

iOS 11 Programming Fundamentals with Swift

Fourth Edition

Swift, Xcode, and Cocoa Basics

Matt Neuburg

iOS 11 Programming Fundamentals with Swift, Fourth Edition

by Matt Neuburg

Copyright © 2018 Matt Neuburg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc.
 , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com/safari
). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com
 .

	
Editor:
 Rachel Roumeliotis

	
Production Editor:
 Kristen Brown

	
Proofreader:
 O’Reilly Production Services

	
Indexer:
 Matt Neuburg

	
Cover Designer:
 Karen Montgomery

	
Interior Designer:
 David Futato

	
Illustrator:
 Matt Neuburg

	
April 2015:
 First Edition

	
October 2015:
 Second Edition

	
October 2016:
 Third Edition

	
October 2017:
 Fourth Edition

Revision History for the Fourth Edition

	
2017-09-26:
 First release

See http://oreilly.com/catalog/errata.csp?isbn=0636920107415
 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. iOS 11 Programming Fundamentals with Swift
 , the image of a harp seal, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

ISBN: 978-1-491-99931-8

[LSI]

Preface

On June 2, 2014, Apple’s WWDC keynote address ended with a shocking announcement: “We have a new programming language.” This came as a huge surprise to the developer community, which was accustomed to Objective-C, warts and all, and doubted that Apple could ever possibly relieve them from the weight of its venerable legacy. The developer community, it appeared, had been wrong.

Having picked themselves up off the floor, developers immediately began to consider this new language — Swift
 — studying it, critiquing it, and deciding whether to use it. My own first move was to translate all my existing iOS apps into Swift; this was enough to convince me that, for all its faults, Swift deserved to be adopted by new students of iOS programming, and that my books, therefore, should henceforth assume that readers are using Swift.

Three years later, that decision has proven prophetic. Programmers of iOS have flocked to Swift in increasing numbers, and Swift itself has only improved. My iOS apps (such as Diabelli’s Theme, LinkSame, Zotz!, TidBITS News, and my Latin and Greek flashcard apps) have all been rewritten in Swift, and are far easier for me to understand and maintain than their Objective-C originals.

Xcode 9 comes with Swift 4. The language has evolved greatly in its details and in the nature of its integration with the Cocoa libraries that underlie iOS programming, but its spirit has remained constant. The Swift language is designed from the ground up with these salient features:

Object-orientation

Swift is a modern, object-oriented language. It is purely
 object-oriented: “Everything is an object.”

Clarity

Swift is easy to read and easy to write. Its syntax is clear, consistent, and explicit, with few hidden shortcuts and minimal syntactic trickery.

Safety

Swift enforces strong typing to ensure that it knows, and that you know, what the type of every object reference is at every moment.

Economy

Swift is a fairly small language, providing some basic types and functionalities and no more. The rest must be provided by your code, or by libraries of code that you use — such as Cocoa.

Memory management

Swift manages memory automatically. You will rarely have to concern yourself with memory management.

Cocoa compatibility

The Cocoa APIs are written primarily in C and Objective-C. Swift is explicitly designed to interface with most of the Cocoa APIs.

These features make Swift an excellent language for learning to program iOS.

The alternative, Objective-C, still exists, and you can use it if you like. Indeed, it is easy to write an app that includes both Swift code and Objective-C code; and you may have reason to do so. Objective-C, however, lacks the very advantages that Swift offers. Objective-C agglomerates object-oriented features onto C. It is therefore only partially object-oriented; it has both objects and scalar data types, and its objects have to be slotted into one particular C data type (pointers). Its syntax can be difficult and tricky; reading and writing nested method calls can make one’s eyes glaze over, and it invites hacky habits such as implicit nil-testing. Its type checking can be and frequently is turned off, resulting in programmer errors where a message is sent to the wrong type of object and the program crashes.

Recent revisions and additions to Objective-C — ARC, synthesis and autosynthesis, improved literal array and dictionary syntax, blocks — have made it easier and more convenient, but such patches have also made the language even larger and possibly even more confusing. Because Objective-C must encompass C, there are limits to how far it can be extended and revised. Swift, on the other hand, is a clean start. If you were to dream of completely
 revising Objective-C to create a better
 Objective-C, Swift might be what you would dream of. It puts a modern, rational front end between you and the Cocoa Objective-C APIs.

Still, the reader will also need some awareness of Objective-C (including C). The Foundation and Cocoa APIs, the built-in commands with which your code must interact in order to make anything happen on an iOS device, are still written in C and Objective-C. In order to interact with them, you have to know what those languages would expect. For example, in order to pass a Swift array where an NSArray is expected, you need to know what constitutes an object acceptable as an element of an Objective-C NSArray.

Therefore, although I do not attempt to teach Objective-C in this book, I do describe it in enough detail to allow you to read it when you encounter it in the documentation and on the Internet, and I occasionally show some Objective-C code. Part III
 , on Cocoa, is really all about learning to think the way Objective-C thinks — because the structure and behavior of the Cocoa APIs are fundamentally based on Objective-C. And the book ends with an appendix that details how Swift and Objective-C communicate with one another, as well as explaining how your app can be written partly in Swift and partly in Objective-C.

The Scope of This Book

This book is actually one of a pair with my
Programming iOS 11

 , which picks up exactly where this book leaves off. They complement and supplement one another. The two-book architecture should, I believe, render the size and scope of each book tractable for readers. Together, they provide a complete grounding in the knowledge needed to begin writing iOS apps; thus, when you do
 start writing iOS apps, you’ll have a solid and rigorous understanding of what you are doing and where you are heading. If writing an iOS program is like building a house of bricks, this book teaches you what a brick is and how to handle it, while Programming iOS 11
 hands you some actual bricks and tells you how to assemble them.

When you have read this book, you’ll know about Swift, Xcode, and the underpinnings of the Cocoa framework, and you will be ready to proceed directly to Programming iOS 11
 . Conversely, Programming iOS 11
 assumes a knowledge of this book; it begins, like Homer’s Iliad
 , in the middle of the story, with the reader jumping with all four feet into views and view controllers, and with a knowledge of the language and the Xcode IDE already presupposed. If you started reading Programming iOS 11
 and wondered about such unexplained matters as Swift language basics, the UIApplicationMain
 function, the nib-loading mechanism, Cocoa patterns of delegation and notification, and retain cycles, wonder no longer — I didn’t explain them there because I do explain them here.

The three parts of this book teach the underlying basis of all iOS programming:

	
Part I
 introduces the Swift language, from the ground up — I do not assume that you know any other programming languages. My way of teaching Swift is different from other treatments, such as Apple’s; it is systematic and Euclidean, with pedagogical building blocks piled on one another in what I regard as the most helpful order. At the same time, I have tried to confine myself to the essentials. Swift is not a big language, but it has some subtle and unusual corners. You don’t need to dive deep into all of these, and my discussion will leave many of them unexplored. You will probably never encounter them, and if you do, you will have entered an advanced Swift world outside the scope of this discussion. To give an obvious example, readers may be surprised to find that I never mention Swift playgrounds
 or the REPL
 . My focus here is real-life iOS programming, and my explanation of Swift therefore concentrates on those common, practical aspects of the language that, in my experience, actually come into play in the course of programming iOS.

	
Part II
 turns to Xcode, the world in which all iOS programming ultimately takes place. It explains what an Xcode project is and how it is transformed into an app, and how to work comfortably and nimbly with Xcode to consult the documentation and to write, navigate, and debug code, as well as how to bring your app through the subsequent stages of running on a device and submission to the App Store. There is also a very important chapter on nibs and the nib editor (Interface Builder), including outlets and actions as well as the mechanics of nib loading; however, such specialized topics as autolayout constraints in the nib are postponed to the other book.

	
Part III
 introduces the Cocoa Touch framework. When you program for iOS, you take advantage of a suite of frameworks provided by Apple. These frameworks, taken together, constitute Cocoa; the brand of Cocoa that provides the API for programming iOS is Cocoa Touch. Your code will ultimately be almost entirely about communicating with Cocoa. The Cocoa Touch frameworks provide the underlying functionality that any iOS app needs to have. But to use a framework, you have to think the way the framework thinks, put your code where the framework expects it, and fulfill many obligations imposed on you by the framework. To make things even more interesting, Cocoa uses Objective-C, while you’ll be using Swift: you need to know how your Swift code will interface with Cocoa’s features and behaviors. Cocoa provides important foundational classes and adds linguistic and architectural devices such as categories, protocols, delegation, and notifications, as well as the pervasive responsibilities of memory management. Key–value coding and key–value observing are also discussed here.

The reader of this book will thus get a thorough grounding in the fundamental knowledge and techniques that any good iOS programmer needs. The book itself doesn’t show how to write any particularly interesting iOS apps, but it does constantly use my own real apps and real programming situations to illustrate and motivate its explanations. And then you’ll be ready for Programming iOS 11
 , of course!

Versions

This book is geared to Swift 4, iOS 11, and Xcode 9.

In general, only very minimal attention is given to earlier versions of iOS and Xcode. It is not my intention to embrace in this book any detailed knowledge about earlier versions of the software, which is, after all, readily and compendiously available in my earlier books. The book does contain, nevertheless, a few words of advice about backward compatibility (especially in Chapter 9
).

A word about method names. I generally give method names in Swift, in the style of a function reference (as described in Chapter 2
) — that is, the name plus parentheses containing the parameter labels followed by colon. Now and then, if a method is already under discussion and there is no ambiguity, I’ll use the bare name. In a few places, such as Appendix A
 , where the Objective-C language is explicitly under discussion, I use Objective-C method names.

Please bear in mind that Apple continues to make adjustments to the Swift language. I have tried to keep my code up-to-date right up to the moment when the manuscript left my hands; but if, at some future time, a new version of Xcode is released along with a new version of Swift, some of the code in this book, and even some information about Swift itself, might be slightly incorrect. Please make allowances, and be prepared to compensate.

Screenshots of Xcode were taken using Xcode 9 under macOS 10.12 Sierra. I have not
 upgraded my machine to macOS 10.13 High Sierra, because at the time of this writing it was too new to be trusted with mission-critical work. If you are braver than I am and running High Sierra, your interface may naturally look very slightly different from the screenshots, but this difference will be minimal and shouldn’t cause any confusion.

Acknowledgments

My thanks go first and foremost to the people at O’Reilly Media who have made writing a book so delightfully easy: Rachel Roumeliotis, Sarah Schneider, Kristen Brown, Dan Fauxsmith, Adam Witwer, and Sanders Kleinfeld come particularly to mind. And let’s not forget my first and long-standing editor, Brian Jepson, whose influence is present throughout.

As in the past, I have been greatly aided by some fantastic software, whose excellences I have appreciated at every moment of the process of writing this book. I should like to mention, in particular:

	git (
http://git-scm.com

)

	SourceTree (
http://www.sourcetreeapp.com

)

	TextMate (
http://macromates.com

)

	AsciiDoc (
http://www.methods.co.nz/asciidoc

)

	Asciidoctor (
http://asciidoctor.org

)

	BBEdit (
http://barebones.com/products/bbedit/

)

	EasyFind (
http://www.devontechnologies.com/products/freeware.html

)

	Snapz Pro X (
http://www.ambrosiasw.com

)

	GraphicConverter (
http://www.lemkesoft.com

)

	OmniGraffle (
http://www.omnigroup.com

)

The book was typed and edited entirely on my faithful Unicomp Model M keyboard (
http://pckeyboard.com

), without which I could never have done so much writing over so long a period so painlessly. For more about my physical work environment, see
http://matt.neuburg.usesthis.com

 .

From the Programming iOS 4 Preface

A programming framework has a kind of personality, an overall flavor that provides an insight into the goals and mindset of those who created it. When I first encountered Cocoa Touch, my assessment of its personality was: “Wow, the people who wrote this are really clever!” On the one hand, the number of built-in interface objects was severely and deliberately limited; on the other hand, the power and flexibility of some of those objects, especially such things as UITableView, was greatly enhanced over their OS X counterparts. Even more important, Apple created a particularly brilliant way (UIViewController) to help the programmer make entire blocks of interface come and go and supplant one another in a controlled, hierarchical manner, thus allowing that tiny iPhone display to unfold virtually into multiple interface worlds within a single app without the user becoming lost or confused.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the subsequent popularity of the iPad, have brought and will continue to bring into the fold many new programmers who see programming for these devices as worthwhile and doable, even though they may not have felt the same way about OS X. Apple’s own annual WWDC developer conventions have reflected this trend, with their emphasis shifted from OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one hand, has also fostered a certain tendency to try to run without first learning to walk. iOS gives the programmer mighty powers that can seem as limitless as imagination itself, but it also has fundamentals. I often see questions online from programmers who are evidently deep into the creation of some interesting app, but who are stymied in a way that reveals quite clearly that they are unfamiliar with the basics of the very world in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to write about it, but it is iOS and its popularity that has given me a proximate excuse to do so. Here I have attempted to marshal and expound, in what I hope is a pedagogically helpful and instructive yet ruthlessly Euclidean and logical order, the principles and elements on which sound iOS programming rests. My hope, as with my previous books, is that you will both read this book cover to cover (learning something new often enough to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example projects. They are wonderful resources and have become more wonderful as time goes on. I have depended heavily on them in the preparation of this book. But I also find that they don’t fulfill the same function as a reasoned, ordered presentation of the facts. The online documentation must make assumptions as to how much you already know; it can’t guarantee that you’ll approach it in a given order. And online documentation is more suitable to reference than to instruction. A fully written example, no matter how well commented, is difficult to follow; it demonstrates, but it does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can assume you know views before you know view controllers for the simple reason that Part I precedes Part II. And along with facts, I also bring to the table a degree of experience, which I try to communicate to you. Throughout this book you’ll find me referring to “common beginner mistakes”; in most cases, these are mistakes that I have made myself, in addition to seeing others make them. I try to tell you what the pitfalls are because I assume that, in the course of things, you will otherwise fall into them just as naturally as I did as I was learning. You’ll also see me construct many examples piece by piece or extract and explain just one tiny portion of a larger app. It is not a massive finished program that teaches programming, but an exposition of the thought process that developed that program. It is this thought process, more than anything else, that I hope you will gain from reading this book.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://github.com/mattneub/Programming-iOS-Book-Examples

 .

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “iOS 11 Programming Fundamentals with Swift
 by Matt Neuburg (O’Reilly). Copyright 2018 Matt Neuburg, 978-1-491-99931-8.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com

 .

Safari® Books Online

Note

Safari Books Online

 is an on-demand digital library that delivers expert content
 in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing
 for enterprise
 , government
 , education
 , and individuals.

Members have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more
 . For more information about Safari Books Online, please visit us online
 .

How to Contact Us

Please address comments and questions concerning this book to the publisher:

	O’Reilly Media, Inc.

	1005 Gravenstein Highway North

	Sebastopol, CA 95472

	800-998-9938 (in the United States or Canada)

	707-829-0515 (international or local)

	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at
http://bit.ly/ios11-prog-fundamentals

 .

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com

 .

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com

 .

Find us on Facebook:
http://facebook.com/oreilly

Follow us on Twitter:
http://twitter.com/oreillymedia

Watch us on YouTube:
http://www.youtube.com/oreillymedia

Part I.
 Language

This part of the book teaches the Swift language, from the ground up. The description is rigorous and orderly. Here you’ll become sufficiently conversant with Swift to be comfortable with it, so that you can proceed to the practical business of actual programming
 .

	
Chapter 1
 surveys the structure of a Swift program, both physically and conceptually. You’ll learn how Swift code files are organized, and you’ll be introduced to the most important underlying concepts of the object-oriented Swift language: variables and functions, scopes and namespaces, object types and their instances.

	
Chapter 2
 explores Swift functions. We start with the basics of how functions are declared and called; then we discuss parameters — external parameter names, default parameters, and variadic parameters. Then we dive deep into the power of Swift functions, with an explanation of functions inside functions, functions as first-class values, anonymous functions, functions as closures, curried functions, and function references and selectors.

	
Chapter 3
 starts with Swift variables — their scope and lifetime, and how they are declared and initialized, along with features such as computed variables and setter observers. Then some important built-in Swift types are introduced, including Booleans, numbers, strings, ranges, tuples, and Optionals.

	
Chapter 4
 is all about Swift object types — classes, structs, and enums. It explains how these three object types work, and how you declare, instantiate, and use them. Then it proceeds to polymorphism and casting, protocols, generics, and extensions. The chapter concludes with a discussion of Swift’s umbrella types, such as Any and AnyObject, and collection types — Array, Dictionary, and Set (including option sets).

	
Chapter 5
 is a miscellany. We start with Swift’s flow control structures for branching, looping, and jumping, including error handling. Then I discuss a new Swift 4 feature, key paths, and explain to create your own Swift operators. The chapter concludes by describing Swift access control (privacy), introspection (reflection), and memory management.

Chapter 1.
 The Architecture of Swift

It will be useful at the outset for you to have a general sense of how the Swift language is constructed and what a Swift-based iOS program looks like. This chapter will survey the overall architecture and nature of the Swift language. Subsequent chapters will fill in the details.

Ground of Being

A complete Swift command is a statement
 . A Swift text file consists of multiple lines
 of text. Line breaks are meaningful. The typical layout of a program is one statement, one line:

print("hello")
print("world")

(The print
 command provides instant feedback in the Xcode console.)

You can combine more than one statement on a line, but then you need to put a semicolon
 between them:

print("hello"); print("world")

You are free to put a semicolon at the end of a statement that is last or alone on its line, but no one ever does (except out of habit, because C and Objective-C require
 the semicolon):

print("hello");
print("world");

Conversely, a single statement can be broken into multiple lines, in order to prevent long statements from becoming long lines. But you should try to do this at sensible places so as not to confuse Swift. For example, after an opening parenthesis is a good place:

print(
 "world")

Comments are everything after two slashes in a line (so-called C++-style comments):

print("world") // this is a comment, so Swift ignores it

You can also enclose comments in /*...*/
 , as in C. Unlike C, C-style comments can be nested.

Many constructs in Swift use curly braces
 as delimiters:

class Dog {
 func bark() {
 print("woof")
 }
}

By convention, the contents of curly braces are preceded and followed by line breaks and are indented for clarity, as shown in the preceding code. Xcode will help impose this convention, but the truth is that Swift doesn’t care, and layouts like this are legal (and are sometimes more convenient):

class Dog { func bark() { print("woof") }}

Swift is a compiled
 language. This means that your code must build
 — passing through the compiler and being turned from text into some lower-level form that a computer can understand — before it can run
 and actually do the things it says to do. The Swift compiler is very strict; in the course of writing a program, you will often try to build and run, only to discover that you can’t even build in the first place, because the compiler will flag some error
 , which you will have to fix if you want the code to run. Less often, the compiler will let you off with a warning
 ; the code can run, but in general you should take warnings seriously and fix whatever they are telling you about. The strictness of the compiler is one of Swift’s greatest strengths, and provides your code with a large measure of audited correctness even before it ever starts running.

Warning

The Swift compiler’s error and warning messages range from the insightful to the obtuse to the downright misleading. You will often know that something
 is wrong with a line of code, but the Swift compiler will not be telling you clearly exactly what
 is wrong or even where
 in the line to focus your attention. My advice in these situations is to pull the line apart into several lines of simpler code until you reach a point where you can guess what the issue is. Try to love the compiler despite the occasional unhelpful nature of its messages. Remember, it knows more than you do, even if it is sometimes rather inarticulate about its knowledge.

Everything Is an Object?

In Swift, “everything is an object.” That’s a boast common to various modern object-oriented languages, but what does it mean? Well, that depends on what you mean by “object” — and what you mean by “everything.”

Let’s start by stipulating that an object, roughly speaking, is something you can send a message to. A message, roughly speaking, is an imperative instruction. For example, you can give commands to a dog: “Bark!” “Sit!” In this analogy, those phrases are messages, and the dog is the object to which you are sending those messages.

In Swift, the syntax of message-sending is dot-notation
 . We start with the object; then there’s a dot (a period); then there’s the message. (Some messages are also followed by parentheses, but ignore them for now; the full syntax of message-sending is one of those details we’ll be filling in later.) This is valid Swift syntax:

fido.bark()
rover.sit()

The idea of everything
 being an object is a way of suggesting that even “primitive” linguistic entities can be sent messages. Take, for example, 1
 . It appears to be a literal digit and no more. It will not surprise you, if you’ve ever used any programming language, that you can say things like this in Swift:

let sum = 1 + 2

But it is
 surprising to find that 1
 can be followed by a dot and a message. This is legal and meaningful in Swift (don’t worry about what it actually means):

let s = 1.description

But we can go further. Return to that innocent-looking 1 + 2
 from our earlier code. It turns out that this is actually a kind of syntactic trickery, a convenient way of expressing and hiding what’s really going on. Just as 1
 is actually an object, +
 is actually a message; but it’s a message with special syntax (operator
 syntax). In Swift, every noun is an object, and every verb is a message.

Perhaps the ultimate acid test for whether something is an object in Swift is whether you can modify it. An object type can be extended
 in Swift, meaning that you can define your own messages on that type. For example, you can’t normally send the sayHello
 message to a number. But you can change a number type so that you can:

extension Int {
 func sayHello() {
 print("Hello, I'm \(self)")
 }
}
1.sayHello() // outputs: "Hello, I'm 1"

In Swift, then, 1
 is an object. In some languages, such as Objective-C, it clearly is not; it is a “primitive” or scalar
 built-in data type. So the distinction being drawn here is between object types on the one hand and scalars on the other. In Swift, there are no scalars; all
 types are ultimately object types. That’s what “everything is an object” really means.

Three Flavors of Object Type

If you know Objective-C or some other object-oriented language, you may be surprised by Swift’s notion of what kind
 of object 1
 is. In many languages, such as Objective-C, an object is a class
 or an instance of a class (I’ll explain later what an instance is). Swift has classes, but 1
 in Swift is not a class or an instance of a class: the type of 1
 , namely Int, is a struct
 , and 1
 is an instance of a struct. And Swift has yet another kind of thing you can send messages to, called an enum
 .

So Swift has three kinds of object type: classes, structs, and enums. I like to refer to these as the three flavors
 of object type. Exactly how they differ from one another will emerge in due course. But they are all very definitely object types, and their similarities to one another are far stronger than their differences. For now, just bear in mind that these three flavors exist.

(The fact that a struct or enum is an object type in Swift will surprise you particularly if you know Objective-C. Objective-C has structs and enums, but they are not objects. Swift structs, in particular, are much more important and pervasive than Objective-C structs. This difference between how Swift views structs and enums and how Objective-C views them can matter when you are talking to Cocoa.)

Variables

A variable is a name
 for an object. Technically, it refers
 to an object; it is an object reference
 . Nontechnically, you can think of it as a shoebox into which an object is placed. The object may undergo changes, or it may be replaced inside the shoebox by another object, but the name has an integrity all its own. The object to which the variable refers is the variable’s value
 .

In Swift, no variable comes implicitly into existence; all variables must be declared
 . If you need a name for something, you must say “I’m creating a name.” You do this with one of two keywords: let
 or var
 . In Swift, declaration is usually accompanied by initialization
 — you use an equal sign to give the variable a value immediately, as part of the declaration. These are both variable declarations (and initializations):

let one = 1
var two = 2

Once the name exists, you are free to use it. For example, we can change the value of two
 to be the same as the value of one
 :

let one = 1
var two = 2
two = one

The last line of that code uses both the name one
 and the name two
 declared in the first two lines: the name one
 , on the right side of the equal sign, is used merely to refer
 to the value inside the shoebox one
 (namely 1
); but the name two
 , on the left side of the equal sign, is used to replace
 the value inside the shoebox two
 . A statement like that, with a variable name on the left side of an equal sign, is called an assignment
 , and the equal sign is the assignment operator
 . The equal sign is not an assertion of equality, as it might be in an algebraic formula; it is a command. It means: “Get the value of what’s on the right side of me, and use it to replace the value of what’s on the left side of me.”

The two kinds of variable declaration differ in that a name declared with let
 cannot have its value replaced
 . A variable declared with let
 is a constant
 ; its value is assigned once and stays. This won’t even compile:

let one = 1
var two = 2
one = two // compile error

It is always possible to declare a name with var
 to give yourself the most flexibility, but if you know you’re never going to replace the initial value of a variable, it’s better to use let
 , as this permits Swift to behave more efficiently — so much more efficiently, in fact, that the Swift compiler will actually call your attention to any case of your using var
 where you could have used let
 , offering to change it for you.

Variables also have a type
 . This type is established when the variable is declared and can never change
 . For example, this won’t compile:

var two = 2
two = "hello" // compile error

Once two
 is declared and initialized as 2
 , it is a number (properly speaking, an Int) and it must always be so. You can replace its value with 1
 because that’s also an Int, but you can’t replace its value with "hello"
 because that’s a string (properly speaking, a String) — and a String is not an Int.

Variables literally have a life of their own — more accurately, a lifetime
 of their own. As long as a variable exists, it keeps its value alive. Thus, a variable can be not only a way of conveniently naming
 something, but also a way of preserving
 it. I’ll have more to say about that later.

Warning

By convention, type names such as String or Int (or Dog or Cat) start with a capital letter; variable names start with a small letter. Do not violate this convention.
 If you do, your code might still compile and run just fine, but I will personally send agents to your house to remove your kneecaps in the dead of night.

Functions

Executable code, like fido.bark()
 or one = two
 , cannot go just anywhere in your program. (Failure to appreciate this fact is a common beginner mistake, and can result in a mysterious compile error message such as “Expected declaration.”) In general, executable code must live inside the body of a function
 . A function is a batch of code that can be told, as a batch, to run. Typically, a function has a name, and it gets that name through a function declaration. Function declaration syntax is another of those details that will be filled in later, but here’s an example:

func go() {
 let one = 1
 var two = 2
 two = one
}

That describes a sequence of things to do — declare one
 , declare two
 , change the value of two
 to match the value of one
 — and it gives that sequence a name
 , go
 ; but it doesn’t perform
 the sequence. The sequence is performed when someone calls
 the function. Thus, we might say, elsewhere:

go()

That is a command to the go
 function that it should actually run. But again, that command is itself executable code, so it cannot live on its own either. It might live in the body of a different function:

func doGo() {
 go()
}

But wait! This is getting a little nutty. That, too, is just a function declaration; to run it, someone must call doGo
 by saying doGo()
 — and that’s executable code too. This seems like some kind of infinite regression; it looks like none of our code will ever
 run. If all executable code has to live in a function, who will tell any
 function to run? The initial impetus must come from somewhere.

In real life, fortunately, this regression problem doesn’t arise. Remember that your goal is ultimately to write an iOS app. Thus, your app will be run on an iOS device (or the Simulator) by a runtime that already wants to call certain functions. So you start by writing special functions that you know the runtime itself will call. That gives your app a way to get started and gives you places to put functions that will be called by the runtime at key moments — such as when the app launches, or when the user taps a button in your app’s interface.

Tip

Swift also has a special rule that a file called main.swift
 , exceptionally, can
 have executable code at its top level, outside any function body, and this is the code that actually runs when the program runs. You can construct your app with a main.swift
 file, but in general you won’t need to.

The Structure of a Swift File

A Swift program can consist of one file or many files. In Swift, a file is a meaningful unit, and there are definite rules about the structure of the Swift code that can go inside it. (I’m assuming that we are not
 in a main.swift
 file.) Only certain things can go at the top level of a Swift file — chiefly the following:

Module import
 statements

A module is an even higher-level unit than a file. A module can consist of multiple files, and these can all see each other automatically; but a module can’t see another module without an import
 statement. For example, that is how you are able to talk to Cocoa in an iOS program: the first line of your file says import UIKit
 .

Variable declarations

A variable declared at the top level of a file is a global
 variable: all code will be able to see and access it, without explicitly sending a message to any object, and it lives as long as the program runs.

Function declarations

A function declared at the top level of a file is a global
 function: all code will be able to see and call it, without explicitly sending a message to any object.

Object type declarations

The declaration for a class, a struct, or an enum.

For example, this is a legal Swift file containing (just to demonstrate that it can be done) an import
 statement, a variable declaration, a function declaration, a class declaration, a struct declaration, and an enum declaration:

import UIKit
var one = 1
func changeOne() {
}
class Manny {
}
struct Moe {
}
enum Jack {
}

That’s a very silly and mostly empty example, but remember, our goal is to survey the parts of the language and the structure of a file, and the example shows them.

Furthermore, the curly braces for each of the things in that example can all have variable declarations, function declarations, and object type declarations within them! Indeed, any
 structural curly braces can contain such declarations.

You’ll notice that I did not
 say that executable code can go at the top level of a file. That’s because it can’t! Only a function body can contain executable code.
 A statement like one = two
 or print(name)
 is executable code, and can’t go at the top level of a file. But in our previous example, func changeOne()
 is a function declaration, so executable code can
 go inside its curly braces, because they constitute a function body:

var one = 1
func changeOne() {
 let two = 2
 one = two
}

Executable code also can’t go directly inside the curly braces that accompany the class Manny
 declaration; that’s the top level of a class declaration, not a function body. But a class declaration can
 contain a function declaration, and that function declaration can
 contain executable code:

class Manny {
 let name = "manny"
 func sayName() {
 print(name)
 }
}

To sum up, Example 1-1
 is a legal Swift file, schematically illustrating the structural possibilities. (Ignore the hanky-panky with the name
 variable declaration inside the enum declaration for Jack; enum top-level variables have some special rules that I’ll explain later.)

Example 1-1.
 Schematic structure of a legal Swift file

import UIKit
var one = 1
func changeOne() {
 let two = 2
 func sayTwo() {
 print(two)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
 one = two
}
class Manny {
 let name = "manny"
 func sayName() {
 print(name)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
}
struct Moe {
 let name = "moe"
 func sayName() {
 print(name)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
}
enum Jack {
 var name : String {
 return "jack"
 }
 func sayName() {
 print(name)
 }
 class Klass {}
 struct Struct {}
 enum Enum {}
}

Obviously, we can recurse down as far we like: we could have a class declaration containing a class declaration containing a class declaration, and so on. But there’s no point illustrating that
 .

Scope and Lifetime

In a Swift program, things have a scope
 . This refers to their ability to be seen by other things. Things are nested inside of other things, making a nested hierarchy of things. The rule is that things can see things at their own level and at a higher level containing them
 . The levels are:

	A module is a scope.

	A file is a scope.

	Curly braces are a scope.

When something is declared, it is declared at some level within that hierarchy. Its place in the hierarchy — its scope — determines whether it can be seen by other things.

Look again at Example 1-1
 . Inside the declaration of Manny is a name
 variable declaration and a sayName
 function declaration; the code inside
 sayName
 ’s curly braces can see things outside
 those curly braces at a higher containing level
 , and can therefore see the name
 variable. Similarly, the code inside the body of the changeOne
 function can see the one
 variable declared at the top level of the file; indeed, everything
 throughout this file can see the one
 variable declared at the top level of the file.

Scope is thus a very important way of sharing information
 . Two different functions declared inside Manny would both
 be able to see the name
 declared at Manny’s top level. Code inside Jack and code inside Moe can both
 see the one
 declared at the file’s top level.

Things also have a lifetime
 , which is effectively equivalent to their scope. A thing lives as long as its surrounding scope lives. Thus, in Example 1-1
 , the variable one
 lives as long as the file lives — namely, as long the program runs. It is global and persistent
 . But the variable name
 declared at the top level of Manny exists only so long as a Manny instance exists (I’ll talk in a moment about what that means).

Things declared at a deeper level live even shorter lifetimes. Consider this code:

func silly() {
 if true {
 class Cat {}
 var one = 1
 one = one + 1
 }
}

That code is silly, but it’s legal: remember, I said that variable declarations, function declarations, and object type declarations can appear in any
 structural curly braces. In that code, the class Cat and the variable one
 will not even come into existence until someone calls the silly
 function, and even then they will exist only during the brief instant that the path of code execution passes through the if construct. So, suppose the function silly
 is called; the path of execution then enters the if construct. Here, Cat is declared and comes into existence; then one
 is declared and comes into existence; then the executable line one = one + 1
 is executed; and then the scope ends and both Cat and one
 vanish in a puff of smoke. And throughout their brief lives, Cat and one
 were completely invisible to the rest of the program. (Do you see why?)

Object Members

Inside the three object types (class, struct, and enum), things declared at the top level have special names, mostly for historical reasons. Let’s use the Manny class as an example
 :

class Manny {
 let name = "manny"
 func sayName() {
 print(name)
 }
}

In that code:

	
name
 is a variable declared at the top level of an object declaration, so it is called a property
 of that object.

	
sayName
 is a function declared at the top level of an object declaration, so it is called a method
 of that object.

Things declared at the top level of an object declaration — properties, methods, and any objects declared at that level — are collectively the members
 of that object. Members have a special significance, because they define the messages
 you are allowed to send to that object!

Namespaces

A namespace
 is a named region of a program. The names of things inside a namespace cannot be reached by things outside it without somehow first passing through the barrier of saying
 that region’s name. This is a good thing because it allows the same name to be used in different places without a conflict. Clearly, namespaces and scopes are closely related notions.

Namespaces help to explain the significance of declaring an object at the top level of an object, like this:

class Manny {
 class Klass {}
}

This way of declaring Klass makes Klass a nested type
 . It effectively “hides” Klass inside Manny. Manny is a namespace! Code inside
 Manny can see (and say) Klass directly. But code outside Manny can’t do that. It has to specify the namespace explicitly
 in order to pass through the barrier that the namespace represents. To do so, it must say Manny’s name first, followed by a dot, followed by the term Klass. In short, it has to say Manny.Klass
 .

The namespace does not, of itself, provide secrecy or privacy; it’s a convenience. Thus, in Example 1-1
 , I gave Manny a Klass class, and I also gave Moe a Klass class. But they don’t conflict, because they are in different namespaces, and I can differentiate them, if necessary, as Manny.Klass
 and Moe.Klass
 .

It will not have escaped your attention that the syntax for diving explicitly into a namespace is the message-sending dot-notation
 syntax. They are, in fact, the same thing.

In effect, message-sending allows you to see into scopes you can’t see into otherwise. Code inside Moe can’t automatically
 see the Klass declared inside Manny, but it can
 see it by taking one easy extra step, namely by speaking of Manny.Klass
 . It can do that
 because it can
 see Manny (because Manny is declared at a level that code inside Moe can see).

Modules

The top-level namespaces are modules
 . By default, your app is a module and hence a namespace; that namespace’s name is, roughly speaking, the name of the app. For example, if my app is called MyApp
 , then if I declare a class Manny at the top level of a file, that class’s real
 name is MyApp.Manny
 . But I don’t usually need to use that real name, because my code is already inside the same namespace, and can see the name Manny
 directly.

Frameworks are also modules, and hence they are also namespaces. When you import a module, all the top-level declarations of that module become visible to your code, without your having to use the module’s namespace explicitly to refer to them.

For example, Cocoa’s Foundation framework, where NSString lives, is a module. When you program iOS, you will say import Foundation
 (or, more likely, you’ll say import UIKit
 , which itself imports Foundation), thus allowing you to speak of NSString without saying Foundation.NSString
 . But you could
 say Foundation.NSString
 , and if you were so silly as to declare a different NSString in your own module, you would have
 to say Foundation.NSString
 , in order to differentiate them. You can also create your own frameworks, and these, too, will be modules.

Swift itself is defined in a module — the Swift module. Your code always implicitly imports the Swift module
 . You could make this explicit by starting a file with the line import Swift
 ; there is no need to do this, but it does no harm either.

That fact is important, because it solves a major mystery: where do things like print
 come from, and why is it possible to use them outside of any message to any object? print
 is in fact a function declared at the top level of the Swift module, and your code can see the Swift module’s top-level declarations because it imports Swift. The print
 function thus becomes, as far as your code is concerned, an ordinary top-level function like any other; it is global to your code, and your code can speak of it without specifying its namespace. You can
 specify its namespace — it is perfectly legal to say things like Swift.print("hello")
 — but you probably never will, because there’s no name conflict to resolve.

Tip

You can actually see
 the Swift top-level declarations and read and study them, and this can be a useful thing to do. For example, to see the declaration of print
 , Command-Control-click the term print
 in your code. Alternatively, explicitly import Swift
 and Command-Control-click the term Swift
 . Behold, there are the Swift top-level declarations! You won’t see any executable Swift code
 here, but you will see the declarations for all the available Swift terms, including top-level functions like print
 , operators like +
 , and built-in types such as Int and String (look for struct Int
 , struct String
 , and so on).

Instances

Object types — class, struct, and enum — have an important feature in common: they can be instantiated
 . In effect, when you declare an object type, you are only defining a type
 . To instantiate a type is to make a thing — an instance
 — of that type.

So, for example, I can declare a Dog class, and I can give my class a method:

class Dog {
 func bark() {
 print("woof")
 }
}

But I don’t actually have any Dog objects in my program yet. I have merely described the type
 of thing a Dog would
 be if I had one. To get an actual Dog, I have to make
 one. The process of making an actual Dog object whose type is the Dog class is the process of instantiating Dog. The result is a new object — a Dog instance
 .

In Swift, instances can be created by using the object type’s name as a function name and calling the function. This involves using parentheses. When you append parentheses to the name of an object type, you are sending a very special kind of message to that object type: Instantiate yourself!

So now I’m going to make a Dog instance:

let fido = Dog()

There’s a lot going on in that code! I did two things. I instantiated Dog, thus causing me to end up with a Dog instance. I also put that Dog instance into a shoebox called fido
 — I declared a variable and initialized the variable by assigning my new Dog instance to it. Now fido
 is a Dog instance
 . (Moreover, because I used let
 , fido
 will always be this same Dog instance. I could have used var
 instead, but even then, initializing fido
 as a Dog instance would have meant fido
 could only be some Dog instance after that.)

