central Arizona College            0
University of Arizona              0
Arizona State University-Tempe     0
Name: RELAFFIL, dtype: int64





How it works...


One of the keys to selecting rows and columns simultaneously is to understand the use of the comma in the brackets. The selection to the left of the comma always selects rows based on the row index. The selection to the right of the comma always selects columns based on the column index.

It is not necessary to make a selection for both rows and columns simultaneously. Step 2 shows how to select all the rows and a subset of columns. The colon represents a slice object that simply returns all the values for that dimension.





There's more...


When selecting a subset of rows, along with all the columns, it is not necessary to use a colon following a comma. The default behavior is to select all the columns if there is no comma present. The previous recipe selected rows in exactly this manner. You can, however, use a colon to represent a slice of all the columns. The following lines of code are equivalent:

>>> college.iloc[:10]

>>> college.iloc[:10, :]





Selecting data with both integers and labels


The .iloc
 and .loc
 indexers
 each select data by either integer or label location but are not able to handle a combination of both input types at the same time. In earlier versions of pandas, another indexer, .ix
 , was available to select data by both integer and label location. While this conveniently worked for those specific situations, it was ambiguous by nature and was a source of confusion for many pandas users. The .ix
 indexer has subsequently been deprecated and thus should be avoided.





Getting ready


Before the .ix
 deprecation, it was possible to select the first five rows and the columns of the college dataset from UGDS_WHITE
 through UGDS_UNKN
 using college.ix[:5, 'UGDS_WHITE':'UGDS_UNKN']
 . This is now impossible to do directly using .loc
 or .iloc
 . The following recipe shows how to find the integer location of the columns and then use .iloc
 to complete the selection.





How to do it...



	Read in the college dataset and assign the institution name (INSTNM
 ) as the index:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')


	Use the Index method get_loc
 to find the integer position of the desired columns:



>>> col_start = college.columns.get_loc('UGDS_WHITE')

>>> col_end = college.columns.get_loc('UGDS_UNKN') + 1

>>> col_start, col_end


	Use col_start
 and col_end
 to select columns by integer location using .iloc
 :



>>> college.iloc[:5, col_start:col_end]








How it works...


Step 2 first retrieves the column index through the columns
 attribute. Indexes have a get_loc
 method, which accepts an index label and returns its integer location. We find both the start and end integer locations for the columns that we wish to slice. We add one because slicing with .iloc
 is exclusive of the last item. Step 3 uses slice notation with the rows and columns.





There's more...


We can do a very similar operation to make .loc
 work with a mixture of integers and positions. The following shows how to select the 10th through 15th (inclusive) rows, along with columns UGDS_WHITE
 through UGDS_UNKN
 :

>>> row_start = df_college.index[10]

>>> row_end = df_college.index[15]

>>> college.loc[row_start:row_end, 'UGDS_WHITE':'UGDS_UNKN']

Doing this same operation with .ix
 (which is deprecated, so don't do this) would look like this:

>>> college.ix[10:16, 'UGDS_WHITE':'UGDS_UNKN']

It is possible to achieve the same results by chaining .loc
 and .iloc
 together, but chaining indexers is typically a bad idea:

>>> college.iloc[10:16].loc[:, 'UGDS_WHITE':'UGDS_UNKN']





See also



	Refer to the Selecting columns with methods
 recipe from Chapter 2
 , Essential DataFrame Operations








Speeding up scalar selection


Both the .iloc
 and .loc
 indexers are capable of selecting a single element, a scalar value, from a Series or DataFrame. However, there exist the indexers, .iat
 and .at
 , which respectively achieve the same thing at faster speeds. Like .iloc
 , the .iat
 indexer uses integer location to make its selection and must be passed two integers separated by a comma. Similar to .loc
 , the .at
 index uses labels to make its selection and must be passed an index and column label separated by a comma.





Getting ready


This recipe is valuable if computational time is of utmost importance. It shows the performance improvement of .iat
 and .at
  over .iloc
 and .loc
  when using scalar selection.





How to do it...



	Read in the college
 scoreboard dataset with the institution name as the index. Pass a college name and column name to
 .loc
 in order to select a scalar value:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> cn = 'Texas A & M University-College Station'

>>> college.loc[cn, 'UGDS_WHITE']

.661


	Achieve the same result with .at
 :



>>> college.at[cn, 'UGDS_WHITE']

.661


	Use the %timeit
 magic command to find the difference in speed:



>>> %timeit college.loc[cn, 'UGDS_WHITE']

8.97 µs ± 617 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)



>>> %timeit college.at[cn, 'UGDS_WHITE']

6.28 µs ± 214 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)


	Find the integer locations of the preceding selections and then time the difference between .iloc
 and .iat
 :



>>> row_num = college.index.get_loc(cn)

>>> col_num = college.columns.get_loc('UGDS_WHITE')

>>> row_num, col_num

(3765, 10)



>>> %timeit college.iloc[row_num, col_num]

9.74 µs ± 153 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)



>>> %timeit college.iat[row_num, col_num]

7.29 µs ± 431 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)







How it works...


The scalar indexers, .iat
 and .at
 , only accept scalar values. They fail if anything else is passed to them. They are drop-in replacements for .iloc
 and .loc
 when doing scalar selection. The timeit
 magic command times entire blocks of code when preceded by two percentage signs and a single time when preceded by one percentage sign. It shows that about 2.5 microseconds are saved on average by switching to the scalar indexers. This might not be much but can add up quickly if scalar selection is repeatedly done in a program.





There's more...


Both .iat
 and .at
 work with Series as well. Pass them a single scalar value, and they will return a scalar:

>>> state = college['STBBR']   # Select a Series

>>> state.iat[1000]

'IL'



>>> state.at['Stanford University']

'CA'





Slicing rows lazily


The previous recipes in this chapter showed how the .iloc
 and .loc
 indexers were used to select subsets of both Series and DataFrames in either dimension. A shortcut to select the rows exists with just the indexing operator itself. This is just a shortcut to show additional features of pandas, but the primary function of the indexing operator is actually to select DataFrame columns. If you want to select rows, it is best to use .iloc
 or .loc
 , as they are unambiguous.





Getting ready


In this recipe, we pass a slice object to both the Series and DataFrame indexing operators.





How to do it...



	Read in the college dataset with the institution name as the index and then select every other row from index 10 to 20:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college[10:20:2]





	This same slicing exists with Series:



>>> city = college['CITY']

>>> city[10:20:2]

INSTNM
Birmingham Southern College              Birmingham
Concordia College Alabama                     Selma
Enterprise State Community College       Enterprise
Faulkner University                      Montgomery
New Beginning College of Cosmetology    Albertville
Name: CITY, dtype: object


	Both Series and DataFrames can slice by label as well with just the indexing operator:



>>> start = 'Mesa Community College'

>>> stop = 'Spokane Community College'

>>> college[start:stop:1500]





	Here is the same slice by label with a Series:



>>> city[start:stop:1500]

INSTNM
Mesa Community College                            Mesa
Hair Academy Inc-New Carrollton         New Carrollton
National College of Natural Medicine          Portland
Name: CITY, dtype: object





How it works...


The indexing operator changes behavior based on what type of object is passed to it. The following pseudocode outlines how DataFrame indexing operator handles the object that it is passed:

>>> df[item]  # Where `df` is a DataFrame and item is some object



If item is a string then

    Find a column name that matches the item exactly

    Raise KeyError if there is no match

    Return the column as a Series



If item is a list of strings then

    Raise KeyError if one or more strings in item don't match columns

    Return a DataFrame with just the columns in the list



If item is a slice object then

   Works with either integer or string slices

   Raise KeyError if label from label slice is not in index

   Return all ROWS that are selected by the slice



If item is a list, Series or ndarray of booleans then

   Raise ValueError if length of item not equal to length of DataFrame

   Use the booleans to return only the rows with True in same location

The preceding logic covers all the most common cases but is not an exhaustive list. The logic for a Series is slightly different and actually more complex than it is for a DataFrame. Due to its complexity, it is probably a good idea to avoid using just the indexing operator itself on a Series and instead use the explicit .iloc
 and .loc
 indexers.

One acceptable use case of the Series indexing operator is when doing boolean indexing. See Chapter 6
 , Index Alignment
  for more details.


I titled this type of row slicing in this section as lazy
 , as it does not use the more explicit .iloc
 or .loc
 . Personally, I always use these indexers whenever slicing rows, as there is never a question of exactly what I am doing.







There's more...


It is important to be aware that this lazy slicing does not work for columns, just for DataFrame rows and Series.It also cannot be used to select both rows and columns simultaneously. Take, for instance, the following code, which attempts to select the first ten rows and two columns:

>>> college[:10, ['CITY', 'STABBR']]

TypeError: unhashable type: 'slice'





To make a selection in this manner, you need to use .loc
 or .iloc
 . Here is one possible way that selects all the institution labels first and then uses the label-based indexer .loc
 :

>>> first_ten_instnm = college.index[:10]

>>> college.loc[first_ten_instnm, ['CITY', 'STABBR']]





Slicing lexicographically


The .loc
 indexer typically selects data based on the exact string label of the index. However, it also allows you to select data based on the lexicographic order of the values in the index. Specifically, .loc
 allows you to select all rows with an index lexicographically using slice notation. This works only if the index is sorted.





Getting ready


In this recipe, you will first sort the index and then use slice notation inside the .loc
 indexer to select all rows between two strings.





How to do it...



	Read in the college dataset, and set the institution name as the index:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')


	Attempt to select all colleges with names lexicographically between 'Sp'
 and 'Su'
 :



>>> college.loc['Sp':'Su']

KeyError

: 'Sp'


	As the index is not sorted, the preceding command fails. Let's go ahead and sort the index:



>>> college = college.sort_index()





	Now, let's rerun the same command from step 2:



>>> college.loc['Sp':'Su']








How it works...


The normal behavior of .loc
 is to make selections of data based on the exact labels passed to it. It raises a KeyError
 when these labels are not found in the index. However, one special exception to this behavior exists whenever the index is lexicographically sorted, and a slice is passed to it. Selection is now possible between the start
 and stop
 labels of the slice, even if they are not exact values of the index.





There's more...


With this recipe, it is easy to select colleges between two letters of the alphabet. For instance, to select all colleges that begin with the letter D
 through S
 , you would use college.loc['D':'T']
 . Slicing like this is still inclusive of the last index so this would technically return a college with the exact name T
 .

This type of slicing also works when the index is sorted in the opposite direction. You can determine which direction the index is sorted with the index attribute, is_monotonic_increasing
 or is_monotonic_decreasing
 . Either of these must be True
 in order for lexicographic slicing to work. For instance, the following code lexicographically sorts the index from Z
 to A
 :

>>> college = college.sort_index(ascending=False)

>>> college.index.is_monotonic_decreasing

True

>>> college.loc['E':'B']





Python sorts all capital letters before lowercase and all integers before capital letters.






Boolean Indexing


In this chapter, we will cover the following topics:


	Calculating boolean statistics

	Constructing multiple boolean conditions

	Filtering with boolean indexing

	Replicating boolean indexing with index selection

	Selecting with unique and sorted indexes

	Gaining perspective on stock prices

	Translating SQL WHERE clauses

	Determining the normality of stock market returns

	Improving readability of boolean indexing with the query method

	Preserving Series with the where
 method

	Masking DataFrame rows

	Selecting with booleans, integer location, and labels







Introduction


Filtering data from a dataset is one of the most common and basic operations. There are numerous ways to filter (or subset) data in pandas with b
 oolean indexing
 . Boolean indexing (also known as boolean selection
 ) can be a confusing term, but for the purposes of pandas, it refers to selecting rows by providing a boolean value (True
 or False
 ) for each row. These boolean values are usually stored in a Series or NumPy ndarray
 and are usually created by applying a boolean condition to one or more columns in a DataFrame. We begin by creating boolean Series and calculating statistics on them and then move on to creating more complex conditionals before using boolean indexing in a wide variety of ways to filter data.





Calculating boolean statistics


When first getting introduced to boolean Series, it can be informative to calculate basic summary statistics on them. Each value of a boolean series evaluates to 0 or 1 so all the Series methods that work with numerical values also work with booleans.





Getting ready


In this recipe, we create a boolean Series by applying a condition to a column of data and then calculate summary statistics from it.





How to do it...



	Read in the movie
 dataset, set the index to the movie title, and inspect the first few rows:



>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> movie.head()





	Determine whether the duration of each movie is longer than two hours by using the greater than comparison operator with the duration
 Series:



>>> movie_2_hours = movie['duration'] > 120

>>> movie_2_hours.head(10)

movie_title
Avatar                                         True
Pirates of the Caribbean: At World's End       True
Spectre                                        True
The Dark Knight Rises                          True
Star Wars: Episode VII - The Force Awakens    False
John Carter                                    True
Spider-Man 3                                   True
Tangled                                       False
Avengers: Age of Ultron                        True
Harry Potter and the Half-Blood Prince         True
Name: duration, dtype: bool


	We can now use this Series to determine the number of movies that are longer than two hours:



>>> movie_2_hours.sum()

1039


	To find the percentage of movies in the dataset longer than two hours, use the mean
 method:



>>> movie_2_hours.mean()

0.2114


	Unfortunately, the output from step 4 is misleading. The duration
 column has a few missing values. If you look back at the DataFrame output from step 1, you will see that the last row is missing a value for duration
 . The boolean condition in step 2 returns False
 for this. We need to drop the missing values first, then evaluate the condition and take the mean:



>>> movie['duration'].dropna().gt(120).mean()

.2112


	Use the describe
 method to output a few summary statistics on the boolean Series:



>>> movie_2_hours.describe()

count      4916
unique        2
top       False
freq       3877
Name: duration, dtype: object





How it works...


Most DataFrames will not have columns of booleans like our movie dataset. The most straightforward method to produce a boolean Series is to apply a condition to one of the columns using one of the comparison operators. In step 2, we use the greater than operator to test whether or not the duration of each movie was more than two hours (120 minutes). Steps 3 and 4 calculate two important quantities from a boolean Series, its sum and mean. These methods are possible as Python evaluates False
 /True
 as 0/1.

You can prove to yourself that the mean of a boolean Series represents the percentage of True
 values. To do this, use the value_counts
 method to count with the normalize
 parameter set to True
 to get its distribution:

>>> movie_2_hours.value_counts(normalize=True)

False    0.788649

True     0.211351
Name: duration, dtype: float64

Step 5 alerts us to the incorrect result from step 4. Even though the duration
 column had missing values, the boolean condition evaluated all these comparisons against missing values as False
 . Dropping these missing values allows us to calculate the correct statistic. This is done in one step through method chaining.

Step 6 shows that pandas treats boolean columns similarly to how it treats object data types by displaying frequency information. This is a natural way to think about boolean Series, rather than display quantiles like it does with numeric data.





There's more...


It is possible to compare two columns from the same DataFrame to produce a boolean Series. For instance, we could determine the percentage of movies that have actor 1 with more Facebook likes than actor 2. To do this, we would select both of these columns and then drop any of the rows that had missing values for either movie. Then we would make the comparison and calculate the mean:

>>> actors = movie[['actor_1_facebook_likes', 

                    'actor_2_facebook_likes']].dropna()

>>> (actors['actor_1_facebook_likes'] > 

     actors['actor_2_facebook_likes']).mean()

.978





See also



	Refer to the Chaining Series methods together
 recipe from Chapter 1
 , Pandas Foundations


	Refer to the Working with operators
 recipe from Chapter 1
 , Pandas Foundations








Constructing multiple boolean conditions


In Python, boolean expressions use the built-in logical operators and
 , or
 , and not
 . These keywords do not work with boolean indexing in pandas and are respectively replaced with &
 , |
 , and ~
 . Additionally, each expression must be wrapped in parentheses or an error will be raised.





Getting ready


Constructing a precise filter for your dataset might have you combining multiple boolean expressions together to extract an exact subset. In this recipe, we construct multiple boolean expressions before combining them together to find all the movies that have an imdb_score
 greater than 8, a content_rating
 of PG-13, and a title_year
 either before 2000 or after 2009.





How to do it...



	Load in the movie dataset and set the index as the title:



>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')


	Create a variable to hold each set of criteria independently as a boolean Series:



>>> criteria1 = movie.imdb_score > 8

>>> criteria2 = movie.content_rating == 'PG-13'

>>> criteria3 = ((movie.title_year < 2000) | 

                 (movie.title_year > 2009))



>>> criteria2.head()     # all criteria Series look similar

movie_title
Avatar                                         True
Pirates of the Caribbean: At World's End       True
Spectre                                        True
The Dark Knight Rises                          True
Star Wars: Episode VII - The Force Awakens    False
Name: content_rating, dtype: bool


	Combine all the criteria together into a single boolean Series:



>>> criteria_final = criteria1 & criteria2 & criteria3

>>> criteria_final.head()

movie_title
Avatar                                        False
Pirates of the Caribbean: At World's End      False
Spectre                                       False
The Dark Knight Rises                          True
Star Wars: Episode VII - The Force Awakens    False
dtype: bool





How it works...


All values in a Series can be compared against a scalar value using the standard comparison operators( <
 , >
 , ==
 , !=
 , <=
 , >=
 ). The expression movie.imdb_score > 8
 yields a Series of booleans where all imdb_score
 values prices exceeding 8 are True
 and those less than or equal to 8 are False
 . The index of this boolean Series retains the same index as the original and in this case, is the title of the movie.

The criteria3
 variable
 is created by two independent boolean expressions. Each expression must be enclosed in parentheses to function properly. The pipe character, |
 , is used to create a logical or
 condition between each of the values in both Series.

All three criteria need to be True
 to match the requirements of the recipe. They are each combined together with the ampersand character, &
 , which creates a logical and
 condition between each Series value.





There's more...


A consequence of pandas using different syntax for the logical operators is that operator precedence is no longer the same. The comparison operators have a higher precedence than and
 , or
 , and not
 . However, the new operators for pandas (the bitwise operators &
 , |
 , and ~
 ) have a higher precedence than the comparison operators, thus the need for parentheses. An example can help clear this up. Take the following expression:

>>> 5 < 10 and 3 > 4

False 

In the preceding expression, 5 < 10
 evaluates first, followed by 3 < 4
 , and finally, the and
 evaluates. Python progresses through the expression as follows:

>>> 5 < 10 and 3 > 4

>>> True and 3 > 4

>>> True and False

>>> False

Let's take a look at what would happen if the expression in criteria3
 was written as follows:

>>> movie.title_year < 2000 | movie.title_year > 2009

TypeError

: cannot compare a dtyped [float64] array with a scalar of type [bool]

As the bitwise operators have higher precedence than the comparison operators, 2000 | movie.title_year
 is evaluated first, which is nonsensical and raises an error. Therefore, parentheses are needed to have the operations evaluated in the correct order.

Why can't pandas use and
 , or
 , and not
 ? When these keywords are evaluated, Python attempts to find the truthiness
 of the objects as a whole. As it does not make sense for a Series as a whole to be either True or False--only each element--pandas raises an error.

Many objects in Python have boolean representation. For instance, all integers except 0 are considered True
 . All strings except the empty string are True
 . All non-empty sets, tuples, dictionaries, and lists are True
 . An empty DataFrame or Series does not evaluate as True or False and instead an error is raised. In general, to retrieve the truthiness of a Python object, pass it to the bool
 function.





See also



	Python operator precedence (http://bit.ly/2vxuqSn
 )







Filtering with boolean indexing


Boolean selection for Series and DataFrame objects is virtually identical. Both work by passing a Series of booleans indexed identically to the object being filtered to the indexing operator.





Getting ready


This recipe constructs two complex and independent boolean criteria for different sets of movies. The first set of movies comes from the previous recipe and consists of those with an imdb_score
 greater than 8, a content_rating
 of PG-13, and a title_year
 either before 2000 or after 2009. The second set of movies consists of those with imdb_score
 less than 5, a content_rating
 of R, and a title_year
 between 2000 and 2010.





How to do it...



	Read in the movie
 dataset, set the index to the movie_title
 , and create the first set of criteria:



>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> crit_a1 = movie.imdb_score > 8

>>> crit_a2 = movie.content_rating == 'PG-13'

>>> crit_a3 = (movie.title_year < 2000) | (movie.title_year > 2009)

>>> final_crit_a = crit_a1 & crit_a2 & crit_a3


	Create criteria for the second set of movies:



>>> crit_b1 = movie.imdb_score < 5

>>> crit_b2 = movie.content_rating == 'R'

>>> crit_b3 = ((movie.title_year >= 2000) & 

               (movie.title_year <= 2010))

>>> final_crit_b = crit_b1 & crit_b2 & crit_b3


	Combine the two sets of criteria using the pandas or
 operator. This yields a boolean Series of all movies that are members of either set:



>>> final_crit_all = final_crit_a | final_crit_b

>>> final_crit_all.head()

movie_title

Avatar                                        False
Pirates of the Caribbean: At World's End      False
Spectre                                       False
The Dark Knight Rises                          True
Star Wars: Episode VII - The Force Awakens    False
dtype: bool


	Once you have your boolean Series, you simply pass it to the indexing operator to filter the data:



>>> movie[final_crit_all].head()





	We have successfully filtered the data and all the columns of the DataFrame. We can't easily perform a manual check to determine whether the filter worked correctly. Let's filter both rows and columns with the .loc
 indexer:



>>> cols = ['imdb_score', 'content_rating', 'title_year']

>>> movie_filtered = movie.loc[final_crit_all, cols]

>>> movie_filtered.head(10)








How it works...


In step 1 and step 2, each set of criteria is built from simpler boolean expressions. It is not necessary to create a different variable for each boolean expression as done here, but it does make it far easier to read and debug any logic mistakes. As we desire both sets of movies, step 3 uses the pandas logical or
 operator to combine them.

Step 4 shows the exact syntax of how boolean indexing works. You simply pass the Series of booleans created from step 3 directly to the indexing operator. Only the movies with True
 values from final_crit_all
 are selected.

Boolean indexing also works with the .loc
  indexer as seen in step 5 by simultaneously doing boolean indexing and individual column selection. This slimmed DataFrame is far easier to check manually
 whether the logic was implemented correctly.

Boolean indexing does not quite work with the .iloc
 indexing operator. If you pass in a boolean series to it, an exception will get raised. However, if you pass in a boolean ndarray it will the same as it does in this recipe with the other indexers.





There's more...


As was stated earlier, it is possible to use one long boolean expression in place of several other shorter ones. To replicate the final_crit_a
 variable
 from step 1 with one long line of code, we can do the following:

>>> final_crit_a2 = (movie.imdb_score > 8) & \

                    (movie.content_rating == 'PG-13') & \

                    ((movie.title_year < 2000) | 

                     (movie.title_year > 2009))

>>> final_crit_a2.equals(final_crit_a)

True





See also



	Pandas official documentation on boolean indexing
 (http://bit.ly/2v1xK77
 )

	Checking the truth of a Python object (http://bit.ly/2vn8WXX
 )







Replicating boolean indexing with index selection


It is possible to replicate specific cases of boolean selection by taking advantage of the index. Selection through the index is more intuitive and makes for greater readability.





Getting ready


In this recipe, we use the college
 dataset to select all institutions from a particular state with both boolean indexing and index selection and then compare each of their performance against one another.





How to do it...



	Read in the college
 dataset and use boolean indexing to select all institutions from the state of Texas (TX):



>>> college = pd.read_csv('data/college.csv')

>>> college[college['STABBR'] == 'TX'].head()

Pandas official documentation on



	To replicate this using index selection, we need to move the STABBR
 column into the index. We can then use label-based selection with the .loc
 indexer:



>>> college2 = college.set_index('STABBR')

>>> college2.loc['TX'].head()





	Let's compare the speed of both methods:



>>> %timeit college[college['STABBR'] == 'TX']

1.43 ms ± 53.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)



>>> %timeit college2.loc['TX']

526 µs ± 6.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)


	Boolean indexing takes three times as long as index selection. As setting the index does not come for free, let's time that operation as well:



>>> %timeit college2 = college.set_index('STABBR')

1.04 ms ± 5.37 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





How it works...


Step 1 creates a boolean Series by determining which rows of data have STABBR
 equal to TX
 . This Series is passed to the indexing operator, which subsets the data. This process may be replicated by moving that same column to the index and simply using basic label-based index selection with .loc
 . Selection via the index is much faster than boolean selection.





There's more...


This recipe only selects a single state. It is possible to select multiple states with both boolean and index selection. Let's select Texas
 (TX
 ), California
 (CA
 ), and New York
 (NY
 ). With boolean selection, you can use the isin
 method but with indexing, just pass a list to .loc
 :

>>> states = ['TX', 'CA', 'NY']

>>> college[college['STABBR'].isin(states)]

>>> college2.loc[states]

There is quite a bit more to the story than what this recipe explains. Pandas implements the index differently based on whether the index is unique or sorted. See the following recipe for more details.





Selecting with unique and sorted indexes


Index selection performance drastically improves when the index is unique or sorted. The prior recipe used an unsorted index that contained duplicates, which makes for relatively slow selections.





Getting ready


In this recipe, we use the college
 dataset to form unique or sorted indexes to increase the performance of index selection. We will continue to compare the performance to boolean indexing as well.





How to do it...



	Read in the college dataset, create a separate DataFrame with STABBR
 as the index, and check whether the index is sorted:



>>> college = pd.read_csv('data/college.csv')

>>> college2 = college.set_index('STABBR')

>>> college2.index.is_monotonic

False


	Sort the index from college2
 and store it as another object:



>>> college3 = college2.sort_index()

>>> college3.index.is_monotonic

True


	Time the selection of the state of Texas (TX) from all three DataFrames:



>>> %timeit college[college['STABBR'] == 'TX']

1.43 ms ± 53.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)



>>> %timeit college2.loc['TX']

526 µs ± 6.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)



>>> %timeit college3.loc['TX']

183 µs ± 3.67 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)


	The sorted index performs nearly an order of magnitude faster than boolean selection. Let's now turn towards unique indexes. For this, we use the institution name as the index:



>>> college_unique = college.set_index('INSTNM')

>>> college_unique.index.is_unique

True


	Let's select Stanford University with boolean indexing: 



>>> college[college['INSTNM'] == 'Stanford University']






	Let's select Stanford University with index selection:





>>> college_unique.loc['Stanford University']

CITY                  Stanford
STABBR                      CA
HBCU                         0

...

UG25ABV                 0.0401
MD_EARN_WNE_P10          86000
GRAD_DEBT_MDN_SUPP       12782
Name: Stanford University, dtype: object


	They both produce the same data, just with different objects. Let's time each approach:



>>> %timeit college[college['INSTNM'] == 'Stanford University']

1.3 ms ± 56.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)



>>> %timeit college_unique.loc['Stanford University']

157 µs ± 682 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)





How it works...


When the index is not sorted and contains duplicates, as with college2
 , pandas will need to check every single value in the index in order to make the correct selection. When the index is sorted, as with college3
 , pandas takes advantage of an algorithm called binary search
 to greatly improve performance.

In the second half of the recipe, we use a unique column as the index. Pandas implements unique indexes with a hash table, which makes for even faster selection. Each index location can be looked up in nearly the same time regardless of its length.





There's more...


Boolean selection gives much more flexibility than index selection as it is possible to condition on any number of columns. In this recipe, we used a single column as the index. It is possible to concatenate multiple columns together to form an index. For instance, in the following code, we set the index equal to the concatenation of the city and state columns:

>>> college.index = college['CITY'] + ', ' + college['STABBR']

>>> college = college.sort_index()

>>> college.head()




From here, we can select all colleges from a particular city and state combination without boolean indexing. Let's select all colleges from Miami, FL
 :

>>> college.loc['Miami, FL'].head()




We can compare the speed of this compound index selection with boolean indexing. There is more than an order of magnitude difference:

>>> %%timeit 

>>> crit1 = college['CITY'] == 'Miami' 

>>> crit2 = college['STABBR'] == 'FL'

>>> college[crit1 & crit2]

2.43 ms ± 80.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)



>>> %timeit college.loc['Miami, FL']

197 µs ± 8.69 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)





See also



	The Binary search algorithm
 (http://bit.ly/2wbMq20
 )







Gaining perspective on stock prices


Investors who have purchased long stock positions would obviously like to sell stocks at or near their all-time highs. This, of course, is very difficult to do in practice, especially if a stock price has only spent a small portion of its history above a certain threshold. We can use boolean indexing to find all points in time that a stock has spent above or below a certain value. This exercise may help us gain perspective as to what a common range for some stock to be trading within.





Getting ready


In this recipe, we examine Schlumberger stock from the start of 2010 until mid-2017. We use boolean indexing to extract a Series of the lowest and highest ten percent of closing prices during this time period. We then plot all points and highlight those that are in the upper and lower ten percent.





How to do it...



	Read in the Schlumberger stock data, put the Date
 column into the index, and convert it to a DatetimeIndex
 :



>>> slb = pd.read_csv('data/slb_stock.csv', index_col='Date', 

                     parse_dates=['Date'])

>>> slb.head()





	Select the closing price as a Series and use the describe
 method to return summary statistics as a Series:



>>> slb_close = slb['Close']

>>> slb_summary = slb_close.describe(percentiles=[.1, .9])

>>> slb_summary

count    1895.000000
mean       79.121905
std        11.767802
min        51.750000
10%        64.892000
50%        78.000000
90%        93.248000
max       117.950000
Name: Close, dtype: float64


	Using boolean selection, select all closing prices in the upper or lower tenth percentile:



>>> upper_10 = slb_summary.loc['90%']

>>> lower_10 = slb_summary.loc['10%']

>>> criteria = (slb_close < lower_10) | (slb_close > upper_10)

>>> slb_top_bottom_10 = slb_close[criteria]


	Plot the resulting filtered Series in light gray on top of all closing prices in black. Use the matplotlib
 library to draw horizontal lines at the tenth and ninetieth percentiles:



>>> slb_close.plot(color='black', figsize=(12,6))

>>> slb_top_bottom_10.plot(marker='o', style=' ',

                           ms=4, color='lightgray')



>>> xmin = criteria.index[0]

>>> xmax = criteria.index[-1]

>>> plt.hlines(y=[lower_10, upper_10], xmin=xmin,

               xmax=xmax, color='black')








How it works...


The result of the describe
 method in step 2 is itself a Series with the identifying summary statistic as its index labels. This summary Series is used to store the tenth and ninetieth percentiles as their own variables. Step 3 uses boolean indexing to select only those values in the upper and lower tenth of the distribution.

Both Series and DataFrames have direct plotting capabilities through the plot
 method. This first call to the plot
 method comes from the slb_close
 Series, which contains all the SLB closing prices. This is the black line in the plot. The points from slb_filtered
 are plotted as gray markers directly on top of the closing prices. The style
 parameter is set to a single blank space so that no line is drawn. The ms
 parameter sets the marker size.

Matplotlib comes with a convenience function, hlines
 , that plots horizontal lines. It takes a list of y
 values and plots them from xmin
 to xmax
 .

Judging from our new perspective from the plots that we created, it's clear to see that although SLB's all-time high is close to $120 per share, only 10% of the trading days in the last seven years have been above $93 per share.





There's more...


Instead of plotting red points (black points) over the closing prices to indicate the upper and lower tenth percentiles, we can use matplotlib's fill_between
 function. This function fills in all the areas between two lines. It takes an optional where
 parameter that accepts a boolean Series, alerting it to exactly which locations to fill in:

>>> slb_close.plot(color='black', figsize=(12,6))

>>> plt.hlines(y=[lower_10, upper_10], 

               xmin=xmin, xmax=xmax,color='lightgray')

>>> plt.fill_between(x=criteria.index, y1=lower_10,

                     y2=slb_close.values, color='black')

>>> plt.fill_between(x=criteria.index,y1=lower_10,

                     y2=slb_close.values, where=slb_close < lower_10,

                     color='lightgray')

>>> plt.fill_between(x=criteria.index, y1=upper_10, 

                     y2=slb_close.values, where=slb_close > upper_10,

                     color='lightgray')








See also



	Refer to Chapter 11
 , Visualization with Matplotlib, Pandas, and Seaborn








Translating SQL WHERE clauses


Many pandas users will have a background processing data directly from databases using the ubiquitous Structured Query Language
 (SQL
 ). SQL is a standardized language to define, manipulate, and control data stored in a database. The SELECT
 statement is the most common way to use SQL to select, filter, aggregate, and order data. Pandas has the ability to connect to databases and send SQL statements to them.

SQL is a very important language to know for data scientists. Much of the world's data is stored in databases that necessitate SQL to retrieve, manipulate, and perform analyses on. SQL syntax is fairly simple and easy to learn. There are many different SQL implementations from companies such as Oracle, Microsoft, IBM, and more. Although the syntax is not compatible between the different implementations, the core of it will look very much the same.





Getting ready


Within a SQL SELECT statement, the WHERE clause is very common and filters data. This recipe will write pandas code that is equivalent to a SQL query that selects a certain subset of the employee dataset.

It is not necessary to understand any SQL syntax to make use of this recipe.

Suppose we are given a task to find all the female employees that work in the police or fire departments that have a base salary between 80 and 120 thousand dollars. The following SQL statement would answer this query for us:

SELECT

    UNIQUE_ID,

    DEPARTMENT,

    GENDER,

    BASE_SALARY

FROM

    EMPLOYEE

WHERE

    DEPARTMENT IN ('Houston Police Department-HPD', 

                   'Houston Fire Department (HFD)') AND

    GENDER = 'Female' AND 

    BASE_SALARY BETWEEN 80000 AND 120000;





How to do it...



	Read in the employee
 dataset as a DataFrame:



>>> employee = pd.read_csv('data/employee.csv')


	Before filtering out the data, it is helpful to do some manual inspection of each of the filtered columns to know the exact values that will be used in the filter:



>>> employee.DEPARTMENT.value_counts().head()

Houston Police Department-HPD     638
Houston Fire Department (HFD)     384
Public Works & Engineering-PWE    343
Health & Human Services           110
Houston Airport System (HAS)      106
Name: DEPARTMENT, dtype: int64



>>> employee.GENDER.value_counts()

 Male 1397

 Female 603



>>> employee.BASE_SALARY.describe().astype(int)

count      1886
mean      55767
std       21693
min       24960
25%       40170
50%       54461
75%       66614
max      275000
Name: BASE_SALARY, dtype: int64


	Write a single statement for each of the criteria. Use the isin
 method to test equality to one of many values:



>>> depts = ['Houston Police Department-HPD', 

             'Houston Fire Department (HFD)']

>>> criteria_dept = employee.DEPARTMENT.isin(depts)

>>> criteria_gender = employee.GENDER == 'Female'

>>> criteria_sal = (employee.BASE_SALARY >= 80000) & \

                   (employee.BASE_SALARY <= 120000)


	Combine all the boolean Series together:



>>> criteria_final = (criteria_dept & 

                      criteria_gender & 

                      criteria_sal)


	Use boolean indexing to select only the rows that meet the final criteria:



>>> select_columns = ['UNIQUE_ID', 'DEPARTMENT',

                     'GENDER', 'BASE_SALARY']

>>> employee.loc[criteria_final, select_columns].head()








How it works...


Before any filtering is actually done, you will obviously need to know the exact string names that will be used. The Series value_counts
 method is an excellent way to get both the exact string name and number of occurrences of that value.

The isin
 Series method is equivalent to the SQL IN
 operator and accepts a list of all possible values that you would like to keep. It is possible to use a series of OR
 conditions to replicate this expression but it would not be as efficient or idiomatic.

The criteria for salary, criteria_sal
 , is formed by combining two simple inequality expressions. All the criteria are finally combined together with the pandas and
 operator, &
 , to yield a single boolean Series as the filter.





There's more...


For many operations, pandas has multiple ways to do the same thing. In the preceding recipe, the criteria for salary uses two separate boolean expressions. Similarly to SQL, Series have a between
 method, with the salary criteria equivalently written as follows:

>>> criteria_sal = employee.BASE_SALARY.between(80000, 120000)

Another useful application of isin
 is to provide a sequence of values automatically generated by some other pandas statements. This would avoid any manual investigating to find the exact string names to store in a list. Conversely, let's try to exclude the rows from the top five most frequently occurring departments:

>>> top_5_depts = employee.DEPARTMENT.value_counts().index[:5]

>>> criteria = ~employee.DEPARTMENT.isin(top_5_depts)

>>> employee[criteria]

The SQL equivalent of this would be as follows:

SELECT 

    * 

FROM 

    EMPLOYEE 

WHERE 

    DEPARTMENT not in 

    (

      SELECT 

          DEPARTMENT 

     FROM (

           SELECT

               DEPARTMENT,

               COUNT(1) as CT

           FROM

               EMPLOYEE

           GROUP BY

               DEPARTMENT

           ORDER BY

               CT DESC

           LIMIT 5

          )

   );                          

Notice the use of the pandas not operator, ~
 , which negates all boolean values of a Series.





See also



	Pandas official documentation of the isin
 (http://bit.ly/2v1GPfQ
 ) and between
 (http://bit.ly/2wq9YPF
 ) Series methods

	Refer to the Connecting to SQL databases recipe
 in Chapter 9
 , Combining Pandas Objects


	A basic introduction to SQL from W3 schools (http://bit.ly/2hsq8Wp
 )

	The SQL IN operator (http://bit.ly/2v3H7Bg
 )

	The SQL BETWEEN operator (http://bit.ly/2vn5UTP
 )







Determining the normality of stock market returns


In elementary statistics textbooks, the normal distribution is heavily relied upon to describe many different populations of data.  Although many random processes do appear to look like normal distributions most of the time, real-life tends to be more complex. Stock market returns are a prime example of a distribution that can look fairly normal but in actuality be quite far off.





Getting ready


This recipe describes how to find daily stock market returns of the internet retail giant Amazon and informally test whether they follow a normal distribution.





How to do it...



	Load Amazon stock data and set the date as the index:



>>> amzn = pd.read_csv('data/amzn_stock.csv', index_col='Date',

                      parse_dates=['Date'])

>>> amzn.head()





	Create a Series by selecting only the closing price and then using the pct_change
 method
 to get the daily rate of return:



>>> amzn_daily_return = amzn.Close.pct_change()

>>> amzn_daily_return.head()

Date
2010-01-04         NaN
2010-01-05    0.005900
2010-01-06   -0.018116
2010-01-07   -0.017013
2010-01-08    0.027077
Name: Close, dtype: float64


	Drop the missing value and plot a histogram of the returns to visually inspect the distribution:



>>> amzn_daily_return = amzn_daily_return.dropna()

>>> amzn_daily_return.hist(bins=20)





	Normal distributions approximately follow the 68-95-99.7 rule--meaning that 68% of the data falls between 1 standard deviation of the mean, 95% between 2, and 99.7% between 3. We will now calculate the percentage of daily returns that fall between 1, 2, and 3 standard deviations from the mean. For this, we will need the mean and standard deviation:



>>> mean = amzn_daily_return.mean() 

>>> std = amzn_daily_return.std()


	Calculate the absolute value of the z-score
 for each observation. The z-score
 is the number of standard deviations away from the mean:



>>> abs_z_score = amzn_daily_return.sub(mean).abs().div(std)


	Find the percentage of returns that are within 1, 2, and 3 standard deviations:



>>> pcts = [abs_z_score.lt(i).mean() for i in range(1,4)]

>>> print('{:.3f} fall within 1 standard deviation. '

          '{:.3f} within 2 and {:.3f} within 3'.format(*pcts))

0.787 fall within 1 standard deviation. 0.957 within 2 and 0.985 within 3





How it works...


By default, the pct_change
 Series method calculates the percentage change between the current element and previous element. This transforms the raw stock closing prices into daily percentage returns. The first element of the returned Series is a missing value as there is no previous price.

Histograms are fantastic plots to summarize and visualize one-dimensional numeric data. It is clear from the plot that the distribution is symmetrical but it remains difficult to determine whether it is normal or not. There are formal statistical procedures to determine the normality of a distribution but we will simply find how close the data matches the 68-95-99.7 rule.

Step 5 calculates the number of standard deviations away from the mean for each observation which is referred to as the z-score
 . This step uses the methods and not the symbols (-
 and /
 ) to do subtraction and division. The method for less than is also used in favor of the symbols in step 6.

It may seem odd that the mean is being taken in step 6. The result of the abs_z_score.lt(1)
 expression
 is a Series of booleans. As booleans evaluate to 0 or 1, taking the mean of this Series returns the percentage of elements that are True
 , which is what we desired.

We can now more easily determine the normality of the returns by comparing the resulting numbers (78.7-95.7-98.5) to the 68-95-99.7 rule. The percentages deviate greatly from the rule for 1 and 3 standard deviations, and we can conclude that Amazon daily stock returns do not follow a normal distribution.





There's more...


To automate this process, we can write a function that accepts stock data in the and outputs the histogram of daily returns along with the percentages that fall within 1, 2, and 3 standard deviations from the mean. The following function does this and replaces the methods with their symbol counterparts:

>>> def test_return_normality(stock_data):

        close = stock_data['Close']

        daily_return = close.pct_change().dropna()

        daily_return.hist(bins=20)

        mean = daily_return.mean() 

        std = daily_return.std()



        abs_z_score = abs(daily_return - mean) / std 

        pcts = [abs_z_score.lt(i).mean() for i in range(1,4)]

 

        print('{:.3f} fall within 1 standard deviation. '

              '{:.3f} within 2 and {:.3f} within 3'.format(*pcts))



>>> slb = pd.read_csv('data/slb_stock.csv', index_col='Date',

                      parse_dates=['Date'])

>>> test_return_normality(slb)

0.742 fall within 1 standard deviation. 0.946 within 2 and 0.986 within 3








See also



	Pandas official documentation of the pct_change
 Series method (http://bit.ly/2wcjmqT
 )







Improving readability of boolean indexing with the query method


Boolean indexing is not necessarily the most pleasant syntax to read or write, especially when using a single line to write a complex filter. Pandas has an alternative string-based syntax through the DataFrame query
 method that can provide more clarity.

The query
 DataFrame method is experimental and not as capable as boolean indexing and should not be used for production code.





Getting ready


This recipe replicates the earlier recipe in this chapter, Translating SQL WHERE clauses,
 but instead takes advantage of the query
 DataFrame method. The goal here is to filter the employee data for female employees from the police or fire departments that earn a salary between 80 and 120 thousand dollars.





How to do it...



	Read in the employee data, assign the chosen departments, and import columns to variables:



>>> employee = pd.read_csv('data/employee.csv')

>>> depts = ['Houston Police Department-HPD',

             'Houston Fire Department (HFD)']

>>> select_columns = ['UNIQUE_ID', 'DEPARTMENT',

                      'GENDER', 'BASE_SALARY']


	Build the query string and execute the method:



>>> qs = "DEPARTMENT in @depts " \

         "and GENDER == 'Female' " \

         "and 80000 <= BASE_SALARY <= 120000"

        

>>> emp_filtered = employee.query(qs)

>>> emp_filtered[select_columns].head()








How it works...


Strings passed to the query
 method are going to look more like plain English than normal pandas code. It is possible to reference Python variables using the at symbol (@
 ) as with depts
 . All DataFrame column names are available in the query namespace by simply referencing their name without inner quotes. If a string is needed, such as Female
 , inner quotes will need to wrap it.

Another nice feature of the query
 syntax is the ability to write a double inequality in a single expression and its ability to understand the verbose logical operators and
 , or
 , and not
 instead of their bitwise equivalents as with boolean indexing.





There's more...


Instead of manually typing in a list of department names, we could have programmatically created it. For instance, if we wanted to find all the female employees that were not a member of the top 10 departments by frequency, we can run the following code:

>>> top10_depts = employee.DEPARTMENT.value_counts() \

                                     .index[:10].tolist()

>>> qs = "DEPARTMENT not in @top10_depts and GENDER == 'Female'"

>>> employee_filtered2 = employee.query(qs)

>>> employee_filtered2.head()








See also



	Pandas official documentation on the query
 method (http://bit.ly/2vnlwXk
 )







Preserving Series with the where method


Boolean indexing necessarily filters your dataset by removing all the rows that don't match the criteria. Instead of dropping all these values, it is possible to keep them using the where
 method. The where
 method preserves the size of your Series or DataFrame and either sets the values that don't meet the criteria to missing or replaces them with something else.





Getting ready


In this recipe, we pass the where
 method boolean conditions to put a floor and ceiling on the minimum and maximum number of Facebook likes for actor 1 in the movie
 dataset.





How to do it...



	Read the movie
 dataset, set the movie title as the index, and select all the values in the actor_1_facebook_likes
 column that are not missing:



>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> fb_likes = movie['actor_1_facebook_likes'].dropna()

>>> fb_likes.head()

movie_title
Avatar                                         1000.0
Pirates of the Caribbean: At World's End      40000.0
Spectre                                       11000.0
The Dark Knight Rises                         27000.0
Star Wars: Episode VII - The Force Awakens      131.0
Name: actor_1_facebook_likes, dtype: float64


	Let's use the describe
 method to get a sense of the distribution:



>>> fb_likes.describe(percentiles=[.1, .25, .5, .75, .9]) \

            .astype(int)

count      4909
mean       6494
std       15106
min           0
10%         240
25%         607
50%         982
75%       11000
90%       18000
max      640000
Name: actor_1_facebook_likes, dtype: int64


	Additionally, we may plot a histogram of this Series to visually inspect the distribution:



>>> fb_likes.hist()





	This is quite a bad visualization and very difficult to get a sense of the distribution. On the other hand, the summary statistics from step 2 appear to be telling us that it is highly skewed to the right with many observations more than an order of magnitude greater than the median. Let's create criteria to test whether the number of likes is less than 20,000:



>>> criteria_high = fb_likes < 20000

>>> criteria_high.mean().round(2)

.91


	About 91% of the movies have an actor 1 with fewer than 20,000 likes. We will now use the where
 method, which accepts a boolean condition. The default behavior is to return a Series the same size as the original but which has all the False
 locations replaced with a missing value:



>>> fb_likes.where(criteria_high).head()

movie_title
Avatar                                         1000.0
Pirates of the Caribbean: At World's End          NaN
Spectre                                       11000.0
The Dark Knight Rises                             NaN
Star Wars: Episode VII - The Force Awakens      131.0
Name: actor_1_facebook_likes, dtype: float64


	The second parameter to the where
 method, other
 , allows you to control the replacement value. Let's change all the missing values to 20,000:



>>> fb_likes.where(criteria_high, other=20000).head()

movie_title
Avatar                                         1000.0
Pirates of the Caribbean: At World's End      20000.0
Spectre                                       11000.0
The Dark Knight Rises                         20000.0
Star Wars: Episode VII - The Force Awakens      131.0
Name: actor_1_facebook_likes, dtype: float64


	Similarly, we can create criteria to put a floor on the minimum number of likes. Here, we chain another where
 method and replace the values not meeting with the condition to 300
 :



>>> criteria_low = fb_likes > 300

>>> fb_likes_cap = fb_likes.where(criteria_high, other=20000)\

                           .where(criteria_low, 300)

>>> fb_likes_cap.head()

movie_title
Avatar                                         1000.0
Pirates of the Caribbean: At World's End      20000.0
Spectre                                       11000.0
The Dark Knight Rises                         20000.0
Star Wars: Episode VII - The Force Awakens      300.0
Name: actor_1_facebook_likes, dtype: float64


	The length of the original Series and modified Series is the same:



>>> len(fb_likes), len(fb_likes_cap)

(4909, 4909)


	Let's make a histogram with the modified Series. With the data in a much tighter range, it should produce a better plot:



>>> fb_likes_cap.hist()








How it works...


The where
 method again preserves the size and shape of the calling object and does not modify the values where the passed boolean is True
 . It was important to drop the missing values in step 1 as the where
 method would have eventually replaced them with a valid number in future steps.

The summary statistics in step 2 give us some intuition where it would make sense to cap our data. The histogram from step 3, on the other hand, appears to clump all the data into one bin. The data has too many outliers for a plain histogram to make a good plot. The where
 method allows us to place a ceiling and floor on our data, which results in a histogram with many more visible bars.





There's more...


Pandas actually has built-in methods clip
 , clip_lower
 , and clip_upper
 that replicate this operation. The clip
 method can set a floor and ceiling at the same time. We also check whether this alternate method produces the exact same Series, which it does:

>>> fb_likes_cap2 = fb_likes.clip(lower=300, upper=20000)

>>> fb_likes_cap2.equals(fb_likes_cap)

True





See also



	Pandas official documentation on the where
 method (http://bit.ly/2vmW2cv
 )







Masking DataFrame rows


The mask
 method performs the exact opposite operation that the where
 method does. By default, it creates missing values wherever the boolean condition is True
 . In essence, it is literally masking, or covering up, values in your dataset.





Getting ready


In this recipe, we will mask all rows of the movie dataset that were made after 2010 and then filter all the rows with missing values.





How to do it...



	Read the movie
 dataset, set the movie title as the index, and create the criteria:



>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> c1 = movie['title_year'] >= 2010

>>> c2 = movie['title_year'].isnull()

>>> criteria = c1 | c2


	Use the mask
 method on a DataFrame to make all the values in rows with movies that were made from 2010 onward missing. Any movie that originally had a missing value for title_year
 is also masked:



>>> movie.mask(criteria).head()





	Notice how all the values in the third, fourth, and fifth rows from the preceding DataFrame are missing. Chain the dropna
 method to remove rows that have all values missing:



>>> movie_mask = movie.mask(criteria).dropna(how='all')

>>> movie_mask.head()





	The operation in step 3 is just a complex way of doing basic boolean indexing. We can check whether the two methods produce the same DataFrame:



>>> movie_boolean = movie[movie['title_year'] < 2010]

>>> movie_mask.equals(movie_boolean)

False


	The equals
 method is telling us that they aren't equal. Something is wrong. Let's do some sanity checking and see if they are the same shape:



>>> movie_mask.shape == movie_boolean.shape

True


	When we used the preceding mask
 method, it created many missing values. Missing values are float
 data types so any previous integer column is now a float. The equals
 method returns False
 if the data types of the columns are different, even if the values are the same. Let's check the equality of the data types to see whether this scenario happened:



>>> movie_mask.dtypes == movie_boolean.dtypes

color                         True
director_name                 True
num_critic_for_reviews        True
duration                      True
director_facebook_likes       True
actor_3_facebook_likes        True
actor_2_name                  True
actor_1_facebook_likes        True
gross                         True
genres                        True
actor_1_name                  True
num_voted_users              False
cast_total_facebook_likes    False
.....
dtype: bool


	It turns out that a couple of columns don't have the same data type. Pandas has an alternative for these situations. In its testing module, which is primarily used by developers, there is a function, assert_frame_equal
 , that allows you to check the equality of Series and DataFrames without also checking the equality of the data types:



from pandas.testing import assert_frame_equal

>>> assert_frame_equal(movie_boolean, movie_mask, check_dtype=False)





How it works...


By default, the mask
 method covers up data with missing values. The first parameter to the mask
 method is the condition which is often a boolean Series such as criteria
 . Because the mask
 method is called from a DataFrame, all the values in each row where the condition is False
 change to missing. Step 3 uses this masked DataFrame to drop the rows that contain all missing values. Step 4 shows how to do this same procedure with boolean indexing.

During a data analysis, it is very important to continually validate results. Checking the equality of Series and DataFrames is an extremely common approach to validation. Our first attempt, in step 4, yielded an unexpected result. Some basic sanity checking, such as ensuring that the number of rows and columns are the same or that the row and column names are the same, are good checks before going deeper.

Step 6 compares the two Series of data types together. It is here where we uncover the reason why the DataFrames were not equivalent. The equals
 method checks that both the values and data types are the same. The assert_frame_equal
 function from step 7 has many available parameters to test equality in a variety of ways. Notice that there is no output after calling assert_frame_equal
 . This method returns None when the two passed DataFrames are equal and raises an error when they are not.





There's more...


Let's compare the speed difference between masking and dropping missing rows and boolean indexing. Boolean indexing is about an order of magnitude faster in this case:

>>> %timeit movie.mask(criteria).dropna(how='all')

11.2 ms ± 144 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)



>>> %timeit movie[movie['title_year'] < 2010]

1.07 ms ± 34.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





See also



	Pandas official documentation on assert_frame_equal
 (http://bit.ly/2u5H5Yl
 )

	Python official documentation of the assert
 statement (http://bit.ly/2v1YKmY
 )







Selecting with booleans, integer location, and labels



Chapter 4
 , Selecting Subsets of Data
 , covered a wide range of recipes on selecting different subsets of data through the .iloc
 and .loc
 indexers. Both these indexers select rows and columns simultaneously by either integer location or label. Both these indexers can also do data selection through boolean indexing, even though booleans are not integers and not labels.





Getting ready


In this recipe, we will filter both rows and columns with boolean indexing for both the .iloc
 and .loc
 indexers.





How to do it...



	Read in the movie dataset, set the index as the title, and then create a boolean Series matching all movies with a content rating of G
 and an IMDB score less than 4
 :



>>> movie = pd.read_csv('data/movie.csv', index_col='movie_title')

>>> c1 = movie['content_rating'] == 'G'

>>> c2 = movie['imdb_score'] < 4

>>> criteria = c1 & c2


	Let's first pass these criteria to the .loc
 indexer to filter the rows:



>>> movie_loc = movie.loc[criteria]

>>> movie_loc.head()





	Let's check whether this DataFrame is exactly equal to the one generated directly from the indexing operator:



>>> movie_loc.equals(movie[criteria])

True


	Now let's attempt the same boolean indexing with the .iloc
 indexer:



>>> movie_iloc = movie.iloc[criteria]

ValueError: iLocation based boolean indexing cannot use an indexable as a mask


	It turns out that we cannot directly use a Series of booleans because of the index. We can, however, use an ndarray of booleans. To extract the array, use the values
 attribute:



>>> movie_iloc = movie.iloc[criteria.values]

>>> movie_iloc.equals(movie_loc)

True


	Although not very common, it is possible to do boolean indexing to select particular columns. Here, we select all the columns that have a data type of 64-bit integers:



>>> criteria_col = movie.dtypes == np.int64

>>> criteria_col.head()

color                      False
director_name              False
num_critic_for_reviews     False
duration                   False
director_facebook_likes    False
dtype: bool



>>> movie.loc[:, criteria_col].head()





	As criteria_col
 is a Series, which always has an index, you must use the underlying ndarray to make it work with .iloc
 . The following produces the same result as step 6.



>>> movie.iloc[:, criteria_col.values].head() 


	A boolean Series may be used to select rows and then simultaneously select columns with either integers or labels. Remember, you need to put a comma between the row and column selections. Let's keep the row criteria and select content_rating
 , imdb_score
 , title_year
 , and gross
 :



>>> cols = ['content_rating', 'imdb_score', 'title_year', 'gross']

>>> movie.loc[criteria, cols].sort_values('imdb_score')





	This same operation may be replicated with .iloc
 , but you need to get the integer location of all the columns:



>>> col_index = [movie.columns.get_loc(col) for col in cols]

>>> col_index

[20, 24, 22, 8]



>>> movie.iloc[criteria.values, col_index] 





How it works...


Boolean indexing may be accomplished with both the .iloc
 and .loc
 indexers with the caveat that .iloc
 cannot be passed a Series but the underlying ndarray. Let's take a look at the one-dimensional ndarray underlying the criteria Series:

>>> a = criteria.values

>>> a[:5]

array([False, False, False, False, False], dtype=bool)



>>> len(a), len(criteria)

(4916, 4916)

The array is the same length as the Series, which is the same length as the movie DataFrame. The integer location for the boolean array aligns with the integer location of the DataFrame and the filter happens as expected. These arrays also work with the .loc
 operator as well but they are a necessity for .iloc
 .

Steps 6 and 7 show how to filter by columns instead of by rows. The colon, :
 , is needed to indicate the selection of all the rows. The comma following the colon separates the row and column selections. There is actually a much easier way to select columns with integer data types and that is through the select_dtypes
 method.

Steps 8 and 9 show a very common and useful way to do boolean indexing on the row and column selections simultaneously. You simply place a comma between the row and column selections. Step 9 uses a list comprehension to loop through all the desired column names to find their integer location with the index method get_loc
 .





There's more...


It is actually possible to pass arrays and lists of booleans to
 Series objects that are not the same length as the DataFrame you are doing the indexing on. Let's look at an example of this by selecting the first and third rows, and the first and fourth columns:

>>> movie.loc[[True, False, True], [True, False, False, True]]




Both of the boolean lists are not the same length as the axis they are indexing. The rest of the rows and columns not explicitly given a boolean value in the lists are dropped.





See also



	Refer to the Selecting data with both integers and labels
 recipe from Chapter 4
 , Selecting Subsets of Data


	Refer to the Selecting columns with methods
 recipe from Chapter 2
 , Essential DataFrame Operations








Index Alignment


In this chapter, we will cover the following topics:


	Examining the Index object

	Producing Cartesian products

	Exploding indexes

	Filling values with unequal indexes

	Appending columns from different DataFrames

	Highlighting the maximum value from each column

	Replicating idxmax
 with method chaining

	Finding the most common maximum







Introduction


When multiple Series or DataFrames are combined in some way, each dimension of the data automatically aligns on each axis first before any computation happens. This silent and automatic alignment of axes can cause tremendous confusion for the uninitiated, but it gives great flexibility to the power user. This chapter explores the Index object in-depth before showcasing a variety of recipes that take advantage of its automatic alignment.





Examining the Index object


As was discussed in Chapter 1
 , Pandas Foundations
 , each axis of Series and DataFrames has an Index object that labels the values. There are many different types of Index objects, but they all share the same common behavior. All Index objects, except for the special MultiIndex, are single-dimensional data structures that combine the functionality and implementation of Python sets and NumPy ndarrays.





Getting ready


In this recipe, we will examine the column index of the college dataset and explore much of its functionality.





How to do it...



	Read in the college dataset, assign for the column index to a variable, and output it:



>>> college = pd.read_csv('data/college.csv')

>>> columns = college.columns

>>> columns

Index(['INSTNM', 'CITY', 'STABBR', 'HBCU', ...], dtype='object')


	Use the values
 attribute to access the underlying NumPy array:



>>> columns.values

array(['INSTNM', 'CITY', 'STABBR', 'HBCU', ...], dtype=object)


	Select items from the index by integer location with scalars, lists, or slices:



>>> columns[5]

'WOMENONLY'



>>> columns[[1,8,10]]

Index(['CITY', 'SATMTMID', 'UGDS'], dtype='object')



>>> columns[-7:-4]

Index(['PPTUG_EF', 'CURROPER', 'PCTPELL'], dtype='object')






	Indexes share many of the same methods as Series and DataFrames:



>>> columns.min(), columns.max(), columns.isnull().sum()

('CITY', 'WOMENONLY', 0)


	Use basic arithmetic and comparison operators directly on Index
 objects:



>>> columns + '_A'

Index(['INSTNM_A', 'CITY_A', 'STABBR_A', 'HBCU_A', ...], dtype='object')



>>> columns > 'G'

array([ True, False,  True,  True, ...], dtype=bool)


	Trying to change an Index value directly after its creation fails. Indexes are immutable objects:




>>> columns[1] = 'city'

TypeError: Index does not support mutable operations





How it works...


As you can see from many of the Index object operations, it appears to have quite a bit in common with both Series and ndarrays
 . One of the biggest differences comes in step 6. Indexes are immutable and their values cannot be changed once created.





There's more...


Indexes support the set operations, union, intersection, difference, and symmetric difference:

>>> c1 = columns[:4]

>>> c1

Index(['INSTNM', 'CITY', 'STABBR', 'HBCU'], dtype='object')



>>> c2 = columns[2:6]

>>> c2

Index(['STABBR', 'HBCU', 'MENONLY'], dtype='object')



>>> c1.union(c2) # or `c1 | c2`

Index(['CITY', 'HBCU', 'INSTNM', 'MENONLY', 'RELAFFIL', 'STABBR'], dtype='object')



>>> c1.symmetric_difference(c2) # or `c1 ^ c2`

Index(['CITY', 'INSTNM', 'MENONLY'], dtype='object')

Indexes share some of the same operations as Python sets. Indexes are similar to Python sets in another important way. They are (usually) implemented using hash tables, which make for extremely fast access when selecting rows or columns from a DataFrame. As they are implemented using hash tables, the values for the Index object need to be immutable such as a string, integer, or tuple just like the keys in a Python dictionary.

Indexes support duplicate values, and if there happens to be a duplicate in any Index, then a hash table can no longer be

used for its implementation, and object access becomes much slower.





See also



	Pandas official documentation of Index
 (http://bit.ly/2upfgtr
 )







Producing Cartesian products


Whenever two Series or DataFrames operate with another Series or DataFrame, the indexes (both the row index and column index) of each object align first before any operation begins. This index alignment happens silently and can be very surprising for those new to pandas. This alignment always creates a Cartesian product between the indexes unless the indexes are identical.

A Cartesian product is a mathematical term that usually appears in set theory. A Cartesian product between two sets is all the combinations of pairs of both sets. For example, the 52 cards in a standard playing card deck represent a Cartesian product between the 13 ranks (A, 2, 3,..., Q, K) and the four suits.





Getting ready


Producing a Cartesian product isn't always the intended outcome, but it's extremely important to be aware of how and when it occurs to avoid unintended consequences. In this recipe, two Series with overlapping but non-identical indexes are added together, yielding a surprising result.





How to do it...


Follow these steps to create a Cartesian product:


	Construct two Series that have indexes that are different but contain some of the same values:



>>> s1 = pd.Series(index=list('aaab'), data=np.arange(4))

>>> s1

a    0
a    1
a    2
b    3
dtype: int64



>>> s2 = pd.Series(index=list('cababb'), data=np.arange(6))

>>> s2

c    0
a    1
b    2
a    3
b    4
b    5
dtype: int64


	Add the two Series together to produce a Cartesian product:



>>> s1 + s2

a    1.0
a    3.0
a    2.0
a    4.0
a    3.0
a    5.0
b    5.0
b    7.0
b    8.0
c    NaN
dtype: float64





How it works...


Each Series was created with the class constructor which accepts a wide variety of inputs with the simplest being a sequence of values for each of the parameters index
 and data.

Mathematical Cartesian products are slightly different from the outcome of operating on two pandas objects. Each a
 label in s1
 pairs up with each a
 label in s2
 . This pairing produces six a
 labels, three b
 labels, and one c
 label in the resulting Series. A Cartesian product happens between all identical index labels.

As the element with label c
 is unique to Series s2
 , pandas defaults its value to missing, as there is no label for it to align to in s1
 . Pandas defaults to a missing value whenever an index label is unique to one object. This has the unfortunate consequence of changing the data type of the Series to a float, whereas each Series had only integers as values. This occurred because of NumPy's missing value object; np.nan
 only exists for floats but not for integers. Series and DataFrame columns must have homogeneous numeric data types; therefore, each value was converted to a float. This makes very little difference for this small dataset, but for larger datasets, this can have a significant memory impact.





There's more...