Now that I have a Dog instance, I can send instance messages
 to it. And what do you suppose they are? They are Dog’s properties and methods! For example:

let fido = Dog()
fido.bark()

That code is legal. Not only that, it is effective: it actually does cause "woof"
 to appear in the console. I made a Dog and I made it bark! (See Figure 1-1
 .)

[image: ios8 0102]

Figure 1-1.
 Making an instance and calling an instance method

There’s an important lesson here, so let me pause to emphasize it. By default, properties and methods are instance
 properties and methods. You can’t use them as messages to the object type itself; you have to have an instance
 to send those messages to. As things stand, this is illegal and won’t compile:

Dog.bark() // compile error

It is possible to declare a function bark
 in such a way that saying Dog.bark()
 is
 legal, but that would be a different kind of function — a class
 function or a static
 function — and you would need to say so when you declare it.

The same thing is true of properties. To illustrate, let’s give Dog a name
 property. The only respect in which any Dog has had a name up to now has been the name of the variable to which it is assigned. But that name is not intrinsic to the Dog object itself
 . The name
 property will be:

class Dog {
 var name = ""
}

That allows me to set a Dog’s name
 , but it needs to be an instance
 of Dog:

let fido = Dog()
fido.name = "Fido"

It is possible to declare a property name
 in such a way that saying Dog.name
 is legal, but that would be a different kind of property — a class
 property or a static
 property — and you would need to say so when you declare it.

Why Instances?

Even if there were no such thing as an instance, an object type is itself an object. We know this because it is possible to send a message to an object type. It is possible to treat an object type as a namespace and to dive explicitly into that namespace (the phrase Manny.Klass
 is a case in point); moreover, since class and static members exist, it is possible to call a method directly on a class, a struct, or an enum type, and to refer to a property of a class, a struct, or an enum type. Why, then, do instances exist at all?

The answer has mostly to do with the nature of instance properties. The value of an instance property is defined with respect to a particular instance
 . This is where instances get their real usefulness and power.

Consider again our Dog class. I’ll give it a name
 property and a bark
 method; remember, these are an instance property and an instance method:

class Dog {
 var name = ""
 func bark() {
 print("woof")
 }
}

A Dog instance comes into existence with a blank name
 (an empty string). But its name
 property is a var
 , so once we have any Dog instance, we can assign to its name
 a new String value:

let dog1 = Dog()
dog1.name = "Fido"

We can also ask for a Dog instance’s name
 :

let dog1 = Dog()
dog1.name = "Fido"
print(dog1.name) // "Fido"

The important thing is that we can make more than one Dog instance, and that two different Dog instances can have two different name
 property values (Figure 1-2
):

let dog1 = Dog()
dog1.name = "Fido"
let dog2 = Dog()
dog2.name = "Rover"
print(dog1.name) // "Fido"
print(dog2.name) // "Rover"

[image: ios9 0103]

Figure 1-2.
 Two dogs with different property values

Note that a Dog instance’s name
 property has nothing to do with the name of the variable to which a Dog instance is assigned. The variable is just a shoebox. You can pass an instance from one shoebox to another. But the instance itself maintains its own internal integrity:

let dog1 = Dog()
dog1.name = "Fido"
var dog2 = Dog()
dog2.name = "Rover"
print(dog1.name) // "Fido"
print(dog2.name) // "Rover"
dog2 = dog1
print(dog2.name) // "Fido"

That code didn’t change Rover’s name
 ; it changed which dog was inside the dog2
 shoebox, replacing Rover with Fido.

The full power of object-based programming has now emerged. There is a Dog object type which defines what it is to be a Dog
 . Our declaration of Dog says that a Dog instance — any
 Dog instance, every
 Dog instance — has a name
 property and a bark
 method. But each
 Dog instance can have its own name
 property value
 . They are different
 instances and maintain their own internal state
 . So multiple instances of the same object type behave
 alike — both Fido and Rover can bark, and will do so when they are sent the bark
 message — but they are different instances and can have different property values: Fido’s name
 is "Fido"
 while Rover’s name
 is "Rover"
 .

So an instance is a reflection of the instance methods of its type, but that isn’t all
 it is; it’s also a collection of instance properties. The object type is responsible for what
 properties the instance has, but not necessarily for the values
 of those properties. The values can change as the program runs, and apply only to a particular instance. An instance is a cluster of particular property values.

An instance is responsible not only for the values but also for the lifetimes
 of its properties. Suppose we bring a Dog instance into existence and assign to its name
 property the value "Fido"
 . Then this Dog instance is keeping the string "Fido"
 alive just so long as we do not replace the value of its name
 with some other value — and just so long as this instance lives.

In short, an instance is both code and data. The code it gets from its type and in a sense is shared with all other instances of that type, but the data belong to it alone. The data can persist as long as the instance persists. The instance has, at every moment, a state — the complete collection of its own personal property values. An instance is a device for maintaining state
 . It’s a box for storage of data.

The Keyword self

An instance is an object, and an object is the recipient of messages. Thus, an instance needs a way of sending a message to itself. This is made possible by the keyword self
 . This word can be used wherever an instance of the appropriate type is expected.

For example, let’s say I want to keep the thing that a Dog says when it barks, such as "woof"
 , in a property. Then in my implementation of bark
 I need to refer to that property. I can do it like this:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
}

Similarly, let’s say I want to write an instance method speak
 which is merely a synonym for bark
 . My speak
 implementation can consist of simply calling my own bark
 method. I can do it like this:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
 func speak() {
 self.bark()
 }
}

Observe that the term self
 in that example appears only in instance methods. When an instance’s code says self
 , it is referring to this
 instance. If the expression self.name
 appears in a Dog instance method’s code, it means the name
 of this
 Dog instance, the one whose code is running at that moment.

It turns out that every use of the word self
 I’ve just illustrated is completely optional. You can omit it and all the same things will happen:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(whatADogSays)
 }
 func speak() {
 bark()
 }
}

The reason is that if you omit the message recipient and the message you’re sending can be sent to self
 , the compiler supplies self
 as the message’s recipient under the hood. However, I never
 do that (except by mistake). As a matter of style, I like to be explicit in my use of self
 . I find code that omits self
 harder to read and understand. And there are situations where you must
 say self
 , so I prefer to use it whenever I’m allowed to.

Privacy

Earlier, I said that a namespace is not, of itself, an insuperable barrier to accessing the names inside it. But such a barrier is sometimes desirable. For example, not all data stored by an instance is intended for alteration by, or even visibility to, another instance. And not every instance method is intended to be called by other instances. Any decent object-based programming language needs a way to endow its object members with privacy
 — a way of making it harder for other objects to see those members if they are not supposed to be seen.

Consider, for example:

class Dog {
 var name = ""
 var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
 func speak() {
 print(self.whatADogSays)
 }
}

Here, other objects can come along and change my property whatADogSays
 . Since that property is used by both bark
 and speak
 , we could easily end up with a Dog that, when told to bark
 , says "meow"
 . This seems somehow undesirable:

let dog1 = Dog()
dog1.whatADogSays = "meow"
dog1.bark() // meow

You might reply: Well, silly, why did you declare whatADogSays
 with var
 ? Declare it with let
 instead. Make it a constant! Now no one can change it:

class Dog {
 var name = ""
 let whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
 func speak() {
 print(self.whatADogSays)
 }
}

That is a good answer, but it is not quite good enough. There are two problems. Suppose I want a Dog instance itself
 to be able to change its own
 whatADogSays
 — by assigning to self.whatADogSays
 . Then whatADogSays
 has
 to be a var
 ; otherwise, even the instance itself can’t change it. Also, suppose I don’t want any other object to know
 what this Dog says, except by calling bark
 or speak
 . Even when declared with let
 , other objects can still read
 the value of whatADogSays
 . Maybe I don’t like that.

To solve this problem, Swift provides the private
 keyword. I’ll talk later about all the ramifications of this keyword, but for now it’s enough to know that it solves the problem
 :

class Dog {
 var name = ""
 private var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
 func speak() {
 print(self.whatADogSays)
 }
}

Now name
 is a public property, but whatADogSays
 is a private property: it can’t be seen by other types of object. A Dog instance can speak of self.whatADogSays
 , but a Cat instance with a reference to a Dog instance as fido
 cannot say fido.whatADogSays
 . The important lesson here is that object members are public by default, and if you want privacy, you have to ask for it.

To sum up: A class declaration defines a namespace. This namespace requires that other objects use an extra level of dot-notation to refer to what’s inside the namespace, but other objects can
 still refer to what’s inside the namespace; the namespace does not, in and of itself, close any doors of visibility. The private
 keyword lets you close those doors.

Reserved Words

Certain terms, like class
 and func
 and var
 and let
 and if
 and private
 and import
 , are reserved
 in Swift; they are part of the language. That means you can’t use them as identifiers
 — as the name of a class, a function, or a variable, for example. If you try to do so, you’ll get a compile error.

To force a reserved word to be an identifier, surround it by backticks (`
). Thus, this (extraordinarily confusing) code is legal:

class `func` {
 func `if`() {
 let `class` = 1
 }
}

Design

What object types will your program need, what methods and properties should they have, when and how will they be instantiated, and what should you do with those instances when you have them? Those aren’t easy decisions, and there are no clear-cut answers. Object-based programming is an art.

In real life, when you’re programming iOS, many object types you’ll be working with will not be yours but Apple’s. Swift itself comes with a few useful object types, such as String and Int; you’ll also import UIKit
 , which includes a huge
 number of object types, all of which spring to life in your program. You didn’t create any of those object types, so their design is not your problem; instead, you must learn to use them. Apple’s object types are aimed at enabling the general
 functionality that any app might need. At the same time, your app will probably have specific
 functionality, unique to its purpose, and you will have to design object types to serve that purpose.

Object-based program design must be founded upon a secure understanding of the nature of objects. You want to design object types that encapsulate the right sort of functionality (methods) accompanied by the right set of data (properties). Then, when you instantiate those object types, you want to make sure that your instances have the right lifetimes, sufficient exposure to one another, and an appropriate ability to communicate with one another.

Object Types and APIs

Your program files will have very few, if any, top-level functions and variables. Methods and properties of object types — in particular, instance methods and instance properties — will be where most of the action is. Object types give each actual instance its specialized abilities. They also help to organize your program’s code meaningfully and maintainably.

We may summarize the nature of objects in two phrases: encapsulation of functionality, and maintenance of state.

 (I first used this summary many years ago in my book

REALbasic:
 The Definitive Guide

 .)

Encapsulation of functionality

Each object does its own job, and presents to the rest of the world — to other objects, and indeed in a sense to the programmer — an opaque wall whose only entrances are the methods to which it promises to respond and the actions it promises to perform when the corresponding messages are sent to it. The details of how, behind the scenes, it actually implements those actions are secreted within itself; no other object needs to know them.

Maintenance of state

Each individual instance is a bundle of data that it maintains. Often that data is private, so it’s encapsulated as well; no other object knows what that data is or in what form it is kept. The only way to discover from outside what private data an object is maintaining is if there’s a public method or property that reveals it.

As an example, imagine an object whose job is to implement a stack — it might be an instance of a Stack class. A stack
 is a data structure that maintains a set of data in LIFO order (last in, first out).

 It responds to just two messages: push
 and pop
 . Push means to add a given piece of data to the set. Pop means to remove from the set the piece of data that was most recently pushed and hand it out. It’s like a stack of plates: plates are placed onto the top of the stack or removed from the top of the stack one by one, so the first plate to go onto the stack can’t be retrieved until all other subsequently added plates have been removed (Figure 1-3
).

[image: ios8 0104]

Figure 1-3.
 A stack

The stack object illustrates encapsulation of functionality because the outside world knows nothing of how the stack is actually implemented. It might be an array, it might be a linked list, it might be any of a number of other implementations. But a client object — an object that actually sends a push
 or pop
 message to the stack object — knows nothing of this and cares less, provided the stack object adheres to its contract of behaving like a stack. This is also good for the programmer, who can, as the program develops, safely substitute one implementation for another without harming the vast machinery of the program as a whole.

The stack object illustrates maintenance of state because it isn’t just the gateway to the stack data — it is
 the stack data. Other objects can get access to that data, but only by virtue of having access to the stack object itself, and only in the manner that the stack object permits. The stack data is effectively inside the stack object; no one else can see it. All that another object can do is push or pop.

The sum total of messages that each object type is eligible to be sent by other objects — its API
 (application programming interface) — is like a list or menu of things you can ask this type of object to do. Your object types divide up your code; their APIs form the basis of communication between those divisions. The same is true of objects that you didn’t design. Apple’s Cocoa documentation consists largely of lists of object APIs. For example, to know what messages you can send to an NSString instance, you’d start by studying the NSString class documentation. That page is really just a big list of properties and methods, so it tells you what an NSString object can do — and thus constitutes the bulk of what you need to know in order to use NSStrings in your program.

Instance Creation, Scope, and Lifetime

The important moment-to-moment entities in a Swift program are mostly instances. Object types define what kinds
 of instances there can be and how each kind of instance behaves. But the actual instances of those types are the state-carrying individual “things” that the program is all about, and instance methods and properties are messages that can be sent to instances. So there need to be
 instances in order for the program to do
 anything.

By default, however, there are no
 instances! Looking back at Example 1-1
 , we defined some object types, but we made no instances of them. If we were to run this program, our object types would exist from the get-go, but that’s all that would exist. We’ve created a world of pure potentiality — some types of object that might
 exist. In that world, nothing would actually happen
 .

Instances do not come into being by magic. You have to instantiate a type in order to obtain an instance. Much of the action of your program, therefore, will consist of instantiating types. And of course you will want those instances to persist, so you will also assign each newly created instance to a variable as a shoebox to hold it, name it, and give it a lifetime. The instance will persist
 according to the lifetime of the variable that refers to it. And the instance will be visible
 to other instances according to the scope of the variable that refers to it.

Much of the art of object-based programming involves giving instances a sufficient lifetime and making them visible to one another. You will often put an instance into a particular shoebox — assigning it to a particular variable, declared at a certain scope — exactly so that, thanks to the rules of variable lifetime and scope, this instance will persist
 long enough to keep being useful to your program while it will still be needed, and so that other code can get a reference
 to this instance and talk to it later.

Planning how you’re going to create instances, and working out the lifetimes and communication between those instances, may sound daunting. Fortunately, in real life, when you’re programming iOS, the Cocoa framework itself will provide an initial scaffolding for you. Before you write a single line of code, the framework ensures that your app, as it launches, is given some instances that will persist for the lifetime of the app, providing the basis of your app’s visible interface and giving you an initial place to put your own instances and give them sufficiently long lifetimes.

Summary and Conclusion

As we imagine constructing an object-based program for performing a particular task, we bear in mind the nature of objects. There are types and instances. A type is a set of methods describing what all instances of that type can do (encapsulation of functionality). Instances of the same type differ only in the value of their properties (maintenance of state). We plan accordingly. Objects are an organizational tool, a set of boxes for encapsulating the code that accomplishes a particular task. They are also a conceptual tool. The programmer, being forced to think in terms of discrete objects, must divide the goals and behaviors of the program into discrete tasks, each task being assigned to an appropriate object.

At the same time, no object is an island. Objects can cooperate with one another, namely by communicating with one another — that is, by sending messages to one another. The ways in which appropriate lines of communication can be arranged are innumerable. Coming up with an appropriate arrangement — an architecture
 — for the cooperative and orderly relationship between objects is one of the most challenging aspects of object-based programming.
 In iOS programming, you get a boost from the Cocoa framework, which provides an initial set of object types and a practical basic architectural scaffolding.

Using object-based programming effectively to make a program do what you want it to do while keeping it clear and maintainable is itself an art; your abilities will improve with experience. Eventually, you may want to do some further reading on effective planning and construction of the architecture of an object-based program. I recommend in particular two classic, favorite books. Refactoring
 , by Martin Fowler (Addison-Wesley, 1999), describes why you might need to rearrange what methods belong to what classes (and how to conquer your fear of doing so). Design Patterns
 , by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (also known as “the Gang of Four”), is the bible on architecting object-based programs, listing all the ways you can arrange objects with the right powers and the right knowledge of one another (Addison-Wesley, 1994).

Chapter 2.
 Functions

Nothing is so characteristic of Swift syntax as the way you declare and call functions. Probably nothing is so important, either! As I said in Chapter 1
 , all your code is going to be in functions; they are where the action is.

Function Parameters and Return Value

A function is like one of those pseudoscientific machines for processing miscellaneous stuff that you probably drew in your math textbook in elementary school. You know the ones I mean: with a funnel-like “hopper” at the top, and then a bunch of gears and cranks, and then a tube at the bottom where something is produced. A function is a machine like that: you feed some stuff in, the stuff is processed in accordance with what this particular machine does, and something is produced.

The stuff that goes in is the input; what comes out is the output. More technically, a function that expects input has parameters
 ; a function that produces output has a result
 . For example, here’s a silly but valid function that expects two Int values, adds them together, and produces that sum:

func sum (_ x:Int, _ y:Int) -> Int {
 let result = x + y
 return result
}

The syntax here is very strict and well-defined, and you can’t use Swift unless you understand it perfectly. Let’s pause to appreciate it in full detail; I’ll break the first line into pieces so that I can call them out individually:

func sum [image: 1]

 (_ x:Int, _ y:Int) [image: 2]

[image: 3]

 -> Int { [image: 4]

[image: 5]

 let result = x + y [image: 6]

 return result [image: 7]

}

[image: 1]

The declaration starts with the keyword func
 , followed by the name
 of this function; here, it’s sum
 . This is the name that must be used in order to call
 the function — that is, in order to run the code that the function contains.

[image: 2]

The name of the function is followed by its parameter list
 .
 It consists, minimally, of parentheses. If this function takes parameters (input), they are listed inside the parentheses, separated by comma. Each parameter has a strict format: the name
 of the parameter, a colon, and the type
 of the parameter.

[image: 3]

This particular function declaration also has an underscore (_
) and a space before each parameter name in the parameter list. I’m not going to explain that underscore yet.
 I need it for the example, so just trust me for now.

[image: 4]

If the function is to return a value, then after the parentheses is an arrow operator (->
) followed by the type
 of value that this function will return.

[image: 5]

Then we have curly braces
 enclosing the body
 of the function — its actual code.

[image: 6]

Within the curly braces, in the function body, the variables defined as the parameter names have sprung to life, with the types specified in the parameter list.

[image: 7]

If the function is to return a value, it must do so with the keyword return
 followed by that value. And, not surprisingly, the type of that value must match the type declared earlier for the return value (after the arrow operator).

Here are some further points to note about the parameters and return type of our function:

Parameters

Our sum
 function expects two parameters — an Int, to which it gives the name x
 , and another Int, to which it gives the name y
 . The function body code won’t run unless code elsewhere calls this function and actually passes values of the specified types for its parameters. (In fact, if I were to try to call this function without
 providing a value for each of these two parameters, or if either of the values I provide were not
 an Int, the compiler would stop me with an error.) In the body of the function, therefore, we can confidently use those values, referring to them by those names, secure in the knowledge that such values will exist and that they will be Int values, as specified by our parameter list. This provides certainty for not only the programmer, but also the compiler.

Observe that these names, x
 and y
 , are arbitrary and purely local (internal
) to this function. They are different from any other x
 and y
 that may be used in other functions or at a higher level of scope. These names are defined purely so that the parameter values will have names by which they can be referred to in the code within the function body. The parameter declaration is, indeed, a kind of variable declaration: we are declaring variables x
 and y
 for use inside this function.

Return type

The last statement of our sum
 function’s body returns the value of a variable called result
 ; this variable was created by adding two Int values together, so it is an Int, which is what this function is supposed to produce. If I tried to return a String (return "howdy"
), or if I were to omit the return
 statement altogether, the compiler would stop me with an error.

Note that the keyword return
 actually does two
 things. It returns the accompanying value, and it also halts execution of the function. It is permitted for more lines of code to follow a return
 statement, but the compiler will warn if this means that those lines of code can never be executed.

The function declaration before the curly braces is, in short, a contract
 about what kinds of values will be used as input and about what kind of output will be produced. According to this contract, the function expects
 a certain number of parameters, each of a certain type, and yields
 a certain type of result. Everything must correspond to this contract. The function body, inside the curly braces, can use the parameters as local variables. The returned value must match the declared return type.

The same contract applies to code elsewhere that calls
 this function. Here’s some code that calls our sum
 function:

let z = sum(4,5)

Focus your attention on the right side of the equal sign — sum(4,5)
 . That’s the function call. How is it constructed? It uses the name
 of the function; that name is followed by parentheses
 ; and inside those parentheses, separated by a comma, are the values
 to be passed to each of the function’s parameters. Technically, these values are called arguments
 . Here, I’m using literal Int values, but I’m perfectly free to use Int variables instead; the only requirement is that I use things that have the correct type:

let x = 4
let y = 5
let z = sum(y,x)

In that code, I purposely used the names x
 and y
 for the variables whose values are passed as arguments, and I purposely reversed them in the call, to emphasize that these names have nothing to do
 with the names x
 and y
 inside the function parameter list and the function body. Argument names do not magically make their way to the function. Their values
 are all that matter; their values are the arguments.

What about the value returned by the function? That value is magically substituted
 for the function call, at the point where the function call is made. It happens that in the preceding code, the result is 9. So the last line is exactly as if I had said:

let z = 9

The programmer and the compiler both know what type of thing this function returns, so they also know where it is and isn’t legal to call this function. It’s fine to call this function as the initialization part of the declaration of the variable z
 , just as it would be to use 9
 as the initialization part of that declaration: in both cases, we have an Int, and so z
 ends up being declared as an Int. But it would not be legal to write this:

let z = sum(4,5) + "howdy" // compile error

Because sum
 returns an Int, that’s the same as trying to add an Int to a String — and by default, you can’t do that in Swift.

Observe that it is legal to ignore the value returned from a function call:

sum(4,5)

That code is sort of silly in this particular situation, because we have made our sum
 function go to all the trouble of adding 4 and 5 for us and we have then thrown away the answer without capturing or using it. The compiler knows this, and will warn that we are failing to use the result of our function call. Nevertheless, a warning is not an error; that code is legal. There are, in fact, lots of situations where it is perfectly reasonable to ignore the value returned from a function call; in particular, the function may do other things (technically called side effects
) in addition to returning a value, and the purpose of your call to that function may be those other things.

Tip

If you’re ignoring a function call result deliberately, you can silence the compiler warning by assigning the function call to _
 (a variable without a name) — for example, _ = sum(4,5)
 . Alternatively, if the function being called is your own, you can prevent the warning by marking the function declaration with @discardableResult
 .

If you can call sum
 wherever you can use an Int, and if the parameters of sum
 have to be Int values, doesn’t that mean you can call sum
 inside a call to sum
 ? Of course it does! This is perfectly legal (and reasonable):

let z = sum(4,sum(5,6))

The only argument against writing code like that is that you might confuse yourself and that it might make things harder to debug later. But, technically, it’s legal, and quite normal.

Void Return Type and Parameters

Let’s return to our function declaration. With regard to a function’s parameters and return type, there are two degenerate cases that allow us to express a function declaration more briefly:

A function without a return type

No law says that a function must
 return a value. A function may be declared to return no
 value. In that case, there are three ways to write the declaration: you can write it as returning Void; you can write it as returning ()
 , an empty pair of parentheses; or you can omit the arrow operator and the return type entirely. These are all legal:

func say1(_ s:String) -> Void { print(s) }
func say2(_ s:String) -> () { print(s) }
func say3(_ s:String) { print(s) }

If a function returns no value, then its body need not contain a return
 statement. If it does contain a return
 statement, its purpose will be purely to end execution of the function at that point.

A call to a function that returns no value is made purely for the function’s side effects; it has no useful return value that can be made part of a larger expression, so the statement that calls the function will usually consist of the function call and nothing else.

A function without any parameters

No law says that a function must
 take any parameters. If it doesn’t, the parameter list in the function declaration can be completely empty. But you can’t omit the parameter list parentheses themselves! They will be present in the function declaration, after the function’s name:

func greet1() -> String { return "howdy" }

Obviously a function can lack both a return value and parameters; these are all ways of expressing the same thing:

func greet1() -> Void { print("howdy") }
func greet2() -> () { print("howdy") }
func greet3() { print("howdy") }

Just as you cannot omit the parentheses (the parameter list) from a function declaration, you cannot omit the parentheses from a function call. Those parentheses will be empty if the function takes no parameters, but they must be present. For example:

greet1()

Notice the parentheses!

Function Signature

If we ignore for a moment the parameter names in the function declaration, we can completely characterize a function by the types of its inputs and its output, using an expression like this:

(Int, Int) -> Int

That in fact is a legal expression in Swift. It is the signature
 of a function. In this case, it’s the signature of our sum
 function. Of course, there can be other functions that take two Int parameters and return an Int — and that’s just the point. This signature characterizes all
 functions that have this number of parameters, of these types, and that return a result of this type. A function’s signature is, in effect, its
 type — the type of the function
 . The fact that functions have types will be of great importance later on.

The signature of a function must include both the parameter list (without parameter names) and the return type, even if one or both of those is empty; so, the signature of a function that takes no parameters and returns no value may be written () -> Void
 or () -> ()
 .

External Parameter Names

A function can externalize
 the names of its parameters. The external names must then appear in a call to the function as labels
 to the arguments. There are several reasons why this is a good thing:

	It clarifies the purpose of each argument; each argument label can give a clue as to how that argument contributes to the behavior of the function.

	It distinguishes one function from another; two functions with the same name (before the parentheses) and the same signature but different externalized parameter names are two distinct functions.

	It helps Swift to interface with Objective-C and Cocoa, where method parameters nearly always have externalized names.

Externalized parameter names are so standard in Swift that there’s a rule: by default, all
 parameter names are externalized automatically
 , using the internal name as the externalized name. Thus, if you want a parameter name to be externalized, and if you want the externalized name to be the same as the internal name, do nothing
 — that will happen all by itself.

If you want to depart from the default behavior, you can do either of the following in your function declaration:

Change the name of an external parameter

If you want to change the external name of a parameter to be different from its internal name, precede the internal name with the external name and a space.

Suppress the externalization of a parameter

To suppress a parameter’s external name, precede the internal name with an underscore and a space.

(That explains my declaration func sum (_ x:Int, _ y:Int) -> Int
 at the start of this chapter: I was suppressing the externalization of the parameter names, so as not to have to explain argument labels at the outset.)

Here’s the declaration for a function that concatenates a string with itself a given number of times:

func echoString(_ s:String, times:Int) -> String {
 var result = ""
 for _ in 1...times { result += s }
 return result
}

That function’s first parameter has an internal name only, but its second parameter has an external name, which will be the same as its internal name, namely times
 . And here’s how to call it:

let s = echoString("hi", times:3)

In the call, as you can see, the external name precedes the argument as a label, separated by a colon.

Now let’s say that in our echoString
 function we prefer to use times
 purely as an external name for the second parameter, with a different name — say, n
 — as the internal name. And let’s strip the string
 off the function’s name (before the parentheses) and make it the external name of the first parameter. Then the declaration would look like this:

func echo(string s:String, times n:Int) -> String {
 var result = ""
 for _ in 1...n { result += s }
 return result
}

In the body of that function, there is now no times
 variable available; times
 is purely an external name, for use in the call. The internal name is n
 , and that’s the name the code refers to. And here’s how to call it:

let s = echo(string:"hi", times:3)

Tip

The existence of external names doesn’t mean that the call can use a different parameter order from the declaration. For example, our echo(string:times:)
 expects a String parameter and an Int parameter, in that order
 . The order can’t be different in the call, even though the label might appear to disambiguate which argument goes with which parameter.

Overloading

In Swift, function overloading is legal (and common). This means that two functions with exactly the same name, including
 their external parameter names, can coexist as long as they have different signatures.

Thus, for example, these two functions can coexist:

func say (_ what:String) {
}
func say (_ what:Int) {
}

The reason overloading works is that Swift has strict typing. A String is not an Int. Swift can tell them apart in the declaration, and Swift can tell them apart in a function call. Thus, Swift knows unambiguously that say("what")
 is different from say(1)
 .

Overloading works for the return type as well. Two functions with the same name and parameter types can have different return types. But the context of the call must disambiguate; that is, it must be clear what return type the caller is expecting.

For example, these two functions can coexist:

func say() -> String {
 return "one"
}
func say() -> Int {
 return 1
}

But now you can’t call say
 like this:

let result = say() // compile error

The call is ambiguous, and the compiler tells you so.
 The call must be used in a context where the expected return type is clear. For example, suppose we have another function that is not overloaded, and that expects a String parameter:

func giveMeAString(_ s:String) {
 print("thanks!")
}

Then giveMeAString(say())
 is legal, because only a String can go in this spot, so we must be calling the say
 that returns a String. Similarly:

let result = say() + "two"

Only a String can be “added” to a String, so this must be the say()
 that returns a String.

The legality of overloading in Swift is particularly striking if you’re coming from Objective-C, where overloading is not
 legal. If you tried to declare two overloaded versions of the same method in Objective-C, you’d get a “Duplicate declaration” compile error.

Tip

Two functions with the same signature but different external parameter names do not
 constitute a case of overloading; the functions have different external parameter names, so they are simply two different functions with two different names.

Default Parameter Values

A parameter can have a default value. This means that the caller can omit the parameter entirely, supplying no argument for it; the value will then be the default.

To specify a default value in a function declaration, append =
 and the default value after the parameter type:

class Dog {
 func say(_ s:String, times:Int = 1) {
 for _ in 1...times {
 print(s)
 }
 }
}

In effect, there are now two
 functions — say(_:)
 and say(_:times:)
 . If you just want to say something once, you can call say(_:)
 with a single unlabeled argument, and a times:
 parameter value of 1 will be supplied for you:

let d = Dog()
d.say("woof") // same as saying d.say("woof", times:1)

If you want repetition, call say(_:times:)
 :

let d = Dog()
d.say("woof", times:3)

Variadic Parameters

A parameter can be variadic
 . This means that the caller can supply as many values of this parameter’s type as desired, separated by comma; the function body will receive these values as an array.

To indicate in a function declaration that a parameter is variadic, follow it by three dots, like this:

func sayStrings(_ arrayOfStrings:String ...) {
 for s in arrayOfStrings { print(s) }
}

And here’s how to call it:

sayStrings("hey", "ho", "nonny nonny no")

The global print
 function takes a variadic first parameter, so you can output multiple values with a single command:

print("Manny", 3, true) // Manny 3 true

The print
 function’s default parameters dictate further details of the output. The default separator:
 (for when you provide multiple values) is a space, and the default terminator:
 is a newline; you can change either or both:

print("Manny", "Moe", separator:", ", terminator:", ")
print("Jack")
// output is "Manny, Moe, Jack" on one line

A function can declare a maximum of one variadic parameter (because otherwise it might be impossible to determine where the list of values ends).

Warning

Unfortunately, there’s a hole in the Swift language: there’s no way to convert an array into a comma-separated list of arguments (comparable to splatting
 in Ruby
). If what you’re starting with is an array of some type, you can’t use it where a variadic of that type is expected.

Ignored Parameters

A parameter whose local name is an underscore is ignored. The caller must supply an argument, but it has no name within the function body and cannot be referred to there. For example:

func say(_ s:String, times:Int, loudly _:Bool) {

No loudly
 parameter makes its way into the function body, but the caller must still provide the third parameter:

say("hi", times:3, loudly:true)

The declaration needn’t have an externalized name for the ignored parameter:

func say(_ s:String, times:Int, _:Bool) {

But the caller must still supply it:

say("hi", times:3, true)

What’s the purpose of this feature? It isn’t to satisfy the compiler, because the compiler doesn’t complain if a parameter is never referred to in the function body. I use it primarily as a kind of note to myself, a way of saying, “Yes, I know there is a parameter here, and I am deliberately not using it for anything.”

Modifiable Parameters

In the body of a function, a parameter is essentially a local variable. By default, it’s a variable implicitly declared with let
 . You can’t assign to it:

func say(_ s:String, times:Int, loudly:Bool) {
 loudly = true // compile error
}

If your code needs to assign to a parameter name within the body of a function, declare a var
 local variable inside the function body and assign the parameter value to it; your local variable can even have the same name as the parameter:

func say(_ s:String, times:Int, loudly:Bool) {
 var loudly = loudly
 loudly = true // no problem
}

In that code, loudly
 is a local variable; assigning to it doesn’t change the value of any variable outside the function body. However, it is also possible to configure a parameter in such a way that assigning to it does
 modify the value of a variable outside the function body! One typical use case is that you want your function to return more than one result. For example, here I’ll write a rather advanced function that removes all occurrences of a given character from a given string and returns the number of occurrences that were removed:

func removeCharacter(_ c:Character, from s:String) -> Int {
 var s = s
 var howMany = 0
 while let ix = s.index(of:c) {
 s.remove(at:ix)
 howMany += 1
 }
 return howMany
}

And you call it like this:

let s = "hello"
let result = removeCharacter("l", from:s) // 2

That’s nice, but we forgot one little thing: the original string, s
 , is still "hello"
 ! In the function body, we removed all occurrences of the character from the local
 copy of the String parameter, but this change didn’t affect the original
 string.

If we want our function to alter the original
 value of an argument passed to it, we must do the following:

	The type of the parameter we intend to modify must be declared inout
 .

	When we call the function, the variable holding the value we intend to tell it to modify must be declared with var
 , not let
 .

	Instead of passing the variable as an argument, we must pass its address
 . This is done by preceding its name with an ampersand (&
).

Our removeCharacter(_:from:)
 now looks like this:

func removeCharacter(_ c:Character, from s: inout String) -> Int {
 var howMany = 0
 while let ix = s.index(of:c) {
 s.remove(at:ix)
 howMany += 1
 }
 return howMany
}

And our call to removeCharacter(_:from:)
 now looks like this:

var s = "hello"
let result = removeCharacter("l", from:&s)

After the call, result
 is 2 and
 s
 is "heo"
 . Notice the ampersand before the name s
 when we pass it as the from:
 argument in our call to removeCharacter(_:from:)
 . I like this requirement, because it forces us to acknowledge explicitly to the compiler, and to ourselves, that we’re about to do something potentially dangerous: we’re letting this function, as a side effect, modify a value outside of itself.

Tip

When a function with an inout
 parameter is called, the variable whose address was passed as argument to that parameter is always
 set, even if the function makes no changes to that parameter.

You may encounter variations on this pattern when you’re using Cocoa. The Cocoa APIs are written in C and Objective-C, so instead of the Swift term inout
 , you’ll probably see some mysterious type such as UnsafeMutablePointer. From your point of view as the caller, however, it’s the same thing: you’ll prepare a var
 variable and pass its address.

For instance, consider the problem of learning a UIColor’s RGBA components. There are four such components: the color’s red, green, blue, and alpha values. A function that, given a UIColor, returned the components of that color, would need to return four values at once — and that is something that Objective-C cannot do. So a different strategy is used. The UIColor method getRed(_:green:blue:alpha:)
 returns only a Bool reporting whether the component extraction succeeded. Instead of returning the actual components, it says: “You hand me four CGFloats as arguments
 , and I will modify
 them for you so that they are the results of this operation.” Here’s how the declaration for getRed(_:green:blue:alpha:)
 appears in Swift:

func getRed(_ red: UnsafeMutablePointer<CGFloat>,
 green: UnsafeMutablePointer<CGFloat>,
 blue: UnsafeMutablePointer<CGFloat>,
 alpha: UnsafeMutablePointer<CGFloat>) -> Bool

How would you call this function? The parameters are each an UnsafeMutablePointer to a CGFloat. You’ll create four var
 CGFloat variables beforehand, giving them each some value even though that value will be replaced when you call getRed(_:green:blue:alpha:)
 . You’ll pass the addresses of those variables as arguments. Those variables are where the component values will be after the call; and you’ll probably be so sure that the component extraction will succeed, that you won’t even bother to capture the call’s actual result! So, for example:

let c = UIColor.purple
var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0
var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)
// now r, g, b, a are 0.5, 0.0, 0.5, 1.0

Sometimes, Cocoa will call your
 function with an UnsafeMutablePointer parameter, and you
 will want to change its value. To do this, you cannot assign directly to it, as we did with the inout
 variable s
 in our implementation of remove(from:character:)
 . You’re talking to Objective-C, not to Swift, and this is an UnsafeMutablePointer, not an inout
 parameter. The technique here is to assign to the UnsafeMutablePointer’s pointee
 property. Here (without further explanation) is an example from my own code:

func popoverPresentationController(
 _ popoverPresentationController: UIPopoverPresentationController,
 willRepositionPopoverTo rect: UnsafeMutablePointer<CGRect>,
 in view: AutoreleasingUnsafeMutablePointer<UIView>) {
 view.pointee = self.button2
 rect.pointee = self.button2.bounds
}

There is one very common situation where your function can modify a parameter without
 declaring it as inout
 — namely, when the parameter is an instance of a class
 . This is a special feature of classes, as opposed to the other two object type flavors, enum and struct. String isn’t a class; it’s a struct. That’s why we had to use inout
 in order to modify a String parameter. So I’ll illustrate by declaring a Dog class with a name
 property:

class Dog {
 var name = ""
}

Here’s a function that takes a Dog instance parameter and a String, and sets that Dog instance’s name
 to that String. Notice that no inout
 is involved:

func changeName(of d:Dog, to newName:String) {
 d.name = newName
}

Here’s how to call it. There’s no inout
 , so we pass a Dog instance directly
 :

let d = Dog()
d.name = "Fido"
print(d.name) // "Fido"
changeName(of:d, to:"Rover")
print(d.name) // "Rover"

Observe that we were able to change a property of our Dog instance d
 , even though it wasn’t passed as an inout
 parameter, and even though it was declared originally with let
 , not var
 . This appears to be an exception to the rules about modifying parameters — but it isn’t. It’s a feature of class instances, namely that they are themselves mutable. In changeName(of:to:)
 , we didn’t actually attempt to assign a different Dog instance
 to the parameter. To do that, the Dog parameter would
 need to be declared inout
 (and d
 would have to be declared with var
 and we would have to pass its address as argument).

Note

Technically, we say that classes are reference types
 , whereas the other object type flavors are value types
 . When you pass an instance of a struct as an argument to a function, you effectively wind up with a separate copy
 of the struct instance. But when
 you pass an instance of a class as an argument to a function, you pass a reference
 to the class instance itself
 . I’ll discuss this topic in more detail in Chapter 4
 .

Function In Function

A function can be declared anywhere, including inside the body of a function. A function declared in the body of a function (also called a local function
) is available to be called by later code within the same scope, but is completely invisible elsewhere.

This feature is an elegant architecture for functions whose sole purpose is to assist another function. If only function A ever needs to call function B, function B might as well be packaged inside function A.

Here’s a typical example from one of my apps (I’ve omitted everything except the structure):

func checkPair(_ p1:Piece, and p2:Piece) -> Path? {
 // ...
 func addPathIfValid(_ midpt1:Point, _ midpt2:Point) {
 // ...
 }
 for y in -1..._yct {
 addPathIfValid((pt1.x,y),(pt2.x,y))
 }
 for x in -1..._xct {
 addPathIfValid((x,pt1.y),(x,pt2.y))
 }
 // ...
}

What I’m doing in the first for loop (for y
) and what I’m doing in the second for loop (for x
) are the same — but with a different set of starting values. We could write out the functionality in full inside each for loop, but that would be an unnecessary and confusing repetition. (Such a repetition would violate the principle often referred to as DRY
 , for “Don’t Repeat Yourself.”) To prevent that repetition, we could refactor the repeated code into an instance method to be called by both for loops, but that exposes this functionality more broadly than we need, as it is called only
 by these two for loops inside checkPair
 . A local function is the perfect compromise.

Sometimes, it’s worth using a local function even when that function will be called in only one
 place. Here’s another example from my code (it’s actually another part of the same function):

func checkPair(_ p1:Piece, and p2:Piece) -> Path? {
 // ...
 if arr.count > 0 {
 func distance(_ pt1:Point, _ pt2:Point) -> Double { [image: 1]

 // utility to learn physical distance between two points
 let deltax = pt1.0 - pt2.0
 let deltay = pt1.1 - pt2.1
 return Double(deltax * deltax + deltay * deltay).squareRoot()
 }
 for thisPath in arr {
 var thisLength = 0.0
 for ix in thisPath.indices.dropLast() {
 thisLength += distance(thisPath[ix],thisPath[ix+1]) [image: 2]

 }
 // ...
 }
 }
 // ...
}

Again, the structure is clear (even though the code uses some Swift features I haven’t discussed yet). Deep inside the function checkPair
 , a moment comes when I have an array (arr
) of paths, and I need to know the length of every path. Each path is itself an array of points, so to learn its length, I need to sum the distances between each pair of points. To get the distance between a pair of points, I use the Pythagorean theorem. I could apply the Pythagorean theorem and express the calculation right there inside the for loop (for ix
). Instead:

[image: 1]

I’ve expressed the Pythagorean theorem as a local function, distance
 , and then…

[image: 2]

Inside the for loop I call that function.

There is no savings whatever in the number of lines of code; in fact, declaring distance
 makes my code longer! Nor, strictly speaking, am I in danger of repeating myself; the application of the Pythagorean theorem is repeated many times, but it occurs at only one spot in my code, namely inside this one for loop. Nevertheless, abstracting the code into a more general distance-calculation utility makes my code much clearer: in effect, I announce in general form what I’m about to do (“Look! I’m going to calculate distances between points now!”), and then I do it. The function name, distance
 , gives my code meaning
 ; it is more understandable and maintainable than if I had directly written out the steps of the distance calculation inline.

Tip

Local functions are really local variables with function values (a notion that I’ll explain later in this chapter). Therefore, a local function can’t have the same name as a local variable in the same scope, and two local functions can’t have the same name as one another in the same scope.

Recursion

A function can call itself. This is called recursion
 . Recursion seems a little scary, rather like jumping off a cliff, because of the danger of creating an infinite loop; but if you write the function correctly, you will always have a “stopper” condition that handles the degenerate case and prevents the loop from being infinite:

func countDownFrom(_ ix:Int) {
 print(ix)
 if ix > 0 { // stopper
 countDownFrom(ix-1) // recurse!
 }
}
countDownFrom(5) // 5, 4, 3, 2, 1, 0

Function As Value

If you’ve never used a programming language where functions are first-class citizens, perhaps you’d better sit down now, because what I’m about to tell you might make you feel a little faint: In Swift, a function is
 a first-class citizen. This means that a function can be used wherever a value can be used. For example, a function can be assigned to a variable; a function can be passed as an argument in a function call; a function can be returned as the result of a function.

Swift has strict typing. You can only assign a value to a variable or pass a value into or out of a function if it is the right type
 of value. In order for a function to be used as a value, it needs to have
 a type. And indeed it does! Have you guessed what it is? A function’s signature
 is its type.

The chief purpose of using a function as a value is so that this function can later be called without a definite knowledge of what
 function it is. Here’s the world’s simplest (and silliest) example, just to show the syntax and structure:

func doThis(_ f:() -> ()) {
 f()
}

That is a function doThis
 that takes one parameter (and returns no value). The parameter, f
 , is itself a function; we know this because the type of the parameter is given as a function signature, () -> ()
 , meaning (as you know) a function that takes no parameters and returns no value. The function doThis
 then calls
 the function f
 that it received as its parameter, by saying f()
 .

Having declared the function doThis
 , how would you call it? To do so, you’d need to pass it a function as argument. Here’s one way to do that:

func doThis(_ f:() -> ()) {
 f()
}
func whatToDo() { [image: 1]

 print("I did it")
}
doThis(whatToDo) [image: 2]

[image: 1]

First, we declare a function (whatToDo
) of the proper type
 — a function that takes no parameters and returns no value.

[image: 2]

Then, we call doThis
 , passing as argument a function reference
 — in effect, the bare name of the function. Notice that we are not calling
 whatToDo
 here; we are passing
 it.

Sure enough, this works: we pass whatToDo
 as argument to doThis
 ; doThis
 calls the function that it receives as its parameter; and the string "I did it"
 appears in the console.

But what’s the point of being able to do that
 ? If our goal is to call whatToDo
 , why don’t we just call it? What’s useful about being able to tell some other
 function to call it? In the example I just gave, there is nothing
 useful about it; I was just showing you the syntax and structure. But in real life, this is a very valuable thing to do. Encapsulating function-calling in a function can reduce repetition and opportunity for error. Moreover, the other function may call the parameter function in some special way; for example, it might call it after doing other things, or at some later time.

Here’s a case from my own code. A common thing to do in Cocoa is to draw an image, directly, in code. This involves four steps:

let size = CGSize(width:45, height:20)
UIGraphicsBeginImageContextWithOptions(size, false, 0) [image: 1]

let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20), cornerRadius: 8)
p.stroke() [image: 2]

let result = UIGraphicsGetImageFromCurrentImageContext()! [image: 3]

UIGraphicsEndImageContext() [image: 4]

[image: 1]

Open an image context.

[image: 2]

Draw into the context.

[image: 3]

Extract the image.

[image: 4]

Close the image context.

That’s terribly ugly. The sole purpose of all that code is to obtain result
 , the image; but that purpose is buried in all the other code. At the same time, the entire structure is boilerplate; every time I do this in any app, step 1, step 3, and step 4 are exactly the same. Moreover, I live in mortal fear of forgetting a step; for example, if I were to omit step 4 by mistake, the universe would explode.

The only thing that’s different every time I draw is step 2. Thus, step 2 is the only part I should have to write out! The entire problem is solved by writing a utility function expressing the boilerplate:

func imageOfSize(_ size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
 UIGraphicsBeginImageContextWithOptions(size, false, 0)
 whatToDraw()
 let result = UIGraphicsGetImageFromCurrentImageContext()!
 UIGraphicsEndImageContext()
 return result
}

My imageOfSize
 utility is so useful that I declare it at the top level of a file, where all my files can see it. To make an image, I perform step 2 (the actual drawing) in a function and pass that function as argument to the imageOfSize
 utility:

func drawing() {
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
}
let image = imageOfSize(CGSize(width:45, height:20), drawing)

Now that
 is a beautifully expressive and clear way to turn drawing instructions into an image.

Tip

Evidently Apple agrees with my criticism of UIGraphicsBeginImageContext...
 , because in iOS 10 a new class was introduced, UIGraphicsImageRenderer, that expresses itself using syntax similar to my imageOfSize
 . Nevertheless, I’ll continue using imageOfSize
 in this chapter, because it illustrates important aspects of Swift functions.

The Cocoa API is full of situations where you’ll pass a function to be called by the runtime in some special way or at some later time. Some common Cocoa situations even involve passing two
 functions. For instance, when you perform view animation, you’ll often pass one function prescribing the action to be animated and another function saying what to do afterward:

func whatToAnimate() { // self.myButton is a button in the interface
 self.myButton.frame.origin.y += 20
}
func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}
UIView.animate(withDuration:0.4,
 animations: whatToAnimate, completion: whatToDoLater)

That means: Change the frame origin (that is, the position) of this button in the interface, but do it over time (four-tenths of a second); and then, when that’s finished, print a log message in the console saying whether the animation was performed or not.

The Cocoa documentation will often describe a function to be passed in this way as a handler
 , and will refer it as a block
 , because that’s the Objective-C syntactic construct needed here. In Swift, it’s a function.

Type Aliases Can Clarify Function Types

To make function type specifiers clearer, we can take advantage of Swift’s typealias
 feature to give a function type a name. The name can be descriptive, and the possibly confusing arrow operator notation is avoided. For example, if we say typealias VoidVoidFunction = () -> ()
 , we can then say VoidVoidFunction
 wherever we need to specify a function type with that signature.

Thus, earlier we declared a function like this:

func doThis(_ f:() -> ()) {
 f()
}

We could have declared it like this:

typealias VoidVoidFunction = () -> ()
func dothis(_ f:VoidVoidFunction) {
 f()
}

Anonymous Functions

Consider once again this earlier example:

func whatToAnimate() { // self.myButton is a button in the interface
 self.myButton.frame.origin.y += 20
}
func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}
UIView.animate(withDuration:0.4,
 animations: whatToAnimate, completion: whatToDoLater)

There’s a slight bit of ugliness in that code. I’m declaring functions whatToAnimate
 and whatToDoLater
 , just because I want to pass those functions in the last line. But I don’t really need the names
 whatToAnimate
 and whatToDoLater
 for anything, except to refer to them in the last line; neither the names nor the functions will ever be used again. In my call to UIView.animate(withDuration:animations:completion:)
 , it would be nice to be able to pass just the body
 of those functions without
 a declared name.

That’s called an anonymous
 function, and it’s legal and common in Swift. To form an anonymous function, you do two things:

	Create the function body itself, including the surrounding curly braces
 , but with no function declaration.

	If necessary, express the function’s parameter list and return type as the first thing inside
 the curly braces, followed by the keyword in
 .

Let’s practice by transforming our named function declarations into anonymous functions. Here’s the named function declaration for whatToAnimate
 :

func whatToAnimate() {
 self.myButton.frame.origin.y += 20
}

Here’s an anonymous function that does the same thing. Notice how I’ve moved the parameter list and return type inside the curly braces:

{
 () -> () in
 self.myButton.frame.origin.y += 20
}

Here’s the named function declaration for whatToDoLater
 :

func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}

Here’s an anonymous function that does the same thing:

{
 (finished:Bool) -> () in
 print("finished: \(finished)")
}

Now that we know how to make anonymous functions, let’s use them. The point where we need the functions is the point where we’re passing the second and third arguments to animate(withDuration:animations:completion:)
 . We can create and pass anonymous functions right at that point
 , like this:

UIView.animate(withDuration:0.4,
 animations: {
 () -> () in
 self.myButton.frame.origin.y += 20
 },
 completion: {
 (finished:Bool) -> () in
 print("finished: \(finished)")
 }
)

We can make the same improvement in the way we call the imageOfSize
 function from the preceding section. Earlier, we called that function like this:

func drawing() {
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
}
let image = imageOfSize(CGSize(width:45, height:20), drawing)

We now know, however, that we don’t need to declare the drawing
 function separately. We can call imageOfSize
 with an anonymous function:

let image = imageOfSize(CGSize(width:45, height:20), {
 () -> () in
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
})

Anonymous functions are very commonly used in Swift, so make sure you can read and write that code! Anonymous functions, in fact, are so
 common and so
 important, that some shortcuts for writing them are provided:

Omission of the return type

If the anonymous function’s return type is already known to the compiler, you can omit the arrow operator and the specification of the return type:

UIView.animate(withDuration:0.4,
 animations: {
 () in // *
 self.myButton.frame.origin.y += 20
 }, completion: {
 (finished:Bool) in // *
 print("finished: \(finished)")
})

Omission of the in
 expression when there are no parameters

If the anonymous function takes no parameters, and if the return type can be omitted, the in
 expression itself can be omitted entirely:

UIView.animate(withDuration:0.4,
 animations: { // * (no in line)
 self.myButton.frame.origin.y += 20
 }, completion: {
 (finished:Bool) in
 print("finished: \(finished)")
})

Omission of the parameter types

If the anonymous function takes parameters and their types are already known to the compiler, the types can be omitted:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 (finished) in // *
 print("finished: \(finished)")
})

Omission of the parentheses

If the parameter types are omitted, the parentheses around the parameter list can be omitted:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 finished in // *
 print("finished: \(finished)")
})

Omission of the in
 expression even when there are parameters

If the return type can be omitted, and if the parameter types are already known to the compiler, you can omit the in
 expression and refer to the parameters directly within the body of the anonymous function by using the magic names $0
 , $1
 , and so on, in order:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 print("finished: \($0)") // *
})

Omission of the parameter names

If the anonymous function body doesn’t need to refer to a parameter, you can substitute an underscore for its name in the parameter list in the in
 expression:

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }, completion: {
 _ in // *
 print("finished!")
})

But note that if the anonymous function takes parameters, you must
 acknowledge them somehow. You can omit the in
 expression and use the parameters by the magic names $0
 and so on, or you can keep the in
 expression and ignore the parameters with an underscore, but you can’t omit the in
 expression altogether and
 not use the parameters by their magic names! If you do, your code won’t compile.

Omission of the function argument label

If, as will just about always be the case, your anonymous function is the last
 argument being passed in this function call, you can close the function call with a right parenthesis before
 this last argument, and then put just the anonymous function body without a label
 (this is called a trailing function
):

UIView.animate(withDuration:0.4,
 animations: {
 self.myButton.frame.origin.y += 20
 }) { // *
 _ in
 print("finished!")
}

Omission of the calling function parentheses

If you use the trailing function syntax, and if the function you are calling takes no parameters other than the function you are passing to it, you can omit the empty parentheses from the call. This is the only
 situation in which you can omit the parentheses from a function call! To illustrate, I’ll declare and call a different function:

func doThis(_ f:() -> ()) {
 f()
}
doThis { // no parentheses!
 print("Howdy")
}

Omission of the keyword return

If the anonymous function body consists of exactly one statement
 and that statement consists of returning a value with the keyword return
 , the keyword return
 can be omitted. To put it another way, in a context that expects a function that returns a value, if an anonymous function body consists of exactly one expression with no return
 , Swift assumes
 that this expression’s value is to be returned from the anonymous function:

func greeting() -> String {
 return "Howdy"
}
func performAndPrint(_ f:()->String) {
 let s = f()
 print(s)
}
performAndPrint {
 greeting() // meaning: return greeting()
}

When writing anonymous functions, you will frequently find yourself taking advantage of all the omissions you are permitted. In addition, you’ll often shorten the layout
 of the code (though not the code itself) by putting the whole anonymous function together with the function call on one line
 . Thus, Swift code involving anonymous functions can be extremely compact.

Here’s a typical example. We start with an array of Int values and generate a new array consisting of all those values multiplied by 2, by calling the map(_:)
 instance method. The map(_:)
 method of an array takes a function that takes one parameter of the same type as the array’s elements, and returns a new value; here, our array is made of Int values, and we are passing to the map(_:)
 method a function that takes one Int parameter and returns an Int. We could write out the whole function, like this:

let arr = [2, 4, 6, 8]
func doubleMe(i:Int) -> Int {
 return i*2
}
let arr2 = arr.map(doubleMe) // [4, 8, 12, 16]

That, however, is not very Swifty. We don’t need the name doubleMe
 for anything else, so this may as well be an anonymous function:

let arr = [2, 4, 6, 8]
let arr2 = arr.map ({
 (i:Int) -> Int in
 return i*2
})

Fine, but now let’s start shortening our anonymous function. Its parameter type is known in advance, so we don’t need to specify that. Its return type is known by inspection of the function body, so we don’t need to specify that. There’s just one parameter and we are going to use it, so we don’t need the in
 expression as long we refer to the parameter as $0
 . Our function body consists of just one statement, and it is a return
 statement, so we can omit return
 . And map(_:)
 doesn’t take any other parameters, so we can omit the parentheses and follow the name directly with a trailing function:

let arr = [2, 4, 6, 8]
let arr2 = arr.map {$0*2}

It doesn’t get any Swiftier than that!

Define-and-Call

A pattern that’s surprisingly common in Swift is to define an anonymous function and call it, all in one move:

{
 // ... code goes here
}()

Notice the parentheses after the curly braces! The curly braces define
 an anonymous function body; the parentheses call
 that anonymous function.

Why would anyone do such a thing? If you want to run some code, you can just run it; why would you embed it in a deeper level as a function body, only to turn around and run that function body immediately?

For one thing, an anonymous function can be a good way to make your code less imperative and more, well, functional: an action can be taken at the point where it is needed, rather than in a series of preparatory steps. Here’s a common Cocoa example: we create and configure an NSMutableParagraphStyle and then use it as an argument in a call to the NSMutableAttributedString method addAttribute(_:value:range:)
 , like this:

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
// ... more configuration of para ...
content.addAttribute(// content is an NSMutableAttributedString
 .paragraphStyle,
 value:para,
 range:NSRange(location:0, length:1))

I find that code ugly. We don’t need para
 except to pass it as the value:
 argument within the call to addAttribute(_:value:range:)
 , so it would be much nicer to create and configure it right there within the call, as the value:
 argument. That sounds like an anonymous function — except that the value:
 parameter is not a function, but an NSMutableParagraphStyle object. We can solve the problem by providing, as the value:
 argument, an anonymous function that produces
 an NSMutableParagraphStyle object and calling it
 so that it does
 produce an NSMutableParagraphStyle object:

content.addAttribute(
 .paragraphStyle,
 value: {
 let para = NSMutableParagraphStyle()
 para.headIndent = 10
 para.firstLineHeadIndent = 10
 // ... more configuration of para ...
 return para
 }(),
 range:NSRange(location:0, length:1))

I’ll demonstrate some further uses of define-and-call in Chapter 3
 .

Closures

Swift functions are closures
 . This means they can capture
 references to external variables in scope within the body of the function. What do I mean by that? Well, recall from Chapter 1
 that code in curly braces constitutes a scope, and this code can “see” variables and functions declared in a surrounding scope:

class Dog {
 var whatThisDogSays = "woof"
 func bark() {
 print(self.whatThisDogSays)
 }
}

In that code, the body of the function bark
 refers to a variable whatThisDogSays
 . That variable is external
 to the body of the function, because it is declared outside the body of the function. It is in scope
 for the body of the function, because the code inside the body of the function can see it. And the code inside the body of the function refers
 to it — it says, explicitly, whatThisDogSays
 .

So far, so good; but we now know that the function bark
 can be passed as a value. In effect, it can travel from one environment to another! When it does, what happens to that reference to whatThisDogSays
 ? Let’s find out:

func doThis(_ f : () -> ()) {
 f()
}
let d = Dog()
d.whatThisDogSays = "arf"
let barkFunction = d.bark
doThis(barkFunction) // arf

We run that code, and "arf"
 appears in the console.

Perhaps that result doesn’t seem very surprising to you. But think about it. We do not directly call
 d.bark()
 . We make a Dog instance and pass
 its bark
 function as a value into the function doThis
 . There, it is called. Now, whatThisDogSays
 is an instance property of a particular Dog. Inside the function doThis
 there is no whatThisDogSays
 . Indeed, inside the function doThis
 there is no Dog instance! Nevertheless the call f()
 still works. The function d.bark
 , as it is passed around, can still
 see that variable whatThisDogSays
 , declared outside
 itself, even though it is called
 in an environment where there is no longer any Dog instance and no longer any instance property whatThisDogSays
 .

But there’s more. I’ll move the line where we set d.whatThisDogSays
 to after
 we assign d.bark
 into our variable barkFunction
 :

func doThis(_ f : () -> ()) {
 f()
}
let d = Dog()
let barkFunction = d.bark
d.whatThisDogSays = "arf" // *
doThis(barkFunction) // arf

Do you see what this proves? At the time we assigned d.bark
 to barkFunction
 , d.whatThisDogSays
 was "woof"
 . We then changed d.whatThisDogSays
 to "arf"
 , and passed barkFunction
 into doThis
 , where it was called — and we got "arf"
 . This proves that barkFunction
 is maintaining its reference to this actual Dog, the one that we call d
 . The bark
 function, as it is passed around, is carrying its environment with it — including the instance of which it is an instance method (because it refers, in its body, to self
). That environment is still there later when the bark
 function is called in some other environment. So, by “capture” I mean that when a function is passed around as a value, it carries along its internal references to external variables. That is what makes a function a closure.

How Closures Improve Code

Once you understand that functions are closures, you can take advantage of this fact to improve your code’s syntax. Closures can help make your code more general, and hence more useful. Here, once again, is my earlier example of a function that accepts drawing instructions and performs them to generate an image:

func imageOfSize(_ size:CGSize, _ whatToDraw:() -> ()) -> UIImage {
 UIGraphicsBeginImageContextWithOptions(size, false, 0)
 whatToDraw()
 let result = UIGraphicsGetImageFromCurrentImageContext()!
 UIGraphicsEndImageContext()
 return result
}

We can call imageOfSize
 with a trailing anonymous function:

let image = imageOfSize(CGSize(width:45, height:20)) {
 let p = UIBezierPath(
 roundedRect: CGRect(x:0, y:0, width:45, height:20),
 cornerRadius: 8)
 p.stroke()
}

That code, however, contains an annoying repetition. This is a call to create an image of a given size consisting of a rounded rectangle of that size. We are repeating the size; the pair of numbers 45,20
 appears twice. That’s silly. Let’s prevent the repetition by putting the size into a variable at the outset:

let sz = CGSize(width:45, height:20)
let image = imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
}

The variable sz
 , declared outside our anonymous function at a higher level, is visible inside it. Thus we can refer to it inside the anonymous function — and we do so. In the fourth line, we are not calling CGRect(origin:size:)
 and passing the value of sz
 to it now
 . Everything inside the curly braces is just a function body. It won’t be executed
 until imageOfSize
 calls it. Nevertheless, the value of sz
 persists. The anonymous function is a function. Therefore it is a closure. Therefore the anonymous function captures the reference to sz
 , and carries it on into the call to imageOfSize
 .

Now let’s go further. So far, we’ve been hard-coding the size of the desired rounded rectangle. Imagine, though, that creating images of rounded rectangles of various sizes is something we do often. It would make sense to package this code up as a function, where sz
 is not a fixed value but a parameter; the function will then return the image:

func makeRoundedRectangle(_ sz:CGSize) -> UIImage {
 let image = imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 return image
}

In the expression CGRect(origin:CGPoint.zero, size:sz)
 , we refer to sz
 . This expression is part of an anonymous function to be passed to imageOfSize
 . The term sz
 refers to the sz
 parameter that arrives into the surrounding function makeRoundedRectangle
 . A parameter of the surrounding function is a variable external to and in scope within the anonymous function, and the anonymous function is a closure, so it captures the reference to that parameter as it is passed to imageOfSize
 .

Our code is becoming beautifully compact. To call makeRoundedRectangle
 , supply a size; an image is returned. Thus, I can perform the call, obtain the image, and display that image, all in one move, like this (self.iv
 is a UIImageView in the interface):

self.iv.image = makeRoundedRectangle(CGSize(width:45, height:20))

Function Returning Function

But now let’s go even further! Instead of returning an image, our function can return a function
 that makes rounded rectangles of the specified size
 . If you’ve never seen a function returned as a value from a function, you may now be gasping for breath. But a function, after all, can be used as a value. We have already passed a function into
 a function as an argument in the function call; now we are going to receive a function from
 a function call as its result:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage { [image: 1]

 func f () -> UIImage { [image: 2]

 let im = imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 return im
 }
 return f [image: 3]

}

Let’s analyze that code slowly:

[image: 1]

The declaration is the hardest part. What on earth is the type (signature) of this function makeRoundedRectangleMaker
 ? It is (CGSize) -> () -> UIImage
 . That expression has two
 arrow operators. To understand it, keep in mind that everything after each arrow operator is the type of a returned value. So makeRoundedRectangleMaker
 is a function that takes a CGSize parameter and returns a () -> UIImage
 . Okay, and what’s a () -> UIImage
 ? We already know that: it’s a function that takes no parameters and returns a UIImage. So makeRoundedRectangleMaker
 is a function that takes a CGSize parameter and returns a function
 — a function that itself, when called with no
 parameters, will return a UIImage.

[image: 2]

Now here we are in the body of the function makeRoundedRectangleMaker
 , and our first step is to declare a function (a function-in-function, or local function) of precisely the type we intend to return, namely, one that takes no parameters and returns a UIImage. Here, we’re naming this function f
 . The way this function works is simple and familiar: it calls imageOfSize
 , passing it an anonymous function that makes an image of a rounded rectangle (im
) — and then it returns the image.

[image: 3]

Finally, we return
 the function we just made (f
). We have thus fulfilled our contract: we said we would return a function that takes no parameters and returns a UIImage, and we do so.

But perhaps you are still gazing open-mouthed at makeRoundedRectangleMaker
 , wondering how you would ever call it and what you would get if you did. Let’s try it:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))

What is the variable maker
 after that code runs? It’s a function
 — a function that takes no parameters and that, when called, produces the image of a rounded rectangle of size 45,20
 . You don’t believe me? I’ll prove it — by calling
 the function that is now the value of maker
 :

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))
self.iv.image = maker()

Now that you’ve gotten over your stunned surprise at the notion of a function that produces a function as its result, turn your attention once again to the implementation of makeRoundedRectangleMaker
 and let’s analyze it again, a different way. Remember, I didn’t write that function to show you that a function can produce a function. I wrote it to illustrate closures! Let’s think about how the environment gets captured:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 func f () -> UIImage {
 let im = imageOfSize(sz) { // *
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz), // *
 cornerRadius: 8)
 p.stroke()
 }
 return im
 }
 return f
}

The function f
 takes no parameters. Yet, twice within the function body of f
 (I’ve marked the places with asterisk comments), there are references to a size value sz
 . The body of the function f
 can see sz
 , the incoming parameter to the surrounding function makeRoundedRectangleMaker
 , because it is in a surrounding scope. The function f
 captures
 the reference to sz
 at the time makeRoundedRectangleMaker
 is called, and keeps
 that reference when f
 is returned and assigned to maker
 :

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))

That is why maker
 is now a function that, when it is called, creates and returns an image of the particular size 45,20
 even though it itself will be called with no parameters
 . The knowledge of what size of image to produce has been baked into
 the function referred to by maker
 .

Looking at it another way, makeRoundedRectangleMaker
 is a factory
 for creating a whole family of functions similar to maker
 , each of which produces an image of one particular size. That’s a dramatic illustration of the power of closures.

Before I leave makeRoundedRectangleMaker
 , I’d like to rewrite it in a Swiftier fashion. Within f
 , there is no need to create im
 and then return it; we can return the result of calling imageOfSize
 directly:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 func f () -> UIImage {
 return imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
 return f
}

But there is no need to declare f
 and then return it either; it can be an anonymous function and we can return it directly:

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 return {
 return imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
}

But our anonymous function consists of just one statement, returning the result of the call to imageOfSize
 . (The anonymous function parameter to imageOfSize
 consists of multiple statements, but the imageOfSize
 call itself is still just one Swift statement.) Thus there is no need to say return
 :

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 return {
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
}

Closure Setting a Captured Variable

The power that a closure gets through its ability to capture its environment is even greater than I’ve shown so far. If a closure captures a reference to a variable outside itself, and if that variable is settable, the closure can set the variable
 .

For example, let’s say I’ve declared this simple function. All it does is to accept a function that takes an Int parameter, and to call that function with an argument of 100:

func pass100 (_ f:(Int) -> ()) {
 f(100)
}

Now, look closely at this code and try to guess what will happen when we run it:

var x = 0
print(x)
func setX(newX:Int) {
 x = newX
}
pass100(setX)
print(x)

The first print(x)
 call obviously produces 0
 . The second print(x)
 call produces 100
 ! The pass100
 function has reached into my code and changed the value of my variable x
 ! That’s because the function setX
 that I passed to pass100
 contains a reference to x
 ; not only does it contain it, but it captures it; not only does it capture it, but it sets its value. That x
 is my x

 . Thus, pass100
 was able to set my x
 just as readily as I would have set it by calling setX
 directly.

Closure Preserving Its Captured Environment

When a closure captures its environment, it preserves
 that environment even if nothing else does
 . Here’s an example calculated to blow your mind — a function that modifies a function:

func countAdder(_ f: @escaping () -> ()) -> () -> () {
 var ct = 0
 return {
 ct = ct + 1
 print("count is \(ct)")
 f()
 }
}

The function countAdder
 accepts a function as its parameter and returns a function as its result. (I’ll explain the @escaping
 attribute in the next section.) The function that it returns calls the function that it accepts, with a little bit added: it increments a variable and reports the result. So now try to guess what will happen when we run this code:

func greet () {
 print("howdy")
}
let countedGreet = countAdder(greet)
countedGreet()
countedGreet()
countedGreet()

What we’ve done here is to take a function greet
 , which prints "howdy"
 , and pass it through countAdder
 . What comes out the other side of countAdder
 is a new function, which we’ve named countedGreet
 . We then call countedGreet
 three times. Here’s what appears in the console:

count is 1
howdy
count is 2
howdy
count is 3
howdy

Clearly, countAdder
 has added to the functionality of the function that was passed into it the ability to report how many times it is called
 . Now ask yourself: Where on earth is the variable that maintains this count? Inside countAdder
 , it was a local variable ct
 . But it isn’t declared inside the anonymous function that countAdder
 returns. That’s deliberate! If it were
 declared inside the anonymous function, we would be setting ct
 to 0
 every time countedGreet
 is called — we wouldn’t be counting. Instead, ct
 is initialized to 0
 once and then captured
 by the anonymous function. Thus, this variable is preserved as part of the environment
 of countedGreet
 — it is outside
 countedGreet
 in some mysterious environment-preserving world, so that it can be incremented every time countedGreet
 is called.

Escaping Closures

If a function passed as parameter to a function will be preserved for later execution, rather than being called directly, its type must be marked @escaping
 , to signal that this is a closure that captures and preserves its environment. The compiler will detect violations of this rule, so if you find the rule confusing, don’t worry about it; just let the compiler enforce it for you.

So, for example, this function is legal because it receives a function and calls it directly:

func funcCaller(f:() -> ()) {
 f()
}

And this function is legal, even though it returns a function to be executed later, because it also creates
 that function internally:

func funcMaker() -> () -> () {
 return { print("hello world") }
}

But this function is illegal. It returns a function to be executed later, having acquired that function as a parameter:

func funcPasser(f:() -> ()) -> () -> () { // compile error
 return f
}

The solution is to mark the type of the incoming parameter f
 as @escaping
 , and the compiler will prompt you to do so:

func funcPasser(f:@escaping () -> ()) -> () -> () {
 return f
}

One secondary consequence of this distinction is that if an anonymous function passed as an @escaping
 parameter refers to a property or method of self
 , the compiler will insist that you say self
 explicitly. That’s because such a reference captures
 self
 , and the compiler wants you to acknowledge this fact by saying
 self
 .

Curried Functions

Return once more to makeRoundedRectangleMaker
 :

func makeRoundedRectangleMaker(_ sz:CGSize) -> () -> UIImage {
 return {
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: 8)
 p.stroke()
 }
 }
}

There’s something I don’t like about this method: the size of the rounded rectangle that it creates is a parameter (sz
), but the cornerRadius
 of the rounded rectangle is hard-coded as 8
 . I’d like the ability to specify a value for the corner radius as well. I can think of two ways to do it. One is to give makeRoundedRectangleMaker
 itself another parameter:

func makeRoundedRectangleMaker(_ sz:CGSize, _ r:CGFloat) -> () -> UIImage {
 return {
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: r)
 p.stroke()
 }
 }
}

And we would then call it like this:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20), 8)

But there’s another way. The function that we are returning from makeRoundedRectangleMaker
 takes no parameters. Instead, it
 could take the extra parameter:

func makeRoundedRectangleMaker(_ sz:CGSize) -> (CGFloat) -> UIImage {
 return { r in
 imageOfSize(sz) {
 let p = UIBezierPath(
 roundedRect: CGRect(origin:CGPoint.zero, size:sz),
 cornerRadius: r)
 p.stroke()
 }
 }
}

Now makeRoundedRectangleMaker
 returns a function that, itself, takes one parameter, so we must remember to supply that when we call it:

let maker = makeRoundedRectangleMaker(CGSize(width:45, height:20))
self.iv.image = maker(8)

If we don’t need to conserve maker
 for anything, we can of course do all that in one line — a function call that yields a function which we immediately call to obtain our image:

self.iv.image = makeRoundedRectangleMaker(CGSize(width:45, height:20))(8)

When a function returns a function that takes a parameter in this way, it is called a curried
 function (after the computer scientist Haskell Curry).

Function References and Selectors

Throughout this chapter, wherever I wanted to refer to a function by name — for example, in order to pass it as argument to another function — I’ve been using its bare name, like this:

func whatToAnimate() { // self.myButton is a button in the interface
 self.myButton.frame.origin.y += 20
}
func whatToDoLater(finished:Bool) {
 print("finished: \(finished)")
}
UIView.animate(withDuration:0.4,
 animations: whatToAnimate, completion: whatToDoLater) // *

A bare name like whatToAnimate
 or whatToDoLater
 is a function reference
 . Use of the bare name as a function reference is legal because it’s unambiguous in this particular context: thus, there’s only one function called whatToDoLater
 in scope, and I’m using its name as argument in a function call where the parameter type is known (namely, (Bool) -> ()
).

But now consider the following situation. Just as I can pass a function as an argument, I can assign a function as a value to a variable. And suppose I have two
 functions with the same name, one that takes a parameter, and one that doesn’t:

class Dog {
 func bark() {
 print("woof")
 }
 func bark(_ loudly:Bool) {
 if loudly {
 print("WOOF")
 } else {
 self.bark()
 }
 }
 func test() {
 let barkFunction = bark // compile error
 // ...
 }
}

That code won’t compile, because the bare name bark
 is ambiguous in this context: which bark
 method does it refer to? To solve this problem, Swift provides a notation allowing you to refer to a function more precisely. This notation has two parts:

Full name

The full name of a Swift function is the name that precedes the parentheses, plus parentheses containing the external names of its parameters, each followed by colon. If the external name of a parameter is suppressed, we can represent its external name as an underscore.

For example, a function declared func say(_ s:String, times:Int)
 has the full name say(_:times:)
 .

Signature

The signature of a Swift function may be specified explicitly by appending it to its bare name or full name with the keyword as
 .

For example, a function declared func say(_ s:String, times:Int)
 may be referred to as say as (String,Int) -> ()
 .

In our bark
 example, use of the full name solves the problem if the function to which we want a reference is the one that takes a parameter:

class Dog {
 func bark() {
 // ... as before ...
 }
 func bark(loudly:Bool) {
 // ... as before ...
 }
 func test() {
 let barkFunction = bark(_:) // fine
 }
}

But use of the full name doesn’t
 solve the problem if the function to which we want a reference is the one that takes no
 parameters, because in that case the full name is the bare name, which is exactly what’s ambiguous in this context. Use of the signature solves the problem:

class Dog {
 func bark() {
 // ... as before ...
 }
 func bark(loudly:Bool) {
 // ... as before ...
 }
 func test() {
 let barkFunction = bark as () -> () // fine
 }
}

Obviously, an explicit signature is needed also when a function is overloaded
 . For example:

class Dog{
 func bark() {
 }
 func bark(_ loudly:Bool) {
 }
 func bark(_ times:Int) {
 }
 func test() {
 let barkFunction = bark(_:) // compile error
 }
}

Here, we have said that we want the bark
 that takes one parameter, but there are two
 such bark
 functions, one whose parameter is a Bool, the other whose parameter is an Int. The signature disambiguates (and we can use the bare name):

let barkFunction = bark as (Int) -> () // "times", not "loudly"

Function Reference Scope

In the foregoing examples of function references, there was no need to tell the compiler where
 the function is defined. That’s because the function is already in scope at the point where the function reference appears. If you can call
 the function without supplying further information, you can form the function reference
 without supplying further information.