An exception to the preceding example takes place when the indexes contain the same exact elements in the same order. When this occurs, a Cartesian product does not take place, and the indexes instead align by their position. Notice here that each element aligned exactly by position and that the data type remained an integer:

>>> s1 = pd.Series(index=list('aaabb'), data=np.arange(5))

>>> s2 = pd.Series(index=list('aaabb'), data=np.arange(5))

>>> s1 + s2

a    0
a    2
a    4
b    6
b    8
dtype: int64

If the elements of the index are identical, but the order is different between the Series, a Cartesian product occurs. Let's change the order of the index in s2
 and rerun the same operation:

>>> s1 = pd.Series(index=list('aaabb'), data=np.arange(5))

>>> s2 = pd.Series(index=list('bbaaa'), data=np.arange(5))

>>> s1 + s2

a    2

a    3

a    4
a    3
a    4
a    5
a    4
a    5
a    6
b    3
b    4
b    4
b    5
dtype: int64

It is quite interesting that pandas has two drastically different outcomes for this same operation. If a Cartesian product was the only choice for pandas, then something as simple as adding DataFrame columns together would explode the number of elements returned.

In this recipe, each Series had a different number of elements. Typically, array-like data structures in Python and other languages do not allow operations to take place when the operating dimensions do not contain the same number of elements. Pandas allows this to happen by aligning the indexes first before completing the operation.





See also



	
Reducing memory by changing data types
 recipe in Chapter 3
 , Beginning Data Analysis








Exploding indexes


The previous recipe walked through a trivial example of two small Series being added together with unequal indexes. This problem can produce comically incorrect results when dealing with larger data.





Getting ready


In this recipe, we add two larger Series that have indexes with only a few unique values but in different orders. The result will explode the number of values in the indexes.





How to do it...



	Read in the employee data and set the index equal to the race column:



>>> employee = pd.read_csv('data/employee.csv', index_col='RACE')

>>> employee.head()





	Select the BASE_SALARY
 column as two different Series. Check to see whether this operation actually did create two new objects:



>>> salary1 = employee['BASE_SALARY']

>>> salary2 = employee['BASE_SALARY']

>>> salary1 is salary2

True


	The salary1
 and salary2
 variables
 are actually referring to the same object. This means that any change to one will change the other. To ensure that you receive a brand new copy of the data, use the copy
 method:



>>> salary1 = employee['BASE_SALARY'].copy()

>>> salary2 = employee['BASE_SALARY'].copy()

>>> salary1 is salary2

False


	Let's change the order of the index for one of the Series by sorting it:



>>> salary1 = salary1.sort_index()

>>> salary1.head()

RACE
American Indian or Alaskan Native    78355.0
American Indian or Alaskan Native    81239.0
American Indian or Alaskan Native    60347.0
American Indian or Alaskan Native    68299.0
American Indian or Alaskan Native    26125.0
Name: BASE_SALARY, dtype: float64



>>> salary2.head()

RACE
Hispanic/Latino    121862.0
Hispanic/Latino     26125.0
White               45279.0
White               63166.0
White               56347.0
Name: BASE_SALARY, dtype: float64


	Let's add these salary
 Series together:



>>> salary_add = salary1 + salary2

>>> salary_add.head()

RACE
American Indian or Alaskan Native    138702.0
American Indian or Alaskan Native    156710.0
American Indian or Alaskan Native    176891.0
American Indian or Alaskan Native    159594.0
American Indian or Alaskan Native    127734.0
Name: BASE_SALARY, dtype: float64


	The operation completed successfully. Let's create one more Series of salary1
 added to itself and then output the lengths of each Series. We just exploded the index from 2,000 values to more than 1 million:



>>> salary_add1 = salary1 + salary1

>>> len(salary1), len(salary2), len(salary_add), len(salary_add1)

(2000, 2000, 1175424, 2000)





How it works...


Step 2 appears at first to create two unique objects but in fact, it creates a single object that is referred to by two different variable names. The expression employee['BASE_SALARY']
 , technically creates a view
 , and not a brand new copy. This is verified with the is
 operator.

In pandas, a view is not a new object but just a reference to another object, usually some subset of a DataFrame. This shared object can be a cause for many issues.

To ensure that both variables reference completely different objects, we use the copy
 Series method and again verify that they are different objects with the is
 operator. Step 4 uses the sort_index
 method to sort the Series by race. Step 5 adds these different Series together to produce some result. By just inspecting the head, it's still not clear what has been produced.

Step 6 adds salary1
 to itself to show a comparison between the two different Series additions. The length of all the Series in this recipe are output and we clearly see that series_add
 has now exploded to over one million values. A Cartesian product took place for each unique value in the index because the indexes were not exactly the same. This recipe dramatically shows how much of an impact the index can have when combining multiple Series or DataFrames.





There's more...


We can verify the number of values of salary_add
 by doing a little mathematics. As a Cartesian product takes place between all of the same index values, we can sum the square of their individual counts. Even missing values in the index produce Cartesian products with themselves:

>>> index_vc = salary1.index.value_counts(dropna=False)

>>> index_vc

Black or African American            700
White                                665
Hispanic/Latino                      480
Asian/Pacific Islander               107
NaN                                   35
American Indian or Alaskan Native     11
Others                                 2
Name: RACE, dtype: int64



>>> index_vc.pow(2).sum()

1175424





Filling values with unequal indexes


When two Series are added together using the plus operator and one of the index labels does not appear in the other, the resulting value is always missing. Pandas offers the add
 method, which provides an option to fill the missing value.





Getting ready


In this recipe, we add together multiple Series from the baseball
 dataset with unequal indexes using the fill_value
 parameter of the add
 method to ensure that there are no missing values in the result.





How to do it...



	Read in the three baseball
 datasets and set the index as playerID
 :



>>> baseball_14 = pd.read_csv('data/baseball14.csv',

                              index_col='playerID')

>>> baseball_15 = pd.read_csv('data/baseball15.csv',

                              index_col='playerID')

>>> baseball_16 = pd.read_csv('data/baseball16.csv',

                              index_col='playerID')

>>> baseball_14.head()





	Use the index method difference
 to discover which index labels are in baseball_14
 and not in baseball_15
 , and vice versa:



>>> baseball_14.index.difference(baseball_15.index)

Index(['corpoca01', 'dominma01', 'fowlede01', 'grossro01',

       'guzmaje01', 'hoeslj01', 'krausma01', 'preslal01',

       'singljo02'], dtype='object', name='playerID')



>>> baseball_14.index.difference(baseball_16.index)

Index(['congeha01', 'correca01', 'gattiev01', 'gomezca01',

       'lowrije01', 'rasmuco01', 'tuckepr01', 'valbulu01'],
       dtype='object', name='playerID')


	There are quite a few players unique to each index. Let's find out how many hits each player has in total over the three-year period. The H
 column
 contains the number of hits:



>>> hits_14 = baseball_14['H']

>>> hits_15 = baseball_15['H']

>>> hits_16 = baseball_16['H']

>>> hits_14.head()

playerID
altuvjo01    225
cartech02    115
castrja01    103
corpoca01     40
dominma01    121
Name: H, dtype: int64


	Let's first add together two Series using the plus operator:



>>> (hits_14 + hits_15).head()

playerID
altuvjo01    425.0
cartech02    193.0
castrja01    174.0
congeha01      NaN
corpoca01      NaN
Name: H, dtype: float64


	Even though players congeha01
 and corpoca01
 have recorded hits for 2015, their result is missing. Let's use the add
 method and its parameter, fill_value
 , to avoid missing values:



>>> hits_14.add(hits_15, fill_value=0).head()

playerID
altuvjo01    425.0
cartech02    193.0
castrja01    174.0
congeha01     46.0
corpoca01     40.0
Name: H, dtype: float64


	We add hits from 2016 by chaining the add
 method once more:



>>> hits_total = hits_14.add(hits_15, fill_value=0) \

                        .add(hits_16, fill_value=0)

>>> hits_total.head()

playerID
altuvjo01    641.0
bregmal01     53.0
cartech02    193.0
castrja01    243.0
congeha01     46.0
Name: H, dtype: float64


	Check for missing values in the result:



>>> hits_total.hasnans

False





How it works...


The add
 method works similarly to the plus operator but allows for more flexibility by providing the fill_value
 parameter to take the place of a non-matching index. In this problem, it makes sense to default the non-matching index value to 0, but you could have used any other number.

There will be occasions when each Series contains index labels that correspond to missing values. In this specific instance, when the two Series are added, the index label will still correspond to a missing value regardless if the fill_value
 parameter is used. To clarify this, take a look at the following example where the index label a
 corresponds to a missing value in each Series:

>>> s = pd.Series(index=['a', 'b', 'c', 'd'],

                  data=[np.nan, 3, np.nan, 1])

>>> s

a    NaN
b    3.0
c    NaN
d    1.0
dtype: float64



>>> s1 = pd.Series(index=['a', 'b', 'c'], data=[np.nan, 6, 10])

>>> s1

a    NaN 

b    6.0

c   10.0 

dtype: float64



>>> s.add(s1, fill_value=5)

a     NaN
b     9.0
c    15.0
d     6.0
dtype: float64





There's more...


This recipe shows how to add Series with only a single index together. It is also entirely possible to add DataFrames together. Adding DataFrames together will align both the index and columns before computation and yield missing values for non-matching indexes. Let's start by selecting a few of the columns from the 2014 baseball dataset.

>>> df_14 = baseball_14[['G','AB', 'R', 'H']]

>>> df_14.head()




Let's also select a few of the same and a few different columns from the 2015 baseball dataset:

>>> df_15 = baseball_15[['AB', 'R', 'H', 'HR']]

>>> df_15.head()




Adding the two DataFrames together create missing values wherever rows or column labels cannot align. Use the style
 attribute to access the highlight_null
 method to easily see where the missing values are:

>>> (df_14 + df_15).head(10).style.highlight_null('yellow')




Only the rows with playerID
 appearing in both DataFrames will be non-missing. Similarly, the columns AB
 , H
 , and R
 are the only ones that appear in both DataFrames. Even if we use the add
 method with the fill_value
 parameter specified, we still have missing values. This is because some combinations of rows and columns never existed in our input data. For example, the intersection of playerID
 congeha01
 and column G
 . He only appeared in the 2015 dataset that did not have the G
 column. Therefore, no value was filled with it:

>>> df_14.add(df_15, fill_value=0).head(10) \

         .style.highlight_null('yellow')








Appending columns from different DataFrames


All DataFrames can add new columns to themselves. However, as usual, whenever a DataFrame is adding a new column from another DataFrame or Series, the indexes align first before the new column is created.





Getting ready


This recipe uses the employee
 dataset to append a new column containing the maximum salary of that employee's department.





How to do it...



	
Import the employee
 data and select the DEPARTMENT
 and BASE_SALARY
 columns in a new DataFrame:




>>> employee = pd.read_csv('data/employee.csv')

>>> dept_sal = employee[['DEPARTMENT', 'BASE_SALARY']]


	Sort this smaller DataFrame by salary within each department:



>>> dept_sal = dept_sal.sort_values(['DEPARTMENT', 'BASE_SALARY'], 

                                      ascending=[True, False])


	Use the drop_duplicates
 method to keep the first row of each DEPARTMENT
 :



>>> max_dept_sal = dept_sal.drop_duplicates(subset='DEPARTMENT')

>>> max_dept_sal.head()





	Put the DEPARTMENT
 column into the index for each DataFrames:



>>> max_dept_sal = max_dept_sal.set_index('DEPARTMENT')

>>> employee = employee.set_index('DEPARTMENT')


	Now that the indexes contain matching values, we can append a new column to the employee
 DataFrame:



>>> employee['MAX_DEPT_SALARY'] = max_dept_sal['BASE_SALARY']

>>> employee.head()





	We can validate our results with the query
 method to check whether there exist any rows where BASE_SALARY
 is greater than MAX_DEPT_SALARY
 :



>>> employee.query('BASE_SALARY > MAX_DEPT_SALARY')








How it works...


Steps 2 and 3 find the maximum salary for each department. For automatic index alignment to work properly, we set each DataFrame index as the department. Step 5 works because each row index from the left DataFrame; employee
 aligns with one and only one index from the right DataFrame, max_dept_sal
 . If max_dept_sal
  had repeats of any departments in its index, then the operation would fail.

For instance, let's see what happens when we use a DataFrame on the right-hand side of the equality that has repeated index values. We use the sample
 DataFrame method to randomly choose ten rows without replacement:

>>> np.random.seed(1234)

>>> random_salary = dept_sal.sample(n=10).set_index('DEPARTMENT')

>>> random_salary




Notice how there are several repeated departments in the index. Now when we attempt to create a new column, an error is raised alerting us that there are duplicates. At least one index label in the employee
 DataFrame is joining with two or more index labels from random_salary
 :

>>> employee['RANDOM_SALARY'] = random_salary['BASE_SALARY']

ValueError

: cannot reindex from a duplicate axis





There's more...


Not all indexes on the left-hand side of the equal sign need to have a match, but at most can have one. If there is nothing for the left DataFrame index to align to, the resulting value will be missing. Let's create an example where this happens. We will use only the first three rows of the max_dept_sal
  Series to create a new column:

>>> employee['MAX_SALARY2'] = max_dept_sal['BASE_SALARY'].head(3)

>>> employee.MAX_SALARY2.value_counts()

140416.0    29
100000.0    11
64251.0      5
Name: MAX_SALARY2, dtype: int64





>>> employee.MAX_SALARY2.isnull().mean()

.9775

The operation completed successfully but filled in salaries for only
 three of the departments. All the other departments that did not appear in the first three rows of the max_dept_sal
  Series resulted in a missing value.





See also



	
Selecting the largest from the smallest
 recipe from Chapter 3
 , Beginning Data Analysis








Highlighting the maximum value from each column


The college
 dataset has many numeric columns describing different metrics about each school. Many people are interested in schools that perform the best for certain metrics.





Getting ready


This recipe discovers the school that has the maximum value for each numeric column and styles the DataFrame in order to highlight the information so that it is easily consumed by a user.





How to do it...



	Read the college dataset with the institution name as the index:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college.dtypes

CITY                   object
STABBR                 object
HBCU                  float64
MENONLY               float64
                       ...   
PCTFLOAN              float64
UG25ABV               float64
MD_EARN_WNE_P10        object
GRAD_DEBT_MDN_SUPP     object
Length: 26, dtype: object


	All the other columns besides CITY
 and STABBR
 appear to be numeric. Examining the data types from the preceding step reveals unexpectedly that the MD_EARN_WNE_P10
 and GRAD_DEBT_MDN_SUPP
 columns
 are of type object and not numeric. To help get a better idea of what kind of values are in these columns, let's examine their first value:



>>> college.MD_EARN_WNE_P10.iloc[0]

'30300'



>>> college.GRAD_DEBT_MDN_SUPP.iloc[0]

'33888'


	These values are strings but we would like them to be numeric. This means that there are likely to be non-numeric characters that appear elsewhere in the Series. One way to check for this is to sort these columns in descending order and examine the first few rows:



>>> college.MD_EARN_WNE_P10.sort_values(ascending=False).head()

INSTNM
Sharon Regional Health System School of Nursing    PrivacySuppressed
Northcoast Medical Training Academy                PrivacySuppressed
Success Schools                                    PrivacySuppressed
Louisiana Culinary Institute                       PrivacySuppressed
Bais Medrash Toras Chesed                          PrivacySuppressed
Name: MD_EARN_WNE_P10, dtype: object


	The culprit appears to be that some schools have privacy concerns about these two columns of data. To force these columns to be numeric, use the pandas function to_numeric
 :



>>> cols = ['MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_SUPP']

>>> for col in cols:

        college[col] = pd.to_numeric(college[col], errors='coerce')



>>> college.dtypes.loc[cols]

MD_EARN_WNE_P10       float64
GRAD_DEBT_MDN_SUPP    float64
dtype: object


	Use the select_dtypes
 method to filter for only numeric columns. This will exclude STABBR
 and CITY
 columns,
 where a maximum value doesn't make sense with this problem:



>>> college_n = college.select_dtypes(include=[np.number])

>>> college_n.head()





	By utilizing the data dictionary, there are several columns that have only binary (0/1) values that will not provide useful information. To programmatically find these columns, we can create boolean Series and find all the columns that have two unique values with the nunique
 method:



>>> criteria = college_n.nunique() == 2

>>> criteria.head()

HBCU          True
MENONLY       True
WOMENONLY     True
RELAFFIL      True
SATVRMID     False
dtype: bool


	Pass this boolean Series to the indexing operator of the columns index object and create a list of the binary columns:



>>> binary_cols = college_n.columns[criteria].tolist()

>>> binary_cols

['HBCU', 'MENONLY', 'WOMENONLY', 'RELAFFIL', 'DISTANCEONLY', 'CURROPER']


	Remove the binary columns with the drop
 method:



>>> college_n2 = college_n.drop(labels=binary_cols, axis='columns')

>>> college_n2.head()





	Use the idxmax
 method to find the index label of the maximum value for each column:



>>> max_cols = college_n2.idxmax()

>>> max_cols

SATVRMID                      California Institute of Technology
SATMTMID                      California Institute of Technology
UGDS                               University of Phoenix-Arizona
UGDS_WHITE                Mr Leon's School of Hair Design-Moscow
                                         ...                    
PCTFLOAN                                  ABC Beauty College Inc
UG25ABV                           Dongguk University-Los Angeles
MD_EARN_WNE_P10                     Medical College of Wisconsin
GRAD_DEBT_MDN_SUPP    Southwest University of Visual Arts-Tucson
Length: 18, dtype: object


	Call the unique
 method on the max_cols
 Series. This returns an ndarray
 of the unique column names:



>>> unique_max_cols = max_cols.unique()

>>> unique_max_cols[:5]

array(['California Institute of Technology',
       'University of Phoenix-Arizona',
       "Mr Leon's School of Hair Design-Moscow",
       'Velvatex College of Beauty Culture',
       'Thunderbird School of Global Management'], dtype=object)


	Use the values of max_cols
 to select only the rows that have schools with a maximum value and then use the style
 attribute to highlight these values:



>>> college_n2.loc[unique_max_cols].style.highlight_max()








How it works...


The idxmax
 method is very powerful and becomes quite useful when the index is meaningfully labeled. It was unexpected that both MD_EARN_WNE_P10
 and GRAD_DEBT_MDN_SUPP
 were of object
 data type. When importing, pandas coerces all numeric values of columns to strings if the column contains at least one string.

By examining a specific column value in step 2, we were able to see clearly
 that we had strings in these columns. In step 3, we sort in descending order as numeric characters appear first. This elevates all alphabetical values to the top of the Series. We uncover the PrivacySuppressed
 string causing havoc. Pandas has the ability to force all strings that contain only numeric characters to actual numeric data types with the to_numeric
 function. To override the default behavior of raising an error when to_numeric
 encounters a string that cannot be converted, you must pass coerce
  to the errors
 parameter. This forces all non-numeric character strings to become missing values (np.nan
 ).

Several columns don't have useful or meaningful maximum values. They were removed in step 4 through step 6. The select_dtypes
 can be extremely useful for very wide DataFrames with lots of columns.

In step 7, idxmax
 iterates through all the columns to find the index of the maximum value for each column. It outputs the results as a Series. The school with both the highest SAT math and verbal scores is California Institute of Technology. Dongguk University Los Angeles has the highest number of students older than 25.

Although the information provided by idxmax
 is nice, it does not yield the corresponding maximum value. To do this, we gather all the unique school names from the values of the max_cols
  Series.

Finally, in step 8, we use the .loc
 indexer to select rows based on the index label, which we made as school names in the first step. This filters for only schools that have a maximum value. DataFrames have an experimental style
 attribute that itself has some methods to alter the appearance of the displayed DataFrame. Highlighting the maximum value makes the result much clearer.





There's more...


By default, the highlight_max
 method highlights the maximum value of each column. We can use the axis
 parameter to highlight the maximum value of each row instead. Here, we select just the race percentage columns of the college
 dataset and highlight the race with the highest percentage for each school:

>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds = college.filter(like='UGDS_').head()

>>> college_ugds.style.highlight_max(axis='columns')




Attempting to apply a style on a large DataFrame can cause Jupyter to crash, which is why the style was only applied to the head of the DataFrame.





See also



	Pandas official documentation on Dataframe Styling
 (http://bit.ly/2hsZkVK
 )







Replicating idxmax with method chaining


It can be a good exercise to attempt an implementation of a built-in DataFrame method on your own. This type of replication can give you a deeper understanding of other pandas methods that you normally wouldn't have come across. idxmax
 is a challenging method to replicate using only the methods covered thus far in the book.





Getting ready


This recipe slowly chains together basic methods to eventually find all the row index values that contain a maximum column value.





How to do it...



	Load in the college dataset and execute the same operations as the previous recipe to get only the numeric columns that are of interest:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> cols = ['MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_SUPP']



>>> for col in cols:

        college[col] = pd.to_numeric(college[col], errors='coerce')



>>> college_n = college.select_dtypes(include=[np.number])

>>> criteria = college_n.nunique() == 2

>>> binary_cols = college_n.columns[criteria].tolist()

>>> college_n = college_n.drop(labels=binary_cols, axis='columns')


	Find the maximum of each column with the max
 method:



>>> college_n.max().head()

SATVRMID         765.0
SATMTMID         785.0
UGDS          151558.0
UGDS_WHITE         1.0
UGDS_BLACK         1.0
dtype: float64


	Use the eq
 DataFrame method to test each value with its column max
 . By default, the eq
 method aligns the columns of the column DataFrame with the labels of the passed Series index:



>>> college_n.eq(college_n.max()).head()





	All the rows in this DataFrame that have at least one True
 value must contain a column maximum. Let's use the any
 method to find all such rows that have at least one True
 value:



>>> has_row_max = college_n.eq(college_n.max()).any(axis='columns')

>>> has_row_max.head()

INSTNM
Alabama A & M University               False
University of Alabama at Birmingham    False
Amridge University                     False
University of Alabama in Huntsville    False
Alabama State University               False
dtype: bool


	There are only 18 columns, which means that there should only be at most 18 True
 values in has_row_max
 . Let's find out how many there actually are:



>>> college_n.shape

(7535, 18)



>>> has_row_max.sum()

401


	This was a bit unexpected, but it turns out that there are columns with many rows that equal the maximum value. This is common with many of the percentage columns that have a maximum of 1. idxmax
 returns the first occurrence of the maximum value. Let's back up a bit, remove the any
 method, and look at the output from step 3. Let's run the cumsum
 method instead to accumulate all the True
 values. The first and last three rows are shown:



>>> college_n.eq(college_n.max()).cumsum()





	Some columns have one unique maximum like SATVRMID
 and SATMTMID
 , while others like UGDS_WHITE
 have many. 109 schools have 100% of their undergraduates as white. If we chain the cumsum
 method one more time, the value 1 would only appear once in each column and it would be the first occurrence of the maximum:



>>> college_n.eq(college_n.max()).cumsum().cumsum()





	We can now test the equality of each value against 1 with the eq
 method and then use the any
 method to find rows that have at least one True
 value:



>>> has_row_max2 = college_n.eq(college_n.max()) \

                             .cumsum() \

                             .cumsum() \

                             .eq(1) \

                             .any(axis='columns')

>>> has_row_max2.head()

INSTNM
Alabama A & M University               False
University of Alabama at Birmingham    False
Amridge University                     False
University of Alabama in Huntsville    False
Alabama State University               False
dtype: bool


	Test that has_row_max2
 has no more True
 values than the number of columns:



>>> has_row_max2.sum()

16


	We need all the institutions where has_row_max2
 is True
 . We can simply use boolean indexing on the Series itself:



>>> idxmax_cols = has_row_max2[has_row_max2].index

>>> idxmax_cols

Index(['Thunderbird School of Global Management',
       'Southwest University of Visual Arts-Tucson',

       'ABC Beauty College Inc',
       'Velvatex College of Beauty Culture',
       'California Institute of Technology',
       'Le Cordon Bleu College of Culinary Arts-San Francisco',
       'MTI Business College Inc', 'Dongguk University-Los Angeles',
       'Mr Leon's School of Hair Design-Moscow',
       'Haskell Indian Nations University', 'LIU Brentwood',
       'Medical College of Wisconsin', 'Palau Community College',
       'California University of Management and Sciences',
       'Cosmopolitan Beauty and Tech School',

       'University of Phoenix-Arizona'], dtype='object', name='INSTNM')


	All 16 of these institutions are the index of the first maximum occurrence for at least one of the columns. We can check whether they are the same as the ones found with the idxmax
 method:




>>> set(college_n.idxmax().unique()) == set(idxmax_cols)

True





How it works...


The first step replicates work from the previous recipe by converting two columns to numeric and eliminating the binary columns. We find the maximum value of each column in step 2. Care needs to be taken here as pandas silently drops columns that it cannot produce a maximum. If this happens, then step 3 will still complete but produce all False
 values for each column without an available maximum.

Step 4 uses the any
 method to scan across each row in search of at least one True
 value. Any row with at least one True
 value contains a maximum value for a column. We sum up the resulting boolean Series in step 5 to determine how many rows contain a maximum. Somewhat unexpectedly, there are far more rows than columns. Step 6 gives insight on why this happens. We take a cumulative sum of the output from step 3 and detect the total number of rows that equal the maximum for each column.

Many colleges have 100% of their student population as only a single race. This is by far the largest contributor to the multiple rows with maximums. As you can see, there is only one row with a maximum value for both SAT score columns and undergraduate population, but several of the race columns have a tie for the maximum.

Our goal is to find the first row with the maximum value. We need to take the cumulative sum once more so that each column has only a single row equal to 1. Step 8 formats the code to have one method per line and runs the any
 method exactly as it was done in step 4. If this step is successful, then we should have no more True
 values than the number of columns. Step 9 asserts that this is true.

To validate that we have found the same columns as idxmax
 in the previous columns, we use boolean selection on has_row_max2
 with itself. The columns will be in a different order so we convert the sequence of column names to sets, which are inherently unordered to compare equality.





There's more...


It is possible to complete this recipe in one long line of code chaining the indexing operator with an anonymous function. This little trick removes the need for step 10. We can time the difference between the direct idxmax
 method and our manual effort in this recipe:

>>> %timeit college_n.idxmax().values

1.12 ms ± 28.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)



>>> %timeit college_n.eq(college_n.max()) \

                                  .cumsum() \

                                  .cumsum() \

                                  .eq(1) \

                                  .any(axis='columns') \

                                  [lambda x: x].index

5.35 ms ± 55.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Our effort is, unfortunately, five times as slow as the built-in idxmax
 pandas method but regardless of its performance regression, many creative and practical solutions use the accumulation methods like cumsum
 with boolean Series to find streaks or specific patterns along an axis.





Finding the most common maximum


The college dataset contains the undergraduate population percentage of eight different races for over 7,500 colleges. It would be interesting to find the race with the highest undergrad population for each school and then find the distribution of this result for the entire dataset. We would be able to answer a question like, What percentage of institutions have more white students than any other race?






Getting ready


In this recipe, we find the race with the highest percentage of the undergraduate population for each school with the idxmax
 method and then find the distribution of these maximums.





How to do it...



	Read in the college dataset and select just those columns with undergraduate race percentage information:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> college_ugds = college.filter(like='UGDS_')

>>> college_ugds.head()





	Use the idxmax
 method to get the column name with the highest race percentage for each row:



>>> highest_percentage_race = college_ugds.idxmax(axis='columns')

>>> highest_percentage_race.head()

INSTNM
Alabama A & M University               UGDS_BLACK
University of Alabama at Birmingham    UGDS_WHITE
Amridge University                     UGDS_BLACK
University of Alabama in Huntsville    UGDS_WHITE
Alabama State University               UGDS_BLACK
dtype: object


	Use the value_counts
 method to return the distribution of maximum occurrences:



>>> highest_percentage_race.value_counts(normalize=True)

UGDS_WHITE    0.670352
UGDS_BLACK    0.151586
UGDS_HISP     0.129473
UGDS_UNKN     0.023422
UGDS_ASIAN    0.012074
UGDS_AIAN     0.006110
UGDS_NRA      0.004073
UGDS_NHPI     0.001746
UGDS_2MOR     0.001164
dtype: float64





How it works...


The key to this recipe is recognizing that the columns all represent the same unit of information. We can compare these columns with each other, which is usually not
 the case. For instance, it wouldn't make sense to directly compare SAT verbal scores with the undergraduate population. As the data is structured in this manner, we can apply the idxmax
 method to each row of data to find the column with the largest value. We need to alter its default behavior with the axis
 parameter.

Step 2 completes this operation and returns a Series, to which we can now simply apply the value_counts
 method to return the distribution. We pass True
 to the normalize
 parameter as we are interested in the distribution (relative frequency) and not the raw counts.





There's more...


We might want to explore more and answer the question: For the schools with more black students than any other race, what is the distribution of its second highest race percentage?

>>> college_black = college_ugds[highest_percentage_race == 'UGDS_BLACK']

>>> college_black = college_black.drop('UGDS_BLACK', axis='columns')

>>> college_black.idxmax(axis='columns').value_counts(normalize=True)

UGDS_WHITE    0.661228
UGDS_HISP     0.230326
UGDS_UNKN     0.071977
UGDS_NRA      0.018234
UGDS_ASIAN    0.009597
UGDS_2MOR     0.006718
UGDS_AIAN     0.000960
UGDS_NHPI     0.000960
dtype: float64

We needed to drop the UGDS_BLACK
 column before applying the same method from this recipe. Interestingly, it seems that these schools with higher black populations have a tendency to have higher Hispanic populations.





Grouping for Aggregation, Filtration, and Transformation


In this chapter, we will cover the following topics:


	Defining an aggregation

	Grouping and aggregating with multiple columns and functions

	Removing the MultiIndex after grouping

	Customizing an aggregation function

	Customizing aggregating functions with *args
 and **kwargs


	Examining the groupby
 object

	Filtering for states with a minority majority

	Transforming through a weight loss bet

	Calculating weighted mean SAT scores per state with apply

	Grouping by continuous variables

	Counting the total number of flights between cities

	Finding the longest streak of on-time flights







Introduction


One of the most fundamental tasks during a data analysis involves splitting data into independent groups before performing a calculation on each group. This methodology has been around for quite some time but has more recently been referred to as split-apply-combine
 . This chapter covers the powerful groupby
 method, which allows you to group your data in any way imaginable and apply any type of function independently to each group before returning a single dataset.

Hadley Wickham coined the term split-apply-combine
 to describe the common data analysis pattern of breaking up data into independent manageable chunks, independently applying functions to these chunks, and then combining the results back together. More details can be found in his paper (http://bit.ly/2isFuL9
 ).

Before we get started with the recipes, we will need to know just a little terminology. All basic groupby operations have grouping columns
 , and each unique combination of values in these columns represents an independent grouping of the data. The syntax looks as follows:

>>> df.groupby(['list', 'of', 'grouping', 'columns'])

>>> df.groupby('single_column')  # when grouping by a single column

The result of this operation returns a groupby object. It is this groupby object that will be the engine that drives all the calculations for this entire chapter. Pandas actually
 does very little when creating this
 groupby object, merely validating that grouping is possible.
 You will have to chain methods on this groupby object in order to unleash its powers.

Technically, the result of the operation will either be a DataFrameGroupBy
 or SeriesGroupBy
 but for simplicity, it will be referred to as the groupby object for the entire chapter.





Defining an aggregation


The most common use of the groupby
 method is to perform an aggregation. What actually is an aggregation? In our data analysis world, an aggregation takes place when a sequence of many inputs get summarized or combined into a single value output. For example, summing up all the values of a column or finding its maximum are common aggregations applied on a single sequence of data. An aggregation simply takes many values and converts them down to a single value.

In addition to the grouping columns defined during the introduction, most aggregations have two other components, the aggregating columns
  and aggregating functions
 . The aggregating columns are those whose values will be aggregated. The aggregating functions define how the aggregation takes place. Major aggregation functions include sum
 , min
 , max
 , mean
 , count
 , variance
 , std
 , and so on.





Getting ready


In this recipe, we examine the flights dataset and perform the simplest possible aggregation involving only a single grouping column, a single aggregating column, and a single aggregating function. We will find the average arrival delay for each airline. Pandas has quite a few different syntaxes to produce an aggregation and this recipe covers them.





How to do it...



	Read in the flights dataset, and define the grouping columns (AIRLINE
 ), aggregating columns (ARR_DELAY
 ), and aggregating functions (mean
 ):



>>> flights = pd.read_csv('data/flights.csv')

>>> flights.head()





	Place the grouping column in the groupby
 method and then call the agg
 method with a dictionary pairing the aggregating column with its aggregating function:



>>> flights.groupby('AIRLINE').agg({'ARR_DELAY':'mean'}).head()





	Alternatively, you may place the aggregating column in the indexing operator and then pass the aggregating function as a string to agg
 :



>>> flights.groupby('AIRLINE')['ARR_DELAY'].agg('mean').head()

AIRLINE
AA     5.542661
AS    -0.833333
B6     8.692593
DL     0.339691
EV     7.034580
Name: ARR_DELAY, dtype: float64


	The string names used in the previous step are a convenience pandas offers you to refer to a particular aggregation function. You can pass any aggregating function directly to the agg
 method such as the NumPy mean
 function. The output is the same as the previous step:



>>> flights.groupby('AIRLINE')['ARR_DELAY'].agg(np.mean).head()


	It's possible to skip the agg
 method altogether in this case and use the mean
 method directly. This output is also the same as step 3:



>>> flights.groupby('AIRLINE')['ARR_DELAY'].mean().head()





How it works...


The syntax for the groupby
  method is not as straightforward as other methods. Let's intercept the chain of methods in step 2 by storing the result of the groupby
 method as its own variable

>>> grouped = flights.groupby('AIRLINE')

>>> type(grouped)

pandas.core.groupby.DataFrameGroupBy

A completely new intermediate object is first produced with its own distinct attributes and methods. No calculations take place at this stage. Pandas merely validates the grouping columns. This groupby object has an agg
 method to perform aggregations. One of the ways to use this method is to pass it a dictionary mapping the aggregating column to the aggregating function, as done in step 2.

There are several different flavors of syntax that produce a similar result, with step 3 showing an alternative. Instead of identifying the aggregating column in the dictionary, place it inside the indexing operator just as if you were selecting it as a column from a DataFrame. The function string name is then passed as a scalar to the agg
 method.

You may pass any aggregating function to the agg
 method. Pandas allows you to use the string names for simplicity but you may also explicitly call an aggregating function as done in step 4. NumPy provides many functions that aggregate values.

Step 5 shows one last syntax flavor. When you are only applying a single aggregating function as in this example, you can often call it directly as a method on the groupby object itself without agg
 . Not all aggregation functions have a method equivalent but many basic ones do. The following is a list of several aggregating functions that may be passed as a string to agg
  or chained directly as a method to the groupby object:


min     max    mean    median    sum    count    std    

var   



size    describe    nunique     idxmin     idxmax







There's more...


If you do not use an aggregating function with agg
 , pandas raises an exception. For instance, let's see what happens when we apply the square root function to each group:

>>> flights.groupby('AIRLINE')['ARR_DELAY'].agg(np.sqrt)

ValueError

: function does not reduce





See also



	Pandas official documentation on Aggregation
 (http://bit.ly/2iuf1Nc
 )







Grouping and aggregating with multiple columns and functions


It is possible to do grouping and aggregating with multiple columns. The syntax is only slightly different than it is for grouping and aggregating with a single column. As usual with any kind of grouping operation, it helps to identify the three components: the grouping columns, aggregating columns, and aggregating functions.





Getting ready


In this recipe, we showcase the flexibility of the groupby
 DataFrame method by answering the following queries:


	Finding the number of cancelled flights for every airline per weekday

	Finding the number and percentage of cancelled and diverted flights for every airline per weekday

	For each origin and destination, finding the total number of flights, the number and percentage of cancelled flights, and the average and variance of the airtime







How to do it...



	Read in the flights dataset, and answer the first query by defining the grouping columns (AIRLINE, WEEKDAY
 ), the aggregating column (CANCELLED
 ), and the aggregating function (sum
 ):



>>> flights.groupby(['AIRLINE', 'WEEKDAY'])['CANCELLED'] \

           .agg('sum').head(7)

AIRLINE  WEEKDAY
AA       1          41
         2           9
         3          16
         4          20
         5          18
         6          21
         7          29
Name: CANCELLED, dtype: int64


	Answer the second query by using a list for each pair of grouping and aggregating columns. Also, use a list for the aggregating functions:



>>> flights.groupby(['AIRLINE', 'WEEKDAY']) \

            ['CANCELLED', 'DIVERTED'].agg(['sum', 'mean']).head(7)





	Answer the third query using a dictionary in the agg
 method to map specific aggregating columns to specific aggregating functions:



>>> group_cols = ['ORG_AIR', 'DEST_AIR']

>>> agg_dict = {'CANCELLED':['sum', 'mean', 'size'], 

                'AIR_TIME':['mean', 'var']}

>>> flights.groupby(group_cols).agg(agg_dict).head()








How it works...


To group by multiple columns as in step 1, we pass a list of the string names to the groupby
 method. Each unique combination of AIRLINE
 and WEEKDAY
 forms an independent group. Within each of these groups, the sum of the cancelled flights is found and then returned as a Series.

Step 2, again groups by both AIRLINE
 and WEEKDAY
 , but this time aggregates two columns. It applies each of the two aggregation functions, sum
 and mean
 , to each column resulting in four returned columns per group.

Step 3 goes even further, and uses a dictionary to map specific aggregating columns to different aggregating functions. Notice that the size
 aggregating function returns the total number of rows per group. This is different than the count
 aggregating function, which returns the number of non-missing values per group.





There's more...


There are a few main flavors of syntax that you will encounter when performing an aggregation. The following four blocks of pseudocode summarize the main ways you can perform an aggregation with the groupby
 method:


	Using agg
 with a dictionary is the most flexible and allows you to specify the aggregating function for each column:



>>> df.groupby(['grouping', 'columns']) \

      .agg({'agg_cols1':['list', 'of', 'functions'], 

            'agg_cols2':['other', 'functions']})


	Using agg
 with a list of aggregating functions applies each of the functions to each of the aggregating columns:



>>> df.groupby(['grouping', 'columns'])['aggregating', 'columns'] \

      .agg([aggregating, functions])


	Directly using a method following the aggregating columns instead of agg
 , applies just that method to each aggregating column. This way does not allow for multiple aggregating functions:



>>> df.groupby(['grouping', 'columns'])['aggregating', 'columns'] \

      .aggregating_method()


	If you do not specify the aggregating columns, then the aggregating method will be applied to all the non-grouping columns:



>>> df.groupby(['grouping', 'columns']).aggregating_method()

In the preceding four code blocks it is possible to substitute a string for any of the lists when grouping or aggregating by a single column.





Removing the MultiIndex after grouping


Inevitably, when using groupby
 , you will likely create a MultiIndex in the columns or rows or both. DataFrames with MultiIndexes are more difficult to navigate and occasionally have confusing column names as well.





Getting ready


In this recipe, we perform an aggregation with the groupby
 method to create a DataFrame with a MultiIndex for the rows and columns and then manipulate it so that the index is a single level and the column names are descriptive.





How to do it...



	Read in the flights dataset; write a statement to find the total and average miles flown; and the maximum and minimum arrival delay for each airline for each weekday:



>>> flights = pd.read_csv('data/flights.csv')

>>> airline_info = flights.groupby(['AIRLINE', 'WEEKDAY'])\

                          .agg({'DIST':['sum', 'mean'], 

                                'ARR_DELAY':['min', 'max']}) \

                          .astype(int)

>>> airline_info.head(7)





	Both the rows and columns are labeled by a MultiIndex with two levels. Let's squash it down to just a single level. To address the columns, we use the MultiIndex method, get_level_values
 . Let's display the output of each level and then concatenate both levels before setting it as the new column values:



>>> level0 = airline_info.columns.get_level_values(0)

Index(['DIST', 'DIST', 'ARR_DELAY', 'ARR_DELAY'], dtype='object')



>>> level1 = airline_info.columns.get_level_values(1)

Index(['sum', 'mean', 'min', 'max'], dtype='object')



>>> airline_info.columns = level0 + '_' + level1

>>> airline_info.head(7)





	Return the row labels to a single level with reset_index
 :



>>> airline_info.reset_index().head(7)








How it works...


When using the agg
 method to perform an aggregation on multiple columns, pandas creates an index object with two levels. The aggregating columns become the top level and the aggregating functions become the bottom level. Pandas displays MultiIndex levels differently than single-level columns. Except for the innermost
 levels, repeated index values do not get displayed on the screen. You can inspect the DataFrame from step 1 to verify this. For instance, the DIST
 column shows up only once but it refers to both of the first two columns.

The innermost MultiIndex level is the one closest to the data. This would be the bottom-most column level and the right-most index level.

Step 2 defines new columns by first retrieving the underlying values of each of the levels with the MultiIndex method get_level_values.
 This method accepts an integer identifying the index level. They are numbered beginning with zero from the top/left. Indexes support vectorized operations, so we concatenate both levels together with a separating underscore. We assign these new values to the columns
 attribute.

In step 3, we make both index levels as columns with reset_index
 . We could have concatenated the levels together like we did in step 2, but it makes more sense to keep them as separate columns.





There's more...


By default, at the end of a groupby operation, pandas puts all of the grouping columns in the index. The as_index
 parameter
 in the groupby
 method can be set to False
 to avoid this behavior. You can chain the reset_index
 method after grouping to get the same effect as done in step 3. Let's see an example of this by finding the average distance traveled per flight from each airline:

>>> flights.groupby(['AIRLINE'], as_index=False)['DIST'].agg('mean') \

                                                        .round(0)




Take a look at the order of the airlines in the previous result. By default, pandas sorts the grouping columns. The sort
 parameter exists within the groupby
 method and is defaulted to True
 . You may set it to False
 to keep the order of the grouping columns the same as how they are encountered in the dataset. You also get a small performance improvement by not sorting your data.





Customizing an aggregation function


Pandas provides a number of the most common aggregation functions for you to use with the groupby object. At some point, you will need to write your own customized user-defined functions that don't exist in pandas or NumPy.





Getting ready


In this recipe, we use the college dataset to calculate the mean and standard deviation of the undergraduate student population per state. We then use this information to find the maximum number of standard deviations from the mean that any single population value is per state.





How to do it...



	Read in the college dataset, and find the mean and standard deviation of the undergraduate population by state:



>>> college = pd.read_csv('data/college.csv')

>>> college.groupby('STABBR')['UGDS'].agg(['mean', 'std']) \

                                     .round(0).head()





	This output isn't quite what we desire. We are not looking for the mean and standard deviations of the entire group but the maximum number of standard deviations away from the mean for any one institution. In order to calculate this, we need to subtract the mean undergraduate population by state from each institution's undergraduate population and then divide by the standard deviation. This standardizes the undergraduate population for each group. We can then take the maximum of the absolute value of these scores to find the one that is farthest away from the mean. Pandas does not provide a function capable of doing this. Instead, we will need to create a custom function:



>>> def max_deviation(s):

        std_score = (s - s.mean()) / s.std()

        return std_score.abs().max()


	After defining the function, pass it directly to the agg
 method to complete the aggregation:



>>> college.groupby('STABBR')['UGDS'].agg(max_deviation) \

                                     .round(1).head()

STABBR
AK    2.6
AL    5.8
AR    6.3
AS    NaN
AZ    9.9
Name: UGDS, dtype: float64





How it works...


There does not exist a predefined pandas function to calculate the maximum number of standard deviations away from the mean. We were forced to construct a customized function in step 2. Notice that this custom function max_deviation
  accepts a single parameter, s
 . Looking ahead at step 3, you will notice that the function name is placed inside the agg
 method without directly being called. Nowhere is the parameter
 s
 explicitly passed to
 max_deviation
 . Instead, pandas implicitly
 passes the
 UGDS
 column
 as a Series to
 max_deviation
 .


The max_deviation
 function is called once for each group. As s
 is a Series, all normal Series methods are available.
 It subtracts the mean of that particular grouping from each of the values in the group before dividing by the standard deviation in a process called standardization
 .

Standardization is a common statistical procedure to understand how greatly individual values vary from the mean. For a normal distribution, 99.7% of the data lies within three standard deviations of the mean.


As we are interested in absolute deviation from the mean, we take the absolute value from all the standardized scores and return the maximum. The agg
 method necessitates that a single scalar value must be returned from our custom function, or else an exception will be raised. Pandas defaults to using the sample standard deviation which is undefined for any groups with just a single value. For instance, the state abbreviation AS
  (American Samoa) has a missing value returned as it has only a single institution in the dataset.





There's more...


It is possible to apply our customized function to multiple aggregating columns. We simply add more column names to the indexing operator. The max_deviation
 function only works with numeric columns:

>>> college.groupby('STABBR')['UGDS', 'SATVRMID', 'SATMTMID'] \

           .agg(max_deviation).round(1).head()




You can also use your customized aggregation function along with the prebuilt functions. The following does this and groups by state and religious affiliation:

>>> college.groupby(['STABBR', 'RELAFFIL']) \

            ['UGDS', 'SATVRMID', 'SATMTMID'] \

           .agg([max_deviation, 'mean', 'std']).round(1).head()




Notice that pandas uses the name of the function as the name for the returned column. You can change the column name directly with the rename method or you can modify the special function attribute __name__
 :

>>> max_deviation.__name__

'max_deviation'



>>> max_deviation.__name__ = 'Max Deviation'

>>> college.groupby(['STABBR', 'RELAFFIL']) \

            ['UGDS', 'SATVRMID', 'SATMTMID'] \

           .agg([max_deviation, 'mean', 'std']).round(1).head()








Customizing aggregating functions with *args and **kwargs


When writing your own user-defined customized aggregation function, pandas implicitly passes it each of the aggregating columns one at a time as a Series. Occasionally, you will need to pass more arguments to your function than just the Series itself. To do so, you need to be aware of Python's ability to pass an arbitrary number of arguments to functions. Let's take a look at the signature of the groupby object's agg
 method with help from the inspect
 module:

>>> college = pd.read_csv('data/college.csv')

>>> grouped = college.groupby(['STABBR', 'RELAFFIL'])



>>> import inspect

>>> inspect.signature(grouped.agg)

<Signature (arg, *args, **kwargs)>

The argument *args
 allow you to pass an arbitrary number of non-keyword arguments to your customized aggregation function. Similarly, **kwargs
 allows you to pass an arbitrary number of keyword arguments.





Getting ready


In this recipe, we build a customized function for the college dataset that finds the percentage of schools by state and religious affiliation that have an undergraduate population between two values.





How to do it...



	Define a function that returns the percentage of schools with an undergraduate population between 1,000 and 3,000:



>>> def pct_between_1_3k(s):

        return s.between(1000, 3000).mean()


	Calculate this percentage grouping by state and religious affiliation:



>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

           .agg(pct_between_1_3k).head(9)

STABBR  RELAFFIL
AK      0           0.142857
        1           0.000000
AL      0           0.236111
        1           0.333333
AR      0           0.279412
        1           0.111111
AS      0           1.000000
AZ      0           0.096774
        1           0.000000
Name: UGDS, dtype: float64


	This function works fine but it doesn't give the user any flexibility to choose the lower and upper bound. Let's create a new function that allows the user to define these bounds:



>>> def pct_between(s, low, high):

        return s.between(low, high).mean()


	Pass this new function to the agg
 method along with lower and upper bounds:



>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

           .agg(pct_between, 1000, 10000).head(9)

STABBR  RELAFFIL
AK      0           0.428571
        1           0.000000
AL      0           0.458333
        1           0.375000
AR      0           0.397059
        1           0.166667
AS      0           1.000000
AZ      0           0.233871
        1           0.111111
Name: UGDS, dtype: float64





How it works...


Step 1 creates a function that doesn't accept any extra arguments. The upper and lower bounds must be hardcoded into the function itself, which isn't very flexible. Step 2 shows the results of this aggregation.

We create a more flexible function in step 3 that allows users to define both the lower and upper bounds dynamically. Step 4 is where the magic of *args
 and **kwargs
 come into play. In this particular example, we pass two non-keyword arguments, 1,000 and 10,000, to the agg
 method. Pandas passes these two arguments respectively to the low
 and high
 parameters of pct_between
 .

There are a few ways we could achieve the same result in step 4. We could have explicitly used the parameter names with the following command to produce the same result:

>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

           .agg(pct_between, high=10000, low=1000).head(9)

The order of the keyword arguments doesn't matter as long as they come after the function name. Further still, we can mix non-keyword and keyword arguments as long as the keyword arguments come last:

>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

           .agg(pct_between, 1000, high=10000).head(9)

For ease of understanding, it's probably best to include all the parameter names in the order that they are defined in the function signature.

Technically, when agg
 is called, all the non-keyword arguments get collected into a tuple named args
 and all the keyword arguments get collected into a dictionary named kwargs
 .





There's more...



Unfortunately, pandas does not have a direct way to use these additional arguments when using multiple aggregation functions together. For example, if you wish to aggregate using the pct_between
  and mean
 functions, you will get the following exception:


>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

           .agg(['mean', pct_between], low=100, high=1000) 

TypeError

: pct_between() missing 2 required positional arguments: 'low' and 'high'

Pandas is incapable of understanding that the extra arguments need to be passed to pct_between
 . In order to use our custom function with other built-in functions and even other custom functions, we can define a special type of nested function called a closure
 . We can use a generic closure to build all of our customized functions:

>>> def make_agg_func(func, name, *args, **kwargs):

        def wrapper(x):

            return func(x, *args, **kwargs)

        wrapper.__name__ = name

        return wrapper



>>> my_agg1 = make_agg_func(pct_between, 'pct_1_3k', low=1000, high=3000)

>>> my_agg2 = make_agg_func(pct_between, 'pct_10_30k', 10000, 30000)



>>> college.groupby(['STABBR', 'RELAFFIL'])['UGDS'] \

           .agg(['mean', my_agg1, my_agg2]).head()




The make_agg_func
 function acts as a factory to create customized aggregation functions. It accepts the customized aggregation function that you already built (pct_between
 in this case), a name
 argument, and an arbitrary number of extra arguments. It returns a function with the extra arguments already set. For instance, my_agg1
 is a specific customized aggregating function that finds the percentage of schools with an undergraduate population between one and three thousand. The extra arguments (
 *args
 and
 **kwargs
 ) specify an exact set of parameters for your customized function (
 pct_between
 in this case).
 The name
 parameter is very important and must be unique each time
 make_agg_func
 is called. It will eventually be used to rename the aggregated column.


A closure is a function that contains a function inside of it (a nested function) and returns this nested function. This nested function must refer to variables in the scope of the outer function in order to be a closure. In this example, make_agg_func
 is the outer function and returns the nested function wrapper
 , which accesses the variables func
 , args
 , and kwargs
 from the outer function.





See also



	
Arbitrary Argument Lists
 from the official Python documentation (http://bit.ly/2vumbTE
 )

	A tutorial on Python Closures
 (http://bit.ly/2xFdYga
 )







Examining the groupby object


The immediate result from using the groupby
 method on a DataFrame will be a groupby object. Usually, we continue operating on this object to do aggregations or transformations without ever saving it to a variable. One of the primary purposes of examining this groupby object is to inspect individual groups.






Getting ready


In this recipe, we examine the groupby object itself by directly calling methods on it as well as iterating through each of its groups.





How to do it...



	Let's get started by grouping the state and religious affiliation columns from the college dataset, saving the result to a variable and confirming its type:



>>> college = pd.read_csv('data/college.csv')

>>> grouped = college.groupby(['STABBR', 'RELAFFIL'])

>>> type(grouped)

pandas.core.groupby.DataFrameGroupBy


	Use the dir
 function to discover all its available functionality:



>>> print([attr for attr in dir(grouped) if not attr.startswith('_')])

['CITY', 'CURROPER', 'DISTANCEONLY', 'GRAD_DEBT_MDN_SUPP', 'HBCU', 'INSTNM', 'MD_EARN_WNE_P10', 'MENONLY', 'PCTFLOAN', 'PCTPELL', 'PPTUG_EF', 'RELAFFIL', 'SATMTMID', 'SATVRMID', 'STABBR', 'UG25ABV', 'UGDS', 'UGDS_2MOR', 'UGDS_AIAN', 'UGDS_ASIAN', 'UGDS_BLACK', 'UGDS_HISP', 'UGDS_NHPI', 'UGDS_NRA', 'UGDS_UNKN', 'UGDS_WHITE', 'WOMENONLY', 'agg', 'aggregate', 'all', 'any', 'apply', 'backfill', 'bfill', 'boxplot', 'corr', 'corrwith', 'count', 'cov', 'cumcount', 'cummax', 'cummin', 'cumprod', 'cumsum', 'describe', 'diff', 'dtypes', 'expanding', 'ffill', 'fillna', 'filter', 'first', 'get_group', 'groups', 'head', 'hist', 'idxmax', 'idxmin', 'indices', 'last', 'mad', 'max', 'mean', 'median', 'min', 'ndim', 'ngroup', 'ngroups', 'nth', 'nunique', 'ohlc', 'pad', 'pct_change', 'plot', 'prod', 'quantile', 'rank', 'resample', 'rolling', 'sem', 'shift', 'size', 'skew', 'std', 'sum', 'tail', 'take', 'transform', 'tshift', 'var']


	Find the number of groups with the ngroups
 attribute:



>>> grouped.ngroups

112


	To find the uniquely identifying labels for each group, look in the groups
 attribute, which contains a dictionary of each unique group mapped to all the corresponding index labels of that group:



>>> groups = list(grouped.groups.keys())

>>> groups[:6]

[('AK', 0), ('AK', 1), ('AL', 0), ('AL', 1), ('AR', 0), ('AR', 1)]


	Retrieve a single group with the get_group
 method by passing it a tuple of an exact group label. For example, to get all the religiously affiliated schools in the state of Florida, do the following:



>>> grouped.get_group(('FL', 1)).head()





	You may want to take a peek at each individual group. This is possible because groupby objects are iterable:



>>> from IPython.display import display

>>> for name, group in grouped:

        print(name)

        display(group.head(3))





	You can also call the head method on your groupby object to get the first rows of each group together in a single DataFrame.



>>> grouped.head(2).head(6)








How it works...


Step 1 formally creates our groupby object. It is useful to display all the public attributes and methods to reveal all the possible functionality as was done in step 2. Each group is uniquely identified by a tuple containing a unique combination of the values in the grouping columns. Pandas allows you to select a specific group as a DataFrame with the get_group
 method shown in step 5.

It is rare that you will need to iterate through your groups and in general, you should avoid doing so if necessary, as it can be quite slow. Occasionally, you will have no other choice. When iterating through a 
 groupby object, you are given a tuple containing the group name and the DataFrame without the grouping columns. This tuple is unpacked into the variables name
 and group
 in the for-loop in step 6.


One interesting thing you can do while iterating through your groups is to display a few of the rows from each group directly in the notebook. To do this, you can either use the print function or the display
 function from the IPython.display
 module. Using the print
 function results in DataFrames that are in plain text without any nice HTML formatting. Using the display
 function will produce DataFrames in their normal easy-to-read format. 





There's more...


There are several useful methods that were not explored from the list in step 2. Take for instance the nth
 method, which, when given a list of integers, selects those specific rows from each group. For example, the following operation selects the first and last rows from each group:

>>> grouped.nth([1, -1]).head(8)








See also



	Official documentation of the display
 function from IPython (http://bit.ly/2iAIogC
 )







Filtering for states with a minority majority


In Chapter 4
 , Selecting Subsets of Data
 , we marked every row as True
 or False
 before filtering out the False
 rows. In a similar fashion, it is possible to mark entire groups of data as either True
 or False
 before filtering out the False
 groups. To do this, we first form groups with the groupby
 method and then apply the filter
 method. The filter
 method accepts a function that must return either True
 or False
 to indicate whether a group is kept or not.

This filter
 method applied after a call to the groupby
 method is completely different than the DataFrame filter
 method covered in the Selecting columns with methods
 recipe
 from Chapter 2
 , Essential DataFrame Operations
 .





Getting ready


In this recipe, we use the college dataset to find all the states that have more non-white undergraduate students than white. As this is a dataset from the US, whites form the majority and therefore, we are looking for states with a minority majority.





How to do it...



	Read in the college dataset, group by state, and display the total number of groups. This should equal the number of unique states retrieved from the nunique
 Series method:



>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> grouped = college.groupby('STABBR')

>>> grouped.ngroups

59



>>> college['STABBR'].nunique() # verifying the same number

59


	The grouped
  variable has a filter
 method, which accepts a custom function that determines whether a group is kept or not. The custom function gets implicitly passed a DataFrame of the current group and is required to return a boolean. Let's define a function that calculates the total percentage of minority students and returns True
 if this percentage is greater than a user-defined threshold:



>>> def check_minority(df, threshold):

        minority_pct = 1 - df['UGDS_WHITE']

        total_minority = (df['UGDS'] * minority_pct).sum()

        total_ugds = df['UGDS'].sum()

        total_minority_pct = total_minority / total_ugds

        return total_minority_pct > threshold


	Use the filter
 method passed with the check_minority
 function and a threshold of 50% to find all states that have a minority majority:



>>> college_filtered = grouped.filter(check_minority, threshold=.5)

>>> college_filtered.head()





	Just looking at the output may not be indicative of what actually happened. The DataFrame starts with state Arizona (AZ) and not Alaska (AK) so we can visually confirm that something changed. Let's compare the shape
 of this filtered DataFrame with the original. Looking at the results, about 60% of the rows have been filtered, and only 20 states remain that have a minority majority:




>>> college.shape

(7535, 26)



>>> college_filtered.shape

(3028, 26)



>>> college_filtered['STABBR'].nunique()

20





How it works...


This recipe takes a look at the total population of all the institutions on a state-by-state basis. The goal is to keep all the rows from the states, as a whole, that have a minority majority. This requires us to group our data by state, which is done in step 1. We find that there are 59 independent groups.

The filter
 groupby method either keeps all the rows in a group or filters them out. It does not change the number of columns. The filter
 groupby method performs this gatekeeping through a user-defined function, for example, check_minority
 in this recipe. A very important aspect to filter is that it passes the entire DataFrame for that particular group to the user-defined function and returns a single boolean for each group.

Inside of the check_minority
 function, the percentage and the total number of non-white students for each institution are first calculated and then the total number of all students is found. Finally, the percentage of non-white students for the entire state is checked against the given threshold, which produces a boolean.

The final result is a DataFrame with the same columns as the original but with the rows from the states that don't meet the threshold filtered out. As it is possible that the head of the filtered DataFrame is the same as the original, you need to do some inspection to ensure that the operation completed successfully. We verify this by checking the number of rows and number of unique states.





There's more...


Our function, check_minority
 , is flexible and accepts a parameter to lower or raise the percentage of minority threshold. Let's check the shape and number of unique states for a couple of other thresholds:

>>> college_filtered_20 = grouped.filter(check_minority, threshold=.2)

>>> college_filtered_20.shape

(7461, 26)



>>> college_filtered_20['STABBR'].nunique()

57



>>> college_filtered_70 = grouped.filter(check_minority, threshold=.7)

>>> college_filtered_70.shape

(957, 26)



>>> college_filtered_70['STABBR'].nunique()

10





See also



	Pandas official documentation on Filtration
 (http://bit.ly/2xGUoA7
 )







Transforming through a weight loss bet


One method to increase motivation to lose weight is to make a bet with someone else. The scenario in this recipe will track weight loss from two individuals over the course of a four-month period and determine a winner.





Getting ready


In this recipe, we use simulated data from two individuals to track the percentage of weight loss over the course of four months. At the end of each month, a winner will be declared based on the individual who lost the highest percentage of body weight for that month. To track weight loss, we group our data by month and person, then call the transform
 method to find the percentage weight loss at each week from the start of the month.





How to do it...



	Read in the raw weight_loss dataset, and examine the first month of data from the two people, Amy
 and Bob
 . There are a total of four weigh-ins per month:



>>> weight_loss = pd.read_csv('data/weight_loss.csv')

>>> weight_loss.query('Month == "Jan"')





	To determine the winner for each month, we only need to compare weight loss from the first week to the last week of each month. But, if we wanted to have weekly updates, we can also calculate weight loss from the current week to the first week of each month.  Let's create a function that is capable of providing weekly updates:



>>> def find_perc_loss(s):

        return (s - s.iloc[0]) / s.iloc[0]


	Let's test out this function for Bob during the month of January.



>>> bob_jan = weight_loss.query('Name=="Bob" and Month=="Jan"')

>>> find_perc_loss(bob_jan['Weight'])

0    0.000000
2   -0.010309
4   -0.027491
6   -0.027491
Name: Weight, dtype: float64

You should ignore the index values in the last output. 0, 2, 4 and 6 simply refer to the original row labels of the DataFrame and have no relation to the week.


	After the first week, Bob lost 1% of his body weight. He continued losing weight during the second week but made no progress during the last week.  We can apply this function to every single combination of person and week to get the weight loss per week in relation to the first week of the month. To do this, we need to group our data by Name
 and Month
  , and then use the transform
 method to apply this custom function:



>>> pcnt_loss = weight_loss.groupby(['Name', 'Month'])['Weight'] \

                           .transform(find_perc_loss)

>>> pcnt_loss.head(8)

0    0.000000
1    0.000000
2   -0.010309
3   -0.040609
4   -0.027491
5   -0.040609
6   -0.027491
7   -0.035533
Name: Weight, dtype: float64


	The transform
 method must return an object with the same number of rows as the calling DataFrame. Let's append this result to our original DataFrame as a new column. To help shorten the output, we will select Bob's first two months of data:



>>> weight_loss['Perc Weight Loss'] = pcnt_loss.round(3)

>>> weight_loss.query('Name=="Bob" and Month in ["Jan", "Feb"]')





	Notice that the percentage weight loss resets after the new month. With this new column, we can manually determine a winner but let's see if we can find a way to do this automatically. As the only week that matters is the last week, let's select week 4:



>>> week4 = weight_loss.query('Week == "Week 4"')

>>> week4 





	This narrows down the weeks but still doesn't automatically find out the winner of each month. Let's reshape this data with the pivot
 method so that Bob's and Amy's percent weight loss is side-by-side for each month:



>>> winner = week4.pivot(index='Month', columns='Name',

                         values='Perc Weight Loss')

>>> winner





	This output makes it clearer who has won each month, but we can still go a couple steps farther. NumPy has a vectorized if-then-else function called where
 , which can map a Series or array of booleans to other values. Let's create a column for the name of the winner and highlight the winning percentage for each month:



>>> winner['Winner'] = np.where(winner['Amy'] < winner['Bob'],

                                'Amy', 'Bob')

>>> winner.style.highlight_min(axis=1)





	Use the value_counts
  method to return the final score as the number of months won:



>>> winner.Winner.value_counts()

Amy    3
Bob    1
Name: Winner, dtype: int64





How it works...


Throughout this recipe, the query
 method is used to filter data instead of boolean indexing. Refer to the Improving readability of Boolean indexing with the query method
 recipe from Chapter 5
 , Boolean Indexing
 , for more information.


Our goal is to find the percentage weight loss for each month for each person. One way to accomplish this task is to calculate each week's weight loss relative to the start of each month. This specific task is perfectly suited to the transform
 groupby method. The transform
 method accepts a function as its one required parameter. This function gets implicitly passed each non-grouping column (or only the columns specified in the indexing operator as was done in this recipe with Weight
 ). It must return a sequence of values the same length as the passed group or else an exception will be raised. In essence, all values from the original DataFrame are transforming. No aggregation or filtration takes place.

Step 2 creates a function that subtracts the first value of the passed Series from all of its values and then divides this result by the first value. This calculates the percent loss (or gain) relative to the first value. In step 3 we test this function on one person during one month.

In step 4, we use this function in the same manner over every combination of person and week. In some literal sense, we are transforming
 the Weight
 column into the percentage of weight lost for the current week. The first month of data is outputted for each person. Pandas returns the new data as a Series. This Series isn't all that useful by itself and makes more sense appended to the original DataFrame as a new column. We complete this operation in step 5.

To determine the winner, only week 4 of each month is necessary. We could stop here and manually determine the winner but pandas supplies us functionality to automate this. The pivot
 function in step 7 reshapes our dataset by pivoting the unique values of one column into new column names. The index
 parameter is used for the column that you do not want to pivot. The column passed to the values
 parameter gets tiled over each unique combination of the columns in the index
 and columns
 parameters.


The pivot
 method only works if there is just a single occurrence of each unique combination of the columns in the
 index
 and
 columns
 parameters. If there is more than one unique combination, an exception will be raised. You can use the pivot_table
 method in that situation which allows you to aggregate multiple values together.


After pivoting, we utilize the highly effective and fast NumPy where
 function, whose first argument is a condition that produces a Series of booleans. True
 values get mapped to Amy
 and False
 values get mapped to Bob.
 We highlight the winner of each month and tally the final score with the value_counts
 method.





There's more...


Take a look at the DataFrame output from step 7. Did you notice that the months are in alphabetical and not chronological order? Pandas unfortunately, in this case at least, orders the months for us alphabetically. We can solve this issue by changing the data type of Month
 to a categorical variable. Categorical variables map all the values of each column to an integer. We can choose this mapping to be the normal chronological order for the months. Pandas uses this underlying integer mapping during the pivot
 method to order the months chronologically:

>>> week4a = week4.copy()

>>> month_chron = week4a['Month'].unique() # or use drop_duplicates

>>> month_chron

array(['Jan', 'Feb', 'Mar', 'Apr'], dtype=object)



>>> week4a['Month'] = pd.Categorical(week4a['Month'],

                                     categories=month_chron,

                                     ordered=True)

>>> week4a.pivot(index='Month', columns='Name',

                 values='Perc Weight Loss')




To convert the Month
 column, use the Categorical
 constructor. Pass it the original column as a Series and a unique sequence of all the categories in the desired order to the categories
 parameter. As the Month
 column is already in chronological order, we can simply use the unique
 method, which preserves order to get the array that we desire. In general, to sort columns of object data type by something other than alphabetical, convert them to categorical.





See also



	Pandas official documentation on groupby
 Transformation
 (http://bit.ly/2vBkpA7
 )

	NumPy official documentation on the where
 function (http://bit.ly/2weT21l
 )







Calculating weighted mean SAT scores per state with apply


The groupby object has four methods that accept a function (or functions) to perform a calculation on each group. These four methods are agg
 , filter
 , transform
 , and apply
 . Each of the first three of these methods has a very specific output that the function must return. agg
 must return a scalar value, filter
 must return a boolean, and transform
 must return a Series with the same length as the passed group. The apply
 method, however, may return a scalar value, a Series, or even a DataFrame of any shape, therefore making it very flexible. It is also called only
 once per group, which contrasts with transform
 and agg
 that get called once for each non-grouping column. The apply
 method's ability to return a single object when operating on multiple columns at the same time makes the calculation in this recipe possible.





Getting ready


In this recipe, we calculate the weighted average of both the math and verbal SAT scores per state from the college dataset. We weight the scores by the population of undergraduate students per school.





How to do it...



	Read in the college dataset, and drop any rows that have missing values in either the UGDS
 , SATMTMID
 , or SATVRMID
  columns. We must have non-missing values for each of these three columns:



>>> college = pd.read_csv('data/college.csv')

>>> subset = ['UGDS', 'SATMTMID', 'SATVRMID']

>>> college2 = college.dropna(subset=subset)

>>> college.shape

(7535, 27)



>>> college2.shape

(1184, 27)


	The vast majority of institutions do not have data for our three required columns, but this is still more than enough data to continue. Next, create a user-defined function to calculate the weighted average of just the SAT math scores:



>>> def weighted_math_average(df):

        weighted_math = df['UGDS'] * df['SATMTMID']

        return int(weighted_math.sum() / df['UGDS'].sum())


	Group by state and pass this function to the apply
 method:



>>> college2.groupby('STABBR').apply(weighted_math_average).head()

STABBR
AK    503
AL    536
AR    529
AZ    569
CA    564
dtype: int64


	
We successfully returned a scalar value for each group.
 Let's take a small detour and see what the outcome would have been by passing the same function to the agg
 method:



>>> college2.groupby('STABBR').agg(weighted_math_average).head()





	The weighted_math_average
  function gets applied to each non-aggregating column in the DataFrame. If you try and limit the columns to just SATMTMID
 , you will get an error as you won't have access to UGDS
 . So, the best way to complete operations that act on multiple columns is with apply
 :



>>> college2.groupby('STABBR')['SATMTMID'] \

            .agg(weighted_math_average)

KeyError: 'UGDS'


	A nice feature of apply
 is that you can create multiple new columns by returning a Series. The index of this returned Series will be the new column names. Let's modify our function to calculate the weighted and arithmetic average for both SAT scores along with the count of the number of institutions from each group. We return these five values in a Series:



>>> from collections import OrderedDict

>>> def weighted_average(df):

        data = OrderedDict()

        weight_m = df['UGDS'] * df['SATMTMID']

        weight_v = df['UGDS'] * df['SATVRMID']

    

        wm_avg = weight_m.sum() / df['UGDS'].sum()

        wv_avg = weight_v.sum() / df['UGDS'].sum()



        data['weighted_math_avg'] = wm_avg

        data['weighted_verbal_avg'] = wv_avg

        data['math_avg'] = df['SATMTMID'].mean()

        data['verbal_avg'] = df['SATVRMID'].mean()

        data['count'] = len(df)

        return pd.Series(data, dtype='int')



>>> college2.groupby('STABBR').apply(weighted_average).head(10)








How it works...


In order for this recipe to complete properly, we need to first filter for institutions that do not have missing values for UGDS
 , SATMTMID
 , and SATVRMID
 . By default, the dropna
 method drops rows that have one or more missing values. We must use the subset
 parameter to limit the columns it looks at for missing values.

In step 2, we define a function that calculates the weighted average for just the SATMTMID
 column. The weighted average differs from an arithmetic mean in that each value is multiplied by some weight. This quantity is then summed and divided by the sum of the weights. In this case, our weight is the undergraduate student population.

In step 3, we pass this function to the apply
 method. Our function weighted_math_average
 gets passed a DataFrame of all the original columns for each group. It returns a single scalar value, the weighted average of SATMTMID
 . At this point, you might think that this calculation is possible using the agg
 method. Directly replacing apply
 with agg
 does not work as agg
 returns a value for each of its aggregating columns.

It actually is possible to use agg
 indirectly by precomputing the multiplication of UGDS
 and SATMTMID
 .

Step 6 really shows the versatility of apply
 . We build a new function that calculates the weighted and arithmetic average of both SAT columns as well as the number of rows for each group. In order for apply
 to create multiple columns, you must return a Series. The index values are used as column names in the resulting DataFrame. You can return as many values as you want with this method.

Notice that the OrderedDict
 class was imported from the collections
 module, which is part of the standard library. This ordered dictionary is used to store the data. A normal Python dictionary could not have been used to store the data since it does not preserve insertion order.

The constructor, pd.Series
 , does have an index parameter that you can use to specify order but using an OrderedDict
 is cleaner.





There's more...


In this recipe, we returned a single row as a Series for each group. It's possible to return any number of rows and columns for each group by returning a DataFrame. In addition to finding just the arithmetic and weighted means, let's also find the geometric and harmonic means of both SAT columns and return the results as a DataFrame with rows as the name of the type of mean and columns as the SAT type. To ease the burden on us, we use the NumPy function average
 to compute the weighted average and the SciPy functions gmean
 and hmean
 for geometric and harmonic means:

>>> from scipy.stats import gmean, hmean

>>> def calculate_means(df):

        df_means = pd.DataFrame(index=['Arithmetic', 'Weighted',

                                       'Geometric', 'Harmonic'])

        cols = ['SATMTMID', 'SATVRMID']

        for col in cols:

            arithmetic = df[col].mean()

            weighted = np.average(df[col], weights=df['UGDS'])

            geometric = gmean(df[col])

            harmonic = hmean(df[col])

            df_means[col] = [arithmetic, weighted,

                             geometric, harmonic]

        

        df_means['count'] = len(df)

        return df_means.astype(int)



>>> college2.groupby('STABBR').apply(calculate_means).head(12)








See also



	Pandas official documentation of the apply
 groupby method (http://bit.ly/2wmG9ki
 )

	Python official documentation of the OrderedDict
 class (http://bit.ly/2xwtUCa
 )

	SciPy official documentation of its stats module (http://bit.ly/2wHtQ4L
 )







Grouping by continuous variables


When grouping in pandas, you typically use columns with discrete repeating values. If there are no repeated values, then grouping would be pointless as there would only be one row per group. Continuous numeric columns typically have few repeated values and are generally not used to form groups. However, if we can transform columns with continuous values into a discrete column by placing each value into a bin, rounding them, or using some other mapping, then grouping with them makes sense.





Getting ready


In this recipe, we explore the flights dataset to discover the distribution of airlines for different travel distances. This allows us, for example, to find the airline that makes the most flights between 500 and 1,000 miles. To accomplish this, we use the pandas cut
 function to discretize the distance of each flight flown.





How to do it...



	Read in the flights dataset, and output the first five rows:



>>> flights = pd.read_csv('data/flights.csv')

>>> flights.head()





	If we want to find the distribution of airlines over a range of distances, we need to place the values of the DIST
 column into discrete bins. Let's use the pandas cut
 function to split the data into five bins:



>>> bins = [-np.inf, 200, 500, 1000, 2000, np.inf]

>>> cuts = pd.cut(flights['DIST'], bins=bins)

>>> cuts.head()

0     (500.0, 1000.0]
1    (1000.0, 2000.0]
2     (500.0, 1000.0]
3    (1000.0, 2000.0]
4    (1000.0, 2000.0]
Name: DIST, dtype: category
Categories (5, interval[float64]): [(-inf, 200.0] < (200.0, 500.0] < (500.0, 1000.0] < (1000.0, 2000.0] < (2000.0, inf]]


	An ordered categorical Series is created. To help get an idea of what happened, let's count the values of each category:



>>> cuts.value_counts()

(500.0, 1000.0]     20659

(200.0, 500.0]      15874
(1000.0, 2000.0]    14186
(2000.0, inf]        4054
(-inf, 200.0]        3719
Name: DIST, dtype: int64


	The cuts
 Series can now be used to form groups. Pandas allows you to form groups in any way you wish. Pass the cuts
 Series to the groupby
 method and then call the value_counts
 method on the AIRLINE
 column to find the distribution for each distance group. Notice that SkyWest (OO
 ) makes up 33% of flights less than 200 miles but only 16% of those between 200 and 500 miles:



>>> flights.groupby(cuts)['AIRLINE'].value_counts(normalize=True) \

                                    .round(3).head(15)

DIST            AIRLINE
(-inf, 200.0]   OO         0.326
                EV         0.289
                MQ         0.211
                DL         0.086
                AA         0.052
                UA         0.027
                WN         0.009
(200.0, 500.0]  WN         0.194
                DL         0.189
                OO         0.159
                EV         0.156
                MQ         0.100
                AA         0.071
                UA         0.062
                VX         0.028
Name: AIRLINE, dtype: float64





How it works...


In step 2, the cut
 function places each value of the DIST
 column into one of five bins. The bins are created by a sequence of six numbers defining the edges. You always need one more edge than the number of bins. You can pass the bins
 parameter an integer, which automatically creates that number of equal-width bins. Negative infinity and positive infinity objects are available in NumPy and ensure that all values get placed in a bin. If you have values that are outside of the bin edges, they will be made missing and not be placed in a bin.

The cuts
 variable is now a Series of five ordered categories. It has all the normal Series methods and in step 3, the value_counts
 method is used to get a sense of its distribution.

Very interestingly, pandas allows you to pass the groupby
 method any object. This means that you are able to form groups from something completely unrelated to the current DataFrame. Here, we group by the values in the cuts
 variable. For each grouping, we find the percentage of flights per airline with value_counts
  by setting normalize
 to True
 .

Some interesting insights can be drawn from this result. Looking at the full result, SkyWest is the leading airline for under 200 miles but has no flights over 2,000 miles. In contrast, American Airlines has the fifth highest total for flights under 200 miles but has by far the most flights between 1,000 and 2,000 miles.





There's more...


We can find more results when grouping by the cuts
 variable. For instance, we can find the 25th, 50th, and 75th percentile airtime for each distance grouping. As airtime is in minutes, we can divide by 60 to get hours:

>>> flights.groupby(cuts)['AIR_TIME'].quantile(q=[.25, .5, .75]) \

                                     .div(60).round(2)

DIST                  
(-inf, 200.0]     0.25    0.43
                  0.50    0.50
                  0.75    0.57
(200.0, 500.0]    0.25    0.77
                  0.50    0.92
                  0.75    1.05
(500.0, 1000.0]   0.25    1.43
                  0.50    1.65
                  0.75    1.92
(1000.0, 2000.0]  0.25    2.50
                  0.50    2.93
                  0.75    3.40
(2000.0, inf]     0.25    4.30
                  0.50    4.70
                  0.75    5.03
Name: AIR_TIME, dtype: float64

We can use this information to create informative string labels when using the cut
 function. These labels replace the interval notation. We can also chain the unstack
 method which transposes the inner index level to column names:

>>> labels=['Under an Hour', '1 Hour', '1-2 Hours',

            '2-4 Hours', '4+ Hours']

>>> cuts2 = pd.cut(flights['DIST'], bins=bins, labels=labels)

>>> flights.groupby(cuts2)['AIRLINE'].value_counts(normalize=True) \

                                     .round(3) \

                                     .unstack() \

                                     .style.highlight_max(axis=1)








See also



	Pandas official documentation on the cut
 function (http://bit.ly/2whcUkJ
 )

	Refer to Chapter 8
 , Re
 structuring Data into Tidy For
 m
 , for many more recipes with unstack







Counting the total number of flights between cities


In the flights dataset, we have data on the origin and destination airport. It is trivial to count the number of flights originating in Houston and landing in Atlanta, for instance. What is more difficult is counting the total number of flights between the two cities, regardless of which one is the origin or destination.





Getting ready


In this recipe, we count the total number of flights between two cities regardless of which one is the origin or destination. To accomplish this, we sort the origin and destination airports alphabetically so that each combination of airports always occurs in the same order. We can then use this new column arrangement to form groups and then to count.





How to do it...



	Read in the flights dataset, and find the total number of flights between each origin and destination airport:



>>> flights = pd.read_csv('data/flights.csv')

>>> flights_ct = flights.groupby(['ORG_AIR', 'DEST_AIR']).size()

>>> flights_ct.head()

ORG_AIR  DEST_AIR
ATL      ABE         31
         ABQ         16
         ABY         19
         ACY          6
         AEX         40
dtype: int64


	Select the total number of flights between Houston (IAH
 ) and Atlanta (ATL
 ) in both directions:



>>> flights_ct.loc[[('ATL', 'IAH'), ('IAH', 'ATL')]]

ORG_AIR  DEST_AIR
ATL      IAH         121
IAH      ATL         148
dtype: int64


	We could simply sum these two numbers together to find the total flights between the cities but there is a more efficient and automated solution that can work for all flights. Let's independently sort the origin and destination cities for each row in alphabetical order:



>>> flights_sort = flights[['ORG_AIR', 'DEST_AIR']] \

                          .apply(sorted, axis=1)

>>> flights_sort.head()





	Now that each row has been independently sorted, the column names are not correct. Let's rename them to something more generic and then again find the total number of flights between all cities:



>>> rename_dict = {'ORG_AIR':'AIR1', 'DEST_AIR':'AIR2'}

>>> flights_sort = flights_sort.rename(columns=rename_dict)

>>> flights_ct2 = flights_sort.groupby(['AIR1', 'AIR2']).size()

>>> flights_ct2.head()

AIR1  AIR2

ABE   ATL     31
      ORD     24
ABI   DFW     74
ABQ   ATL     16
      DEN     46
dtype: int64


	Let's select all the flights between Atlanta and Houston and verify that it matches the sum of the values in step 2:



>>> flights_ct2.loc[('ATL', 'IAH')]

269


	If we try and select flights with Houston followed by Atlanta, we get an error:



>>> flights_ct2.loc[('IAH', 'ATL')]

IndexingError: Too many indexers





How it works...


In step 1, we form groups by the origin and destination airport columns and then apply the size
 method to the groupby object, which simply returns the total number of rows for each group. Notice that we could have passed the string size
 to the agg
 method to achieve the same result. In step 2, the total number of flights for each direction between Atlanta and Houston are selected. The Series flights_count
 has a MultiIndex with two levels. One way to select rows from a MultiIndex is to pass the loc
 indexing operator a tuple of exact level values. Here, we actually select two different rows, ('ATL', 'HOU')
 and ('HOU', 'ATL')
 . We use a list of tuples to do this correctly.

Step 3 is the most pertinent step in the recipe. We would like to have just one label for all flights between Atlanta and Houston and so far we have two. If we alphabetically sort each combination of origin and destination airports, we would then have a single label for flights between airports. To do this, we use the DataFrame apply
 method. This is different from the groupby apply
 method. No groups are formed in step 3.

The DataFrame apply
 method must be passed a function. In this case, it's the built-in sorted
 function. By default, this function gets applied to each column as a Series. We can change the direction of computation by using axis=1
 (or axis='index'
 ). The sorted
 function has each row of data passed to it implicitly as a Series. It returns a list of sorted airport codes. Here is an example of passing the first row as a Series to the sorted function:


>>> sorted(flights.loc[0, ['ORG_AIR', 'DEST_AIR']])

['LAX', 'SLC']

The apply
 method iterates over all rows using sorted
 in this exact manner. After completion of this operation, each row is independently sorted. The column names are now meaningless. We rename the column names in the next step and then perform the same grouping and aggregating as was done in step 2. This time, all flights between Atlanta and Houston fall under the same label.





There's more...


You might be wondering why we can't use the simpler sort_values
 Series method. This method does not sort independently and instead, preserves the row or column as a single record as one would expect while doing a data analysis. Step 3 is a very expensive operation and takes several seconds to complete. There are only about 60,000 rows so this solution would not scale well to larger data. Calling the

Step 3 is a very expensive operation and takes several seconds to complete. There are only about 60,000 rows so this solution would not scale well to larger data. Calling the apply
 method with axis=1
 is one of the least performant operations in all of pandas. Internally, pandas loops over each row and does not provide any speed boosts from NumPy. If possible, avoid using apply
 with axis=1
 .

We can get a massive speed increase with the NumPy sort
 function. Let's go ahead and use this function and analyze its output. By default, it sorts each row independently:

>>> data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']])

>>> data_sorted[:10]

array([['LAX', 'SLC'],
       ['DEN', 'IAD'],
       ['DFW', 'VPS'],
       ['DCA', 'DFW'],
       ['LAX', 'MCI'],
       ['IAH', 'SAN'],
       ['DFW', 'MSY'],
       ['PHX', 'SFO'],
       ['ORD', 'STL'],
       ['IAH', 'SJC']], dtype=object)

A two-dimensional NumPy array is returned. NumPy does not easily do grouping operations so let's use the DataFrame constructor to create a new DataFrame and check whether it equals the flights_sorted
 DataFrame from step 3:

>>> flights_sort2 = pd.DataFrame(data_sorted, columns=['AIR1', 'AIR2'])

>>> fs_orig = flights_sort.rename(columns={'ORG_AIR':'AIR1',

                                           'DEST_AIR':'AIR2'})

>>> flights_sort2.equals(fs_orig)

True

As the DataFrames are the same, you can replace step 3 with the previous faster sorting routine. Let's time the difference between each of the different sorting methods:

>>> %%timeit 

>>> flights_sort = flights[['ORG_AIR', 'DEST_AIR']] \

                          .apply(sorted, axis=1)

7.41 s ± 189 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)



>>> %%timeit

>>> data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']])

>>> flights_sort2 = pd.DataFrame(data_sorted,

                                 columns=['AIR1', 'AIR2'])

10.6 ms ± 453 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

The NumPy solution is an astounding 700 times faster than using apply
 with pandas.





See also



	NumPy official documentation on the sort
 function (http://bit.ly/2vtRt0M
 )







Finding the longest streak of on-time flights


One of the most important metrics for airlines is their on-time flight performance. The Federal Aviation Administration considers a flight delayed when it arrives at least 15 minutes later than its scheduled arrival time. Pandas has direct methods to calculate the total and percentage of on-time flights per airline. While these basic summary statistics are an important metric, there are other non-trivial calculations that are interesting, such as finding the length of consecutive on-time flights for each airline at each of its origin airports.





Getting ready


In this recipe, we find the longest consecutive streak of on-time flights for each airline at each origin airport. This requires each value in a column to be aware of the value immediately following it. We make clever use of the diff
 and cumsum
 methods in order to find streaks before applying this methodology to each of the groups.





How to do it...



	Before we get started with the actual flights dataset, let's practice counting streaks of ones with a small sample Series:



>>> s = pd.Series([0, 1, 1, 0, 1, 1, 1, 0])

>>> s

0    0

1    1

2    1
3    0
4    1
5    1
6    1
7    0
dtype: int64


	Our final representation of the streaks of ones will be a Series of the same length as the original with an independent count beginning from one for each streak. To get started, let's use the cumsum
 method:



>>> s1 = s.cumsum()

>>> s1

0    0
1    1
2    2
3    2
4    3
5    4
6    5
7    5
dtype: int64


	We have now accumulated all the ones going down the Series. Let's multiply this Series by the original:



>>> s.mul(s1)

0    0
1    1
2    2
3    0
4    3
5    4
6    5
7    0
dtype: int64


	We have only non-zero values where we originally had ones. This result is fairly close to what we desire. We just need to restart each streak at one instead of where the cumulative sum left off. Let's chain the diff
 method, which subtracts the previous value from the current:



>>> s.mul(s1).diff()

0    NaN
1    1.0
2    1.0
3   -2.0
4    3.0
5    1.0
6    1.0
7   -5.0
dtype: float64


	A negative value represents the end of a streak. We need to propagate the negative values down the Series and use them to subtract away the excess accumulation from step 2. To do this, we will make all non-negative values missing with the where
 method:



>>> s.mul(s1).diff().where(lambda x: x < 0)

0    NaN

1    NaN
2    NaN
3   -2.0
4    NaN
5    NaN
6    NaN
7   -5.0
dtype: float64


	We can now propagate these values down with the ffill
 method:



>>> s.mul(s1).diff().where(lambda x: x < 0).ffill()

0    NaN
1    NaN
2    NaN
3   -2.0
4   -2.0
5   -2.0
6   -2.0
7   -5.0
dtype: float64


	Finally, we can add this Series back to s1
 to clear out the excess accumulation:



>>> s.mul(s1).diff().where(lambda x: x < 0).ffill() \

     .add(s1, fill_value=0)

0    0.0
1    1.0
2    2.0
3    0.0
4    1.0
5    2.0
6    3.0
7    0.0
dtype: float64


	Now that we have a working consecutive streak finder, we can find the longest streak per airline and origin airport. Let's read in the flights dataset and create a column to represent on-time arrival:



>>> flights = pd.read_csv('data/flights.csv')

>>> flights['ON_TIME'] = flights['ARR_DELAY'].lt(15).astype(int)

>>> flights[['AIRLINE', 'ORG_AIR', 'ON_TIME']].head(10)





	Use our logic from the first seven steps to define a function that returns the maximum streak of ones for a given Series:



>>> def max_streak(s):

        s1 = s.cumsum()

        return s.mul(s1).diff().where(lambda x: x < 0) \

                .ffill().add(s1, fill_value=0).max()


	Find the maximum streak of on-time arrivals per airline and origin airport along with the total number of flights and percentage of on-time arrivals. First, sort the day of the year and scheduled departure time:



>>> flights.sort_values(['MONTH', 'DAY', 'SCHED_DEP']) \

           .groupby(['AIRLINE', 'ORG_AIR'])['ON_TIME'] \

           .agg(['mean', 'size', max_streak]).round(2).head()








How it works...


Finding streaks in the data is not a straightforward operation in pandas and requires methods that look ahead or behind, such as diff
 or shift
 , or those that remember their current state, such as cumsum
 . The final result from the first seven steps is a Series the same length as the original that keeps track of all consecutive ones. Throughout these steps, we use the mul
 and add
 methods
 instead of their operator equivalents (*
 ) and (+
 ). In my opinion, this allows for a slightly cleaner progression of calculations from left to right. You, of course, can replace these with the actual operators.

Ideally, we would like to tell pandas to apply the cumsum
 method to the start of each streak and reset itself after the end of each one. It takes many steps to convey this message to pandas. Step 2 accumulates all the ones in the Series as a whole. The rest of the steps slowly remove any excess accumulation. In order to identify this excess accumulation, we need to find the end of each streak and subtract this value from the beginning of the next streak.

To find the end of each streak, we cleverly make all values not part of the streak zero by multiplying s1
 by the original Series of zeros and ones in step 3. The first zero following a non-zero, marks the end of a streak. That's good, but again, we need to eliminate the excess accumulation. Knowing where the streak ends doesn't exactly get us there.

In step 4, we use the diff
 method to find this excess. The diff
 method takes the difference between the current value and any value located at a set number of rows away from it. By default, the difference between the current and the immediately preceding value is returned.

Only negative values are meaningful in step 4. Those are the ones immediately following the end of a streak. These values need to be propagated down until the end of the following streak. To eliminate (make missing) all the values we don't care about, we use the where
 method, which takes a Series of conditionals of the same size as the calling Series. By default, all the True
 values remain the same, while the False
 values become missing. The where
 method allows you to use the calling Series as part of the conditional by taking a function as its first parameter. An anonymous function is used, which gets passed the calling Series implicitly and checks whether each value is less than zero. The result of step 5 is a Series where only the negative values are preserved with the rest changed to missing.

The ffill
 method in step 6 replaces missing values with the last non-missing value going forward/down a Series. As the first three values don't follow a non-missing value, they remain missing. We finally have our Series that removes the excess accumulation. We add our accumulation Series to the result of step 6 to get the streaks all beginning from zero. The add
 method allows us to replace the missing values with the fill_value
 parameter. This completes the process of finding streaks of ones in the dataset. When doing complex logic like this, it is a good idea to use a small dataset where you know what the final output will be. It would be quite a difficult task to start at step 8 and build this streak-finding logic while grouping.

In step 8, we create the ON_TIME
 column. One item of note is that the cancelled flights have missing values for ARR_DELAY
 , which do not pass the boolean condition and therefore result in a zero for the ON_TIME
 column. Canceled flights are treated the same as delayed.

Step 9 turns our logic from the first seven steps into a function and chains the max
 method to return the longest streak. As our function returns a single value, it is formally an aggregating function and can be passed to the agg
 method as done in step 10. To ensure that we are looking at actual consecutive flights, we use the sort_values
 method to sort by date and scheduled departure time.





There's more...


Now that we have found the longest streaks of on-time arrivals, we can easily find the opposite--the longest streak of delayed arrivals. The following function returns two rows for each group passed to it. The first row is the start of the streak, and the last row is the end of the streak. Each row contains the month and day that the streak started/ended, along with the total streak length:

>>> def max_delay_streak(df):

        df = df.reset_index(drop=True)

        s = 1 - df['ON_TIME']

        s1 = s.cumsum()

        streak = s.mul(s1).diff().where(lambda x: x < 0) \

                  .ffill().add(s1, fill_value=0)

        last_idx = streak.idxmax()

        first_idx = last_idx - streak.max() + 1

        df_return = df.loc[[first_idx, last_idx], ['MONTH', 'DAY']]

        df_return['streak'] = streak.max()

        df_return.index = ['first', 'last']

        df_return.index.name='type'

        return df_return



>>> flights.sort_values(['MONTH', 'DAY', 'SCHED_DEP']) \

           .groupby(['AIRLINE', 'ORG_AIR']) \

           .apply(max_delay_streak) \

           .sort_values('streak', ascending=False).head(10)






As we are using the apply
 groupby method, a DataFrame of each group is passed to the max_delay_streak
 function. Inside this function, the index of the DataFrame is dropped and replaced by a RangeIndex
 in order for us to easily find the first and last row of the streak. The ON_TIME
 column is inverted and then the same logic is used to find streaks of delayed flights. The index of the first and last rows of the streak are stored as variables. These indexes are then used to select the month and day when the streaks ended. We use a DataFrame to return our results. We label and name the index to make the final result clearer.

Our final results show the longest delayed streaks accompanied by the first and last date. Let's investigate to see if we can find out why these delays happened. Inclement weather is a common reason for delayed or canceled flights. Looking at the first row, American Airlines (AA) started a streak of 38 delayed flights in a row from the Dallas Fort-Worth (DFW) airport beginning February 26 until March 1 of 2015. Looking at historical weather data from February 27, 2015, two inches of snow fell, which was a record for that day (http://bit.ly/2iLGsCg
 ). This was a major weather event for DFW and caused massive problems for the entire city (http://bit.ly/2wmsHPj
 ). Notice that DFW makes another appearance as the third longest streak but this time a few days earlier and for a different airline.





See also



	Refer to the Working with operators on a Series
 recipe
 from Chapter 1
 , Pandas Foundations


	
Pandas official documentation of ffill
 ( http://bit.ly/2gn5zGU











Restructuring Data into a Tidy Form


In this chapter, we will cover the following topics:


	Tidying variable values as column names with stack


	Tidying variable values as column names with melt


	Stacking multiple groups of variables simultaneously

	Inverting stacked data

	Unstacking after a groupby
 aggregation

	Replicating pivot_table
 with a groupby
 aggregation

	Renaming axis levels for easy reshaping

	Tidying when multiple variables are stored as column names

	Tidying when multiple variables are stored as column values

	Tidying when two or more values are stored in the same cell

	Tidying when variables are stored in column names and values

	Tidying when multiple observational units are stored in the same table







Introduction


All the datasets used in the preceding chapters have not had much or any work done to change their structure. We immediately began processing the datasets in their original shape. Many datasets in the wild will need a significant amount of restructuring before commencing a more detailed analysis. In some cases, an entire project might only be concerned with formatting the data in such a way that it can be easily processed by someone else.

There are many terms that are used to describe the process of data restructuring, with tidy data
 being the most common to data scientists. Tidy data is a term coined by Hadley Wickham to describe a form of data that makes analysis easy to do. This chapter will cover many ideas formulated by Hadley and how to accomplish them with pandas. To learn a great deal more about tidy data, read Hadley's paper (http://vita.had.co.nz/papers/tidy-data.pdf
 ).

What is tidy data? Hadley puts forth three simple guiding principles that determine whether a dataset is tidy or not:


	Each variable forms a column

	Each observation forms a row

	Each type of observational unit forms a table



Any dataset that does not meet these guidelines is considered messy. This definition will make more sense once we start restructuring our data into tidy form, but for now, we'll need to know what variables, observations, and observational units are.

To gain intuition about what a variable actually is, it is good to think about the distinction between a variable name and the variable value. The variable names are labels, such as gender, race, salary, and position. The variable values are those things liable to change for every observation, such as male/female for gender or white/black for race. A single observation is the collection of all variable values for a single observational unit. To help understand what an observational unit might be, consider a retail store, which has data for each transaction, employee, customer, item, and the store itself. Each of these can be considered an observational unit and would require its own table. Combining employee information (like the number of hours worked) with customer information (like amount spent) in the same table would break this tidy principle.

The first step to resolving messy data is to recognize it when it exists, and there are boundless possibilities. Hadley explicitly mentions five of the most common types of messy data:


	Column names are values, not variable names

	Multiple variables are stored in column names

	Variables are stored in both rows and columns

	Multiple types of observational units are stored in the same table

	A single observational unit is stored in multiple tables



It is important to understand that tidying data does not typically involve changing the values of your dataset, filling in missing values, or doing any sort of analysis. Tidying data involves changing the shape or structure of the data to meet the tidy principles. Tidy data is akin to having all your tools in the toolbox instead of scattered randomly throughout your house. Having the tools properly in the toolbox allows all other tasks to be completed easily. Once the data is in the correct form, it becomes much easier to perform further analysis.

Once you have spotted messy data, you will use the pandas tools to restructure the data, so that it is tidy. The main tidy tools that pandas has available for you are the DataFrame methods stack
 , melt
 , unstack
 , and pivot
 . More complex tidying involves ripping apart text, which necessitates the str
 accessor. Other helper methods, such as rename
 , rename_axis
 , reset_index
 , and set_index
 will help with applying the final touches to tidy data.





Tidying variable values as column names with stack


To help understand the differences between tidy and messy data, let's take a look at a simple table that may or may not be in tidy form:

>>> state_fruit = pd.read_csv('data/state_fruit.csv', index_col=0)

>>> state_fruit




There does not appear to be anything messy about this table, and the information is easily consumable. However, according to the tidy principles, it isn't actually tidy. Each column name is actually the value of a variable. In fact, none of the variable names are even present in the DataFrame. One of the first steps to transform a messy dataset into tidy data is to identify all of the variables. In this particular dataset, we have variables for state
 and fruit
 . There's also the numeric data that wasn't identified anywhere in the context of the problem. We can label this variable as weight
 or any other sensible name.





Getting ready


This particular messy dataset contains variable values as column names. We will need to transpose these column names into column values. In this recipe, we use the stack
 method to restructure our DataFrame into tidy form.





How to do it...



	First, take note that the state names are in the index of the DataFrame. These states are correctly placed vertically and do not need to be restructured. It is the column names that are the problem. The stack
 method takes all of the column names and reshapes them to be vertical as a single index level:



>>> state_fruit.stack()

Texas    Apple      12
         Orange     10
         Banana     40
Arizona  Apple       9
         Orange      7
         Banana     12
Florida  Apple       0
         Orange     14
         Banana    190
dtype: int64


	Notice that we now have a Series with a MultiIndex. There are now two levels in the index. The original index has been pushed to the left to make room for the old column names. With this one command, we now essentially have tidy data. Each variable, state, fruit, and weight is vertical. Let's use the reset_index
 method to turn the result into a DataFrame:



>>> state_fruit_tidy = state_fruit.stack().reset_index()

>>> state_fruit_tidy





	Our structure is now correct, but the column names are meaningless. Let's replace them with proper identifiers:



>>> state_fruit_tidy.columns = ['state', 'fruit', 'weight']

>>> state_fruit_tidy





	Instead of directly changing the columns attribute, it's possible to use the lesser-known Series method rename_axis
 to set the names of the index levels before using reset_index
 :



>>> state_fruit.stack()\

               .rename_axis(['state', 'fruit'])



state    fruit 

Texas    Apple      12
         Orange     10
         Banana     40
Arizona  Apple       9
         Orange      7
         Banana     12
Florida  Apple       0
         Orange     14
         Banana    190
dtype: int64


	From here, we can simply chain the reset_index
 method with the name
 parameter to reproduce the output from step 3:



>>> state_fruit.stack()\

               .rename_axis(['state', 'fruit'])\

               .reset_index(name='weight')





How it works...


The stack
 method is powerful and it takes time to understand and appreciate fully. It takes all the column names and transposes them, so they become the new innermost index level. Notice how each old column name still labels its original value by being paired with each state. There were nine original values in a 3 x 3 DataFrame, which got transformed into a single Series with the same number of values. The original first row of data became the first three values in the resulting Series.

After resetting the index in step 2, pandas defaults our DataFrame columns to level_0
 , level_1
 , and 0
 . This is because the Series calling this method has two index levels that were formally unnamed. Pandas also refers to indexes by integer beginning from zero from the outside.

Step 3 shows a simple and intuitive way to rename the columns. You can simply set new columns for the entire DataFrame by setting the columns attribute equal to a list.

Alternatively, it is possible to set the column names in a single step by chaining the rename_axis
 method that, when passing a list as the first argument, uses those values as the index level names. Pandas uses these index level names as the new column names when the index is reset. Additionally, the reset_index
 method has a name
 parameter corresponding to the new column name of the Series values.

All Series have a name
 attribute that can be set directly or with the rename
 method. It is this attribute that becomes the column name when using reset_index
 .





There's more...


One of the keys to using stack
 is to place all of the columns that you do not wish to transform in the index. The dataset in this recipe was initially read with the states in the index. Let's take a look at what would have happened if we did not read the states into the index:

>>> state_fruit2 = pd.read_csv('data/state_fruit2.csv')

>>> state_fruit2




As the state names are not in the index, using stack
 on this DataFrame reshapes all values into one long Series of values:

>>> state_fruit2.stack()

0  State       Texas

   Apple          12
   Orange         10
   Banana         40
1  State     Arizona
   Apple           9
   Orange          7
   Banana         12
2  State     Florida
   Apple           0
   Orange         14
   Banana        190
dtype: object

This command reshapes all the columns, this time including the states, and is not at all what we need. In order to reshape this data correctly, you will need to put all the non-reshaped columns into the index first with the set_index
 method, and then use stack
 . The following code gives a similar result to step 1:

>>> state_fruit2.set_index('State').stack()





See also



	Pandas official documentation on Reshaping and Pivot Tables
 (http://bit.ly/2xbnNms
 )

	Pandas official documentation on the stack
 method (http://bit.ly/2vWZhH1
 )







Tidying variable values as column names with melt


Like most large Python libraries, pandas has many different ways to accomplish the same task--the differences usually being readability and performance. Pandas contains a DataFrame method named 
melt
 that
 works similarly to the 
stack

 method described in the previous recipe but gives a bit more flexibility.

Before pandas version 0.20, melt
 was only provided as a function that had to be accessed with pd.melt
 . Pandas is still an evolving library and you need to expect changes with each new version. Pandas has been making a push to move all functions that only operate on DataFrames to methods, such as they did with melt
 . This is the preferred way to use melt
 and the way this recipe uses it. Check the What's New
 part of the pandas documentation to stay up to date with all the changes (http://bit.ly/2xzXIhG
 ).





Getting ready


In this recipe, we use the melt
 method to tidy a simple DataFrame with variable values as column names.





How to do it...



	Read in the state_fruit2
 dataset and identify which columns need to be transformed and which ones do not:



>>> state_fruit2 = pd.read_csv('data/state_fruit2.csv')

>>> state_fruit2





	Use the melt
 method by passing the appropriate columns to the id_vars
 and value_vars
 parameters:



>>> state_fruit2.melt(id_vars=['State'],

                      value_vars=['Apple', 'Orange', 'Banana'])





	This one step creates tidy data for us. By default, melt
 refers to the transformed former column names as variable
 and the corresponding values as value
 . Conveniently, melt
 has two additional parameters, var_name
 and value_name
 , that give you the ability to rename these two columns:



>>> state_fruit2.melt(id_vars=['State'],

                      value_vars=['Apple', 'Orange', 'Banana'],

                      var_name='Fruit',

                      value_name='Weight')








How it works...


The melt
 method is powerful and dramatically reshapes your DataFrame. It takes up to five parameters, with two of them being crucial to understanding how to reshape your data correctly:


	
id_vars
 is
 a list of column names that you want to preserve as columns and not reshape


	
value_vars
 is
 a list of column names that you want to reshape into a single column



The id_vars
 , or the identification variables, remain in the same column but repeat for each of the columns passed to value_vars
 . One crucial aspect of melt
 is that it ignores values in the index, and, in fact, it silently drops your index and replaces it with a default RangeIndex
 . This means that if you do have values in your index that you would like to keep, you will need to reset the index first before using melt
 .

It is somewhat common terminology to refer to the transformation of horizontal column names into vertical column values as melting
 , stacking
 , or unpivoting
 .





There's more...


All the parameters for the melt
 method are optional, and if you desire all your values to be in a single column and their old column labels to be in the other, you may call melt
 with just its defaults:

>>> state_fruit2.melt()




More realistically, you might have lots of variables that need melting and would like to specify only the identification variables. In that case, calling melt
 in the following manner will yield the same result as in step 2. You actually don't even need a list when melting a single column and can simply pass its string value:

>>> state_fruit2.melt(id_vars='State')





See also



	Pandas official documentation on the melt
 method (http://bit.ly/2vcuZNJ
 )

	Pandas developers discussion of melt
 and other similar functions being converted to methods (http://bit.ly/2iqIQhI
 )







Stacking multiple groups of variables simultaneously


Some datasets contain multiple groups of variables as column names that need to be stacked simultaneously into their own columns. An example with the movie
 dataset can help clarify this. Let's begin by selecting all columns containing the actor names and their corresponding Facebook likes:

>>> movie = pd.read_csv('data/movie.csv')

>>> actor = movie[['movie_title', 'actor_1_name', 

                   'actor_2_name', 'actor_3_name', 

                   'actor_1_facebook_likes',

                   'actor_2_facebook_likes',

                   'actor_3_facebook_likes']]

>>> actor.head()




If we define our variables as the title of the movie, the actor name, and the number of Facebook likes, then we will need to stack independently two sets of columns, which is not possible using a single call to stack
 or melt
 .





Getting ready


In this recipe, we will tidy our actor
 DataFrame by simultaneously stacking the actor names and their corresponding Facebook likes with the wide_to_long
 function.





How to do it...



	We will be using the versatile wide_to_long
 function to reshape our data into tidy form. To use this function, we will need to change the column names that we are stacking, so that they end with a digit. We first create a user-defined function to change the column names:



>>> def change_col_name(col_name):

        col_name = col_name.replace('_name', '')

        if 'facebook' in col_name:

            fb_idx = col_name.find('facebook')

            col_name = col_name[:5] + col_name[fb_idx - 1:] \

                                    + col_name[5:fb_idx-1]

        return col_name


	Pass this function to
 the rename
 method to transform all the column names:



>>> actor2 = actor.rename(columns=change_col_name)

>>> actor2.head()





	Use the wide_to_long
 function to stack the actor and Facebook sets of columns simultaneously:



>>> stubs = ['actor', 'actor_facebook_likes']

>>> actor2_tidy = pd.wide_to_long(actor2, 

                                  stubnames=stubs, 

                                  i=['movie_title'], 

                                  j='actor_num', 

                                  sep='_')

>>> actor2_tidy.head()








How it works...


The wide_to_long
 function
 works in a fairly specific manner. Its main parameter is stubnames
 , which is a list of strings. Each string represents a single column grouping. All columns that begin with this string will be stacked into a single column. In this recipe, there are two groups of columns: actor
 , and actor_facebook_likes
 . By default, each of these groups of columns will need to end in a digit. This digit will subsequently be used to label the reshaped data. Each of these column groups has an underscore character separating the stubname
 from the ending digit. To account for this, you must use the sep
 parameter.

The original column names do not match the pattern needed for wide_to_long
 to work. The column names could have been changed manually by exactly specifying their values with a list. This could quickly become a lot of typing so instead, we define a function that automatically converts our columns to a format that works. The change_col_name
 function
 removes _name
 from the actor columns and rearranges the Facebook columns so that now they both end in digits.

To actually accomplish the column renaming, we use the rename
 method in step 2. It accepts many different types of arguments, one of which is a function. When passing it to a function, every column name gets implicitly passed to it one at a time.

We have now correctly created two independent groups of columns, those beginning with actor
 and actor_facebook_likes
 that will be stacked.
 In addition to this, wide_to_long
 requires a unique column, parameter i
 , to act as an identification variable that will not be stacked. Also required is the parameter j
 , which simply renames the identifying digit stripped from the end of the original column names. By default, the prefix parameter contains the regular expression
 , \d+
 that searches for one more or more digits. The \d
 is a special token that matches the digits 0-9. The plus sign, +
 , makes the expression match for one or more of these digits.

To become a powerful user of the str
 methods, you will need to be familiar with regular expressions, which are a sequence of characters that match a particular pattern within some text. They consist of metacharacters
 , which have a special meaning, and literal
 characters. To make yourself useful with regular expressions check this short tutorial from Regular-Expressions.info
 (http://bit.ly/2wiWPbz
 ).





There's more...


The function wide_to_long
 works when all groupings of variables have the same numeric ending like they did in this recipe. When your variables do not have the same ending or don't end in a digit, you can still use wide_to_long
 to do simultaneous column stacking. For instance, let's take a look at the following dataset:

>>> df = pd.read_csv('data/stackme.csv')

>>> df




Let's say we wanted columns a1
 and b1
 stacked together, as well as columns d
 and e
 . Additionally, we wanted to use a1
 and b1
 as labels for the rows. To accomplish this task, we would need to rename the columns so that they ended in the label we desired:

>>> df2 = df.rename(columns = {'a1':'group1_a1', 'b2':'group1_b2',

                               'd':'group2_a1', 'e':'group2_b2'})

>>> df2




We would then need to modify the suffix parameter, which normally defaults to a regular expression that selects digits. Here, we simply tell it to find any number of characters:

>>> pd.wide_to_long(df2, 

                    stubnames=['group1', 'group2'], 

                    i=['State', 'Country', 'Test'], 

                    j='Label', 

                    suffix='.+', 

                    sep='_')








See also



	Pandas official documentation for wide_to_long
 (http://bit.ly/2xb8NVP
 )







Inverting stacked data


DataFrames have two similar methods, stack
 and melt
 , to convert horizontal column names into vertical column values. DataFrames have the ability to invert these two operations directly with the unstack
 and pivot
 methods respectively.  stack
 /unstack
 are simpler methods that allow control over only the column/row indexes, while melt
 /pivot
 gives more flexibility to choose which columns are reshaped.





Getting ready


In this recipe, we will stack
 /melt
 a dataset and promptly invert the operation with unstack
 /pivot
 back to its original form.





How to do it...



	Read in the college
 dataset with the institution name as the index, and with only the undergraduate race columns:



>>> usecol_func = lambda x: 'UGDS_' in x or x == 'INSTNM'

>>> college = pd.read_csv('data/college.csv', 

                          index_col='INSTNM', 

                          usecols=usecol_func)

>>> college.head()





	Use the stack
 method to convert each horizontal column name into a vertical index level:



>>> college_stacked = college.stack()

>>> college_stacked.head(18)

INSTNM                                         
Alabama A &amp; M University         UGDS_WHITE    0.0333
                                     UGDS_BLACK    0.9353
                                     UGDS_HISP     0.0055
                                     UGDS_ASIAN    0.0019
                                     UGDS_AIAN     0.0024
                                     UGDS_NHPI     0.0019
                                     UGDS_2MOR     0.0000
                                     UGDS_NRA      0.0059
                                     UGDS_UNKN     0.0138
University of Alabama at Birmingham  UGDS_WHITE    0.5922
                                     UGDS_BLACK    0.2600
                                     UGDS_HISP     0.0283
                                     UGDS_ASIAN    0.0518
                                     UGDS_AIAN     0.0022
                                     UGDS_NHPI     0.0007
                                     UGDS_2MOR     0.0368
                                     UGDS_NRA      0.0179
                                     UGDS_UNKN     0.0100
dtype: float64


	Invert this stacked data back to its original form with the unstack
 Series method:



>>> college_stacked.unstack()


	A similar sequence of operations can be done with melt
 followed by pivot
 . First, read in the data without putting the institution name in the index:



>>> college2 = pd.read_csv('data/college.csv', 

                          usecols=usecol_func)

>>> college2.head()





	Use the melt
 method to transpose all the race columns into a single column:



>>> college_melted = college2.melt(id_vars='INSTNM', 

                                   var_name='Race',

                                   value_name='Percentage')

>>> college_melted.head()





	Use the pivot
 method to invert this previous result:



>>> melted_inv = college_melted.pivot(index='INSTNM', 

                                      columns='Race',

                                      values='Percentage')

>>> melted_inv.head()





	Notice that the institution names are now shuttled over into the index and are not in their original order. The column names are not in their original order. To get an exact replication of our starting DataFrame from step 4, use the .loc
 indexing operator to select rows and columns simultaneously and then reset the index:



>>> college2_replication = melted_inv.loc[college2['INSTNM'],

                                          college2.columns[1:]]\

                                     .reset_index()

>>> college2.equals(college2_replication)

True





How it works...


There are multiple ways to accomplish the same thing in step 1. Here, we show the versatility of the read_csv
 function. The usecols
 parameter accepts either a list of the columns that we would like to import or a function that dynamically determines them. We use an anonymous function that checks whether the column name contains UGDS_
 or is equal to INSTNM
 . The function is passed each column name as a string and must return a boolean. A huge amount of memory can be saved in this manner.

The stack
 method in step 2 puts all column names into the innermost index level and returns a Series. In step 3, the unstack
 method inverts this operation by taking all the values in the innermost index level converting them to column names.

The result from step 3 isn't quite an exact replication of step 1. There are entire rows of missing values, and by default, the stack
 method drops these during step 2. To keep these missing values and create an exact replication, use dropna=False
 in the stack
 method.

Step 4 reads in the same dataset as in step 1 but does not put the institution name in the index because the melt
 method isn't able to access it. Step 5 uses the melt
 method to transpose all the Race
 columns. It does this by leaving the value_vars
 parameter as its default value None
 . When not specified, all the columns not present in the id_vars
 parameter get transposed.

Step 6 inverts the operation from step 5 with the pivot
 method, which accepts three parameters. Each parameter takes a single column as a string. The column referenced by the index
 parameter remains vertical and becomes the new index. The values of the column referenced by the columns
 parameter become the column names. The values referenced by the values
 parameter become tiled to correspond with the intersection of their former index and columns label.

To make an exact replication with pivot
 , we need to sort the rows and columns in the exact order from the original. As the institution name is in the index, we use the .loc
 indexing operator as a way to sort the DataFrame by its original index.





There's more...


To help further understand stack
 /unstack
 , let's use them to transpose
 the college
 DataFrame.

In this context, we are using the precise mathematical definition of the transposing of a matrix, where the new rows are the old columns of the original data matrix.

If you take a look at the output from step 2, you'll notice that there are two index levels. By default, the unstack
 method uses the innermost index level as the new column values. Index levels are numbered beginning from zero from the outside. Pandas defaults the level
 parameter of the unstack
 method to -1, which refers to the innermost index. We can instead unstack
 the outermost column using level=0
 :

>>> college.stack().unstack(0)




There is actually a very simple way to transpose a DataFrame that don't require stack
 or unstack
  by using the transpose
 method or the T
 attribute like this:

>>> college.T

>>> college.transpose()





See also



	Refer to the Selecting DataFrame rows and columns simultaneously
 recipe from Chapter 4
 , Selecting Subsets of Data


	Pandas official documentation of the unstack
 (http://bit.ly/2xIyFvr
 ) and pivot
 (http://bit.ly/2f3qAWP
 ) methods







Unstacking after a groupby aggregation


Grouping data by a single column and performing an aggregation on a single column returns a simple and straightforward result that is easy to consume. When grouping by more than one column, a resulting aggregation might not be structured in a manner that makes consumption easy. Since groupby
 operations by default put the unique grouping columns in the index, the unstack
 method can be extremely useful to rearrange the data so that it is presented in a manner that is more useful for interpretation.





Getting ready


In this recipe, we use the employee
 dataset to perform an aggregation, grouping by multiple columns. We then use the unstack
 method to reshape the result into a format that makes for easier comparisons of different groups.





How to do it...



	Read in the employee dataset and find the mean salary by race:



>>> employee = pd.read_csv('data/employee.csv')

>>> employee.groupby('RACE')['BASE_SALARY'].mean().astype(int)

RACE
American Indian or Alaskan Native    60272
Asian/Pacific Islander               61660
Black or African American            50137
Hispanic/Latino                      52345
Others                               51278
White                                64419
Name: BASE_SALARY, dtype: int64


	This is a very simple groupby
 operation that results in a Series that is easy to read and has no need to reshape. Let's now find the average salary for all races by gender:



>>> agg = employee.groupby(['RACE', 'GENDER'])['BASE_SALARY'] \

                  .mean().astype(int)

>>> agg

RACE                               GENDER
American Indian or Alaskan Native  Female    60238
                                   Male      60305
Asian/Pacific Islander             Female    63226
                                   Male      61033
Black or African American          Female    48915
                                   Male      51082
Hispanic/Latino                    Female    46503
                                   Male      54782
Others                             Female    63785
                                   Male      38771
White                              Female    66793
                                   Male      63940
Name: BASE_SALARY, dtype: int64


	This aggregation is more complex and can be reshaped to make different comparisons easier. For instance, it would be easier to compare male versus female salaries for each race if they were side by side and not vertical as they are now. Let's unstack the gender index level:



>>> agg.unstack('GENDER')





	Similarly, we can unstack
 the race index level:



>>> agg.unstack('RACE')








How it works...


Step 1 has the simplest possible aggregation with a single grouping column (RACE
 ), a single aggregating column (BASE_SALARY
 ), and a single aggregating function (mean
 ). This result is easy to consume and doesn't require any more processing to evaluate. Step 2 slightly increases the complexity by grouping by both race and gender together. The resulting MultiIndex Series contains all the values in a single dimension, which makes comparisons more difficult. To make the information easier to consume, we use the unstack
 method to convert the values in one (or more) of the levels to columns.


By default,
 unstack
 uses the innermost index level as the new columns. You can specify the exact level you would like to unstack with the
 level
 parameter, which accepts either the level name as a string or the level integer location. It is preferable to use the level name over the integer location to avoid ambiguity. Steps 3 and 4 unstack each level, which results in a DataFrame with a single-level index. It is now much easier to compare salaries from each race by gender.






There's more...


If there are multiple grouping and aggregating columns, then the immediate result will be a DataFrame and not a Series. For instance, let's calculate more aggregations than just the mean, as was done in step 2:

>>> agg2 = employee.groupby(['RACE', 'GENDER'])['BASE_SALARY'] \

                   .agg(['mean', 'max', 'min']).astype(int)

>>> agg2




Unstacking the Gender
 column will result in MultiIndex columns. From here, you can keep swapping row and column levels with both the unstack
 and stack
 methods until you achieve the structure of data you desire:

>>> agg2.unstack('GENDER')








See also



	
Refer to the Grouping and aggregating with multiple columns
 recipe
 and functions from Chapter 7
 , Grouping for Aggregation, Filtration, and Transformation










Replicating pivot_table with a groupby aggregation


At first glance, it may seem that the pivot_table
 method provides a unique way to analyze data. However, after a little massaging, it is possible to replicate its functionality exactly with a groupby
 aggregation. Knowing this equivalence can help shrink the universe of pandas functionality.





Getting ready


In this recipe, we use the flights
 dataset to create a pivot table and then recreate it using groupby
 operations.





How to do it...



	Read in the flights dataset, and use the pivot_table
 method to find the total number of cancelled flights per origin airport for each airline:



>>> flights = pd.read_csv('data/flights.csv')

>>> fp = flights.pivot_table(index='AIRLINE', 

                             columns='ORG_AIR', 

                             values='CANCELLED', 

                             aggfunc='sum',

                             fill_value=0).round(2)

>>> fp.head()





	A groupby
 aggregation cannot directly replicate this table. The trick is to group by all the columns in the index
 and columns
 parameters first:



>>> fg = flights.groupby(['AIRLINE', 'ORG_AIR'])['CANCELLED'].sum()

>>> fg.head()

AIRLINE  ORG_AIR
AA       ATL         3
         DEN         4
         DFW        86
         IAH         3
         LAS         3
Name: CANCELLED, dtype: int64


	Use the unstack
 method to pivot the ORG_AIR
 index level to column names:



>>> fg_unstack = fg.unstack('ORG_AIR', fill_value=0)

>>> fp.equals(fg_unstack)

True





How it works...


The pivot_table
 method is very versatile and flexible but performs a rather similar operation to a groupby
 aggregation with step 1 showing a simple example. The index
 parameter takes a column (or columns) that will not be pivoted and whose unique values will be placed in the index. The columns
 parameter takes a column (or columns) that will be pivoted and whose unique values will be made into column names. The values
 parameter takes a column (or columns) that will be aggregated.

There also exists an aggfunc
 parameter that takes an aggregating function (or functions) that determines how the columns in the values
 parameter get aggregated. It defaults to the mean, and, in this example, we change it to calculate the sum. Additionally, some unique combinations of AIRLINE
 and ORG_AIR
 do not exist. These missing combinations will default to missing values in the resulting DataFrame. Here, we use the fill_value
 parameter to change them to zero.

Step 2 begins the replication process using all the columns in the index
 and columns
 parameter as the grouping columns. This is the key to making this recipe work. A pivot table is simply an intersection of all the unique combinations of the grouping columns. Step 3 finishes the replication by pivoting the innermost index level into column names with the unstack
 method. Just like with pivot_table
 , not all combinations of AIRLINE
 and ORG_AIR
 exist; we again use the fill_value
 parameter to force these missing intersections to zero.





There's more...


It is possible to replicate much more complex pivot tables with groupby
 aggregations. For instance, take the following result from pivot_table
 :

>>> flights.pivot_table(index=['AIRLINE', 'MONTH'],

                        columns=['ORG_AIR', 'CANCELLED'],

                        values=['DEP_DELAY', 'DIST'],

                        aggfunc=[np.sum, np.mean],

                        fill_value=0)




To replicate this with a groupby
 aggregation, simply follow the same pattern from the recipe and place all the columns from the index
 and columns
 parameters into the groupby
 method and then unstack
 the columns:

>>> flights.groupby(['AIRLINE', 'MONTH', 'ORG_AIR', 'CANCELLED']) \

           ['DEP_DELAY', 'DIST'] \

           .agg(['mean', 'sum']) \

           .unstack(['ORG_AIR', 'CANCELLED'], fill_value=0) \

           .swaplevel(0, 1, axis='columns')

There are a few differences. The pivot_table
 method does not accept aggregation functions as strings when passed as a list like the agg
 groupby method. Instead, you must use NumPy functions. The order of the column levels also differs, with pivot_table
 putting the aggregation functions at a level preceding the columns in the values
 parameter. This is equalized with the swaplevel
 method that, in this instance, switches the order of the top two levels.

As of the time of writing this book, there is a bug when unstacking more than one column. The fill_value
 parameter is ignored (http://bit.ly/2jCPnWZ
 ). To work around this bug, chain .fillna(0)
 to the end of the code.





Renaming axis levels for easy reshaping


Reshaping with the stack
 /unstack
 methods is far easier when each axis (index/column) level has a name. Pandas allows users to reference each axis level by integer location or by name. Since integer location is implicit and not explicit, you should consider using level names whenever possible. This advice follows from The
 Zen of Python
 (http://bit.ly/2xE83uC
 ), a short list of guiding principles for Python of which the second one is Explicit is better than implicit
 .





Getting ready


When grouping or aggregating with multiple columns, the resulting pandas object will have multiple levels in one or both of the axes. In this recipe, we will name each level of each axis and then use the methods stack
 /unstack
 to dramatically reshape the data to the desired form.





How to do it...



	Read in the college dataset, and find a few basic summary statistics on the undergraduate population and SAT math scores by institution and religious affiliation:



>>> college = pd.read_csv('data/college.csv')

>>> cg = college.groupby(['STABBR', 'RELAFFIL']) \

                ['UGDS', 'SATMTMID'] \

                .agg(['size', 'min', 'max']).head(6)





	Notice that both index levels have names and are the old column names. The column levels, on the other hand, do not have names. Use the rename_axis
 method to supply level names to them:



>>> cg = cg.rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

>>> cg





	Now that each axis level has a name, reshaping is a breeze. Use the stack
 method to move the AGG_FUNCS
 column to an index level:



>>> cg.stack('AGG_FUNCS').head()





	By default, stacking places the new column level in the innermost position. Use the swaplevel
 method to switch the placement of the levels:



>>> cg.stack('AGG_FUNCS').swaplevel('AGG_FUNCS', 'STABBR',

                                    axis='index').head()





	We can continue to make use of the axis level names by sorting levels with the sort_index
 method:



>>> cg.stack('AGG_FUNCS') \

      .swaplevel('AGG_FUNCS', 'STABBR', axis='index') \

      .sort_index(level='RELAFFIL', axis='index') \

      .sort_index(level='AGG_COLS', axis='columns').head(6)





	To completely reshape your data, you might need to stack some columns while unstacking others. Chain the two methods together in a single command:



>>> cg.stack('AGG_FUNCS').unstack(['RELAFFIL', 'STABBR'])





	Stack all the columns at once to return a Series:



>>> cg.stack(['AGG_FUNCS', 'AGG_COLS']).head(12)

STABBR  RELAFFIL  AGG_FUNCS  AGG_COLS
AK      0         count      UGDS            7.0
                             SATMTMID        0.0
                  min        UGDS          109.0
                  max        UGDS        12865.0
        1         count      UGDS            3.0
                             SATMTMID        1.0
                  min        UGDS           27.0
                             SATMTMID      503.0
                  max        UGDS          275.0
                             SATMTMID      503.0
AL      0         count      UGDS           71.0
                             SATMTMID       13.0
dtype: float64





How it works...


It is common for the result of a groupby
 aggregation to produce a DataFrame or Series with multiple axis levels. The resulting DataFrame from the groupby
 operation in step 1 has multiple levels for each axis. The column levels are not named, which would require us to reference them only by their integer location. To greatly ease our ability to reference the column levels, we rename them with the rename_axis
 method.

The rename_axis
 method is a bit strange in that it can modify both the level names and the level values based on the type of the first argument passed to it. Passing it a list (or a scalar if there is only one level) changes the names of the levels. Passing it a dictionary or a function changes the values of the levels. In step 2, we pass the rename_axis
 method a list and are returned a DataFrame with all axis levels named.

Once all the axis levels have names, we can easily and explicitly control the structure of data. Step 3 stacks the AGG_FUNCS
 column into the innermost index level. The swaplevel
 method in step 4 accepts the name or position of the levels that you want to swap as the first two arguments. The sort_index
 method is called twice and sorts the actual values of each level. Notice that the values of the column level are the column names SATMTMID
 and UGDS
 .

We can get vastly different output by both stacking and unstacking, as done in step 6. It is also possible to stack every single column level into the index to produce a Series.





There's more...