However, a function reference can
 supply further information about where a function is defined; and sometimes it must
 do so. Therefore, you can prefix an instance or class to the function reference, using dot-notation. For example, there are situations where the compiler would force you to use self
 to call a function; in those situations, you will have to use self
 to refer to the function as well:

class Dog {
 func bark() {
 }
 func bark(_ loudly:Bool) {
 }
 func test() {
 let f = {
 return self.bark(_:) // self required here
 }
 }
}

To form a function reference to an instance method of another type, you have two choices. If you have on hand an instance of that type, you can use dot-notation with a reference to that instance:

class Cat {
 func purr() {
 }
}
class Dog {
 let cat = Cat()
 func test() {
 let purrFunction = cat.purr
 }
}

The other possibility is to use the type
 with dot-notation (this works even if the function is an instance method):

class Cat {
 func purr() {
 }
}
class Dog {
 func bark() {
 }
 func test() {
 let barkFunction = Dog.bark // legal but not necessary
 let purrFunction = Cat.purr
 }
}

Selectors

In Objective-C, a selector is a kind of method reference. In iOS programming, you’ll often have to supply a Cocoa method with a selector as one of its parameters; very typically, this parameter will be named either selector:
 or action:
 . To call such a method requires you to pass a selector to Cocoa, along with a target
 (an object reference); later, the runtime can call the method by turning the selector into a message and sending that message to that target.

Unfortunately, this architecture can be extremely risky. In fact, in the past it has resulted in more runtime errors (also known as crashes) than any other aspect of iOS programming. The reason is that to form the selector, it is necessary to construct a literal string
 representing a method’s Objective-C name. If you construct that name incorrectly, then when the time comes to send the message to the target, the runtime will find that the target can’t handle that message, because it has no such method, and the app comes to a violent and premature halt, dumping into the console the dreaded phrase “unrecognized selector.”

For example, here’s a typical recipe for failure:

class ViewController : UIViewController {
 @IBOutlet var button : UIButton!
 func viewDidLoad() {
 super.viewDidLoad()
 self.button.addTarget(// prepare to crash!
 self, action: "buttonPressed", for: .touchUpInside)
 }
 @objc func buttonPressed(_ sender: Any) {
 // ...
 }
}

In that code, self.button
 is a button in the interface, and we are configuring it by calling addTarget(action:for:)
 , so that when the button is tapped, our buttonPressed
 method will be called. But we are configuring it incorrectly! Unfortunately, "buttonPressed"
 is not
 the Objective-C name of our buttonPressed
 method; the correct name would have been "buttonPressed:"
 , with a colon. (I’ll explain why in Appendix A
 .) Therefore, our app will crash when the user taps that button. If you don’t know the rules for forming a selector string — or even if you do, but you make a typing mistake — an “unrecognized selector” crash is likely to be in your future.

Thankfully, Swift provides a solution to this problem: #selector
 syntax. To form an Objective-C selector, you use #selector(...)
 with a function reference inside the parentheses. Thus, we would rewrite our button action example like this:

class ViewController : UIViewController {
 @IBOutlet var button : UIButton!
 func viewDidLoad() {
 super.viewDidLoad()
 self.button.addTarget(
 self, action: #selector(buttonPressed), for: .touchUpInside)
 }
 @objc func buttonPressed(_ sender: Any) {
 // ...
 }
}

When you use that notation, two wonderful things happen:

The compiler validates the function reference

If your function reference isn’t valid, your code won’t even compile. The compiler also checks that this function is exposed to Objective-C; there’s no point forming a selector for a method that Objective-C can’t see, as your app would crash if Objective-C were to try to call such a method. To ensure Objective-C visibility, the method may need to be marked with the @objc
 attribute; the compiler will enforce this requirement.

The compiler forms the Objective-C selector for you

If your code compiles, the actual selector that will be passed into this parameter is guaranteed to be correct. You
 might form the selector incorrectly, but the compiler won’t! Thus, it is impossible that the resulting selector should fail to match the method, and there is no chance of an “unrecognized selector” crash.

Very rarely, you still might need to create a selector manually. You can use a literal string, or you can instantiate Selector with the literal method name as argument — for example, Selector("woohoo:")
 .

Warning

You can still crash, even with #selector
 syntax, by sending an action message to the wrong target. In the preceding example, if you changed self
 , the first argument of the addTarget
 call, to self.button
 , you’d crash at runtime with “unrecognized selector.” The compiler won’t help you with this kind of mistake.

Chapter 3.
 Variables and Simple Types

A variable is a named “shoebox” whose contained value must be of a single well-defined type. Every variable must be explicitly and formally declared. To put a value into the shoebox, thus causing the variable name to refer
 to that value, you assign
 the value to the variable. The variable name becomes a reference
 to that value.

This chapter goes into detail about declaration and initialization of variables. It then discusses
 all the primary built-in Swift simple types. (I mean “simple” as opposed to collections;
 the primary built-in collection types are discussed at the end of Chapter 4
 .)

Variable Scope and Lifetime

A variable not only gives its referent a name; it also, by virtue of where it is declared
 , endows its referent with a particular scope
 (visibility) and lifetime
 . Assigning a value to a variable is a way of ensuring that this value can be seen
 by code that needs to see it and that it persists
 long enough to serve its purpose.

In the structure of a Swift file (see Example 1-1
), a variable can be declared just about anywhere. It will be useful to distinguish several levels of variable scope and lifetime:

Global variables

A global variable, or simply a global
 , is a variable declared at the top level of a Swift file. A global variable lives as long as the file lives, which is as long as the program runs. A global variable is visible everywhere (that’s what “global” means). It is visible to all code within the same
 file, because it is at top level, so any other code in the same file must be at the same level or at a lower contained level of scope. Moreover, it is visible (by default) to all code within any other
 file in the same module, because Swift files in the same module can automatically see one another, and hence can see one another’s top levels. For example:

// File1:
let globalVariable = "global"
class Dog {
 func printGlobal() {
 print(globalVariable) // *
 }
}
// File2:
class Cat {
 func printGlobal() {
 print(globalVariable) // *
 }
}

Properties

A property
 is a variable declared at the top level of an object type declaration (an enum, struct, or class). There are two kinds of properties: instance properties and static/class properties.

Instance properties

By default, a property is an instance
 property. Its value can differ for each instance of this object type. Its lifetime is the same as the lifetime of the instance. Recall from Chapter 1
 that an instance comes into existence through deliberate instantiation of an object type; the subsequent lifetime of the instance, and hence of its instance properties, depends primarily on the lifetime of the variable to which the instance itself is assigned.

Static/class properties

A property is a static/class property if its declaration is preceded by the keyword static
 or class
 . (I’ll go into detail about those terms in Chapter 4
 .) Its lifetime is the same as the lifetime of the object type. If the object type is declared at the top level of a file, the property lives as long as the program runs.

A property is visible to code inside
 the object declaration. For example, an object’s methods can see that object’s properties. Such code can refer to the property using dot-notation with self
 , and I always do this as a matter of style, but self
 can usually be omitted except for purposes of disambiguation. An instance property is also visible (by default) to other code, provided the other code has a reference to this instance; in that case, the property can be referred to through dot-notation with the instance reference. A static/class property is visible (by default) to other code that can see the name of this object type; in that case, it can be referred to through dot-notation with the object type. For example:

// File1:
class Dog {
 static let staticProperty = "staticProperty"
 let instanceProperty = "instanceProperty"
 func printInstanceProperty() {
 print(self.instanceProperty) // *
 }
}
// File2:
class Cat {
 func printDogStaticProperty() {
 print(Dog.staticProperty) // *
 }
 func printDogInstanceProperty() {
 let d = Dog()
 print(d.instanceProperty) // *
 }
}

Local variables

A local variable is a variable declared inside a function body. A local variable lives only as long as its surrounding curly-braces scope lives: it comes into existence when the path of execution passes into the scope and reaches the variable declaration, and it goes out of existence when the path of execution exits the scope. Local variables are sometimes called automatic
 , to signify that they come into and go out of existence automatically. A local variable can be seen only by subsequent code within the same scope (including a subsequent deeper scope within the same scope). For example:

class Dog {
 func printLocalVariable() {
 let localVariable = "local"
 print(localVariable) // *
 }
}

Variable Declaration

A variable is declared with let
 or var
 :

	With let
 , the variable becomes a constant
 — its value can never be changed after the first assignment of a value.

	With var
 , the variable is a true variable, and its value can be changed by subsequent assignment.

A variable declaration is usually accompanied by initialization
 — you use an equal sign to assign the variable a value, as part of the declaration. That, however, is not a requirement; it is legal to declare a variable without immediately initializing it.

What is not
 legal is to declare a variable without giving it a type. A variable must
 have a type from the outset, and that type can never be changed
 . A variable declared with var
 can have its value changed by subsequent assignment, but the new value must conform to the variable’s type.

You can give a variable a type explicitly or implicitly:

Explicit variable type declaration

After the variable’s name in the declaration, add a colon and the name of the type:

var x : Int

Implicit variable type by initialization

If you initialize the variable as part of the declaration, and if you provide no explicit type, Swift will infer
 its type, based on the value with which it is initialized:

var x = 1 // and now x is an Int

It is perfectly possible to declare a variable’s type explicitly and
 assign it an initial value, all in one move:

var x : Int = 1

In that example, the explicit type declaration is superfluous, because the type (Int) would have been inferred from the initial value. Sometimes, however, providing an explicit type, even while also assigning an initial value, is not
 superfluous. Here are the main situations where that’s the case:

Swift’s inference would be wrong

A very common case in my own code is when I want to provide the initial value as a numeric literal. Swift will infer either Int or Double, depending on whether the literal contains a decimal point. But there are a lot of other numeric types! When I mean one of those, I will provide the type explicitly, like this:

let separator : CGFloat = 2.0

Swift can’t infer the type

Sometimes, the type of the initial value is completely unknown to the compiler unless you tell it. A very common case involves option sets (discussed in Chapter 4
). This won’t compile:

var opts = [.autoreverse, .repeat] // compile error

The problem is that the name .autoreverse
 is a shortcut for UIViewAnimationOptions.autoreverse
 (and so too for .repeat
), but Swift doesn’t know that unless we tell it. Explicitly typing the variable is an elegant way of doing that:

let opts : UIViewAnimationOptions = [.autoreverse, .repeat]

The programmer can’t infer the type

I frequently include a superfluous explicit type declaration as a kind of note to myself. Here’s an example from my own code:

let duration : CMTime = track.timeRange.duration

In that code, track
 is an AVAssetTrack. Swift knows perfectly well that the duration
 property of an AVAssetTrack’s timeRange
 property is a CMTime. But I don’t! In order to remind myself of that fact, I’ve shown the type explicitly.

As I’ve already said, a variable doesn’t have to be initialized when it is declared — even if the variable is a constant. It is legal to write this:

let x : Int

Now x
 is an empty shoebox — an Int variable without an initial value. You can assign this variable an initial value later. Since this particular variable is a constant, that initial value will be its only value from then on.

In the case of an instance property of an object (at the top level of an enum, struct, or class declaration), that sort of thing is quite normal, because the property can be initialized in the object’s initializer function (I’ll have more to say about that in Chapter 4
). For a local variable, however, such behavior is unusual, and I strongly urge you to avoid it. It isn’t a disaster — the Swift compiler will stop you from trying to use a variable that has never been assigned a value — but it’s not a good habit. A local variable should generally be initialized as part of its declaration.

The exception that proves the rule is what we might call conditional initialization
 . Sometimes, we don’t know
 a variable’s initial value until we’ve performed some sort of conditional test. The variable itself, however, can be declared only once; so it must be declared in advance and conditionally initialized afterward. This sort of thing is not unreasonable (though there are other, possibly better ways to write it, to which I’ll come in due course):

let timed : Bool
if val == 1 {
 timed = true
} else {
 timed = false
}

When a variable’s address
 is to be passed as argument to a function, the variable must be declared and initialized
 beforehand, even if the initial value is fake. Recall this example from Chapter 2
 :

var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0
var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)

After that code runs, our four CGFloat 0
 values will have been replaced; they were just momentary placeholders, to satisfy the compiler.

On rare occasions, you’ll want to call a Cocoa method that returns a value immediately and later uses that value in a function passed to that same method. For example, Cocoa has a UIApplication instance method declared like this:

func beginBackgroundTask(
 expirationHandler handler: (() -> Void)? = nil)
 -> UIBackgroundTaskIdentifier

beginBackgroundTask(expirationHandler:)
 returns a number (a UIBackgroundTaskIdentifier is just an Int), and will later call the expirationHandler:
 function passed to it — a function in which you will want to use
 the number that was returned at the outset. Swift’s safety rules won’t let you declare the variable that holds this number and use it in an anonymous function all in the same statement:

let bti = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(bti)
} // error: variable used within its own initial value

Therefore, you need to declare the variable beforehand; but then Swift has another complaint:

var bti : UIBackgroundTaskIdentifier
bti = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(bti)
} // error: variable captured by a closure before being initialized

One solution is to declare the variable beforehand and give it a fake initial value as a placeholder:

var bti : UIBackgroundTaskIdentifier = 0
bti = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(bti)
}

(Alternatively, declaring bti
 as an Optional, discussed later in this chapter, might be considered a slightly cleaner approach.)

Computed Initializer

Sometimes, you’d like to run several lines of code in order to compute a variable’s initial value. A simple and compact way to express this is with a define-and-call anonymous function (see “Define-and-Call”
). I’ll illustrate by rewriting an earlier example:

let timed : Bool = {
 if val == 1 {
 return true
 } else {
 return false
 }
}()

You can do the same thing when you’re initializing an instance property. In this class, there’s an image (a UIImage) that I’m going to need many times later on. It makes sense to create this image in advance as a constant instance property of the class. To create it means to draw it. That takes several lines of code. So I declare and initialize the property by defining and calling an anonymous function, like this (for my imageOfSize
 utility, see Chapter 2
):

class RootViewController : UITableViewController {
 let cellBackgroundImage : UIImage = {
 return imageOfSize(CGSize(width:320, height:44)) {
 // ... drawing goes here ...
 }
 }()
 // ... rest of class goes here ...
}

When you’re initializing an instance property, you can’t call an instance method, because there is no instance yet — the instance, after all, is what you are in the process of creating. A define-and-call anonymous function can be a neat legal solution, letting you declare and initialize an instance property with multiple lines of code.

Computed Variables

The variables I’ve been describing so far in this chapter have all been stored
 variables. The shoebox analogy applies. The variable is a name, like a shoebox; a value can be put into the shoebox by assigning it to the variable, and it then sits there and can be retrieved later by referring to the variable, for as long the variable lives.

Alternatively, a variable can be computed
 . This means that the variable, instead of having a value, has functions
 . One function, the setter
 , is called when the variable is assigned to. The other function, the getter
 , is called when the variable is referred to. Here’s some code illustrating schematically the syntax for declaring a computed variable:

var now : String { [image: 1]

 get { [image: 2]

 return Date().description [image: 3]

 }
 set { [image: 4]

 print(newValue) [image: 5]

 }
}

[image: 1]

The variable must be declared with var
 (not let
). Its type must be declared explicitly. The type is followed immediately
 by curly braces
 .

[image: 2]

The getter function is called get
 . There is no formal function declaration; the word get
 is simply followed immediately by a function body in curly braces.

[image: 3]

The getter function must
 return a value of the same type as the variable.

[image: 4]

The setter function is called set
 . There is no formal function declaration; the word set
 is simply followed immediately by a function body in curly braces.

[image: 5]

The setter behaves like a function taking one parameter. By default, this parameter arrives into the setter function body with the local name newValue
 .

Here’s some code that illustrates the use of our computed variable. You don’t treat it any differently than any other variable! To assign to the variable, assign to it; to use the variable, use it. Behind the scenes, though, the setter and getter functions are called:

now = "Howdy" // Howdy [image: 1]

print(now) // 2017-06-26 17:03:30 +0000 [image: 2]

[image: 1]

Assigning to now
 calls its setter. The argument passed into this call is the assigned value; here, that’s "Howdy"
 . That value arrives in the set
 function as newValue
 . Our set
 function prints newValue
 to the console.

[image: 2]

Fetching now
 calls its getter. Our get
 function obtains the current date-time and translates it into a string, and returns the string. Our code then prints that string to the console.

Observe that when we set now
 to "Howdy"
 in the first line, the string "Howdy"
 wasn’t stored anywhere. It had no effect, for example, on the value of now
 in the second line. A set
 function can
 store a value, but it can’t store it in this computed variable; a computed variable isn’t storage! It’s a shorthand for calling its getter and setter functions.

There are a couple of variants on the basic syntax I’ve just illustrated:

	The name of the set
 function parameter doesn’t have to be newValue
 . To specify a different name, put it in parentheses after the word set
 , like this:set (val) { // now you can use "val" inside the setter function body

	There doesn’t have to be a setter. If the setter is omitted, this becomes a read-only
 variable. This is the computed variable equivalent of a let
 variable: attempting to assign to it is a compile error.

	There must always be a getter! However, if there is no setter, the word get
 and the curly braces that follow it can be omitted. Thus, this is a legal declaration of a read-only variable:var now : String {
 return Date().description
}

A computed variable can be useful in many ways. Here are the ones that occur most frequently in my real programming life:

Read-only variable

A computed variable is the simplest way to make a read-only variable. Just omit the setter from the declaration. Typically, the variable will be a global variable or a property; there probably wouldn’t be much point in a local read-only variable.

Façade for fetching a property or calling a method

When a value can be readily calculated or obtained each time it is needed, it often makes for simpler syntax to express it as a read-only computed variable, which effectively acts a shorthand for a longer expression. Here’s an example from my own code:

var mp : MPMusicPlayerController {
 return MPMusicPlayerController.systemMusicPlayer
}
var nowPlayingItem : MPMediaItem? { return self.mp.nowPlayingItem }

No work is saved by these computed variables; each time we ask for self.nowPlayingItem
 , we are fetching MPMusicPlayerController.systemMusicPlayer.nowPlayingItem
 . Still, the clarity and convenience of the resulting code justifies the use of computed variables here.

Façade for an elaborate calculation

A computed variable getter can encapsulate multiple lines of code, in effect turning a method into a property. Here’s an example from my own code:

var authorOfItem : String? {
 guard let authorNodes =
 self.extensionElements(
 withXMLNamespace: "http://www.tidbits.com/dummy",
 elementName: "app_author_name")
 else {return nil}
 guard let authorNode = authorNodes.last as? FPExtensionNode
 else {return nil}
 return authorNode.stringValue
}

In that example, I’m diving into some parsed XML and extracting a value. I could have declared this process as a method (func authorOfItem() -> String
), but this value is more naturally thought of as a thing
 , a feature of the instance self
 , rather than as the output of a function. Thus it makes intuitive sense to characterize it as a computed property.

Façade for storage

A computed variable can sit in front of one or more stored variables, acting as a gatekeeper on how those stored variables are set and fetched. This is comparable to an accessor method in Objective-C. In the extreme case, a public computed variable is backed by a private stored variable.

Here’s a practical example. My class has an instance property myBigData
 , holding a very large stored piece of data, which can alternatively be nil
 (it’s an Optional, as I’ll explain later). When my app goes into the background, I want to reduce memory usage (because iOS kills backgrounded apps that use too much memory). So I plan to save the data of myBigData
 as a file to disk, and then set the variable itself to nil
 , thus releasing its data from memory. Now consider what should happen when my app comes back to the front and my code tries to fetch myBigData
 . If it isn’t nil
 , we just fetch its value. But if it is
 nil
 , this might be because we saved its value to disk. So now I want to restore its value by reading it from disk, and then
 fetch its value. This is a perfect use of a computed variable façade:

private var _myBigData : Data! = nil
var myBigData : Data! {
 set (newdata) {
 self._myBigData = newdata
 }
 get {
 if _myBigData == nil {
 // ... get a reference to file on disk, f ...
 if let d = try? Data(contentsOf:f) {
 self._myBigData = d
 // ... erase the file ...
 }
 }
 return self._myBigData
 }
}

As the preceding examples have demonstrated, a computed instance property function can refer to other instance members. This is important, because in general the initializer for a stored property can do neither of those things. The reason this is legal for a computed property is that its functions won’t be called until the instance actually exists.

Setter Observers

Computed variables are not needed as a stored variable façade as often as you might suppose. That’s because Swift has another feature, which lets you inject functionality into the setter of a stored variable — setter observers. These are functions that are called just before and just after other code sets a stored variable.

The syntax for declaring a variable with a setter observer is very similar to the syntax for declaring a computed variable; you can write a willSet
 function, a didSet
 function, or both:

var s = "whatever" { [image: 1]

 willSet { [image: 2]

 print(newValue) [image: 3]

 }
 didSet { [image: 4]

 print(oldValue) [image: 5]

 // self.s = "something else"
 }
}

[image: 1]

The variable must be declared with var
 (not let
). It can be assigned an initial value. It is then followed immediately
 by curly braces
 .

[image: 2]

The willSet
 function, if there is one, is the word willSet
 followed immediately by a function body in curly braces. It is called when other code sets this variable, just before
 the variable actually receives its new value.

[image: 3]

By default, the willSet
 function receives the incoming new value as newValue
 . You can change this name by writing a different name in parentheses after the word willSet
 . The old value is still sitting in the stored variable, and the willSet
 function can access it there.

[image: 4]

The didSet
 function, if there is one, is the word didSet
 followed immediately by a function body in curly braces. It is called when other code sets this variable, just after
 the variable actually receives its new value.

[image: 5]

By default, the didSet
 function receives the old value, which has already been replaced as the value of the variable, as oldValue
 . You can change this name by writing a different name in parentheses after the word didSet
 . The new value is already sitting in the stored variable, and the didSet
 function can access it there. Moreover, it is legal for the didSet
 function to set the stored variable to a different value
 .

Note

Setter observer functions are not
 called when the stored variable is initialized or when the didSet
 function changes the stored variable’s value. That would be circular!

In practice, I find myself using setter observers, rather than a computed variable, in the vast majority of situations where I would have used a setter override in Objective-C.
 Here’s an example. This is an instance property of a view class. Every time this property changes, we need to change the interface to reflect it. Not only do we change the interface, but also we “clamp” the incoming value within a fixed limit:

var angle : CGFloat = 0 {
 didSet {
 // clamp! angle must not be smaller than 0 or larger than 5
 self.angle = min(max(self.angle, 0), 5)
 // modify interface to match
 self.transform = CGAffineTransform(rotationAngle: self.angle)
 }
}

A computed variable can’t have setter observers. But it doesn’t need them! There’s a setter function, so anything additional that needs to happen during setting can be programmed directly into that setter function.

Lazy Initialization

The term lazy
 is not a pejorative puritanical judgment; it’s a formal description of an important behavior. If a stored variable is assigned an initial value as part of its declaration, and if it uses lazy initialization, then the initial value is not actually evaluated and assigned until running code accesses the variable’s value.

There are three types of variable that can be initialized lazily in Swift:

Global variables

Global variables are automatically lazy
 . This makes sense if you ask yourself when they should be initialized. As the app launches, files and their top-level code are encountered. It would make no sense to initialize globals now, because the app isn’t even running yet. Thus global initialization must be postponed to some moment that does
 make sense. Therefore, a global variable’s initialization doesn’t happen until other code first refers to that global. Under the hood, this behavior is implemented in such a way as to make initialization both singular (it can happen only once) and thread-safe.

Static properties

Static properties are automatically lazy
 . They behave exactly like global variables, and for basically the same reason. (There are no stored class properties in Swift, so class properties can’t be initialized and thus can’t have lazy initialization.)

Instance properties

An instance property is not lazy by default, but it may be made lazy by marking its declaration with the keyword lazy
 . This property must be declared with var
 , not let
 . The initializer for such a property might never
 be evaluated, namely if code assigns the property a value before any code fetches the property’s value.

Lazy initialization is often used to implement singleton
 . Singleton is a pattern where all code is able to get access to a single shared instance of a certain class:

class MyClass {
 static let sharedSingleton = MyClass()
}

Now other code can obtain a reference to MyClass’s singleton by saying MyClass.sharedSingleton
 . The singleton instance is not created until the first time other code says this; subsequently, no matter how many times other code may say this, the instance returned is always that same instance. (Observe that that is not
 what would happen if this were a computed read-only property whose getter calls MyClass()
 and returns that instance; do you see why?)

Now let’s talk about lazy initialization of instance properties. Why might you want this? One reason is obvious: the initial value might be expensive to generate, so you’d like to avoid generating it unless it is actually needed. But there’s another reason that turns out to be even more important: a lazy initializer can do things that a normal initializer can’t. In particular, it can refer to the instance
 . A normal initializer can’t do that, because the instance doesn’t yet exist at the time that a normal initializer would need to run (ex hypothesi
 , we’re in the middle of creating the instance, so it isn’t ready yet). A lazy initializer, by contrast, won’t run until some time after the instance has fully come into existence, so referring to the instance is fine. Thus you can call instance methods and refer to instance properties of self
 in the initializer of a lazy
 instance property, but you can’t do those things if the instance property isn’t lazy
 .

For example, this code would be illegal (because you can’t call an instance method in an instance property initializer) if the arrow
 property weren’t declared lazy
 :

class MyView : UIView {
 lazy var arrow = self.arrowImage()
 func arrowImage () -> UIImage {
 // ... big image-generating code goes here ...
 }
}

A very common idiom is to initialize a lazy instance property with a define-and-call anonymous function:

lazy var prog : UIProgressView = {
 let p = UIProgressView(progressViewStyle: .default)
 p.alpha = 0.7
 p.trackTintColor = UIColor.clear
 p.progressTintColor = UIColor.black
 p.frame = CGRect(x:0, y:0, width:self.view.bounds.size.width, height:20)
 p.progress = 1.0
 return p
}()

Warning

Unlike automatically lazy global and static variables, an instance property marked lazy
 does not
 initialize itself in a thread-safe way. When used in a multithreaded context, lazy
 instance properties can cause multiple initialization and even crashes. Also, lazy instance properties can’t have setter observers; and there’s no lazy let
 for instance properties, so you can’t readily make a lazy instance property read-only.

Built-In Simple Types

Every variable, and every value, must have a type. But what types are there? Up to this point, I’ve assumed the existence of some types, such as Int and String, without formally telling you about them. Here’s a survey of the primary simple types provided by Swift, along with some instance methods, global functions, and operators that apply to them. (Collection types will be discussed at the end of Chapter 4
 .)

Bool

The Bool object type (a struct) has only two values, commonly regarded as true and false (or yes and no). You can represent these values using the literal keywords true
 and false
 , and it is natural to think of a Bool value as being
 either true
 or false
 :

var selected : Bool = false

In that code, selected
 is a Bool variable initialized to false
 ; it can subsequently be set to false
 or true
 , and to no other values. Because of its simple yes-or-no state, a Bool variable of this kind is often referred to as a flag
 .

Cocoa methods very often expect a Bool parameter or return a Bool value. For example, when your app launches, Cocoa calls a method in your code declared like this:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?)
 -> Bool {

You can do anything you like in that method; often, you will do nothing. But you must return a Bool! And in real life, that Bool will probably be true
 . A minimal implementation thus looks like this:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?)
 -> Bool {
 return true
}

A Bool is useful in conditions; as I’ll explain in Chapter 5
 , when you say if something

 , the
something

 is the condition, and is a Bool — or an expression that evaluates to a Bool. For example, when you compare two values with the equality comparison operator ==
 , the result is a Bool — true
 if they are equal to each other, false
 if they are not:

if meaningOfLife == 42 { // ...

(I’ll talk more about equality comparison in a moment, when we come to discuss types that can be compared, such as Int and String.)

When preparing a condition, you will sometimes find that it enhances clarity to store the Bool value in a variable beforehand:

let comp = self.traitCollection.horizontalSizeClass == .compact
if comp { // ...

Observe that, when employing that idiom, we use the Bool variable directly
 as the condition. There is no need to test explicitly whether a Bool equals true
 or false
 ; the conditional expression itself is already testing that. It is silly — and arguably wrong — to say if comp == true
 , because if comp
 already means
 “if comp
 is true
 .”

Since a Bool can be used as a condition, a call to a function that returns a Bool can be used as a condition. Here’s an example from my own code. I’ve declared a function that returns a Bool to say whether the cards the user has selected constitute a correct answer to the puzzle:

func isCorrect(_ cells:[CardCell]) -> Bool { // ...

Thus, elsewhere I can say this:

if self.isCorrect(cellsToTest) { // ...

Unlike many computer languages, nothing else in Swift is implicitly coerced to or treated as a Bool. In C, for example, a boolean is actually a number, and 0
 is false. But in Swift, nothing is false but false
 , and nothing is true but true
 .

The type name, Bool, comes from the English mathematician George Boole; Boolean algebra provides operations on logical values. Bool values are subject to these same operations:

!

Not. The !
 unary operator reverses the truth value of the Bool to which it is applied as a prefix. If ok
 is true
 , !ok
 is false
 — and vice versa
 .

&&

Logical-and. Returns true
 only if both operands are true
 ; otherwise, returns false
 . If the first operand is false
 , the second operand is not even evaluated (thus avoiding possible side effects).

||

Logical-or. Returns true
 if either operand is true
 ; otherwise, returns false
 . If the first operand is true
 , the second operand is not even evaluated (thus avoiding possible side effects).

If a logical operation is complicated or elaborate, parentheses around subexpressions can help clarify both the logic and the order of operations.

Numbers

The main numeric types are Int and Double, meaning that, left to your own devices, these are the types you’ll use. Other numeric types exist mostly for compatibility with the C and Objective-C APIs that Swift needs to be able to talk to when you’re programming iOS.

Int

The Int object type (a struct) represents an integer between Int.max
 and Int.min
 inclusive. The actual values of those limits might depend on the platform and architecture under which the app runs, so don’t count on them to be absolute; in my testing at this moment, they are 263
 -1 and -263
 respectively (64-bit words).

The easiest way to represent an Int value is as a numeric literal. A simple numeric literal without a decimal point is taken as an Int by default. Internal underscores are legal; this is useful for making long numbers readable. Leading zeroes are legal; this is useful for padding and aligning values in your code.

You can write an Int literal using binary, octal, or hexadecimal digits. To do so, start the literal with 0b
 , 0o
 , or 0x
 respectively. Thus, for example, 0x10
 is decimal 16.

Double

The Double object type (a struct) represents a floating-point number to a precision of about 15 decimal places (64-bit storage).

The easiest way to represent a Double value is as a numeric literal. Any numeric literal containing a decimal point is taken as a Double by default. Internal underscores and leading zeroes are legal.

A Double literal may not
 begin with a decimal point (unlike C and Objective-C). If the value to be represented is between 0 and 1, start the literal with a leading 0
 .

You can write a Double literal using scientific notation. Everything after the letter e
 is the exponent of 10. You can omit the decimal point if the fractional digits would be zero. For example, 3e2
 is 3 times 102
 (300).

You can write a Double literal using hexadecimal digits. To do so, start the literal with 0x
 . You can use exponentiation here too (and again, you can omit the decimal point); everything after the letter p
 is the exponent of 2. For example, 0x10p2
 is decimal 64, because you are multiplying 16 by 22
 .

There are static properties Double.infinity
 and Double.pi
 , and an instance property isZero
 , among others.

Numeric coercion

Coercion is the conversion of a value from one type to another, and numeric coercion is the conversion of a value from one numeric type to another. Swift doesn’t really have explicit coercion, but it has something that serves the same purpose — instantiation. To convert an Int explicitly into a Double, instantiate Double with an Int in the parentheses. To convert a Double explicitly into an Int, instantiate Int with a Double in the parentheses; this will truncate the original value (everything after the decimal point will be thrown away):

let i = 10
let x = Double(i)
print(x) // 10.0, a Double
let y = 3.8
let j = Int(y)
print(j) // 3, an Int

When numeric values are assigned to variables or passed as arguments to a function, Swift can perform implicit coercion of literals only
 . This code is legal:

let d : Double = 10

But this code is not legal, because what you’re assigning is a variable
 (not a literal) of a different type; the compiler will stop you:

let i = 10
let d : Double = i // compile error

The solution is to coerce explicitly
 as you assign or pass the variable:

let i = 10
let d : Double = Double(i)

The same rule holds when numeric values are combined by an arithmetic operation. Swift will perform implicit coercion of literals only
 . The usual situation is an Int combined with a Double; the Int is treated as a Double:

let x = 10/3.0
print(x) // 3.33333333333333

But variables
 of different numeric types must be coerced explicitly
 so that they are the same
 type if you want to combine them in an arithmetic operation. Thus, for example:

let i = 10
let n = 3.0
let x = i / n // compile error; you need to say Double(i)

These rules are evidently a consequence of Swift’s strict typing; but (as far as I am aware) they constitute very unusual treatment of numeric values for a modern computer language, and will probably drive you mad in short order. The examples I’ve given so far were easily solved, but things can become more complicated if an arithmetic expression is longer, and the problem is compounded by the existence of other numeric types that are needed for compatibility with Cocoa, as I shall now proceed to explain.

Other numeric types

If you weren’t programming iOS — if you were using Swift in some isolated, abstract world — you could probably do all necessary arithmetic with Int and Double alone. Unfortunately, to program iOS you need Cocoa, which is full of other numeric types; and Swift has types that match every one of them. Thus, in addition to Int, there are signed integers of various sizes — Int8, Int16, Int32, Int64 — plus the unsigned integer UInt along with UInt8, UInt16, UInt32, and UInt64. In addition to Double, there is the lower-precision Float (32-bit storage, about 6 or 7 decimal places of precision) and the extended-precision Float80 — plus, in the Core Graphics framework, CGFloat (whose size can be that of Float or Double, depending on the bitness of the architecture).

You may also encounter a C numeric type when trying to interface with a C API. These types, as far as Swift is concerned, are just type aliases, meaning that they are alternate names for another type; for example, a CDouble (corresponding to C’s double
) is just a Double by another name, a CLong (C’s long
) is an Int, and so on. Many other numeric type aliases will arise in various Cocoa frameworks; for example, TimeInterval (Objective-C NSTimeInterval) is merely a type alias for Double.

Recall that you can’t assign, pass, or combine values of different numeric types using variables; you have to coerce those values explicitly to the correct type. But now it turns out that you’re being flooded by Cocoa with numeric values of many types! Cocoa will often hand you a numeric value that is neither an Int nor a Double — and you won’t necessarily realize this, until the compiler stops you dead in your tracks for some sort of type mismatch. You must then figure out what you’ve done wrong and coerce everything to the same type.

Here’s a typical example from one of my apps. A slider, in the interface, is a UISlider, whose minimumValue
 and maximumValue
 are Floats. In this code, s
 is a UISlider, g
 is a UIGestureRecognizer, and we’re trying to use the gesture recognizer to move the slider’s “thumb” to wherever the user tapped within the slider:

let pt = g.location(in:s) [image: 1]

let percentage = pt.x / s.bounds.size.width [image: 2]

let delta = percentage * (s.maximumValue - s.minimumValue) // compile error [image: 3]

That won’t compile. Here’s why:

[image: 1]

pt
 is a CGPoint, and therefore pt.x
 is a CGFloat.

[image: 2]

Luckily, s.bounds.size.width
 is also a CGFloat, so the second line compiles; percentage
 is now inferred to be a CGFloat.

[image: 3]

We now try to combine percentage
 with s.maximumValue
 and s.minimumValue
 — and they are Floats, not CGFloats. That’s a compile error.

This sort of thing is not an issue in C or Objective-C, where there is implicit coercion; but in Swift, a CGFloat can’t be combined with Floats. We must coerce explicitly:

let delta = Float(percentage) * (s.maximumValue - s.minimumValue)

The good news here is that if you can get enough of your code to compile, Xcode’s Quick Help feature will tell you what type Swift has inferred for a variable (Figure 3-1
). This can assist you in tracking down your issues with numeric types.

[image: ios10 0301]

Figure 3-1.
 Quick Help displays a variable’s type

Another problem is that not every numeric value can
 be coerced to a numeric value of a different type. In particular, integers of various sizes can be out of range with respect to integer types of other sizes. For example, Int8.max
 is 127; so attempting to assign a literal 128
 or larger to an Int8 variable is illegal. Fortunately, the compiler will stop you in that case, because it knows what the literal is. But now consider coercing
 a variable value of a larger integer type to an Int8:

let i : Int16 = 128
let ii = Int8(i)

That code is legal — and will crash at runtime (“Not enough bits”).
 One solution is to call the numeric exactly:
 initializer; this is a failable
 initializer, meaning (as I’ll explain in Chapter 4
) that you won’t crash, but you’ll have to add code to test whether the coercion succeeded:

let i : Int16 = 128
let ii = Int8(exactly:i)
if // ... test to learn whether ii holds a real Int8

(You’ll understand what the test would be when you’ve read the discussion of Optionals later in this chapter.)

Yet another solution is to call the clamping:
 initializer; it always
 succeeds, because an out of range value is forced to fall within range:

let i : Int16 = 128
let ii = Int8(clamping:i) // 127

When a floating-point type, such as a Double, is coerced to an integer type, the stuff after the decimal point is thrown away first and then the coercion is attempted. Thus, Int8(127.9)
 succeeds, because 127 is in bounds.

Arithmetic operations

Swift’s arithmetic operators are as you would expect; they are familiar from other computer languages as well as from real arithmetic:

+

Addition operator. Add the second operand to the first and return the result.

-

Subtraction operator. Subtract the second operand from the first and return the result. A different operator (unary minus), used as a prefix, looks the same; it returns the additive inverse of its single operand. (There is, in fact, also a unary plus operator, which returns its operand unchanged.)

*

Multiplication operator. Multiply the first operand by the second and return the result.

/

Division operator. Divide the first operand by the second and return the result.

Warning

As in C, division of one Int by another Int yields an Int; any remaining fraction is stripped away. 10/3
 is 3, not 3-and-one-third.

%

Remainder operator. Divide the first operand by the second and return the remainder. The result can be negative, if the first operand is negative; if the second operand is negative, it is treated as positive. For floating-point operands, use a method such as remainder(dividingBy:)
 instead.