If you wish to dispose of the level values altogether, you may set them to None
 . A case for this can be made when there is a need to reduce clutter in the visual output of a DataFrame or when it is obvious what the column levels represent and no further processing will take place:

>>> cg.rename_axis([None, None], axis='index') \

      .rename_axis([None, None], axis='columns')








Tidying when multiple variables are stored as column names


One particular flavor of messy data appears whenever the column names contain multiple different variables themselves. A common example of this scenario occurs when age and sex are concatenated together. To tidy datasets like this, we must manipulate the columns with the pandas str
 accessor, an attribute that contains additional methods for string processing.





Getting ready...


In this recipe, we will first identify all the variables of which some will be concatenated together as column names. We then reshape the data and parse the text to extract the correct variable values.





How to do it...



	Read in the men's weightlifting
 dataset, and identify the variables:



>>> weightlifting = pd.read_csv('data/weightlifting_men.csv')

>>> weightlifting





	The variables are the weight category, sex/age category, and the qualifying total. The age and sex variables have been concatenated together into a single cell. Before we can separate them, let's use the melt
 method to transpose the age and sex column names into a single vertical column:



>>> wl_melt = weightlifting.melt(id_vars='Weight Category', 

                                 var_name='sex_age', 

                                 value_name='Qual Total')

>>> wl_melt.head()





	Select the sex_age
 column, and use the split
 method available from the str
 accessor to split the column into two different columns:



>>> sex_age = wl_melt['sex_age'].str.split(expand=True)

>>> sex_age.head()





	This operation returned a completely separate DataFrame with meaningless column names. Let's rename the columns so that we can explicitly access them:



>>> sex_age.columns = ['Sex', 'Age Group']

>>> sex_age.head()





	Use the indexing operator directly after the str
 accessor to select the first character from the Sex
 column:



>>> sex_age['Sex'] = sex_age['Sex'].str[0]

>>> sex_age.head()





	Use the pd.concat
 function to concatenate this DataFrame with wl_melt
 to produce a tidy dataset:



>>> wl_cat_total = wl_melt[['Weight Category', 'Qual Total']]

>>> wl_tidy = pd.concat([sex_age, wl_cat_total], axis='columns')

>>> wl_tidy.head()





	This same result could have been created with the following:



>>> cols = ['Weight Category', 'Qual Total']

>>> sex_age[cols] = wl_melt[cols]





How it works...


The weightlifting
 dataset, like many datasets, has easily digestible information in its raw form, but technically, it is messy, as all but one of the column names contain information for sex and age. Once the variables are identified, we can begin to tidy the dataset. Whenever column names contain variables, you will need to use the melt
 (or stack
 ) method. The Weight Category
 variable is already in the correct position so we keep it as an identifying variable by passing it to the id_vars
 parameter. Note that we don't explicitly need to name all the columns that we are melting with value_vars
 . By default, all the columns not present in id_vars
 get melted.

The sex_age
 column needs to be parsed, and split into two variables. For this, we turn to the extra functionality provided by the str
 accessor, only available to Series (a single DataFrame column). The split
 method is one of the more common methods in this situation, as it can separate different parts of the string into their own column. By default, it splits on an empty space, but you may also specify a string or regular expression with the pat
 parameter. When the expand
 parameter is set to True
 , a new column forms for each independent split character segment. When False
 , a single column is returned, containing a list of all the segments.

After renaming the columns in step 4, we need to use the str
 accessor again. Interestingly enough, the indexing operator is available to select or slice segments of a string. Here, we select the first character, which is the variable for sex. We could go further and split the ages into two separate columns for minimum and maximum age, but it is common to refer to the entire age group in this manner, so we leave it as is.

Step 6 shows one of two different methods to join all the data together. The concat
 function accepts a collection of DataFrames and either concatenates them vertically (axis='index'
 ) or horizontally (axis='columns'
 ). Because the two DataFrames are indexed identically, it is possible to assign the values of one DataFrame to new columns in the other as done in step 7.





There's more...


Another way to complete this recipe, beginning after step 2, is by directly assigning new columns from the sex_age
 column without using the split
 method. The assign
 method may be used to add these new columns dynamically:

>>> age_group = wl_melt.sex_age.str.extract('(\d{2}[-+](?:\d{2})?)',

                                            expand=False)

>>> sex = wl_melt.sex_age.str[0]

>>> new_cols = {'Sex':sex, 

                'Age Group': age_group}

>>> wl_tidy2 = wl_melt.assign(**new_cols) \

                      .drop('sex_age',axis='columns')



>>> wl_tidy2.sort_index(axis=1).equals(wl_tidy.sort_index(axis=1))

True

The Sex
 column is found in the exact same manner as done in step 5. Because we are not using split
 , the Age Group
 column must be extracted in a different manner. The extract
 method uses a complex regular expression to extract very specific portions of the string. To use extract
 correctly, your pattern must contain capture groups. A capture group is formed by enclosing parentheses around a portion of the pattern. In this example, the entire expression is one large capture group. It begins with \d{2}
 , which searches for exactly two digits, followed by either a literal plus or minus, optionally followed by two more digits. Although the last part of the expression, (?:\d{2})?
 , is surrounded by parentheses, the ?:
   denotes that it is not actually a capture group. It is technically a non-capturing group used to express two digits together as optional. The sex_age
 column is no longer needed and is dropped. Finally, the two tidy DataFrames are compared against one another and are found to be equivalent.





See also



	Refer to the site Regular-Expressions.info
 for more on non-capturing groups (http://bit.ly/2f60KSd
 )







Tidying when multiple variables are stored as column values


Tidy datasets must have a single column for each variable. Occasionally, multiple variable names are placed in a single column with their corresponding value placed in another. The general format for this kind of messy data is as follows:




In this example, the first and last three rows represent two distinct observations that should each be rows. The data needs to be pivoted such that it ends up like this:








Getting ready


In this recipe, we identify the column containing the improperly structured variables and pivot it to create tidy data.





How to do it...



	Read in the restaurant inspections
 dataset, and convert the Date
 column data type to datetime64
 :



>>> inspections = pd.read_csv('data/restaurant_inspections.csv',

                              parse_dates=['Date'])

>>> inspections.head()





	This dataset has two variables, Name
 and Date
 , that are each correctly contained in a single column. The Info
 column itself has five different variables: Borough
 , Cuisine
 , Description
 , Grade
 , and Score
 . Let's attempt to use the pivot
 method to keep the Name
 and Date
 columns vertical, create new columns out of all the values in the Info
 column, and use the Value
 column as their intersection:



>>> inspections.pivot(index=['Name', 'Date'],

                      columns='Info', values='Value')

NotImplementedError: > 1 ndim Categorical are not supported at this time


	Unfortunately, pandas developers have not implemented this functionality for us. There is a good chance that in the future, this line of code is going to work. Thankfully, for the most part, pandas has multiple ways of accomplishing the same task. Let's put Name
 , Date
 , and Info
 into the index:



>>> inspections.set_index(['Name','Date', 'Info']).head(10)





	Use the unstack
 method to pivot all the values in the Info
 column:



>>> inspections.set_index(['Name','Date', 'Info']) \

               .unstack('Info').head()





	Make the index levels into columns with the reset_index
 method:



>>> insp_tidy = inspections.set_index(['Name','Date', 'Info']) \

                           .unstack('Info') \

                           .reset_index(col_level=-1)

>>> insp_tidy.head()





	The dataset is tidy, but there is some annoying leftover pandas debris that needs to be removed. Let's use the MultiIndex method droplevel
 to remove the top column level and then rename the index level to None
 :



>>> insp_tidy.columns = insp_tidy.columns.droplevel(0) \

                                         .rename(None)

>>> insp_tidy.head()





	The creation of the column MultiIndex in step 4 could have been avoided by converting that one column DataFrame into a Series with the squeeze
 method. The following code produces the same result as the previous step:



>>> inspections.set_index(['Name','Date', 'Info']) \

               .squeeze() \

               .unstack('Info') \

               .reset_index() \

               .rename_axis(None, axis='columns')





How it works...


In step 1, we notice that there are five variables placed vertically in the Info
 column with their corresponding value in the Value
 column. Because we need to pivot each of these five variables as horizontal column names, it would seem that the pivot
 method would work. Unfortunately, pandas developers have yet to implement this special case when there is more than one non-pivoted column. We are forced to use a different method.

The unstack
 method also pivots vertical data, but only for data in the index. Step 3 begins this process by moving both the columns that will and will not be pivoted into the index with the set_index
 method. Once these columns are in the index, unstack
 can be put to work as done in step 3.

Notice that as we are unstacking a DataFrame, pandas keeps the original column names (here, it is just a single column, Value
 ) and creates a MultiIndex with the old column names as the upper level. The dataset is now essentially tidy but we go ahead and make our non-pivoted columns normal columns with the reset_index
 method. Because we have MultiIndex columns, we can choose which level the new column names will belong to with the col_level
 parameter. By default, the names are inserted into the uppermost level (level 0). We use -1
 to indicate the bottommost level.

After all this, we have some excess DataFrame names and indexes that need to be discarded. Unfortunately, there isn't a DataFrame method that can remove levels, so we must drop down into the index and use its droplevel
 method. Here, we overwrite the old MultiIndex columns with single-level columns. These columns still have a useless name attribute, Info
 , which is renamed to None
 .

Cleaning up the MultiIndex columns could have been avoided by forcing the resulting DataFrame from step 3 to a Series. The squeeze
 method works only on single-column DataFrames and turns them into Series.





There's more...


It is actually possible to use the pivot_table
 method, which has no restrictions on how many non-pivoted columns are allowed. The pivot_table
 method differs from pivot
 by performing an aggregation for all the values that correspond to the intersection between the columns in the index
 and columns
 parameters. Because it is possible that there are multiple values in this intersection, pivot_table
 requires the user to pass it an aggregating function, in order to output a single value. We use the first
 aggregating function, which takes the first of the values of the group. In this particular example, there is exactly one value for each intersection, so there is nothing to be aggregated. The default aggregation function is the mean, which will produce an error here, since some of the values are strings:


>>> inspections.pivot_table(index=['Name', 'Date'], 

                            columns='Info', 

                            values='Value', 

                            aggfunc='first') \

               .reset_index() \

               .rename_axis(None, axis='columns')





See also



	Pandas official documentation of the droplevel
 (http://bit.ly/2yo5BXf
 ) and squeeze
 (http://bit.ly/2yo5TgN
 ) methods







Tidying when two or more values are stored in the same cell


Tabular data, by nature, is two-dimensional, and thus, there is a limited amount of information that can be presented in a single cell. As a workaround, you will occasionally see datasets with more than a single value stored in the same cell. Tidy data allows for exactly a single value for each cell. To rectify these situations, you will typically need to parse the string data into multiple columns with the methods from the str
 Series accessor.





Getting ready...


In this recipe, we examine a dataset that has a column containing multiple different variables in each cell. We use the str
 accessor to parse these strings into separate columns to tidy the data.





How to do it..



	Read in the Texas cities
 dataset, and identify the variables:



>>> cities = pd.read_csv('data/texas_cities.csv')

>>> cities





	The City
 column looks good and contains exactly one value. The Geolocation
 column, on the other hand, contains four variables: latitude
 , latitude direction
 , longitude
 , and longitude direction
 . Let's split the Geolocation
 column into four separate columns:



>>> geolocations = cities.Geolocation.str.split(pat='. ',

                                                expand=True)

>>> geolocations.columns = ['latitude', 'latitude direction',

                            'longitude', 'longitude direction']

>>> geolocations





	Because the original data type for the Geolocation
 was an object, all the new columns are also objects. Let's change latitude
 and longitude
 into floats:



>>> geolocations = geolocations.astype({'latitude':'float',

                                        'longitude':'float'})

>>> geolocations.dtypes

latitude               float64
latitude direction      object
longitude              float64
longitude direction     object
dtype: object


	Concatenate these new columns with the City
 column from the original:



>>> cities_tidy = pd.concat([cities['City'], geolocations],

                            axis='columns')

>>> cities_tidy








How it works...


After reading the data, we decide how many variables there are in the dataset. Here, we chose to split the Geolocation
 column into four variables, but we could have just chosen two for latitude and longitude and used a negative sign to differentiate between west/east and south/north.

There are a few ways to parse the Geolocation
 column with the methods from the str
 accessor. The easiest way is to use the split
 method. We pass it a simple regular expression defined by any character (the period) and a space. When a space follows any character, a split is made, and a new column is formed. The first occurrence of this pattern takes place at the end of the latitude. A space follows the degree character, and a split is formed. The splitting characters are discarded and not kept in the resulting columns. The next split matches the comma and space following directly after the latitude direction.

A total of three splits are made, resulting in four columns. The second line in step 2 provides them with meaningful names. Even though the resulting latitude
 and longitude
 columns appear to be floats, they are not. They were originally parsed from an object column and therefore remain object data types. Step 3 uses a dictionary to map the column names to their new types.

Instead of using a dictionary, which would require a lot of typing if you had many column names, you can use the function to_numeric
 to attempt to convert each column to either integer or float. To apply this function iteratively over each column, use the apply
 method with the following:

>>> geolocations.apply(pd.to_numeric, errors='ignore')

Step 4 concatenates the city to the front of this new DataFrame to complete the process of making tidy data.





There's more...


The split
 method worked exceptionally well in this example with a simple regular expression. For other examples, some columns might require you to create splits on several different patterns. To search for multiple regular expressions, use the pipe character |
 . For instance, if we wanted to split only the degree symbol and comma, each followed by a space, we would do the following:

>>> cities.Geolocation.str.split(pat='° |, ', expand=True)

This returns the same DataFrame from step 2. Any number of additional split patterns may be appended to the preceding string pattern with the pipe character.

The extract
 method is another excellent method which allows you to extract specific groups within each cell. These capture groups must be enclosed in parentheses. Anything that matches outside the parentheses is not present in the result. The following line produces the same output as step 2:

>>> cities.Geolocation.str.extract('([0-9.]+). (N|S), ([0-9.]+). (E|W)',

                                   expand=True)


This regular expression has four capture groups. The first and third groups search for at least one or more consecutive digits with decimals. The second and fourth groups search for a single character (the direction). The first and third capture groups are separated by any character followed by a space. The second capture group is separated by a comma and then a space.






Tidying when variables are stored in column names and values


One particularly difficult form of messy data to diagnose appears whenever variables are stored both horizontally across the column names and vertically down column values. You will typically encounter this type of dataset, not in a database, but from a summarized report that someone else has already generated.






Getting ready


In this recipe, variables are identified both vertically and horizontally and reshaped into tidy data with the melt
 and pivot_table
 methods.





How to do it...



	Read in the sensors
 dataset and identify the variables:



>>> sensors = pd.read_csv('data/sensors.csv')

>>> sensors





	The only variable placed correctly in a vertical column is Group
 . The Property
 column appears to have three unique variables, Pressure
 , Temperature
 , and Flow
 . The rest of the columns 2012
 to 2016
 are themselves a single variable, which we can sensibly name Year
 . It isn't possible to restructure this kind of messy data with a single DataFrame method. Let's begin with the melt
 method to pivot the years into their own column:



>>> sensors.melt(id_vars=['Group', 'Property'], var_name='Year') \

           .head(6)





	This takes care of one of our issues. Let's use the pivot_table
 method to pivot the Property
 column into new column names:



>>> sensors.melt(id_vars=['Group', 'Property'], var_name='Year') \

           .pivot_table(index=['Group', 'Year'],

                        columns='Property', values='value') \

           .reset_index() \

           .rename_axis(None, axis='columns')








How it works...


Once we have identified the variables in step 1, we can begin our restructuring. Pandas does not have a method to pivot columns simultaneously,
  so we must take on this task one step at a time. We correct the years by keeping the Property
 column vertical by passing it to the id_vars
 parameter in the melt
 method.

The result is now precisely the pattern of messy data found in the preceding recipe, Tidying when multiple variables are stored as column values.
 As explained in the There's more
 section of that recipe, we must use pivot_table
 to pivot a DataFrame when using more than one column in the index
 parameter. After pivoting, the Group
 and Year
 variables are stuck in the index. We push them back out as columns. The pivot_table
 method preserves the column name used in the columns
 parameter as the name of the column index. After resetting the index, this name is meaningless, and we remove it with rename_axis
 .





There's more...


Whenever a solution involves melt
 , pivot_table
 , or pivot
 , you can be sure that there is an alternative method using stack
 and unstack
 . The trick is first to move the columns that are not currently being pivoted into the index:

>>> sensors.set_index(['Group', 'Property']) \

           .stack() \

           .unstack('Property') \

           .rename_axis(['Group', 'Year'], axis='index') \

           .rename_axis(None, axis='columns') \

           .reset_index()





Tidying when multiple observational units are stored in the same table



It is generally easier to maintain data when each table contains information from a single observational unit. On the other hand, it can be easier to find insights when all data is in a single table, and in the case of machine learning, all data must be in a single table. The focus of tidy data is not on directly performing analysis. Rather, it is structuring the data so that analysis is easier further down the line, and when there are multiple observational units in one table, they may need to get separated into their own tables.






Getting ready



In this recipe, we use the movie
 dataset to identify the three observational units (movies, actors, and directors) and create separate tables for each. One of the keys to this recipe is understanding that the actor and director Facebook likes are independent of the movie. Each actor and director is mapped to a single value representing their number of Facebook likes. Due to this independence, we can separate the data for the movies, directors, and actors into their own tables. Database folks call this process normalization, which increases data integrity and reduces redundancy.






How to do it...



	Read in the altered movie
 dataset, and output the first five rows:



>>> movie = pd.read_csv('data/movie_altered.csv')

>>> movie.head()





	This dataset contains information on the movie itself, the director, and actors. These three entities can be considered observational units. Before we start, let's use the insert
 method to create a column to uniquely identify each movie:



>>> movie.insert(0, 'id', np.arange(len(movie)))

>>> movie.head()





	Let's attempt to tidy this dataset with the wide_to_long
 function
 to put all the actors in one column and their corresponding Facebook likes in another, and do the same for the director, even though there is only one per movie:



>>> stubnames = ['director', 'director_fb_likes',

                 'actor', 'actor_fb_likes']

>>> movie_long = pd.wide_to_long(movie, 

                                 stubnames=stubnames, 

                                 i='id', 

                                 j='num', 

                                 sep='_').reset_index()



>>> movie_long['num'] = movie_long['num'].astype(int)

>>> movie_long.head(9)





	The dataset is now ready to be split into multiple smaller tables:



>>> movie_table = movie_long[['id', 'year', 'duration', 'rating']]

>>> director_table = movie_long[['id', 'num',

                                 'director', 'director_fb_likes']]

>>> actor_table = movie_long[['id', 'num',

                              'actor', 'actor_fb_likes']]


   
   



	There are still several issues with these tables. The movie
 table duplicates each movie three times, the director table has two missing rows for each ID, and a few movies have missing values for some of the actors. Let's take care of these issues:



>>> movie_entity = movie_entity.drop_duplicates() \

                               .reset_index(drop=True)

>>> director_entity = director_entity.dropna() \

                                     .reset_index(drop=True)

>>> actor_table = actor_table.dropna() \

                             .reset_index(drop=True)


     



	Now that we have separated the observational units into their own tables, let's compare the memory of the original dataset with these three tables:



>>> movie.memory_usage(deep=True).sum()

2318234



>>> movie_table.memory_usage(deep=True).sum() + \

    director_table.memory_usage(deep=True).sum() + \

    actor_table.memory_usage(deep=True).sum()

2627306


	Our new tidier data actually takes up a little more memory. This is to be expected, as all the data in the original columns are simply spread out into the new tables. The new tables also each have an index, and two of them have an extra num
 column, which accounts for the extra memory. We can, however, take advantage of the fact that the count of Facebook likes is independent of the movie, meaning that each actor and director has exactly one count of Facebook likes for all movies. Before we can do this, we need to create another table mapping each movie to each actor/director. Let's first create id
 columns specific to the actor and director tables, uniquely identifying each actor/director:



>>> director_cat = pd.Categorical(director_table['director'])

>>> director_table.insert(1, 'director_id', director_cat.codes)



>>> actor_cat = pd.Categorical(actor_table['actor'])

>>> actor_table.insert(1, 'actor_id', actor_cat.codes)


    



	We can use these tables to form our intermediate tables and unique actor
 /director
 tables. Let's first do this with the director
 tables:



>>> director_associative = director_table[['id', 'director_id',

                                           'num']]

>>> dcols = ['director_id', 'director', 'director_fb_likes']

>>> director_unique = director_table[dcols].drop_duplicates() \

                                           .reset_index(drop=True)


      



	Let's do the same thing with the actor
 table:



>>> actor_associative = actor_table[['id', 'actor_id', 'num']]

>>> acols = ['actor_id', 'actor', 'actor_fb_likes']

>>> actor_unique = actor_table[acols].drop_duplicates() \

                                     .reset_index(drop=True)


     



	Let's find out how much memory our new tables consume:



>>> movie_table.memory_usage(deep=True).sum() + \

    director_associative.memory_usage(deep=True).sum() + \

    director_unique.memory_usage(deep=True).sum() + \

    actor_associative.memory_usage(deep=True).sum() + \

    actor_unique.memory_usage(deep=True).sum()

1833402


	Now that we have normalized our tables, we can build an entity-relationship diagram showing all the tables (entities), columns, and relationships. This diagram was created with the easy to use ERDPlus (https://erdplus.com
 ):












How it works...


After importing the data and identifying the three entities, we must create a unique identifier for each observation so that we can link to the movies, actors and directors together once they have been separated into different tables. In step 2, we simply set the ID column as the row number beginning from zero. In step 3, we use the wide_to_long
 function to simultaneously melt
 the actor
 and director
 columns. It uses the integer suffix of the columns to align the data vertically and places this integer suffix in the index. The parameter j
 is used to control its name. The values in the columns not in the stubnames
 list repeat to align with the columns that were melted.

In step 4, we create our three new tables, keeping the id
 column in each. We also keep the num
 column to identify the exact director
 /actor
 column from which it was derived. Step 5 condenses each table by removing duplicates and missing values.

After step 5, the three observational units are in their own tables, but they still contain the same amount of data as the original (and a bit more)
 , as seen in step 6. To return the correct number of bytes from the
 memory_usage
 method for object
 data type columns, you must set the
 deep
 parameter to
 True
 .


Each actor/director needs only one entry in his or her respective tables. We can't simply make a table of just actor name and Facebook likes, as there would be no way to link the actors back to the original movie. The relationship between movies and actors is called a many-to-many relationship
 . Each movie is associated with multiple actors, and each actor can appear in multiple movies. To resolve this relationship, an intermediate or associative table is created, which contains the unique identifiers (primary keys
 ) of both the movie and actor.

To create associative tables, we must uniquely identify each actor/director. One trick is to create a categorical data type out of each actor/director name with pd.Categorical
 . Categorical data types have an internal map from each value to an integer. This integer is found in the codes
 attribute, which is used as the unique ID. To set up the creation of the associative table, we add this unique ID to the actor
 /director
 tables.

Step 8 and step 9 create the associative tables by selecting both of the unique identifiers. Now, we can reduce the actor
 and director
 tables to just the unique names and Facebook likes. This new arrangement of tables uses 20% less memory than the original. Formal relational databases have entity-relationship diagrams to visualize the tables. In step 10, we use the simple ERDPlus tool to make the visualization, which greatly eases the understanding of the relationships between the tables.





There's more...


It is possible to recreate the original movie
 table by joining all the tables back together. First, join the associative tables to the actor
 /director
 tables. Then pivot the num column, and add the column prefixes back:

>>> actors = actor_associative.merge(actor_unique, on='actor_id') \

                              .drop('actor_id', 1) \

                              .pivot_table(index='id', 

                                           columns='num',

                                           aggfunc='first')



>>> actors.columns = actors.columns.get_level_values(0) + '_' + \

                     actors.columns.get_level_values(1).astype(str)



>>> directors = director_associative.merge(director_unique,

                                           on='director_id') \

                                    .drop('director_id', 1) \

                                    .pivot_table(index='id',

                                                 columns='num',

                                                 aggfunc='first')



>>> directors.columns = directors.columns.get_level_values(0) + '_' + \

                        directors.columns.get_level_values(1) \

                                         .astype(str)







These tables can now be joined together with movie_table
 :

>>> movie2 = movie_table.merge(directors.reset_index(),

                               on='id', how='left') \

                        .merge(actors.reset_index(),

                               on='id', how='left')

>>> movie.equals(movie2[movie.columns])

True





See also



	More on database normalization (http://bit.ly/2w8wahQ
 ), associative tables (http://bit.ly/2yqE4oh
 ), and primary and foreign keys (http://bit.ly/2xgIvEb
 )

	Refer to the Stacking multiple groups of variables simultaneously
 recipe
 in this chapter for more information on the wide_to_long
 function







Combining Pandas Objects


In this chapter, we will cover the following topics:


	Appending new rows to DataFrames

	Concatenating multiple DataFrames together

	Comparing President Trump's and Obama's approval ratings

	Understanding the differences between concat
 , join
 , and merge


	Connecting to SQL databases







Introduction


A wide variety of options are available to combine two or more DataFrames or Series together. The append
 method is the least flexible and only allows for new rows to be appended to a DataFrame. The concat
 method is very versatile and can combine any number of DataFrames or Series on either axis. The join
 method provides fast lookups by aligning a column of one DataFrame to the index of others. The merge
 method provides SQL-like capabilities to join two DataFrames together. 





Appending new rows to DataFrames


When performing a data analysis, it is far more common to create new columns than new rows. This is because a new row of data usually represents a new observation and, as an analyst, it is typically not your job to continually capture new data. Data capture is usually left to other platforms like relational database management systems. Nevertheless, it is a necessary feature to know as it will crop up from time to time.





Getting ready


In this recipe, we will begin by appending rows to a small dataset with the .loc
 indexer and then transition to using the append
 method.





How to do it...



	Read in the names dataset, and output it:



>>> names = pd.read_csv('data/names.csv')

>>> names





	Let's create a list that contains some new data and use the .loc
 indexer to set a single row label equal to this new data:



>>> new_data_list = ['Aria', 1]

>>> names.loc[4] = new_data_list

>>> names





	The .loc
 indexer uses labels to refer to the rows. In this case, the row labels exactly match the integer location. It is possible to append more rows with non-integer labels:



>>> names.loc['five'] = ['Zach', 3]

>>> names





	To be more explicit in associating variables to values, you may use a dictionary. Also, in this step, we can dynamically choose the new index label to be the length of the DataFrame:



>>> names.loc[len(names)] = {'Name':'Zayd', 'Age':2}

>>> names





	A Series can hold the new data as well and works exactly the same as a dictionary:



>>> names.loc[len(names)] = pd.Series({'Age':32,

                                       'Name':'Dean'})

>>> names





	The preceding operations all use the .loc
 indexing operator to make changes to the names
 DataFrame in-place. There is no separate copy of the DataFrame that is returned. In the next few steps, we will look at the append
 method, which does not modify the calling DataFrame. Instead, it returns a new copy of the DataFrame with the appended row(s). Let's begin with the original names
 DataFrame and attempt to append a row. The first argument to append
 must be either another DataFrame, Series, dictionary, or a list of these, but not a list like the one in step 2. Let's see what happens when we attempt to use a dictionary with append
 :



>>> names = pd.read_csv('data/names.csv')

>>> names.append({'Name':'Aria', 'Age':1})

TypeError

: Can only append a Series if ignore_index=True or if the Series has a name


	This error message appears to be slightly incorrect. We are passing a DataFrame and not a Series but nevertheless, it gives us instructions on how to correct it:



>>> names.append({'Name':'Aria', 'Age':1}, ignore_index=True)





	This works but ignore_index
 is a sneaky parameter. When set to True
 , the old index will be removed completely and replaced with a RangeIndex
 from 0 to n-1. For instance, let's specify an index for the names
 DataFrame:



>>> names.index = ['Canada', 'Canada', 'USA', 'USA']

>>> names





	Rerun the code from step 7 and you will get the same result. The original index is completely ignored.

	Let's continue with this names
 dataset with these country strings in the index and use a Series that has a name
 attribute with the append
 method:



>>> s = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))

>>> s

Age        3

Name    Zach
Name: 4, dtype: object



>>> names.append(s)





	The append
 method is more flexible than the .loc
 indexer. It supports appending multiple rows at the same time. One way to accomplish this is with a list of Series:



>>> s1 = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))

>>> s2 = pd.Series({'Name': 'Zayd', 'Age': 2}, name='USA')

>>> names.append([s1, s2])





	Small DataFrames with only two columns are simple enough to manually write out all the column names and values. When they get larger, this process will be quite painful. For instance, let's take a look at the 2016 baseball dataset:



>>> bball_16 = pd.read_csv('data/baseball16.csv')

>>> bball_16.head()





	This dataset contains 22 columns and it would be easy to mistype a column name or forget one altogether if you were manually entering new rows of data. To help protect against these mistakes, let's select a single row as a Series and chain the to_dict
 method to it to get an example row as a dictionary:



>>> data_dict = bball_16.iloc[0].to_dict()

>>> print(data_dict)

{'playerID': 'altuvjo01', 'yearID': 2016, 'stint': 1, 'teamID': 'HOU', 'lgID': 'AL', 'G': 161, 'AB': 640, 'R': 108, 'H': 216, '2B': 42, '3B': 5, 'HR': 24, 'RBI': 96.0, 'SB': 30.0, 'CS': 10.0, 'BB': 60, 'SO': 70.0, 'IBB': 11.0, 'HBP': 7.0, 'SH': 3.0, 'SF': 7.0, 'GIDP': 15.0}


	Clear the old values with a dictionary comprehension assigning any previous string value as an empty string and all others, missing values. This dictionary can now serve as a template for any new data you would like to enter:



>>> new_data_dict = {k: '' if isinstance(v, str) else 

                        np.nan for k, v in data_dict.items()}

>>> print(new_data_dict)

{'playerID': '', 'yearID': nan, 'stint': nan, 'teamID': '', 'lgID': '', 'G': nan, 'AB': nan, 'R': nan, 'H': nan, '2B': nan, '3B': nan, 'HR': nan, 'RBI': nan, 'SB': nan, 'CS': nan, 'BB': nan, 'SO': nan, 'IBB': nan, 'HBP': nan, 'SH': nan, 'SF': nan, 'GIDP': nan}





How it works...


The .loc
 indexing operator is used to select and assign data based on the row and column labels. The first value passed to it represents the row label. In step 2, names.loc[4]
 refers to the row with a label equal to the integer 4. This label does not currently exist in the DataFrame. The assignment statement creates a new row with data provided by the list. As was mentioned in the recipe, this operation modifies the names
 DataFrame itself. If there was a previously existing row with a label equal to the integer 4, this command would have written over it. This modification in-place makes this indexing operator riskier to use than the append
 method, which never modifies the original calling DataFrame.

Any valid label may be used with the .loc
 indexing operator, as seen in step 3. Regardless of what the new label value actually is, the new row will always be appended at the end. Even though assigning with a list works, for clarity it's best to use a dictionary so that we know exactly which columns are associated with each value, as done in step 4.

Step 5 shows a little trick to dynamically set the new label to be the current number of rows in the DataFrame. Data stored in a Series will also get assigned correctly as long as the index labels match the column names.

The rest of the steps use the append
 method, which is a simple method that only appends new rows to DataFrames. Most DataFrame methods allow both row and column manipulation through an axis
 parameter. One exception is with append
 , which can only append rows to DataFrames.

Using a dictionary of column names mapped to values isn't enough information for append to work, as seen by the error message in step 6. To correctly append a dictionary without a row name, you will have to set the ignore_index
 parameter to True
 . Step 10 shows you how to keep the old index by simply converting your dictionary to a Series. Make sure to use the name
 parameter, which is then used as the new index label. Any number of rows may be added with append in this manner by passing a list of Series as the first argument.

When wanting to append rows in this manner with a much larger DataFrame, you can avoid lots of typing and mistakes by converting a single row to a dictionary with the to_dict
 method and then using a dictionary comprehension to clear out all the old values replacing them with some defaults.





There's more...


Appending a single row to a DataFrame is a fairly expensive operation and if you find yourself writing a loop to append single rows of data to a DataFrame, then you are doing it wrong. Let's first create 1,000 rows of new data as a list of Series:

>>> random_data = []

>>> for i in range(1000):

        d = dict()

        for k, v in data_dict.items():

            if isinstance(v, str):

                d[k] = np.random.choice(list('abcde'))

            else:

                d[k] = np.random.randint(10)

        random_data.append(pd.Series(d, name=i + len(bball_16)))



>>> random_data[0].head()

2B    3
3B    9
AB    3
BB    9
CS    4
Name: 16, dtype: object

Let's time how long it takes to loop through each item making one append at a time:

>>> %%timeit

>>> bball_16_copy = bball_16.copy()

>>> for row in random_data:

        bball_16_copy = bball_16_copy.append(row)

4.88 s ± 190 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

That took nearly five seconds for only 1,000 rows. If we instead pass in the entire list of Series, we get an enormous speed increase:

>>> %%timeit

>>> bball_16_copy = bball_16.copy()

>>> bball_16_copy = bball_16_copy.append(random_data)

78.4 ms ± 6.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

By passing in the list of Series, the time has been reduced to under one-tenth of a second. Internally, pandas converts the list of Series to a single DataFrame and then makes the append.





Concatenating multiple DataFrames together


The versatile concat
 function enables concatenating two or more DataFrames (or Series) together, both vertically and horizontally. As per usual, when dealing with multiple pandas objects simultaneously, concatenation doesn't happen haphazardly but aligns each object by their index.





Getting ready


In this recipe, we combine DataFrames both horizontally and vertically with the concat
 function and then change the parameter values to yield different results.





How to do it...



	Read in the 2016 and 2017 stock datasets, and make their ticker symbol the index:



>>> stocks_2016 = pd.read_csv('data/stocks_2016.csv', 

                              index_col='Symbol')

>>> stocks_2017 = pd.read_csv('data/stocks_2017.csv',

                              index_col='Symbol')


     



	Place all the stock
 datasets into a single list, and then call the concat
 function to concatenate them together:



>>> s_list = [stocks_2016, stocks_2017]

>>> pd.concat(s_list)





	By default, the concat
 function concatenates DataFrames vertically, one on top of the other. One issue with the preceding DataFrame is that there is no way to identify the year of each row. The concat
 function allows each piece of the resulting DataFrame to be labeled with the keys
 parameter. This label will appear in the outermost index level of the concatenated frame and force the creation of a MultiIndex. Also, the names
 parameter has the ability to rename each index level for clarity:



>>> pd.concat(s_list, keys=['2016', '2017'], 

              names=['Year', 'Symbol'])





	It is also possible to concatenate horizontally by changing the axis
 parameter to columns
 or 1
 :



>>> pd.concat(s_list, keys=['2016', '2017'],

              axis='columns', names=['Year', None])





	Notice that missing values appear whenever a stock symbol is present in one year but not the other. The concat
 function, by default, uses an outer join, keeping all rows from each DataFrame in the list.  However, it gives us options to only keep rows that have the same index values in both DataFrames. This is referred to as an inner join. We set the join
 parameter to inner
 to change the behavior:



>>> pd.concat(s_list, join='inner', keys=['2016', '2017'],

              axis='columns', names=['Year', None])








How it works...



The first argument is the only argument required for the concat
 function and it must be a sequence of pandas objects, typically a list or dictionary of DataFrames or Series. By default, all these objects will be stacked vertically one on top of the other. In this recipe, only two DataFrames are concatenated, but any number of pandas objects work. When we were concatenating vertically, the DataFrames align by their column names.



In this dataset, all the column names were the same so each column in the 2017 data lined up precisely under the same column name in the 2016 data. However, when they were concatenated horizontally, as in step 4, only two of the index labels matched from both years--AAPL
 and TSLA
 . Therefore, these ticker symbols had no missing values for either year.
 There are two types of alignment possible using concat
 , outer
 (the default) and inner
 referred to by the join
 parameter.





There's more...


The append
 method is a heavily watered down version of concat
 that can only append new rows to a DataFrame. Internally, append
 just calls the concat
 function.
 For instance, step 2 from this recipe may be duplicated with the following:

>>> stocks_2016.append(stocks_2017)





Comparing President Trump's and Obama's approval ratings


Public support of the current President of the United States is a topic that frequently makes it into news headlines and is formally measured through opinion polls. In recent years, there has been a rapid increase in the frequency of these polls and lots of new data rolls in each week. There are many different pollsters that each have their own questions and methodology to capture their data, and thus there exists quite a bit of variability among the data. The
 American Presidency Project from the University of California, Santa Barbara, provides an aggregate approval rating down to a single data point each day.


Unlike most of the recipes in this book, the data is not readily available in a CSV file. Often, as a data analyst, you will need to find data on the web, and use a tool that can scrape it into a format that you can then parse through your local workstation.





Getting ready


In this recipe, we will use the read_html
 function, which comes heavily equipped to scrape data from tables online and turn them into DataFrames. You will also learn how to inspect web pages to find the underlying HTML for certain elements. I used Google Chrome as my browser and suggest you use it, or Firefox, for the web-based steps.





How to do it...



	Navigate to The American Presidency Project
 approval page for President Donald Trump (http://www.presidency.ucsb.edu/data/popularity.php?pres=45
 ). You should get a page that contains a time series plot with the data in a table directly following it:







	The read_html
 function
 is able to scrape tables off web pages and place their data into DataFrames. It works best with simple HTML tables and provides some useful parameters to select the exact table you desire in case there happen to be multiple tables on the same page. Let's go ahead and use read_html
 with its default values, which will return all the tables as DataFrames in a list:



>>> base_url = 'http://www.presidency.ucsb.edu/data/popularity.php?pres={}'

>>> trump_url = base_url.format(45)

>>> df_list = pd.read_html(trump_url)

>>> len(df_list)

14


	The function has returned 14 tables, which seems preposterous at first, as the web page appears to show only a single element that most people would recognize as a table. The read_html
 function formally searches for HTML table elements that begin with <table
 . Let's inspect the HTML page by right-clicking on the approval data table and selecting inspect
 or inspect element
 :







	This opens up the console, which is a very powerful tool for web development. For this recipe, we will only need it for a few tasks. All consoles allow you to search the HTML for a specific word. Let's search for the word table
 . My browser found 15 different HTML tables, very close to the number returned by read_html
 :







	Let's begin inspecting the DataFrames in df_list
 :



>>> df0 = df_list[0]

>>> df0.shape

(308, 1794)



>>> df0.head(7)





	Looking back at the web page, there is a row in the approval table for nearly each day beginning January 22, 2017, until the day the data was scraped--September 25, 2017. This is a little more than eight months or 250 rows of data, which is somewhat close to the 308 lines in that first table. Scanning through the rest of the tables, you can see that lots of empty meaningless tables were discovered, as well as tables for different parts of the web page that don't actually resemble tables. Let's use some of the parameters of the read_html
 function to help us select the table we desire. We can use the match
 parameter to search for a specific string in the table. Let's search for a table with the word Start Date
 in it:



>>> df_list = pd.read_html(trump_url, match='Start Date')

>>> len(df_list)

3


	By searching for a specific string in the table, we have reduced the number of tables down to just three. Another useful parameter is attrs
 , which accepts a dictionary of HTML attributes paired with their value. We would like to find some unique attributes for our particular table. To do this, let's right-click again in our data table. This time, make sure to click at the very top in one of the table headers. For example, right click on President,
 and select inspect
 or inspect element
 again:







	The element that you selected should be highlighted. This is actually not the element we are interested in. Keep looking until you come across an HTML tag beginning with <table
 . All the words to the left of the equal signs are the attributes or attrs
 and to the right are the values. Let's use the align
 attribute with its value center
 in our search:



>>> df_list = pd.read_html(trump_url, match='Start Date',

                           attrs={'align':'center'})

>>> len(df_list)

1



>>> trump = df_list[0]

>>> trump.shape

(249, 19)



>>> trump.head(8)





	We only matched with one table and the number of rows is very close to the total days between the first and last dates. Looking at the data, it appears that we have indeed found the table we are looking for. The six column names appear to be on line 4. We can go even further and precisely select the rows we want to skip and which row we would like to use for the column names with the skiprows
 and header
 parameters. We can also make sure that the start and end dates are coerced correctly to the right data type with the parse_dates
 parameter:



>>> df_list = pd.read_html(trump_url, match='Start Date',

                           attrs={'align':'center'}, 

                           header=0, skiprows=[0,1,2,3,5], 

                           parse_dates=['Start Date',

                                        'End Date'])

>>> trump = df_list[0]

>>> trump.head()





	This is almost exactly what we want, except for the columns with missing values. Let's use the dropna
 method to drop columns with all values missing:



>>> trump = trump.dropna(axis=1, how='all')

>>> trump.head()





	Let's fill the missing values in the President
 column in a forward direction with the ffill
 method. Let's first check whether there are any missing values in the other columns:



>>> trump.isnull().sum()

President         242
Start Date          0
End Date            0
Approving           0
Disapproving        0
unsure/no data      0
dtype: int64



>>> trump = trump.ffill()

trump.head()





	Finally, it is important to check the data types to ensure they are correct:



>>> trump.dtypes

President                 object
Start Date        datetime64[ns]
End Date          datetime64[ns]
Approving                  int64
Disapproving               int64
unsure/no data             int64
dtype: object


	Let's build a function with all the steps combined into one to automate the process of retrieving approval data for any President:



>>> def get_pres_appr(pres_num):

        base_url = 'http://www.presidency.ucsb.edu/data/popularity.php?pres={}'

        pres_url = base_url.format(pres_num)

        df_list = pd.read_html(pres_url, match='Start Date',

                               attrs={'align':'center'}, 

                               header=0, skiprows=[0,1,2,3,5], 

                               parse_dates=['Start Date',

                                            'End Date'])

        pres = df_list[0].copy()

        pres = pres.dropna(axis=1, how='all')

        pres['President'] = pres['President'].ffill()

        return pres.sort_values('End Date') \

                   .reset_index(drop=True)


	The only parameter, pres_num
 , denotes the order number of each president. Barack Obama was the 44th President of the United States; pass 44 to the get_pres_appr
 function to retrieve his approval numbers:



>>> obama = get_pres_appr(44)

>>> obama.head()





	There is Presidential approval rating data dating back to 1941 during President Franklin Roosevelt's third term. With our custom function along with the concat
 function, it is possible to grab all the presidential approval rating data from this site. For now, let's just grab the approval rating data for the last five presidents and output the first three rows for each President:



>>> pres_41_45 = pd.concat([get_pres_appr(x) for x in range(41,46)],

                            ignore_index=True)

>>> pres_41_45.groupby('President').head(3)





	Before continuing, let's determine if there are any dates with multiple approval ratings:



>>> pres_41_45['End Date'].value_counts().head(8)

1990-08-26    2
1990-03-11    2
1999-02-09    2
2013-10-10    2
1990-08-12    2
1992-11-22    2
1990-05-22    2
1991-09-30    1
Name: End Date, dtype: int64


	Only a few of the days have duplicate values. To help simplify our analysis, let's keep only the first row where the duplicate date exists:



>>> pres_41_45 = pres_41_45.drop_duplicates(subset='End Date')


	Let's get a few summary statistics on the data:



>>> pres_41_45.shape

(3679, 6)



>>> pres_41_45['President'].value_counts()

Barack Obama          2786
George W. Bush         270
Donald J. Trump        243
William J. Clinton     227
George Bush            153
Name: President, dtype: int64



>>> pres_41_45.groupby('President', sort=False) \

                       .median().round(1)





	Let's plot each President's approval rating on the same chart. To do this, we will group by each President, iterate through each group, and individually plot the approval rating for each date:



>>> from matplotlib import cm

>>> fig, ax = plt.subplots(figsize=(16,6))



>>> styles = ['-.', '-', ':', '-', ':']

>>> colors = [.9, .3, .7, .3, .9]

>>> groups = pres_41_45.groupby('President', sort=False)



>>> for style, color, (pres, df) in zip(styles, colors, groups):

        df.plot('End Date', 'Approving', ax=ax,

                label=pres, style=style, color=cm.Greys(color), 

                title='Presedential Approval Rating')





	This chart places all the Presidents sequentially one after the other. We can compare them on a simpler scale by plotting their approval rating against the number of days in office. Let's create a new variable to represent the number of days in office:



>>> days_func = lambda x: x - x.iloc[0]

>>> pres_41_45['Days in Office'] = pres_41_45.groupby('President') \

                                             ['End Date'] \

                                             .transform(days_func)

>>> pres_41_45.groupby('President').head(3)





	We have successfully given each row a relative number of days since the start of the presidency. It's interesting that the new column, Days in Office
 , has a string representation of its value. Let's check its data type:



>>> pres_41_45.dtypes

...

Days in Office    timedelta64[ns]
dtype: object


	The Days in Office
 column is a timedelta64
 object with nanosecond precision. This is far more precision than is needed. Let's change the data type to integer by getting just the days:



>>> pres_41_45['Days in Office'] = pres_41_45['Days in Office'] \

                                             .dt.days

>>> pres_41_45['Days in Office'].head()

0     0
1    32
2    35
3    43
4    46
Name: Days in Office, dtype: int64


	We could plot this data in a similar fashion to what we did in step 19, but there is a completely different method that doesn't involve any looping. By default, when calling the plot
 method on a DataFrame, pandas attempts to plot each column of data as a line plot and uses the index as the x-axis. Knowing this, let's pivot our data so that each President has his own column for approval rating:



>>> pres_pivot = pres_41_45.pivot(index='Days in Office',

                                  columns='President',

                                  values='Approving')

>>> pres_pivot.head()





	Now that each President has his own column of approval ratings, we can plot each column directly without grouping. To reduce the clutter in the plot, we will only plot Barack Obama and Donald J. Trump:



>>> plot_kwargs = dict(figsize=(16,6), color=cm.gray([.3, .7]), 

                       style=['-', '--'], title='Approval Rating')

>>> pres_pivot.loc[:250, ['Donald J. Trump', 'Barack Obama']] \

              .ffill().plot(**plot_kwargs)








How it works...


It is typical to call read_html
 multiple times before arriving at the table (or tables) that you desire. There are two primary parameters at your disposal to specify a table, match
 and attrs
 . The string provided to match
 is used to find an exact match for the actual text in the table. This is text that will show up on the web page itself. The attrs
 parameter, on the other hand, searches for HTML table attributes found directly after the start of the table tag, <table
 . To see more of the table attributes, visit this page from W3 Schools (http://bit.ly/2hzUzdD
 ).

Once we find our table in step 8, we can still take advantage of some other parameters to simplify things. HTML tables don't typically translate directly to nice DataFrames. There are often missing column names, extra rows, and misaligned data. In this recipe, skiprows
 is passed a list of row numbers to skip over when reading the file. They correspond to the rows of missing values in the DataFrame output from step 8. The header
 parameter is also used to specify the location of the column names. Notice that header
 is equal to zero, which may seem wrong at first. Whenever the header parameter is used in conjunction with skiprows
 , the rows are skipped first resulting in a new integer label for each row. The correct column names are in row 4 but as we skipped rows 0 through 3, the new integer label for it is 0.

In step 11, the ffill
 method fills any missing values vertically, going down with the last non-missing value. This method is just a shortcut for fillna(method='ffill')
 .

Step 13 builds a function composed of all the previous steps to automatically get approval ratings from any President, provided you have the order number. There are a few differences in the function. Instead of applying the ffill
 method to the entire DataFrame, we only apply it to the President
 column. In Trump's DataFrame, the other columns had no missing data but this does not guarantee that all the scraped tables will have no missing data in their other columns. The last line of the function sorts the dates in a more natural way for data analysis from the oldest to newest. This changes the order of the index too, so we discard it with reset_index
 to have it begin from zero again.

Step 16 shows a common pandas idiom for collecting multiple, similarly indexed DataFrames into a list before combining them together with the concat
 function. After concatenation into a single DataFrame, we should visually inspect it to ensure its accuracy. One way to do this is to take a glance at the first few rows from each President's section by grouping the data and then using the head
 method on each group.

The summary statistics in step 18 are interesting as each successive President has had lower median approval than the last. Extrapolating the data would lead to naively predicting a negative approval rating within the next several Presidents.

The plotting code in step 19 is fairly complex. You might be wondering why we need to iterate through a groupby
 object, to begin with. In the DataFrame's current structure, it has no ability to plot different groups based on values in a single column. However, step 23 shows you how to set up your DataFrame so that pandas can directly plot each President's data without a loop like this.


To understand the plotting code in step 19, you must first be aware that a groupby
 object is iterable and, when iterating through, yields a tuple containing the current group (here it's just the name of the President) and the sub-DataFrame for just that group. This groupby
 object is zipped together with values controlling the color and linestyle of the plot. We import the colormap module, cm
 , from matplotlib which contains dozens of different colormaps. Passing a float between 0 and 1 chooses a specific color from that colormap and we use it in our plot
 method with the color
 parameter. It is also important to note that we had to create the figure, fig
 , along with a plotting surface, ax
 , to ensure that each approval line was placed on the same plot. At each iteration in the loop, we use the same plotting surface with the identically named parameter, ax
 .


To make a better comparison between Presidents, we create a new column equal to the number of days in office. We subtract the first date from the rest of the dates per President group. When two datetime64
 columns are subtracted, the result is a timedelta64
 object, which represents some length of time, days in this case. If we leave the column with nanosecond precision, the x-axis will similarly display too much precision by using the special dt
 accessor to return the number of days.

A crucial step comes in step 23. We structure the data such that each President has a unique column for their approval rating. Pandas makes a separate line for each column. Finally, in step 24, we use the .loc
 indexer to simultaneously select the first 250 days (rows) along with only the columns for just Trump and Obama. The ffill
 method is used in the rare instances that one of the Presidents has a missing value for a particular day. In Python, it is possible to pass dictionaries that contain the parameter names and their values to functions by preceding them with **
 in a process called dictionary unpacking
 .





There's more...


The plot from step 19 shows quite a lot of noise and the data might be easier to interpret if it were smoothed. One common smoothing method is called the rolling average
 . Pandas offers the rolling
 method for DataFrames and groupby
 objects. It works analogously to the groupby
 method by returning an object waiting for an additional action to be performed on it. When creating it, you must pass the size of the window as the first argument, which can either be an integer or a date offset string.

In this example, we take a 90-day moving average with the date offset string 90D
 . The on
 parameter specifies the column from which the rolling window is calculated:

>>> pres_rm = pres_41_45.groupby('President', sort=False) \

                        .rolling('90D', on='End Date')['Approving'] \

                        .mean()

>>> pres_rm.head()

President    End Date   
George Bush  1989-01-26    51.000000
             1989-02-27    55.500000
             1989-03-02    57.666667
             1989-03-10    58.750000
             1989-03-13    58.200000
Name: Approving, dtype: float64

From here, we can restructure the data so that it looks similar to the output from step 23 with the unstack
 method, and then make our plot:

>>> styles = ['-.', '-', ':', '-', ':']

>>> colors = [.9, .3, .7, .3, .9]

>>> color = cm.Greys(colors)

>>> title='90 Day Approval Rating Rolling Average'

>>> plot_kwargs = dict(figsize=(16,6), style=styles,

                       color = color, title=title)

>>> correct_col_order = pres_41_45.President.unique()



>>> pres_rm.unstack('President')[correct_col_order].plot(**plot_kwargs)








See also



	Colormap references for matplotlib (http://bit.ly/2yJZOvt
 )

	A list of all the date offsets and their aliases (http://bit.ly/2xO5Yg0
 )

	Refer to chapter 11
 , Visualization with Matplotlib, Pandas, and Seaborn








Understanding the differences between concat, join, and merge


The merge
 and join
 DataFrame (and not Series) methods and the concat
 function all provide very similar functionality to combine multiple pandas objects together. As they are so similar and they can replicate each other in certain situations, it can get very confusing when and how to use them correctly. To help clarify their differences, take a look at the following outline:


	
concat
 :
	Pandas function

	Combines two or more pandas objects vertically or horizontally

	Aligns only on the index

	Errors whenever a duplicate appears in the index

	Defaults to outer join with option for inner





	
join
 :
	DataFrame method

	Combines two or more pandas objects horizontally

	Aligns the calling DataFrame's column(s) or index with the other objects' index (and not the columns)

	Handles duplicate values on the joining columns/index by performing a cartesian product

	Defaults to left join with options for inner, outer, and right





	
merge
 :
	DataFrame method

	Combines exactly two DataFrames horizontally

	Aligns the calling DataFrame's column(s)/index with the other DataFrame's column(s)/index

	Handles duplicate values on the joining columns/index by performing a cartesian product

	Defaults to inner join with options for left, outer, and right







The first parameter to the join method is other
  which can either be a single DataFrame/Series or a list of any number of DataFrames/Series.





Getting ready


In this recipe, we will do what is 
 required to combine DataFrames. The first situation is simpler with concat
 while the second is simpler with merge
 .





How to do it...



	Let's read in stock data for 2016, 2017, and 2018 into a list of DataFrames using a loop instead of three different calls to the read_csv
 function. Jupyter notebooks currently only allow a single DataFrame to be displayed on one line. However, there is a way to customize the HTML output with help from the IPython
 library. The user-defined display_frames
 function
 accepts a list of DataFrames and outputs them all in a single row:



>>> from IPython.display import display_html



>>> years = 2016, 2017, 2018

>>> stock_tables = [pd.read_csv('data/stocks_{}.csv'.format(year),

                                index_col='Symbol') 

                    for year in years]



>>> def display_frames(frames, num_spaces=0):

        t_style = '<table style="display: inline;"'

        tables_html = [df.to_html().replace('<table', t_style) 

                       for df in frames]



        space = '&nbsp;' * num_spaces

        display_html(space.join(tables_html), raw=True)



>>> display_frames(stock_tables, 30)

>>> stocks_2016, stocks_2017, stocks_2018 = stock_tables





	The concat
 function is the only one able to combine DataFrames vertically. Let's do this by passing it the list stock_tables
 :



>>> pd.concat(stock_tables, keys=[2016, 2017, 2018])





	It can also combine DataFrames horizontally by changing the axis
 parameter to columns
 :



>>> pd.concat(dict(zip(years,stock_tables)), axis='columns')





	Now that we have started combining DataFrames horizontally, we can use the join
 and merge
 methods to replicate this functionality of concat
 . Here, we use the join
 method to combine the stock_2016
 and stock_2017
 DataFrames. By default, the DataFrames align on their index. If any of the columns have the same names, then you must supply a value to the lsuffix
 or rsuffix
 parameters to distinguish them in the result:



>>> stocks_2016.join(stocks_2017, lsuffix='_2016',

                     rsuffix='_2017', how='outer')





	To exactly replicate the output of the concat
 function from step 3, we can pass a list of DataFrames to the join
 method:



>>> other = [stocks_2017.add_suffix('_2017'),

             stocks_2018.add_suffix('_2018')]

>>> stocks_2016.add_suffix('_2016').join(other, how='outer')





	Let's check whether they actually are exactly equal:



>>> stock_join = stocks_2016.add_suffix('_2016').join(other, 

                                                      how='outer')

>>> stock_concat = pd.concat(dict(zip(years,stock_tables)),

                             axis='columns')

>>> level_1 = stock_concat.columns.get_level_values(1)

>>> level_0 = stock_concat.columns.get_level_values(0).astype(str)

>>> stock_concat.columns = level_1 + '_' + level_0

>>> stock_join.equals(stock_concat)

True


	Now, let's turn to merge
 that, unlike concat
 and join
 , can combine exactly two DataFrames together. By default, merge
 attempts to align the values in the columns that have the same name for each of the DataFrames. However, you can choose to have it align on the index by setting the boolean parameters left_index
 and right_index
 to True
 . Let's merge the 2016 and 2017 stock data together:



>>> stocks_2016.merge(stocks_2017, left_index=True, 

                      right_index=True)





	By default, merge uses an inner join and automatically supplies suffixes for identically named columns. Let's change to an outer join and then perform another outer join of the 2018 data to exactly replicate concat
 :



>>> step1 = stocks_2016.merge(stocks_2017, left_index=True, 

                              right_index=True, how='outer',

                              suffixes=('_2016', '_2017'))



>>> stock_merge = step1.merge(stocks_2018.add_suffix('_2018'), 

                              left_index=True, right_index=True,

                              how='outer')



>>> stock_concat.equals(stock_merge)

True


	Now let's turn our comparison to datasets where we are interested in aligning together the values of columns and not the index or column labels themselves. The merge
 method is built exactly for this situation. Let's take a look at two new small datasets, food_prices
 and food_transactions
 :



>>> names = ['prices', 'transactions']

>>> food_tables = [pd.read_csv('data/food_{}.csv'.format(name)) 

                    for name in names]

>>> food_prices, food_transactions = food_tables

>>> display_frames(food_tables, 30)





	If we wanted to find the total amount of each transaction, we would need to join these tables on the item
 and store
 columns:



>>> food_transactions.merge(food_prices, on=['item', 'store'])





	The price is now aligned correctly with its corresponding item and store, but there is a problem. Customer 2 has a total of four steak
 items. As the steak
 item appears twice in each table for store B
 , a Cartesian product takes place between them, resulting in four rows. Also, notice that the item, coconut
 , is missing because there was no corresponding price for it. Let's fix both of these issues:



>>> food_transactions.merge(food_prices.query('Date == 2017'),

                            how='left')





	We can replicate this with the join
 method but we must first
 put the joining columns of the food_prices
 DataFrame into the index:



>>> food_prices_join = food_prices.query('Date == 2017') \

                                  .set_index(['item', 'store'])

>>> food_prices_join





	The join
 method only aligns with the index of the passed DataFrame but can use the index or the columns of the calling DataFrame. To use columns for alignment on the calling DataFrame, you will need to pass them to the on
 parameter:



>>> food_transactions.join(food_prices_join, on=['item', 'store'])


	The output matches the result from step 11 exactly. To replicate this with the concat
 method, you would need to put the item and store columns into the index of both DataFrames. However, in this particular case, an error would be produced as a duplicate index value occurs in at least one of the DataFrames (with item steak
 and store B
 ):



>>> pd.concat([food_transactions.set_index(['item', 'store']), 

               food_prices.set_index(['item', 'store'])],

              axis='columns')

Exception

: cannot handle a non-unique multi-index!





How it works...


It can get tedious to repeatedly write the read_csv
 function
 when importing many DataFrames at the same time. One way to automate this process is to put all the file names in a list and iterate through them with a for loop. This was done in step 1 with a list comprehension.

The rest of this step builds a function to display multiple DataFrames on the same line of output in a Jupyter notebook. All DataFrames have a to_html
 method, which returns a raw HTML string representation of the table. The CSS (cascading style sheet) of each table is changed by altering the display
 attribute to inline
 so that elements get displayed horizontally next to one another rather than vertically. To properly render the table in the notebook, you must use the helper function read_html
 provided by the IPython library.

At the end of step 1, we unpack the list of DataFrames into their own appropriately named variables so that each individual table may be easily and clearly referenced. The nice thing about having a list of DataFrames is that, it is the exact requirement for the concat
 function, as seen in step 2. Notice how step 2 uses the keys
 parameter to name each chunk of data. This can be also be accomplished by passing a dictionary to concat
 , as done in step 3.

In step 4, we must change the type of join
 to outer
 to include all of the rows in the passed DataFrame that do not have an index present in the calling DataFrame. In step 5, the passed list of DataFrames cannot have any columns in common. Although there is an rsuffix
 parameter, it only works when passing a single DataFrame and not a list of them. To work around this limitation, we change the names of the columns beforehand with the add_suffix
 method, and then call the join
 method.

In step 7, we use merge
 , which defaults to aligning on all column names that are the same in both DataFrames. To change this default behavior, and align on the index of either one or both, set the left_index
 or right_index
 parameters to True
 . Step 8 finishes the replication with two calls to merge. As you can see, when you are aligning multiple DataFrames on their index, concat
 is usually going to be a far better choice than merge.

In step 9, we switch gears to focus on a situation where merge
 has the advantage. The merge
 method is the only one capable of aligning both the calling and passed DataFrame by column values. Step 10 shows you how easy it is to merge two DataFrames. The on
 parameter is not necessary but provided for clarity.

Unfortunately, it is very easy to duplicate or drop data when combining DataFrames, as shown in step 10. It is vital to take some time to do some sanity checks after combining data. In this instance, the food_prices
 dataset had a duplicate price for steak
 in store B
 so we eliminated this row by querying for only the current year in step 11. We also change to a left join to ensure that each transaction is kept regardless if a price is present or not.

It is possible to use join in these instances but all the columns in the passed DataFrame must be moved into the index first. Finally, concat
 is going to be a poor choice whenever you intend to align data by values in their columns.





There's more...


It is possible to read all files from a particular directory into DataFrames without knowing their names. Python provides a few ways to iterate through directories, with the glob
 module being a popular choice. The gas prices directory contains five different CSV files, each having weekly prices of a particular grade of gas beginning from 2007. Each file has just two columns--the date for the week and the price. This is a perfect situation to iterate through all the files, read them into DataFrames, and combine them all together with the concat
 function. The glob
 module has the glob
 function, which takes a single parameter--the location of the directory you would like to iterate through as a string. To get all the files in the directory, use the string *
 . In this example, *.csv
 returns only files that end in .csv
 . The result from the glob
 function is a list of string filenames, which can be directly passed to the read_csv
 function:

>>> import glob



>>> df_list = []

>>> for filename in glob.glob('data/gas prices/*.csv'):

        df_list.append(pd.read_csv(filename, index_col='Week',

                       parse_dates=['Week']))



>>> gas = pd.concat(df_list, axis='columns')

>>> gas.head()








See also



	IPython official documentation of the read_html
 function (http://bit.ly/2fzFRzd
 )

	Refer to the Exploding indexes
 recipe from Chapter 6
 , Index Alignment








Connecting to SQL databases


To become a serious data analyst, you will almost certainly have to learn some amount of SQL. Much of the world's data is stored in databases that accept SQL statements. There are many dozens of relational database management systems, with SQLite being one of the most popular and easy to use.





Getting ready


We will be exploring the Chinook sample database provided by SQLite that contains 11 tables of data for a music store. One of the best things to do when first diving into a proper relational database is to study a database diagram (sometimes called an entity relationship diagram)
 to better understand how tables are related. The following diagram will be immensely helpful when navigating through this recipe:





In order for this recipe to work, you will need to have the sqlalchemy
 Python package installed. If you installed the Anaconda distribution, then it should already be available to you. SQLAlchemy is the preferred pandas tool when making connections to databases. In this recipe, you will learn how to connect to a SQLite database. You will then ask two different queries, and answer them by joining together tables with the merge
 method.





How to do it...



	Before we can begin reading tables from the chinook
 database, we need to set up our SQLAlchemy engine:



>>> from sqlalchemy import create_engine

>>> engine = create_engine('sqlite:///data/chinook.db')


	We can now step back into the world of pandas and remain there for the rest of the recipe. Let's complete a simple command and read in the tracks
 table with the read_sql_table
 function. The name of the table is the first argument and the SQLAlchemy engine is the second:



>>> tracks = pd.read_sql_table('tracks', engine)

>>> tracks.head()





	For the rest of the recipe, we will answer a couple of different specific queries with help from the database diagram. To begin, let's find the average length of song per genre:



>>> genre_track = genres.merge(tracks[['GenreId', 'Milliseconds']], 

                               on='GenreId', how='left') \

                        .drop('GenreId', axis='columns')



>>> genre_track.head()





	Now we can easily find the average length of each song per genre. To help ease interpretation, we convert the Milliseconds
 column to the timedelta
 data type:



>>> genre_time = genre_track.groupby('Name')['Milliseconds'].mean()

>>> pd.to_timedelta(genre_time, unit='ms').dt.floor('s')

                                             .sort_values()

Name
Rock And Roll        00:02:14
Opera                00:02:54
Hip Hop/Rap          00:02:58
...
Drama                00:42:55
Science Fiction      00:43:45
Sci Fi & Fantasy     00:48:31
Name: Milliseconds, dtype: timedelta64[ns]


	Now let's find the total amount spent per customer. We will need the customers
 , invoices
 , and invoice_items
 tables all connected to each other:



>>> cust = pd.read_sql_table('customers', engine, 

                             columns=['CustomerId','FirstName',

                                      'LastName'])

>>> invoice = pd.read_sql_table('invoices', engine, 

                                 columns=['InvoiceId','CustomerId'])

>>> ii = pd.read_sql_table('invoice_items', engine, 

                            columns=['InvoiceId', 'UnitPrice',

                                     'Quantity'])



>>> cust_inv = cust.merge(invoice, on='CustomerId') \

                   .merge(ii, on='InvoiceId')

>>> cust_inv.head()





	We can now multiply the quantity by the unit price and then find the total amount spent per customer:



>>> total = cust_inv['Quantity'] * cust_inv['UnitPrice']

>>> cols = ['CustomerId', 'FirstName', 'LastName']

>>> cust_inv.assign(Total = total).groupby(cols)['Total'] \

                                  .sum() \

                                  .sort_values(ascending=False) \

                                  .head()

CustomerId  FirstName  LastName  
6           Helena     Holý          49.62
26          Richard    Cunningham    47.62
57          Luis       Rojas         46.62
46          Hugh       O'Reilly      45.62
45          Ladislav   Kovács        45.62
Name: Total, dtype: float64





How it works...


The create_engine
 function requires a connection string in order to work properly. The connection string for SQLite is very simple, and is just the location of the database, which is located in the data directory. Other relational database management systems have more complex connection strings. You will need to provide a username, password, hostname, port, and optionally, a database. You will also need to supply the SQL dialect and the driver. The general form for the connection string is as follows: 
dialect
 +
 driver
 :
 //
 username
 :
 password
 @host
 :
 port
 /
 database

 . The driver for your particular relational database might need to be installed separately.


Once we have created the engine, selecting entire tables into DataFrames is very easy with the read_sql_table
 function in step 2. Each of the tables in the database has a primary key uniquely identifying each row. It is identified graphically with a key symbol in the diagram. In step 3, we link genres to tracks through GenreId
 . As we only care about the track length, we trim the tracks DataFrame down to just the columns we need before performing the merge. Once the tables have merged, we can answer the query with a basic groupby
 operation.

We go one step further and convert the integer milliseconds into a Timedelta object that is far easier to read. The key is passing in the correct unit of measurement as a string. Now that we have a Timedelta Series, we can use the dt
 attribute to access the floor
 method, which rounds the time down to the nearest second.

The query required to answer step 5 involves three tables. We can trim the tables down significantly to only the columns we need by passing them to the columns
 parameter. When using merge
 , the joining columns are not kept when they have the same name. In step 6, we could have assigned a column for the price times quantity with the following:

cust_inv['Total'] = cust_inv['Quantity'] * cust_inv['UnitPrice']

There is nothing wrong with assigning columns in this manner. We chose to dynamically create a new column with the assign method to allow a continuous chain of methods.





There's more...


If you are adept with SQL, you can write a SQL query as a string and pass it to the read_sql_query
 function. For example, the following will reproduce the output from step 4:

>>> sql_string1 = '''

    select 

        Name, 

        time(avg(Milliseconds) / 1000, 'unixepoch') as avg_time

    from (

            select 

                g.Name, 

                t.Milliseconds

            from 

                genres as g 

            join

                tracks as t

                on 

                    g.genreid == t.genreid

         )

    group by 

        Name

    order by 

         avg_time

'''

>>> pd.read_sql_query(sql_string1, engine)




To reproduce the answer from step 6, use the following SQL query:

>>> sql_string2 = '''

    select 

          c.customerid, 

          c.FirstName, 

          c.LastName, 

          sum(ii.quantity * ii.unitprice) as Total

    from

         customers as c

    join

         invoices as i

              on c.customerid = i.customerid

    join

        invoice_items as ii

              on i.invoiceid = ii.invoiceid

    group by

        c.customerid, c.FirstName, c.LastName

    order by

        Total desc

'''

>>> pd.read_sql_query(sql_string2, engine)








See also



	
All engine configurations for SQLAlchemy
 (http://bit.ly/2kb07vV
 )


	Pandas official documentation on SQL Queries
 (http://bit.ly/2fFsOQ8












Time Series Analysis


In this chapter, we will cover the following topics:


	Understanding the difference between Python and pandas date tools

	Slicing time series intelligently

	Using methods that only work with a DatetimeIndex

	Counting the number of weekly crimes

	Aggregating weekly crime and traffic accidents separately

	Measuring crime by weekday and year

	Grouping with anonymous functions with a DatetimeIndex

	Grouping by a Timestamp and another column

	Finding the last time crime was 20% lower with merge_asof








Introduction



The roots of pandas lay in analyzing financial time series data. The author, Wes McKinney, was not satisfied with the available Python tools at that time, and decided to build pandas to support his own needs at the hedge fund he was working at. Broadly speaking, time series are simply points of data gathered over time. Most typically, the time is evenly spaced between each data point. Pandas has excellent functionality with regards to manipulating dates, aggregating over different time periods, sampling different periods of time, and much more.






Understanding the difference between Python and pandas date tools


Before we get to pandas, it can help to be aware of and understand core Python's date and time functionality. The datetime
 module provides three distinct data types, date
 , time
 , and datetime
 . Formally, a date
 is a moment in time consisting of just the year, month, and day. For instance, June 7, 2013 would be a date. A time
 consists of hours, minutes, seconds, and microseconds (one-millionth of a second) and is unattached to any date. An example of time would be 12 hours and 30 minutes. A datetime
 consists of both the elements of a date and time together.

On the other hand, pandas has a single object to encapsulate date and time called a Timestamp
 . It has nanosecond (one-billionth of a second) precision and is derived from NumPy's datetime64
 data type. Both Python and pandas each have a timedelta
 object that is useful when doing date addition/subtraction.





Getting ready


In this recipe, we will first explore Python's datetime
 module and then turn to the corresponding and superior date tools in pandas.





How to do it...



	Let's begin by importing the datetime
 module into our namespace and creating a date
 , time
 , and datetime
 object:



>>> import datetime



>>> date = datetime.date(year=2013, month=6, day=7)

>>> time = datetime.time(hour=12, minute=30, 

                         second=19, microsecond=463198)

>>> dt = datetime.datetime(year=2013, month=6, day=7, 

                           hour=12, minute=30, second=19, 

                           microsecond=463198)



>>> print("date is ", date)

>>> print("time is", time)

>>> print("datetime is", dt)



date is 2013-06-07 

time is 12:30:19.463198 

datetime is 2013-06-07 12:30:19.463198


	Let's construct and print out a timedelta
 object, the other major data type from the datetime
 module:



>>> td = datetime.timedelta(weeks=2, days=5, hours=10,

                            minutes=20, seconds=6.73,

                            milliseconds=99, microseconds=8)

>>> print(td)

19 days, 10:20:06.829008


	Add/subtract this timedelta
 to the date
 and datetime
 objects from step 1:



>>> print('new date is', date + td)

>>> print('new datetime is', dt + td)

new date is 2013-06-26
new datetime is 2013-06-26 22:50:26.292206


	Attempting to add a timedelta
 to a time
 object isn't possible:



>>> time + td

TypeError

: unsupported operand type(s) for +: 'datetime.time' and 'datetime.timedelta'


	Let's turn to pandas and its Timestamp
 object, which is a moment in time with nanosecond precision. The Timestamp
 constructor is very flexible, and handles a wide variety of inputs:



>>> pd.Timestamp(year=2012, month=12, day=21, hour=5,

                 minute=10, second=8, microsecond=99)

Timestamp('2012-12-21 05:10:08.000099')



>>> pd.

Timestamp

(

'2016/1/10'

)



Timestamp('2016-01-10 00:00:00')



>>> pd

.

Timestamp

(

'2014-5/10'

)



Timestamp('2014-05-10 00:00:00')



>>> pd

.

Timestamp

(

'Jan 3, 2019 20:45.56'

)



Timestamp('2019-01-03 20:45:33')



>>> pd.

Timestamp

(

'2016-01-05T05:34:43.123456789'

)



Timestamp('2016-01-05 05:34:43.123456789')


	It's also possible to pass in a single integer or float to the Timestamp
 constructor which returns a date equivalent to the number of nanoseconds after the Unix epoch, which is January 1, 1970:



>>> pd.Timestamp(500)

Timestamp('1970-01-01 00:00:00.000000500')



>>> pd.Timestamp(5000, unit='D')

Timestamp('1983-09-10 00:00:00')


	Pandas provides the to_datetime
 function
 that works fairly similarly to the Timestamp
 constructor, but comes with a few different parameters for special situations. See the following examples:



>>> pd.to_datetime('2015-5-13')

Timestamp('2015-05-13 00:00:00')



>>> pd.to_datetime('2015-13-5', dayfirst=True)

Timestamp('2015-05-13 00:00:00')



>>> pd.to_datetime('Start Date: Sep 30, 2017 Start Time: 1:30 pm', 

               format='Start Date: %b %d, %Y Start Time: %I:%M %p')

Timestamp('2017-09-30 13:30:00')



>>> pd.to_datetime(100, unit='D', origin='2013-1-1')

Timestamp('2013-04-11 00:00:00')


	The to_datetime
 function comes equipped with even more functionality. It is capable of converting entire lists or Series of strings or integers to Timestamps. Since we are far more likely to interact with Series or DataFrames and not single scalar values, you are far more likely to use to_datetime
 than Timestamp
 :



>>> s = pd.Series([10, 100, 1000, 10000])

>>> pd.to_datetime(s, unit='D')

0   1970-01-11
1   1970-04-11
2   1972-09-27
3   1997-05-19
dtype: datetime64[ns]



>>> s = pd.Series(['12-5-2015', '14-1-2013',

                   '20/12/2017', '40/23/2017'])

>>> pd.to_datetime(s, dayfirst=True, errors='coerce')

0   2015-05-12
1   2013-01-14
2   2017-12-20

3          NaT
dtype: datetime64[ns]



>>> pd.to_datetime(['Aug 3 1999 3:45:56', '10/31/2017'])

DatetimeIndex(['1999-08-03 03:45:56', 

               '2017-10-31 00:00:00'], dtype='datetime64[ns]', freq=None)


	Analogously to the Timestamp
 constructor and the to_datetime
 function, pandas has Timedelta
 and to_timedelta
 to represent an amount of time. Both the Timedelta
 constructor and the to_timedelta
 function can create a single Timedelta
  object. Like to_datetime
 , to_timedelta
 has quite a bit more functionality and can convert entire lists or Series into Timedelta
 objects.



>>> pd.Timedelta('12 days 5 hours 3 minutes 123456789 nanoseconds')

Timedelta('12 days 05:03:00.123456')



>>> pd.Timedelta(days=5, minutes=7.34)

Timedelta('5 days 00:07:20.400000')



>>> pd.Timedelta(100, unit='W')

Timedelta('700 days 00:00:00')



>>> pd.to_timedelta('67:15:45.454')

Timedelta('2 days 19:15:45.454000')



>>> s = pd.Series([10, 100])

>>> pd.to_timedelta(s, unit='s')

0   00:00:10
1   00:01:40
dtype: timedelta64[ns]



>>> time_strings = ['2 days 24 minutes 89.67 seconds',

                    '00:45:23.6']

>>> pd.to_timedelta(time_strings)

TimedeltaIndex(['2 days 00:25:29.670000', 

                '0 days 00:45:23.600000'], dtype='timedelta64[ns]', freq=None)


	Timedeltas may be added or subtracted from Timestamps and from each other. They may even be divided from each other to return a float:



>>> pd.Timedelta('12 days 5 hours 3 minutes') * 2

Timedelta('24 days 10:06:00')



>>> pd.Timestamp('1/1/2017') + \

    pd.Timedelta('12 days 5 hours 3 minutes') * 2

Timestamp('2017-01-25 10:06:00')



>>> td1 = pd.to_timedelta([10, 100], unit='s')

>>> td2 = pd.to_timedelta(['3 hours', '4 hours'])

>>> td1 + td2

TimedeltaIndex(['03:00:10', '04:01:40'],

               dtype='timedelta64[ns]', freq=None)



>>> pd.Timedelta('12 days') / pd.Timedelta('3 days')

4.0


	Both Timestamps and Timedeltas have a large numbera of features available as attributes and methods. Let's sample a few of them:



>>> ts = pd.Timestamp('2016-10-1 4:23:23.9')



>>> ts.ceil('h')

Timestamp('2016-10-01 05:00:00'



>>> ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second

(2016, 10, 1, 4, 23, 23)



>>> ts.dayofweek, ts.dayofyear, ts.daysinmonth

(5, 275, 31)



>>> ts.to_pydatetime()

datetime.datetime(2016, 10, 1, 4, 23, 23, 900000)



>>> td = pd.Timedelta(125.8723, unit='h')

>>> td

Timedelta('5 days 05:52:20.280000')



>>> td.round('min')

Timedelta('5 days 05:52:00')



>>> td.components

Components(days=5, hours=5, minutes=52, seconds=20, milliseconds=280, microseconds=0, nanoseconds=0)



>>> td.total_seconds()

453140.28





How it works...


The datetime
 module is part of the Python standard library, and is very popular and widely used. For this reason, it is a good idea to have some familiarity with it, as you will likely cross paths with it. The datetime
 module is actually fairly simple with a total of only six types of objects: date
 , time
 , datetime
 , timedelta
 along with two others on timezones. The pandas Timestamp
 and Timedelta
 objects have all the functionality of their datetime
 module counterparts and more. It will be possible to remain completely in pandas when working with time series.

Step 1 shows how to create datetimes, dates, times, and timedeltas with the datetime
 module. Only integers may be used as each component of the date or time, and are passed as separate arguments. Compare this to step 5 where the pandas Timestamp
 constructor can accept the same components as arguments, as well as a wide variety of date strings. In addition to integer components and strings, step 6 shows how a single numeric scalar can be used as a date. The units of this scalar are defaulted to nanoseconds
 (ns
 ) but are changed to days
 (D
 ) in the second statement with the other options being hours
 (h
 ), minutes
 (m
 ), seconds
 (s
 ), milliseconds (ms),
 and microseconds (µs).


Step 2 details the construction of the datetime
 module's timedelta
 object with all of its parameters. Again, compare this to the pandas Timedelta
 constructor shown in step 9, which accepts these same parameters along with strings and scalar numerics.

In addition to the Timestamp
 and Timedelta
 constructors
 , which are only capable of creating a single object, the to_datetime
 and to_timedelta
 functions can convert entire sequences of integers or strings to the desired type. These functions also provide several more parameters not available with the constructors. One of these parameters is errors
 , which is defaulted to the string value raise
 but can also be set to ignore
 or coerce
 . Whenever a string date is unable to be converted, the errors
 parameter determines what action to take. When set to raise
 , an exception is raised and program execution stops. When set to ignore
 , the original sequence gets returned as it was prior to entering the function. When set to coerce
 , the NaT
 (not a time) object is used to represent the new value. The second statement of step 8 converts all values to a Timestamp
  correctly, except for the last one, which is forced to become NaT
 .

Another one of these parameters available only to to_datetime
 is format
 , which is particularly useful whenever a string contains a particular date pattern that is not automatically recognized by pandas. In the third statement of step 7, we have a datetime enmeshed inside some other characters. We substitute the date and time pieces of the string with their respective formatting directives
 .

A date formatting directive appears as a single percentage sign, %, followed by a single character. Each directive specifies some part of a date or time. See the official Python documentation for a table of all the directives (http://bit.ly/2kePoRe
 ).





There's more...


The date formatting directive can actually make quite a large difference when converting a large sequence of strings to Timestamps. Whenever pandas uses
 to_datetime
 to convert a sequence of strings to Timestamps, it searches a large number of different string combinations that represent dates. This is true even if all the strings have the same format. With the
 format
 parameter, we can specify the exact date format, so that pandas doesn't have to search for the correct one each time. Let's create a list of dates as strings and time their conversion to Timestamps both with and without a formatting directive:


>>> date_string_list = ['Sep 30 1984'] * 10000



>>> %timeit pd.to_datetime(date_string_list, format='%b %d %Y')

35.6 ms ± 1.47 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)



>>> %timeit pd.to_datetime(date_string_list)

1.31 s ± 63.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Providing the formatting directive resulted in a 40 times improvement in performance.





See also



	Python official documentation of the datetime
 module (http://bit.ly/2xIjd2b
 )

	Pandas official documentation for Time Series
 (http://bit.ly/2xQcani
 )

	Pandas official for Time Deltas
 (http://bit.ly/2yQTVMQ
 )







Slicing time series intelligently


DataFrame selection and slicing was thoroughly covered in Chapter 4
 , Selecting Subsets of Data
 . When the DataFrame posses a DatetimeIndex
 , even more opportunities arise for selection and slicing.





Getting ready


In this recipe, we will use partial date matching to select and slice a DataFrame with a DatetimeIndex
 .





How to do it...



	Read in the Denver crimes
 dataset from the hdf5
 file crimes.h5
 , and output the column data types and the first few rows. The hdf5
 file format allows efficient storage of large scientific data and is completely different from a CSV text file.



>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime.dtypes

OFFENSE_TYPE_ID              category
OFFENSE_CATEGORY_ID          category
REPORTED_DATE          datetime64[ns]
GEO_LON                       float64
GEO_LAT                       float64
NEIGHBORHOOD_ID              category
IS_CRIME                        int64
IS_TRAFFIC                      int64
dtype: object


	Notice that there are three categorical columns and a Timestamp
 (denoted by NumPy's datetime64
 object). These data types were stored whenever the data file was created, unlike a CSV file, which only stores raw text. Set the REPORTED_DATE
 column as the index in order to make intelligent Timestamp slicing possible:



>>> crime = crime.set_index('REPORTED_DATE')

>>> crime.head()





	As usual, it is possible to select all the rows equal to a single index by passing that value to the .loc
 indexing operator:



>>> crime.loc['2016-05-12 16:45:00']





	With a Timestamp
 in the index, it is possible to select all rows that partially match an index value. For instance, if we wanted all the crimes from May 5, 2016, we would simply select it as follows:



>>> crime.loc['2016-05-12']





	Not only can you select a single date inexactly, but you can do so for an entire month, year, or even hour of the day:



>>> crime.loc['2016-05'].shape

(8012, 7)



>>> crime.loc['2016'].shape

(91076, 7)



>>> crime.loc['2016-05-12 03'].shape

(4, 7)


	The selection strings may also contain the name of the month:



>>> crime.loc['Dec 2015'].sort_index()





	Many other string patterns with month name included also work:



>>> crime.loc['2016 Sep, 15'].shape

(252, 7)



>>> crime.loc['21st October 2014 05'].shape

(4, 7)


	In addition to selection, you may use the slice notation to select precise ranges of data:



>>> crime.loc['2015-3-4':'2016-1-1'].sort_index()





	Notice that all crimes committed on the end date regardless of the time are included in the returned result. This is true for any result using the label-based .loc
 indexer. You can provide as much precision (or lack thereof) to any start or end portion of the slice:



>>> crime.loc['2015-3-4 22':'2016-1-1 11:45:00'].sort_index()








How it works...


One of the many nice features of hdf5
 files is their ability to preserve the data types of each column, which substantially reduces the memory needed. In this case, three of these columns are stored as a pandas category instead of as an object. Storing them as object will lead to a four times increase in memory usage:

>>> mem_cat = crime.memory_usage().sum()

>>> mem_obj = crime.astype({'OFFENSE_TYPE_ID':'object', 

                            'OFFENSE_CATEGORY_ID':'object', 

                            'NEIGHBORHOOD_ID':'object'}) \

                   .memory_usage(deep=True).sum()

>>> mb = 2 ** 20

>>> round(mem_cat / mb, 1), round(mem_obj / mb, 1)

(29.4, 122.7)

In order to intelligently select and slice rows by date using the indexing operator, the index must contain date values. In step 2, we move the REPORTED_DATE
 column into the index and formally create a DatetimeIndex
 as the new index:

>>> crime.index[:2]

DatetimeIndex(['2014-06-29 02:01:00', '2014-06-29 01:54:00'],

dtype='datetime64[ns]', name='REPORTED_DATE', freq=None)

With a DatetimeIndex
 , a huge variety of strings may be used to select rows with the .loc
 indexer. In fact, all strings that can be sent to the pandas Timestamp
 constructor will work here. Surprisingly, it is actually not necessary to use the .loc
 indexer for any of the selections or slices in this recipe. The indexing operator by itself will work in exactly the same manner. For instance, the second statement of step 6 may be written as crime['21st October 2014 05']
 . The indexing operator is normally reserved for columns but flexibly allows for Timestamps to be used whenever there exists a DatetimeIndex
 .

Personally, I prefer using the .loc
 indexer when selecting rows and would always use it over the indexing operator by itself. The .loc
 indexer is explicit and the first value passed to it is always used to select rows.

Steps 8 and 9 show how slicing works in the same manner as selection from the previous steps. Any date that partially matches either the start or end value of the slice is included in the result.





There's more...



Our original crimes DataFrame was not sorted and slicing still worked as expected. Sorting the index will lead to large gains in performance.
 Let's see the difference with slicing done from step 8:

>>> %timeit crime.loc['2015-3-4':'2016-1-1']

39.6 ms ± 2.77 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)



>>> crime_sort = crime.sort_index()

>>> %timeit crime_sort.loc['2015-3-4':'2016-1-1']

758 µs ± 42.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

The sorted DataFrame provides an impressive 50 times performance improvement over the original.





See also



	Refer to Chapter 4
 , Selecting Subsets of Data








Using methods that only work with a DatetimeIndex


There are a number of DataFrame/Series methods that only work with a DatetimeIndex.
 If the index is of any other type, these methods will fail.





Getting ready


In this recipe, we will first use methods to select rows of data by their time component. We will then learn about the powerful DateOffset objects and their aliases.





How to do it...



	Read in the crime hdf5 dataset, set the index as REPORTED_DATE
 , and ensure that we have a DatetimeIndex:



>>> crime = pd.read_hdf('data/crime.h5', 'crime') \

              .set_index('REPORTED_DATE')

>>> print(type(crime.index))

&lt;class 'pandas.core.indexes.datetimes.DatetimeIndex'>


	Use the between_time
 method to select all crimes that occurred between 2 a.m. and 5 a.m., regardless of the date:



>>> crime.between_time('2:00', '5:00', include_end=False).head()





	Select all dates at a specific time with at_time
 :



>>> crime.at_time('5:47').head()





	The first
 methods provide an elegant way of selecting the first n
 segments of time, where n
 is an integer. These segments of time are formally represented by DateOffset objects that can be in the pd.offsets
  module. The DataFrame must be sorted on its index to guarantee that this method will work. Let's select the first six months of crime data:



>>> crime_sort = crime.sort_index()

>>> crime_sort.first(pd.offsets.MonthBegin(6))





	This captured the data from January through June but also, surprisingly, selected a single row in July. The reason for this is that pandas actually uses the time component of the first element in the index, which, in this example, is 6
 minutes. Let's use MonthEnd
 , a slightly different offset:



>>> crime_sort.first(pd.offsets.MonthEnd(6))





	This captured nearly the same amount of data but if you look closely, only a single row from June 30th was captured. Again, this is because the time component of the first index was preserved. The exact search went to 2012-06-30 00:06:00
 . So, how do we get exactly six months of data? There are a couple of ways. All DateOffsets have a normalize
 parameter that, when set to True
 , sets all the time components to zero. The following should get us very close to what we want:



>>> crime_sort.first(pd.offsets.MonthBegin(6, normalize=True))





	This method has successfully captured all the data for the first six months of the year. With normalize set to True
 , the search went to 2012-07-01 00:00:00
 , which would actually include any crimes reported exactly on this date and time. Actually, there is no possible way to use the first method to ensure that only data from January to June is captured. The following very simple slice would yield the exact result:



>>> crime_sort.loc[:'2012-06']


	There are a dozen DateOffset objects for very precisely moving forward or backward to the next nearest offset. Instead of hunting down the DateOffset objects in pd.offsets
 , you can use a string called an offset alias
 instead. For instance, the string for MonthEnd is M
 and for MonthBegin is MS
 . To denote the number of these offset aliases, simply place an integer in front of it. Use this table to find all the aliases (http://bit.ly/2xO5Yg0
 ). Let's see some examples of offset aliases with the description of what is being selected in the comments:



>>> crime_sort.first('5D') # 5 days

>>> crime_sort.first('5B') # 5 business days

>>> crime_sort.first('7W') # 7 weeks, with weeks ending on Sunday

>>> crime_sort.first('3QS') # 3rd quarter start

>>> crime_sort.first('A') # one year end





How it works...


Once we ensure that our index is a DatetimeIndex, we can take advantage of all the methods in this recipe. It is impossible to do selection or slicing based on just the time component of a Timestamp
 with the .loc
 indexer. To select all dates by a range of time, you must use the between_time
 method, or to select an exact time, use at_time
 . Make sure that the passed string for start and end times consists of at least the hour and minute. It is also possible to use time
 objects from the datetime
 module. For instance, the following command would yield the same result as in step 2:

>>> import datetime

>>> crime.between_time(datetime.time(2,0), datetime.time(5,0),

                       include_end=False)

In step 4, we begin using the simple first
 method, but with a complicated parameter offset
 . It must be a DateOffset object or an offset alias as a string. To help understand DateOffset objects, it's best to see what they do to a single Timestamp
 . For example, let's take the first element of the index and add six months to it in two different ways:

>>> first_date = crime_sort.index[0]

>>> first_date

Timestamp('2012-01-02 00:06:00')



>>> first_date + pd.offsets.MonthBegin(6)

Timestamp('2012-07-01 00:06:00')



>>> first_date + pd.offsets.MonthEnd(6)

Timestamp('2012-06-30 00:06:00')

Both the MonthBegin
 and MonthEnd
 offsets don't add or subtract an exact amount of time but effectively round up to the next beginning or end of the month regardless of what day it is. Internally, the first
 method uses the very first index element of the DataFrame and adds the DateOffset passed to it. It then slices up until this new date. For instance, step 4 is equivalent to the following:

>>> step4 = crime_sort.first(pd.offsets.MonthEnd(6))



>>> end_dt = crime_sort.index[0] + pd.offsets.MonthEnd(6)

>>> step4_internal = crime_sort[:end_dt]

>>> step4.equals(step4_internal)

True

Steps 5 through 7 follow from this preceding equivalence directly. In step 8, offset aliases make for a much more compact method of referencing DateOffsets.

The counterpart to the first
 method is the last
 method, which selects the last n
 time segments from a DataFrame given a DateOffset. The groupby object has two methods with the exact same name but with a completely different functionality. They return the first or last element of each group and have nothing to do with having a DatetimeIndex.





There's more...


It is possible to build a custom DateOffset when those available don't exactly suit your needs:

>>> dt = pd.Timestamp('2012-1-16 13:40')

>>> dt + pd.DateOffset(months=1)

Timestamp('2012-02-16 13:40:00')

Notice that this custom DateOffset increased the Timestamp
 by exactly one month. Let's look at one more example using many more date and time components:

>>> do = pd.DateOffset(years=2, months=5, days=3,

                       hours=8, seconds=10)

>>> pd.Timestamp('2012-1-22 03:22') + do

Timestamp('2014-06-25 11:22:10')





See also



	Pandas official documentation of DateOffsets objects
 (http://bit.ly/2fOintG
 )







Counting the number of weekly crimes


The raw Denver crime dataset is huge with over 460,000 rows each marked with a reported date. Counting the number of weekly crimes is one of many queries that can be answered by grouping according to some period of time. The resample
 method provides an easy interface to grouping by any possible span of time.





Getting ready


In this recipe, we will use both the resample
 and groupby
 methods to count the number of weekly crimes.





How to do it...



	
Read in the crime hdf5 dataset, set the index as the
 REPORTED_DATE
 , and then sort it to increase performance for the rest of the recipe:




>>> crime_sort = pd.read_hdf('data/crime.h5', 'crime') \

                   .set_index('REPORTED_DATE') \

                   .sort_index()


	In order to count the number of crimes per week, we need to form a group for each week. The resample
 method takes a DateOffset object or alias and returns an object ready to perform an action on all groups. The object returned from the resample
 method is very similar to the object produced after calling the groupby
 method:



>>> crime_sort.resample('W')

DatetimeIndexResampler [freq=<Week: weekday=6>, axis=0, closed=right, label=right, convention=start, base=0]


	
The offset alias, W
 ,
  was used to inform pandas that we want to group by each week. There isn't much that happened in the preceding step. Pandas has simply validated our offset and returned an object that is ready to perform an action on each week as a group. There are several methods that we can chain after calling
 resample
 to return some data. Let's chain the
 size
 method to count the number of weekly crimes:




>>> weekly_crimes = crime_sort.resample('W').size()

>>> weekly_crimes.head()

REPORTED_DATE
2012-01-08     877
2012-01-15    1071
2012-01-22     991
2012-01-29     988
2012-02-05     888
Freq: W-SUN, dtype: int64


	We now have the weekly crime count as a Series with the new index incrementing one week at a time. There are a few things that happen by default that are very important to understand. Sunday is chosen as the last day of the week and is also the date used to label each element in the resulting Series. For instance, the first index value January 8, 2012 is a Sunday. There were 877 crimes committed during that week ending on the 8th. The week of Monday, January 9th to Sunday, January 15th recorded 1,071 crimes. Let's do some sanity checks and ensure that our resampling is doing exactly this:



>>> len(crime_sort.loc[:'2012-1-8'])

877



>>> len(crime_sort.loc['2012-1-9':'2012-1-15'])

1071


	Let's choose a different day to end the week besides Sunday with an anchored offset
 :



>>> crime_sort.resample('W-THU').size().head()

REPORTED_DATE
2012-01-05     462
2012-01-12    1116
2012-01-19     924
2012-01-26    1061
2012-02-02     926
Freq: W-THU, dtype: int64


	Nearly all the functionality of resample
 may be reproduced by the groupby
 method. The only difference is that you must pass the offset in the pd.Grouper
 object:



>>> weekly_crimes_gby = crime_sort.groupby(pd.Grouper(freq='W')) \

                                  .size()

>>> weekly_crimes_gby.head()

REPORTED_DATE
2012-01-08     877
2012-01-15    1071
2012-01-22     991
2012-01-29     988
2012-02-05     888
Freq: W-SUN, dtype: int64



>>> weekly_crimes.equal(weekly_crimes_gby)

True





How it works...


The resample
 method, by default, works implicitly with a DatetimeIndex, which is why we set it to REPORTED_DATE
 in step 1. In step 2, we created an intermediate object that helps us understand how to form groups within the data. The first parameter to resample
 is the rule
 determining how the Timestamps in the index will be grouped. In this instance, we use the offset alias W
 to form groups one week in length ending on Sunday. The default ending day is Sunday, but may be changed with an anchored offset by appending a dash and the first three letters of a day of the week.

Once we have formed groups with resample
 , we must chain a method to take action on each of them. In step 3, we use the size
 method to count the number of crimes per week. You might be wondering what are all the possible attributes and methods available to use after calling resample
 . The following examines the resample
 object and outputs them:

>>> r = crime_sort.resample('W')

>>> resample_methods = [attr for attr in dir(r) if attr[0].islower()]

>>> print(resample_methods)

['agg', 'aggregate', 'apply', 'asfreq', 'ax', 'backfill', 'bfill', 'count', 'ffill', 'fillna', 'first', 'get_group', 'groups', 'indices', 'interpolate', 'last', 'max', 'mean', 'median', 'min', 'ndim', 'ngroups', 'nunique', 'obj', 'ohlc', 'pad', 'plot', 'prod', 'sem', 'size', 'std', 'sum', 'transform', 'var']

Step 4 verifies the accuracy of the count from step 3 by manually slicing the data by week and counting the number of rows. The resample
 method is actually not even necessary to group by Timestamp
 as the functionality is available directly from the groupby
 method itself. However, you must pass an instance of pd.Grouper
 to the groupby
 method using the freq
 parameter for the offset, as done in step 6.

A very similar object called pd.TimeGrouper
 is capable of grouping by time in the exact same fashion as pd.Grouper
 , but as of pandas version 0.21 it is deprecated and should not be used. Unfortunately, there are many examples online that use pd.TimeGrouper
 but do not let them tempt you.





There's more...


It is possible to use resample
 even when the index does not contain a Timestamp
 . You can use the on
 parameter to select the column with Timestamps that will be used to form groups:

>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> weekly_crimes2 = crime.resample('W', on='REPORTED_DATE').size()

>>> weekly_crimes2.equals(weekly_crimes)

True

Similarly, this is possible using groupby
 with pd.Grouper
 by selecting the Timestamp
 column with the key
 parameter:

>>> weekly_crimes_gby2 = crime.groupby(pd.Grouper(key='REPORTED_DATE', 

                                                  freq='W')).size()

>>> weekly_crimes_gby2.equals(weekly_crimes_gby)

True

We can also easily produce a line plot of all the crimes in Denver (including traffic accidents) by calling the plot
 method on our Series of weekly crimes:

>>> weekly_crimes.plot(figsize=(16, 4), title='All Denver Crimes')








See also



	Pandas official documentation on Resampling
 (http://bit.ly/2yHXrbz
 )

	Table of all Anchored Offsets
 (http://bit.ly/2xg20h2
 )







Aggregating weekly crime and traffic accidents separately


The Denver crime dataset has all crime and traffic accidents together in one table, and separates them through the binary columns, IS_CRIME
 and IS_TRAFFIC
 . The resample
 method allows you to group by a period of time and aggregate specific columns separately.





Getting ready


In this recipe, we will use the resample
 method to group by each quarter of the year and then sum up the number of crimes and traffic accidents separately.





How to do it...



	
Read in the crime hdf5 dataset, set the index as
 REPORTED_DATE
 , and then sort it to increase performance for the rest of the recipe:




>>> crime_sort = pd.read_hdf('data/crime.h5', 'crime') \

                   .set_index('REPORTED_DATE') \

                   .sort_index()


	Use the resample
 method to group by each quarter of the year and then sum the IS_CRIME
 and IS_TRAFFIC
 columns for each group:



>>> crime_quarterly = crime_sort.resample('Q')['IS_CRIME',

                                               'IS_TRAFFIC'].sum()

>>> crime_quarterly.head()





	Notice that the dates all appear as the last day of the quarter. This is because the offset alias, Q
 , represents the end of the quarter. Let's use the offset alias QS
 to represent the start of the quarter:



>>> crime_sort.resample('QS')['IS_CRIME', 'IS_TRAFFIC'].sum().head()





	Let's verify these results by checking whether the second quarter of data is correct:



>>> crime_sort.loc['2012-4-1':'2012-6-30', 

                   ['IS_CRIME', 'IS_TRAFFIC']].sum()

IS_CRIME      9641
IS_TRAFFIC    5255
dtype: int64


	It is possible to replicate this operation using the groupby
 method:



>>> crime_quarterly2 = crime_sort.groupby(pd.Grouper(freq='Q')) \

                                 ['IS_CRIME', 'IS_TRAFFIC'].sum()

>>> crime_quarterly2.equals(crime_quarterly)

True


	Let's make a plot to better analyze the trends in crime and traffic accidents over time:



>>> plot_kwargs = dict(figsize=(16,4), 

                       color=['black', 'lightgrey'], 

                       title='Denver Crimes and Traffic Accidents')

>>> crime_quarterly.plot(**plot_kwargs)








How it works...


After reading in and preparing our data in step 1, we begin grouping and aggregating in step 2. Immediately after calling the resample
 method, we can continue either by chaining a method or by selecting a group of columns to aggregate. We choose to select the IS_CRIME
 and IS_TRAFFIC
  columns to aggregate. If we didn't select just these two, then all of the numeric columns would have been summed with the following outcome:

>>> crime_sort.resample('Q').sum().head()




By default, the offset alias Q
 technically uses December 31st as the last day of the year. The span of dates that represent a single quarter are all calculated using this ending date. The aggregated result uses the last day of the quarter as its label. Step 3 uses the offset alias QS
 , which, by default, calculates quarters using January 1st as the first day of the year.

Most public businesses report quarterly earnings but they don't all have the same calendar year beginning in January. For instance, if we wanted our quarters to begin March 1st, then we could use
 QS-MAR
 to anchor our offset alias:


>>> crime_sort.resample('QS-MAR')['IS_CRIME', 'IS_TRAFFIC'] \

              .sum().head()




As in the preceding recipe, we verify our results via manual slicing and replicate the result with the groupby
 method using pd.Grouper
 to set our group length. In step 6, we make a single call to the DataFrame plot
 method. By default, a line is plotted for each column of data. The plot clearly shows a sharp increase in reported crimes during the first three quarters of the year. There also appears to be a seasonal component to both crime and traffic, with numbers lower in the cooler months and higher in the warmer months.





There's more...


To get a different visual perspective, we can plot the percentage increase in crime and traffic, instead of the raw count. Let's divide all the data by the first row and plot again:

>>> crime_begin = crime_quarterly.iloc[0]

>>> crime_begin

IS_CRIME      7882
IS_TRAFFIC    4726
Name: 2012-03-31 00:00:00, dtype: int64



>>> crime_quarterly.div(crime_begin) \

                   .sub(1) \

                   .round(2) \

                   .plot(**plot_kwargs)








Measuring crime by weekday and year


Measuring crimes by weekday and by year simultaneously necessitate the functionality to pull this information directly from a Timestamp. Thankfully, this functionality is built into any column consisting of Timestamps with the dt
 accessor.





Getting ready


In this recipe, we will use the dt
 accessor to provide us with both the weekday name and year of each crime as a Series. We count all of the crimes by forming groups using both of these Series. Finally, we adjust the data to consider partial years and population before creating a heatmap of the total amount of crime.





How to do it...



	Read in the Denver crime hdf5 dataset leaving the REPORTED_DATE
 as a column:



>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime.head()





	All Timestamp columns have a special attribute called the dt
 accessor, which gives access to a variety of extra attributes and methods specifically designed for them. Let's find the weekday name of each REPORTED_DATE
 and then count these values:



>>> wd_counts = crime['REPORTED_DATE'].dt.weekday_name \

                                         .value_counts()

>>> wd_counts

Monday       70024
Friday       69621
Wednesday    69538
Thursday     69287
Tuesday      68394
Saturday     58834
Sunday       55213
Name: REPORTED_DATE, dtype: int64


	The weekends appear to have substantially less crime and traffic accidents. Let's put this data in correct weekday order and make a horizontal bar plot:



>>> days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 

            'Friday', 'Saturday', 'Sunday']

>>> title = 'Denver Crimes and Traffic Accidents per Weekday'

>>> wd_counts.reindex(days).plot(kind='barh', title=title)





	We can do a very similar procedure to plot the count by year:



>>> title = 'Denver Crimes and Traffic Accidents per Year' 

>>> crime['REPORTED_DATE'].dt.year.value_counts() \

                             .sort_index() \

                             .plot(kind='barh', title=title)





	We need to group by both weekday and year. One way of doing this is saving the weekday and year Series to separate variables and then using these variables with the groupby
 method:



>>> weekday = crime['REPORTED_DATE'].dt.weekday_name

>>> year = crime['REPORTED_DATE'].dt.year



>>> crime_wd_y = crime.groupby([year, weekday]).size()

>>> crime_wd_y.head(10)

REPORTED_DATE  REPORTED_DATE
2012           Friday            8549
               Monday            8786
               Saturday          7442
               Sunday            7189
               Thursday          8440
               Tuesday           8191
               Wednesday         8440
2013           Friday           10380
               Monday           10627
               Saturday          8875
dtype: int64


	We have aggregated the data correctly but the structure isn't exactly conducive to make comparisons easily. Let's first rename those meaningless index level names and then unstack
 the weekday level to get us a more readable table:



>>> crime_table = crime_wd_y.rename_axis(['Year', 'Weekday']) \

                            .unstack('Weekday')

>>> crime_table





	We now have a nicer representation that is easier to read but noticeably, the 2017 numbers are incomplete. To help make a fairer comparison, we can make a simple linear extrapolation to estimate the final number of crimes. Let's first find the last day that we have data for in 2017:



>>> criteria = crime['REPORTED_DATE'].dt.year == 2017

>>> crime.loc[criteria, 'REPORTED_DATE'].dt.dayofyear.max()

272


	A naive estimate would be to assume a constant rate of crime throughout the year and simply multiply all values in the 2017 table by 365/272. However, we can do a little better and look at our historical data and calculate the average percentage of crimes that have taken place through the first 272 days of the year:



>>> round(272 / 365, 3)

.745



>>> crime_pct = crime['REPORTED_DATE'].dt.dayofyear.le(272) \

                                      .groupby(year) \

                                      .mean() \

                                      .round(3)

>>> crime_pct

REPORTED_DATE
2012    0.748
2013    0.725
2014    0.751
2015    0.748
2016    0.752
2017    1.000
Name: REPORTED_DATE, dtype: float64



>>> crime_pct.loc[2012:2016].median()

.748


	It turns out, perhaps very coincidentally, that the percentage of crimes that happen during the first 272 days of the year is almost exactly proportional to the percentage of days passed in the year. Let's now update the row for 2017 and change the column order to match the weekday order:



>>> crime_table.loc[2017] = crime_table.loc[2017].div(.748) \

                                        .astype('int')

>>> crime_table = crime_table.reindex(columns=days)

>>> crime_table





	We could make a bar or line plot but this is also a good situation for a heatmap, which is available with the seaborn library:



>>> import seaborn as sns

>>> sns.heatmap(crime_table, cmap='Greys')





	Crime seems to be rising every year but this data does not account for rising population. Let's read in a table for the Denver population for each year that we have data:



>>> denver_pop = pd.read_csv('data/denver_pop.csv',

                             index_col='Year')

>>> denver_pop





	Many crime metrics are reported as rates per 100,000 residents. Let's divide the population by 100,000 and then divide the raw crime counts by this number to get the crime rate per 100,000 residents:



>>> den_100k = denver_pop.div(100000).squeeze()

>>> crime_table2 = crime_table.div(den_100k, axis='index') \

                              .astype('int')

>>> crime_table2





	Once again, we can make a heatmap that, even after adjusting for population increase, looks nearly identical to the first one:



>>> sns.heatmap(crime_table2, cmap='Greys')








How it works...



All DataFrame columns containing Timestamps have access to numerous other attributes and methods with the
 dt
 accessor. In fact, all of these methods and attributes available from the
 dt
 accessor are also available directly from a single Timestamp object.



In step 2, we use the dt
 accessor, which only works on a Series, to extract the weekday name and simply count the occurrences.
 Before making a plot in step 3, we manually rearrange the order of the index with the reindex
 method, which, in its most basic use case, accepts a list containing the desired order. This task could have also been accomplished with the .loc
 indexer like this:

>>> wd_counts.loc[days]

Monday       70024
Tuesday      68394
Wednesday    69538
Thursday     69287
Friday       69621
Saturday     58834
Sunday       55213
Name: REPORTED_DATE, dtype: int64

The reindex
 method is actually more performant and has many parameters for more diverse situations than .loc
 . We then use the weekday_name
 attribute of the dt
 accessor to retrieve the name of each day of the week, and count the occurrences before making a horizontal bar plot.

In step 4, we do a very similar procedure, and retrieve the year using the dt
 accessor again, and then count the occurrences with the value_counts
 method. In this instance, we use sort_index
 over reindex
 , as years will naturally sort in the desired order.

The goal of the recipe is to group by both weekday and year together so this is exactly what we do in step 5. The groupby
 method is very flexible and can form groups in multiple ways. In this recipe, we pass it two Series, year
 and weekday
 , from which all unique combinations form a group. We then chain the size
 method to it, which returns a single value, the length of each group.

After step 5, our Series is long with only a single column of data, which makes it difficult to make comparisons by year and weekday. To ease the readability, we pivot the weekday level into horizontal column names with unstack
 .

In step 7, we use boolean indexing to select only the crimes in 2017 and then use dayofyear
 from the dt
 accessor again to find the total elapsed days from the beginning of the year. The maximum of this Series should tell us how many days we have data for in 2017.

Step 8 is quite complex. We first create a boolean Series by testing whether each crime was committed on or before the 272nd day of the year with crime['REPORTED_DATE'].dt.dayofyear.le(272)
 . From here, we again use the flexible groupby
 method to form groups by the previously calculated year
 Series and then use the mean
 method to find the percentage of crimes committed on or before the 272nd day for each year.

The .loc
 indexer selects the entire 2017 row of data in step 9. We adjust this row by dividing by the median percentage found in step 8.

Lots of crime visualizations are done with heatmaps and one is done here in step 10 with the help of the seaborn
 visualization library. The cmap
 parameter takes a string name of the several dozen available matplotlib colormaps (http://bit.ly/2yJZOvt
 ).

In step 12, we create a crime rate per 100k
 residents by dividing by the population of that year. This is actually a fairly tricky operation. Normally, when you divide one DataFrame by another, they align on their columns and index. However, in this step, crime_table
 has no columns in common denver_pop
 so no values will align if we try and divide them. To work around this, we create the
 den_100k
 Series with the
 squeeze
 method. We still can't simply divide these two objects as, by default, division between a DataFrame and a Series aligns the columns of the DataFrame with the index of the Series, like this:


>>> crime_table / den_100k




We need the index of the DataFrame to align with the index of Series and to do this, we use the div
 method, which allows us to change the direction of alignment with the axis
 parameter. A heatmap
 of the adjusted crime rate is plotted in step 13.





There's more...


Let's finalize this analysis by writing a function to complete all the steps of this recipe at once and add the ability to choose a specific type of crime:

>>> ADJ_2017 = .748



>>> def count_crime(df, offense_cat):

        df = df[df['OFFENSE_CATEGORY_ID'] == offense_cat]

        weekday = df['REPORTED_DATE'].dt.weekday_name

        year = df['REPORTED_DATE'].dt.year



        ct = df.groupby([year, weekday]).size().unstack()

        ct.loc[2017] = ct.loc[2017].div(ADJ_2017).astype('int')



        pop = pd.read_csv('data/denver_pop.csv', index_col='Year')

        pop = pop.squeeze().div(100000)



        ct = ct.div(pop, axis=0).astype('int')

        ct = ct.reindex(columns=days)

        sns.heatmap(ct, cmap='Greys')

        return ct



>>> count_crime(crime, 'auto-theft')








See also



	Pandas official documentation of the reindex
 method (http://bit.ly/2y40eyE
 )

	The seaborn official documentation of the heatmap
 function (http://bit.ly/2ytbMNe
 )







Grouping with anonymous functions with a DatetimeIndex


Using DataFrames with a DatetimeIndex
 opens the door to many new and different operations as seen with several recipes in this chapter.





Getting ready


In this recipe, we will show the versatility of using the groupby
 method for DataFrames that have a DatetimeIndex
 .





How to do it...



	Read in the Denver crime hdf5
 file, place the REPORTED_DATE
 column in the index, and sort it:



>>> crime_sort = pd.read_hdf('data/crime.h5', 'crime') \

                   .set_index('REPORTED_DATE') \

                   .sort_index()


	The DatetimeIndex
 itself has many of the same attributes and methods as a pandas Timestamp
 . Let's take a look at some that they have in common:



>>> common_attrs = set(dir(crime_sort.index)) & \

                   set(dir(pd.Timestamp))

>>> print([attr for attr in common_attrs if attr[0] != '_'])



['to_pydatetime', 'normalize', 'day', 'dayofyear', 'freq', 'ceil', 

'microsecond', 'tzinfo', 'weekday_name', 'min', 'quarter', 'month', 

'tz_convert', 'tz_localize', 'is_month_start', 'nanosecond', 'tz', 

'to_datetime', 'dayofweek', 'year', 'date', 'resolution', 'is_quarter_end', 

'weekofyear', 'is_quarter_start', 'max', 'is_year_end', 'week', 'round', 

'strftime', 'offset', 'second', 'is_leap_year', 'is_year_start', 

'is_month_end', 'to_period', 'minute', 'weekday', 'hour', 'freqstr', 

'floor', 'time', 'to_julian_date', 'days_in_month', 'daysinmonth']


	We can then use the index to find weekday names, similarly to what was done in step 2 of the preceding recipe:



>>> crime_sort.index.weekday_name.value_counts()

Monday       70024
Friday       69621
Wednesday    69538
Thursday     69287
Tuesday      68394
Saturday     58834
Sunday       55213
Name: REPORTED_DATE, dtype: int64


	Somewhat surprisingly, the groupby
 method has the ability to accept a function as an argument. This function will be implicitly passed the index and its return value is used to form groups. Let's see this in action by grouping with a function that turns the index into a weekday name and then counts the number of crimes and traffic accidents separately:



>>> crime_sort.groupby(lambda x: x.weekday_name) \

               ['IS_CRIME', 'IS_TRAFFIC'].sum()





	You can use a list of functions to group by both the hour of day and year, and then reshape the table to make it more readable:



>>> funcs = [lambda x: x.round('2h').hour, lambda x: x.year]

>>> cr_group = crime_sort.groupby(funcs) \

                          ['IS_CRIME', 'IS_TRAFFIC'].sum()

>>> cr_final = cr_group.unstack()

>>> cr_final.style.highlight_max(color='lightgrey')








How it works...


In step 1, we read in our data and place a column of Timestamps into the index to create a DatetimeIndex. In step 2, we see that a DatetimeIndex has lots of the same functionality that a single Timestamp object has. In step 3, we directly use these extra features of the DatetimeIndex to extract the weekday name.

In step 4, we take advantage of the special ability of the groupby
 method to accept a function that is passed the DatetimeIndex. The x
 in the anonymous function is literally the DatetimeIndex and we use it to retrieve the weekday name. It is possible to pass groupby
 a list of any number of custom functions, as done in step 5. Here, the first function uses the round
 DatetimeIndex method to round each value to the nearest second hour. The second function retrieves the year. After the grouping and aggregating, we unstack
 the years as columns. We then highlight the maximum value of each column. Crime is reported most often between 3 and 5 p.m. Most traffic accidents occur between 5 p.m. and 7 p.m.





There's more...


The final result of this recipe is a DataFrame with MultiIndex columns. Using this DataFrame, it is possible to select just the crime or traffic accidents separately. The xs
 method allows you to select a single value from any index level. Let's see an example where we select only the section of data dealing with traffic:

>>> cr_final.xs('IS_TRAFFIC', axis='columns', level=0).head()





This is referred to as taking a cross section in pandas.
 We must use the axis
 and level
 parameters to specifically denote where our value is located. Let's use xs
 again to select only data from 2016, which is in a different level:

>>> cr_final.xs(2016, axis='columns', level=1).head()








See also



	Pandas official documentation of the cross section method xs
 (http://bit.ly/2xkLzLv
 )







Grouping by a Timestamp and another column


The resample
 method on its own, is unable to group by anything other than periods of time. The groupby
 method, however, has the ability to group by both periods of time and other columns.





Getting ready


In this recipe, we will show two very similar but different approaches to group by Timestamps and another column.





How to do it...



	Read in the employee
 dataset, and create a DatetimeIndex with the HIRE_DATE
 column:



>>> employee = pd.read_csv('data/employee.csv', 

                           parse_dates=['JOB_DATE', 'HIRE_DATE'], 

                           index_col='HIRE_DATE')

>>> employee.head()





	Let's first do a simple grouping by just gender, and find the average salary for each:



>>> employee.groupby('GENDER')['BASE_SALARY'].mean().round(-2)

GENDER
Female    52200.0
Male      57400.0
Name: BASE_SALARY, dtype: float64


	Let's find the average salary based on hire date, and group everyone into 10-year buckets:



>>> employee.resample('10AS')['BASE_SALARY'].mean().round(-2)

HIRE_DATE
1958-01-01     81200.0
1968-01-01    106500.0
1978-01-01     69600.0
1988-01-01     62300.0
1998-01-01     58200.0
2008-01-01     47200.0
Freq: 10AS-JAN, Name: BASE_SALARY, dtype: float64


	If we wanted to group by both gender and a five-year time span, we can call resample
 directly after calling groupby
 :



>>> employee.groupby('GENDER').resample('10AS')['BASE_SALARY'] \

            .mean().round(-2)

GENDER  HIRE_DATE 
Female  1975-01-01     51600.0
        1985-01-01     57600.0
        1995-01-01     55500.0
        2005-01-01     51700.0
        2015-01-01     38600.0
Male    1958-01-01     81200.0
        1968-01-01    106500.0
        1978-01-01     72300.0
        1988-01-01     64600.0
        1998-01-01     59700.0
        2008-01-01     47200.0
Name: BASE_SALARY, dtype: float64


	Now, this does what we set out to do, but we run into a slight issue whenever we want to compare female to male salaries. Let's unstack
 the gender level and see what happens:



>>> sal_avg.unstack('GENDER')





	The 10-year periods for males and females do not begin on the same date. This happened because the data was first grouped by gender and then, within each gender, more groups were formed based on hire dates. Let's verify that the first hired male was in 1958 and the first hired female was in 1975:



>>> employee[employee['GENDER'] == 'Male'].index.min()

Timestamp('1958-12-29 00:00:00')



>>> employee[employee['GENDER'] == 'Female'].index.min()

Timestamp('1975-06-09 00:00:00')


	To resolve this issue, we must group the date together with the gender, and this is only possible with the groupby
 method:



>>> sal_avg2 = employee.groupby(['GENDER', 

                                 pd.Grouper(freq='10AS')]) \

                        ['BASE_SALARY'].mean().round(-2)

>>> sal_avg2

GENDER  HIRE_DATE 
Female  1968-01-01         NaN
        1978-01-01     57100.0
        1988-01-01     57100.0
        1998-01-01     54700.0
        2008-01-01     47300.0
Male    1958-01-01     81200.0
        1968-01-01    106500.0
        1978-01-01     72300.0
        1988-01-01     64600.0
        1998-01-01     59700.0
        2008-01-01     47200.0
Name: BASE_SALARY, dtype: float64


	Now we can unstack
 the gender and get our rows aligned perfectly:



>>> sal_final = sal_avg2.unstack('GENDER')

>>> sal_final








How it works...


The read_csv
 function in step 1 allows to both convert columns into Timestamps and put them in the index at the same time creating a DatetimeIndex. Steps 2 does a simple groupby
 operation with a single grouping column, gender. Step 3 uses the resample
 method with the offset alias 10AS
 to form groups in 10-year increments of time. The A
 is the alias for year and the S
 informs us that the beginning of the period is used as the label. For instance, the data for the label 1988-01-01
 spans that date until December 31, 1997.

Interestingly, the object returned from a call to the groupby
  method has its own resample
 method, but the reverse is not true:

>>> 'resample' in dir(employee.groupby('GENDER'))

True



>>> 'groupby' in dir(employee.resample('10AS'))

False

In step 4, for each gender, male and female, completely different starting dates for the 10-year periods are calculated based on the earliest hired employee. Step 6 verifies that the year of the earliest hired employee for each gender matches the output from step 4. Step 5 shows how this causes misalignment when we try to compare salaries of females to males. They don't have the same 10-year periods.

To alleviate this issue, we must group both the gender and Timestamp together. The resample
 method is only capable of grouping by a single column of Timestamps. We can only complete this operation with the groupby
 method. With pd.Grouper
 , we can replicate the functionality of resample
 . We simply pass the offset alias to the freq
 parameter and then place the object in a list with all the other columns that we wish to group, as done in step 7. As both males and females now have the same starting dates for the 10-year period, the reshaped data in step 8 will align for each gender making comparisons much easier. It appears that male salaries tend to be higher given a longer length of employment, though both genders have the same average salary with under 10 years of employment.





There's more...


From an outsider's perspective, it would not be obvious that the rows from the output in step 8 represented 10-year intervals. One way to improve the index labels would be to show the beginning and end of each time interval. We can achieve this by concatenating the current index year with 9 added to itself:

>>> years = sal_final.index.year

>>> years_right = years + 9

>>> sal_final.index = years.astype(str) + '-' + years_right.astype(str)

>>> sal_final




There is actually a completely different way to do this recipe. We can use the cut
 function to create equal-width intervals based on the year that each employee was hired and form groups from it:

>>> cuts = pd.cut(employee.index.year, bins=5, precision=0)

>>> cuts.categories.values

array([Interval(1958.0, 1970.0, closed='right'),
       Interval(1970.0, 1981.0, closed='right'),
       Interval(1981.0, 1993.0, closed='right'),
       Interval(1993.0, 2004.0, closed='right'),
       Interval(2004.0, 2016.0, closed='right')], dtype=object)



>>> employee.groupby([cuts, 'GENDER'])['BASE_SALARY'] \

            .mean().unstack('GENDER').round(-2)








Finding the last time crime was 20% lower with merge_asof


There are frequently times where we would like to know when the last time something happened. For example, we might be interested in the last time unemployment was below 5% or the last time the stock market went up five days in a row or the last time you had eight hours of sleep. The merge_asof
 function provides answers to these types of questions.





Getting ready


In this recipe, we will find the current month's total number of crimes for each offense category and then find the last time there were 20% fewer incidences.





How to do it...



	Read in the Denver crime dataset, place the REPORTED_DATE
 in the index, and sort it:



>>> crime_sort = pd.read_hdf('data/crime.h5', 'crime') \

               .set_index('REPORTED_DATE') \

               .sort_index()


	Find the last full month of data:



>>> crime_sort.index.max()

Timestamp('2017-09-29 06:16:00')


	As we don't quite have all of September's data, let's drop it from our dataset:



>>> crime_sort = crime_sort[:'2017-8']

>>> crime_sort.index.max()

Timestamp('2017-08-31 23:52:00')


	Let's count the number of crimes and traffic accidents for every month:



>>> all_data = crime_sort.groupby([pd.Grouper(freq='M'),

                                   'OFFENSE_CATEGORY_ID']).size()

>>> all_data.head()

REPORTED_DATE  OFFENSE_CATEGORY_ID
2012-01-31     aggravated-assault     113
               all-other-crimes       124
               arson                    5
               auto-theft             275
               burglary               343
dtype: int64


	Although the merge_asof
 function can work with the index, it will be easier to just reset it:



>>> all_data = all_data.sort_values().reset_index(name='Total')

>>> all_data.head()





	Let's get the current month's crime count and make a new column to represent the goal:



>>> goal = all_data[all_data['REPORTED_DATE'] == '2017-8-31'] \

                   .reset_index(drop=True)

>>> goal['Total_Goal'] = goal['Total'].mul(.8).astype(int)

>>> goal.head()





	Now use the merge_asof
 function to find the last time a monthly crime total was less than the column Total_Goal
 for each offense category:




>>> pd.merge_asof(goal, all_data, left_on='Total_Goal',

                  right_on='Total', by='OFFENSE_CATEGORY_ID',

                  suffixes=('_Current', '_Last'))










How it works...



After reading in our data, we decide not to include the 2017 September data, as it is not quite a complete month. We use a partial date string to slice all the way up to and including any crimes in August of 2017. In step 4, we tally all the crimes for each offense category per month, and in step 5, we sort by this total, which is required for merge_asof
 .

In step 6, we select the most recent data into a separate DataFrame. We will use this month of August as our baseline and create a column, Total_Goal
 , that is 20% less than the current. In step 7, we use merge_asof
 to find the last time a monthly crime count was less than the Total_Goal
 column.





There's more...


In addition to the Timestamp and Timedelta data types, pandas offers the Period type to represent an exact time period. For example, 2012-05
 would represent the entire month of May, 2012. You can manually construct a Period in the following manner:

>>> pd.Period(year=2012, month=5, day=17, hour=14, minute=20, freq='T')

Period('2012-05-17 14:20', 'T')

This object represents the entire minute of May 17, 2012 at 2:20 p.m. It is possible to use these Periods in step 4 instead of grouping by date with pd.Grouper
 . DataFrames with a DatetimeIndex have the to_period
 method to convert Timestamps to Periods. It accepts an offset alias to determine the exact length of the time period.

>>> ad_period = crime_sort.groupby([lambda x: x.to_period('M'), 

                                    'OFFENSE_CATEGORY_ID']).size()

>>> ad_period = ad_period.sort_values() \

                         .reset_index(name='Total') \

                         .rename(columns={'level_0':'REPORTED_DATE'})

>>> ad_period.head()




Let's verify that the last two columns from this DataFrame are equivalent to all_data
 from step 5:

>>> cols = ['OFFENSE_CATEGORY_ID', 'Total']

>>> all_data[cols].equals(ad_period[cols])

True

Steps 6 and 7 can now be replicated in almost the exact same manner with the following code:

>>> aug_2018 = pd.Period('2017-8', freq='M')

>>> goal_period = ad_period[ad_period['REPORTED_DATE'] == aug_2018] \

                           .reset_index(drop=True)

>>> goal_period['Total_Goal'] = goal_period['Total'].mul(.8).astype(int)



>>> pd.merge_asof(goal_period, ad_period, left_on='Total_Goal',

                  right_on='Total', by='OFFENSE_CATEGORY_ID',

                  suffixes=('_Current', '_Last')).head()










Visualization with Matplotlib, Pandas, and Seaborn


In this chapter, we will cover the following topics:


	Getting started with matplotlib

	Visualizing data with matplotlib

	Plotting basics with pandas

	Visualizing the flights dataset

	Stacking area charts to discover emerging trends

	Understanding the differences between seaborn and pandas

	Doing multivariate analysis with seaborn grids

	Uncovering Simpson's paradox in the diamonds dataset with seaborn







Introduction


Visualization is a critical component in exploratory data analysis, as well as presentations and applications. During exploratory data analysis, you are usually working alone or in small groups and need to create plots quickly to help you better understand your data. It can help you identify outliers and missing data, or it can spark other questions of interest that will lead to further analysis and more visualizations. This type of visualization is usually not done with the end user in mind. It is strictly to help you better your current understanding. The plots don't have to be perfect.

When preparing visualizations for a report or application, a different approach must be used. Attention to small details must be paid. In addition, you usually will have to narrow down all possible visualizations to only the select few that best represent your data. Good data visualizations have the viewer enjoying the experience of extracting information. Almost like movies that make viewers get lost in, good visualizations will have lots of information that really sparks interest.