Integer types can be treated as binary bitfields and subjected to binary bitwise operations:

&

Bitwise-and. A bit in the result is 1 if and only if that bit is 1 in both operands.

|

Bitwise-or. A bit in the result is 0 if and only if that bit is 0 in both operands.

^

Bitwise-or, exclusive. A bit in the result is 1 if and only if that bit is not identical in both operands.

~

Bitwise-not. Precedes its single operand; inverts the value of each bit and returns the result.

<<

Shift left. Shift the bits of the first operand leftward the number of times indicated by the second operand.

>>

Shift right. Shift the bits of the first operand rightward the number of times indicated by the second operand.

Note

Technically, the shift operators perform a logical shift if the integer is unsigned, and an arithmetic shift if the integer is signed.

Integer overflow or underflow — for example, adding two Int values so as to exceed Int.max
 — is a runtime error (your app will crash). In simple cases the compiler will stop you, but you can get away with it easily enough:

let i = Int.max - 2
let j = i + 12/2 // crash

Under certain circumstances you might want to force such an operation to succeed, so special overflow/underflow methods are supplied. These methods return a tuple; I’ll show you an example even though I haven’t discussed tuples yet:

let i = Int.max - 2
let (j, over) = i.addingReportingOverflow(12/2)

Now j
 is Int.min + 3
 (because the value has wrapped around from Int.max
 to Int.min
) and over
 is an enum reporting that overflow occurred.

If you don’t care to hear about whether or not there was an overflow/underflow, special arithmetic operators let you suppress the error: &+
 , &-
 , &*
 .

You will frequently want to combine the value of an existing variable arithmetically with another value and store the result in the same variable. To do so, you will need to have declared the variable as a var
 :

var i = 1
i = i + 7

As a shorthand, operators are provided that perform the arithmetic operation and the assignment all in one move:

var i = 1
i += 7

The shorthand (compound
) assignment arithmetic operators are +=
 , -=
 , *=
 , /=
 , %=
 , &=
 , |=
 , ^=
 , <<=
 , >>=
 .

Operation precedence is largely intuitive: for example, *
 has a higher precedence than +
 , so x+y*z
 multiplies y
 by z
 first, and then adds the result to x
 . Use parentheses to disambiguate when in doubt; for example, (x+y)*z
 performs the addition first.

Global functions include abs
 (absolute value), max
 , and min
 :

let i = -7
let j = 6
print(abs(i)) // 7
print(max(i,j)) // 6

Doubles are also stocked with mathematical methods. Thus, for example, if d
 is a Double, you can say d.squareRoot()
 or d.rounded()
 ; if dd
 is also a Double, you can say Double.maximum(d,dd)
 .

Global mathematical functions, such as trigonometry and random numbers, come from the C standard libraries that are visible because you’ve imported UIKit. You still have to be careful about numeric types. For example, arc4random_uniform
 takes and returns a UInt32. So if n
 is an Int and you want to get a random Int between 0 and n-1
 , you can’t say arc4random_uniform(n)
 ; you have to coerce the argument and the result, saying Int(arc4random_uniform(UInt32(n)))
 .

Comparison

Numbers are compared using the comparison operators, which return a Bool. For example, the expression i==j
 tests whether i
 and j
 are equal; when i
 and j
 are numbers, “equal” means numerically equal. So i==j
 is true
 only if i
 and j
 are “the same number,” in exactly the sense you would expect.

The comparison operators are:

==

Equality operator. Returns true
 if its operands are equal.

!=

Inequality operator. Returns false
 if its operands are equal.

<

Less-than operator. Returns true
 if the first operand is less than the second operand.

<=

Less-than-or-equal operator. Returns true
 if the first operand is less than or equal to the second operand.

>

Greater-than operator. Returns true
 if the first operand is greater than the second operand.

>=

Greater-than-or-equal operator. Returns true
 if the first operand is greater than or equal to the second operand.

Keep in mind that, because of the way computers store numbers, equality comparison of Double values may not succeed where you would expect. To test whether two Doubles are effectively equal, it can be more reliable to compare the difference between them to a very small value (usually called an epsilon
), though choosing an appropriate value may not be easy:

let isEqual = abs(x - y) < 0.000001

String

The String object type (a struct) represents text. The easiest way to represent a String value is with a literal, which is delimited by double quotes:

let greeting = "hello"

A Swift string is thoroughly modern; under the hood, it’s Unicode, and you can include any character directly in a string literal. If you don’t want to bother typing a Unicode character whose codepoint you know, use the notation \u{...}
 , where what’s between the curly braces
 is up to eight hex digits:

let leftTripleArrow = "\u{21DA}"

The backslash in that string representation is the escape
 character; it means, “I’m not really a backslash; I indicate that the next character gets special treatment.” Various nonprintable and ambiguous characters are entered as escaped characters; the most important are:

\n

A Unix newline character

\t

A tab character

\"

A quotation mark (escaped to show that this is not the end of the string literal)

\\

A backslash (escaped because a lone backslash is the escape character)

New in Swift 4, a literal string containing newline characters can be entered as multiple lines (rather than a single-line expression containing "\n"
 characters). The rules are:

	The multiline string literal must be delimited by a triple of double quotes ("""
) at start and end.

	No material may follow the opening delimiter on the same line.

	No material other than whitespace may appear on the same line as the closing delimiter.

	The last implicit newline character before the closing delimiter is ignored.

	The indentation of the closing delimiter dictates the indentation of the lines of text, which must be indented at least as far as the closing delimiter (except for completely empty lines).

For example:

func f() {
 let s = """
 Line 1
 Line 2
 Line 3
 """
 // ...
}

In that code, the string s
 consists of three lines of text; lines 1 and 3 start with no whitespace; line 2 starts with four spaces; and there are two newline characters, namely after lines 1 and 2. To add a newline after line 3, you could enter a blank line, or add an escaped "\n"
 .

In a multiline string literal, quotation marks do not
 have to be escaped. A line ending with a backslash is joined with the following line. In this code, the string s
 consists of just two lines of text (the second line consists of four spaces followed by “Line 2 and this is still line 2”):

func f() {
 let s = """
 Line "1"
 Line 2 \
 and this is still Line 2
 """
 // ...
}

String interpolation permits you to embed any value that can be output with print
 inside a literal string as a string
 , even if it is not itself a string. The notation is escaped parentheses: \(...)
 . For example:

let n = 5
let s = "You have \(n) widgets."

Now s
 is the string "You have 5 widgets."
 The example is not very compelling, because we know what n
 is and could have typed 5
 directly into our string; but imagine that we don’t
 know what n
 is! Moreover, the stuff in escaped parentheses doesn’t have to be the name of a variable; it can be almost any expression that evaluates as legal Swift. If you don’t know how to add, this example is more compelling:

let m = 4
let n = 5
let s = "You have \(m + n) widgets."

To combine (concatenate) two strings, the simplest approach is to use the +
 operator:

let s = "hello"
let s2 = " world"
let greeting = s + s2

This convenient notation is possible because the +
 operator is overloaded
 : it does one thing when the operands are numbers (numeric addition) and another when the operands are strings (concatenation). As I’ll explain in Chapter 5
 , all
 operators can be overloaded, and you can overload them to operate in some appropriate way on your own types.

The +
 operator comes with a +=
 assignment shortcut; naturally, the variable on the left side must have been declared with var
 :

var s = "hello"
let s2 = " world"
s += s2

As an alternative to +=
 , you can call the append(_:)
 instance method:

var s = "hello"
let s2 = " world"
s.append(s2)

Another way of concatenating strings is with the joined(separator:)
 method. You start with an array (yes, I know we haven’t gotten to arrays yet) of strings to be concatenated, and hand it the string that is to be inserted between all of them:

let s = "hello"
let s2 = "world"
let space = " "
let greeting = [s,s2].joined(separator:space)

The comparison operators are also overloaded so that they all work with String operands. Two String values are equal (==
) if they are, in the natural sense of the words, “the same text.” A String is less than another if it is alphabetically prior.

Some additional convenient instance methods and properties are provided. isEmpty
 returns a Bool reporting whether this string is the empty string (""
). hasPrefix(_:)
 and hasSuffix(_:)
 report whether this string starts or ends with another string; for example, "hello".hasPrefix("he")
 is true
 . The uppercased
 and lowercased
 methods provide uppercase and lowercase versions of the original string.

Coercion between a String and an Int is possible. To make a string that represents an Int, it is sufficient to use string interpolation; alternatively, use the Int as a String initializer, just as if you were coercing between numeric types:

let i = 7
let s = String(i) // "7"

Your string can also represent an Int in some other base; supply a radix:
 argument expressing the base:

let i = 31
let s = String(i, radix:16) // "1f"

A String that might represent a number can be coerced to a numeric type; an integer type will accept a radix:
 argument expressing the base. The coercion might fail, though, because the String might not
 represent a number of the specified type; so the result is not a number but an Optional wrapping a number (I haven’t talked about Optionals yet, so you’ll have to trust me for now; failable initializers are discussed in Chapter 4
):

let s = "31"
let i = Int(s) // Optional(31)
let s2 = "1f"
let i2 = Int(s2, radix:16) // Optional(31)

Tip

Coercion to String is in fact the basis of string interpolation, and of representation in the console with print
 . You can make any
 object coercible to String, by making it conform to any of three protocols: TextOutputStreamable, CustomStringConvertible, and CustomDebugStringConvertible. I’ll give an example when I explain what a protocol is, in Chapter 4
 .

The length of a String, in characters, is given by its count
 property:

let s = "hello"
let length = s.count // 5

This property is called count
 rather then length
 because a String doesn’t really have a simple length. The String is stored as a sequence of Unicode codepoints, but multiple Unicode codepoints can combine to form a character; so, in order to know how many characters are represented by such a sequence, we actually have to walk through the sequence and resolve it into the characters that it represents.

You, too, can walk through a String’s characters. The simplest way is with the for...in
 construct (see Chapter 5
). What you get when you do this are Character objects; I’ll talk more about Character objects later:

let s = "hello"
for c in s {
 print(c) // print each Character on its own line
}

At an even deeper level, you can decompose a String into its UTF-8 codepoints or its UTF-16 codepoints, using the utf8
 and utf16
 properties:

let s = "\u{BF}Qui\u{E9}n?"
for i in s.utf8 {
 print(i) // 194, 191, 81, 117, 105, 195, 169, 110, 63
}
for i in s.utf16 {
 print(i) // 191, 81, 117, 105, 233, 110, 63
}

There is also a unicodeScalars
 property representing a collection (a String.UnicodeScalarView
) of the String’s UTF-32 codepoints expressed as UnicodeScalar structs. To illustrate, here’s a utility function that turns a two-letter country abbreviation into an emoji representation of its flag:

func flag(country:String) -> String {
 let base : UInt32 = 127397
 var s = ""
 for v in country.unicodeScalars {
 s.unicodeScalars.append(UnicodeScalar(base + v.value)!)
 }
 return String(s)
}
// and here's how to use it:
let s = flag(country:"DE")

The curious thing is that there aren’t more methods for standard string manipulation. How, for example, do you capitalize a string, or find out whether a string contains a given substring? Most modern programming languages have a compact, convenient way of doing things like that; Swift doesn’t. The reason appears to be that missing features are provided by the Foundation framework, to which you’ll always be linked in real life (importing UIKit imports Foundation). A Swift String is bridged to a Foundation NSString. This means that, to a large extent, Foundation NSString properties and methods magically spring to life whenever you are using a Swift String. For example:

let s = "hello world"
let s2 = s.capitalized // "Hello World"

The capitalized
 property comes from the Foundation framework; it’s provided by Cocoa, not by Swift. It’s an NSString property; it appears tacked onto String “for free.” Similarly, here’s how to locate a substring of a string:

let s = "hello"
let range = s.range(of:"ell") // Optional(Range(...)) [details omitted]

I haven’t explained yet what an Optional is or what a Range is (I’ll talk about them later in this chapter), but that innocent-looking code has made a remarkable round-trip from Swift to Cocoa and back again: the Swift String s
 becomes an NSString, an NSString method is called, a Foundation NSRange struct is returned, and the NSRange is converted to a Swift Range and wrapped up in an Optional.

The String–NSString Element Mismatch

Swift and Cocoa have different ideas of what the elements of a string are. The Swift conception involves characters. The NSString conception involves UTF-16 codepoints. Each approach has its advantages. The NSString way makes for great speed and efficiency in comparison to Swift, which must walk the string to investigate how the characters are constructed; but the Swift way gives what you would intuitively think of as the right answer. To emphasize this difference, a nonliteral Swift string has no length
 property; its analog to an NSString’s length
 is its utf16.count
 .

Fortunately, the element mismatch doesn’t arise very often in practice; but it can arise. Here’s a good test case:

let s = "Ha\u{030A}kon"
print(s.count) // 5
let length = (s as NSString).length // or: s.utf16.count
print(length) // 6

We’ve created our string (the Norwegian name Håkon) using a Unicode codepoint that combines with the previous codepoint to form a character with a ring over it. Swift walks the whole string, so it normalizes the combination and reports five characters. Cocoa just sees at a glance that this string contains six 16-bit codepoints.

Character and String Index

Just as a String may be viewed as a sequence of UTF-8, UTF-16, or UTF-32 codepoints, it may also be viewed as a character sequence
 . Codepoints are numbers, but what we naturally think of as characters are effectively minimal strings: a character is a single “letter” or “symbol” — formally, a grapheme
 . The equivalence between numeric codepoints and symbolic graphemes is provided, in Unicode, by the notion of a grapheme cluster. To embody this equivalence, Swift provides the Character object type (a struct), representing a single
 grapheme cluster.

It isn’t common to encounter Character objects outside of some character sequence of which they are a part. There isn’t even a way to write a literal Character. To make a Character from scratch, initialize it from a single-character String:

let c = Character("h")

Similarly, you can pass a one-character String literal where a Character is expected, and many examples in this section will do so.

By the same token, you can initialize a String from a Character:

let c = Character("h")
let s = (String(c)).uppercased()

Characters can be compared for equality; “less than” means what you would expect it to mean.

In Swift 3 and earlier, a String object was formally distinct from its underlying sequence of Character objects; in order to work with the sequence of characters, you had to take the String’s characters
 property, yielding a String.CharacterView
 struct. You could then work with the character sequence, but the result of your operations would typically be another character sequence; if you wanted to treat that result as a string, you had to coerce it to a String object.

For example, by virtue of being a Sequence, a character sequence has a filter(_:)
 instance method that takes a function that takes a Character and returns a Bool, effectively eliminating those characters for which false
 is returned. Here’s how to use filter(_:)
 to delete all "l"
 (ell) characters from a string:

let s = "hello"
let schars = s.characters
let ell = Character("l")
let s2chars = schars.filter {$0 != ell}
let s2 = String(s2chars) // "heo"

In Swift 4, that approach is still legal, but it’s unnecessary. The formal dance of converting from a string to a character sequence and back again is eliminated; instead, a string may be treated directly
 as a character sequence, and you’ll need to use the characters
 property much less often. Thus, that example can be compressed to this:

let s = "hello"
let ell = Character("l")
let s2 = s.filter {$0 != ell}

Similarly, as I mentioned earlier, in Swift 4 you can walk through a string with for...in
 to obtain the String’s Characters, one by one; you’re walking through the string qua
 character sequence, without having to take the string’s characters
 property, as was necessary in Swift 3 and before:

let s = "hello"
for c in s {
 print(c) // print each Character on its own line
}

In Swift 4, a string has many handy properties and methods that previously belonged only to its underlying character sequence. By virtue of being a Collection, it has a first
 and last
 property; the resulting Character is wrapped in an Optional because the string might be empty:

let s = "hello"
let c1 = s.first // Optional("h")
let c2 = s.last // Optional("o")

The index(of:)
 method locates the first occurrence of a given character within the sequence and returns its index. Again, this is an Optional, because the character might be absent:

let s = "hello"
let firstL = s.index(of:"l") // Optional(2)

All Swift indexes are numbered starting with 0
 , so 2
 means the third character. The index value here, however, is not an Int; I’ll explain in a moment what it is and what it’s good for.

A related method, index(where:)
 , takes a function that takes a Character and returns a Bool. This code locates the first character smaller than "f"
 :

let s = "hello"
let firstSmall = s.index(where: {$0 < "f"})

By virtue of being a Sequence, a string qua
 character sequence has a contains(_:)
 method that returns a Bool, reporting whether a certain character is present:

let s = "hello"
let ok = s.contains("o") // true

Alternatively, contains(_:)
 can take a function that takes a Character and returns a Bool. This code reports whether the target string contains a vowel:

let s = "hello"
let ok = s.contains {"aeiou".contains($0)} // true

I already mentioned filter(_:)
 ; it, too, takes a function that takes a Character and returns a Bool, effectively eliminating those characters for which false
 is returned. Here, we delete all consonants from a string:

let s = "hello"
let s2 = s.filter {"aeiou".contains($0)} // "eo"

The dropFirst
 and dropLast
 methods return, in effect, a new string without the first or last character, respectively:

let s = "hello"
let s2 = s.dropFirst() // "ello"

I say “in effect” because a method that extracts a substring returns, in reality, a Substring instance. The Substring struct is an efficient way of pointing at part of some original String, rather than having to generate a new String. Thus, for example, when we call s.dropFirst()
 on the string "hello"
 , the resulting Substring points at the "ello"
 part of "hello"
 , which continues to exist; there is still only one string, and no new string storage memory is required.

In general, the difference between a String and a Substring will make little practical difference to you, because what you can do with a String, you can usually do also with a Substring. Nevertheless, they are different classes; this code won’t compile:

var s = "hello"
let s2 = s.dropFirst()
s = s2 // compile error

To pass a Substring where a String is expected, coerce the Substring to a String explicitly:

var s = "hello"
let s2 = s.dropFirst()
s = String(s2)

prefix(_:)
 and suffix(_:)
 extract a Substring of a given length from the start or end of the original string:

var s = "hello"
s = String(s.prefix(4)) // "hell"

split(_:)
 breaks a string up into an array, according to a function that takes a Character and returns a Bool. In this example, I obtain the words of a String, where a “word” is simplemindedly defined as a run of Characters other than a space:

let s = "hello world"
let arr = s.split{$0 == " "} // ["hello", "world"]

The result is actually an array of Substrings. If we needed to get String objects, we could apply the map(_:)
 function and coerce them all to Strings. I’ll talk about map(_:)
 in Chapter 4
 , so you’ll have to trust me for now:

let s = "hello world"
let arr = s.split{$0 == " "}.map{String($0)} // ["hello", "world"]

A String, qua
 character sequence, can also be manipulated similarly to an array. For example, you can use subscripting to obtain the character at a certain position. Unfortunately, this isn’t as easy as it might be. For example, what’s the second character of "hello"
 ? This doesn’t compile:

let s = "hello"
let c = s[1] // compile error

The reason is that the indexes on a String (or its underlying character sequence) are not Int values, but rather a special nested type, a String.Index
 (which is actually a type alias for String.CharacterView.Index
). To make an object of this type is rather tricky. Start with a String’s (or a character sequence’s) startIndex
 or endIndex
 , or with the return value from the index(of:)
 method; you can then call the index(_:offsetBy:)
 method to derive the index you want:

let s = "hello"
let ix = s.startIndex
let ix2 = s.index(ix, offsetBy:1)
let c = s[ix2] // "e"

The reason for this clumsy circumlocution is that Swift doesn’t know where the characters of a character sequence actually are until it walks the sequence; calling index(_:offsetBy:)
 is how you make Swift do that.

To offset an index by a single position, you can obtain the next or preceding index value with the index(after:)
 and index(before:)
 methods. Thus, I could have written the preceding example like this:

let s = "hello"
let ix = s.startIndex
let c = s[s.index(after:ix)] // "e"

Another reason why it’s necessary to think of a string index as an offset from the startIndex
 or endIndex
 is that those values, as Ints, may not be what you think they are — in particular, when you’re dealing with a Substring. Consider, once again, the following:

let s = "hello"
let s2 = s.dropFirst()

Now s2
 is "ello"
 . What, then, is s2.startIndex
 ? Not 0, but 1 — because s2
 is a Substring pointing into the original "hello"
 , where the index of the "e"
 is 1. Similarly, s2.index(of:"o")
 is not 3, but 4, because the index value is reckoned with respect to the original "hello"
 .

Once you’ve obtained a desired character index value, you can use it to modify the String. For example, the insert(contentsOf:at:)
 method inserts a string into a string:

var s = "hello"
let ix = s.index(s.startIndex, offsetBy:1)
s.insertContentsOf("ey, h", at: ix) // s is now "hey, hello"

Similarly, remove(at:)
 deletes a single character, and also returns that character. (Manipulations involving longer character stretches require use of a Range, which is the subject of the next section.)

Note that a character sequence can be coerced directly to an Array of Character objects — for example, Array("hello".characters)
 . It could be worth your while to do that, because array indexes are
 Ints, and are thus easy to work with. Once you’ve manipulated the array of Characters, you can coerce it directly to a String. I’ll give an example in the next section (and I’ll discuss arrays, and say more about collections and sequences, in Chapter 4
).

Range

The Range object type (a struct) represents a pair of endpoints. There are two operators for forming a Range literal; you supply a start value and an end value, with one of the Range operators between them:

...

Closed range operator. The notation a...b
 means “everything from a
 up to b
 , including
 b
 .”

..<

Half-open range operator. The notation a..<b
 means “everything from a
 up to but not
 including b
 .”

Spaces around a Range operator are legal.

The types of a Range’s endpoints will typically be some kind of number — most often, Ints:

let r = 1...3

If the end value is a negative literal, it has to be enclosed in parentheses or preceded by whitespace:

let r = -1000 ... -1

New in Swift 4, it is also possible to omit one of the end values from a Range literal, thus specifying a partial range. I’ll give examples later.

A very common use of a Range is to loop through numbers with for...in
 :

for ix in 1...3 {
 print(ix) // 1, then 2, then 3
}

There are no reverse Ranges: the start value of a Range can’t be greater than the end value (the compiler won’t stop you, but you’ll crash at runtime). In practice, you can use Range’s reversed()
 method to iterate from a higher value to a lower one:

for ix in (1...3).reversed() {
 print(ix) // 3, then 2, then 1
}

In Chapter 5
 I’ll show how to create a custom operator that effectively generates a reverse Range.

You can also use a Range’s contains(_:)
 instance method to test whether a value falls within given limits:

let ix = // ... an Int ...
if (1...3).contains(ix) { // ...

For purposes of testing containment, a Range’s endpoints can be Doubles:

let d = // ... a Double ...
if (0.1...0.9).contains(d) { // ...

There are also methods for learning whether two ranges overlap, and for clamping one range to another.

Another common use of a Range is to index into a sequence. For example, here’s one way to get the second, third, and fourth characters of a String. As I suggested at the end of the preceding section, we coerce the String’s characters
 to an Array; we can then use an Int Range as an index into that array, and coerce back to a String:

let s = "hello"
let arr = Array(s.characters)
let result = arr[1...3]
let s2 = String(result) // "ell"

Alternatively, you can use a Range to index directly into a String (or its underlying character sequence), but then it has to be a Range of String.Index
 , which, as I’ve already pointed out, is rather clumsy to obtain. One way to get one is to let Swift convert the NSRange that you get back from a Cocoa method call into a Swift Range for you:

let s = "hello"
let r = s.range(of:"ell") // a Swift Range (wrapped in an Optional)

You can also generate your Range endpoints as index values. Once you have a Range of the proper type, you can extract a substring by subscripting:

let s = "hello"
let ix1 = s.index(s.startIndex, offsetBy:1)
let ix2 = s.index(ix1, offsetBy:2)
let s2 = s[ix1...ix2] // "ell"

A partial range is a legal subscript value; the omitted endpoint is a shorthand for the startIndex
 or endIndex
 :

let s = "hello"
let ix2 = s.index(before: s.endIndex)
let s2 = s[..<ix2] // "hell"

The replaceSubrange(_:with:)
 method splices into a range, thus modifying the string:

var s = "hello"
let ix = s.startIndex
let r = s.index(ix, offsetBy:1)...s.index(ix, offsetBy:3)
s.replaceSubrange(r, with: "ipp") // s is now "hippo"

Similarly, you can delete a stretch of characters with the removeSubrange(_:)
 method:

var s = "hello"
let ix = s.startIndex
let r = s.index(ix, offsetBy:1)...s.index(ix, offsetBy:3)
s.removeSubrange(r) // s is now "ho"

Tuple

A tuple
 is a lightweight custom ordered collection of multiple values. As a type, it is expressed by surrounding the types of the contained values with parentheses and separating them by commas. For example, here’s a declaration for a variable whose type is a tuple of an Int and a String:

var pair : (Int, String)

The literal value of a tuple is expressed in the same way — the contained values, surrounded with parentheses and separated by commas:

var pair : (Int, String) = (1, "Two")

Those types can be inferred, so there’s no need for the explicit type in the declaration:

var pair = (1, "Two")

Tuples are a pure Swift language feature; they are not compatible with Cocoa and Objective-C, so you’ll use them only for values that Cocoa never sees. Within Swift, however, they have many uses. For example, a tuple is an obvious solution to the problem that a function can return only one value; a tuple is
 one value, but it contains
 multiple values, so using a tuple as the return type of a function permits that function to return multiple values.

Tuples come with numerous linguistic conveniences. You can assign to a tuple of variable names as a way of assigning to multiple variables simultaneously:

let ix: Int
let s: String
(ix, s) = (1, "Two")

That’s such a convenient thing to do that Swift lets you do it in one line, declaring and initializing multiple variables simultaneously:

let (ix, s) = (1, "Two")

To ignore one of the assigned values, use an underscore to represent it in the receiving tuple:

let pair = (1, "Two")
let (_, s) = pair // now s is "Two"

Assigning variable values to one another through a tuple swaps them safely:

var s1 = "hello"
var s2 = "world"
(s1, s2) = (s2, s1) // now s1 is "world" and s2 is "hello"

The enumerated
 method lets you walk a sequence with for...in
 and receive, on each iteration, each successive element’s index number along with the element itself; this double result comes to you as — you guessed it — a tuple:

let s = "hello"
for (ix,c) in s.enumerated() {
 print("character \(ix) is \(c)")
}

I also pointed out earlier that numeric instance methods such as addingReportingOverflow
 return a tuple.

You can refer to the individual elements of a tuple directly, in two ways. The first way is by index number, using a literal number
 (not a variable value) as the name of a message sent to the tuple with dot-notation:

let pair = (1, "Two")
let ix = pair.0 // now ix is 1

If you have a var
 reference to a tuple, you can assign into it by the same means:

var pair = (1, "Two")
pair.0 = 2 // now pair is (2, "Two")

The second way to access tuple elements is to give them labels. The notation is like that of function parameters, and must appear as part of the explicit or implicit type declaration. Thus, here’s one way to establish tuple element labels:

let pair : (first:Int, second:String) = (1, "Two")

And here’s another way:

let pair = (first:1, second:"Two")

The labels are now part of the type of this value, and travel with it through subsequent assignments. You can then use them as literal messages, just like (and together with) the numeric literals:

var pair = (first:1, second:"Two")
let x = pair.first // 1
pair.first = 2
let y = pair.0 // 2

You can assign from a tuple without labels into a corresponding tuple with labels (and vice versa
):

let pair = (1, "Two")
let pairWithNames : (first:Int, second:String) = pair
let ix = pairWithNames.first // 1

You can also pass, or return from a function, a tuple without labels where a corresponding tuple with labels is expected:

func tupleMaker() -> (first:Int, second:String) {
 return (1, "Two") // no labels here
}
let ix = tupleMaker().first // 1

If you’re going to be using a certain type of tuple consistently throughout your program, it might be useful to give it a type name. To do so, use Swift’s typealias
 keyword. For example, in my LinkSame app I have a Board class describing and manipulating the game layout. The board is a grid of Piece objects. I need a way to describe positions of the grid. That’s a pair of integers, so I define my own type as a tuple:

class Board {
 typealias Point = (x:Int, y:Int)
 // ...
}

The advantage of that notation is that it now becomes easy to use Points throughout my code. For example, given a Point, I can fetch the corresponding Piece:

func piece(at p:Point) -> Piece? {
 let (i,j) = p
 // ... error-checking goes here ...
 return self.grid[i][j]
}

Tip

Void, the type of value returned by a function that doesn’t return a value, is actually a type alias for an empty tuple. That’s why it is also notated as ()
 .

Optional

The Optional object type (an enum) wraps another object of any type. What makes an Optional optional is this: it might
 wrap another object, but then again it might not. Think of an Optional as being itself a kind of shoebox — a shoebox which can quite legally be empty.

Let’s start by creating an Optional that does wrap an object. Suppose we want an Optional wrapping the String "howdy"
 . One way to create it is with the Optional initializer:

var stringMaybe = Optional("howdy")

If we log stringMaybe
 to the console with print
 , we’ll see an expression identical to the corresponding initializer: Optional("howdy")
 .

After that declaration and initialization, stringMaybe
 is typed, not as a String, nor as an Optional plain and simple, but as an Optional wrapping a String. This means that any other Optional wrapping a String can be assigned to it — but not an Optional wrapping some other type. This code is legal:

var stringMaybe = Optional("howdy")
stringMaybe = Optional("farewell")

This code, however, is not legal:

var stringMaybe = Optional("howdy")
stringMaybe = Optional(123) // compile error

Optional(123)
 is an Optional wrapping an Int, and you can’t assign an Optional wrapping an Int where an Optional wrapping a String is expected.

Optionals are so important to Swift that special syntax for working with them is baked into the language. The usual way to make an Optional is not to use the Optional initializer (though you can certainly do that), but to assign or pass a value of some type to a reference that is already typed as an Optional wrapping that type. This seems as if it should not be legal — but it is. For example, once stringMaybe
 is typed as an Optional wrapping a String, it is legal to assign a String directly to it. The outcome is that the assigned String is wrapped in an Optional for us, automatically:

var stringMaybe = Optional("howdy")
stringMaybe = "farewell" // now stringMaybe is Optional("farewell")

We also need a way of typing something explicitly
 as an Optional wrapping a String. Otherwise, we cannot declare a variable or parameter with an Optional type. Formally, an Optional is a generic, so an Optional wrapping a String is an Optional<String>
 (I’ll explain that syntax in Chapter 4
). However, you don’t have to write that. The Swift language supports syntactic sugar for expressing an Optional type: use the name of the wrapped type followed by a question mark. For example:

var stringMaybe : String?

Thus I don’t need to use the Optional initializer at all. I can type the variable as an Optional wrapping a String and assign a String into it for wrapping, all in one move:

var stringMaybe : String? = "howdy"

That, in fact, is the normal way to make an Optional in Swift.

Once you’ve got an Optional wrapping a particular type, you can use it wherever an Optional wrapping that type is expected — just like any other value. If a function expects an Optional wrapping a String as its parameter, you can pass stringMaybe
 as argument to that parameter:

func optionalExpecter(_ s:String?) {}
let stringMaybe : String? = "howdy"
optionalExpecter(stringMaybe)

Moreover, where an Optional wrapping a certain type of value is expected, you can pass a value of that wrapped type instead. That’s because parameter passing is just like assignment: an unwrapped value will be wrapped implicitly for you. For example, if a function expects an Optional wrapping a String, you can pass a String argument, which will be wrapped into an Optional in the received parameter:

func optionalExpecter(_ s:String?) {
 // ... here, s will be an Optional wrapping a String ...
 print(s)
}
optionalExpecter("howdy") // console prints: Optional("howdy")

But you cannot do the opposite — you cannot use an Optional wrapping a type where the wrapped type is expected. This won’t compile:

func realStringExpecter(_ s:String) {}
let stringMaybe : String? = "howdy"
realStringExpecter(stringMaybe) // compile error

The error message reads: “Value of optional type Optional<String>
 not unwrapped; did you mean to use !
 or ?
 ?” You’re going to be seeing that sort of message a lot in Swift, so get used to it! As the message suggests, if you want to use an Optional where the type of thing it wraps is expected, you must unwrap
 the Optional — that is, you must reach inside it and retrieve
 the actual thing that it wraps. Now I’m going to talk about how to do that.

Unwrapping an Optional

We have seen more than one way to wrap an object in an Optional. But what about the opposite procedure? How do we unwrap an Optional to get at the object wrapped inside it? One way is to use the unwrap operator
 (or forced unwrap operator
), which is a postfixed exclamation mark. For example:

func realStringExpecter(_ s:String) {}
let stringMaybe : String? = "howdy"
realStringExpecter(stringMaybe!)

In that code, the stringMaybe!
 syntax expresses the operation of reaching inside the Optional stringMaybe
 , grabbing the wrapped value, and substituting it at that point. Since stringMaybe
 is an Optional wrapping a String, the thing inside it is a String. That is exactly what the realStringExpecter
 function wants as its parameter! stringMaybe
 is an Optional wrapping
 the String "howdy"
 , but stringMaybe!
 is
 the String "howdy"
 .

If an Optional wraps a certain type, you cannot send it a message expected by that type. You must unwrap it first. For example, let’s try to get an uppercase version of stringMaybe
 :

let stringMaybe : String? = "howdy"
let upper = stringMaybe.uppercased() // compile error

The solution is to unwrap stringMaybe
 to get at the String inside it. We can do this directly, in place, using the unwrap operator:

let stringMaybe : String? = "howdy"
let upper = stringMaybe!.uppercased()

If an Optional is to be used several times where the unwrapped type is expected, and if you’re going to be unwrapping it with the unwrap operator each time, your code can quickly start to look like the dialog from a 1960s Batman comic. For example, in iOS programming, an app’s window is an Optional UIWindow property of the app delegate (self.window
):

// self.window is an Optional wrapping a UIWindow
self.window!.rootViewController = RootViewController()
self.window!.backgroundColor = UIColor.white
self.window!.makeKeyAndVisible()

That sort of thing soon gets old (or silly). One obvious alternative is to assign the unwrapped value once
 to a variable of the wrapped type and then use that variable:

// self.window is an Optional wrapping a UIWindow
let window = self.window!
// now window (not self.window) is a UIWindow, not an Optional
window.rootViewController = RootViewController()
window.backgroundColor = UIColor.white
window.makeKeyAndVisible()

Implicitly unwrapped Optional

Swift provides another way of using an Optional where the wrapped type is expected: you can declare the Optional type
 as being implicitly unwrapped
 . An implicitly unwrapped Optional is an Optional, but the compiler permits some special magic associated with it: its value can be used directly
 where the wrapped type is expected. You can
 unwrap an implicitly unwrapped Optional explicitly, but you don’t have to, because it will be unwrapped for you, automatically, if you try to use it where the wrapped type is expected. Moreover, Swift provides syntactic sugar for expressing an implicitly unwrapped Optional type. Just as an Optional wrapping a String can be expressed as String?
 , an implicitly unwrapped Optional wrapping a String can be expressed as String!
 . For example:

func realStringExpecter(_ s:String) {}
var stringMaybe : String! = "howdy"
realStringExpecter(stringMaybe) // no problem

Bear in mind that an implicitly unwrapped Optional is still an Optional.
 It’s just a convenience. By declaring something as an implicitly unwrapped Optional, you are asking the compiler, if you happen to use this value where the wrapped type is expected, to forgive you and to unwrap the value for you.

As far as their values
 are concerned, a normal Optional wrapping a certain type (such as a String?
) and an implicitly unwrapped Optional wrapping that same type (such as a String!
) are considered interchangeable: you can pass either one where either one is expected.

In reality, an implicitly unwrapped Optional type is not really a distinct type; it is merely an Optional marked in a special way that allows it to be used where the unwrapped type is expected. For this reason, implicit unwrapping does not propagate by assignment. Here’s a case in point. If self
 is a UIViewController, then self.view
 is typed as UIView!
 . As a result, this expression is legal (assume v
 is a UIView):

self.view.addSubview(v)

But this is not legal:

let mainview = self.view
mainview.addSubview(v) // compile error

The problem is that, although self.view
 is an implicitly unwrapped Optional wrapping a UIView, mainview
 is a normal
 Optional wrapping a UIView, and so it would have to be unwrapped explicitly before you could send it the addSubview
 message. Alternatively, you could unwrap the implicitly unwrapped Optional explicitly at the outset:

let mainview = self.view!
mainview.addSubview(v)

The keyword nil

I have talked so far about Optionals that contain a wrapped value. But what about an Optional that doesn’t
 contain any wrapped value? Such an Optional is, as I’ve already said, a perfectly legal entity; that, indeed, is the whole point of Optionals.

You are going to need a way to ask
 whether an Optional contains a wrapped value, and a way to specify
 an Optional without
 a wrapped value. Swift makes both of those things easy, through the use of a special keyword, nil
 :

To learn whether an Optional contains a wrapped value

Test the Optional for equality against nil
 . If the test succeeds, the Optional is empty. An empty Optional is also reported in the console as nil
 .

To specify an Optional with no wrapped value

Assign or pass nil
 where the Optional type is expected. The result is an Optional of the expected type, containing no wrapped value.

For example:

var stringMaybe : String? = "Howdy"
print(stringMaybe) // Optional("Howdy")
if stringMaybe == nil {
 print("it is empty") // does not print
}
stringMaybe = nil
print(stringMaybe) // nil
if stringMaybe == nil {
 print("it is empty") // prints
}

The keyword nil
 lets you express the concept, “an Optional wrapping the appropriate type, but not actually containing any object of that type.” Clearly, that’s very convenient magic; you’ll want to take advantage of it. It is very important to understand, however, that it is
 magic: nil
 in Swift is not
 a thing and is not
 a value. It is a shorthand.
 It is natural to think and speak as if this shorthand were real. For example, I will say that something “is nil
 .” But in reality, nothing “is nil
 ”; nil
 isn’t a thing. What I really mean is that this thing is equatable with nil
 , because it is an Optional not wrapping anything. (I’ll explain in Chapter 4
 how nil
 , and Optionals in general, really work.)