The primary data visualization library in Python is matplotlib, a project begun in the early 2000s, that was built to mimic the plotting capabilities from Matlab. Matplotlib is enormously capable of plotting most things you can imagine and it gives its users tremendous power to control every aspect of the plotting surface. That said, it isn't quite the friendliest library for beginners to grasp. Thankfully, pandas makes visualizing data very easy for us and usually plots what we want with a single call to the plot
 method. Pandas actually does no plotting on its own. It internally calls matplotlib functions to create the plots. Pandas also adds its own style that, in my opinion, is a bit nicer than the defaults from matplotlib.

Seaborn is also a visualization library that internally calls matplotlib functions and does not do any actual plotting itself. Seaborn makes beautiful plots very easily and allows for the creation of many new types of plots that are not available directly from matplotlib or pandas. Seaborn works with tidy (long) data, while pandas works best with aggregated (wide) data. Seaborn also accepts pandas DataFrame objects in its plotting functions.

Although it is possible to create plots without ever directly running any matplotlib code, from time to time it will be necessary to use it to tweak finer plot details manually. For this reason, the first two recipes will cover some basics of matplotlib that will come in handy if you need to use it directly. Other than the first two recipes, all plotting examples will use pandas or seaborn.

Visualization in Python does not have to rely on matplotlib necessarily. Bokeh is quickly becoming a very popular interactive visualization library targeted for the web. It is completely independent of matplotlib, and it’s capable of producing entire applications.





Getting started with matplotlib


For many data scientists, the vast majority of their plotting commands will come directly from pandas or seaborn, which both rely completely on matplotlib to do the actual plotting. However, neither pandas nor seaborn offers a complete replacement for matplotlib, and occasionally you will need to use it directly. For this reason, this recipe will offer a short introduction to the most crucial aspects of matplotlib.





Getting ready


Let's begin our introduction with a look at the anatomy of a matplotlib plot in the following figure:




Matplotlib uses a hierarchy of objects to display all of its plotting items in the output. This hierarchy is key to understanding everything about matplotlib. The Figure
 and Axes
 objects are the two main components of the hierarchy. The Figure object is at the top of the hierarchy. It is the container for everything that will be plotted. Contained within the Figure is one or more Axes object(s). The Axes is the primary object that you will interact with when using matplotlib and can be more commonly thought of as the actual plotting surface. The Axes contains the x
 /y
 axis, points, lines, markers, labels, legends, and any other useful item that is plotted.

In early 2017, matplotlib underwent a major change when it released version 2.0. Much of the default plotting parameters were changed. The anatomy figure is actually from the documentation of version 1 but does a better job at distinguishing between the Figure and the Axes than the updated anatomy figure from version 2 (http://bit.ly/2gmNV7h
 ).

A very clear distinction needs to be made between an Axes object and an axis. They are completely separate objects. An Axes object, using matplotlib terminology, is not the plural of axis but instead, as mentioned earlier, the object that creates and controls most of the useful plotting elements. An axis simply refers to the x
 or y
 (or even z
 ) axis of a plot.

It is unfortunate that matplotlib chose to use axes, the plural of the word axis, to refer to a completely different object, but it is central to the library and unlikely to be changed at this point.


All of these useful plotting elements created by an Axes object are called
 artists
 . Even the Figure and the Axes objects themselves are artists. This distinction for artists won't be critical to this recipe but will be useful when doing more advanced matplotlib plotting and especially when reading through the documentation.






Object-oriented guide to matplotlib


Matplotlib provides two distinct interfaces for users to develop plots with. The stateful
 interface makes all of its calls directly with the pyplot
 module. This interface is called stateful
 because matplotlib implicitly keeps track of the current state of the plotting environment. Whenever a plot is created in the stateful interface, matplotlib finds the current Figure or current Axes and makes changes to it. This approach is fine to plot a few things quickly but can become unwieldy when dealing with multiple Figures and Axes.

Matplotlib also offers a stateless, or object-oriented
 , interface in which you explicitly use variables that reference specific plotting objects. Each variable can then be used to change some property of the plot. The object-oriented approach is explicit, and you are always aware of exactly what object is being modified.


Unfortunately, having both options has lead to lots of confusion, and matplotlib has a reputation for being difficult to learn. The documentation has examples using both approaches. Tutorials, blog posts, and Stack Overflow posts abound on the web, perpetuating the confusion. This recipe focuses solely on the object-oriented approach, as it is much more Pythonic and much more similar to how we interact with pandas.


If you are new to matplotlib, you might not know how to recognize the difference between each approach. With the stateful interface, all commands will be given directly from pyplot
 , which is usually aliased plt
 . Making a simple line plot and adding some labels to each axis would look like this:

>>> import matplotlib.pyplot as plt



>>> x = [-3, 5, 7]

>>> y = [10, 2, 5]



>>> plt.figure(figsize=(15,3))

>>> plt.plot(x, y)

>>> plt.xlim(0, 10)

>>> plt.ylim(-3, 8)

>>> plt.xlabel('X Axis')

>>> plt.ylabel('Y axis')

>>> plt.title('Line Plot')

>>> plt.suptitle('Figure Title', size=20, y=1.03)




The object-oriented approach still uses pyplot
 , but typically, it is only to create the Figure and Axes objects during the first step. After creation, methods from these objects are called directly to alter the plot. The following code uses the object-oriented approach to make an exact replication of the previous plot:

>>> fig, ax = plt.subplots(figsize=(15,3))

>>> ax.plot(x, y)

>>> ax.set_xlim(0, 10)

>>> ax.set_ylim(-3, 8)

>>> ax.set_xlabel('X axis')

>>> ax.set_ylabel('Y axis')

>>> ax.set_title('Line Plot')

>>> fig.suptitle('Figure Title', size=20, y=1.03)

In this simple example, we directly use only two objects, the Figure, and Axes, but in general, plots can have many hundreds of objects; each one can be used to make modifications in an extremely finely-tuned manner, not easily doable with the stateful interface. In this chapter, we build an empty plot and modify several of its basic properties using the object-oriented interface.





How to do it...



	To get started with matplotlib using the object-oriented approach, you will need to import the pyplot
 module and alias plt
 :



>>> import matplotlib.pyplot as plt


	Typically, when using the object-oriented approach, we will create a Figure and one or more Axes objects. Let's use the subplots
 function to create a Figure with a single Axes:



>>> fig, ax = plt.subplots(nrows=1, ncols=1)





	The subplots
 function returns a two-item tuple object containing the Figure and one or more Axes objects (here it is just one), which is unpacked into the variables fig
  and ax
 . From here on out, we will directly use these objects by calling methods in a normal object-oriented approach. Let's take a look at the type of each of these objects to ensure that we are actually working with a Figure and an Axes:



>>> type(fig)

matplotlib.figure.Figure



>>> type(ax)

matplotlib.axes._subplots.AxesSubplot


	Although you will be calling more Axes than Figure methods, you might still need to interact with them. Let's find the size of the Figure and then enlarge it:



>>> fig.get_size_inches()

array([ 6.,  4.])



>>> fig.set_size_inches(14, 4)

>>> fig





	Before we start plotting, let's examine the matplotlib hierarchy. You can collect all the Axes of the Figure with the axes
 attribute:



>>> fig.axes

[<matplotlib.axes._subplots.AxesSubplot at 0x112705ba8>]


	This command returns a list of all the Axes objects. However, we already have our Axes object stored in the ax
 variable.
 Let's verify that they are actually the same object:



>>> fig.axes[0] is ax

True


	To help visibly differentiate the Figure from the Axes, we can give each one a unique facecolor
 . Matplotlib accepts a variety of different input types for color. Approximately 140 HTML colors are supported by their string name (see this list: http://bit.ly/2y52UtO
 ). You may also use a string containing a float from zero to one to represent shades of gray:



>>> fig.set_facecolor('.9')

>>> ax.set_facecolor('.7')

>>> fig





	Now that we have differentiated between the Figure and the Axes, let's take a look at all of the immediate children of the Axes with the get_children
 method:



>>> ax_children = ax.get_children()

>>> ax_children

[<matplotlib.spines.Spine at 0x11145b358>,
 <matplotlib.spines.Spine at 0x11145b0f0>,
 <matplotlib.spines.Spine at 0x11145ae80>,
 <matplotlib.spines.Spine at 0x11145ac50>,
 <matplotlib.axis.XAxis at 0x11145aa90>,
 <matplotlib.axis.YAxis at 0x110fa8d30>,
 ...]


	Every basic plot has four spines and two axis objects. The spines represent the data boundaries and are the four physical lines that you see bordering the darker gray rectangle (the Axes). The x
 and y
 axis objects contain more plotting objects such as the ticks and their labels and the label of the entire axis. We can select the spines from this list, but that isn't generally how it's done. We can access them directly with the spines
 attribute:



>>> spines = ax.spines

>>> spines

OrderedDict([('left', <matplotlib.spines.Spine at 0x11279e320>),
             ('right', <matplotlib.spines.Spine at 0x11279e0b8>),
             ('bottom', <matplotlib.spines.Spine at 0x11279e048>),
             ('top', <matplotlib.spines.Spine at 0x1127eb5c0>)])


	The spines are contained in an ordered dictionary. Let's select the left spine and change its position and width so that it is more prominent and also make the bottom spine invisible:



>>> spine_left = spines['left']

>>> spine_left.set_position(('outward', -100))

>>> spine_left.set_linewidth(5)



>>> spine_bottom = spines['bottom']

>>> spine_bottom.set_visible(False)

>>> fig





	Now, let's focus on the axis objects. We can access each axis directly through the xaxis
 and yaxis
 attributes. Some axis properties are also available directly with the Axes
 object. In this step, we change some properties of each axis in both manners:



>>> ax.xaxis.grid(True, which='major', linewidth=2,

                  color='black', linestyle='--')

>>> ax.xaxis.set_ticks([.2, .4, .55, .93])

>>> ax.xaxis.set_label_text('X Axis', family='Verdana', fontsize=15)



>>> ax.set_ylabel('Y Axis', family='Calibri', fontsize=20)

>>> ax.set_yticks([.1, .9])

>>> ax.set_yticklabels(['point 1', 'point 9'], rotation=45)

>>> fig








How it works...


One of the crucial ideas to grasp with the object-oriented approach is that each plotting element has both getter
 and setter
 methods. The getter methods all begin with get_
 and either retrieve a specific property or retrieve other plotting objects. For instance, ax.get_yscale()
 retrieves the type of scale that the y
 axis is plotted with as a string (default is linear
 ), while ax.get_xticklabels()
 retrieves a list of matplotlib text objects that each have their own getter and setter methods. Setter methods modify a specific property or an entire group of objects. A lot of matplotlib boils down to latching onto a specific plotting element and then examining and modifying it via the getter and setter methods.


It might be useful to make an analogy of the matplotlib hierarchy as a home. The home and all of its contents would be the Figure. Each individual room would be the Axes and the contents of the room would be the artists.


The easiest way to begin using the object-oriented interface is with the pyplot
 module, which is commonly aliased plt
 ,
 as done in step 1. Step 2 shows one of the most common methods to initiate the object-oriented approach. The plt.subplots
 function creates a single Figure, along with a grid of Axes objects. The first two parameters, nrows
 and ncols
 ,
 define a uniform grid of Axes objects. For example, plt.subplots(2,4)
 creates eight total Axes objects of the same size inside one Figure.

The plt.subplots
 function is somewhat of an oddity in that it returns a two-item tuple. The first element is the Figure, and the second element is the Axes object. This tuple gets unpacked as two distinct variables, fig
 and ax
 . If you are not accustomed to tuple unpacking, it may help to see step 2 written like this:

>>> plot_objects = plt.subplots(nrows=1, ncols=1)

>>> type(plot_objects)

tuple



>>> fig = plot_objects[0]

>>> ax = plot_objects[1]

If you create more than one Axes with plt.subplots
 ,
 then the second item in the tuple is a NumPy array containing all the Axes. Let's demonstrate that here:

>>> plot_objects = plt.subplots(2, 4)




The plot_objects
 variable is a tuple containing a Figure as its first element and a Numpy array as its second:

>>> plot_objects[1]

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x133b70a20>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x135d6f9e8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x1310e4668>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x133565ac8>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x133f67898>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x1326d30b8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x1335d5eb8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x133f78f28>]], dtype=object)

Step 3 verifies that we indeed have Figure and Axes objects referenced by the appropriate variables. In step 4, we come across the first example of getter and setter methods. Matplotlib defaults all Figures to 6 inches in width by 4 inches in height, which is not the actual size of it on the screen, but would be the exact size if you saved the Figure to a file.

Step 5 shows that, in addition to the getter method, you can sometimes directly access another plotting object by its attribute. Often, there exist both an attribute and a getter method to retrieve the same object. For instance, look at these examples:

>>> fig.axes == fig.get_axes()

True



>>> ax.xaxis == ax.get_xaxis()

True



>>> ax.yaxis == ax.get_yaxis()

True

Many artists have a facecolor
 property that can be set to cover the entire surface one particular color, as in step 7. In step 8, the get_children
 method can be used to get a better understanding of the object hierarchy. A list of all the objects directly below the Axes is returned. It is possible to select all of the objects from this list and start using the setter methods to modify properties, but this isn't customary. We usually collect our objects directly from the attributes or getter methods.

Often, when retrieving a plotting object, they will be returned in a container like a list or a dictionary. This is what happens when collecting the spines in step 9. You will have to select the individual objects from their respective containers in order to use the getter or setter methods on them, as done in step 10. It is also common to use a for-loop to iterate through each of them one at a time.

Step 11 adds grid lines in a peculiar way. We would expect there to be a get_grid
 and set_grid
 method, but instead, there is just a grid
 method, which accepts a boolean as the first argument to turn on/off the grid lines. Each axis has both major and minor ticks, though by default the minor ticks are turned off. The which
 parameter is used to select which type of tick has a grid line.

Notice that the first three lines of step 11 select the xaxis
 attribute and call methods from it, while the last three lines call equivalent methods directly from the Axes object itself. This second set of methods is a convenience provided by matplotlib to save a few keystrokes. Normally, most objects can only set their own properties, not those of their children. Many of the axis-level properties are not able to be set from the Axes, but in this step, some are. Either method is acceptable.

When adding the grid lines with the first line in step 11, we set the properties linewidth
 , color
 ,
 and linestyle
 . These are all properties of a matplotlib line, formally a Line2D object. You can view all of the available properties here: http://bit.ly/2kE6MiG
 . The set_ticks
 method accepts a sequence of floats and draws tick marks for only those locations. Using an empty list will completely remove all ticks.

Each axis may be labeled with some text, for which matplotlib formally uses a Text
 object. Only a few of all the available text properties (
http://bit.ly/2yXIZfP
 )
 are changed. The set_yticklabels
 Axes method takes in a list of strings to use as the labels for each of the ticks. You may set any number of text properties along with it.





There's more...


To help find all the possible properties of each of your plotting objects, simply make a call to the properties method, which displays all of them as a dictionary. Let's see a curated list of the properties of an axis object:

>>> ax.xaxis.properties()

{'alpha': None,

 'gridlines': <a list of 4 Line2D gridline objects>,

 'label': Text(0.5,22.2,'X Axis'),

 'label_position': 'bottom',

 'label_text': 'X Axis',

 'tick_padding': 3.5,

 'tick_space': 26,

 'ticklabels': <a list of 4 Text major ticklabel objects>,

 'ticklocs': array([ 0.2 , 0.4 , 0.55, 0.93]),

 'ticks_position': 'bottom',

 'visible': True}





See also



	Matplotlib official documentation of its usage guide (http://bit.ly/2xrKjeE
 )

	Categorized list of all the methods of an Axes object (http://bit.ly/2kEhi9w
 )

	
Anatomy of Matplotlib
  tutorial by key contributor, Ben Root (http://bit.ly/2y86c1M
 )

	Matplotlib official documentation of the stateful pyplot
 module and the object-oriented approach (http://bit.ly/2xqYnVR
 )

	Matplotlib official documentation of the Artist tutorial
 (http://bit.ly/2kwS2SI
 )







Visualizing data with matplotlib



Matplotlib has a few dozen plotting methods that make nearly any kind of plot imaginable. Line, bar, histogram, scatter, box, violin, contour, pie, and many more plots are available as methods from the Axes object. It was only in version 1.5 (released in 2015) that matplotlib began accepting data from pandas DataFrames. Before this, data had to be passed to it from NumPy arrays or Python lists.






Getting ready


In this recipe, we will visualize the trend in movie budgets over time by reducing our data from pandas DataFrames down to NumPy arrays, which we will then pass to matplotlib plotting functions.





How to do it...



	Now that we know how to select plotting elements and change their attributes, let's actually create a data visualization. Let's read in the movie dataset, calculate the median budget for each year, and then find the five year rolling average to smooth the data:



>>> movie = pd.read_csv('data/movie.csv')

>>> med_budget = movie.groupby('title_year')['budget'].median() / 1e6

>>> med_budget_roll = med_budget.rolling(5, min_periods=1).mean()

>>> med_budget_roll.tail()

title_year
2012.0    20.893
2013.0    19.893
2014.0    19.100
2015.0    17.980
2016.0    17.780
Name: budget, dtype: float64


	Let's get our data into NumPy arrays:



>>> years = med_budget_roll.index.values

>>> years[-5:]

array([ 2012.,  2013.,  2014.,  2015.,  2016.])



>>> budget = med_budget_roll.values

>>> budget[-5:]

array([ 20.893,  19.893,  19.1  ,  17.98 ,  17.78 ])


	The plot
 method is used to create line plots. Let's use it to plot the rolling median of budgets over time in a new Figure:



>>> fig, ax = plt.subplots(figsize=(14,4), linewidth=5,

                           edgecolor='.5')

>>> ax.plot(years, budget, linestyle='--', 

            linewidth=3, color='.2', label='All Movies')



>>> text_kwargs=dict(fontsize=20, family='cursive')

>>> ax.set_title('Median Movie Budget', **text_kwargs)

>>> ax.set_ylabel('Millions of Dollars', **text_kwargs)





	It's quite interesting that the median movie budget peaked in the year 2000 and has subsequently fallen. Perhaps this is just an artifact of the dataset, in which we have more data in recent years of all the movies, not just the most popular ones. Let's find the count of the number of movies per year:



>>> movie_count = movie.groupby('title_year')['budget'].count()

>>> movie_count.tail()

title_year
2012.0    191
2013.0    208
2014.0    221
2015.0    192
2016.0     86
Name: budget, dtype: int64


	Any number of plots may be put on a single Axes, and these counts can be plotted directly with the median budget as a bar chart. As the units for both plots are completely different (dollars versus count), we can either create a secondary y
 axis or scale the counts to be in the same range as the budget. We choose the latter and label each bar with its value as text, directly preceding it. As the vast majority of the data is contained in recent years, we can also limit the data to those movies made from 1970 onward:



>>> ct = movie_count.values

>>> ct_norm = ct / ct.max() * budget.max()



>>> fifth_year = (years % 5 == 0) & (years >= 1970)

>>> years_5 = years[fifth_year]

>>> ct_5 = ct[fifth_year]

>>> ct_norm_5 = ct_norm[fifth_year]



>>> ax.bar(years_5, ct_norm_5, 3, facecolor='.5', 

           alpha=.3, label='Movies per Year')

>>> ax.set_xlim(1968, 2017)

>>> for x, y, v in zip(years    _5, ct_norm_5, ct_5):

        ax.text(x, y + .5, str(v), ha='center')

>>> ax.legend()

>>> fig





	This trend might not hold if we just look at the top 10 budgeted movies per year. Let's find the five year rolling median for just the top 10 movies per year:



>>> top10 = movie.sort_values('budget', ascending=False) \

                 .groupby('title_year')['budget'] \

                 .apply(lambda x: x.iloc[:10].median() / 1e6)

        

>>> top10_roll = top10.rolling(5, min_periods=1).mean()

>>> top10_roll.tail()

title_year
2012.0    192.9
2013.0    195.9
2014.0    191.7
2015.0    186.8
2016.0    189.1
Name: budget, dtype: float64


	These numbers represent an order of a magnitude higher than those found in step 13 for all the data. Plotting both lines on the same scale would not look good. Let's create an entirely new Figure with two subplots (Axes) and plot the data from the previous step in the second Axes:



>>> fig2, ax_array = plt.subplots(2, 1, figsize=(14,8), sharex=True)

>>> ax1 = ax_array[0]

>>> ax2 = ax_array[1]



>>> ax1.plot(years, budget, linestyle='--', linewidth=3, 

             color='.2', label='All Movies')

>>> ax1.bar(years_5, ct_norm_5, 3, facecolor='.5', 

            alpha=.3, label='Movies per Year')

>>> ax1.legend(loc='upper left')

>>> ax1.set_xlim(1968, 2017)

>>> plt.setp(ax1.get_xticklines(), visible=False)



>>> for x, y, v in zip(years_5, ct_norm_5, ct_5):

        ax1.text(x, y + .5, str(v), ha='center')



>>> ax2.plot(years, top10_roll.values, color='.2',

             label='Top 10 Movies')

>>> ax2.legend(loc='upper left')



>>> fig2.tight_layout()

>>> fig2.suptitle('Median Movie Budget', y=1.02, **text_kwargs)

>>> fig2.text(0, .6, 'Millions of Dollars', rotation='vertical', 

              ha='center', **text_kwargs)



>>> import os

>>> path = os.path.expanduser('~/Desktop/movie_budget.png')

>>> fig2.savefig(path, bbox_inches='tight')




















How it works...


In step 1, we begin with a quest to analyze movie budgets by finding the median budget per year in millions of dollars. After finding the median budget for each year, we decided to smooth it out, as there is going to be quite a lot of variability from year to year. We choose to smooth the data because we are looking for a general trend and are not necessarily interested in the exact value of any one year.

In this step, we use the rolling
 method to calculate a new value for each year based on the average of the last five years of data. For example, the median budgets from the years 2011 through 2015 are grouped together and averaged. The result is the new value for the year 2015. The only required parameter for the rolling
 method is the size of the window, which, by default, ends at the current year.

The rolling
 method returns a groupby-like object that must have its groups acted on with another function to produce a result. Let's manually verify that the rolling
 method works as expected for a few of the previous years:

>>> med_budget.loc[2012:2016].mean()

17.78



>>> med_budget.loc[2011:2015].mean()

17.98



>>> med_budget.loc[2010:2014].mean()

19.1

These values are the same as the output from step 1. In step 2, we get ready to use matplotlib by putting our data into NumPy arrays. In step 3, we create our Figure and Axes to set up the object-oriented interface. The plt.subplots
 method supports a large number of inputs. See the documentation to view all possible parameters for both this and for the figure
 function (http://bit.ly/2ydM8ZU
 and http://bit.ly/2ycno40
 ).


The first two parameters in the plot
 method represent the x and y values for a line plot. All of the line properties are available to be changed inside the call to plot
 . The set_title
 Axes method provides a title and can set all the available text properties inside its call. The same goes for the set_ylablel
 method. If you are setting the same properties for many objects, you can pack them together into a dictionary and pass this dictionary as one of the arguments, as done with **text_kwargs
 .


In step 4, we notice an unexpected downward trend in median budget beginning around the year 2000 and suspect that the number of movies collected per year might play an explanatory role. We choose to add this dimension to the graph by creating a bar plot of every fifth year of data beginning from 1970. We use boolean selection on our NumPy data arrays in the same manner as we do for the pandas Series in step 5.

The bar
 method takes the x-value the height, and the width of the bars as its first three arguments and places the center of the bars directly at each x-value. The bar height was derived from the movie count that was first scaled down to be between zero and one, and then multiplied by the maximum median budget. These bar heights are stored in the variable ct_norm_5
 . To label each bar correctly, we first zip together the bar center, its height, and the actual movie count. We then loop through this zipped object and place the count preceding the bar with the text
 method, which accepts an x-value, y-value, and a string. We adjust the y-value slightly upwards and use the horizontal alignment parameter, ha
 , to center the text.

Look back at step 3, and you will notice the plot
 method with the label
 parameter equal to All Movies
 . This is the value that matplotlib uses when you create a legend for your plot. A call to the legend
 Axes method puts all the plots with assigned labels in the legend.

To investigate the unexpected dip in the median budget, we can focus on just the top 10 budgeted movies for each year. Step 6 uses a custom aggregation function after grouping by year to do so, and then smooths the result in the same manner as before. These results could be plotted directly on the same graph, but because the values are so much greater, we opt to create an entire new Figure with two Axes.

We start step 7 by creating a Figure with two subplots in a two row by one column grid. Remember that when creating more than one subplot, all the Axes get stored in a NumPy array. The final result from step 5 is recreated in the top Axes. We plot the top 10 budgeted movies in the bottom Axes. Notice that the years align for both the bottom and top Axes because the sharex
 parameter was set to True
 in the Figure creation. When sharing an axis, matplotlib removes the labels for all the ticks but keeps those tiny vertical lines for each tick. To remove these tick lines, we use the setp
 pyplot
 function. Although this isn't directly object-oriented, it is explicit and very useful when we want to set properties for an entire sequence of plotting objects. We set all the tick lines to invisible with this useful function.

Finally, we then make several calls to Figure methods. This is a departure from our normal calling of Axes methods. The tight_layout
  method adjusts the subplots to look much nicer by removing extra space and ensuring that different Axes don't overlap. The suptitle
 method creates a title for the entire Figure, as opposed to the set_title
 Axes method, which creates titles for individual Axes. It accepts an x and y location to represent a place in the figure coordinate system
 , in which (0, 0) represents the bottom left and (1, 1) represents the top right. By default, the y-value is 0.98, but we move it up a few points to 1.02.

Each Axes also has a coordinate system in which (0, 0) is used for the bottom left and (1, 1) for the top right. In addition to those coordinate system, each Axes also has a data coordinate system, which is more natural to most people and represents the bounds of the x
 and y-axis
 . These bounds may be retrieved with ax.get_xlim()
 and ax.get_ylim()
 respectively. All the plotting before this used the data coordinate system.
 See the Transformations tutorial
 to learn more about the coordinate systems (http://bit.ly/2gxDkX3
 ).

As both Axes use the same units for the y
 axis, we use the text
 Figure method to place a custom y
 axis label directly between each Axes, using the figure coordinate system. Finally, we save the Figure to our desktop. The tilde, ~
 , in the path represents the home directory, but the savefig
 method won't understand what this means. You must use the expanduser
 function from the os
 library to create the full path. For instance, the path
 variable becomes the following on my machine:

>>> os.path.expanduser('~/Desktop/movie_budget.png')

'/Users/Ted/Desktop/movie_budget.png'

The savefig
 method can now create the file in the correct location. By default, savefig
 will save only what is plotted within (0, 0) to (1, 1) of
 the figure coordinate system. As our title is slightly outside of this area, some of it will be cropped. Setting the bbox_inches
 parameter to tight
 will have matplotlib include any titles or labels that are extending outside of this region.





There's more...


Matplotlib began accepting pandas DataFrames for all of its plotting functions after the release of version 1.5. The DataFrame gets passed to the plotting method through the data
 parameter. Doing so allows you to reference the columns with string names. The following script creates a scatter plot of the IMDB score against the year for a random selection of 100 movies made from 2000 onwards. The sizes of each point are proportional to the budget:


>>> cols = ['budget', 'title_year', 'imdb_score', 'movie_title']

>>> m = movie[cols].dropna()

>>> m['budget2'] = m['budget'] / 1e6

>>> np.random.seed(0)

>>> movie_samp = m.query('title_year >= 2000').sample(100)



>>> fig, ax = plt.subplots(figsize=(14,6))

>>> ax.scatter(x='title_year', y='imdb_score',

               s='budget2', data=movie_samp)



>>> idx_min = movie_samp['imdb_score'].idxmin()

>>> idx_max = movie_samp['imdb_score'].idxmax()

>>> for idx, offset in zip([idx_min, idx_max], [.5, -.5]):

        year = movie_samp.loc[idx, 'title_year']

        score = movie_samp.loc[idx, 'imdb_score']

        title = movie_samp.loc[idx, 'movie_title']

        ax.annotate(xy=(year, score), 

        xytext=(year + 1, score + offset), 

        s=title + ' ({})'.format(score),

        ha='center',

        size=16,

        arrowprops=dict(arrowstyle="fancy"))

>>> ax.set_title('IMDB Score by Year', size=25)

>>> ax.grid(True)




After creating the scatter plot, the highest and lowest scoring movies are labeled with the annotate
 method. The xy
 parameter is a tuple of the point that we would like to annotate. The xytext
 parameter is another tuple coordinate of the text location. The text is centered there due to ha
 being set to center
 .







See also



	Matplotlib official Legend guide
 (http://bit.ly/2yGvKUu
 )

	Matplotlib official documentation of the scatter
 method (http://bit.ly/2i3N2nI
 )

	Matplotlib official Annotation
 guide (http://bit.ly/2yhYHoP
 )







Plotting basics with pandas



Pandas makes plotting quite easy by automating much of the procedure for you. All pandas plotting is handled internally by
 matplotlib and is publicly accessed through the DataFrame or Series plot
 method. We say that the pandas plot
 method is a wrapper
 around matplotlib.
 When you create a plot in pandas, you will be returned a matplotlib Axes or Figure. You can use the full power of matplotlib to modify this object until you get the desired result.



Pandas is only able to produce a small subset of the plots available with matplotlib, such as line, bar, box, and scatter plots, along with kernel density estimates

 (
KDEs

 ) and histograms. Pandas excels at the plots it does create by making the process very easy and efficient, usually taking just a single line of code, saving lots of time when exploring data.






Getting ready



One of the keys to understanding plotting in pandas is to know whether the plotting method requires one or two variables to make the plot. For instance, line and scatter plots require two variables to plot each point. The same holds true for bar plots, which require some x-coordinates to locate the bar and another variable for the height of the bar. Boxplots, histograms, and KDEs
 use only a single variable to make their plots.


The two-variable line and scatter plots, by default, use the index as the x
 axis and the values of the columns as the y
 axis. The one-variable plots ignore the index and apply a transformation or aggregation to each variable to make their plots. In this recipe, we will look at the differences between two-variable and one-variable plots in pandas.






How to do it..



	Create a small DataFrame with a meaningful index:



>>> df = pd.DataFrame(index=['Atiya', 'Abbas', 'Cornelia', 

                             'Stephanie', 'Monte'], 

                      data={'Apples':[20, 10, 40, 20, 50],

                            'Oranges':[35, 40, 25, 19, 33]})





	Bar plots use the index of the labels for the x
 axis and the column values as the bar heights. Use the plot
 method with the kind
 parameter
 set to bar
 :



>>> color = ['.2', '.7']

>>> df.plot(kind='bar', color=color, figsize=(16,4))





	A KDE plot ignores the index and uses the values of each column as the x
 axis and calculates a probability density for the y values:



>>> df.plot(kind='kde', color=color, figsize=(16,4))





	Let's plot all two-variable plots together in a single Figure. The scatter plot is the only one that requires you to specify columns for the x and y values. If you wish to use the index for a scatter plot, you will have to use the reset_index
 method to make it a column. The other two plots use the index for the x
 axis and make a new set of lines/bars for every single numeric column:



>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> fig.suptitle('Two Variable Plots', size=20, y=1.02)

>>> df.plot(kind='line', color=color, ax=ax1, title='Line plot')

>>> df.plot(x='Apples', y='Oranges', kind='scatter', color=color, 

            ax=ax2, title='Scatterplot')

>>> df.plot(kind='bar', color=color, ax=ax3, title='Bar plot')





	Let's put all the one-variable plots in the same Figure as well:



>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> fig.suptitle('One Variable Plots', size=20, y=1.02)

>>> df.plot(kind='kde', color=color, ax=ax1, title='KDE plot')

>>> df.plot(kind='box', ax=ax2, title='Boxplot')

>>> df.plot(kind='hist', color=color, ax=ax3, title='Histogram')




 





How it works...


Step 1 creates a small sample DataFrame that will help us illustrate the differences between two and one-variable plotting with pandas. By default, pandas will use each numeric column of the DataFrame to make a new set of bars, lines, KDEs, boxplots, or histograms and use the index as the x values when it is a two-variable plot. One of the exceptions is the scatter plot, which must be explicitly given a single column for the x and y values.


The pandas plot
 method is very versatile and has a large number of parameters that allow you to customize the result to your liking. For instance, you can set the Figure size, turn the gridlines on and off, set the range of the x
 and y
 axis, color the plot, rotate the tick marks, and much more.

You can also use any of the arguments available to the specific matplotlib plotting method. The extra arguments will be collected by the **kwds
 parameter from the plot
 method and correctly passed to the underlying matplotlib function. For example, In step 2, we create a bar plot. This means that we can use all of the parameters available in the matplotlib bar
 function as well as the ones available in the pandas plot
 method (http://bit.ly/2z2l3rJ
 ).

In step 3, we create a single-variable KDE plot, which creates a density estimate for each numeric column in the DataFrame. Step 4 places all the two-variable plots in the same Figure. Likewise, step 5 places all the one-variable plots together. Each of steps 4 and 5 creates a Figure with three Axes objects. The command plt.subplots(1, 3)
  creates a Figure with three Axes spread over a single row and three columns. It returns a two-item tuple consisting of the Figure and a one-dimensional NumPy array containing the Axes. The first item of the tuple is unpacked into the variable fig
 . The second item of the tuple is unpacked into three more variables, one for each Axes. The pandas plot
 method handily comes with an ax
 parameter, allowing us to place the result of the plot into a specific Axes in the Figure.





There's more...


With the exception of the scatter plot, all the plots did not specify the columns to be used. Pandas defaulted to using every single numeric column, as well as the index in the case of two-variable plots. You can, of course, specify the exact columns that you would like to use for each x or y value:

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> df.sort_values('Apples').plot(x='Apples', y='Oranges', 

                                  kind='line', ax=ax1)

>>> df.plot(x='Apples', y='Oranges', kind='bar', ax=ax2)

>>> df.plot(x='Apples', kind='kde', ax=ax3)








See also



	Pandas official documentation on Visualization
 (http://bit.ly/2zhUqQv
 )







Visualizing the flights dataset


Exploratory data analysis is mainly guided by visualizations, and pandas provides a great interface for quickly and effortlessly creating them. A simple strategy when beginning a visualization of any dataset is to focus only on univariate plots. The most popular univariate plots tend to be bar charts for categorical data (usually strings) and histograms, boxplots, or KDEs for continuous data (always numeric). Attempting to analyze multiple variables at the same time, directly at the start of a project, can be quite overwhelming.





Getting ready


In this recipe, we do some basic exploratory data analysis on the flights dataset by creating univariate and multivariate plots directly with pandas.





How to do it...



	Read in the flights dataset, and output the first five rows:



>>> flights = pd.read_csv('data/flights.csv')

>>> flights.head()





	Before we start plotting, let's calculate the number of diverted, cancelled, delayed, and ontime flights. We already have binary columns for diverted and cancelled. Flights are considered delayed whenever they arrive 15 minutes or more later than scheduled. Let's create two new binary columns to track delayed and on-time arrivals:



>>> flights['DELAYED'] = flights['ARR_DELAY'].ge(15).astype(int)

>>> cols = ['DIVERTED', 'CANCELLED', 'DELAYED']

>>> flights['ON_TIME'] = 1 - flights[cols].any(axis=1)



>>> cols.append('ON_TIME')

>>> status = flights[cols].sum()

>>> status

DIVERTED       137
CANCELLED      881
DELAYED      11685
ON_TIME      45789
dtype: int64


	Let's now make several plots on the same Figure for both categorical and continuous columns:



>>> fig, ax_array = plt.subplots(2, 3, figsize=(18,8))

>>> (ax1, ax2, ax3), (ax4, ax5, ax6) = ax_array

>>> fig.suptitle('2015 US Flights - Univariate Summary', size=20)



>>> ac = flights['AIRLINE'].value_counts()

>>> ac.plot(kind='barh', ax=ax1, title='Airline')



>>> oc = flights['ORG_AIR'].value_counts()

>>> oc.plot(kind='bar', ax=ax2, rot=0, title='Origin City')



>>> dc = flights['DEST_AIR'].value_counts().head(10)

>>> dc.plot(kind='bar', ax=ax3, rot=0, title='Destination City')



>>> status.plot(kind='bar', ax=ax4, rot=0, 

                log=True, title='Flight Status')

>>> flights['DIST'].plot(kind='kde', ax=ax5, xlim=(0, 3000),

                         title='Distance KDE')

>>> flights['ARR_DELAY'].plot(kind='hist', ax=ax6, 

                              title='Arrival Delay',

                              range=(0,200))





	This is not an exhaustive look at all the univariate statistics but gives us a good amount of detail on some of the variables. Before we move on to multivariate plots, let's plot the number of flights per week. This is the right situation to use a time series plot with the dates on the x
 axis. Unfortunately, we don't have pandas Timestamps in any of the columns, but we do have the month and day. The to_datetime
 function has a nifty trick that identifies column names that match Timestamp components. For instance, if you have a DataFrame with exactly three columns titled year
 , month,
 and day,
 then passing this DataFrame to the to_datetime
 function will return a sequence of Timestamps. To prepare our current DataFrame, we need to add a column for the year and use the scheduled departure time to get the hour and minute:



>>> hour = flights['SCHED_DEP'] // 100

>>> minute = flights['SCHED_DEP'] % 100

>>> df_date = flights[['MONTH', 'DAY']].assign(YEAR=2015, HOUR=hour,

                                               MINUTE=minute)

>>> df_date.head()





	Then, almost by magic, we can turn this DataFrame into a proper Series of Timestamps with the to_datetime
 function:



>>> flight_dep = pd.to_datetime(df_date)

>>> flight_dep.head()

0   2015-01-01 16:25:00
1   2015-01-01 08:23:00
2   2015-01-01 13:05:00
3   2015-01-01 15:55:00
4   2015-01-01 17:20:00
dtype: datetime64[ns]


	Let's use this result as our new index and then find the count of flights per week with the resample
 method:



>>> flights.index = flight_dep

>>> fc = flights.resample('W').size()

>>> fc.plot(figsize=(12,3), title='Flights per Week', grid=True)





	This plot is quite revealing. It appears that we have no data for the month of October. Due to this missing data, it's quite difficult to analyze any trend visually, if one exists. The first and last weeks are also lower than normal, likely because there isn't a full week of data for them. Let's make any week of data with fewer than 1,000 flights missing. Then, we can use the
 interpolate
 method to fill in this missing data:




>>> fc_miss = fc.where(fc > 1000)

>>> fc_intp = fc_miss.interpolate(limit_direction='both')



>>> ax = fc_intp.plot(color='black', figsize=(16,4))

>>> fc_intp[fc < 500].plot(linewidth=10, grid=True, 

                           color='.8', ax=ax)



>>> ax.annotate(xy=(.8, .55), xytext=(.8, .77), 

                xycoords='axes fraction', s='missing data', 

                ha='center', size=20, arrowprops=dict())

>>> ax.set_title('Flights per Week (Interpolated Missing Data)')





	Let's change directions and focus on multivariable plotting. Let's find the 10 airports that:
	Have the longest average distance traveled for inbound flights

	Have a minimum of 100 total flights:







>>> flights.groupby('DEST_AIR')['DIST'] \

           .agg(['mean', 'count']) \

           .query('count > 100') \

           .sort_values('mean') \

           .tail(10) \

           .plot(kind='bar', y='mean', rot=0, legend=False,

                 title='Average Distance per Destination')





	It's no surprise that the top two destination airports are in Hawaii. Now let's analyze two variables at the same time by making a scatter plot between distance and airtime for all flights under 2,000 miles:



>>> fs = flights.reset_index(drop=True)[['DIST', 'AIR_TIME']] \

                .query('DIST <= 2000').dropna()

>>> fs.plot(x='DIST', y='AIR_TIME', kind='scatter',

            s=1, figsize=(16,4))





	As expected, a tight linear relationship exists between distance and airtime, though the variance seems to increase as the number of miles increases. There are a few flights that are quite far outside the trendline. Let's try and identify them. A linear regression model may be used to formally identify them, but as pandas doesn't directly support linear regression, we will take a more manual approach. Let's use the cut
 function to place the flight distances into one of eight groups:



>>> fs['DIST_GROUP'] = pd.cut(fs['DIST'], bins=range(0, 2001, 250))

>>> fs['DIST_GROUP'].value_counts().sort_index()

(0, 250]         6529
(250, 500]      12631
(500, 750]      11506
(750, 1000]      8832
(1000, 1250]     5071
(1250, 1500]     3198
(1500, 1750]     3885
(1750, 2000]     1815
Name: DIST_GROUP, dtype: int64


	We will assume that all flights within each group should have similar flight times, and thus calculate for each flight the number of standard deviations if the flight time deviates from the mean of that group:



>>> normalize = lambda x: (x - x.mean()) / x.std()

>>> fs['TIME_SCORE'] = fs.groupby('DIST_GROUP')['AIR_TIME'] \

                         .transform(normalize)

>>> fs.head()





	We now need a way to discover the outliers. A box plot provides a nice visual for detecting outliers. Unfortunately, a bug exists when attempting to make a box plot with the plot
 method, but thankfully, there is a DataFrame boxplot
 method that works:



>>> ax = fs.boxplot(by='DIST_GROUP', column='TIME_SCORE',

                    figsize=(16,4))

>>> ax.set_title('Z-Scores for Distance Groups')

>>> ax.figure.suptitle('')





	Let's arbitrarily choose to examine the points that are greater than six standard deviations away from the mean. Because we reset the index in the fs
 DataFrame in step 9, we can use it to identify each unique row in the flights DataFrame. Let's create a separate DataFrame with just the outliers:



>>> outliers = flights.iloc[fs[fs['TIME_SCORE'] > 6].index]

>>> outliers = outliers[['AIRLINE','ORG_AIR', 'DEST_AIR', 'AIR_TIME',

                         'DIST', 'ARR_DELAY', 'DIVERTED']]

>>> outliers['PLOT_NUM'] = range(1, len(outliers) + 1)

>>> outliers





	We can use this table to identify the outliers on the plot from step 9. Pandas also provides a way to attach tables to the bottom of the graph:



>>> ax = fs.plot(x='DIST', y='AIR_TIME', 

                 kind='scatter', s=1, 

                 figsize=(16,4), table=outliers)

>>> outliers.plot(x='DIST', y='AIR_TIME',

                  kind='scatter', s=25, ax=ax, grid=True)



>>> outs = outliers[['AIR_TIME', 'DIST', 'PLOT_NUM']]

>>> for t, d, n in outs.itertuples(index=False):

        ax.text(d + 5, t + 5, str(n))

    

>>> plt.setp(ax.get_xticklabels(), y=.1)

>>> plt.setp(ax.get_xticklines(), visible=False)

>>> ax.set_xlabel('')

>>> ax.set_title('Flight Time vs Distance with Outliers')








How it works...


After reading in our data in step 1 and calculating columns for delayed and on-time flights, we are ready to begin making univariate plots. The call to the subplots
 function in step 3 creates a 2 x 3 grid of equal-sized Axes. We unpack each Axes into its own variable to reference it. Each of the calls to the plot
 method references the specific Axes in the Figure with the ax
 parameter. The value_counts
 method is used to create the three Series that form the plots in the top row. The rot
 parameter rotates the tick labels to the given angle.

The plot in the bottom left-hand corner uses a logarithmic scale for the y
 axis, as the number of on-time flights is about two orders of magnitude greater than the number of cancelled flights. Without the log scale, the left two bars would be difficult to see. By default, KDE plots may result in positive areas for impossible values, such as negative miles in the plot on the bottom row. For this reason, we limit the range of the x values with the xlim
 parameter.

The histogram created in the bottom right-hand corner on arrival delays was passed the range
 parameter. This is not directly part of the method signature of the pandas plot
 method. Instead, this parameter gets collected by the **kwds
 argument and then passed along to the matplotlib hist
 function. Using xlim
 , as done in the previous plot would not work in this case.The plot would simply be cropped without recalculating the new bin widths for just that portion of the graph. The range
 parameter, however, both limits the x-axis and calculates the bin widths for just that range.

Step 4 creates a special extra DataFrame to hold columns with only datetime components so that we can instantly turn each row into a Timestamp with the to_datetime
 function in step 5. The resample
 method, by default, uses the index to form groups based on the date offset passed. We return the number of flights per week (W) as a Series and then call the plot
 method on it, which nicely formats the index as the x-axis. A glaring hole for the month of October appears.

To fill this hole, we use the where
 method to set only value less than 1,000 to missing in the first line of step 7. We then fill in the missing data through linear interpolation. By default, the interpolate
 method only interpolates in a forward direction, so any missing values at the start of the DataFrame will remain. By setting the limit_direction
 parameter to both
 , we ensure that there are no missing values. The new data, now stored in fc_intp
 , is plotted. To show the missing data more clearly
 , we select the points that were missing from the original and make a line plot on the same Axes directly on top of the previous line. Typically, when we annotate the plot, we can use the data coordinates, but in this instance, it isn't obvious what the coordinates of the x-axis
 are. To use the Axes coordinate system (the one that ranges from (0,0), to (1,1)), the xycoords
 parameter is set to axes fraction
 . This new plot now excludes the erroneous data and it makes it is much easier to spot a trend. The summer months have much more air traffic than any other time of the year.

In step 8, we use a long chain of methods to group by each destination airport and apply two functions, mean
 and count
 , to the distance column. The query
 method is especially nice when for use in a method chain, as it clearly and succinctly selects the desired rows of data of a given condition. We have two columns in our DataFrame when we get to the plot
 method, which, by default, would make a bar plot for each column. We are not interested in the count
 column and therefore select only the mean
 column to form the bars. Also, when plotting with a DataFrame, each column name appears in the legend. This would put the word mean
 in the legend, which would not be useful, so we remove it by setting the legend
 parameter to False
 .

Step 9 begins a new analysis by looking at the relationship between distance traveled and flight airtime. Due to the huge number of points, we shrink their size with the s
 parameter. To find the flights that took much longer on average to reach their destination, we group each flight into 250 mile chunks in step 10 and find the number of standard deviations from their group mean in step 11.

In step 12, a new box plot is created in the same Axes for every unique value of the by
 parameter. We capture the Axes object by saving it to a variable after the call to boxplot
 . This method creates an unnecessary title over the Figure, which is erased by first accessing the Figure and then setting the suptitle
 to an empty string.

In step 13, the current DataFrame, fs
 , contains the information we need to find the slowest flights, but it does not possess all of the original data that we might want to investigate further. Because we reset the index of fs
 in step 9, we can use it to identify the same row from the original. The first line in this step does this for us. We also give each of the outlier rows a unique integer to identify it later on when plotting.

In step 14, we begin with the same scatter plot as in step 9 but use the table parameter to append the outlier table to the bottom of the plot. We then plot our outliers as a scatter plot directly on top and ensure that their points are larger to identify them easily
 . The itertuples
 method loops through each DataFrame row and returns its values as a tuple. We unpack the corresponding x and y values for our plot and label it with the number we assigned to it.

As the table is placed directly underneath of the plot, it interferes with the plotting objects on the x
 axis. We move the tick labels to the inside of the axis and remove the tick lines and axis label. This table provides some nice information to anyone who is interested in these outlying events.





See also



	Pandas official documentation of plotting with tables (http://bit.ly/2yhdBd7
 )







Stacking area charts to discover emerging trends


Stacked area charts are great visualizations to discover emerging trends, especially in the marketplace. It is a common choice to show the percentage of the market share for things such as internet browsers, cell phones, or vehicles.





Getting ready


In this recipe, we will use data gathered from the popular website meetup.com. Using a stacked area chart, we will show membership distribution between five data science-related meetup groups.





How to do it...



	Read in the meetup dataset, convert the join_date
 column into a Timestamp, place it in the index, and output the first five rows:



>>> meetup = pd.read_csv('data/meetup_groups.csv', 

                          parse_dates=['join_date'], 

                          index_col='join_date')

>>> meetup.head()





	Let's get the number of people who joined each group each week:



>>> group_count = meetup.groupby([pd.Grouper(freq='W'), 'group']) \

                        .size()

>>> group_count.head()

join_date   group   
2010-11-07  houstonr     5
2010-11-14  houstonr    11
2010-11-21  houstonr     2
2010-12-05  houstonr     1
2011-01-16  houstonr     2
dtype: int64


	Unstack the group level so that each meetup group has its own column of data:



>>> gc2 = group_count.unstack('group', fill_value=0)

>>> gc2.tail()





	This data represents the number of members who joined that particular week. Let's take the cumulative sum of each column to get the grand total number of members:



>>> group_total = gc2.cumsum()

>>> group_total.tail()





	Many stacked area charts use the percentage of the total so that each row always adds up to 100 percent. Let's divide each row by the row total to find this percentage:



>>> row_total = group_total.sum(axis='columns')

>>> group_cum_pct = group_total.div(row_total, axis='index')

>>> group_cum_pct.tail()





	We can now create our stacked area plot, which will continually accumulate the columns, one on top of the other:



>>> ax = group_cum_pct.plot(kind='area', figsize=(18,4),

                            cmap='Greys', xlim=('2013-6', None), 

                            ylim=(0, 1), legend=False)

>>> ax.figure.suptitle('Houston Meetup Groups', size=25)

>>> ax.set_xlabel('')

>>> ax.yaxis.tick_right()



>>> plot_kwargs = dict(xycoords='axes fraction', size=15)

>>> ax.annotate(xy=(.1, .7), s='R Users', 

                color='w', **plot_kwargs)

>>> ax.annotate(xy=(.25, .16), s='Data Visualization', 

                color='k', **plot_kwargs)

>>> ax.annotate(xy=(.5, .55), s='Energy Data Science', 

                color='k', **plot_kwargs)

>>> ax.annotate(xy=(.83, .07), s='Data Science',

                color='k', **plot_kwargs)

>>> ax.annotate(xy=(.86, .78), s='Machine Learning',

                color='w', **plot_kwargs)








How it works...


Our goal is to determine the distribution of members among the five largest data science meetup groups in Houston over time. To do this, we need to find the total membership at every point in time since each group began. We have the exact date and time when each person joined each group. In step 2, we group by each week (offset alias W
 ) and meetup group and return the number of sign-ups for that week with the size
 method.

The resulting Series is not suitable to make plots with pandas. Each meetup group needs its own column, so we reshape the group
 index level as columns. We set the option fill_value
 to zero so that groups with no memberships during a particular week will not have missing values.

We are in need of the total number of members each week. The cumsum
 method in step 4 provides this for us. We could create our stacked area plot directly after this step, which would be a nice way to visualize the raw total membership. In step 5, we find the distribution of each group as a percentage of the total members in all groups by dividing each value by its row total. By default, pandas automatically aligns objects by their columns, so we cannot use the division operator. Instead, we must use the div
 method to change the axis of alignment to the index

The data is now perfectly suited for a stacked area plot, which we create in step 6. Notice that pandas allows you to set the axis limits with a datetime string. This will not work if done directly in matplotlib using the ax.set_xlim
 method.
 The starting date for the plot is moved up a couple years because the Houston R Users group began much earlier than any of the other groups.





There's more...


Although typically frowned upon by data visualization gurus, pandas can create pie charts. In this instance, we use them to see snapshots of the total group distribution over time. Let's first select every third month of data, beginning 18 months prior to the end of data collection. We use the asfreq
 method, which only works on DataFrames with datetime values in the index. The offset alias 3MS
 is used to represent the start of every third month. Because group_cum_pct
 is aggregated by week, the first day of the month is not always present. We set the method
 parameter to bfill
 ,
 which stands for backfill; it will look back in time to find the first day of the month that has data in it. We then use the to_period
 method (which also only works with datetimes in the index) to change the values in the index to a pandas period of time. Finally, we transpose the data so that each column represents the distribution of members in the meetup group for that month:

>>> pie_data = group_cum_pct.asfreq('3MS', method='bfill') \

                            .tail(6).to_period('M').T

>>> pie_data




From here, we can use the plot
 method to create the pie charts:

>>> from matplotlib.cm import Greys

>>> greys = Greys(np.arange(50,250,40))



>>> ax_array = pie_data.plot(kind='pie', subplots=True, 

                             layout=(2,3), labels=None,

                             autopct='%1.0f%%', pctdistance=1.22,

                             colors=greys)

>>> ax1 = ax_array[0, 0]

>>> ax1.figure.legend(ax1.patches, pie_data.index, ncol=3)

>>> for ax in ax_array.flatten():

        ax.xaxis.label.set_visible(True)

        ax.set_xlabel(ax.get_ylabel())

        ax.set_ylabel('')

>>> ax1.figure.subplots_adjust(hspace=.3)








Understanding the differences between seaborn and pandas



Outside of pandas, the
 seaborn library is one of the most popular in the Python data science community to create visualizations. Like pandas, it does not do any actual plotting itself and is completely reliant on matplotlib for the heavy lifting. Seaborn plotting functions work directly with pandas DataFrames to create aesthetically pleasing visualizations.



While seaborn and pandas both reduce the overhead of matplotlib, the way they approach data is completely different. Nearly all of the seaborn plotting functions require tidy (or long) data. When data is in tidy form, it is not ready for consumption or interpretation until some function is applied to it to yield a result. Tidy data is the raw building blocks that makes all other analysis possible. Processing tidy data during data analysis often creates aggregated or wide data. This data, in wide format, is what pandas uses to make its plots.






Getting ready


In this recipe, we will build similar plots with both seaborn and matplotlib to show definitively that they accept tidy versus wide data.





How to do it...



	Read in the employee dataset, and output the first five rows:



>>> employee = pd.read_csv('data/employee.csv', 

                           parse_dates=['HIRE_DATE', 'JOB_DATE'])

>>> employee.head()





	Import the seaborn library, and alias it sns
 :



>>> import seaborn as sns


	Let's make a bar chart of the count of each department with seaborn:



>>> sns.countplot(y='DEPARTMENT', data=employee)





	To reproduce this plot with pandas, we will need to aggregate the data beforehand:



>>> employee['DEPARTMENT'].value_counts().plot('barh')





	Now, let's find the average salary for each race with seaborn:



>>> ax = sns.barplot(x='RACE', y='BASE_SALARY', data=employee)

>>> ax.figure.set_size_inches(16, 4)





	To replicate this with pandas, we will need to group by each race first:



>>> avg_sal = employee.groupby('RACE', sort=False) \

                      ['BASE_SALARY'].mean()

>>> ax = avg_sal.plot(kind='bar', rot=0, figsize=(16,4), width=.8)

>>> ax.set_xlim(-.5, 5.5)

>>> ax.set_ylabel('Mean Salary')





	Seaborn also has the ability to distinguish groups within the data through a third variable, hue
 , in most of its plotting functions. Let's find the mean salary by race and gender:



>>> ax = sns.barplot(x='RACE', y='BASE_SALARY', hue='GENDER', 

                     data=employee, palette='Greys')

>>> ax.figure.set_size_inches(16,4)





	With pandas, we will have to group by both race and gender and then unstack the genders as column names:



>>> employee.groupby(['RACE', 'GENDER'], sort=False) \

            ['BASE_SALARY'].mean().unstack('GENDER') \

            .plot(kind='bar', figsize=(16,4), rot=0,

                  width=.8, cmap='Greys')





	A box plot is another type of plot that seaborn and pandas have in common. Let's create a box plot of salary by race and gender with seaborn:



>>> sns.boxplot(x='GENDER', y='BASE_SALARY', data=employee,

                hue='RACE', palette='Greys')

>>> ax.figure.set_size_inches(14,4)





	Pandas is not easily able to produce an exact replication for this box plot. It can create two separate Axes for gender and then make box plots of the salary by race:



>>> fig, ax_array = plt.subplots(1, 2, figsize=(14,4), sharey=True)

>>> for g, ax in zip(['Female', 'Male'], ax_array):

        employee.query('GENDER== @g') \

                .boxplot(by='RACE', column='BASE_SALARY',

                         ax=ax, rot=20)

        ax.set_title(g + ' Salary')

        ax.set_xlabel('')

>>> fig.suptitle('')








How it works...


Importing seaborn in step 2 changes many of the default properties of matplotlib. There are about 300 default plotting parameters that can be accessed within the dictionary-like object plt.rcParams
 . To restore the matplotlib defaults, call the plt.rcdefaults
 function with no arguments. The style of pandas plots will also be affected when importing seaborn. Our employee dataset meets the requirements for tidy data and thus makes it perfect to use for nearly all seaborn's plotting functions.

Seaborn will do all the aggregation; you just need to supply your DataFrame to the
 data
 parameter
 and refer to the columns with their string names. For instance, in step 3, the countplot
 function effortlessly counts each occurrence of a DEPARTMENT
 to create a bar chart. All seaborn plotting functions have x
 and y
 parameters. We could have made a vertical bar plot using x
 instead of y
 . Pandas forces you to do a bit more work to get the same plot. In step 4, we must precalculate the height of the bins using the value_counts
 method.

Seaborn is able to do more complex aggregations, as seen in steps 5 and 7, with the barplot
 function. The hue
 parameter further splits each of the groups on the x 
 axis. Pandas is capable of nearly replicating these plots by grouping by the x and hue variables in steps 6 and 8.

Box plots are available in both seaborn and pandas and can be plotted directly with tidy data without any aggregation. Even though no aggregation is necessary, seaborn still has the upper hand, as it can split data neatly into separate groups using the hue
 parameter. Pandas cannot easily replicate this function from seaborn, as seen in step 10. Each group needs to be split with the query
 method and plotted on its own Axes. It is actually possible for pandas to split on multiple variables, passing a list to the by
 parameter, but the result is not nearly as elegant:

>>> ax = employee.boxplot(by=['GENDER', 'RACE'], 

                      column='BASE_SALARY', 

                      figsize=(16,4), rot=15)

>>> ax.figure.suptitle('')








See also



	Seaborn official tutorial (http://bit.ly/2yhwuPy
 )

	Seaborn complete API (http://bit.ly/2ghWN0T
 )







Doing multivariate analysis with seaborn Grids



To understand seaborn further, it is helpful to be aware of the hierarchy between the functions that return multiple Axes as a seaborn Grid and those that return single Axes:





	

Grid type



	

Grid function



	

Axes functions



	

Variable type






	
FacetGrid


	

factorplot



	

stripplot
 , swarmplot
 , boxplot
 , violinplot
 ,


lvplot
 , pointplot
 , barplot
 , countplot



	
Categorical





	
FacetGrid


	

lmplot



	

regplot



	
Continuous





	
PairGrid


	

pairplot



	

regplot
 , distplot
 , kdeplot



	
Continuous





	
JointGrid


	

jointplot



	

regplot
 , kdeplot
 , residplot



	
Continuous





	
ClusterGrid


	

clustermap



	

heatmap



	
Continuous







The seaborn Axes functions may all be called independently to produce a single plot. The Grid functions, for the most part, use the Axes functions to build the grid. The final objects returned from the Grid functions are of Grid type, of which there are four different kinds. Advanced use cases necessitate the direct use of Grid types, but the vast majority of the time, you will call the underlying Grid functions to produce the actual Grid and not the constructor itself.





Getting ready


In this recipe, we will examine the relationship between years of experience and salary by gender and race. We will begin by creating a simple regression plot with a seaborn Axes function and then add more dimensions to the plot with Grid functions.





How to do it...



	Read in the employee dataset, and create a column for years of experience:



>>> employee = pd.read_csv('data/employee.csv', 

                       parse_dates=['HIRE_DATE', 'JOB_DATE'])

>>> days_hired = pd.to_datetime('12-1-2016') - employee['HIRE_DATE']



>>> one_year = pd.Timedelta(1, unit='Y')

>>> employee['YEARS_EXPERIENCE'] = days_hired / one_year

>>> employee[['HIRE_DATE', 'YEARS_EXPERIENCE']].head()





	Let's create a basic scatter plot with a fitted regression line to represent the relationship between years of experience and salary:



>>> ax = sns.regplot(x='YEARS_EXPERIENCE', y='BASE_SALARY',

                     data=employee)

>>> ax.figure.set_size_inches(14,4)





	The regplot
  function cannot plot multiple regression lines for different levels of a third variable. Let's use its parent function, lmplot
 , to plot a seaborn Grid that adds the same regression lines for males and females:



>>> g = sns.lmplot('YEARS_EXPERIENCE', 'BASE_SALARY',

                    hue='GENDER', palette='Greys',

                    scatter_kws={'s':10}, data=employee)

>>> g.fig.set_size_inches(14, 4)

>>> type(g)

seaborn.axisgrid.FacetGrid





	The real power of the seaborn Grid functions is their ability to add more Axes based on another variable. Each seaborn Grid has the col
 and row
 parameters available to divide the data further into different groups. For instance, we can create a separate plot for each unique race in the dataset and still fit the regression lines by gender:



>>> grid = sns.lmplot(x='YEARS_EXPERIENCE', y='BASE_SALARY',

                      hue='GENDER', col='RACE', col_wrap=3,

                      palette='Greys', sharex=False,

                      line_kws = {'linewidth':5},

                      data=employee)

>>> grid.set(ylim=(20000, 120000))








How it works...



In step 1, we create another continuous variable by using pandas date functionality. This data was collected from the city of Houston on December 1, 2016. We use this date to determine how long each employee has worked for the city. When we subtract dates, as done in the second line of code, we are returned a Timedelta object whose largest unit is days. We could have simply divided this number by 365 to calculate the years of experience. Instead, we use Timedelta(1, unit='Y')
 to get a more precise measurement, which happens to be 365 days, 5 hours, 42 minutes and 19 seconds if you are counting at home.


Step 2 uses the seaborn Axes function regplot
  to create a scatter plot with the estimated regression line. It returns an Axes, which we use to change the size of the Figure. In order to create two separate regression lines for each gender, we must use its parent function, lmplot
 . It contains the hue
 parameter, which creates a new regression line for each unique value of that variable. At the end of step 3, we verify that lmplot
 does indeed return a seaborn Grid object.


The seaborn Grid is essentially a wrapper around the entire Figure, with a few convenience methods to alter its elements. All seaborn Grids may access the underlying Figure with their fig
 attribute. Step 4 shows a common use-case for seaborn Grid functions, which is to create multiple plots based on a third or even fourth variable. We set the col
 parameter to RACE
 . Six regression plots are created for each of the six unique races in the dataset. Normally, this would return a grid consisting of 1 row and 6 columns, but we use the col_wrap
 parameter to limit the number of columns to 3.


There are several more available parameters to control most of the important aspects of the Grid. It is possible to change use parameters from the underlying line and scatter plot matplotlib functions. To do so, set the scatter_kws
 or the line_kws
  parameters equal to a dictionary that has the matplotlib parameter as a string paired to the value you want it to be.





There's more...