Because a variable typed as an Optional can be nil
 , Swift follows a special initialization rule: a variable (var
) typed as an Optional is
 nil
 , automatically. This is legal:

func optionalExpecter(_ s:String?) {}
var stringMaybe : String?
optionalExpecter(stringMaybe)

That code is interesting because it looks as if it should be illegal. We declared a variable stringMaybe
 , but we never assigned it a value. Nevertheless we are now passing it around as if it were an actual thing. That’s because it is
 an actual thing. This variable has been implicitly initialized
 — to nil
 . A variable (var
) typed as an Optional is the only
 sort of variable that gets implicit initialization in Swift.

We come now to perhaps the most important rule in all of Swift: You cannot unwrap an Optional containing nothing
 (an Optional equatable with nil
). Such an Optional contains nothing; there’s nothing to unwrap. Like Oakland, there’s no there there. In fact, explicitly unwrapping an Optional containing nothing will crash your program
 at runtime:

var stringMaybe : String?
let s = stringMaybe! // crash

The crash message reads: “Fatal error: unexpectedly found nil
 while unwrapping an Optional value.” Get used to it, because you’re going to be seeing it a lot. This is an easy mistake to make. Unwrapping an Optional that contains no value is, in fact, probably the most common way to crash a Swift program. You should look upon this kind of crash as a blessing. Very often, in fact, you will want
 to crash if your Optional contains no value, because it should
 contain a value, and the fact that it doesn’t indicates that you’ve made a mistake elsewhere.

In the long run, however, crashing is bad. To eliminate this kind of crash, you need to ensure that your Optional contains a value, and don’t
 unwrap it if it doesn’t! Ensuring that an Optional contains a value before attempting to unwrap it is clearly a very important thing to do. Accordingly, Swift provides several convenient ways of doing it. I’ll describe some of them now, and I’ll discuss others in Chapter 5
 .

One obvious approach is to test your Optional against nil
 explicitly before you unwrap it:

var stringMaybe : String?
// ... stringMaybe might be assigned a real value here ...
if stringMaybe != nil {
 let s = stringMaybe!
 // ...
}

But there’s a more elegant way, as I shall now explain.

Optional chains

A common situation is that you want to send a message to the value wrapped inside an Optional. To do so, you can unwrap the Optional in place. I gave an example earlier:

let stringMaybe : String? = "howdy"
let upper = stringMaybe!.uppercased()

That form of code is called an Optional chain
 . In the middle of a chain of dot-notation, you have unwrapped an Optional.

You cannot
 send a message to an Optional without
 unwrapping it. Optionals themselves don’t respond to any messages. (Well, they do respond to some messages, but very few, and you are unlikely to use them — and in any case they are not the messages to which the thing inside them responds.) If you try to send to an Optional a message intended for the thing inside it, you will get an error message from the compiler:

let stringMaybe : String? = "howdy"
let upper = stringMaybe.uppercased() // compile error

We have already seen, however, that if you unwrap an Optional that contains no wrapped object, you’ll crash. So what if you’re not sure
 whether this Optional contains a wrapped object? How can you send a message to an Optional in that situation? Swift provides a special shorthand for exactly this purpose. To send a message safely
 to an Optional that might be empty, you can unwrap the Optional optionally.
 To do so, unwrap the Optional with the question mark postfix operator instead of the exclamation mark:

var stringMaybe : String?
// ... stringMaybe might be assigned a real value here ...
let upper = stringMaybe?.uppercased()

That’s an Optional chain in which you used a question mark to unwrap the Optional. By using that notation, you have unwrapped the Optional optionally — meaning conditionally. The condition in question is one of safety; a test for nil
 is performed for us. Our code means: “If stringMaybe
 contains a String, unwrap it and send it the uppercased
 message. If it doesn’t (that is, if it equates to nil
), do not
 unwrap it and do not
 send it any messages!”

Such code is a double-edged sword. On the one hand, if stringMaybe
 is nil
 , you won’t crash at runtime. On the other hand, if stringMaybe
 is nil
 , that line of code won’t do anything useful — you won’t get any uppercase string.

But now there’s a new question. In that code, we initialized a variable upper
 to an expression that involves sending the uppercased
 message. Now it turns out that the uppercased
 message might not even be sent. So what, exactly, is upper
 initialized to
 ?

To handle this situation, Swift has a special rule. If an Optional chain contains an optionally unwrapped Optional, and if this Optional chain produces a value, that value is itself wrapped in an Optional
 . Thus, upper
 is typed as an Optional wrapping a String. This works brilliantly, because it covers both possible cases. Let’s say, first, that stringMaybe
 contains a String:

var stringMaybe : String?
stringMaybe = "howdy"
let upper = stringMaybe?.uppercased()

After that code, upper
 is not
 a String; it is not
 "HOWDY"
 . It is an Optional wrapping "HOWDY"
 .

On the other hand, if the attempt to unwrap the Optional fails, the Optional chain can return nil
 instead:

var stringMaybe : String?
let upper = stringMaybe?.uppercased()

After that code, upper
 is typed as an Optional wrapping a String, but it wraps no string; its value is nil
 .

Unwrapping an Optional optionally in this way is elegant and safe; even if stringMaybe
 is nil
 , we won’t crash at runtime. On the other hand, we’ve ended up with yet another Optional on our hands! upper
 is typed as an Optional wrapping a String, and in order to use that String, we’re going to have to unwrap upper
 . And we don’t know whether upper
 is nil
 , so we have exactly the same problem we had before — we need to make sure that we unwrap upper
 safely, and that we don’t accidentally unwrap an empty Optional.

Longer Optional chains are legal. No matter how many Optionals are unwrapped in the course of the chain, if any of them is unwrapped optionally, the entire expression produces an Optional wrapping the type it would have produced if the Optionals were unwrapped normally, and is free to fail safely at any point along the way. For example:

// self is a UIViewController
let f = self.view.window?.rootViewController?.view.frame

The frame
 property of a view is a CGRect. But after that code, f
 is not
 a CGRect. It’s an Optional wrapping a CGRect. If any
 of the optional unwrapping along the chain fails (because the Optional we propose to unwrap is nil
), f
 will be nil
 to indicate failure.

(Observe that the preceding code does not
 end up nesting Optionals; it doesn’t produce a CGRect wrapped in an Optional wrapped in an Optional, merely because there are two Optionals being optionally unwrapped in the chain! However, it is possible, for other reasons, to end up with an Optional wrapped in an Optional. I’ll give an example in Chapter 4
 .)

If a function call returns an Optional, you can unwrap the result and use it. You don’t necessarily have to capture the result in order to do that; you can unwrap it in place, by putting an exclamation mark or a question mark after the function call (that is, after the closing parenthesis). That’s really no different from what we’ve been doing all along, except that instead of an Optional property or variable, this is a function call that returns an Optional. For example:

class Dog {
 var noise : String?
 func speak() -> String? {
 return self.noise
 }
}
let d = Dog()
let bigname = d.speak()?.uppercased()

After that, don’t forget, bigname
 is not a String — it’s an Optional wrapping a String.

You can also assign safely into an Optional chain. If any of the optionally unwrapped Optionals in the chain turns out to be nil
 , nothing happens:

// self is a UIViewController
self.navigationController?.hidesBarsOnTap = true

A view controller might or might not have a navigation controller, so its navigationController
 property is an Optional. In that code, we are setting our navigation controller’s hidesBarsOnTap
 property safely; if we happen to have no navigation controller, no harm is done — because nothing happens.

When assigning into an Optional chain, if you also want to know whether the assignment succeeded, you can capture the result of the assignment as an Optional wrapping a Void and test it for nil
 . For example:

let ok : Void? = self.navigationController?.hidesBarsOnTap = true

Now, if ok
 is not nil
 , self.navigationController
 was safely unwrapped and the assignment succeeded.

Tip

The !
 and ?
 postfix operators, which respectively unconditionally and conditionally unwrap an Optional, have basically nothing
 to do with the !
 and ?
 used with type names as syntactic sugar for expressing Optional types (such as String? and `String!
). The outward similarity has confused many a beginner.

Comparison with Optional

In an equality comparison with something other than nil
 , an Optional gets special treatment: the wrapped value, not the Optional itself, is compared. So, for example, this works:

let s : String? = "Howdy"
if s == "Howdy" { // ... they _are_ equal!

That shouldn’t work — how can an Optional be the same as a String? — but it does. Instead of comparing the Optional itself with "Howdy"
 , Swift automagically (and safely) compares its wrapped value (if there is one) with "Howdy"
 . If the wrapped value is "Howdy"
 , the comparison succeeds. If the wrapped value is not "Howdy"
 , the comparison fails. If there is no
 wrapped value (s
 is nil
), the comparison fails too — safely! Thus, you can compare s
 to nil
 or to a String, and the comparison works correctly in all cases.

The same, however, is not
 true for an inequality comparison, using the greater-than and less-than operators:

let i : Int? = 2
if i < 3 { // compile error

To perform that sort of comparison, you can unwrap safely and perform the comparison directly on the unwrapped value:

if i != nil && i! < 3 { // ... it _is_ less

Warning

Do not compare an implicitly unwrapped Optional with anything; you can crash at runtime.

Why Optionals?

Now that you know how
 to use an Optional, you are probably wondering why
 to use an Optional. Why does Swift have Optionals at all? What are they good for?

One very important purpose of Optionals is to provide interchange of object values with Objective-C
 . In Objective-C, any
 object reference can be nil
 . You thus need a way to send nil
 to Objective-C and to receive nil
 from Objective-C. Swift Optionals provide your only way to do that.

Swift will typically assist you by a judicious use of appropriate types in the Cocoa APIs. For example, consider a UIView’s backgroundColor
 property. It’s a UIColor, but it can be nil
 , and you are allowed to set it to nil
 . Thus, it is typed as a UIColor?
 . You don’t need to work directly with Optionals in order to set
 such a value! Remember, assigning the wrapped type to an Optional is legal, as the assigned value will be wrapped for you. Thus, you can set myView.backgroundColor
 to a UIColor — or to nil
 . But if you get
 a UIView’s backgroundColor
 , you now have an Optional wrapping a UIColor, and you must be conscious of this fact
 , for all the reasons I’ve already discussed: if you’re not, surprising things can happen:

let v = UIView()
let c = v.backgroundColor
let c2 = c.withAlphaComponent(0.5) // compile error

You’re trying to send the withAlphaComponent
 message to c
 , as if it were a UIColor. It isn’t
 a UIColor. It’s an Optional wrapping a UIColor. Xcode will try to help you in this situation; if you use code completion (Chapter 9
) to enter the name of the withAlphaComponent
 method, Xcode will insert a question mark after c
 , thus (optionally) unwrapping the Optional and giving you legal code:

let v = UIView()
let c = v.backgroundColor
let c2 = c?.withAlphaComponent(0.5)

In the vast majority of situations, however, a Cocoa object type will not
 be marked as an Optional. That’s because, although in theory it could
 be nil
 (because any Objective-C object reference can be nil
), in practice it won’t be. Swift thus saves you a step by treating the value as the object type itself. This magic is performed by hand-tweaking the Cocoa APIs (also called auditing
). In the very first public version of Swift (in June of 2014), all
 object values received from Cocoa were typed as Optionals (usually implicitly unwrapped Optionals); but then Apple embarked on the massive project of hand-tweaking the APIs to eliminate Optionals that didn’t need to be Optionals, and that project is now essentially complete.

Another important use of Optionals is to defer initialization
 of an instance property. If a variable (declared with var
) is typed as an Optional, it has a value even if you don’t initialize it — namely nil
 . That comes in very handy in situations where you know something will
 have a value, but not right away. A typical example in real-life iOS programming is an outlet, which is a reference to something in your interface such as a button:

class ViewController: UIViewController {
 @IBOutlet var myButton: UIButton!
 // ...
}

Ignore, for now, the @IBOutlet
 designation, which is an internal hint to Xcode (as I’ll explain in Chapter 7
). The important thing is that this property, myButton
 , won’t have a value when our ViewController instance first comes into existence, but shortly thereafter the view controller’s view will be loaded and myButton
 will be set so that it points to an actual UIButton object in the interface. Therefore, the variable is typed as an implicitly unwrapped Optional. It’s an Optional because we need a placeholder value (namely nil
) for myButton
 when the ViewController instance first comes into existence. It’s implicitly unwrapped so that in our code, once self.myButton
 has been assigned a UIButton value, we can treat it as a reference to an actual UIButton, passing through the Optional without noticing that it is
 an Optional. Moreover, none of this view controller’s code will run before the view is loaded and the actual button is assigned to myButton
 , so the implicitly unwrapped Optional is generally safe.

A closely related situation is when a variable, again typically an instance property, represents data that will take time to acquire. For example, in my Albumen app, as we launch, I create an instance of my root view controller. I also want to gather a bunch of data about the user’s music library and store that data in instance properties of the root view controller instance. But gathering that data will take time. Therefore I must instantiate the root view controller first
 and gather the data later
 , because if we pause to gather the data before
 instantiating the root view controller, the app will take too long to launch — the delay will be perceptible, and we might even crash (because iOS forbids long launch times). Therefore the data properties are all typed as Optionals; they are nil
 until the data are gathered, at which time they are assigned their “real” values:

class RootViewController : UITableViewController {
 var albums : [MPMediaItemCollection]! // initialized to nil
 // ...

Finally, one of the most important uses of Optionals is to permit a value to be marked as empty or erroneous
 . The preceding code is a good illustration. When my Albumen app launches, it displays a table listing all the user’s music albums. At launch time, however, that data has not yet been gathered. My table-display code tests albums
 to see whether it’s nil
 and, if it is, displays an empty table. After gathering the data, I tell my table to display its data again
 . This time, the table-display code finds that albums
 is not
 nil
 , but rather consists of actual data — and it now displays that data. The use of an Optional allows one and the same value, albums
 , to store the data or to state that there is no data.

Many built-in Swift functions use an Optional in a similar way. For example:

let arr = [1,2,3]
let ix = arr.index(of:4)
if ix == nil { // ...

Swift’s index(of:)
 method returns an Optional because the object sought might not be present, in which case it has no index at all. The type returned cannot be an Int, because there is no Int value that can be taken to mean, “I didn’t find this object at all.” Returning an Optional solves the problem neatly: nil
 means “I didn’t find the object,” and otherwise the actual Int result is sitting there wrapped up in the Optional.

Chapter 4.
 Object Types

In the preceding chapter, I discussed some built-in object types. But I have not yet explained object types themselves. As I mentioned in Chapter 1
 , Swift object types come in three flavors: enum, struct, and class. What are the differences between them? And how would you create your own object type?

In this chapter, I’ll describe object types in general, and then each of the three flavors. Then I’ll explain three Swift ways of giving an object type greater flexibility: protocols, generics, and extensions. Finally, the survey of Swift’s built-in types will conclude with three umbrella types and three collection types.

Object Type Declarations and Features

Object types are declared with the flavor of the object type (enum
 , struct
 , or class
), the name of the object type (which should start with a capital letter), and curly braces
 :

class Manny {
}
struct Moe {
}
enum Jack {
}

The visibility (scope
), and hence the usability, of an object type by other code depends upon where its declaration appears:

	Object types declared at the top level of a file
 will, by default, be visible to all files in the same module. This is the usual place for object type declarations.

	Sometimes it’s useful to declare a type inside the declaration of another type
 , thus giving it a namespace. This is called a nested type
 .

	An object type declared within the body of a function
 will exist only inside the scope of the curly braces that surround it; such declarations are legal but rare.

Declarations for any object type may contain within their curly braces the following things:

Initializers

An object type is merely the type
 of an object. The purpose of declaring an object type will usually (though not always) be so that you can make an actual object — an instance
 — that has
 this type. An initializer is a function, declared and called in a special way, allowing you to do that.

Properties

A variable declared at the top level of an object type declaration is a property
 . By default, it is an instance property
 . An instance property is scoped to an instance: it is accessed through a particular instance of this type, and its value can be different for every instance of this type.

Alternatively, a property can be a static/class property
 . For an enum or struct, it is declared with the keyword static
 ; for a class, it may instead be declared with the keyword class
 . Such a property belongs to the object type itself: it is accessed through the type, and it has just one value, associated with the type.

Methods

A function declared at the top level of an object type declaration is a method
 . By default, it is an instance method
 : it is called by sending a message to a particular instance of this type. Inside an instance method, self
 is the instance.

Alternatively, a method can be a static/class method
 . For an enum or struct, it is declared with the keyword static
 ; for a class, it may be declared instead with the keyword class
 . It is called by sending a message to the type. Inside a static/class method, self
 is the type.

Subscripts

A subscript is a special kind of instance method. It is called by appending square brackets to an instance reference.

Object type declarations

An object type declaration can contain an object type declaration — a nested type. From inside the containing object type, the nested type is in scope; from outside the containing object type, the nested type must be referred to through the containing object type. Thus, the containing object type is a namespace for the nested type.

Initializers

An initializer
 is a function called in order to bring an instance of an object type into existence. Strictly speaking, it is a static/class method, because it is called by talking to the object type. It is usually called using special syntax: the name of the type is followed directly by parentheses, as if the type itself were a function. When an initializer is called, a new instance is created and returned as a result. You will usually do something with the returned instance, such as assigning it to a variable, in order to preserve it and work with it in subsequent code.

For example, suppose we have a Dog class:

class Dog {
}

Then we can make a Dog instance like this:

Dog()

That code, however, though legal, is silly — so silly that it warrants a warning from the compiler. We have created a Dog instance, but there is no reference to that instance. Without such a reference, the Dog instance comes into existence and then immediately vanishes in a puff of smoke. The usual sort of thing is more like this:

let fido = Dog()

Now our Dog instance will persist as long as the variable fido
 persists (see Chapter 3
) — and the variable fido
 gives us a reference to our Dog instance, so that we can use it.

Observe that Dog()
 calls an initializer even though our Dog class doesn’t declare any initializers! The reason is that object types may have implicit initializers
 . These are a convenience that save you the trouble of writing your own initializers. But you can
 write your own initializers, and you will often do so.

How to write an initializer

An initializer is a kind of function, and its declaration syntax is rather like that of a function. To declare an initializer, you use the keyword init
 followed by a parameter list, followed by curly braces
 containing the code. An object type can have multiple initializers, distinguished by their parameters. A frequent use of the parameters is to set the values of instance properties.

For example, here’s a Dog class with two instance properties, name
 (a String) and license
 (an Int). We give these instance properties default values that are effectively placeholders — an empty string and the number zero. Then we declare three initializers, so that the caller can create a Dog instance in three different ways: by supplying a name, by supplying a license number, or by supplying both. In each initializer, the parameters supplied are used to set the values of the corresponding properties:

class Dog {
 var name = ""
 var license = 0
 init(name:String) {
 self.name = name
 }
 init(license:Int) {
 self.license = license
 }
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

Observe that in that code, in each initializer, I’ve given each parameter the same name as the property to which it corresponds. There’s no reason to do that apart from stylistic clarity. In the code for each initializer, I can distinguish the parameter from the property by using self
 to access the property.

The result of that declaration is that I can create a Dog in three different ways:

let fido = Dog(name:"Fido")
let rover = Dog(license:1234)
let spot = Dog(name:"Spot", license:1357)

What I can’t
 do is to create a Dog with no
 initializer parameters. I wrote initializers, so my implicit initializer went away. This code is no longer legal:

let puff = Dog() // compile error

Of course, I could make
 that code legal by explicitly declaring an initializer with no parameters:

class Dog {
 var name = ""
 var license = 0
 init() {
 }
 init(name:String) {
 self.name = name
 }
 init(license:Int) {
 self.license = license
 }
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

Now, the truth is that we don’t need those four initializers, because an initializer is a function, and a function’s parameters can have default values. Thus, I can condense all that code into a single initializer, like this:

class Dog {
 var name = ""
 var license = 0
 init(name:String = "", license:Int = 0) {
 self.name = name
 self.license = license
 }
}

I can still make an actual Dog instance in four different ways:

let fido = Dog(name:"Fido")
let rover = Dog(license:1234)
let spot = Dog(name:"Spot", license:1357)
let puff = Dog()

Now comes the really interesting part. In my property declarations, I can eliminate
 the assignment of default initial values (as long as I declare explicitly the type
 of each property):

class Dog {
 var name : String // no default value!
 var license : Int // no default value!
 init(name:String = "", license:Int = 0) {
 self.name = name
 self.license = license
 }
}

That code is legal (and common) — because an initializer initializes! In other words, I don’t have to give my properties initial values in their declarations, provided I give them initial values in all initializers
 . That way, I am guaranteed that all my instance properties have values when the instance comes into existence, which is what matters. Conversely, an instance property without an initial value when the instance comes into existence is illegal
 . A property must
 be initialized either as part of its declaration or by every initializer, and the compiler will stop you otherwise.

The Swift compiler’s insistence that all instance properties be properly initialized is a valuable feature of Swift. (Contrast Objective-C, where instance properties can go uninitialized — and often do, leading to mysterious errors later.) Don’t fight the compiler; work with it. The compiler will help you by giving you an error message (“Return from initializer without initializing all stored properties”) until all
 your initializers initialize all
 your instance properties:

class Dog {
 var name : String
 var license : Int
 init(name:String = "") {
 self.name = name // compile error
 }
}

Because setting an instance property in an initializer counts as initialization, it is legal even if the instance property is a constant declared with let
 :

class Dog {
 let name : String
 let license : Int
 init(name:String = "", license:Int = 0) {
 self.name = name
 self.license = license
 }
}

In our artificial examples, we have been very generous with our initializer: we are letting the caller instantiate a Dog without supplying a name:
 argument or a license:
 argument. Usually, however, the purpose of an initializer is just the opposite: we want to force
 the caller to supply all
 needed information at instantiation time. Thus, in real life, it is much more likely that our Dog class would look like this:

class Dog {
 let name : String
 let license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

In that code, our Dog has a name
 property and a license
 property, and values for these must
 be supplied at instantiation time (there are no default values), and those values can never be changed thereafter (these properties are constants). In this way, we enforce a rule that every Dog must have a meaningful name and license. There is now only one
 way to make a Dog:

let spot = Dog(name:"Spot", license:1357)

Optional properties

Sometimes, there is no meaningful value that can be assigned to an instance property during initialization. For example, perhaps the initial value of this property will not be obtained until some time has elapsed after
 this instance has come into existence. This situation conflicts with the requirement that all instance properties be initialized either in their declaration or through an initializer. You could, of course, just circumvent the problem by assigning a default initial value anyway; but this fails to communicate to your own code the fact that this isn’t a “real” value.

A sensible and common solution, as I explained in Chapter 3
 , is to declare your instance property as a var
 having an Optional type. An Optional has a value, namely nil
 , signifying that no “real” value has been supplied; and an Optional var
 is initialized to nil
 automatically. Thus, your code can test this instance property against nil
 and, if it is nil
 , it won’t use the property. Later, the property will be given its “real” value. Of course, that value is now wrapped in an Optional; but if you declare this property as an implicitly unwrapped Optional, you can use the wrapped value directly, without explicitly unwrapping it — as if this weren’t an Optional at all — once you’re sure it is safe to do so:

// this property will be set automatically when the nib loads
@IBOutlet var myButton: UIButton!
// this property will be set after time-consuming gathering of data
var albums : [MPMediaItemCollection]!

Referring to self

An initializer may refer to an already initialized instance property, and may refer to an uninitialized instance property in order to initialize it. Otherwise, an initializer may not refer to self
 , explicitly or implicitly, until all
 instance properties have been initialized. This rule guarantees that the instance is fully formed before it is used. This code, for example, is illegal:

struct Cat {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 meow() // too soon - compile error
 self.license = license
 }
 func meow() {
 print("meow")
 }
}

The call to the instance method meow
 is implicitly a reference to self
 — it means self.meow()
 . The initializer can say that, but not until it has fulfilled its primary contract of initializing all uninitialized properties. The call to the instance method meow
 simply needs to be moved down one line, so that it comes after
 both name
 and license
 have been initialized.

Delegating initializers

Initializers within an object type can call one another by using the syntax self.init(...)
 . An initializer that calls another initializer is called a delegating initializer
 . When an initializer delegates, the other initializer — the one that it delegates to — must completely initialize the instance first, and then the delegating initializer can work with the fully initialized instance, possibly setting again a var
 property that was already set by the initializer that it delegated to.

A delegating initializer appears to be an exception to the rule against saying self
 too early. But it isn’t, because it is saying self
 in order to delegate — and delegating will cause all instance properties to be initialized. In fact, the rules about a delegating initializer saying self
 are even more stringent: a delegating initializer cannot refer to self
 , not even
 to set a property, until after the call to the other initializer. For example:

struct Digit {
 var number : Int
 var meaningOfLife : Bool
 init(number:Int) {
 self.number = number
 self.meaningOfLife = false
 }
 init() { // this is a delegating initializer
 self.init(number:42)
 self.meaningOfLife = true
 }
}

Moreover, a delegating initializer cannot set an immutable property (a let
 variable) at all. That is because it cannot refer to the property until after it has called the other initializer, and at that point the instance is fully formed — initialization proper is over, and the door for initialization of immutable properties has closed. Thus, the preceding code would be illegal if meaningOfLife
 were declared with let
 , because the second initializer is a delegating initializer and cannot set an immutable property.

Be careful not to delegate recursively! If you tell an initializer to delegate to itself, or if you create a vicious circle of delegating initializers, the compiler won’t stop you (I regard that as a bug), but your running app will hang. For example, don’t say this:

struct Digit { // do not do this!
 var number : Int = 100
 init(value:Int) {
 self.init(number:value)
 }
 init(number:Int) {
 self.init(value:number)
 }
}

Failable initializers

An initializer can return an Optional wrapping the new instance. In this way, nil
 can be returned to signal failure. An initializer that behaves this way is a failable initializer
 . To mark an initializer as failable when declaring it, put a question mark after the keyword init
 . If your failable initializer needs to return nil
 , explicitly write return nil
 . It is up to the caller to test the resulting Optional for equivalence with nil
 , unwrap it, and so forth, as with any Optional.

Here’s a version of Dog with an initializer that returns an Optional, returning nil
 if the name:
 or license:
 arguments are invalid:

class Dog {
 let name : String
 let license : Int
 init?(name:String, license:Int) {
 if name.isEmpty {
 return nil
 }
 if license <= 0 {
 return nil
 }
 self.name = name
 self.license = license
 }
}

The resulting value is typed as an Optional wrapping a Dog, and the caller will need to unwrap that Optional (if isn’t nil
) before sending any messages to it.

Cocoa and Objective-C conventionally return nil
 from initializers to signal failure; the API for such initializers has been hand-tweaked as a Swift failable initializer if initialization really might fail. For example, the UIImage initializer init?(named:)
 is a failable initializer, because there might be no image with the given name. It is not implicitly unwrapped, so the resulting value is a UIImage?
 , and will typically have to be unwrapped before using it. (Most Objective-C initializers, however, are not
 bridged as failable initializers, even though in theory any
 Objective-C initializer might return nil
 . This is essentially the same hand-tweaking policy I described in “Why Optionals?”
 .)

Properties

A property
 is a variable — one that happens to be declared at the top level of an object type declaration. This means that everything said about variables in Chapter 3
 applies. A property has a fixed type; it can be declared with var
 or let
 ; it can be stored or computed; it can have setter observers. An instance property can also be declared lazy
 .

How properties are accessed

If a property is an instance property (the default), it can be accessed only through an instance, and its value is separate for each instance. For example, let’s start once again with a Dog class:

class Dog {
 let name : String
 let license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}

Our Dog class has a name
 instance property. Then we can make two different Dog instances with two different name
 values, and we can access each Dog instance’s name
 through the instance:

let fido = Dog(name:"Fido", license:1234)
let spot = Dog(name:"Spot", license:1357)
let aName = fido.name // "Fido"
let anotherName = spot.name // "Spot"

A static/class property, on the other hand, is accessed through the type, and is scoped to the type, which usually means that it is global and unique. I’ll use a struct as an example:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
}

Now code elsewhere can fetch the values of Greeting.friendly
 and Greeting.hostile
 . That example is neither artificial nor trivial; immutable static properties are a convenient and effective way to supply your code with nicely namespaced constants.

Property initialization

A stored instance property must be given an initial value. But, as I explained a moment ago, this doesn’t have to be through assignment in the declaration; it can be through an initializer instead. Setter observers are not called during initialization of properties.

A property declaration that assigns an initial value to the property cannot fetch an instance property or call an instance method
 . Such behavior would require a reference, explicit or implicit, to self
 ; and during initialization, there is no self
 yet — self
 is exactly what we are in the process of initializing. Making this mistake can result in some of Swift’s most perplexing compile error messages. For example, this is illegal (and removing the explicit references to self
 doesn’t make it legal):

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 let whole = self.first + " " + self.last // compile error
}

There are two common solutions in that situation:

Make this a computed property

A computed property can refer to self
 because the computation won’t actually be performed until after self
 exists:

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 var whole : String {
 return self.first + " " + self.last
 }
}

Declare this property as lazy

Like a computed property, a lazy
 property can refer to self
 legally because that reference won’t be performed until after self
 exists:

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 lazy var whole = self.first + " " + self.last
}

As I demonstrated in Chapter 3
 , a variable can be initialized as part of its declaration using multiple lines of code by means of a define-and-call anonymous function. If this variable is an instance property, and if that code is to refer to other instance properties or instance methods, the variable must be declared lazy
 :

class Moi {
 let first = "Matt"
 let last = "Neuburg"
 lazy var whole : String = {
 var s = self.first
 s.append(" ")
 s.append(self.last)
 return s
 }()
}

Unlike instance properties, static properties can
 be initialized with reference to one another; the reason is that static property initializers are lazy (see Chapter 3
):

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static let ambivalent = friendly + " but " + hostile
}

Notice the lack of self
 in that code. In static/class code, self
 means the type itself. I like to use self
 explicitly wherever it would be implicit, but here I can’t use it without arousing the ire of the compiler (I regard this as a bug). To clarify the status of the terms friendly
 and hostile
 , I can use the name of the type, just as any other code would do:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static let ambivalent = Greeting.friendly + " but " + Greeting.hostile
}

On the other hand, if I write ambivalent
 as a computed property, I can
 use self
 :

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static var ambivalent : String {
 return self.friendly + " but " + self.hostile
 }
}

On the other other hand, I’m not allowed to use self
 when the initial value is set by a define-and-call anonymous function (again, I regard this as a bug):

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static var ambivalent : String = {
 return self.friendly + " but " + self.hostile // compile error
 }()
}

Methods

A method
 is a function — one that happens to be declared at the top level of an object type declaration. This means that everything said about functions in Chapter 2
 applies.

By default, a method is an instance method. This means that it can be accessed only through an instance. Within the body of an instance method, self
 is the instance. To illustrate, let’s continue to develop our Dog class:

class Dog {
 let name : String
 let license : Int
 let whatDogsSay = "woof"
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 func bark() {
 print(self.whatDogsSay)
 }
 func speak() {
 self.bark()
 print("I'm \(self.name)")
 }
}

Now I can make a Dog instance and tell it to speak:

let fido = Dog(name:"Fido", license:1234)
fido.speak() // woof I'm Fido

In my Dog class, the speak
 method calls the instance method bark
 by way of self
 , and obtains the value of the instance property name
 by way of self
 ; and the bark
 instance method obtains the value of the instance property whatDogsSay
 by way of self
 . This is because instance code can use self
 to refer to this instance. Such code can omit self
 if the reference is unambiguous; thus, for example, I could have written this:

func speak() {
 bark()
 print("I'm \(name)")
}

But I never
 write code like that (except by accident). Omitting self
 , in my view, makes the code harder to read and maintain; the loose terms bark
 and name
 seem mysterious and confusing. Moreover, sometimes self
 cannot be omitted. For example, in my implementation of init(name:license:)
 , I must
 use self
 to disambiguate between the parameter name
 and the property self.name
 .

A static/class method is accessed through the type, and self
 means the type. I’ll use our Greeting struct as an example:

struct Greeting {
 static let friendly = "hello there"
 static let hostile = "go away"
 static var ambivalent : String {
 return self.friendly + " but " + self.hostile
 }
 static func beFriendly() {
 print(self.friendly)
 }
}

And here’s how to call the static beFriendly
 method:

Greeting.beFriendly() // hello there

There is a kind of conceptual wall between static/class members, on the one hand, and instance members on the other; even though they may be declared within the same object type declaration, they inhabit different worlds. A static/class method can’t refer to “the instance” because there is no instance; thus, a static/class method cannot directly refer to any instance properties or call any instance methods. An instance method, on the other hand, can refer to the type, and can thus access static/class properties and can call static/class methods.

For example, let’s return to our Dog class and grapple with the question of what dogs say. Presume that all dogs say the same thing. We’d prefer, therefore, to express whatDogsSay
 not at instance level but at class level. This would be a good use of a static property. Here’s a simplified Dog class that illustrates:

class Dog {
 static var whatDogsSay = "woof"
 func bark() {
 print(Dog.whatDogsSay)
 }
}

Now we can make a Dog instance and tell it to bark:

let fido = Dog()
fido.bark() // woof

(I’ll talk later in this chapter about another way in which an instance method can refer to the type.)

The Secret Life of Instance Methods

Here’s a secret: instance methods are actually static/class methods. For example, this is legal (but strange):

class MyClass {
 var s = ""
 func store(_ s:String) {
 self.s = s
 }
}
let m = MyClass()
let f = MyClass.store(m) // what just happened!?

Even though store
 is an instance method, we are able to call it as a class method — with a parameter that is an instance of this class! The reason is that an instance method is actually a curried static/class method composed of two functions — one function that takes an instance, and another function that takes the parameters of the instance method. Thus, after that code, f
 is the second
 of those functions, and can be called as a way of passing a parameter to the store
 method of the instance m
 :

f("howdy")
print(m.s) // howdy

Subscripts

A subscript
 is an instance method that is called in a special way — by appending square brackets to an instance reference. The square brackets can contain arguments to be passed to the subscript method. You can use this feature for whatever you like, but it is suitable particularly for situations where this is an object type with elements
 that can be appropriately accessed by key or by index number. I have already described (in Chapter 3
) the use of this syntax with strings, and it is familiar also from dictionaries and arrays; you can use square brackets with strings and dictionaries and arrays exactly because Swift’s String and Dictionary and Array types declare subscript methods.

The syntax for declaring a subscript method is somewhat like a function declaration and somewhat like a computed property declaration. That’s no coincidence! A subscript is like a function in that it can take parameters: arguments can appear in the square brackets when a subscript method is called. A subscript is like a computed property in that the call is used like a reference to a property: you can fetch its value or you can assign into it.

To illustrate, I’ll write a struct that treats an integer as if it were a digit sequence, returning a digit that can be specified by an index number in square brackets; for simplicity, I’m deliberately omitting any sort of error-checking:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 subscript(ix:Int) -> Int { [image: 1]

 [image: 2]

 get { [image: 3]

 let s = String(self.number)
 return Int(String(s[s.index(s.startIndex, offsetBy:ix)]))!
 }
 }
}

[image: 1]

After the keyword subscript
 we have a parameter list stating what parameters are to appear inside the square brackets; by default, their names are not externalized
 (I regard this a bug in the language).

[image: 2]

Then, after the arrow operator, we have the type of value that is passed out (when the getter is called) or in (when the setter is called); this is parallel to the type declared for a computed property, even though the syntax with the arrow operator is like the syntax for the returned value in a function declaration.

[image: 3]

Finally, we have curly braces
 whose contents are exactly like those of a computed property. You can have get
 and curly braces for the getter, and set
 and curly braces for the setter. If there’s a getter and no setter, the word get
 and its curly braces can be omitted. The setter receives the new value as newValue
 , but you can change that name by supplying a different name in parentheses after the word set
 .

Here’s an example of calling the getter; the instance with appended square brackets containing the arguments is used just as if you were getting a property value:

var d = Digit(1234)
let aDigit = d[1] // 2

Now I’ll expand my Digit struct so that its subscript method includes a setter (and again I’ll omit error-checking):

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 subscript(ix:Int) -> Int {
 get {
 let s = String(self.number)
 return Int(String(s[s.index(s.startIndex, offsetBy:ix)]))!
 }
 set {
 var s = String(self.number)
 let i = s.index(s.startIndex, offsetBy:ix)
 s.replaceSubrange(i...i, with: String(newValue))
 self.number = Int(s)!
 }
 }
}

And here’s an example of calling the setter; the instance with appended square brackets containing the arguments is used just as if you were setting a property value:

var d = Digit(1234)
d[0] = 2 // now d.number is 2234

An object type can declare multiple subscript methods, distinguished by their parameters.

Nested Object Types

An object type may be declared inside an object type declaration, forming a nested type:

class Dog {
 struct Noise {
 static var noise = "woof"
 }
 func bark() {
 print(Dog.Noise.noise)
 }
}

A nested object type is no different from any other object type, but the rules for referring to it from the outside are changed; the surrounding object type acts as a namespace, and must be referred to explicitly in order to access the nested object type:

Dog.Noise.noise = "arf"

Here, the Noise struct is namespaced inside the Dog class. This namespacing provides clarity: the name Noise does not float free, but is explicitly associated with the Dog class to which it belongs. Namespacing also allows more than one Noise struct to exist, without any clash of names. Swift built-in object types often take advantage of namespacing; for example, the String struct is one of several structs that contain an Index struct, with no clash of names.

Instance References

On the whole, the names of object types will be global, and you will be able to refer to them simply by using their names. Instances, however, are another story. Instances must be deliberately created, one by one. That is what instantiation is for. Moreover, once you have created an instance, it is up to you to cause that instance to persist, by storing the instance in a variable with sufficient lifetime. Subsequently, using that variable as a reference, you can send instance messages to that instance, accessing instance properties and calling instance methods.