We can do a similar type of analysis when we have categorical features. First, let's reduce the number of levels in the categorical variables race and department to the top two and three most common, respectively:

>>> deps = employee['DEPARTMENT'].value_counts().index[:2]

>>> races = employee['RACE'].value_counts().index[:3]

>>> is_dep = employee['DEPARTMENT'].isin(deps)

>>> is_race = employee['RACE'].isin(races)

>>> emp2 = employee[is_dep & is_race].copy()

>>> emp2['DEPARTMENT'] = emp2['DEPARTMENT'].str.extract('(HPD|HFD)',

                                                        expand=True)

>>> emp2.shape

(968, 11)



>>> emp2['DEPARTMENT'].value_counts()

HPD    591
HFD    377
Name: DEPARTMENT, dtype: int64



>>> emp2['RACE'].value_counts()

White                        478
Hispanic/Latino              250
Black or African American    240
Name: RACE, dtype: int64

Let's use one of the simpler Axes-level functions, such as a violin plot to view the distribution of years of experience by gender:

>>> common_depts = employee.groupby('DEPARTMENT') \

                       .filter(lambda x: len(x) > 50)

>>> ax = sns.violinplot(x='YEARS_EXPERIENCE', y='GENDER',

                        data=common_depts)

>>> ax.figure.set_size_inches(10,4)




We can then use the Grid function factorplot
  to add a violin plot for each unique combination of department and race with the col
 and row
 parameters:

>>> sns.factorplot(x='YEARS_EXPERIENCE', y='GENDER',

                   col='RACE', row='DEPARTMENT', 

                   size=3, aspect=2,

                   data=emp2, kind='violin')





Take a look at the table from the beginning of the recipe. The
 factorplot
 function must use one of those eight seaborn Axes functions. To do so, you pass its name as a string to the kind
 parameter.






Uncovering Simpson's paradox in the diamonds dataset with seaborn


It is unfortunately quite easy to report erroneous results when doing data analysis. Simpson's paradox is one of the more common phenomena a that can appear in a data analysis. It occurs when one group shows a higher result than another group, when all the data is aggregated, but it shows the opposite when the data is subdivided into different segments. For instance, let's say we have two students, A and B, who have each been given a test with 100 questions on it. Student A answers 50% of the questions correct, while Student B gets 80% correct. This obviously suggests Student B has greater aptitude:




Let's say that the two tests were very different. Student A's test consisted of 95 problems that were difficult and only five that were easy. Student B was given a test with the exact opposite ratio.




This paints a completely different picture. Student A now has a higher percentage of both the difficult and easy problems but has a much lower percentage as a whole. This is a quintessential example of Simpson's paradox. The aggregated whole shows the opposite of each individual segment.





Getting ready


In this recipe, we will first reach a perplexing result that appears to suggest that higher quality diamonds are worth less than lower quality ones. We uncover Simpson's paradox by taking more finely grained glimpses into the data that suggest the opposite is actually true.





How to do it...



	Read in the diamonds dataset, and output the first five rows:



>>> diamonds = pd.read_csv('data/diamonds.csv')

>>> diamonds.head()





	Before we begin analysis, let's change the cut
 , color
 , and clarity
 columns into ordered categorical variables:



>>> cut_cats = ['Fair', 'Good', 'Very Good', 'Premium', 'Ideal']

>>> color_cats = ['J', 'I', 'H', 'G', 'F', 'E', 'D']

>>> clarity_cats = ['I1', 'SI2', 'SI1', 'VS2',

                    'VS1', 'VVS2', 'VVS1', 'IF']

>>> diamonds['cut'] = pd.Categorical(diamonds['cut'],

                                     categories=cut_cats, 

                                     ordered=True)



>>> diamonds['color'] = pd.Categorical(diamonds['color'],

                                       categories=color_cats, 

                                       ordered=True)



>>> diamonds['clarity'] = pd.Categorical(diamonds['clarity'],

                                         categories=clarity_cats, 

                                         ordered=True)


	Seaborn uses category orders for its plots. Let's make a bar plot of the mean price for each level of cut, color, and clarity:



>>> import seaborn as sns

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14,4))

>>> sns.barplot(x='color', y='price', data=diamonds, ax=ax1)

>>> sns.barplot(x='cut', y='price', data=diamonds, ax=ax2)

>>> sns.barplot(x='clarity', y='price', data=diamonds, ax=ax3)

>>> fig.suptitle('Price Decreasing with Increasing Quality?') 





	There seems to be a decreasing trend for color and price. The highest quality cut and clarity levels also have low prices. How can this be? Let's dig a little deeper and plot the price for each diamond color again, but make a new plot for each level of clarity:



>>> sns.factorplot(x='color', y='price', col='clarity',

                   col_wrap=4, data=diamonds, kind='bar')





	This plot is a little more revealing. Although price appears to decrease as the quality of color increases, it does not do so when clarity is at its highest level. There is actually a substantial increase in price. We have yet to look at just the price of the diamond without paying any attention to its size. Let's recreate the plot from step 3 but use the carat size in place of price:



>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14,4))

>>> sns.barplot(x='color', y='carat', data=diamonds, ax=ax1)

>>> sns.barplot(x='cut', y='carat', data=diamonds, ax=ax2)

>>> sns.barplot(x='clarity', y='carat', data=diamonds, ax=ax3)

>>> fig.suptitle('Diamond size decreases with quality')





	Now our story is starting to make a bit more sense. Higher quality diamonds appear to be smaller in size, which intuitively makes sense. Let's create a new variable that segments the carat
 values into five distinct sections, and then create a point plot. The plot that follows accurately reveals that higher quality diamonds do, in fact, cost more money when they are segmented based on size:



>>> diamonds['carat_category'] = pd.qcut(diamonds.carat, 5)



>>> from matplotlib.cm import Greys

>>> greys = Greys(np.arange(50,250,40))



>>> g = sns.factorplot(x='clarity', y='price', data=diamonds,

                       hue='carat_category', col='color', 

                       col_wrap=4, kind='point', palette=greys)

>>> g.fig.suptitle('Diamond price by size, color and clarity',

                   y=1.02, size=20)








How it works...


In this recipe, it is very important to create categorical columns, as they are allowed to be ordered. Seaborn uses this ordering to place the labels on the plot. Steps 3 and 4 show what clearly appears to be a downward trend for increasing diamond quality. This is where Simpson's paradox takes center stage. This aggregated result of the whole is being confounded by other variables not yet examined.

The key to uncovering this paradox is to focus on carat size. Step 5 reveals to us that carat size is also decreasing with increasing quality. To account for this fact, we cut the diamond size into five equally-sized bins with the qcut
 function. By default, this function cuts the variable into discrete categories based on the given quantiles. By passing it an integer, as was done in this step, it creates equally-spaced quantiles. You also have the option of passing it a sequence of explicit non-regular quantiles.

With this new variable, we can make a plot of the mean price per diamond size per group, as done in step 6. The point plot in seaborn creates a line plot connecting the means of each category. The vertical bar at each point is the standard deviation for that group. This plot confirms that diamonds do indeed become more expensive as their quality increases, as long as we hold the carat size as the constant.





There's more...


The bar plots in steps 3 and 5 could have been created with the more advanced seaborn PairGrid
 constructor, which can plot a bivariate relationship. Using PairGrid
 is a two-step process. The first call to PairGrid
 prepares the grid by alerting it to which variables will be x and which will be y. The second step applies a plot to all of the combinations of x and y columns:

>>> g = sns.PairGrid(diamonds,size=5,

                 x_vars=["color", "cut", "clarity"],

                 y_vars=["price"])

>>> g.map(sns.barplot)

>>> g.fig.suptitle('Replication of Step 3 with PairGrid', y=1.02)
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College

Miami, Strayer
FL University- Miami FL NaN NaN NaN NaN NaN NaN NaN

Doral

Miami, Keiser
FL University- Miami FL NaN NaN NaN NaN NaN NaN NaN

Miami

Miami, George T

FL Baker
Aviation Miami FL 0.0 0.0 0.0 NaN NaN 0.0 0.0046

Technical

College
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Open High Low Close Volume

Date
2010-01-04 136.25 136.61 133.14 133.90 7600543
2010-01-05 133.43 135.48 131.81 134.69 8856456
2010-01-06 134.60 134.73 131.65 13225 7180977
2010-01-07 132.01 132.32 128.80 130.00 11030124
2010-01-08 130.56 133.68 129.03 133.52 9833829
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UNIQUE_ID DEPARTMENT GENDER BASE_SALARY

61 11087 Houston Fire Department (HFD) Female 96668.0
136 6146 Houston Police Department-HPD Female 81239.0
367 7589 Houston Police Department-HPD Female 86534.0
474 5407 Houston Police Department-HPD Female 91181.0
513 6252 Houston Police Department-HPD Female 81239.0





OEBPS/Image00053.jpg
movie_title imdb_score budget
4804 Butterfly Girl 8.7 180000.0
4801 Children of Heaven 8.5 180000.0
4706 12 Angry Men 8.9 350000.0
4550 A Separation 8.4 500000.0
4636 The Other Dream Team 8.4 500000.0
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movie_title imdb_score budget
4815 A Charlie Brown Christmas 8.4 150000.0
4801 Children of Heaven 8.5 180000.0
4804 Butterfly Girl 8.7 180000.0
4706 12 Angry Men 8.9 350000.0
4636 The Other Dream Team 8.4 500000.0
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movie_title title_year imdb_score

4409 Kickboxer: Vengeance 2016.0 9.1
3816 Running Forever 2015.0 8.6
4468 Queen of the Mountains 2014.0 8.7
4017 Batman: The Dark Knight Returns, Part 2 2013.0 8.4

3 The Dark Knight Rises 2012.0 8.5





OEBPS/Image00052.jpg
movie_title title_year

content_rating budget

4108
4772
4775
3309
4773
4848

821
4956
4948
3868

Compadres

Fight to the Finish

Rodeo Girl

The Wailing

Alleluia! The Devil's Carnival
Bizarre

The Ridiculous 6

The Gallows

Romantic Schemer

R.L. Stine's Monsterville: The Cabinet of Souls

2016.0

2016.0

2016.0

2016.0

2016.0

2015.0

2015.0

2015.0

2015.0

2015.0

R 3000000.0

PG-13  150000.0
PG  500000.0

Not Rated NaN
NaN  500000.0
Unrated  500000.0
TV-14 NaN

R 100000.0

PG-13  125000.0

PG 4400000.0
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movie_title imdb_score budget
4815 A Charlie Brown Christmas 8.4 150000.0
4801 Children of Heaven 8.5 180000.0
4804 Butterfly Girl 8.7 180000.0
4706 12 Angry Men 8.9 350000.0
4636 The Other Dream Team 8.4 500000.0
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movie_title imdb_score budget
3799 Anne of Green Gables 8.4 NaN
3777 Requiem for a Dream 8.4  4500000.0
3935 Batman: The Dark Knight Returns, Part 2 8.4  3500000.0
4636 The Other Dream Team 8.4 500000.0
2455 Aliens 8.4 18500000.0
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movie_title title_year imdb_score

2366 Fight Valley 2016.0 5.0
3817 Yoga Hosers 2016.0 4.8
1367 The 5th Wave 2016.0 5.2
1742 The Boss 2016.0 5.3

519 The Secret Life of Pets 2016.0 6.8
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movie_title title_year

imdb_score

4409
4372
3870
27
98

Kickboxer: Vengeance

A Beginner's Guide to Snuff
Airlift

Captain America: Civil War

Godzilla Resurgence

2016.0

2016.0

2016.0

2016.0

2016.0

9.1

8.7

8.5

8.2

8.2
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movie_title imdb_score budget

2725 Towering Inferno 9.5 NaN
1920 The Shawshank Redemption 9.3 25000000.0
3402 The Godfather 9.2  6000000.0
2779 Dekalog 9.1 NaN

4312 Kickboxer: Vengeance 9.1 17000000.0
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movie_title imdb_score budget
4804 Butterfly Girl 8.7 180000.0
4801 Children of Heaven 8.5 180000.0
4706 12 Angry Men 8.9 350000.0
4550 A Separation 8.4 500000.0
4636 The Other Dream Team 8.4 500000.0
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INSTNM

UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI

UGDS_2MOR UGDS_NRA UGDS_UNKN

Alabama A & M University

University of Alabama at
Birmingham

Amridge University

University of Alabama in
Huntsville

Alabama State University

0.0333

0.5922

0.2990

0.6988

0.0158

0.9353

0.2600

0.4192

0.1255

0.9208

0.0055

0.0283

0.0069

0.0382

0.0121

0.0019

0.0518

0.0034

0.0376

0.0019

0.0024

0.0022

0.0000

0.0143

0.0010

0.0019

0.0007

0.0000

0.0002

0.0006

0.0000

0.0368

0.0000

0.0172

0.0098

0.0059

0.0179

0.0000

0.0332

0.0243

0.0138

0.0100

0.2715

0.0350

0.0137
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INSTNM

CITY

STABBR HBCU MENONLY WOMENONLY RELAFFIL

SATVRMID

SATMTMID DISTANCEONLY

UGDS

UGDS_2MOR UGDS_NR

Birmingham
Southern
College

Concordia
College
Alabama

Enterprise
State
Community
College

Faulkner
University

New
Beginning
College of

Cosmetology

Birmingham

Selma

Enterprise

Montgomery

Albertville

AL

AL

AL

AL

AL

0.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

560.0

420.0

NaN

NaN

NaN

560.0

400.0

NaN

NaN

NaN

0.0

0.0

0.0

0.0

0.0

1180.0

322.0

1729.0

2367.0

115.0

0.0051

0.0031

0.0254

0.0173

0.0000

0.00C

0.04€

0.001

0.01€

0.00C
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INSTNM

WOMENONLY SATVRMID

Alabama A & M University

University of Alabama at Birmingham
Amridge University

University of Alabama in Huntsville

Alabama State University

0.0

0.0

0.0

0.0

0.0

424.0
570.0

NaN
585.0

425.0
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SATMTMID UGDS_NHPI
INSTNM

GateWay Community College NaN 0.0029

American Baptist Seminary of the West NaN NaN
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INSTNM

CITY STABBR HBCU MENONLY WOMENONLY RELAFFIL SATVRMID SATMTMID DISTANCEONLY

UGDS

UGDS_2MOR

UGDS_NRA

Mesa
Community
College

Hair
Academy
Inc-New
Carroliton

National
College of
Natural
Medicine

Mesa AZ 0.0 0.0 0.0 0 NaN NaN 0.0

New

MD 0.0 0.0 0.0 0 NaN NaN 0.0
Carrollton

Portland OR 0.0 0.0 0.0 0 NaN NaN 0.0

19055.0

504.0

NaN

0.0205

0.0000

NaN

0.0257

0.0000

NaN
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Open High Low Close Volume

Date

2017-01-03 214.86 220.33 210.96 216.99 5923254
2017-01-04 214.75 228.00 214.31 226.99 11213471
2017-01-05 226.42 227.48 221.95 226.75 5911695
2017-01-06 226.93 230.31 225.45 229.01 5527893
2017-01-09 228.97 231.92 228.00 231.28 3979484
2017-01-10 232.00 232.00 226.89 229.87 3659955
2017-01-11 229.07 229.98 226.68 229.73 3650825
2017-01-12 229.06 230.70 225.58 229.59 3790229
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CITY STABBR HBCU MENONLY WOMENONLY RELAFFIL SATVRMID SATMTMID DISTANCEONLY UGDS .. UGDS_2MOR
INSTNM

International
Academy of Tempe AZ 0.0 0.0 0.0 0 NaN NaN 0.0 188.0 ... 0.0160
Hair Design

GateWay
Community Phoenix AZ 0.0 0.0 0.0 0 NaN NaN 0.0 5211.0 .. 0.0127
College

Mesa
Community Mesa AZ 0.0 0.0 0.0 0 NaN NaN 0.0 19055.0 ... 0.0205
College





OEBPS/Image00061.jpg
CITY STABBR HBCU MENONLY
INSTNM

Alabama A & M University Normal AL 1.0 0.0
University of Alabama at Birmingham Birmingham AL 0.0 0.0

Amridge University Montgomery AL 0.0 0.0
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INSTNM

CITY

STABBR HBCU MENONLY WOMENONLY RELAFFIL SATVRMID SATMTMID DISTANCEONLY UGDS

UGDS_2MOR

Alabama A
&M
University

University
of Alabama
at
Birmingham

Amridge
University

University
of Alabama
in Huntsville

Alabama
State
University

Normal

Birmingham

Montgomery

Huntsville

Montgomery

AL

AL

AL

AL

AL

1.0

0.0

0.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

424.0

570.0

NaN

595.0

425.0

420.0

565.0

NaN

590.0

430.0

0.0 4206.0

0.0 11383.0

1.0 291.0

0.0 5451.0

0.0 4811.0

0.0000

0.0368

0.0000

0.0172

0.0098
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INSTNM

CITY

STABBR HBCU MENONLY WOMENONLY RELAFFIL SATVRMID SATMTMID DISTANCEONLY UGDS

UGDS_2MOR

University of
Alaska
Anchorage

International
Academy of
Hair Design

University of
Alabama in
Huntsville

Anchorage

Tempe

Huntsville

AK

AL

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0

NaN

NaN

595.0

NaN

NaN

590.0

0.0

0.0

0.0

12865.0

188.0

5451.0

0.0980

0.0160

0.0172
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UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI UGDS_2MOR UGDS_NRA UGDS_UNKN

INSTNM
Alabama A & M University False False False True False True False False False
University of I_\Iab.ama at False False False False False False False False False
Birmingham
Amridge University False False False False False False False False False
University of Alabama in False False False False False False False False False

Huntsville

Alabama State University False False False True False False False False False





OEBPS/Image00273.jpg
OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE
2012-01-02 00:06:00 aggravated-assault aggravated-assault -104.816860 39.796717 montbello 1 0
2012-01-02 00:06:00 violation-of-restraining-order all-other-crimes -104.816860 39.796717 montbello 1 0
2012-01-02 00:16:00 traffic-accident-dui-duid traffic-accident -104.971851 39.736874 cheesman-park 0 1
2012-06-30 23:44:00 traffic-accident traffic-accident -104.987578 39.711158 baker 0 1
2012-06-30 23:50:00 criminal-mischief-mtr-veh public-disorder -104.838271 39.788683 montbello 1 0
2012-06-30 23:54:00 traffic-accident-hit-and-run traffic-accident -105.014162 39.740439 lincoln-park 0 1

27488 rows x 7 columns
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UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI UGDS_2MOR UGDS_NRA UGDS_UNKN

INSTNM
Alabama A & M University True True True True True True True True True
University of I-.\Iab_ama at True True True True True True True True True
Birmingham
Amridge University True True True True True True True True True
University,of Alabamaiin True True True True True True True True True

Huntsville

Alabama State University True True True True True True True True True
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UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI UGDS_2MOR UGDS_NRA UGDS_UNKN
INSTNM
Alabama A & M University 3.0 94.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0
University of Alabama at 59.0 26.0 3.0 5.0 0.0 0.0 4.0 2.0 1.0
Birmingham
Amridge University 30.0 42.0 1.0 0.0 0.0 0.0 0.0 0.0 27.0
University of Alabams in 70.0 13.0 40 40 1.0 0.0 2.0 3.0 4.0
Huntsville
Alabama State University 2.0 92.0 1.0 0.0 0.0 0.0 1.0 2.0 1.0
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE
2012-01-02 00:06:00 aggravated-assault aggravated-assault -104.816860 39.796717 montbello 1 0
2012-01-02 00:06:00 violation-of-restraining-order all-other-crimes -104.816860 39.796717 montbello 1 0
2012-01-02 00:16:00 traffic-accident-dui-duid traffic-accident -104.971851 39.736874 cheesman-park 0 1
2012-06-30 23:50:00 criminal-mischief-mtr-veh public-disorder -104.838271 39.788683 montbello 1 0
2012-06-30 23:54:00 traffic-accident-hit-and-run traffic-accident -105.014162 39.740439 lincoln-park 0 1
2012-07-01 00:01:00 robbery-street robbery -104.924292 39.767585 northeast-park-hill 1 0

27489 rows x 7 columns
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INSTNM

UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI

UGDS_2MOR UGDS_NRA UGDS_UNKN

Alabama A & M University

University of Alabama at
Birmingham

Amridge University

University of Alabama in
Huntsville

Alabama State University

0.038

0.59

0.30

0.70

0.02

0.94

0.26

0.42

0.13

0.92

0.01

0.03

0.01

0.04

0.01

0.00

0.05

0.00

0.04

0.00

0.00

0.00

0.00

0.01

0.00

0.0

0.0

0.0

0.0

0.0

0.00

0.04

0.00

0.02

0.01

0.01

0.02

0.00

0.03

0.02

0.01

0.01

0.27

0.04

0.01
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE
2012-01-02 00:06:00 aggravated-assault aggravated-assault -104.816860 39.796717 montbello 1 0
2012-01-02 00:06:00 violation-of-restraining-order all-other-crimes -104.816860 39.796717 montbello 1 0
2012-01-02 00:16:00 traffic-accident-dui-duid traffic-accident -104.971851 39.736874 cheesman-park 0 1
2012-06-29 23:41:00 robbery-street robbery -104.991912 39.756163 five-points 1 0
2012-06-29 23:57:00 assault-simple other-crimes-against-persons -104.987360 39.715162 speer 1 0
2012-06-30 00:04:00 traffic-accident traffic-accident -104.894697 39.628902 hampden-south 0 1

27332 rows x 7 columns
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Diversity Index

School
Rutgers University--Newark Newark, NJ 0.76
Andrews University Berrien Springs, Ml 0.74
Stanford University Stanford, CA 0.74
University of Houston Houston, TX 0.74
University of Nevada--Las Vegas Las Vegas, NV 0.74
University of San Francisco San Francisco, CA 0.74
San Francisco State University San Francisco, CA 0.73
University of lllinois--Chicago Chicago, IL 0.73
New Jersey Institute of Technology Newark, NJ 0.72

Texas Woman's University Denton, TX 0.72





OEBPS/Image00036.jpg
UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI UGDS_2MOR UGDS_NRA UGDS_UNKN
INSTNM
Alabama A & M University False True False False False False False False False
University of Alal:?ama N True True False False False False False False False
Birmingham
Amridge University True True False False False False False False True
University of Alabama. in True False False False False False False False False
Huntsville
Alabama State University False True False False False False False False False
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INSTNM

UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI
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0.0137





OEBPS/Image00275.jpg
IS_CRIME IS_TRAFFIC

REPORTED_DATE

2012-03-31 7882 4726
2012-06-30 9641 5255
2012-09-30 10566 5003
2012-12-31 9197 4802

2013-03-31 8730 4442
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INSTNM

UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI

UGDS_2MOR UGDS_NRA UGDS_UNKN

Alabama A & M University

University of Alabama at
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Amridge University
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Alabama State University

0.0333

0.5922
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0.9999

1.0000

1.0000

1.0000
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IS_CRIME IS_TRAFFIC

REPORTED_DATE

2012-01-01 7882 4726
2012-04-01 9641 5255
2012-07-01 10566 5003
2012-10-01 9197 4802

2013-01-01 8730 4442
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INSTNM

UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI

UGDS_2MOR UGDS_NRA UGDS_UNKN
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE

2014-06-29 02:01:00 traffic-accident-dui-duid traffic-accident -105.000149 39.745753 cbd 0 1
2014-06-29 02:00:00 disturbing-the-peace public-disorder -105.020719 39.706674 athmar-park 1 0
2014-06-29 02:18:00 curfew public-disorder -105.001552 39.769505 sunnyside 1 0
2014-06-29 04:17:00 aggravated-assault aggravated-assault -105.018557 39.679229 college-view-south-platte 1 0

2014-06-29 04:22:00 Vviolation-of-restraining-order all-other-crimes  -104.972447 39.739449 cheesman-park 1 0
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE

2013-11-26 05:47:00 criminal-mischief-other public-disorder -104.991476 39.751536 cbd 1 0
2017-04-09 05:47:00 criminal-mischief-mtr-veh public-disorder -104.959394 39.678425 university 1 0
2017-02-19 05:47:00 criminal-mischief-other public-disorder -104.986767 39.741336 north-capitol-hill 1 0
2017-02-16 05:47:00 aggravated-assault aggravated-assault -104.934029 39.732320 hale 1 0

2017-02-12 05:47:00 police-interference all-other-crimes  -104.976306 39.722644 speer 1 0
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE
2015-03-04 00:11:00 assault-dv other-crimes-against-persons -105.021966 39.770883 sunnyside 1 0
2015-03-04 00:19:00 assault-dv other-crimes-against-persons -104.978988 39.748799 five-points 1 0
2016-01-01 23:45:00 drug-cocaine-possess drug-alcohol -104.987310 39.753598 five-points 1 0
2016-01-01 23:48:00 drug-poss-paraphernalia drug-alcohol -104.986020 39.752541 five-points 1 0

75403 rows x 7 columns
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE

2015-03-04 22:25:00 traffic-accident-hit-and-run traffic-accident -104.973896 39.769064 five-points 0 1
2015-03-04 22:30:00 traffic-accident traffic-accident -104.906412 39.632816 hampden-south 0 1
2016-01-01 23:40:00 robbery-business robbery -105.039236 39.726157 villa-park 1 0
2016-01-01 23:45:00 drug-cocaine-possess drug-alcohol -104.987310 39.753598 five-points 1 0

75175 rows x 7 columns
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OEBPS/Image00284.jpg
Weekday Friday Monday Saturday Sunday Thursday Tuesday Wednesday

Year
2012 8549 8786 7442 7189 8440 8191 8440
2013 10380 10627 8875 8444 10431 10416 10354
2014 12683 12813 10950 10278 12309 12440 12948
2015 13273 13452 11586 10624 13512 13381 13320
2016 14059 13708 11467 10554 14050 13338 13900
2017 10677 10638 8514 8124 10545 10628 10576





OEBPS/Image00043.jpg
count mean std min 1% 5% 10% 25% 50% 75% 90% 95% 99% max

HBCU 7164.0 0.014238 0.118478 0.0 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000 0.00000 0.00000 1.000000 1.0
MENONLY 7164.0 0.009216 0.095520 0.0 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000 0.00000 0.00000 0.000000 1.0
PCTFLOAN 6849.0 0.522211 0.283616 0.0 0.0000 0.0000 0.0000 0.3329 0.58330 0.745000 0.84752 0.89792 0.986368 1.0
UG25ABV 6718.0 0.410021 0.228939 0.0 0.0025 0.0374 0.0899 0.2415 0.40075 0.572275 0.72666 0.80000 0.917383 1.0
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Weekday Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Year
2012 8786 8191 8440 8440 8549 7442 7189
2013 10627 10416 10354 10431 10380 8875 8444
2014 12813 12440 12948 12309 12683 10950 10278
2015 13452 13381 13320 13512 13273 11586 10624
2016 13708 13338 13900 14050 14059 11467 10554
2017 14221 14208 14139 14097 14274 11382 10860
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count mean std min 25% 50% 75% max

HBCU 7164.0 0.014238 0.118478 0.0 0.0000 0.00000 0.000000 1.0
MENONLY 7164.0 0.009213 0.095546 0.0 0.0000 0.00000 0.000000 1.0
WOMENONLY 7164.0 0.005304 0.072642 0.0 0.0000 0.00000 0.000000 1.0
RELAFFIL 7535.0 0.190975 0.393096 0.0 0.0000 0.00000 0.000000 1.0
CURROPER 7535.0 0.923291 0.266146 0.0 1.0000 1.00000 1.000000 1.0
PCTPELL 6849.0 0.530643 0.225544 0.0 0.3578 0.52150 0.712900 1.0
PCTFLOAN 6849.0 0.522211 0.283616 0.0 0.3329 0.58330 0.745000 1.0
UG25ABV 6718.0 0.410021 0.228939 0.0 0.2415 0.40075 0.572275 1.0
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Denver Crimes and Traffic Accidents per Weekday
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count unique top freq

INSTNM 7535 7535 University of Phoenix-lllinois 1

CITY 7535 2514 New York 87

STABBR 7535 59 CA 773
MD_EARN_WNE_P10 6413 598 PrivacySuppressed 822
GRAD_DEBT_MDN_SUPP 7503 2038 PrivacySuppressed 1510
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movie_title imdb_score budget
0 Avatar 7.9 237000000.0
1 Pirates of the Caribbean: At World's End 7.1 300000000.0
2 Spectre 6.8 245000000.0
3 The Dark Knight Rises 8.5 250000000.0
4 Star Wars: Episode VIl - The Force Awakens T4 NaN
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column_name

description

23
24
25
26

INSTNM
CITty
STABBR
HBCU

PCTFLOAN
UG25ABV
MD_EARN_WNE_P10

GRAD_DEBT_MDN_SUPP

Institution Name
City Location
State Abbreviation

Historically Black College or University

Percent Students with federal loan
Percent Students Older than 25
Median Earnings 10 years after enroliment

Median debt of completers
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RELAFFIL SATMTMID CURROPER

INSTNM STABBR

~ ON

0 420.0 1
0 565.0 1
1 NaN 1
0 590.0 1
0 430.0 1

Alabama A & M University

University of Alabama at Birmingham
Amridge University

University of Alabama in Huntsville

Alabama State University

AL
AL
AL
AL
AL
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INSTNM

CITY

STABBR HBCU MENONLY WOMENONLY RELAFFIL

SATVRMID SATMTMID DISTANCEONLY

UGDS_2MOR UGDS_NRA

0 AlabamaA
&M
University

1 University
of Alabama

at

Birmingham

2 Amridge
University

3 University
of Alabama
in Huntsville

4 Alabama
State
University

Normal

Birmingham

Montgomery

Huntsville

Montgomery

AL

AL

AL

AL

AL

1.0

0.0

0.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

424.0

570.0

NaN

595.0

425.0

420.0

565.0

NaN

590.0

430.0

0.0

0.0

1.0

0.0

0.0

0.0000

0.0368

0.0000

0.0172

0.0098

0.0059

0.0179

0.0000

0.0332

0.0243





OEBPS/Image00280.jpg
Denver Crimes and Traffic Accidents

= IS_CRIME
IS_TRAFFIC

12

10

08

06

04

02

00

2012

2013 2014 2015 2016 2017
REPORTED_DATE






OEBPS/Image00039.jpg
<class 'pandas.core.frame.DataFrame'>

RangeIndex: 7535 entries,

0 to 7534

Data columns (total 27 columns):

INSTNM 7535
cITY 7535
STABBR 7535
HBCU 7164
PCTFLOAN 6849
UG25ABV 6718
MD_EARN_WNE_P10 6413

GRAD_DEBT_MDN_SUPP 7503

non-null
non-null
non-null
non-null

non-null
non-null
non-null
non-null

object
object
object
floaté64

floaté64
float64
object
object

dtypes: float64(20), int64(2), object(5)

memory usage: 1.6+ MB





OEBPS/Image00281.jpg
OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID REPORTED_DATE GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
0 traffic-accident-dui-duid traffic-accident 2014-06-29 02:01:00 -105.000149 39.745753 cbd 0 1
1 vehicular-eluding-no-chase all-other-crimes  2014-06-29 01:54:00 -104.884660 39.738702 east-colfax 1 0
2 disturbing-the-peace public-disorder 2014-06-29 02:00:00 -105.020719 39.706674 athmar-park 1 0
3 curfew public-disorder 2014-06-29 02:18:00 -105.001552 39.769505 sunnyside 1 0
4 aggravated-assault aggravated-assault 2014-06-29 04:17:00 -105.018557 39.679229 college-view-south-platte 1 0





OEBPS/Image00278.jpg
GEO_LON GEO_LAT IS_CRIME IS_TRAFFIC

REPORTED_DATE
2012-03-31 -1.313006e+06 496960.237747 7882 4726
2012-06-30 -1.547274e+06 585656.789182 9641 5255
2012-09-30 -1.615835e+06 611604.800384 10566 5003
2012-12-31 -1.458177e+06 551923.040048 9197 4802
2013-03-31 -1.368931e+06 518159.721947 8730 4442
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UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI UGDS_2MOR UGDS_NRA UGDS_UNKN
INSTNM

Regency Beauty Institute-Austin 0.1867 0.2133 0.1600 0.0000 0.0 0.0 0.1733 0.0 0.2667

Central Texas Beauty College-

0.1616 0.2323 0.2626 0.0202 0.0 0.0 0.1717 0.0 0.1515
Temple
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IS_CRIME IS_TRAFFIC

REPORTED_DATE

2011-12-01 5013 3198
2012-03-01 9260 4954
2012-06-01 10524 5190
2012-09-01 9450 4777

2012-12-01 9003 4652
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IS_CRIME IS_TRAFFIC

Friday 48833 20814
Monday 52158 17895
Saturday 43363 15516
Sunday 42315 12968
Thursday 49470 19845
Tuesday 49658 18755

Wednesday 50054 19508
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1888
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2998
4305
4496
4266
4113
3660
3521

3078

4040
3214
2181
1365
3445
5035
5524
5698
5889
5094
4895

4318

5649
4245
2956
1750
3727
5658
6434
6708
7351
6586
6130

5496

5649
4050
2959
2167
4161
6205
6841
7218
7643
7015
6360

5626

5377
4091
3044
2108
4488
6218
7226
6896
7926
7407
6963

5637

3811
3041
2255
1567
3251
4993
5463
5396
6338
6157
5272

4358

919
718
399
411
1957
1979
2200
2241
2714
3118
1787

1343

792
652
378
399
1955
1901
2138
2245
2562
2704
1806

1330

978
779
424
479

2210

2139

2379

2630

3002

3217

1994

1532

1136
773
471
494

2331

2320

2631

2840

3160

3412

2071

1671
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464
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2372
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2760
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3527
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2184

1472

782
537
313
462
1828
1873
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1990
2784
2718
1491

1072
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Monday Tuesday Wednesday Thursday Friday Saturday Sunday 2017 2016 2015 2014 2013 2012
Year
2012 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2013 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2014 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2015 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2016 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2017 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
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UNIQUE_ID

POSITION_TITLE

DEPARTMENT BASE_SALARY RACE

EMPLOYMENT_TYPE GENDER

EMPLOYMENT_STATUS JOB_DATE

HIRE_DATE

2006-06-12 Municipal
oS SIANERIBECTOR Courts 121862.0 Hispanic/Latino Full Tme  Female Active  2012-10-
(EX LVL) D 13

epartment
2000-07-19 1 LIBRARY ASSISTANT Library 26125.0 Hispanic/Latino Ful Time  Female Active 201005
2015-02-03 Houston Police 2015-02-
2 POLICE OFFICER Department- 45279.0 White Full Time Male Active 03

HPD
1982-02-08 Houston Fire 1991-05-
3 ENGINEER/OPERATOR Department 63166.0 White Full Time Male Active o5

(HFD)
1989-06-19 General 1994-10-
4 ELECTRICIAN Services 56347.0 White Full Time Male Active 2

Department
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IS_CRIME IS_TRAFFIC
0 5377 980
2 4091 718
4 3044 464
6 2108 593
8 4488 2372
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Weekday Monday Tuesday Wednesday Thursday

Friday Saturday Sunday

Year
2012 1385 1291 1331 1331 1348 1173 1133
2013 1642 1609 1600 1612 1604 1371 1305
2014 1935 1879 1955 1859 1915 1654 1552
2015 1978 1967 1958 1987 1951 1703 1562
2016 1978 1924 2005 2027 2028 1654 1522
2017 2017 2015 2005 1999 2024 1614 1540
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Population
Year
2017 705000
2016 693000
2015 680000
2014 662000
2013 647000

2012 634000
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REPORTED_DATE_Current

OFFENSE_CATEGORY_ID Total_Current Total_Goal

REPORTED_DATE_Last Total_Last

o o &~ O N

©

10
1
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13

14

2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31
2017-08-31

2017-08-31

murder

arson

sexual-assault

robbery
white-collar-crime
aggravated-assault
other-crimes-against-persons
burglary

auto-theft

drug-alcohol
theft-from-motor-vehicle
larceny

public-disorder
all-other-crimes

traffic-accident

7

7

57

108

138

195

376

432

599

636

675

877

878

1583

2126

5

5
45
86
110
156
300
345
479
508
540
701
702
1266

1700

2017-01-31
2012-01-31
2013-01-31
2015-03-31
2016-10-31
2016-05-31
2014-04-30
2012-01-31
2017-07-31
2015-05-31
2015-03-31
2015-01-31
2015-12-31
2016-11-30

2013-12-31

5

5
45
86
110
154
285
343
477
505
535
697
699
1264

1697
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REPORTED_DATE
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REPORTED_DATE OFFENSE_CATEGORY_ID Total Total Goal
0 2017-08-31 murder it 5
1 2017-08-31 arson 7 5
2 2017-08-31 sexual-assault 57 45
3 2017-08-31 robbery 108 86
4 2017-08-31 white-collar-crime 138 110
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REPORTED_DATE_Current OFFENSE_CATEGORY_ID Total Current Total_Goal REPORTED_DATE Last Total_Last
0 2017-08 murder 7 5 2017-01 5
1 2017-08 arson 7 5 2012-01 5
2 2017-08 sexual-assault 57 45 2013-01 45
3 2017-08 robbery 108 86 2015-03 86
4 2017-08 white-collar-crime 138 110 2016-10 110
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GENDER Female Male
1958-1967 NaN  81200.0
1968-1977 NaN 106500.0
1978-1987 57100.0 72300.0
1988-1997 57100.0 64600.0
1998-2007 54700.0 59700.0
2008-2017 47300.0 47200.0
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GENDER

Female

Male

(1958.0, 1970.0]
(1970.0, 1981.0]
(1981.0, 1993.0]
(1993.0, 2004.0]

(2004.0, 2016.0]

NaN
54400.0
55700.0
56500.0

49100.0

85400.0

72700.0

69300.0

62300.0

49800.0
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GENDER Female Male
HIRE_DATE

1958-01-01 NaN  81200.0
1968-01-01 NaN 106500.0
1975-01-01 51600.0 NaN
1978-01-01 NaN  72300.0
1985-01-01 57600.0 NaN
1988-01-01 NaN  64600.0
1995-01-01 55500.0 NaN
1998-01-01 NaN  59700.0
2005-01-01 51700.0 NaN
2008-01-01 NaN  47200.0
2015-01-01 38600.0 NaN
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GENDER Female Male
HIRE_DATE

1958-01-01 NaN  81200.0
1968-01-01 NaN 106500.0
1978-01-01 57100.0 72300.0
1988-01-01 57100.0 64600.0
1998-01-01 54700.0 59700.0
2008-01-01 47300.0 47200.0
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Name

Month

Jan

Feb

Mar

Amy

-0.036
-0.089
-0.017

-0.053

Bob

-0.027
-0.053
-0.026

-0.042
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INSTNM

CITY

STABBR HBCU MENONLY WOMENONLY RELAFFIL SATVRMID SATMTMID DISTANCEONLY UGDS

Everest
College-
Phoenix

Collins
College

Empire
Beauty
School-
Paradise
Valley

Empire
Beauty
School-
Tucson

Thunderbird
School of
Global
Management

Phoenix

Phoenix

Phoenix

Tucson

Glendale

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

0.0 4102.0

0.0 83.0

0.0 25.0

0.0 126.0

0.0 1.0
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Name Month Week Weight
0 Bob Jan Week 1 291
1 Amy Jan Week 1 197
2 Bob Jan Week 2 288
3 Amy Jan Week 2 189
4 Bob Jan Week 3 283
5 Amy Jan Week 3 189
6 Bob Jan Week 4 283
7 Amy Jan Week 4 190
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INSTNM

CITY

STABBR HBCU MENONLY WOMENONLY RELAFFIL

SATVRMID

SATMTMID DISTANCEONLY

UGDS_2MOR UGDS_NRA

0 AlabamaA
&M
University

1 University
of Alabama

at

Birmingham

2 Amridge
University

10 Birmingham
Southern
College

43 Prince
Institute-
Southeast

60 University
of Alaska
Anchorage

Normal

Birmingham

Montgomery

Birmingham

Elmhurst

Anchorage

AL

AL

AL

AL

IL

AK

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

424.0

570.0

NaN

560.0
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NaN

420.0

565.0

NaN

560.0

NaN
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0.0

0.0
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0.0
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0.0000

0.0368

0.0000

0.0051

0.0000

0.0980

0.0059

0.0179

0.0000

0.0000

0.0000

0.0181
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CITY
STABBR RELAFFIL

CURROPER DISTANCEONLY GRAD_DEBT_MDN_SUPP HBCU

INSTNM

MD_EARN_WNE_P10 MENONLY PCTFLOAN

AK 0
Fairbanks

Barrow

Anchorage

Soldotna

AL 0
Birmingham

Dothan

Birmingham

Huntsville

i 0.0 19355

1 0.0 PrivacySuppressed

i 0.0 23250

1 0.0 PrivacySuppressed

i 0.0 21941.5

1 0.0 PrivacySuppressed

i 0.0 27000

1 NaN 36173.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

NaN

University
of Alaska
Fairbanks

lisagvik
College

Alaska
Pacific
University

Alaska
Christian
College

University
of Alabama
at
Birmingham

Alabama
College of
Osteopathic
Medicine

Birmingham
Southern
College

Strayer
University-
Huntsville
Campus

36200

24900

47000

NaN

39700

NaN

44200

49200

0.0

0.0

0.0

0.0

0.0

0.0

0.0

NaN

0.2550

0.0000

0.5297

0.6792

0.5214

NaN

0.4809

NaN
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Name

Month

Feb
Jan

Mar

Amy

-0.053
-0.089
-0.036

-0.017

Bob

-0.042
-0.053
-0.027

-0.026
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Name Amy Bob Winner

Amy
Amy

Amy

Bob
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Name Month

Week Weight Perc Weight Loss

®© o » N O

10
12

14

Bob
Bob
Bob
Bob
Bob
Bob
Bob

Bob

Jan
Jan
Jan
Jan
Feb
Feb
Feb

Feb

Week 1
Week 2
Week 3
Week 4
Week 1
Week 2
Week 3

Week 4

291

288

283

283

283

275

268

268

0.000

-0.010

-0.027

-0.027

0.000

-0.028

-0.053

-0.053
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Name Month Week Weight Perc Weight Loss

6 Bob Jan Week 4 283 -0.027
7 Amy Jan Week 4 190 -0.036
14 Bob Feb Week 4 268 -0.053
15  Amy Feb Week 4 173 -0.089
22 Bob Mar Week 4 261 -0.026
23 Amy Mar Week 4 170 -0.017
30 Bob Apr Week 4 250 -0.042
31 Amy Apr  Week 4 161 -0.053
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('AK', 0)

INSTNM CITY STABBR HBCU MENONLY WOMENONLY RELAFFIL SATVRMID SATMTMID DISTANCEONLY
60 University

of Alaska Anchorage AK 0.0 0.0 0.0 0 NaN NaN 0.0

Anchorage

62  University

of Alaska  Fairbanks AK 0.0 0.0 0.0 0 NaN NaN 0.0
Fairbanks

2 rows x 27 columns

('AK', 1)

INSTNM CITY STABBR HBCU MENONLY WOMENONLY RELAFFIL SATVRMID SATMTMID DISTANCEONLY

61 Alaska
Bible Palmer AK 0.0 0.0 0.0 i NaN NaN 0.0

College
64 Alaska

Pacific Anchorage AK 0.0 0.0 0.0 1 555.0 5083.0 0.0
University

2 rows x 27 columns

('AL', 0)

INSTNM CITY STABBR HBCU MENONLY WOMENONLY RELAFFIL SATVRMID SATMTMID DISTANCEONLY

0 AlabamaA

&M Normal AL 1.0 0.0 0.0 0 424.0 420.0 0.0
University

1 University
of Alabama

at

Birmingham

Birmingham AL 0.0 0.0 0.0 0 570.0 565.0 0.0

2 rows x 27 columns
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AIRLINE AA AS B6 DL EV F9 HA MQ NK 00 UA us VX WN
DIST
Under an Hour 0.052 nan nan 0.086 0.289 nan nan 0.211 nan - 0.027 nan nan 0.009
1Hour 0.071 0.001 0.007 0.189 0.156 0.005 nan 0.1 0.012 0.159 0.062 0.016 0.028 -
1-2 Hours 0.144 0.023 0.003 - 0.101 0.038 nan 0.051 0.03 0.106 0.131 0.025 0.004 0.138
2-4 Hours - 0.016 0.003 0.165 0.016 0.031 nan 0.003 0.045 0.046 0.199 0.04 0.012 0.16
4+ Hours 0.212 0.012 0.08 0.171 nan 0.004 0.028 nan 0.019 nan - 0.065 0.074 0.046
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ORG_AIR DEST_AIR

LAX SLC
DEN IAD
DFW VPS
DCA DFW
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OEBPS/Image00139.jpg
SATMTMID SATVRMID count

STABBR

AK Arithmetic 503 555 1
Weighted 503 555 1
Geometric 503 555 1
Harmonic 503 555 1

AL Arithmetic 504 508 21
Weighted 536 533 21
Geometric 500 505 21
Harmonic 497 502 21

AR Arithmetic 515 491 16
Weighted 529 504 16
Geometric 514 489 16
Harmonic 513 487 16





OEBPS/Image00140.jpg
MONTH DAY WEEKDAY AIRLINE ORG_AIR DEST_AIR SCHED_DEP DEP_DELAY AIR_TIME DIST SCHED_ARR ARR_DELAY DIVERTED CANCELLED
0 1 1 4 WN LAX SLC 1625 58.0 94.0 590 1905 65.0 0 0
1 1 1 4 UA DEN IAD 823 7.0 154.0 1452 1333 -13.0 0 0
2 1 1 4 MQ DFW VPS 1305 36.0 85.0 641 1453 35.0 0 0
3 1 1 4 AA DFW DCA 1555 7.0 126.0 1192 1935 -7.0 0 0
4 1 1 4 WN LAX MCI 1720 48.0 166.0 1363 2225 39.0 0 0





OEBPS/Image00145.jpg
MONTH DAY streak

AIRLINE ORG_AIR streak_row
AA DFW first 20 26.0 38.0
last 3.0 1.0 38.0
MQ ORD first 1.0 6.0 28.0
last 1.0 120 28.0
DFW first 2.0 21.0 25.0
last 2.0 26.0 25.0
NK ORD first 6.0 7.0 15.0
last 6.0 18.0 15.0
DL ATL first 12.0 23.0 14.0
last 12.0 24.0 14.0
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Apple Orange Banana

Texas 12 10 40

Arizona 9 74 12

Florida 0 14 190
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AIRLINE ORG_AIR ON_TIME
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mean size max_streak

AIRLINE ORG_AIR

AA ATL 082 233 15
DEN 074 219 17

DFW 0.78 4006 64

IAH 080 196 24

LAS 079 374 29
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INSTNM

CITY HBCU MENONLY WOMENONLY RELAFFIL SATVRMID SATMTMID DISTANCEONLY UGDS

STABBR
AK 503 503 503 503 503 503 503 503 503 503
AL 536 536 536 536 536 536 536 536 536 536
AR 529 529 529 529 529 529 529 529 529 529
AZ 569 569 569 569 569 569 569 569 569 569
CA 564 564 564 564 564 564 564 564 564 564
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weighted_math_avg weighted_verbal_avg math_avg verbal_avg count

STABBR

AK 503 555 503 555 1
AL 536 533 504 508 21
AR 529 504 515 491 16
AZ 569 557 536 538 6
CA 564 539 562 549 72
co 553 547 540 537 14
CT 545 533 522 517 14
DC 621 623 588 589 6
DE 569 553 495 486 3

FL 565 565 521 529 38





OEBPS/Image00116.jpg
CANCELLED AIR_TIME
sum mean size mean var
ORG_AIR DEST_AIR
ATL ABE 0 0.0 31 96.387097 45.778495
ABQ 0 0.0 16 170.500000 87.866667
ABY 0 0.0 19 28578947 6.590643
ACY 0 0.0 6 91.333333 11.466667
AEX 0 0.0 40 78.725000 47.332692
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ARR_DELAY
AIRLINE
AA 5.542661
AS -0.833333
B6 8.692593
DL 0.339691

EV 7.034580
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CANCELLED DIVERTED
sum mean sum mean
AIRLINE WEEKDAY
AA 1 41 0.032106 6 0.004699
2 9 0.007341 2 0.001631
3 16 0.011949 2 0.001494
4 20 0.015004 5 0.003751
5 18 0.014151 1 0.000786
6 21 0.018667 9 0.008000
7 29 0.021837 1 0.000753
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UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI UGDS_2MOR UGDS_NRA UGDS_UNKN
INSTNM

Alabama A & M University 0.0333 0.0055 0.0019 0.0024 0.0019 0 0.0059 0.0138

University of Alabama at 0.26 0.0283 0.0518 0.0022 0.0007 0.0368 0.0179 0.01
Birmingham

Amridge University 0.299 0.0069 0.0034 0 0 0 0 0.2715

Unliversity of Alabama:in 0.1255 0.0382 0.0376 0.0143 0.0002 0.0172 0.0332 0.035
Huntsville

Alabama State University 0.0121 0.0019 0.001 0.0006 0.0098 0.0243 0.0137
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INSTNM

UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI
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OEBPS/Image00113.jpg
MONTH WEEKDAY AIRLINE ORG_AIR DEST_AIR SCHED_DEP DEP_DELAY AIR_TIME DIST SCHED_ARR ARR_DELAY DIVERTED CANCELLED
0 1 4 WN LAX SLC 1625 58.0 94.0 590 1905 65.0 0 0
1 1 4 UA DEN IAD 823 7.0 154.0 1452 1333 -13.0 0 0
2 1 4 MQ DFW VPS 1305 36.0 85.0 641 1453 35.0 0 0
3 1 4 AA DFW DCA 1555 7.0 126.0 1192 1935 -7.0 0 0
4 1 4 WN LAX MCI 1720 48.0 166.0 1363 2225 39.0 0 0
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SATVRMID SATMTMID UGDS UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI UGDS_2MOR
INSTNM

Alabama A
&M 0 0 0 0 0 0 0 0 0 0

University

University
of Alabama
at
Birmingham

Amridge
University

National
Personal
Training 1 1 1 109 28 136 1 2 1 1
Institute of
Cleveland

Bay Area
Medical
Academy -
San Jose
Satellite
Location

1 1 1 109 28 136 1 2 1 1

Excel
Learning
Center-San 1 1 1 109 28 136 1 2 1 1

Antonio
South

7535 rows x 18 columns
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HIRE_DATE YEARS_EXPERIENCE
0 2006-06-12 10.472494
1 2000-07-19 16.369946
2 2015-02-03 1.826184
3 1982-02-08 34.812488
4 1989-06-19 27.452994
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STABBR RELAFFIL

mean

pct_1_3k pct_10_30k

AK 0

AL 0

AR 0

3508.857143
123.333333
3248.774648
979.722222

1793.691176

0.142857

0.000000

0.236111

0.333333

0.279412

0.142857
0.000000
0.083333
0.000000

0.014706
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CITY CURROPER DISTANCEONLY GRAD_DEBT_MDN_SUPP HBCU INSTNM MD_EARN_WNE_P10 MENONLY PCTFLOAN PCTPELL

712 The
Graceville 1 0.0 20052 0.0 Baprist 30800 0.0 05602  0.5878
College of
Florida
713 Miami 1 0.0 28250 0.0 _Barry 44100 0.0 06733  0.5045
University
714 Gooding
Panama " Institute of
City 0 0.0 PrivacySuppressed 0.0 Nilree NaN 0.0 NaN NaN
Anesthesia
715 Bethune-
Daytona 1 0.0 36250 1.0  Cookman 29400 0.0 08867  0.7758
Beach A B
University
724 Johnson
Kissimmee 1 0.0 20199 0.0 University 26300 0.0 07384  0.6689

Florida
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DIST ARR_DELAY

sum mean min max

AIRLINE WEEKDAY

AA 1 1455386 1139 -60 551
2 1358256 1107 -52 725
3 1496665 1117 -45 473
4 1452394 1089 -46 349
5 1427749 1122 -41 732
6 1265340 1124 -50 858
7 1461906 1100 -49 626
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Difficult Easy Difficult Percent Easy Percent Total Percent

Student A 45/95 5/5 47 100 50
Student B 2/5 78/95 40 82 80
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carat cut color clarity depth table price X y z
0 023 Ideal E Sl2 615 550 326 395 398 243
1 021 Premium E S 59.8 61.0 326 3.89 3.84 231
2 023 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium | VS2 624 58.0 334 4.20 4.23 2.63
4 0.31 Good J Sl2 633 580 335 4.34 435 275





OEBPS/Image00123.jpg
UGDS SATVRMID SATMTMID
max_deviation mean std max_deviation mean std max_deviation mean std
STABBR RELAFFIL
AK 0 2.1 3508.9 4539.5 NaN  NaN NaN NaN NaN NaN
1 1.1 123.3 1329 NaN 555.0 NaN NaN 503.0 NaN
AL 0 5.2 32488 51024 1.6 5149 56.5 1.7 5158 56.7
1 24 979.7 8708 1.5 498.0 53.0 1.4 4856 614
AR 0 5.8 1793.7 3401.6 1.9 4811 379 2.0 503.6 39.0
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UGDS SATVRMID SATMTMID
Max Deviation mean std Max Deviation mean std Max Deviation mean std
STABBR RELAFFIL
AK 0 2.1 3508.9 4539.5 NaN  NaN NaN NaN NaN NaN
1 11 123.3 1329 NaN 555.0 NaN NaN 503.0 NaN
AL ] 5.2 3248.8 51024 1.6 5149 56.5 1.7 5158 56.7
1 24 979.7 8708 1.5 498.0 53.0 1.4 4856 614
AR 0 5.8 1793.7 3401.6 1.9 4811 379 2.0 503.6 39.0
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UGDS SATVRMID SATMTMID

STABBR
AK 2.6 NaN NaN
AL 5.8 1.6 1.8
AR 6.3 2.2 2.3
AS NaN NaN NaN

AZ 9.9 1.9 1.4
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Raw Score Percent Correct

Student A 50/100 50
Student B 80/100 80
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color duration

movie_title

Avatar Color 178.0

Spectre Color 148.0





OEBPS/Image00336.jpg
group houston data science houston data visualization houston energy data science houston machine learning houstonr

join_date

2017-09-17 16 2 6 5 0
2017-09-24 19 4 16 12 7
2017-10-01 20 6 6 20 1
2017-10-08 22 10 10 4 2

2017-10-15 14 13 9 11 2
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UNIQUE_ID POSITION_TITLE DEPARTMENT BASE_SALARY EMPLOYMENT_TYPE GENDER EMPLOYMENT_STATUS HIRE_DATE
RACE
Hispanic/Latino Municipal
0 ASSISIANTDIRECTOR Courts 121862.0 Full Time Female Active  2006-06-12
(EX LVL) D
epartment
Hispanic/Latino 1 LIBRARY ASSISTANT Library 26125.0 Ful Time  Female Active 2000-07-19
White Houston Police
2 POLICE OFFICER Department- 45279.0 Full Time Male Active 2015-02-03
HPD
White Houston Fire
3 ENGINEER/OPERATOR Department 63166.0 Full Time Male Active 1982-02-08
(HFD)
White General
4 ELECTRICIAN Services 56347.0 Full Time Male Active  1989-06-19

Department
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num_voted_users cast_total_facebook_likes movie_facebook_likes

movie_title
Avatar 886204 4834 33000
Pirates of the Caribbean: At World's End 471220 48350 0
Spectre 275868 11700 85000
The Dark Knight Rises 1144337 106759 164000

Star Wars: Episode VII - The Force Awakens 8 143 0
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Flight Time vs Distance with Outliers
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2015-04-08 09:40:00 DL ATL G 121.0 373 54.0 0 1
2015-05-25 16:30:00 F9 MSP ATL 199.0 907 79.0 0 2
2015-09-10 20:00:00 UA |AH MCI 176.0 643 76.0 0 3
2015-12-10 19:53:00 00 PHX SFO 164.0 651 146.0 0 4
2015-12-26 09:15:00 NK ORD DFW 210.0 802 98.0 0 5
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content_rating imdb_score title_year gross

movie_title
Justin Bieber: Never Say Never G 1.6 2011.0 73000942.0
Sunday School Musical G 25 2008.0 NaN
Doogal G 2.8 2006.0 7382993.0
Barney's Great Adventure G 2.8 1998.0 11144518.0
The True Story of Puss'N Boots G 2.9 2009.0 NaN
Thomas and the Magic Railroad G 3.6 2000.0 15911333.0
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2016-11-18 02:41:29
2017-05-09 14:16:37
2016-12-30 02:34:16
2016-07-18 00:48:17
2017-05-25 12:58:16
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yearlD stint teamiD IgID G AB R H 2B 3B RBI SB CS BB SO IBB HBP SH SF GIDP

playeriD
altuvjo01 2014 HOU AL 158 660 85 225 47 3 59.0 56.0 9.0 36 53.0 7.0 50 1.0 50 20.0
cartech02 2014 HOU AL 145 507 68 115 21 1 88.0 50 20 56 182.0 6.0 5.0 0.0 4.0 120
castrja01 2014 HOU AL 126 465 43 103 21 2 56.0 1.0 00 34 151.0 1.0 9.0 1.0 3.0 11.0
corpoca01 2014 HOU AL 55 170 22 40 6 0 19.0 0.0 00 14 370 0.0 3.0 1.0 20 3.0
dominma01 2014 HOU AL 157 564 51 121 17 0 570 0.0 1.0 29 1250 20 50 20 7.0 23.0
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color director_name num_critic_for_reviews duration director_facebook_likes actor_3_facebook_likes actor_2_name actor_1_facebook_likes

movie_title

The True
Story of - oo leromme 40 800 0.0 00  André Wims 440
Puss'N Deschamps

Boots

Doogal Dave -
Color Borthwick 31.0 77.0 3.0 593.0 Kylie Minogue 787.0

Thomas
a',:,‘l’ag‘i‘z Color  Britt Allcroft 47.0 85.0 20 4020  Colm Feore 1000.0
Railroad

Barney's
Great Color Steve Gomer 24.0 76.0 9.0 47.0 Kyla Pratt 595.0

Adventure

Justin
Bieber:
Never Say
Never

Color Jon M. Chu 84.0 115.0 209.0 41.0 Sean Kingston 569.0
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AIRLINE ORG_AIR DEST_AIR AIR_TIME DIST ARR_DELAY DIVERTED PLOT_NUM
2015-04-08 09:40:00 DL ATL CVG 121.0 373 54.0 0 1
2015-05-25 16:30:00 F9 MSP ATL 199.0 907 79.0 0 2
2015-09-10 20:00:00 UA IAH MCI 176.0 643 76.0 0 3
2015-12-10 19:53:00 00 PHX SFO 164.0 651 146.0 0 4
2015-12-26 09:15:00 NK ORD DFW 210.0 802 98.0 0 5
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color director_name num_critic_for_reviews duration director facebook_likes actor_3_facebook_likes actor_2_name actor_1_facebook_likes

movie_title
Avatar ¢\ pames 7230 1780 0.0 855.0 Je o 1000.0
Cameron Moore
Pirates of
the Orlando
Caribbean: Color Gore Verbinski 302.0 169.0 563.0 1000.0 Bloom 40000.0
At World's
End
Spectre NaN NaN NaN NaN NaN NaN NaN NaN
The Dark
Knight NaN NaN NaN NaN NaN NaN NaN NaN
Rises
Star Wars:
Episode
VIl -The NaN NaN NaN NaN NaN NaN NaN NaN
Force

Awakens
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DIST AIR_TIME DIST_GROUP TIME_SCORE
0 590 94.0 (500, 750] 0.490966
1 1452 154.0 (1250, 1500] -1.267551
2 641 85.0 (500, 750] -0.296749
3 1192 126.0 (1000, 1250] -1.211020
4 1363 166.0 (1250, 1500] -0.521999
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INSTNM

HBCU MENONLY WOMENONLY

UG25ABV MD_EARN_WNE_P10 GRAD_DEBT_MDN_SUPP

Alabama A & M University

University of Alabama at Birmingham
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0.0

0.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
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0.0

0.0

0.1049

0.2422

0.8540
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30300.0

39700.0
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24097.0

33118.5
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SATVRMID SATMTMID UGDS UG25ABV MD_EARN_WNE_P10 GRAD_DEBT_MDN_SUPP

INSTNM
Alabama A & M University 424.0 420.0 4206.0 0.1049 30300.0 33888.0
University of Alabama at Birmingham 570.0 565.0 11383.0 0.2422 39700.0 21941.5
Amridge University NaN NaN 291.0 0.8540 40100.0 23370.0
University of Alabama in Huntsville 595.0 590.0 5451.0 0.2640 45500.0 24097.0
Alabama State University 425.0 430.0 4811.0 0.1270 26600.0 33118.5
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UNIQUE_ID POSITION_TITLE BASE_SALARY .. HIRE_DATE JOB_DATE MAX_DEPT_SALARY
DEPARTMENT

0 rows x 10 columns
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BASE_SALARY

DEPARTMENT
Public Works & Engineering-PWE 50586.0
Houston Police Department-HPD 66614.0
Houston Police Department-HPD 66614.0
Housing and Community Devp. 78853.0
Houston Police Department-HPD 66614.0
Parks & Recreation NaN
Public Works & Engineering-PWE 37211.0
Public Works & Engineering-PWE 54683.0
Human Resources Dept. 58474.0

Health & Human Services 47050.0
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AB R H HR

playeriD
altuvjo01 638 86 200 15
cartech02 391 50 78 24
castrja01 337 38 71 11
congeha01 201 25 46 11
correca01 387 52 108 22
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join_date

group

2016-06

2016-09

2016-12

2017-03

2017-06

2017-09

houston data science
houston data visualization
houston energy data science
houston machine learning

houstonr

0.016949
0.337827
0.416025
0.000000
0.229199

0.110375
0.306052
0.354467
0.037176
0.191931

0.171245
0.277244
0.312271
0.051969
0.187271

0.212289
0.261103
0.288859
0.071593
0.166156

0.244033
0.242085
0.267576
0.087839
0.158467

0.280162
0.230332
0.253758
0.093026
0.142722
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group houston data science houston data visualization houston energy data science houston machine learning houstonr
join_date

2017-09-17 2105 1708 1886 708 1056
2017-09-24 2124 1712 1902 720 1063
2017-10-01 2144 1718 1908 740 1064
2017-10-08 2166 1728 1918 744 1066
2017-10-15 2180 1741 1927 755 1068
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group houston data science houston data visualization houston energy data science houston machine learning houstonr
join_date

2017-09-17 0.282058 0.228862 0.252713 0.094868 0.141498
2017-09-24 0.282409 0.227629 0.252892 0.095732 0.141338
2017-10-01 0.283074 0.226829 0.251914 0.097703 0.140481
2017-10-08 0.284177 0.226712 0.251640 0.097612 0.139858
2017-10-15 0.284187 0.226959 0.251206 0.098423 0.139226
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UNIQUE_ID POSITION_TITLE BASE_SALARY HIRE_DATE JOB_DATE MAX_DEPT_SALARY