Instantiation may involve you calling an initializer, or some other object may create or provide the instance for you. A simple example is what happens when you manipulate a String, like this:

let s = "Hello, world"
let s2 = s.uppercased()

In that code, we end up with two String instances. The first one, s
 , we created using a string literal. The second one, s2
 , was created for us when we called the first string’s uppercased
 method. Thus we have two instances, and they will persist independently as long as our references to them persist; but we didn’t get either of them by explicitly calling an initializer.

It is of great importance to distinguish between situations where you need to create
 an instance and situations where the instance you are interested in already
 exists in some persistent fashion. The problem, in the latter case, will be to find a way of getting a reference
 to that existing instance.

Let’s say, for example, that this is a real-life iOS app. You will certainly have a root view controller, which will be an instance of some type of UIViewController. Let’s say it’s an instance of the ViewController class. Once your app is up and running, this instance already exists. It would then be utterly counterproductive to attempt to speak to the root view controller by instantiating
 the ViewController class:

let theVC = ViewController() // legal but stupid

That code demonstrates a very common beginner mistake. All it does is to make a second, different
 instance of the ViewController class, and your messages to that instance will be wasted, as it is not the particular already existing instance
 that you wanted to talk to.

Getting a reference to an already existing instance can be, of itself, an interesting problem. The process always starts with something you already have a reference to. Often, this will be a class. In iOS programming, the app itself is an instance, and there is a class that holds a reference to that instance and will hand it to you whenever you ask for it. That class is the UIApplication class, and the way to get a reference to the app instance is through its shared
 class property:

let app = UIApplication.shared

Now we have a reference to the application instance. The application instance has a keyWindow
 property:

let window = app.keyWindow

Now we have a reference to our app’s key window. That window owns the root view controller, and will hand us a reference to it, as its own rootViewController
 property; the app’s keyWindow
 is an Optional, so to get at its rootViewController
 we must unwrap the Optional:

let vc = window?.rootViewController

And voilà, we have a reference to our app’s root view controller. To obtain the reference to this persistent instance, we created, in effect, a chain of method calls and properties leading from the known to the unknown, from a globally available class to the particular desired instance:

let app = UIApplication.shared
let window = app.keyWindow
let vc = window?.rootViewController

Clearly, we can write that chain as an actual chain, using repeated dot-notation:

let vc = UIApplication.shared.keyWindow?.rootViewController

You don’t have
 to chain your instance messages into a single line — chaining through multiple let
 assignments is completely efficient, possibly more legible, and certainly easier to debug — but it’s a handy formulaic convenience and is particularly characteristic of dot-notated object-oriented languages like Swift.

The general problem of getting a reference to a particular already existing instance is so interesting and pervasive that I will devote much of Chapter 13
 to it.

Enums

An enum
 is an object type whose instances represent distinct predefined alternative values
 . Think of it as a list of known possibilities. An enum is the Swift way to express a set of constants that are alternatives to one another. An enum declaration includes case statements. Each case is the name of one of the alternatives. An instance of an enum will represent exactly one alternative — one case.

For example, in my Albumen app, different instances of the same view controller can list any of four different sorts of music library contents: albums, playlists, podcasts, or audiobooks. The view controller’s behavior is slightly different in each case. So I need a sort of four-way switch that I can set once when the view controller is instantiated, saying which sort of contents this view controller is to display. That sounds like an enum!

Here’s the basic declaration for that enum; I call it Filter, because each case represents a different way of filtering the contents of the music library:

enum Filter {
 case albums
 case playlists
 case podcasts
 case books
}

That enum doesn’t have an initializer. You can
 write an initializer for an enum, as I’ll demonstrate in a moment; but there is a default mode of initialization that you’ll probably use most of the time — the name of the enum followed by dot-notation and one of the cases. For example, here’s how to make an instance of Filter representing the albums
 case:

let type = Filter.albums

As a shortcut, if the type is known in advance, you can omit the name of the enum; the bare case must still be preceded by a dot. For example:

let type : Filter = .albums

You can’t say .albums
 just anywhere out of the blue, because Swift doesn’t know what enum it belongs to. But in that code, the variable is explicitly declared as a Filter, so Swift knows what .albums
 means. A similar thing happens when passing an enum instance as an argument in a function call:

func filterExpecter(_ type:Filter) {}
filterExpecter(.albums)

In the second line, I create an instance of Filter and pass it, all in one move, without having to include the name of the enum. That’s because Swift knows from the function declaration that a Filter is expected here.

In real life, the space savings when omitting the enum name can be considerable — especially because, when talking to Cocoa, the enum type names are often long. For example:

let v = UIView()
v.contentMode = .center

A UIView’s contentMode
 property is typed as a UIViewContentMode enum. Our code is neater and simpler because we don’t have to include the name UIViewContentMode explicitly here; .center
 is nicer than UIViewContentMode.center
 . But either is legal.

Instances of an enum with the same case are regarded as equal. Thus, you can compare an enum instance for equality against a case. Again, the type of enum is known from the first term in the comparison, so the second term can omit the enum name:

func filterExpecter(_ type:Filter) {
 if type == .albums {
 print("it's albums")
 }
}
filterExpecter(.albums) // "it's albums"

Inference of Type Name with Static/Class Members

Just as you can use the bare name of an enum case, preceded by a dot, where an instance of that enum is expected, you can do the same thing when referring to a type’s static/class member whose value is an instance of that type. For example, UIColor has many class properties that produce a UIColor instance, so you can omit UIColor
 where a UIColor is expected:

p.trackTintColor = .red // instead of UIColor.red

Similarly, suppose we have a struct Thing with static constants whose values are Thing instances (I’ll explain later what RawRepresentable means):

struct Thing : RawRepresentable {
 let rawValue : Int
 static let one : Thing = Thing(rawValue:1)
 static let two : Thing = Thing(rawValue:2)
}

Then we can refer to Thing.one
 as .one
 where a Thing instance is expected:

let thing : Thing = .one

Many Objective-C enums are bridged to Swift as this kind of struct, and I’ll talk about them later in this chapter.

Raw Values

Optionally, when you declare an enum, you can add a type declaration. The cases then all carry with them a fixed (constant) value of that type. The types attached to an enum in this way are limited to numbers and strings, and the values assigned must be literals.

If the type is an integer numeric type, the values can be implicitly assigned, and will start at zero by default. For example:

enum PepBoy : Int {
 case manny
 case moe
 case jack
}

In that code, .manny
 carries a value of 0
 , .moe
 carries of a value of 1
 , and so on.

If the type is String, the implicitly assigned values are the string equivalents of the case names. For example:

enum Filter : String {
 case albums
 case playlists
 case podcasts
 case books
}

In that code, .albums
 carries a value of "albums"
 , and so on.

Regardless of the type, you can assign values explicitly as part of the case declarations, like this:

enum Normal : Double {
 case fahrenheit = 98.6
 case centigrade = 37
}
enum PepBoy : Int {
 case manny = 1
 case moe // 2 implicitly
 case jack = 4
}
enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
}

The values carried by the cases are called their raw values
 . An instance of an enum has just one case, so it has just one fixed raw value, which can be retrieved with its rawValue
 property:

let type = Filter.albums
print(type.rawValue) // Albums

Having each case carry a fixed raw value can be quite useful. In my Albumen app, the Filter cases really do have those String values, and type
 is a view controller property; and so when the view controller wants to know what title string to put at the top of the screen, it simply retrieves self.type.rawValue
 .

The raw value associated with each case must be unique within this enum; the compiler will enforce this rule. Therefore, the mapping works the other way: given a raw value, you can derive the case. For example, you can instantiate an enum that has raw values by using its init(rawValue:)
 initializer:

let type = Filter(rawValue:"Albums")

However, the attempt to instantiate the enum in this way might fail, because you might supply a raw value corresponding to no case; therefore, this is a failable initializer, and the value returned is an Optional. In that code, type
 is not a Filter; it’s an Optional wrapping a Filter. This might not be terribly important, however, because the thing you are most likely to want to do with an enum is to compare it for equality with a case of the enum; you can do that with an Optional without unwrapping it. This code is legal and works correctly:

let type = Filter(rawValue:"Albums")
if type == .albums { // ...

Associated Values

The raw values discussed in the preceding section are fixed in advance: a given case carries with it a certain raw value, and that’s that. Alternatively, you can construct a case whose constant value can be set when the instance is created
 . To do so, do not declare any type for the enum as a whole; instead, append a tuple type to the name of the case. There will usually be just one type in this tuple, so what you’ll write will look like a type name in parentheses. Any type may be declared. Here’s an example:

enum MyError {
 case number(Int)
 case message(String)
 case fatal
}

That code means that, at instantiation time, a MyError instance with the .number
 case must be assigned an Int value, a MyError instance with the .message
 case must be assigned a String value, and a MyError instance with the .fatal
 case can’t be assigned any value. Instantiation with assignment of a value is really a way of calling an initialization function, so to supply the value, you pass it as an argument in parentheses:

let err : MyError = .number(4)

The attached value here is called an associated value
 . What you are supplying as you specify the associated value is actually a tuple, so it can contain literal values or value references; this is legal:

let num = 4
let err : MyError = .number(num)

The tuple can contain more than one value, with or without labels; if the values have labels, they must be used at initialization time:

enum MyError {
 case number(Int)
 case message(String)
 case fatal(n:Int, s:String)
}
let err : MyError = .fatal(n:-12, s:"Oh the horror")

At the risk of sounding like a magician explaining his best trick, I will now reveal how an Optional works. An Optional is simply an enum with two cases: .none
 and .some
 . If it is .none
 , it carries no associated value, and it equates to nil
 . If it is .some
 , it carries the wrapped value as its associated value!

By default, the ==
 operator cannot be used to compare cases of an enum if any
 case of that enum has an associated value:

if err == MyError.fatal { // compile error

The reason, ultimately, is that two instances of the same case of this enum can have different associated values, so Swift doesn’t know what constitutes equality. That sort of comparison does
 work for an Optional, but that’s because Swift explicitly overloads the ==
 operator to handle Optionals.

I’ll explain in Chapter 5
 how to check the case
 of an instance of an enum that has an associated value case, as well as how to extract
 the associated value from such an instance if it is
 an associated value case.

Enum Initializers

An explicit enum initializer must do what default initialization does: it must return a particular case of this enum. To do so, set self
 to the case. In this example, I’ll expand my Filter enum so that it can be initialized with a numeric argument:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 static var cases : [Filter] = [.albums, .playlists, .podcasts, .books]
 init(_ ix:Int) {
 self = Filter.cases[ix]
 }
}

Now there are three ways to make a Filter instance:

let type1 = Filter.albums
let type2 = Filter(rawValue:"Playlists")!
let type3 = Filter(2) // .podcasts

In that example, we’ll crash in the third line if the caller passes a number that’s out of range (less than 0 or greater than 3). If we want to avoid that, we can make this a failable initializer and return nil
 if the number is out of range:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 static var cases : [Filter] = [.albums, .playlists, .podcasts, .books]
 init?(_ ix:Int) {
 if !(0...3).contains(ix) {
 return nil
 }
 self = Filter.cases[ix]
 }
}

An enum can have multiple initializers. Enum initializers can delegate to one another by saying self.init(...)
 . The only requirement is that, at some point in the chain of calls, self
 must be set to a case; if that doesn’t happen, your enum won’t compile.

In this example, I improve my Filter enum so that it can be initialized with a String raw value without having to say rawValue:
 in the call. To do so, I declare a failable initializer with a string parameter that delegates to the built-in failable rawValue:
 initializer:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 static var cases : [Filter] = [.albums, .playlists, .podcasts, .books]
 init?(_ ix:Int) {
 if !(0...3).contains(ix) {
 return nil
 }
 self = Filter.cases[ix]
 }
 init?(_ rawValue:String) {
 self.init(rawValue:rawValue)
 }
}

Now there are four ways to make a Filter instance:

let type1 = Filter.albums
let type2 = Filter(rawValue:"Playlists")
let type3 = Filter(2)
let type4 = Filter("Playlists")

Enum Properties

An enum can have instance properties and static properties, but there’s a limitation: an enum instance property can’t be a stored property. The reason is probably what I said earlier about enums with associated values: two instances of an enum cannot readily be compared for equality by case alone if there is a chance that they might have different stored property values.

Computed instance properties are fine, however, and the value of the property can vary by rule in accordance with the case of self
 . In this example from my real code, I’ve associated an MPMediaQuery (obtained by calling an MPMediaQuery factory class method) with each case of my Filter enum, suitable for fetching the songs of that type from the music library:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 var query : MPMediaQuery {
 switch self {
 case .albums:
 return .albums()
 case .playlists:
 return .playlists()
 case .podcasts:
 return .podcasts()
 case .books:
 return .audiobooks()
 }
 }
}

If an enum instance property is a computed variable with a setter, other code can assign to this property. However, that code’s reference to the enum instance must be a variable (var
), not a constant (let
). If you try to assign to an enum instance property through a let
 reference, you’ll get a compile error.

Enum Methods

An enum can have instance methods (including subscripts) and static methods. Writing an enum method is straightforward. Here’s an example from my own code. In a card game, the cards draw themselves as rectangles, ellipses, or diamonds. I’ve abstracted the drawing code into an enum that draws itself as a rectangle, an ellipse, or a diamond, depending on its case:

enum Shape {
 case rectangle
 case ellipse
 case diamond
 func addShape (to p: CGMutablePath, in r: CGRect) -> () {
 switch self {
 case .rectangle:
 p.addRect(r)
 case .ellipse:
 p.addEllipse(in:r)
 case .diamond:
 p.move(to: CGPoint(x:r.minX, y:r.midY))
 p.addLine(to: CGPoint(x: r.midX, y: r.minY))
 p.addLine(to: CGPoint(x: r.maxX, y: r.midY))
 p.addLine(to: CGPoint(x: r.midX, y: r.maxY))
 p.closeSubpath()
 }
 }
}

An enum instance method that modifies the enum itself must be marked as mutating
 . For example, an enum instance method might assign to an instance property of self
 ; even though this is a computed property, such assignment is illegal unless the method is marked as mutating
 . An enum instance method can even change the case of self
 , by assigning to self
 ; but again, the method must be marked as mutating
 . The caller of a mutating instance method must have a variable reference to the instance (var
), not a constant reference (let
).

In this example, I add an advance
 method to my Filter enum. The idea is that the cases constitute a sequence, and the sequence can cycle. By calling advance
 , I transform a Filter instance into an instance of the next case in the sequence:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 static var cases : [Filter] = [.albums, .playlists, .podcasts, .books]
 mutating func advance() {
 var ix = Filter.cases.index(of:self)!
 ix = (ix + 1) % 4
 self = Filter.cases[ix]
 }
}

And here’s how to call it:

var type = Filter.books
type.advance() // type is now Filter.albums

(A subscript setter is always considered mutating
 and does not have to be specially marked.)

Why Enums?

An enum is a switch whose states have names. There are many situations where that’s a desirable thing. You could implement a multistate value yourself; for example, if there are five possible states, you could use an Int whose values can be 0 through 4. But then you would have to provide a lot of additional overhead — making sure that no other values are used, and interpreting those numeric values correctly. A list of five named cases is much better! Even when there are only two
 states, an enum is often better than, say, a mere Bool, because the enum’s states have names. With a Bool, you have to know what true
 and false
 signify in a particular usage; with an enum, the name of the enum and the names of its cases tell
 you its significance. Moreover, you can store extra information in an enum’s associated value or raw value; you can’t do that with a mere Bool.

For example, in my LinkSame app, the user can play a real game with a timer or a practice game without a timer. At various places in the code, I need to know which type of game this is. The game types are the cases of an enum:

enum InterfaceMode : Int {
 case timed = 0
 case practice = 1
}

The current game type is stored in an instance property interfaceMode
 , whose value is an InterfaceMode. Thus, it’s easy to set the game type by case name:

// ... initialize new game ...
self.interfaceMode = .timed

And it’s easy to examine the game type by case name:

// notify of high score only if user is not just practicing
if self.interfaceMode == .timed { // ...

So what are the raw value integers for? That’s the really clever part. They correspond to the segment indexes of a UISegmentedControl in the interface! Whenever I change the interfaceMode
 property, a setter observer also selects the corresponding segment of the UISegmentedControl (self.timedPractice
), simply by fetching the rawValue
 of the current enum case:

var interfaceMode : InterfaceMode = .timed {
 willSet (mode) {
 self.timedPractice?.selectedSegmentIndex = mode.rawValue
 }
}

Structs

A struct
 is the Swift object type par excellence
 . An enum, with its fixed set of cases, is a reduced, specialized kind of object. A class, at the other extreme, will often turn out to be overkill; it has some features that a struct lacks (I’ll talk later about what they are), but if you don’t need those features, a struct may be preferable.

Of the numerous object types declared in the Swift header, only four are classes. On the contrary, nearly all the built-in object types provided by Swift itself are structs. A String is a struct. An Int is a struct. A Range is a struct. An Array is a struct. And so on. That shows how powerful a struct can be.

Struct Initializers, Properties, and Methods

A struct that doesn’t have an explicit initializer and that doesn’t need
 an explicit initializer — because it has no stored properties, or because all its stored properties are assigned default values as part of their declaration — automatically gets an implicit initializer with no parameters, init()
 . For example:

struct Digit {
 var number = 42
}

That struct can be initialized by saying Digit()
 . But if you add any explicit initializers of your own, you lose that implicit initializer:

struct Digit {
 var number = 42
 init(number:Int) {
 self.number = number
 }
}

Now you can say Digit(number:42)
 , but you can’t say Digit()
 any longer. Of course, you can add an explicit initializer that does the same thing:

struct Digit {
 var number = 42
 init() {}
 init(number:Int) {
 self.number = number
 }
}

Now you can say Digit()
 once again, as well as Digit(number:42)
 .

A struct that has stored properties and that doesn’t have an explicit initializer automatically gets an implicit initializer derived from its instance properties. This is called the memberwise initializer
 . For example:

struct Digit {
 var number : Int // could use "let" here instead
}

That struct is legal — indeed, it is legal even if the number
 property is declared with let
 instead of var
 — even though it seems we have not fulfilled the contract requiring us to initialize all stored properties in their declaration or in an initializer. The reason is that this struct automatically has a memberwise initializer which does
 initialize all its properties. In this case, the memberwise initializer is init(number:)
 , and you can say Digit(number:42)
 .

The memberwise initializer exists even for var
 stored properties that are assigned a default value in their declaration; thus, this struct has a memberwise initializer init(number:)
 , in addition to its implicit init()
 initializer:

struct Digit {
 var number = 42
}

But if you add any explicit initializers of your own, you lose the memberwise initializer (though of course you can write an explicit initializer that does the same thing).

If a struct has any explicit initializers, then they must fulfill the contract that all stored properties must be initialized either by direct initialization in the declaration or by all initializers. If a struct has multiple explicit initializers, they can delegate to one another by saying self.init(...)
 .

A struct can have instance properties and static properties, and they can be stored or computed variables. If other code wants to set a property of a struct instance, its reference to that instance must be a variable (var
), not a constant (let
).

A struct can have instance methods (including subscripts) and static methods. If an instance method sets a property, it must be marked as mutating
 , and the caller’s reference to the struct instance must be a variable (var
), not a constant (let
). A mutating
 instance method can even replace this instance with another instance, by setting self
 to a different instance of the same struct. (A subscript setter is always considered mutating
 and does not have to be specially marked.)

Struct As Namespace

I very often use a degenerate struct as a handy namespace for constants. I call such a struct “degenerate” because it consists entirely of static members; I don’t intend to use this object type to make any instances.

For example, let’s say I’m going to be storing user preference information in Cocoa’s UserDefaults
 . UserDefaults is a kind of dictionary: each item is accessed through a key. The keys are typically strings. A common programmer mistake is to write out these string keys literally every time a key is used; if you then misspell a key name, there’s no penalty at compile time, but your code will mysteriously fail to work correctly. The proper approach is to embody these keys as constant strings and use the names of the strings; that way, if you make a mistake typing the name of a string, the compiler can catch you. A struct with static members is a great way to define those constant strings and clump their names into a namespace:

struct Default {
 static let rows = "CardMatrixRows"
 static let columns = "CardMatrixColumns"
 static let hazyStripy = "HazyStripy"
}

That code means that I can now refer to a UserDefaults key with a name, such as Default.hazyStripy
 .

Classes

A class
 is similar to a struct, with the following key differences:

Reference type

Classes are reference types. This means, among other things, that a class instance has two remarkable features that are not true of struct instances or enum instances:

Mutability

A class instance is mutable in place. Even if your reference to an instance of a class is a constant (let
), you can change the value of an instance property through that reference. An instance method of a class never has to be marked mutating
 (and cannot be).

Multiple references

When a given instance of a class is assigned to multiple variables or passed as argument to a function, you get multiple references to one and the same object
 .

Inheritance

A class can have a superclass. A class that has a superclass is a subclass
 of that superclass. Class types can thus form a hierarchical tree.

In Objective-C, classes are the only object type. Some built-in Swift struct types are magically bridged to Objective-C class types, but your custom struct types don’t have that magic. Thus, when programming iOS with Swift, a primary reason for declaring a class, rather than a struct, is as a form of interchange with Objective-C and Cocoa.

Value Types and Reference Types

A major difference between enums and structs, on the one hand, and classes, on the other, is that enums and structs are value types
 , whereas classes are reference types
 . I will now explain what that means.

Reference type instances are mutable

A value type is not mutable in place
 , even though it seems to be. For example, consider a struct. A struct is a value type:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
}

Now, Swift’s syntax of assignment would lead us to believe that changing a Digit’s number
 is possible:

var d = Digit(123)
d.number = 42

But in reality, when you apparently mutate an instance of a value type, you are actually replacing
 that instance with a different
 instance. To see that this is true, add a setter observer:

var d : Digit = Digit(123) {
 didSet {
 print("d was set")
 }
}
d.number = 42 // "d was set"

That explains why it is impossible to mutate a value type instance if the reference to that instance is declared with let
 :

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
}
let d = Digit(123)
d.number = 42 // compile error

Under the hood, this change would require us to replace
 the Digit instance pointed to by d
 with another Digit instance — and we can’t do that, because it would mean assigning into d
 , which is exactly what the let
 declaration forbids.

That, in turn, is why an instance method of a struct or enum that sets a property of the instance must be marked explicitly with the mutating
 keyword. For example:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 mutating func changeNumberTo(_ n:Int) {
 self.number = n
 }
}

Without the mutating
 keyword, that code won’t compile. The mutating
 keyword assures the compiler that you understand what’s really happening here. If that method is called, it replaces the instance; therefore, it can be called only on a reference declared with var
 , not let
 :

let d = Digit(123)
d.changeNumberTo(42) // compile error

None of what I’ve just said, however, applies to class instances! Class instances are reference types, not value types. An instance property of a class, to be settable, must be declared with var
 , obviously; but the reference to a class instance does not
 have to be declared with var
 in order to set that property through that reference:

class Dog {
 var name : String = "Fido"
}
let rover = Dog()
rover.name = "Rover" // fine

In the last line of that code, the class instance pointed to by rover
 is being mutated in place
 . No implicit assignment to rover
 is involved, and so the let
 declaration is powerless to prevent the mutation. A setter observer on a Dog variable is not
 called when a property is set:

var rover : Dog = Dog() {
 didSet {
 print("did set rover")
 }
}
rover.name = "Rover" // nothing in console

The setter observer would be called if we were to set rover
 explicitly (to another Dog instance), but it is not called merely because we change a property of the Dog instance already pointed to by rover
 .

Those examples involve a declared variable reference. Exactly the same difference between a value type and a reference type may be seen with a parameter of a function call. When we receive an instance of a value type as a parameter into a function body, the compiler will stop us in our tracks if we try to assign to its instance property. This doesn’t compile:

func digitChanger(_ d:Digit) {
 d.number = 42 // compile error
}

But this does compile:

func dogChanger(_ d:Dog) {
 d.name = "Rover"
}

Reference type instances are pointers

With a reference type, there is in effect a concealed level of indirection between your reference to the instance and the instance itself; the reference actually refers to a pointer
 to the instance. This, in turn, has another important implication: it means that when a class instance is assigned to a variable or passed as an argument to a function or as the result of a function, you can wind up with multiple references to the same object
 . That is not true of structs and enums. Thus:

	When an enum instance or a struct instance is assigned or passed, what is assigned or passed is essentially a new copy
 of that instance. (I say “essentially” because, behind the scenes, there can be some efficiency, preventing a new copy from actually being formed unless it is needed.)

	When a class instance is assigned or passed, what is assigned or passed is a reference to the same
 instance.

To prove it, I’ll assign one reference to another, and then mutate the second reference — and then I’ll examine what happened to the first reference. Let’s start with the struct:

var d = Digit(123)
print(d.number) // 123
var d2 = d // assignment!
d2.number = 42
print(d.number) // 123

In that code, we changed the number
 property of d2
 , a struct instance; but nothing happened to the number
 property of d
 . Now let’s try the class:

var fido = Dog()
print(fido.name) // Fido
var rover = fido // assignment!
rover.name = "Rover"
print(fido.name) // Rover

In that code, we changed the name
 property of rover
 , a class instance — and the name
 property of fido
 was changed as well! That’s because, after the assignment in the third line, fido
 and rover
 refer to one and the same instance
 .

The same thing is true of parameter passing. With a class instance, what is passed is a reference to the same
 instance:

func dogChanger(_ d:Dog) {
 d.name = "Rover"
}
var fido = Dog()
print(fido.name) // "Fido"
dogChanger(fido)
print(fido.name) // "Rover"

The change made to d
 inside the function dogChanger
 affected our
 Dog instance fido
 ! You can’t do that with an enum or struct instance parameter, because the instance is effectively copied
 as it is passed. But handing a class instance to a function does not
 copy that instance; it is more like lending
 that instance to the function.

Advantages of value types vs. reference types

The ability to generate multiple references to the same instance is significant particularly in a world of object-based programming, where objects persist and can have properties that persist along with them. If object A and object B are both long-lived objects, and if they both have a Dog property (where Dog is a class), and if they have each been handed a reference to one and the same Dog instance, then either object A or object B can mutate its Dog, and this mutation will affect the other’s Dog. You can thus be holding on to an object, only to discover that it has been mutated by someone else behind your back. If that happens unexpectedly, it can put your program into an invalid state.

Class instances are also more complicated behind the scenes. Swift has to manage their memory (as I’ll explain in detail in Chapter 12
), precisely because there can be multiple references to the same object; this management can involve quite a bit of overhead. At an even lower level, the mere storage of class instances in memory entails some necessary overhead.

On the whole, therefore, you should prefer a value type (such as a struct) to a reference type (a class) wherever possible. Struct instances are not shared between references, and so you are relieved from any worry about such an instance being mutated behind your back; moreover, under the hood, storage and memory management are far simpler as well. The Swift language itself will help you by imposing value types in front of many Cocoa Foundation reference types. For example, Objective-C NSDate and NSData are classes, but Swift will steer you toward using struct types Date and Data instead. (I’ll talk about these types in detail in Chapter 10
 .)

But don’t get the wrong idea. Classes are not bad; they’re good! For one thing, a class instance is very efficient to pass around, because all you’re passing is a pointer. No matter how big and complicated a class instance may be, no matter how many properties it may have containing vast amounts of data, passing the instance is incredibly fast and efficient, because no new data is generated.

Even more important, there are many situations where the independent identity of a class instance, no matter how many times it is referred to, is exactly what you want. The extended lifetime of a class instance, as it is passed around, can be crucial to its functionality and integrity. In particular, only a class instance can successfully represent an independent reality
 . For example, a UIView needs to be a class, not a struct, because an individual UIView instance, no matter how it gets passed around, must continue to represent the same single real and persistent view in your running app’s interface.

Still another reason for preferring a class over a struct or enum is when you need recursive references. A value type cannot be structurally recursive: a stored instance property of a value type cannot be an instance of the same type. This code won’t compile:

struct Dog { // compile error
 var puppy : Dog?
}

More complex circular chains, such as a Dog with a Puppy property and a Puppy with a Dog property, are similarly illegal. But if Dog is a class instead of a struct, there’s no error. This is a consequence of the nature of memory management of value types as opposed to reference types. The moral is clear: if you need a property of a Dog to be a Dog, Dog has to be a class.

Tip

An enum case’s associated value can
 be an instance of that enum, provided the case (or the entire enum) is marked indirect
 :

enum Node {
 case none(Int)
 indirect case left(Int, Node)
 indirect case right(Int, Node)
 indirect case both(Int, Node, Node)
}

Functions and reference types

The countAdded
 and greet
 example, earlier (“Closure Preserving Its Captured Environment”
), demonstrates that functions are themselves reference types. To show what I mean, I’ll start with a contrasting situation. Two separate
 calls to a function factory method produce two different
 functions, as you would expect:

let countedGreet = countAdder(greet)
let countedGreet2 = countAdder(greet)
countedGreet() // count is 1
countedGreet2() // count is 1

The two functions countedGreet
 and countedGreet2
 , in that code, are maintaining their counts separately. But simple assignment or parameter passing results in a new reference to the same
 function, maintaining the same
 count:

let countedGreet = countAdder(greet)
let countedGreet2 = countedGreet
countedGreet() // count is 1
countedGreet2() // count is 2

Also, an @escaping
 closure (“Escaping Closures”
) is subject to restrictions with respect to its ability to capture self
 , if self
 is a value type. To demonstrate, here’s a new definition of our Digit struct:

struct Digit {
 var number : Int
 init(_ n:Int) {
 self.number = n
 }
 mutating func changeNumberTo(_ n:Int) {
 self.number = n
 }
 mutating func callAnotherFunction() {
 otherFunction {
 self.changeNumberTo(345)
 }
 }
}

Whether that’s legal depends on whether otherFunction
 declares its function parameter @escaping
 . If it does, the compiler will stop us:

func otherFunction(_ f: @escaping ()->()) { // compile error
}

The call to self.changeNumberTo(345)
 in callAnotherFunction
 warrants a compile error (“closure cannot implicitly capture a mutating self parameter”), because we are threatening to mutate a persisting captured self
 at some later time. That would involve replacing
 the captured self
 with a different Digit — and that’s incoherent. No such problem arises if otherFunction
 doesn’t declare its parameter @escaping
 , because the captured self
 is not threatening to persist; and no such problem arises if Digit is a class, because the persistent captured self
 can then be mutated in place.

Subclass and Superclass

Two classes can be subclass
 and superclass
 of one another. For example, we might have a class Quadruped and a class Dog and make Quadruped the superclass of Dog. A class may have many subclasses, but a class can have only one immediate superclass. I say “immediate” because that superclass might itself have a superclass, and so on in a rising chain, until we get to the ultimate superclass, called the base class
 , or root class
 .

 Because a class can have many subclasses but only one superclass, there is a hierarchical tree of subclasses, each branching from its superclass, and so on, with a single class, the base class, at the top.

Tip

A class declaration can prevent
 the class from being subclassed by preceding the class declaration with the final
 keyword.

As far as the Swift language itself is concerned, there is no requirement that a class should have any superclass, or, if it does have a superclass, that it should ultimately be descended from any particular base class. Thus, a Swift program can have many classes that have no superclass, and it can have many independent hierarchical subclass trees, each descended from a different base class.

Cocoa, however, doesn’t work that way. In Cocoa, there is effectively just one base class — NSObject
 , which embodies all the functionality necessary for a class to be
 a class in the first place — and all other classes are subclasses, at some level, of that one base class. Cocoa thus consists of one huge tree of hierarchically arranged classes, even before you write a single line of code or create any classes of your own.

We can imagine diagramming this tree as an outline. And in fact Xcode will show
 you this outline (Figure 4-1
): in an iOS project window, choose View → Navigators → Show Symbol Navigator and click Hierarchical, with the first and third icons in the filter bar selected (blue). Now locate NSObject in the list; the Cocoa classes are the part of the tree descending from it.

[image: ios11 0401]

Figure 4-1.
 Part of the Cocoa class hierarchy as shown in Xcode

Inheritance

The reason for having a superclass–subclass relationship in the first place is to allow related classes to share functionality
 . Suppose, for example, we have a Dog class and a Cat class, and we are considering declaring a walk
 method for both of them. We might reason that both a dog and a cat walk in pretty much the same way, by virtue of both being quadrupeds. So it might make sense to declare walk
 as a method of the Quadruped class, and make both Dog and Cat subclasses of Quadruped. The result is that both Dog and Cat can be sent the walk
 message, even if neither of them has a walk
 method, because each of them has a superclass that does
 have a walk
 method. We say that a subclass inherits
 the methods of its superclass.

To declare that a certain class is a subclass of a certain superclass, add a colon and the superclass name after the class’s name in its declaration. So, for example:

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {}
class Cat : Quadruped {}

Now let’s prove that Dog has indeed inherited walk
 from Quadruped:

let fido = Dog()
fido.walk() // walk walk walk

Observe that, in that code, the walk
 message can be sent to a Dog instance just as if the walk
 instance method were declared in the Dog class, even though the walk
 instance method is in fact declared in a superclass of Dog. That’s inheritance at work.

Additional functionality

The purpose of subclassing is not merely
 so that a class can inherit another class’s methods; it’s so that it can also declare methods of its own
 . Typically, a subclass consists of the methods inherited from its superclass and then some
 . If Dog has no methods of its own, after all, it’s hard to see why it should exist separately from Quadruped. But if a Dog knows how to do something that not every Quadruped knows how to do — let’s say, bark — then it makes sense as a separate class. If we declare bark
 in the Dog class, and walk
 in the Quadruped class, and make Dog a subclass of Quadruped, then Dog inherits the ability to walk from the Quadruped class and also
 knows how to bark:

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {
 func bark () {
 print("woof")
 }
}

Again, let’s prove that it works:

let fido = Dog()
fido.walk() // walk walk walk
fido.bark() // woof

Within a class, it is a matter of indifference whether that class has an instance method because that method is declared in that class or because the method is declared in a superclass and inherited. A message to self
 works equally well either way. In this code, we have declared a barkAndWalk
 instance method that sends two messages to self
 , without regard to where the corresponding methods are declared (one is native to the subclass, one is inherited from the superclass):

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {
 func bark () {
 print("woof")
 }
 func barkAndWalk() {
 self.bark()
 self.walk()
 }
}

And here’s proof that it works:

let fido = Dog()
fido.barkAndWalk() // woof walk walk walk

Overriding

It is also permitted for a subclass to redefine
 a method inherited from its superclass. For example, perhaps some dogs bark differently from other dogs. We might have a class NoisyDog, for instance, that is a subclass of Dog. Dog declares bark
 , but NoisyDog also declares bark
 , and defines it differently from how Dog defines it. This is called overriding
 . The very natural rule is that if a subclass overrides a method inherited from its superclass, then when the corresponding message is sent to an instance of that subclass, it is the subclass’s version of that method that is called.

In Swift, when you override something inherited from a superclass, you must explicitly acknowledge this fact by preceding its declaration with the keyword override
 . So, for example:

class Quadruped {
 func walk () {
 print("walk walk walk")
 }
}
class Dog : Quadruped {
 func bark () {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark () {
 print("woof woof woof")
 }
}

And let’s try it:

let fido = Dog()
fido.bark() // woof
let rover = NoisyDog()
rover.bark() // woof woof woof

Observe that a subclass method by the same name
 as a superclass’s method is not necessarily, of itself, an override. Recall that Swift can distinguish two functions with the same name, provided they have different signatures
 . Those are different functions, and so an implementation of one in a subclass is not an override of the other in a superclass. An override situation exists only when the subclass redefines the same
 method that it inherits from a superclass — using the same name, including the external parameter names, and the same signature.

However, a method override need not have exactly
 the same signature as the overridden method. In particular, in a method override, a parameter may be overridden with a superclass, or with an Optional wrapping the superclass of its type. For example, if we have a Cat class and its Kitten subclass, the following is legal:

class Dog {
 func barkAt(cat:Kitten) {}
}
class NoisyDog : Dog {
 override func barkAt(cat:Cat) {} // or Cat?
}

Moreover, a parameter may be overridden with an Optional wrapping its type, and an Optional parameter may be overridden with an Optional wrapping its wrapped type’s superclass:

class Dog {
 func barkAt(cat:Cat) {} // or Kitten, or Kitten?
}
class NoisyDog : Dog {
 override func barkAt(cat:Cat?) {}
}

There are further rules along the same lines, but I won’t try to list them all here; you probably won’t need to take advantage of them, and in any case the compiler will tell you if your override is illegal.

Along with methods, a subclass also inherits its superclass’s properties. Naturally, the subclass may also declare additional properties of its own. It is possible to override an inherited property (with some restrictions that I’ll talk about later).

Tip

A class declaration can prevent
 a class member from being overridden by a subclass by preceding the member’s declaration with the final
 keyword.

The keyword super

It often happens that we want to override something in a subclass and yet access the thing overridden in the superclass. This is done by sending a message to the keyword super
 . Our bark
 implementation in NoisyDog is a case in point. What NoisyDog really does when it barks is the same thing Dog does when it
 barks, but more times. We’d like to express that relationship in our implementation of NoisyDog’s bark
 . To do so, we have NoisyDog’s bark
 implementation send the bark
 message, not to self
 (which would be circular), but to super
 ; this causes the search for a bark
 instance method implementation to start in the superclass rather than in our own class:

class Dog : Quadruped {
 func bark () {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark () {
 for _ in 1...3 {
 super.bark()
 }
 }
}

And it works:

let fido = Dog()
fido.bark() // woof
let rover = NoisyDog()
rover.bark() // woof woof woof

Tip

A subscript function is a method. If a superclass declares a subscript, the subclass can declare a subscript with the same signature, provided it designates it with the override
 keyword. To call the superclass subscript implementation, the subclass can use square brackets after the keyword super
 (e.g. super[3]
).