DEPARTMENT
Municipal Courts Department 0 ASSISTANT DIRECTOR (EX LVL) 121862.0 2006-06-12 2012-10-13 121862.0
Library 1 LIBRARY ASSISTANT 26125.0 2000-07-19 2010-09-18 107763.0
Houston Police Department-HPD 2 POLICE OFFICER 45279.0 2015-02-03 2015-02-03 199596.0
Houston Fire Department (HFD) 3 ENGINEER/OPERATOR 63166.0 1982-02-08 1991-05-25 210588.0
General Services Department 4 ELECTRICIAN 56347.0 1989-06-19 1994-10-22 89194.0
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AB G H HR R

playeriD
altuvjo01 1298 nan 425 nan 171
cartech02 898 nan 193 nan 118
castrja01 802 nan 174 nan 81
congeha01 nan nan nan nan nan
corpoca0l nan nan nan nan nan
correca0l nan nan nan nan nan
dominma01 nan nan nan nan nan
fowledeO1 nan nan nan nan nan
gattiev0Ol nan nan nan nan nan
gomezca01 nan nan nan nan nan
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AB G H HR R

playerlD

altuvjoo1 1298 158 425 15 171
cartech02 898 145 193 24 118

castrja01 802 126 174 11 81

congeha01 201 - 46 25
corpoca01 170 55 40 22
correca01 387 - 108 52
dominma01 564 157 121 51
fowledeO1 434 116 120 61
gattiev01 566 139 66
gomezca01 149 36 4 19
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UNIQUE_ID POSITION_TITLE DEPARTMENT BASE_SALARY RACE EMPLOYMENT_TYPE GENDER EMPLOYMENT_STATUS HIRE_DATE JOB_DATE
Municipal

0 ASSSIANNDIFECTOR Courts 121862.0 Hispanic/Latino Full Time Female Active 2006-06-12 2012-10-13

(EX LVL)

Department

1 LIBRARY ASSISTANT Library 26125.0 Hispanic/Latino Full Time Female Active 2000-07-19 2010-09-18
Houston Police

2 POLICE OFFICER Department- 45279.0 White Full Time Male Active 2015-02-03 2015-02-03
HPD
Houston Fire

3 ENGINEER/OPERATOR Department 63166.0 White Full Time Male Active 1982-02-08 1991-05-25
(HFD)
General

4 ELECTRICIAN Services 56347.0 White Full Time Male Active  1989-06-19 1994-10-22

Department





OEBPS/Image00314.jpg
Dollars

of

Millions

B

8

&

=
5]

Median ‘Movie Budget

2000

2020






OEBPS/Image00315.jpg
B

Dollars
53

of

=
5]

Millions

‘Median ‘Movie Budget

== = All Movies
Movies per Year

7~

7 ~ -

4 163

67

8
\-—"Ll‘_

1990 2000






OEBPS/Image00312.jpg





OEBPS/Image00313.jpg
100 100 100 100
0.75 0.75 0.75 0.75
0.50 0.50 0.50 0.50
025 025 0.25 0.25
0.00 T T T T 0.00 T T T T 0.00 T T T T 0.00 T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
100 100 100 100
0.75 0.75 0.75 0.75
050 050 050 0.50
0.25 0.25 025 025
0.00 T T T T 0.00 T T T T 0.00 T T T T 0.00 T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 o002 04 06 08 10 O00 02 04 06 08 10





OEBPS/Image00316.jpg
»

2

Millions of Dollars

5

RErEEL

‘Median Movie Budget

= - AllMovies
Movies per Year

&

—————— - z »
- 2
i2 5
— Top 10 Movies
1870 1950 1990 2000 210






OEBPS/Image00307.jpg
Y axis

Figure Title
Line Plot

X Axis

10





OEBPS/Image00310.jpg





OEBPS/Image00311.jpg





OEBPS/Image00308.jpg
10

08

06

04

0.2

0.0

0.0

02

04

06

08

10





OEBPS/Image00309.jpg
10

08

06

04

0.2

0.0

0.0

0.2

04

06

08

10





OEBPS/Image00325.jpg
2015 US Flights - Univariate Summary
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MONTH DAY HOUR MINUTE YEAR
0 1 1 16 25 2015
1 1 1 8 23 2015
2 1 1 13 5 2015
3 1 1 15 55 2015
4 1 1 17 20 2015
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MONTH DAY WEEKDAY AIRLINE ORG_AIR DEST_AIR SCHED_DEP DEP_DELAY AIR_TIME DIST SCHED_ARR ARR_DELAY DIVERTED CANCELLED
0 1 1 4 WN LAX SLC 1625 58.0 94.0 590 1905 65.0 0 0
1 1 1 4 UA DEN IAD 823 7.0 154.0 1452 1333 -13.0 0 0
2 1 1 4 MQ DFW VPS 1305 36.0 85.0 641 1453 35.0 0 0
3 1 1 4 AA DFW DCA 1555 7.0 126.0 1192 1935 -7.0 0 0
4 1 1 4 WN LAX MCI 1720 48.0 166.0 1363 2225 39.0 0 0
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AGG_COLS UGDS SATMTMID
AGG_FUNCS RELAFFIL STABBR
count 0 AK 7.0 0.0
min 0 AK 109.0 NaN
max 0 AK 12865.0 NaN
count 1 AK 3.0 1.0
min 1 AK 27.0 503.0
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AGG_COLS SATMTMID UGDS
AGG_FUNCS RELAFFIL STABBR

count 0 AK 0.0 7.0
AL 13.0 71.0

AR 9.0 68.0

min 0 AK NaN 109.0
AL 420.0 12.0

AR 427.0 18.0
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AGG_COLS UGDS SATMTMID
AGG_FUNCS count min max count min max
STABBR RELAFFIL
AK 0 7 109.0 12865.0 0 NaN NaN
1 3 270 275.0 1 503.0 503.0
AL 0 71 12.0 29851.0 13 420.0 590.0
1 18 13.0 3033.0 8 400.0 560.0
AR 0 68 18.0 21405.0 9 427.0 565.0
1 14 20.0 4485.0 7 495.0 600.0
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AGG_COLS UGDS SATMTMID
STABBR RELAFFIL AGG_FUNCS

AK 0 count 7.0 0.0
min 109.0 NaN
max 12865.0 NaN

1 count 3.0 1.0

min 27.0 503.0
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AGG_COLS
RELAFFIL
STABBR

AGG_FUNCS

UGDS
0 1 0 1 0 1
AK AK AL AL AR AR

SATMTMID
0 1 0 1 0 1

AK AK AL AL AR AR

count
min

max

7.0 3.0 71.0 18.0 68.0 14.0
109.0 27.0 12.0 13.0 18.0 20.0

12865.0 275.0 29851.0 3033.0 21405.0 4485.0

0.0 1.0 13.0 8.0 9.0 7.0
NaN 503.0 420.0 400.0 427.0 495.0

NaN 503.0 590.0 560.0 565.0 600.0
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mean max min
RACE GENDER
American Indian or Alaskan Native Female 60238 98536 26125
Male 60305 81239 26125
Asian/Pacific Islander = Female 63226 130416 26125
Male 61033 163228 27914
Black or African American Female 48915 150416 24960
Male 51082 275000 26125
Hispanic/Latino Female 46503 126115 26125
Male 54782 165216 26104
Others Female 63785 63785 63785
Male 38771 38771 38771
White Female 66793 178331 27955
Male 63940 210588 26125
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mean sum
DEP_DELAY DIST
ORG_AIR ATL DEN DFW IAH LAS LAX MSP ORD PHX SFO
CANCELLED 0 10 0 1 0 10 0 1 0 0 1 0 1 0
AIRLINE MONTH
AA 1 -3.250000 0 7.062500 11.977591 -3.0 9.750000 0 32.375000 135921 2475 7281 129334 0 21018 0 33483
2 -3.000000 O 5.461538 8.756579 0.0 1.000000 0 -3.055556 113483 5454 5040 120572 5398 17049 868 32110
3 -0.166667 0 7.666667 15.383784 0.0 10.900000 0 12.074074 131836 1744 14471 127072 802 25770 0 43580
4 0.071429 0 20.266667 10.501493 0.0 6.933333 0 27.241379 170285 0 4541 152154 4718 17727 0 51054
5 5777778 0 23.466667 16.798780 0.0 3.055556 0 2.818182 167484 0 6298 110864 1999 11164 0 40233
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UGDS SATMTMID
count min  max count min  max
STABBR RELAFFIL
AK 0 7 109.0 12865.0 0 NaN NaN
1 3 270 275.0 1 503.0 503.0
AL 0 71 12.0 29851.0 13 420.0 590.0
1 18 13.0 3033.0 8 400.0 560.0
AR 0 68 18.0 21405.0 9 427.0 565.0
1 14 20.0 4485.0 7 495.0 600.0
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mean max min
GENDER Female Male Female Male Female Male
RACE

American Indian or Alaskan Native 60238 60305 98536 81239 26125 26125
Asian/Pacific Islander 63226 61033 130416 163228 26125 27914
Black or African American 48915 51082 150416 275000 24960 26125
Hispanic/Latino 46503 54782 126115 165216 26125 26104

Others 63785 38771 63785 38771 63785 38771
White 66793 63940 178331 210588 27955 26125
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ORG_AIR ATL DEN DFW IAH LAS LAX MSP ORD PHX SFO
AIRLINE

AA 3 4 86 3 3 1) 3 35 4 2
AS 0 0 0 0 0 0 0 0 0 0
B6 0 0 0 0 0 0 0 0 0 1
DL 28 1 0 0 1 1 4 0 1 2

EV 18 6 27 36 0 0 6 53 0 0
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OEBPS/Image00186.jpg
Name Date Info Value
0 E&E Grill House 2017-08-08 Borough MANHATTAN
1 E&E Grill House 2017-08-08 Cuisine American
2 E&EGrill House 2017-08-08 Description Non-food contact surface improperly constructe...
3 E&E Grill House 2017-08-08 Grade A
4 E&E Grill House 2017-08-08 Score 9.0
5 PIZZAWAGON 2017-04-12 Borough BROOKLYN
6 PIZZAWAGON 2017-04-12 Cuisine Pizza
7 PIZZA WAGON 2017-04-12 Description  Food contact surface not properly washed, rins...
8 PIZZAWAGON 2017-04-12 Grade A
9 PIZZAWAGON 2017-04-12 Score 10.0
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UGDS SATMTMID
count min  max count min  max
AK 0 7 109.0 12865.0 0 NaN NaN
1 3 270 275.0 1 503.0 503.0
AL 0 71 12.0 29851.0 13 420.0 590.0
1 18 13.0 3033.0 8 400.0 560.0
AR 0 68 18.0 21405.0 9 427.0 565.0
1 14 20.0 4485.0 7 495.0 600.0
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Weight Category M35 35-39 M40 40-44 M4545-49 M5050-54 MS5555-59 M60 60-64 M65 65-69
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Weight Category

sex_age Qual Total
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State Fruit Weight
0 Texas Apple 12
1 Arizona  Apple 9
2 Florida  Apple 0
3 Texas Orange 10
4 Arizona Orange 7
5 Florida Orange 14
6 Texas Banana 40
7 Arizona Banana 12
8 Florida Banana 190
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10

1

variable
State

State

value
Texas
Arizona
Florida
12

9

0

10

14
40
12

190
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State Apple Orange Banana

0 Texas 12 10 40
1 Arizona 9 7 12

2 Florida 0 14 190
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State variable value
0 Texas Apple 12
1 Arizona Apple 9
2 Florida Apple 0
3 Texas Orange 10
4 Arizona Orange 7
5 Florida Orange 14
6 Texas Banana 40
7 Arizona Banana 12
8 Florida Banana 190
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movie_title actor_num actor actor_facebook_likes
0 Avatar 1 CCH Pounder 1000.0
1 Pirates of the Caribbean: At World's End 1 Johnny Depp 40000.0
2 Spectre 1 Christoph Waltz 11000.0
3 The Dark Knight Rises 1 Tom Hardy 27000.0
4 Star Wars: Episode VIl - The Force Awakens 1 Doug Walker 131.0
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movie_title actor_1_name actor_2_name actor_3_name actor_1_facebook_likes actor_2_facebook_likes actor_3_facebook_likes
Avatar  GCH Pounder oslibavid Wes Studi 1000.0 936.0 855.0
Moore
Piratesiof ttie CaribbeanziAt Worllzc:;j Johnny Depp  Orlando Bloom Jack Davenport 40000.0 5000.0 1000.0
Spectre Chri?/\t;;ﬁg Rory Kinnear  Stephanie Sigman 11000.0 393.0 161.0
The Dark Knight Rises ~ Tom Hardy ~ Christian Bale ~ 1°S%P Gordon 27000.0 23000.0 23000.0
Star Wars: Episode VIl - The Force 5 o yer Rob Walker NaN 131.0 12.0 NaN

Awakens
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movie_title actor_1 actor_2 actor_3 actor_facebook_likes_1 actor_facebook_likes_2 actor_facebook_likes_3
Avatar  CCH Pounder goslibavid Wes Studi 1000.0 936.0 855.0
Moore
Pirates o thielCaribbean: At Worgj Johnny Depp  Orlando Bloom Jack Davenport 40000.0 5000.0 1000.0
Spectre Chriz{,‘;ﬁg Rory Kinnear  Stephanie Sigman 11000.0 393.0 161.0
The Dark Knight Rises ~ Tom Hardy ~ Christian Bale 25PN Gordon- 27000.0 23000.0 23000.0
Star Wars: Episode VIl - The Force 1y )\ \waier — Rob Walker NaN 131.0 12.0 NaN

Awakens
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state fruit weight
0 Texas Apple 12
1 Texas Orange 10
2 Texas Banana 40
3 Arizona  Apple 9
4 Arizona Orange 7
5 Arizona Banana 12
6 Florida  Apple 0
7 Florida Orange 14
8 Florida Banana 190
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State Apple Orange Banana

0 Texas 12 10 40
1 Arizona 9 7 12

2 Florida 0 14 190
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level_0 level_1 0
0 Texas Apple 12
1 Texas Orange 10
2 Texas Banana 40
3 Arizona  Apple 9
4 Arizona Orange 7
5 Arizona Banana 12
6 Florida  Apple 0
7 Florida Orange 14
8 Florida Banana 190
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Race UGDS_2MOR UGDS_AIAN UGDS_ASIAN UGDS_BLACK UGDS_HISP UGDS_NHPI UGDS_NRA UGDS_UNKN UGDS_WHITE
INSTNM

A & W Healthcare Educators 0.0000 0.0 0.0000 0.9750 0.0250 0.0 0.0000 0.0000 0.0000

AT Still University of Heafth NaN NaN NaN NaN NaN NaN NaN NaN NaN

Sciences

ABC Beauty Academy 0.0000 0.0 0.9333 0.0333 0.0333 0.0 0.0000 0.0000 0.0000

ABC Beauty College Inc 0.0000 0.0 0.0000 0.6579 0.0526 0.0 0.0000 0.0000 0.2895

AlMiami Intemationaltiniversity 0.0018 0.0 0.0018 0.0198 0.4773 0.0 0.0025 0.4644 0.0324

of Art and Design
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University

Alabama University . of Alabama . T!|e Central Athens Auburn

of Alabama Amridge University Alabama . " Auburn
INSTNM A&M . = Alabama State " State University at . "

. N at University N . B of Community . B University

University . . in University University Montgomery

Birmingham ¢ Alabama College
Huntsville

UGDS_WHITE 0.0333 0.5922 0.2990 0.6988 0.0158 0.7825 0.7255 0.7823 0.5328 0.8507
UGDS_BLACK 0.9353 0.2600 0.4192 0.1255 0.9208 0.1119 0.2613 0.1200 0.3376 0.0704
UGDS_HISP 0.0055 0.0283 0.0069 0.0382 0.0121 0.0348 0.0044 0.0191 0.0074 0.0248
UGDS_ASIAN 0.0019 0.0518 0.0034 0.0376 0.0019 0.0106 0.0025 0.0053 0.0221 0.0227
UGDS_AIAN 0.0024 0.0022 0.0000 0.0143 0.0010 0.0038 0.0044 0.0157 0.0044 0.0074
UGDS_NHPI 0.0019 0.0007 0.0000 0.0002 0.0006 0.0009 0.0000 0.0010 0.0016 0.0000
UGDS_2MOR 0.0000 0.0368 0.0000 0.0172 0.0098 0.0261 0.0000 0.0174 0.0297 0.0000
UGDS_NRA 0.0059 0.0179 0.0000 0.0332 0.0243 0.0268 0.0000 0.0057 0.0397 0.0100

UGDS_UNKN 0.0138 0.0100 0.2715 0.0350 0.0137 0.0026 0.0019 0.0334 0.0246 0.0140
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INSTNM UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI

UGDS_2MOR UGDS_NRA UGDS_UNKN

Alabama A & M University

University of Alabama at
Birmingham

Amridge University

University of Alabama in
Huntsville

Alabama State University

0.0333

0.5922

0.2990

0.6988

0.0158

0.9353

0.2600

0.4192

0.1255

0.9208

0.0055

0.0283

0.0069

0.0382

0.0121

0.0019

0.0518

0.0034

0.0376

0.0019

0.0024

0.0022

0.0000

0.0143

0.0010

0.0019

0.0007

0.0000

0.0002

0.0006

0.0000

0.0368

0.0000

0.0172

0.0098

0.0059

0.0179

0.0000

0.0332

0.0243

0.0138

0.0100

0.2715

0.0350

0.0137
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INSTNM Race Percentage
0 Alabama A & M University UGDS_WHITE 0.0333
1 University of Alabama at Birmingham UGDS_WHITE 0.5922
2 Amridge University UGDS_WHITE 0.2990
3 University of Alabama in Huntsville UGDS_WHITE 0.6988
4 Alabama State University UGDS_WHITE 0.0158
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GENDER Female Male
RACE

American Indian or Alaskan Native 60238 60305
Asian/Pacific Islander 63226 61033
Black or African American 48915 51082
Hispanic/Latino 46503 54782

Others 63785 38771
White 66793 63940
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RACE American Indian or Alaskan Native Asian/Pacific Islander Black or African American Hispanic/Latino Others White

GENDER

Female 60238 63226 48915 46503 63785 66793

Male 60305 61033 51082 54782 38771 63940
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groupi group2

State Country Test Label
X US Testl ail 0.45 2
b2 0.30 6
MA US Test2 al 0.03 9
b2 1.20 7
ON CAN Test3 al 0.70 4
b2 4.20 2
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INSTNM

UGDS_WHITE UGDS_BLACK UGDS_HISP UGDS_ASIAN UGDS_AIAN UGDS_NHPI

UGDS_2MOR UGDS_NRA UGDS_UNKN

Alabama A & M University

University of Alabama at
Birmingham

Amridge University

University of Alabama in
Huntsville

Alabama State University

0.0333

0.5922

0.2990

0.6988

0.0158

0.9353

0.2600

0.4192

0.1255

0.9208

0.0055

0.0283

0.0069

0.0382

0.0121

0.0019

0.0518

0.0034

0.0376

0.0019

0.0024

0.0022

0.0000

0.0143

0.0010

0.0019

0.0007

0.0000

0.0002

0.0006

0.0000

0.0368

0.0000

0.0172

0.0098

0.0059

0.0179

0.0000

0.0332

0.0243

0.0138

0.0100

0.2715

0.0350

0.0137
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State Country al b2 Test

X US 045 0.3 Testt
MA US 0.03 1.2 Test2

ON CAN 0.70 4.2 Test3
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State Country group1_al group1_b2 Test group2_al group2_b2

X us 0.45 0.3 Testl 2 6
MA us 0.03 1.2 Test2 9 7

ON CAN 0.70 4.2 Test3 4 2
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color Director Crlt!cal duration actor_2_facebook_likes imdb_score aspect_ratio movie_facebook_likes
Name Reviews
movie_title
Ratava Color S 7230 1780 936.0 7.9 1.78 33000
Cameron
Pirates of the Caribbean: At Color  Gore Verbinski 3020 1690 5000.0 7.1 2.35 0
World's End
Ertceps Color ~ Sam Mendes 602.0 148.0 393.0 6.8 2.35 85000
The Dark Knight Rises Color Ch”“;‘(’)’l‘:r: 8130  164.0 23000.0 8.5 235 164000
Star Wars: Episode VIl - The NaN Doug Walker NaN NaN 12.0 71 NaN 0

Force Awakens
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actor_1_name

actor_2_name

actor_3_name

director_name

&~ ON

CCH Pounder
Johnny Depp
Christoph Waltz
Tom Hardy

Doug Walker

Joel David Moore
Orlando Bloom
Rory Kinnear
Christian Bale

Rob Walker

Wes Studi

Jack Davenport
Stephanie Sigman
Joseph Gordon-Levitt
NaN

James Cameron
Gore Verbinski
Sam Mendes
Christopher Nolan

Doug Walker
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Z Jupyter

Files

Running Clusters Nbextensions

Select items to perform actions on them.

O

O

O 0O 0 O

O

~ | @ / Code
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O data
O images
& Appendix Data Descriptions.ipynb
& Chapter 01 Pandas Foundations.ipynb
& Chapter 02 Essential DataFrame Operations.ipynb

& Chapter 03 Beginning Data Analysis.ipynb

Logout

Upload New~ &

Name 4 Last Modified 4
seconds ago

6 hours ago

3 months ago
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Shares_x Low_x High_x Shares_y Low_y High_y

Symbol

AAPL 80 95 110 50 120 140

TSLA 50 80 130 100 100 300
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GENDER
DEPARTMENT

Female

Admn. & Regulatory Affairs
City Controller's Office

City Council

Convention and Entertainment

Dept of Neighborhoods (DON)

48758.0
58980.0
59260.0
38397.0
50578.0

57592.0
42640.0
58492.0

NaN
43995.0
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item store price Date
0 pear A 099 2017
1 pear B 199 2017
2 peach A 299 2017
3 peach B 3.49 2017
4 banana A 039 2017
5 banana B 049 2017
6 steak A 599 2017
7 steak B 6.99 2017
8 steak B 499 2015

custid item store quantity
0 1 pear A 5
1 1 banana A 10
2 2 steak B 3
3 2 pear B 1
4 2 peach B 2
5 2 steak B 1
6 2 coconut B 4
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Theodores-MacBook-Pro:~ Ted$ jupyter notebookl
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Shares_2016 Low_2016 High_2016 Shares_2017 Low_2017 High_2017

Symbol
AAPL 80.0 95.0 110.0 50.0 120.0 140.0
GE NaN NaN NaN 100.0 30.0 40.0
IBM NaN NaN NaN 87.0 75.0 95.0
SLB NaN NaN NaN 20.0 55.0 85.0
TSLA 50.0 80.0 130.0 100.0 100.0 300.0
TXN NaN NaN NaN 500.0 15.0 23.0
WMT 40.0 55.0 70.0 NaN NaN NaN
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Shares_2016 Low_2016 High_2016 Shares_2017 Low_2017 High_2017 Shares_2018 Low_2018 High_2018

AAPL 80.0 95.0 110.0 50.0 120.0 140.0 40.0 135.0 170.0
AMZN NaN NaN NaN NaN NaN NaN 8.0 900.0 1125.0
GE NaN NaN NaN 100.0 30.0 40.0 NaN NaN NaN
IBM NaN NaN NaN 87.0 75.0 95.0 NaN NaN NaN
SLB NaN NaN NaN 20.0 55.0 85.0 NaN NaN NaN
TSLA 50.0 80.0 130.0 100.0 100.0 300.0 50.0 220.0 400.0
TXN NaN NaN NaN 500.0 15.0 23.0 NaN NaN NaN
WMT 40.0 55.0 70.0 NaN NaN NaN NaN NaN NaN
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movie.director_name.
movie.director name.abs
movie.director_ name.add
movie.director_name.add_prefix
movie.director name.add suffix
movie.director_ name.agg
movie.director name.aggregate
movie.director_ name.align
movie.director name.all
movie.director_ name.any
movie.director name.append
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price Date

item store
pear A 099 2017
B 1.99 2017
peach A 299 2017
B 349 2017
banana A 039 2017
B 049 2017
steak A 599 2017
B 6.99 2017
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color director_name num_critic_for_reviews duration actor_2_facebook_likes imdb_score aspect_ratio movie_facebook_likes
movie_title
Avatay Color pames 7230 1780 936.0 7.9 1.78 33000
Cameron

Pirates of the
Caribbean: At World's Color  Gore Verbinski 302.0 169.0 5000.0 71 2.35 0

End
Spectre Color Sam Mendes 602.0 148.0 393.0 6.8 2.35 85000
The Dark Knight Rises ¢, Ch”“;‘;’l‘:r: 8130  164.0 23000.0 85 235 164000
StarWers Episode Vs NaN  Doug Walker NaN  NaN 12.0 7.1 NaN 0

The Force Awakens
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All Grades Diesel Midgrade Premium Regular
Week
2017-09-25 2,701 2.788 2.859 3.105 2.583
2017-09-18 2,750 2.791 2.906 3.151 2.634
2017-09-11 2.800 2.802 2.953 3.197 2.685
2017-09-04 2,794 2.758 2.946 3.191 2.679
2017-08-28 2513 2.605 2.668 2.901 2.399
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columns column name

axis=1 1

more columns to display

7

S~ color  @irector_nam® num_critic_for_reviews _duration (1) actor.2_facebook likes imdb_score aspect_ratio movie_facebook ikes

0 Color  James Cameron

Index Iabel 1 Color Gore Verbinski
TTS@0Coor  samMendes

3 Color Christopher Nolan

4 Doug Walker

7230 1780 .. 936.0
3020  169.0 .. 5000.0

6020 1480 .. 393)

8130 1640 ... 23000.0

an

I

missing values

12,0

7.9

Al

68

85

71

data

(values)

1.78 33000
235 0
235 85000
235 164000

NaN/

0
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custid item store quantity price Date
0 1 pear A 5 099 2017
1 1 banana A 10 0.39 2017
2 2 steak B 3 6.99 2017
3 2 steak B 3 499 2015
4 2 steak B 1 6.99 2017
5 2 steak B 1 499 2015
6 2 pear B 1 199 2017
7 2 peach B 2 349 2017
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index data

axis=0 (values)

|

0 James Cameron
1 Gore Verbinski
index label—®@ Sam Mendes

3 Christopher Nolan
4 Doug Walker

hidden @ missing value
5038 cott Smith /

values 2030
5040 Benjamin Roberds
5041 Daniel Hsia data type
5042 Jon Gunn

Name: director_name, Length: 5043, dtype: object

Series hame .
number of observations
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custid item store quantity price Date
0 1 pear A 5 099 2017.0
1 1 banana A 10 0.39 2017.0
2 2 steak B 3 6.99 2017.0
3 2 pear B 1 1.99 2017.0
4 2 peach B 2 349 2017.0
5 2 steak B 1 6.99 2017.0
6 2 coconut B 4 NaN NaN
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Shares Low High

Symbol
2016  AAPL 80 95 110
TSLA 50 80 130
WMT 40 55 70
2017 AAPL 50 120 140

GE 100 30 40

IBM 87 75 95

SLB 20 55 85

TXN 500 15 23

TSLA 100 100 300

2018  AAPL 40 135 170
AMZN 8 900 1125

TSLA 50 220 400
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2016 2017 2018

Shares Low High Shares Low High Shares Low High
AAPL 80.0 95.0 110.0 50.0 120.0 140.0 40.0 135.0 170.0
AMZN NaN NaN NaN NaN NaN NaN 8.0 900.0 1125.0
GE NaN NaN NaN 100.0 30.0 40.0 NaN  NaN NaN
I1BM NaN NaN NaN 87.0 750 950 NaN  NaN NaN
SLB NaN NaN NaN 20.0 55.0 850 NaN  NaN NaN
TSLA 50.0 80.0 130.0 100.0 100.0 300.0 50.0 220.0 400.0
TXN NaN NaN NaN 5000 15.0 23.0 NaN  NaN NaN
WMT 40.0 55.0 70.0 NaN NaN NaN NaN  NaN NaN
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color director_name num_critic_for_reviews duration director_facebook_likes actor_3_facebook_likes actor_2_name actor_1_facebook_likes gross genres
0 False False False False False False False False False False
1 False False False False False False False False False False
2 False False False False False False False False False False
3 False False False False False False False False False False
4 True False True True False True False False  True False
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director_facebook_likes actor_3_facebook_likes actor_1_facebook_likes cast_total_facebook_likes actor_2_facebook_likes movie_facebook_likes

movie_title
Avatar 0.0 855.0 1000.0 4834 936.0 33000
Pirates of the
Caribbean: At 563.0 1000.0 40000.0 48350 5000.0 0
World's End
Spectre 0.0 161.0 11000.0 11700 393.0 85000
heDark 22000.0 23000.0 27000.0 106759 23000.0 164000
Knight Rises
Star Wars:
Episodo VIl 131.0 NaN 131.0 143 12.0 0
The Force

Awakens
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Customerld FirstName

LastName

Total

6

26

57

Helena
Richard

Luis

Holy
Cunningham

Rojas

49.62
47.62

46.62
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movie_title

actor_3_facebook_likes actor_ 2_name actor_1_facebook_likes actor_1_name

actor_3_name

actor_2_facebook_likes

Avatar

Pirates of the Caribbean: At World's
End

Spectre

The Dark Knight Rises

Star Wars: Episode VII - The Force
Awakens

855.0 gos[bavid 10000  CCH Pounder
Moore

1000.0 Orlando Bloom 40000.0  Johnny Depp

5 Christoph

161.0 Rory Kinnear 11000.0 Waltz

23000.0 Christian Bale 27000.0 Tom Hardy

NaN Rob Walker 131.0 Doug Walker

Wes Studi

Jack Davenport

Stephanie Sigman

Joseph Gordon-
Levitt

NaN

936.0

5000.0

393.0

23000.0

12.0
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE
2014-06-29 02:01:00 traffic-accident-dui-duid traffic-accident -105.000149 39.745753 cbd 0 1
2014-06-29 01:54:00 vehicular-eluding-no-chase all-other-crimes  -104.884660 39.738702 east-colfax 1 0
2014-06-29 02:00:00 disturbing-the-peace public-disorder -105.020719 39.706674 athmar-park 1 0
2014-06-29 02:18:00 curfew public-disorder -105.001552 39.769505 sunnyside 1 0
2014-06-29 04:17:00 aggravated-assault aggravated-assault -105.018557 39.679229 college-view-south-platte 1 0
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num_voted_users cast_total_facebook_likes movie_facebook_likes

movie_title
Avatar 886204 4834 33000
Pirates of the Caribbean: At World's End 471220 48350 0
Spectre 275868 11700 85000
The Dark Knight Rises 1144337 106759 164000

Star Wars: Episode VII - The Force Awakens 8 143 0
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Customerld FirstName LastName Invoiceld UnitPrice Quantity
0 1 Luis Gongalves 98 1.99 1
1 1 Luis  Gongalves 98 1.99 1
2 1 Luis Gongalves 121 0.99 1
3 1 Luis Gongalves 121 0.99 n)
4 1 Luis Gongalves 121 0.99 1
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movie_title

num_critic_for_reviews duration director_facebook_likes actor_3_facebook_likes actor_1_facebook_likes

gross num_voted_users

Avatar

Pirates of
the
Caribbean:
At World's
End

Spectre

The Dark
Knight
Rises

Star Wars:
Episode
VIl - The
Force
Awakens

723.0

302.0

602.0

813.0

NaN

178.0

169.0

148.0

164.0

NaN

0.0

563.0

0.0

22000.0

131.0

855.0

1000.0

161.0

23000.0

NaN

1000.0

40000.0

11000.0

27000.0

131.0

760505847.0 886204

309404152.0 471220

200074175.0 275868

448130642.0 1144337

NaN 8
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Name avg_time

0 Rock And Roll  00:02:14
1 Opera  00:02:54

2 Hip Hop/Rap  00:02:58





OEBPS/Image00024.jpg
num_critic_for_reviews

duration

director_facebook_likes

actor_3_facebook_likes

actor_1_facebook_likes

gross

count
mean
std
min
25%
50%
75%

max

4867.000000

137.988905

120.239379

1.000000

49.000000

108.000000

191.000000

813.000000

4901.000000

107.090798

25.286015

7.000000

93.000000

103.000000

118.000000

511.000000

4814.000000

691.014541

2832.954125

0.000000

7.000000

48.000000

189.750000

23000.000000

4893.000000
631.276313
1625.874802
0.000000
132.000000
366.000000
633.000000

23000.000000

4909.000000

6494.488491

15106.986884

0.000000

607.000000

982.000000

11000.000000

640000.000000

4.054000e+03

4.764451e+07

6.737255e+07

1.620000e+02

5.019656e+06

2.504396e+07

6.110841e+07

7.605058e+08
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE
2015-12-01 00:48:00 drug-cocaine-possess drug-alcohol -104.891681 39.740155 east-colfax 1 0
2015-12-01 00:48:00 theft-of-motor-vehicle auto-theft -104.891681 39.740155 east-colfax 1 0
2015-12-31 23:45:00 violation-of-restraining-order all-other-crimes  -105.034887 39.741827 west-colfax 1 0
2015-12-31 23:50:00 weapon-poss-illegal-dangerous all-other-crimes -105.032769 39.709188 westwood 1 0

6907 rows x 7 columns
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num_critic_for_reviews duration director_facebook_likes actor_3_facebook_likes actor_1_facebook_likes gross

count 4867.000000 4901.000000 4814.000000 4893.000000 4909.000000 4.054000e+03
mean 137.988905  107.090798 691.014541 631.276313 6494.488491 4.764451e+07
std 120.239379 25.286015 2832.954125 1625.874802 15106.986884 6.737255e+07
min 1.000000 7.000000 0.000000 0.000000 0.000000 1.620000e+02
1% 2.000000 43.000000 0.000000 0.000000 6.080000 8.474800e+03
30% 60.000000 95.000000 11.000000 176.000000 694.000000 7.914069e+06
50% 108.000000  103.000000 48.000000 366.000000 982.000000 2.504396e+07
99% 546.680000  189.000000 16000.000000 11000.000000 44920.000000 3.264128e+08
max 813.000000 511.000000 23000.000000 23000.000000 640000.000000 7.605058e+08
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color

director_name

num_critic_for_reviews duration director_facebook_likes actor_3_facebook_likes

actor_2_name

actor_1_facebook_likes

gross

Color

Color

Color

Color

NaN

James
Cameron

Gore Verbinski

Sam Mendes

Christopher
Nolan

Doug Walker

723.0

302.0

602.0

813.0

NaN

178.0

169.0

148.0

164.0

NaN

0.0

563.0

0.0

22000.0

131.0

855.0

1000.0

161.0

23000.0

NaN

Joel David
Moore

Orlando
Bloom

Rory Kinnear

Christian Bale

Rob Walker

1000.0

40000.0

11000.0

27000.0

131.0

760505847.0

309404152.0

200074175.0

448130642.0

NaN
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE
2016-05-12 16:45:00 traffic-accident traffic-accident -104.847024 39.779596 montbello 0 1
2016-05-12 16:45:00 traffic-accident traffic-accident -105.049180 39.769296 west-highland 0 i
2016-05-12 16:45:00  fraud-identity-theft white-collar-crime  -104.931971 39.717359 hilltop l 0
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movie_title title_year content_rating genres director_name actor_1_name actor_2_name actor_3_name color country language
0 Avatar  2009.0 p@-13| ActionAdventiire|Farttasy|Scl: James ooy poynger  Joel David Wes Studi Color ~ USA  English
Fi Cameron Moore
1 Pirates of
the Orlando Jack
Caribbean: 2007.0 PG-13 Action|Adventure|Fantasy ~ Gore Verbinski  Johnny Depp Color USA English
4 Bloom Davenport
At World's
End
2 Spectre 2015.0 PG-13 Action|Adventure|Thriller Sam Mendes Chiistoph Rory Kinnear Stephame Color UK English
Waltz Sigman
3 The Dark :
Knight — 2012.0 PG-13 Action[Thriller  CMISIOPRET o pargy  Ghristian Bale o 99PN Golor  USA  English
Rises olan ordon-Levitt
4  Star Wars:
Epiede NaN NaN D Doug Walker  Doug Walk Rob Walk NaN NaN  NaN NaN
—The Force al al ocumentary oug Walker oug Walker ob Walker al al al al

Awakens
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OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON GEO_LAT NEIGHBORHOOD_ID IS_CRIME IS_TRAFFIC
REPORTED_DATE
2016-05-12 23:51:00 criminal-mischief-other public-disorder -105.017241 39.705845 athmar-park 1 0
2016-05-12 18:40:00 liquor-possession drug-alcohol -104.995692 39.747875 cbd 1 0
2016-05-12 15:59:00 menacing-felony-w-weap aggravated-assault -104.935172 39.723703 hilltop i 0
2016-05-12 16:39:00 assault-dv other-crimes-against-persons -104.974700 39.740555 north-capitol-hill 1 0

243 rows x 7 columns
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OEBPS/Image00258.jpg
Trackld Name Albumid MediaTypeld Genreld Composer Milliseconds Bytes UnitPrice
1 foglhossitboudiciiiccki(We Sa\l(st; 1 1 1 Angus Young, Malcolm Young, Brian Johnson 343719 11170334 0.99
2 Balls to the Wall 2 2 1 None 342562 5510424 0.99
3 Fast As a Shark 3 2 1 1B TR, 5 ety U (BT Rey ﬁ(:’_"’: 230619 3990994 0.99
4 Restless and Wild 3 2 -FiBaltes, R Smith-Dicsel, 8. Ka“fma”bL_f: 252051 4331779 0.99
5 Princess of the Dawn 3 2 1 Deaffy & R.A. Smith-Diesel 375418 6290521 0.99
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director_name
James Cameron
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Name Milliseconds

Rock
Rock
Rock
Rock

Rock

343719

342562

230619

252051

375418
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QSQLITE

TUTORIAL

media_types

MediaTypeld: INTEGER
Name: NVARCHAR(120)

genres

& Playlistid: INTEGER

Name: NVARCHAR(120)

playlist_track

Playlistid: INTEGER
Trackld: INTEGER

tracks

invoices R

customers

Invoiceld: INTEGER
Customerld: INTEGER
InvoiceDate: DATETIME
BillingAddress: NVAR...
BillingCity: NVARCHA...

4 more columns

invoice_items

Trackld: INTEGER
Name: NVARCHAR(200)
Albumid: INTEGER
MediaTypeld: INTEGER

Genreld: INTEGER
Name: NVARCHAR(120)

-

[

Genreld: INTEGER

Composer: NVARCHAR(220)|

Milliseconds: INTEGER
Bytes: INTEGER
UnitPrice: NUMERIC

artists

Agtistid: INTEGER
Name: NVARCHAR(120)

| —

{

Invoiceltemid: INTEGER|
Invoiceld: INTEGER
Trackld: INTEGER
UnitPrice: NUMERIC
Quantity: INTEGER

L

albums

Customerid: INTEGER

FirstName: NVARCHAR(40)
LastName: NVARCHAR(20)
Company: NVARCHAR(80)
Address: NVARCHAR(70)
City: NVARCHAR(40)

State: NVARCHAR(40)
Country: NVARCHAR(40)
PostalCode: NVARCHAR(10)
Phone: NVARCHAR(24)
Fax: NVARCHAR(24)
Email: NVARCHAR(80)
SupportRepld: INTEGER

| —

employees

Albumid: INTEGER
Title: NVARCHAR(160)
Artistid: INTEGER

| S —

Employeeld: INTEGER

LastName: NVARCHAR(20)
FirstName: NVARCHAR(20)
Title: NVARCHAR(30)
ReportsTo: INTEGER

BirthDate: DATETIME
HireDate: DATETIME
Address: NVARCHAR(70)

7 more columns

[
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. Unnamed: % : % unsure/no Unnamed: Unnamed: Unnamed: Unnamed: Unnamed: Unnamed:
President Start Date End Date 3 Approving Disapproving data 7 8 ° 10 1 12

0 D°’}':‘L‘:n‘:]' 09/23/2017 09/25/2017 NaN 39 56 5 NaN NaN NaN NaN NaN NaN
1 NaN 09/22/2017 09/24/2017 NaN 39 54 7 NaN NaN NaN NaN NaN NaN
2 NaN 09/21/2017 09/23/2017 NaN 40 54 6 NaN NaN NaN NaN NaN NaN
3 NaN 09/20/2017 09/22/2017 NaN 37 56 7 NaN NaN NaN NaN NaN NaN
4 NaN 09/19/2017 09/21/2017 NaN 38 56 6 NaN NaN NaN NaN NaN NaN
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President Start Date End Date Approving Disapproving unsure/no data
0 Donald J. Tump 2017-09-23 2017-09-25 39 56 5
1 NaN 2017-09-22 2017-09-24 39 54 7
2 NaN 2017-09-21 2017-09-23 40 54 6
3 NaN 2017-09-20 2017-09-22 37 56 7
4 NaN 2017-09-19 2017-09-21 38 56 6





OEBPS/Image00229.jpg
o [=] o
© 0 <

Buinoiddy o

30

20

10,

)

£102/22/60
£102/¥1/60
£102/90/60
£102/62/80
£102/12/80
£102/€1/80
£102/50/80
£102/82/L0
£102/02/L0
£102/11/L0
£102/20/L0
£102/¥2/90
£102/91/90
£102/80/90
1oe/iefso
£102/£2/50 §
£102/51/50
£102/£0/50
£102/82/%0
£102/02/%0
£102/T1/%0
£102/€0/%0
£102/92/£0
£102/81/€0
£102/01/€0
£102/20/£0
£102/22/20
£102/¥1/20
£102/90/20
£102/62/10

>84 84-67 66-55 54-50 49-45 44-40 39-35 34-25 <25

%
unsure/no data

%
Disapproving

%
Approving

Start Date End Date

09/23/2017

President

0N~ O~

56
54
54
56

39
39

40
37

09/25/2017
09/24/2017
09/23/2017
09/22/2017

09/22/2017
09/21/2017
09/20/2017

Donald J. Trump





OEBPS/Image00230.jpg
>84 84-67 66-55 54-50 49-45 44-40 39-35 34-25 <25

[ | DU
% % %
President Start Date End Date Approving Disapproving unsure/no data
Donald J. Trump 09/23/2017  09/25/2017 39 56 5
09/22/2017  09/24/2017 39 54 7
09/21/2017  09/23/2017 40 ——
09/20/2017  09/22/2017 37 Look Up "54
09/19/2017  09/21/2017 38
09/18/2017  09/20/2017 37
09/17/2017  09/19/2017 39
09/16/2017  09/18/2017 38
09/15/2017  09/17/2017 38
09/14/2017  09/16/2017 38
09/13/2017  09/15/2017 36
09/12/2017  09/14/2017 37
09/11/2017  09/13/2017 37
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09/07/2017  09/09/2017 38
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Year 2016 2017
Shares Low High Shares Low High
AAPL 80.0 95.0 110.0 50.0 120.0 140.0
GE NaN NaN NaN 100.0 30.0 40.0
IBM NaN NaN NaN 87.0 750 95.0
SLB NaN NaN NaN 20.0 550 850
TSLA 50.0 80.0 130.0 100.0 100.0 300.0
TXN NaN NaN NaN 500.0 15.0 23.0
WMT 40.0 55.0 70.0 NaN NaN NaN
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Year 2016 2017
Shares Low High Shares Low High

Symbol

AAPL 80 95 110 50 120 140

TSLA 50 80 130 100 100 300
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0 1 2 3 4 5 6

0 >84 84-67 66-55 54~ 66-
50 49-45 44-40 39-35 >84 84-67 55 54-50 49-45 44-40

1 54-
>84 84-67 66-55 50 49-45 44-40 39-35
2 NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN % % %
4 President  Start Date End Date NaN Approving Disapproving unsurz/arg
5 NaN NaN NaN NaN NaN NaN NaN
6 Donald J. Trump 09/23/2017 09/25/2017 NaN 39 56 5
7 NaN 09/22/2017 09/24/2017 NaN 39 54 7
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0 1 2 3 4 5 6 7
0 NaN NaN NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN NaN NaN NaN NaN
6 Document Document Document . State of
Archive Archive Archive * Public the Union
* Public * Public * Public Document  Papers of

NaN NaN 5 Addresses
Papers of Papers of Papers of Archive the 2
the the the Presidents Ve

Presi... Presi... Presi... g
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Shares Low High

Symbol
AAPL 80 95 110
TSLA 50 80 130
WMT 40 55 70

Shares Low High

Symbol
AAPL 50 120 140
GE 100 30 40
IBM 87 75 95
SLB 20 55 85
TXN 500 15 23
TSLA 100 100 300

Shares Low High

Symbol
AAPL 40 135 170
AMZN 8 900 1125
TSLA 50 220 400
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Approving Disapproving unsure/no data

President
George Bush 63.0 22.0 9.0
William J. Clinton 57.0 36.0 6.0
George W. Bush 50.5 45.5 4.0
Barack Obama 47.0 47.0 7.0
Donald J. Trump 39.0 56.0 6.0
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Presedential Approval Rating

=—+= George Bush

William J. Clinton
George W. Bush
Barack Obama

Donald ). Trump
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President Start Date End Date Approving Disapproving unsure/no data
0 Barack Obama 2009-01-21 2009-01-23 68 12 21
1 Barack Obama 2009-01-22 2009-01-24 69 13 18
2 Barack Obama 2009-01-23 2009-01-25 67 14 19
3 Barack Obama 2009-01-24 2009-01-26 65 15 20
4 Barack Obama 2009-01-25 2009-01-27 64 16 20
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President Start Date End Date Approving Disapproving unsure/no data

0 George Bush 1989-01-24 1989-01-26 51 6 43

1 George Bush 1989-02-24 1989-02-27 60 1 27

2 George Bush 1989-02-28 1989-03-02 62 13 24
158 William J. Clinton 1993-01-24 1993-01-26 58 20 22
159 William J. Clinton 1993-01-29 1993-01-31 53 30 16
160 William J. Clinton 1993-02-12 1993-02-14 51 33 15
386 George W.Bush 2001-02-01 2001-02-04 57 25 18
387 George W.Bush 2001-02-09 2001-02-11 57 24 17
388 George W.Bush 2001-02-19 2001-02-21 61 21 16
656 Barack Obama 2009-01-21 2009-01-23 68 12 21
657 Barack Obama 2009-01-22 2009-01-24 69 13 18
658 Barack Obama 2009-01-23 2009-01-25 67 14 19
3443 Donald J. Trump 2017-01-20 2017-01-22 45 45 10
3444 Donald J. Tump 2017-01-21 2017-01-23 45 46 9
3445 Donald J. Tump 2017-01-22 2017-01-24 46 45 9
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President Start Date End Date Approving Disapproving unsure/no data Days in Office

0 George Bush 1989-01-24 1989-01-26 51 6 43 0 days

1 George Bush 1989-02-24 1989-02-27 60 1 27 32 days

2 George Bush 1989-02-28 1989-03-02 62 13 24 35 days
158 William J. Clinton 1993-01-24 1993-01-26 58 20 22 0 days
159 William J. Clinton 1993-01-29 1993-01-31 53 30 16 5 days
160 William J. Clinton 1993-02-12 1993-02-14 51 33 15 19 days
386 George W.Bush 2001-02-01 2001-02-04 57 25 18 0 days
387 George W.Bush 2001-02-09 2001-02-11 57 24 17 7 days
388 George W.Bush 2001-02-19 2001-02-21 61 21 16 17 days
656 Barack Obama 2009-01-21 2009-01-23 68 12 21 0 days
657 Barack Obama 2009-01-22 2009-01-24 69 13 18 1 days
658 Barack Obama 2009-01-23 2009-01-25 67 14 19 2 days
3443 Donald J. Tump 2017-01-20 2017-01-22 45 45 10 0 days
3444 Donald J. Tump 2017-01-21 2017-01-23 45 46 9 1 days
3445 Donald J. Tump 2017-01-22 2017-01-24 46 45 9 2 days
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President

Barack Obama Donald J. Trump George Bush George W. Bush William J. Clinton

Days in Office
0 68.0 45.0 51.0 57.0 58.0
1 69.0 45.0 NaN NaN NaN
2 67.0 46.0 NaN NaN NaN
3 65.0 46.0 NaN NaN NaN
4 64.0 45.0 NaN NaN NaN
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President Start Date End Date Approving Disapproving unsure/no data
0 Donald J. Tump 2017-09-23 2017-09-25 39 56 5
1 Donald J. Trump 2017-09-22 2017-09-24 39 54 7
2 Donald J. Tump 2017-09-21 2017-09-23 40 54 6
3 Donald J. Tump 2017-09-20 2017-09-22 37 56 7
4 Donald J. Tump 2017-09-19 2017-09-21 38 56 6
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Name Age

Cornelia 70

Abbas 69
Penelope 4
Niko 2

Aria 1





OEBPS/Image00216.jpg
Name Age
0 Cornelia 70
1 Abbas 69
2 Penelope 4
3 Niko 2
4 Aria 1

five Zach 3
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director_1

director_fb_likes_1

id

0 James Cameron 0.0
1 Gore Verbinski 563.0
2 Sam Mendes 0.0
3 Christopher Nolan 22000.0
4 Doug Walker 131.0
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id

director_id num

922

794

2020

373

600

1

1





OEBPS/Image00208.jpg
director_id director director_fb_likes

922  James Cameron 0.0
794 Gore Verbinski 563.0
2020 Sam Mendes 0.0
373 Christopher Nolan 22000.0

600 Doug Walker 131.0
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movie_table

id
title iati
: & actor_associative
director_associative year num
num . duration id (FK)
ld Fo rating actor_id__(FX)
director_id  (FK)
director_unique actor_unique
director_id actor_id
director actor
director_fb_likes actor_fb_likes
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actor_1 actor_2 actor_3 actor_fb_likes_1 actor_fb_likes_2 actor_fb_likes_3
id
0 CCH Pounder Joel David Moore Wes Studi 1000.0 936.0 855.0
1 Johnny Depp Orlando Bloom Jack Davenport 40000.0 5000.0 1000.0
2 Christoph Waltz Rory Kinnear Stephanie Sigman 11000.0 393.0 161.0
3 Tom Hardy Christian Bale Joseph Gordon-Levitt 27000.0 23000.0 23000.0
4 Doug Walker Rob Walker None 131.0 12.0 NaN
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id actor_id num

0

0

824

2867

6099

2971

4536

1

2





OEBPS/Image00210.jpg
actor_id actor actor_fb_likes

824 CCH Pounder 1000.0
2867 Joel David Moore 936.0
6099 Wes Studi 855.0
2971 Johnny Depp 40000.0

4536 Orlando Bloom 5000.0
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Shares Low High

Year Symbol

2016  AAPL 80 95 110
TSLA 50 80 130
WMT 40 55 70

2017 AAPL 50 120 140

GE 100 30 40
IBM 87 75 95
SLB 20 55 85
TXN 500 15 23

TSLA 100 100 300
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Shares Low High

Symbol
AAPL 50 120 140
GE 100 30 40
IBM 87 75 95
SLB 20 55 85
TXN 500 15 23
TSLA 100 100 300
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Shares Low High

Symbol
AAPL 80 95 110
TSLA 50 80 130
WMT 40 55 70
AAPL 50 120 140

GE 100 30 40
IBM 87 75 95
SLB 20 55 85
TXN 500 15 23

TSLA 100 100 300
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Name Age
0 Cornelia 70
1 Abbas 69

2 Penelope 4

3 Niko 2
4 Aria 1
five Zach 3
6 Zayd 2

7 Dean 32
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Name Age

Canada Cornelia 70
Canada Abbas 69
USA Penelope 4
USA Niko 2
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five
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Cornelia
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Zach
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69
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playerlD vyearlD stint teamiD IgID G AB R H 2B .. RBI SB CS BB SO IBB HBP SH SF GIDP

0  altuvjoO1 2016 1 HOU AL 161 640 108 216 42 .. 96.0 30.0 100 60 700 110 70 3.0 7.0 15.0
1 bregmal01 2016 il HOU AL 49 201 31 53 13 .. 340 20 00 15 520 00 00 00 1.0 1.0
2 castrja01 2016 1 HOU AL 113 329 41 69 16 .. 320 20 1.0 45 1230 00 1.0 1.0 0.0 9.0
3 correca01 2016 1 HOU AL 153 577 76 158 36 .. 96.0 130 3.0 75 13.0 50 50 00 3.0 120
4  gattievO1 2016 1 HOU AL 128 447 58 112 19 .. 720 20 1.0 43 1270 6.0 40 0.0 50 120
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Shares Low High

Symbol
AAPL 80 95 110
TSLA 50 80 130
WMT 40 55 70





OEBPS/Image00220.jpg
Name Age

Canada Cornelia 70
Canada Abbas 69
USA Penelope 4
USA Niko 2

4 Zach 3
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Name Age

Canada Cornelia 70
Canada Abbas 69
USA Penelope 4
USA Niko 2

4 Zach 3

USA Zayd 2
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City latitude Ilatitude direction longitude longitude direction
0 Houston 29.7604 N 95.3698 w
1 Dallas 32.7767 N 96.7970 w
2 Austin  30.2672 N 97.7431 w
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Group Property 2012 2013 2014 2015 2016
0 A Pressure 928 873 814 973 870
1 A Temperature 1026 1038 1009 1036 1042
2 A Flow 819 806 861 882 856
3 B Pressure 817 877 914 806 942
4 B Temperature 1008 1041 1009 1002 1013
5 B Flow 887 899 837 824 873
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City Geolocation

0 Houston 29.7604° N, 95.3698° W
1 Dallas 32.7767° N, 96.7970° W

2 Austin  30.2672° N, 97.7431° W
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latitude latitude direction longitude longitude direction
29.7604 N 95.3698 w
32.7767 N 96.7970 w
30.2672 N 97.7431 w
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Group Property Year value
0 A Pressure 2012 928
1 A Temperature 2012 1026
2 A Flow 2012 819
3 B Pressure 2012 817
4 B Temperature 2012 1008
5 B Flow 2012 887
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Value

Info Name Date Borough Cuisine Description Grade Score
9 3STARJUICE GENTER 2070 BROOKLYN Juice, Smoothies, Fruit Salads "o Motvarminprook. Haiborage or -, 459
1 A & L PIZZA RESTAURANT 2017—0;32— BROOKLYN Pizza Facility not vermin proof. Harbc;glr?;tor A 9.0
2 AKSARAY TURKISH CAFE AND  2017-07- " Plumbing not properly installed or
RESTAURANT SoRCECORE et maintained;... A e
3 ANTOJITOS DELI FOOD 2017-06- BROOKLYN Latin (Cuban, Dominican, Puerto Rican, Live roaches present in facility's food A 10.0
01 South &... and/or...
4 BANGIA 2017-06- MANHATTAN o Covered garbage receptacle not provided A 9.0

16 orina...
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Name Date Borough Cuisine Description Grade Score
3sTARJUICE GENTER 20170 BROOKLYN Juice, Smoothies, Fruit Salads  TooND notvaminproof. Harborageor 4z
A&LPizzARESTAURANT 207708 BROOKIYN Pizza Bl rEEVE et e o A 90
AKSARAY TURKISH CAFE AND  2017-07- : Plumbing not properly installed or
RESTAURANT 5 ECECOR et maintained;... B
ANTOJITOS DELI FOOD 2017-06- BROOKLYN Latin (Cuban, Dominican, Puerto Rican, Live roaches present in facility's food A 10.0
01 South &... and/or...
BANGIA 2017-06- MANHATTAN Korean Covered garbage receptacle not provided A 9.0

16

orina...
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Value

Name Date Info

E & E Grill House 2017-08-08 Borough MANHATTAN
Cuisine American

Description Non-food contact surface improperly constructe...

Grade A

Score 9.0

PIZZA WAGON 2017-04-12 Borough BROOKLYN
Cuisine Pizza

Description  Food contact surface not properly washed, rins...
Grade A

Score 10.0
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Value

Info Borough Cuisine Description Grade Score
Name Date

3 STAR JUICE CENTER 2017-0:'; BROOKLYN Juice, Smoothies, Fruit Salads Facility not vermin proof. Harbc:;)ar?deitor A 12.0
A & L PIZZA RESTAURANT  2017-08- BROOKLYN Pizza Facility not vermin proof. Harboragg or A 9.0

22 condit...

AKSARAY TURKISH CAFE AND 2017-07- 5 Plumbing not properly installed or
RESTAURANT 25 BROOKLYN Turkish STl na A 130
ANTOJITOS DELI FOOD 2017-06- BROOKLYN Latin (Cuban, Dominican, Puerto Rican, Live roaches present in facility's food A 10.0

01 South &... and/or...
BANGIA 2017-0?(; MANHATTAN Korean Covered garbage receptacle not pg?’viir:i:d A 9.0





OEBPS/Image00204.jpg
id director num director_fb_likes
0 0 James Cameron 1 0.0
1 1 Gore Verbinski il 563.0
2 2 Sam Mendes 1 0.0
3 3 Christopher Nolan 1 22000.0
4 4 Doug Walker 1 131.0





OEBPS/Image00205.jpg
id actor_id actor num actor_fb_likes
0 824 CCH Pounder 1 1000.0
0 2867 Joel David Moore 2 936.0
0 6099 Wes Studi 3 855.0
1 2971 Johnny Depp 1 40000.0
1 4536 Orlando Bloom 2 5000.0





OEBPS/Image00202.jpg
id

actor

num actor_fb_likes

0

0

2

2

CCH Pounder
Joel David Moore
Wes Studi
Johnny Depp
Orlando Bloom
Jack Davenport
Christoph Waltz
Rory Kinnear

Stephanie Sigman

1

2

1000.0

936.0

855.0

40000.0

5000.0

1000.0

11000.0

393.0

161.0





OEBPS/Image00203.jpg
id title year duration rating
0 0 Avatar 2009.0 178.0 PG-13
1 1 Pirates of the Caribbean: At World's End  2007.0 169.0 PG-13
202 Spectre  2015.0 148.0 PG-13
3 3 The Dark Knight Rises 2012.0 164.0 PG-13
4 4 Star Wars: Episode VII - The Force Awakens NaN NaN NaN





OEBPS/Image00206.jpg
id director_id director num director_fb_likes

0 922  James Cameron 1 0.0
1 794 Gore Verbinski 1 563.0
2 2020 Sam Mendes 1 0.0
3 373 Christopher Nolan 1 22000.0

4 600 Doug Walker 1 131.0





OEBPS/Image00197.jpg
title rating year duration director_1 director_fb_likes_1 actor_1 actor_2 actor_3 actor_fb_likes_1 actor_fb_likes_2 actor_fb_likes_3

Joel
Avatar TS 20000  178.0 pames 0.0 el David  Wes Studi 1000.0 936.0 855.0
13 Cameron Pounder
Moore
Pirates of the
Caribbean: At "0 20070 1690 Gars se30 vonnny  Oriando Jack 40000.0 5000.0 1000.0
? 13 Verbinski Depp Bloom Davenport
World's End
PG- Sam Christoph Rory  Stephanie
Spectre 13 2015.0 148.0 Monies 0.0 Waltz (R Sigman 11000.0 393.0 161.0
The Dark Knight ~ PG- Christopher Tom Christian  JosePn
; 2012.0 164.0 22000.0 Gordon- 27000.0 23000.0 23000.0
Rises 13 Nolan Hardy Bale Levitt
Star Wars:
Episode VII - Doug Doug Rob
The Force NaN NaN NaN Walker 131.0 Walker Walker NaN 131.0 12.0 NaN

Awakens





OEBPS/Image00200.jpg
id title year duration rating
0 0 Avatar 2009.0 178.0 PG-13
1 0 Avatar 2009.0 178.0 PG-13
2 0 Avatar 2009.0 178.0 PG-13
3 1 Pirates of the Caribbean: At World's End  2007.0 169.0 PG-13
4 1 Pirates of the Caribbean: At World's End  2007.0 169.0 PG-13
5 1 Pirates of the Caribbean: At World's End  2007.0 169.0 PG-13
6 2 Spectre  2015.0 148.0 PG-13
7 2 Spectre  2015.0 148.0 PG-13
8 2 Spectre  2015.0 148.0 PG-13





OEBPS/Image00201.jpg
id director num director_fb_likes
0 0 James Cameron 1 0.0
1 0 NaN 2 NaN
2 0 NaN 3 NaN
3 1 Gore Verbinski 1 563.0
4 1 NaN 2 NaN
5 1 NaN 3 NaN
6 2 Sam Mendes 1 0.0
7 2 NaN 2 NaN
8 2 NaN 3 NaN





OEBPS/Image00198.jpg
id title rating year duration director_1 director_fb_likes_1 actor_1 actor_2 actor_3 actor_fb_likes_1 actor_fb_likes_2 actor_fb_likes_3
PG- James CCH oS!
0 Avatar 2009.0 178.0 0.0 David Wes Studi 1000.0 936.0 855.0
13 Cameron Pounder
Moore
Pirates of
the
1 Caribbean: FO. 2007.0  169.0 Gore se30 vonnny  Oriando Jack 40000.0 5000.0 1000.0
\ 13 Verbinski Depp Bloom Davenport
At World's
End
PG- Sam Christoph Rory  Stephanie
2 Spectre 13 2015.0 148.0 Mendes 0.0 Waltz  Kinnear Sigman 11000.0 393.0 161.0
X o Joseph
g | theDarkk PG~ 5555  qg40 Christopher 22000.0 Tom - Christian 504 27000.0 23000.0 23000.0
Knight Rises 13 Nolan Hardy Bale Levitt
Star Wars:
Episode VII - Doug Doug Rob
4 The Force NaN NaN NaN Walker 131.0 Walker Walker NaN 131.0 12.0 NaN

Awakens





OEBPS/Image00199.jpg
id num year duration rating title director director_fb_likes actor actor_fb_likes
0 0 1 2009.0 178.0 PG-13 Avatar James Cameron 0.0 CCH Pounder 1000.0
1 0 2 2009.0 178.0 PG-13 Avatar NaN NaN  Joel David Moore 936.0
2 0 3 2009.0 178.0 PG-13 Avatar NaN NaN Wes Studi 855.0
3 1 1 2007.0 169.0 PG-13 Pirates of the Caribbean: At World's End Gore Verbinski 563.0 Johnny Depp 40000.0
4 1 2 2007.0 169.0 PG-13 Pirates of the Caribbean: At World's End NaN NaN Orlando Bloom 5000.0
5 1 3 2007.0 169.0 PG-13 Pirates of the Caribbean: At World's End NaN NaN Jack Davenport 1000.0
6 2 1 2015.0 148.0 PG-13 Spectre Sam Mendes 0.0 Christoph Waltz 11000.0
7 2 2 2015.0 148.0 PG-13 Spectre NaN NaN Rory Kinnear 393.0
8 2 3 2015.0 148.0 PG-13 Spectre NaN NaN Stephanie Sigman 161.0