Class Initializers

Initialization of a class instance is considerably more complicated than initialization of a struct or enum instance, because of the existence of class inheritance. The chief task of an initializer is to ensure that all properties have an initial value, thus making the instance well-formed as it comes into existence; and an initializer may have other tasks to perform that are essential to the initial state and integrity of this instance. A class, however, may have a superclass, which may have properties and initializers of its own. Thus we must somehow ensure that when a subclass is initialized, its superclass’s properties are initialized and the tasks of its initializers are performed in good order, in addition to initializing the properties and performing the initializer tasks of the subclass itself.

Swift solves this problem coherently and reliably — and ingeniously — by enforcing some clear and well-defined rules about what a class initializer must do.

Kinds of class initializer

The rules begin with a distinction between the kinds of initializer that a class can have:

Designated initializer

A class initializer, by default, is a designated
 initializer.

 A class with any stored properties that are not
 initialized as part of their declaration must
 have at least one designated initializer, and when the class is instantiated, exactly one of its designated initializers must be called, and must see to it that all stored properties are initialized. A designated initializer may not
 delegate to another initializer in the same class; it is illegal
 for a designated initializer to use the phrase self.init(...)
 .

Convenience initializer

A convenience
 initializer is marked with the keyword convenience
 .

 It is a delegating initializer; it must
 contain the phrase self.init(...)
 . Moreover, a convenience initializer must delegate to a designated initializer: when it says self.init(...)
 , it must call a designated initializer in the same class — or else it must call another convenience initializer in the same class, thus forming a chain of convenience initializers which ends by calling a designated initializer in the same class.

Implicit initializer

A class with no stored properties, or with stored properties all of which are initialized as part of their declaration, and that has no explicit designated initializers
 , has an
implicit

 designated initializer init()
 .

Here are some examples. This class has no stored properties, so it has an implicit init()
 designated initializer:

class Dog {
}
let d = Dog()

This class’s stored properties have default values, so it has an implicit init()
 designated initializer too:

class Dog {
 var name = "Fido"
}
let d = Dog()

This class’s stored properties have default values, but it has no implicit init()
 initializer because it has an explicit designated initializer:

class Dog {
 var name = "Fido"
 init(name:String) {self.name = name}
}
let d = Dog(name:"Rover") // ok
let d2 = Dog() // compile error

This class’s stored properties have default values, and it has an explicit initializer, but it also has an implicit init()
 initializer because its explicit initializer is a convenience initializer. Moreover, the implicit init()
 initializer is a designated initializer, so the convenience initializer can delegate to it:

class Dog {
 var name = "Fido"
 convenience init(name:String) {
 self.init()
 self.name = name
 }
}
let d = Dog(name:"Rover")
let d2 = Dog()

This class has stored properties without default values; it has an explicit designated initializer, and all of those properties are initialized in that designated initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
}
let d = Dog(name:"Rover", license:42)

This class is similar to the previous example, but it also has convenience initializers forming a chain that ends with a designated initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
 convenience init() {
 self.init(license:1)
 }
}
let d = Dog()

Note that the rules about what else an initializer can say and when it can say it, as I described them earlier in this chapter, are still in force:

	A designated initializer cannot, except in order to initialize a property (or to fetch the value of a property that is already initialized), say self
 , implicitly or explicitly, until all
 of this class’s properties have been initialized.

	A convenience initializer is a delegating initializer, so it cannot say self
 for any
 purpose until after it has called, directly or indirectly, a designated initializer (and cannot set an immutable property at all).

Subclass initializers

Having defined and distinguished between designated initializers and convenience initializers, we are ready for the rules about what happens with regard to initializers when a class is itself a subclass of some other class:

No declared initializers

If a subclass doesn’t have to have any initializers of its own, and if it declares no initializers of its own, then its initializers consist of the initializers inherited from its superclass. (A subclass has no implicit init()
 initializer unless it inherits it from its superclass.)

Convenience initializers only

If a subclass doesn’t have to have any initializers of its own, it is eligible to declare convenience initializers, and these work exactly as convenience initializers always do, because inheritance supplies the designated initializers that the convenience initializers must call by saying self.init(...)
 .

Designated initializers

If a subclass declares any designated initializers of its own, the entire game changes drastically. Now, no initializers are inherited! The existence of an explicit designated initializer blocks initializer inheritance
 . The only initializers the subclass now has are the initializers that you explicitly write. (However, there’s an exception, which I’ll come to in a moment.)

Every designated initializer in the subclass now has an extra requirement: it must call one of the superclass’s designated initializers
 , by saying super.init(...)
 . Moreover, the rules about saying self
 continue to apply. Thus, a subclass designated initializer must do things in this order:

	It must ensure that all properties of this
 class (the subclass) are initialized.

	It must call super.init(...)
 , and the initializer that it calls must be a designated initializer.

	Only then may this initializer say self
 for such purposes as to call an instance method or to access an inherited property.

Warning

If a designated initializer doesn’t call super.init(...)
 , then super.init()
 is called implicitly if possible. (I don’t like this feature of Swift: in my view, Swift should not indulge in secret behavior, even if that behavior might be considered “helpful.”)

Designated and convenience initializers

If a subclass declares both designated and convenience initializers, the convenience initializers in the subclass are still subject to the rules I’ve already outlined. They must call self.init(...)
 , calling a designated initializer directly or (through a chain of convenience initializers) indirectly. There are no inherited initializers, so the designated initializer that a convenience initializer calls must be declared in the subclass.

Override initializers

Superclass initializers can be overridden in the subclass, in accordance with these restrictions:

	An initializer whose parameters match a convenience
 initializer of the superclass can be a designated initializer or a convenience initializer, and is not
 marked override
 .

	An initializer whose parameters match a designated
 initializer of the superclass can be a designated initializer or a convenience initializer, and must
 be marked override
 . An override
 designated initializer must still call some superclass designated initializer (possibly even the one that it overrides) with super.init(...)
 .

Generally, as I’ve already said, if a subclass has any
 designated initializers, no
 initializers are inherited. But if a subclass overrides all
 of its superclass’s designated
 initializers, then the subclass does
 inherit the superclass’s convenience
 initializers.

Failable initializers

If an initializer called by a failable initializer is failable, the calling syntax does not change, and no additional test is needed — if a called failable initializer fails, the whole initialization process will fail (and will be aborted) immediately.

There are some additional restrictions on failable initializers:

	
init
 can override init?
 , but not vice versa
 .

	
init?
 can call init
 .

	
init
 can call init?
 by saying init
 and unwrapping the result with an exclamation mark (and if the init?
 fails, you’ll crash).

Tip

At no time can a subclass initializer set a constant (let
) property of a superclass. This is because, by the time the subclass is allowed to do anything other than initialize its own properties and call another initializer, the superclass has finished its own initialization and the door for initializing its constants has closed.

Here are some basic examples. We start with a class whose subclass has no explicit initializers of its own:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
}

Given that code, you can make a NoisyDog like this:

let nd1 = NoisyDog(name:"Fido", license:1)
let nd2 = NoisyDog(license:2)

That code is legal, because NoisyDog inherits its superclass’s initializers. However, you can’t make a NoisyDog like this:

let nd3 = NoisyDog() // compile error

That code is illegal. Even though a NoisyDog has no properties of its own, it has no implicit init()
 initializer; its initializers are its inherited initializers, and its superclass, Dog, has no implicit init()
 initializer to inherit.

Now here is a class whose subclass’s only explicit initializer is a convenience initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
 convenience init(name:String) {
 self.init(name:name, license:1)
 }
}

Observe how NoisyDog’s convenience initializer fulfills its contract by calling self.init(...)
 to call a designated initializer — which it happens to have inherited. Given that code, there are three ways to make a NoisyDog, just as you would expect:

let nd1 = NoisyDog(name:"Fido", license:1)
let nd2 = NoisyDog(license:2)
let nd3 = NoisyDog(name:"Rover")

Next, here is a class whose subclass declares a designated initializer:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
 init(name:String) {
 super.init(name:name, license:1)
 }
}

NoisyDog’s explicit initializer is now a designated initializer. It fulfills its contract by calling a designated initializer in super
 . NoisyDog has now cut off inheritance
 of all initializers; the only
 way to make a NoisyDog is like this:

let nd1 = NoisyDog(name:"Rover")

Finally, here is a class whose subclass overrides its designated initializers:

class Dog {
 var name : String
 var license : Int
 init(name:String, license:Int) {
 self.name = name
 self.license = license
 }
 convenience init(license:Int) {
 self.init(name:"Fido", license:license)
 }
}
class NoisyDog : Dog {
 override init(name:String, license:Int) {
 super.init(name:name, license:license)
 }
}

NoisyDog has overridden all
 of its superclass’s designated initializers, so it inherits its superclass’s convenience initializers. There are thus two ways to make a NoisyDog:

let nd1 = NoisyDog(name:"Rover", license:1)
let nd2 = NoisyDog(license:2)

Those examples illustrate the main rules that you should keep in your head. You probably don’t need to memorize the remaining rules, because the compiler will enforce them, and will keep slapping you down until you get them right.

Required initializers

There’s one more thing to know about class initializers: a class initializer may be preceded by the keyword required
 . This means that a subclass may not lack this initializer. This, in turn, means that if a subclass implements designated initializers, thus blocking inheritance, it must
 override this initializer and mark the override required
 . Here’s a (rather pointless) example:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
}
class NoisyDog : Dog {
 var obedient = false
 init(obedient:Bool) {
 self.obedient = obedient
 super.init(name:"Fido")
 }
} // compile error

That code won’t compile. Dog’s init(name:)
 is marked required
 ; thus, our code won’t compile unless we inherit or override init(name:)
 in NoisyDog. But we cannot inherit it, because, by implementing the NoisyDog designated initializer init(obedient:)
 , we have blocked inheritance. Therefore we must override it:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
}
class NoisyDog : Dog {
 var obedient = false
 init(obedient:Bool) {
 self.obedient = obedient
 super.init(name:"Fido")
 }
 required init(name:String) {
 super.init(name:name)
 }
}

Observe that our overridden required initializer is not marked with override
 , but is
 marked with required
 , thus guaranteeing that the requirement continues drilling down to any further subclasses.

I have explained what declaring an initializer as required
 does, but I have not explained why
 you’d need to do it. I’ll give examples later in this chapter.

Class Deinitializer

A class, and only a class (not the other flavors of object type), can have a deinitializer. This is a function declared with the keyword deinit
 followed by curly braces
 containing the function body. You never call this function yourself; it is called by the runtime when an instance of this class goes out of existence. If a class has a superclass, the subclass’s deinitializer (if any) is called before the superclass’s deinitializer (if any).

The idea of a deinitializer is that you might want to perform some cleanup, or just log to the console to prove to yourself that your instance is going out of existence in good order. I’ll take advantage of deinitializers when I discuss memory management issues in Chapter 5
 .

Class Properties and Methods

A subclass can override its inherited properties. The override must have the same name and type as the inherited property, and must be marked with override
 . (A property cannot have the same name as an inherited property but a different type, as there is no way to distinguish them.)

The chief restriction here is that an override
 property cannot be a stored property
 . More specifically:

	If the superclass property is writable (a stored property or a computed property with a setter), the subclass’s override may consist of adding setter observers to this property.

	Alternatively, the subclass’s override may be a computed property. In that case:
	If the superclass property is stored, the subclass’s computed property override must have both a getter and a setter.

	If the superclass property is computed, the subclass’s computed property override must reimplement all the accessors that the superclass implements. If the superclass property is read-only (it has just a getter), the override can add a setter.

The overriding property’s functions may refer to — and may read from and write to — the inherited property, through the super
 keyword.

A class can have static members, marked static
 , just like a struct or an enum. It can also have class members, marked class
 . Both static and class members are inherited by subclasses.

The chief difference between static and class methods from the programmer’s point of view is that a static method cannot be overridden; it is as if static
 were a synonym for class final
 .

Here, for example, I’ll use a static method to express what dogs say:

class Dog {
 static func whatDogsSay() -> String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay())
 }
}

A subclass now inherits whatDogsSay
 , but can’t override it. No subclass of Dog may contain any implementation of a class method or a static method whatDogsSay
 with this same signature.

Now I’ll use a class method to express what dogs say:

class Dog {
 class func whatDogsSay() -> String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay())
 }
}

A subclass inherits whatDogsSay
 , and can
 override it, either as a class method or as a static method:

class NoisyDog : Dog {
 override class func whatDogsSay() -> String {
 return "WOOF"
 }
}

The difference between static properties and class properties is similar, but with an additional, rather dramatic qualification: a static property can be stored, but a class property can only be computed.

Here, I’ll use a static class property to express what dogs say:

class Dog {
 static var whatDogsSay = "woof"
 func bark() {
 print(Dog.whatDogsSay)
 }
}

A subclass inherits whatDogsSay
 , but can’t override it; no subclass of Dog can declare a class or static property whatDogsSay
 .

Now I’ll use a class property to express what dogs say. It cannot be a stored property, so I’ll have to use a computed property instead:

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay)
 }
}

A subclass inherits whatDogsSay
 and can override it either as a class property or as a static property. But the rule about property overrides not being stored is still in force, even if the override is a static property:

class NoisyDog : Dog {
 override static var whatDogsSay : String {
 return "WOOF"
 }
}

Polymorphism

When a computer language has a hierarchy of types and subtypes, it must resolve the question of what such a hierarchy means for the relationship between the type of an object
 and the declared type of a reference
 to that object. Swift obeys the principles of polymorphism
 . In my view, it is polymorphism that turns an object-based language into a full-fledged object-oriented language. We may summarize Swift’s polymorphism principles as follows:

Substitution

Wherever a certain type is expected, a subtype of that type may be used instead.

Internal identity

An object’s type is a matter of its internal nature, regardless of how the object is referred to.

To see what these principles mean in practice, imagine we have a Dog class, along with its subclass, NoisyDog:

class Dog {
}
class NoisyDog : Dog {
}
let d : Dog = NoisyDog()

The substitution rule says that the last line is legal: we can assign a NoisyDog instance to a reference, d
 , that is typed as a Dog. The internal identity rule says that, under the hood, d
 now is
 a NoisyDog.

You may be asking: How is the internal identity rule manifested? If a reference to a NoisyDog is typed as a Dog, in what sense is this “really” a NoisyDog? To illustrate, let’s examine what happens when a subclass overrides an inherited method. Let me redefine Dog and NoisyDog to demonstrate:

class Dog {
 func bark() {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark() {
 for _ in 1...3 {
 super.bark()
 }
 }
}

Now try to guess what happens when this code runs:

func tellToBark(_ d:Dog) {
 d.bark()
}
var nd = NoisyDog()
tellToBark(nd)

That code is legal, because, by the substitution principle, we can pass nd
 , typed as a NoisyDog, where a Dog is expected. Now, inside the tellToBark
 function, d
 is typed as a Dog. How will it react to being told to bark
 ? On the one hand, d
 is typed
 as a Dog, and a Dog barks by saying "woof"
 once. On the other hand, in our code, when tellToBark
 is called, what is really
 passed is a NoisyDog instance, and a NoisyDog barks by saying "woof"
 three times. What will happen? Let’s find out:

func tellToBark(_ d:Dog) {
 d.bark()
}
var nd = NoisyDog()
tellToBark(nd) // woof woof woof

The result is "woof woof woof"
 . The internal identity rule says that what matters when a message is sent is not how the recipient of that message is typed
 through this or that reference
 , but what that recipient actually is
 . What arrives inside tellToBark
 is a NoisyDog, regardless of the type of variable that holds it; thus, the bark
 message causes this object to say "woof"
 three times.

Here’s another important consequence of polymorphism — the meaning of the keyword self
 . It means the actual instance, and thus its meaning depends upon the type of the actual instance — even if the word self
 appears
 in a superclass’s code. For example:

class Dog {
 func bark() {
 print("woof")
 }
 func speak() {
 self.bark()
 }
}
class NoisyDog : Dog {
 for _ in 1...3 {
 super.bark()
 }
}

What happens when we tell a NoisyDog to speak
 ? Let’s try it:

let nd = NoisyDog()
nd.speak() // woof woof woof

The speak
 method is declared in Dog, the superclass — not in NoisyDog. The speak
 method calls the bark
 method. It does this by way of the keyword self
 . (I could have omitted the explicit reference to self
 here, but self
 would still be involved implicitly, so I’m not cheating by making self
 explicit.) There’s a bark
 method in Dog, and an override of the bark
 method in NoisyDog. Which bark
 method will be called?

The word self
 is encountered within the Dog class’s implementation of speak
 . But what matters is not where
 the word self
 appears
 but what it means
 . It means this instance
 . And the internal identity principle tells us that this instance is a NoisyDog! Thus, it is NoisyDog’s override of bark
 that is called when Dog’s speak
 says self.bark()
 .

Polymorphism applies to Optional types in the same way that it applies to the type of thing wrapped by the Optional. Suppose we have a reference typed as an Optional wrapping a Dog. You already know that you can assign a Dog to it. Well, you can also assign a NoisyDog, or an Optional wrapping a NoisyDog, and the underlying wrapped object will maintain its integrity:

var d : Dog?
d = Dog()
d = NoisyDog()
d = Optional(NoisyDog())

(The applicability of polymorphism to Optionals derives from a special dispensation of the Swift language: Optionals are covariant
 . I’ll talk more about that later in this chapter.)

Thanks to polymorphism, you can take advantage of subclasses to add power and customization to existing classes. This is important particularly in the world of iOS programming, where most of the classes are defined by Cocoa and don’t belong to you. The UIViewController class, for example, is defined by Cocoa; it has lots of built-in methods that Cocoa will call, and these methods perform various important tasks — but in a generic way. In real life, you’ll make a UIViewController subclass
 , and you’ll override
 those methods to do the tasks appropriate to your particular app. This won’t bother Cocoa in the slightest, because (substitution principle) wherever Cocoa expects to receive or to be talking to a UIViewController, it will accept without question an instance of your UIViewController subclass. And this substitution will also work as expected, because (internal identity principle) whenever Cocoa calls one of those UIViewController methods on your subclass, it is your subclass’s override that will be called. I’ll talk more about subclassing Cocoa classes in Chapter 10
 .

Tip

Polymorphism is cool, but in the grand scheme of things it is also relatively slow. It requires dynamic dispatch
 , meaning that the compiler can’t perform certain optimizations, and that the runtime has to think about what a message to a class instance means. You can reduce the need for dynamic dispatch by declaring a class or a class member final
 or private
 , or by turning on Whole Module Optimization (see Chapter 6
). Or use a struct, if appropriate; structs don’t need dynamic dispatch.

Casting

The Swift compiler, with its strict typing, imposes severe restrictions on what messages can be sent to an object reference. The messages that the compiler will permit to be sent to an object reference depend upon the reference’s declared
 type. But the internal identity principle of polymorphism says that, under the hood, an object may have a real
 type that is different from its reference’s declared type. Such an object may thus be capable of receiving messages that the compiler won’t permit us to send.

To illustrate, let’s give NoisyDog a method that Dog doesn’t have:

class Dog {
 func bark() {
 print("woof")
 }
}
class NoisyDog : Dog {
 override func bark() {
 super.bark(); super.bark()
 }
 func beQuiet() {
 self.bark()
 }
}

In that code, we configure a NoisyDog so that we can tell it to beQuiet
 . Now look at what happens when we try to tell an object typed as a Dog to be quiet:

func tellToHush(_ d:Dog) {
 d.beQuiet() // compile error
}
let nd = NoisyDog()
tellToHush(nd)

Our code doesn’t compile. We can’t send the beQuiet
 message to the reference d
 inside the function body, because it is typed as a Dog — and a Dog has no beQuiet
 method. But there is a certain irony here: for once, we happen to know more than the compiler does — namely, that this object is in fact
 a NoisyDog and does
 have a beQuiet
 method! Our code would run correctly — because d
 really is a NoisyDog — if only we could get our code to compile in the first place. We need a way to say to the compiler, “Look, compiler, just trust me: this thing is going to turn out to be a NoisyDog when the program actually runs, so let me send it this message.”

There is in fact a way to do this — casting
 . To cast, you use a form of the keyword as
 followed by the name of the type you claim something really is.

Casting Down

Swift will not let you cast just any old type to any old other type — for example, you can’t cast a String to an Int — but it will let you cast a superclass to a subclass. This is called casting down
 . When you cast down, the form of the keyword as
 that you must use is as!
 with an exclamation mark. The exclamation mark reminds you that you are forcing
 the compiler to do something it would rather not do:

func tellToHush(_ d:Dog) {
 (d as! NoisyDog).beQuiet()
}
let nd = NoisyDog()
tellToHush(nd)

That code compiles, and works. A useful way to rewrite the example is like this:

func tellToHush(_ d:Dog) {
 let d2 = d as! NoisyDog
 d2.beQuiet()
 // ... other NoisyDog messages to d2 can go here ...
}
let nd = NoisyDog()
tellToHush(nd)

The reason that way of rewriting the code is useful is in case we have other
 NoisyDog messages to send to this object. Instead of casting every time
 we want to send a message to it, we cast the object once
 to its internal identity type, and assign it to a variable. Now that variable’s type — inferred, in this case, from the cast — is
 the internal identity type, and we can send multiple messages to the variable.

Type Testing and Casting Down Safely

A moment ago, I said that the as!
 operator’s exclamation mark reminds you that you are forcing the compiler’s hand. It also serves as a warning: your code can now crash! The reason is that you might be lying to the compiler. Casting down is a way of telling the compiler to relax its strict type checking and to let you call the shots. If you use casting to make a false claim, the compiler may permit it, but you will crash when the app runs:

func tellToHush(_ d:Dog) {
 (d as! NoisyDog).beQuiet() // compiles, but prepare to crash...!
}
let d = Dog()
tellToHush(d)

In that code, we told the compiler that this object would turn out to be a NoisyDog, and the compiler obediently took its hands off and allowed us to send the beQuiet
 message to it. But in fact, this object was a Dog when our code ran, and so we ultimately crashed when the cast failed because this object was not
 a NoisyDog.

To prevent yourself from lying accidentally, you can test
 the type of an instance at runtime. One way to do this is with the keyword is
 . You can use is
 in a condition; if the condition passes, then
 cast, in the knowledge that your cast is safe:

func tellToHush(_ d:Dog) {
 if d is NoisyDog {
 let d2 = d as! NoisyDog
 d2.beQuiet()
 }
}

The result is that we won’t cast d
 to a NoisyDog unless it really is
 a NoisyDog.

An alternative way to solve the same problem is to use Swift’s as?
 operator. This casts down, but with the option of failure; therefore what it casts to is (you guessed it) an Optional — and now we are on familiar ground, because we know how to deal safely with an Optional:

func tellToHush(_ d:Dog) {
 let noisyMaybe = d as? NoisyDog // an Optional wrapping a NoisyDog
 if noisyMaybe != nil {
 noisyMaybe!.beQuiet()
 }
}

That doesn’t look much cleaner or shorter than our previous approach. But remember that we can safely send a message to an Optional by optionally unwrapping the Optional! Thus we can skip the assignment and condense to a single line:

func tellToHush(_ d:Dog) {
 (d as? NoisyDog)?.beQuiet()
}

First we use the as?
 operator to obtain an Optional wrapping a NoisyDog (or nil
). Then we optionally unwrap that Optional and send a message to it. If d
 isn’t a NoisyDog, the Optional will be nil
 and the message won’t be sent. If d
 is
 a NoisyDog, the Optional will be unwrapped and the message will be sent. Thus, that code is safe.

Type Testing and Casting Optionals

Recall from Chapter 3
 that comparison operators applied to an Optional are automatically applied to the object wrapped by the Optional. The is
 , as!
 , and as?
 operators work the same way.

Let’s start with is
 . Consider an Optional d
 ostensibly wrapping a Dog (that is, d
 is a Dog?
 object). It might, in actual fact, be wrapping either a Dog or a NoisyDog. To find out which it is, you might be tempted to use is
 . But can you? After all, an Optional is neither a Dog nor a NoisyDog — it’s an Optional! Nevertheless, Swift knows what you mean; when the thing on the left side of is
 is an Optional, Swift pretends that it’s the value wrapped in the Optional. Thus, this works just as you would hope:

let d : Dog? = NoisyDog()
if d is NoisyDog { // it is!

When using is
 with an Optional, the test fails in good order if the Optional is nil
 . Thus our is
 test really does two
 things: it checks whether the Optional is nil
 , and if it is not, it then checks whether the wrapped value is the type we specify.

What about casting? You can’t really cast an Optional to anything. Nevertheless, Swift knows what you mean; you can use the as!
 operator with an Optional. When the thing on the left side of as!
 is an Optional, Swift treats it as the wrapped type. Moreover, the consequence of applying the as!
 operator is that two things happen: Swift unwraps first, and then casts. This code works, because d
 is unwrapped to give us d2
 , which is a NoisyDog:

let d : Dog? = NoisyDog()
let d2 = d as! NoisyDog
d2.beQuiet()

That code, however, is not safe. You shouldn’t cast like that, without testing first, unless you are very sure of your ground. If d
 were nil
 , you’d crash in the second line because you’re trying to unwrap a nil
 Optional. And if d
 were a Dog, not a NoisyDog, you’d still
 crash in the second line when the cast fails. That’s why there’s also an as?
 operator, which is
 safe — but yields an Optional:

let d : Dog? = NoisyDog()
let d2 = d as? NoisyDog
d2?.beQuiet()

Bridging to Objective-C

Another way you’ll use casting is during a value interchange between Swift and Objective-C when two types are equivalent
 . For example, you can cast a Swift String to a Cocoa NSString, and vice versa
 . That’s not because one is a subclass of the other, but because they are bridged
 to one another; in a very real sense, they are the same type. When you cast from String to NSString, you’re not casting down, and what you’re doing is not dangerous, so you use the as
 operator, with no exclamation mark.

In general, to cross the bridge from a Swift type to a bridged Objective-C type, you will need to cast explicitly (except in the case of a string literal):

let s : NSString = "howdy" // literal string to NSString
let s2 = "howdy"
let s3 : NSString = s2 as NSString // String to NSString
let i : NSNumber = 1 as NSNumber // Int to NSNumber

That sort of code, however, is rather artificial. In real life, you won’t be casting all that often, because the Cocoa API will present itself to you in terms of Swift types. For example, this is legal with no cast:

let name = "MyNib" // Swift String
let vc = ViewController(nibName:name, bundle:nil)

You don’t have to help the Swift String name
 across the bridge by casting, because nibName:
 is typed as a Swift String (actually, an Optional wrapping a String). The bridge, in effect, is crossed later
 . Similarly, no cast is required here:

let ud = UserDefaults.standard
let s = "howdy"
ud.set(s, forKey:"greeting")

You don’t have to help the Swift String s
 across the bridge by casting, because the first argument of set(_:forKey:)
 is typed as a Swift type, namely Any (actually, an Optional wrapping Any) — and any Swift type can be used, without casting, where an Any is expected. I’ll talk more about Any later in this chapter.

Coming back the other way, it is possible that you’ll receive from Objective-C a value about whose real underlying type Swift has no information. In that case, you’ll probably want to cast explicitly to the underlying type — and now you are casting down, with all that that implies. For example, here’s what happens when we go to retrieve the "howdy"
 that we put into UserDefaults in the previous example:

let ud = UserDefaults.standard
let test = ud.object(forKey:"greeting") as! String

When we call ud.object(forKey:)
 , Swift has no type information; the result is an Any (actually, an Optional wrapping Any). But we know that this particular call should yield a string — because that’s what we put in to begin with. So we can force-cast this value down to a String — and it works. However, if ud.object(forKey:"greeting")
 were not
 a string (or if it were nil
), we’d crash. If you’re not sure of your ground, use is
 or as?
 to be safe. I’ll discuss this kind of downcasting in more detail later on.

Type Reference

It can be useful for an instance to refer to its own type — for example, to send a message to that type. In an earlier example, a Dog instance method fetched a Dog class property by sending a message to the Dog type explicitly by using the word Dog
 :

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(Dog.whatDogsSay)
 }
}

The expression Dog.whatDogsSay
 seems clumsy and inflexible. Why should we have to hard-code into Dog a knowledge of what class it is? It has
 a class; it should just know
 what it is.

In Swift, you can access the type of an object reference’s underlying object through the type(of:)
 function. Thus, if you don’t like the notion of a Dog instance calling a Dog class method by saying Dog
 explicitly, there’s another way:

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(type(of:self).whatDogsSay)
 }
}

An important thing about using type(of:)
 instead of hard-coding a class name is that it obeys polymorphism:

class Dog {
 class var whatDogsSay : String {
 return "woof"
 }
 func bark() {
 print(type(of:self).whatDogsSay)
 }
}
class NoisyDog : Dog {
 override class var whatDogsSay : String {
 return "woof woof woof"
 }
}

Now watch what happens:

let nd = NoisyDog()
nd.bark() // woof woof woof

If we tell a NoisyDog instance to bark
 , it says "woof woof woof"
 . The reason is that type(of:)
 means, “The type that this object actually is, right now.” We send the bark
 message to a NoisyDog instance. The bark
 implementation refers to type(of:self)
 ; even though the bark
 implementation is inherited from Dog, self
 means this instance, which is a NoisyDog, and so type(of:self)
 is the NoisyDog class, and it is NoisyDog’s version of whatDogsSay
 that is fetched.

In some situations, you may want to treat an object type as a value.
 That is legal; an object type is itself an object. Here’s what you need to know:

	To declare
 that an object type is acceptable — for example, as the type of a variable or parameter — use dot-notation with the name of the type and the keyword Type
 .

	To use
 an object type as a value — for example, to assign a type to a variable or pass it to a function — use the type’s name followed by the keyword self
 using dot-notation, or hand an object to type(of:)
 .

For example, here’s a function dogTypeExpecter
 that accepts a Dog type as its parameter:

func dogTypeExpecter(_ whattype:Dog.Type) {
}

And here’s an example of calling that function:

dogTypeExpecter(Dog.self)

Or you could call it like this:

let d = Dog()
dogTypeExpecter(type(of:d))

The substitution principle applies, so you could call dogTypeExpecter
 starting with a NoisyDog instead:

dogTypeExpecter(NoisyDog.self)
let nd = NoisyDog()
dogTypeExpecter(type(of:nd))

Why might you want to do something like that? A typical situation is that your function is a factory
 for instances: given a type, it creates an instance of that type, possibly prepares it in some way, and returns it. You can use a variable reference to a type — what Swift calls a metatype
 — to make an instance of that type, by explicitly sending it an init(...)
 message.

For example, here’s a Dog class with an init(name:)
 initializer, and its NoisyDog subclass:

class Dog {
 var name : String
 init(name:String) {
 self.name = name
 }
}
class NoisyDog : Dog {
}

And here’s a factory method that creates a Dog or a NoisyDog, as specified by its parameter, gives it a name, and returns it:

func dogMakerAndNamer(_ whattype:Dog.Type) -> Dog {
 let d = whattype.init(name:"Fido") // compile error
 return d
}

However, there’s a problem: the code doesn’t compile. The reason is that the compiler is in doubt as to whether the init(name:)
 initializer is implemented by every possible subtype of Dog. To reassure it, we must declare that initializer with the required
 keyword:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
}
class NoisyDog : Dog {
}

I promised earlier that I’d tell you why you might need to declare an initializer as required
 ; now I’m fulfilling that promise! The required
 designation reassures the compiler; every subclass of Dog must inherit or reimplement init(name:)
 , so it’s legal to send the init(name:)
 message to a type reference that might refer to Dog or some subclass of Dog. Now our code compiles, and we can call our function:

let d = dogMakerAndNamer(Dog.self) // d is a Dog named Fido
let d2 = dogMakerAndNamer(NoisyDog.self) // d2 is a NoisyDog named Fido

In a class method, self
 stands for the class polymorphically. This means that, in a class method, you can send a message to self
 to call an initializer polymorphically. Here’s an example. Let’s say we want to move our instance factory method into Dog itself, as a class method. Let’s call this class method makeAndName
 . We want this class method to create and return a named Dog of whatever class we send the makeAndName
 message to. If we say Dog.makeAndName()
 , we should get a Dog. If we say NoisyDog.makeAndName()
 , we should get a NoisyDog. So our makeAndName
 class method initializes polymorphic self
 :

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
 class func makeAndName() -> Dog {
 let d = self.init(name:"Fido")
 return d
 }
}
class NoisyDog : Dog {
}

It works as expected:

let d = Dog.makeAndName() // d is a Dog named Fido
let d2 = NoisyDog.makeAndName() // d2 is a NoisyDog named Fido

Although the preceding example does work, there’s a problem. Although d2
 is in fact a NoisyDog, it is typed
 as a Dog. This is because our makeAndName
 class method is declared as returning a Dog. That isn’t what we want to declare. What we want to declare is that this method returns an instance of the same type
 as the class to which the makeAndName
 message was originally sent. In other words, we need a polymorphic type declaration! That type is Self
 (notice the capitalization). The Self
 type is used as a return type in a method declaration to mean “an instance of whatever type this is at runtime.” Thus:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
 class func makeAndName() -> Self {
 let d = self.init(name:"Fido")
 return d
 }
}
class NoisyDog : Dog {
}

Now when we call NoisyDog.makeAndName()
 we get a NoisyDog typed as a NoisyDog.

(Our earlier example, the global factory function dogMakerAndNamer
 , displays the same problem — it too returns an object typed as Dog, even if the underlying instance is in fact a NoisyDog. We can’t use Self
 to solve the problem here, because there’s no type for it to refer to. Swift does have a solution, however — generics. I’ll discuss generic functions later in this chapter.)

Self
 also works for instance method declarations. Therefore, we can write an instance method version of our factory method. Here, we start with a Dog or a NoisyDog and tell it to have a puppy of the same type as itself:

class Dog {
 var name : String
 required init(name:String) {
 self.name = name
 }
 func havePuppy(name:String) -> Self {
 return type(of:self).init(name:name)
 }
}
class NoisyDog : Dog {
}

And here’s some code to test it:

let d = Dog(name:"Fido")
let d2 = d.havePuppy(name:"Fido Junior")
let nd = NoisyDog(name:"Rover")
let nd2 = nd.havePuppy(name:"Rover Junior")

As expected, d2
 is a Dog, but nd2
 is a NoisyDog typed as a NoisyDog.

All this terminology can get a bit confusing, so here’s a quick summary:

type(of:)

Applied to an object: the polymorphic (internal) type of the object, regardless of how a reference is typed. Static/class members are accessible by passing an object to type(of:)
 .

.Type

Sent to a type in a type declaration: the polymorphic type. For example, in a function parameter declaration, Dog
 means a Dog instance is expected (or an instance of one its subclasses), but Dog.Type
 means that the Dog type itself is expected (or the type of one of its subclasses).

.self

Sent to a type: the type. For example, to pass the Dog type where Dog.Type
 is expected, you can pass Dog.self
 .

self

In instance code, this instance, polymorphically. In static/class code, this type, polymorphically; self.init(...)
 instantiates the type.

Self

In a method declaration, when specifying the return type, this class or this instance’s class, polymorphically.

Protocols

A protocol
 is a way of expressing commonalities between otherwise unrelated types. For example, a Bee object and a Bird object might need to have certain features in common by virtue of the fact that both a bee and a bird can fly. Thus, it might be useful to define a Flier type. The question is: In what sense can both Bee and Bird be Fliers?

One possibility, of course, is class inheritance. If Bee and Bird are both classes, there’s a class hierarchy of superclasses and subclasses. So Flier could be the superclass of both Bee and Bird. The problem is that there may be other reasons why Flier can’t
 be the superclass of both Bee and Bird. A Bee is an Insect; a Bird isn’t. Yet they both have the power of flight — independently. We need a type that cuts across the class hierarchy somehow, tying remote classes together.

Moreover, what if Bee and Bird are not
 both classes? In Swift, that’s a very real possibility. Important and powerful objects can be structs instead of classes. But there is no struct hierarchy of superstructs and substructs! That, after all, is one of the major differences between structs and classes. Yet structs need the ability to possess and express formal commonalities every bit as much as classes do. How can a Bee struct and a Bird struct both be Fliers?

Swift solves this problem through the use of protocols. Protocols are tremendously important in Swift; the Swift header defines about 60 of them! Moreover, Objective-C has protocols as well; Swift protocols correspond roughly to these, and can interchange with them. Cocoa makes heavy use of protocols.

A protocol is an object type
 , but there are no protocol objects
 — you can’t instantiate a protocol. A protocol is much more lightweight than that. A protocol declaration is just a list of properties and methods. The properties have no values, and the methods have no code! The idea is that a “real” object type can formally declare that it belongs to a protocol type; this is called adopting
 or conforming to
 the protocol. An object type that adopts a protocol is signing a contract stating that it actually implements the properties and methods listed by the protocol.

For example, let’s say that being a Flier consists of no more than implementing a fly
 method. Then a Flier protocol could specify that there must be a fly
 method; to do so, it lists the fly
 method with no function body
 , like this:

protocol Flier {
 func fly()
}

Any type — an enum, a struct, a class, or even another protocol — can then adopt this protocol. To do so, it lists the protocol after a colon after its name in its declaration. (If the adopter is a class with a superclass, the protocol comes after a comma after the superclass specification.)

Let’s say Bird is a struct. Then it can adopt Flier like this:

struct Bird : Flier {
} // compile error

So far, so good. But that code won’t compile. The Bird struct has made a promise to implement the features listed in the Flier protocol. Now it must keep that promise! The fly
 method is the only requirement of the Flier protocol. To satisfy that requirement, I’ll just give Bird an empty fly
 method:

protocol Flier {
 func fly()
}
struct Bird : Flier {
 func fly() {
 }
}

That’s all there is to it! We’ve defined a protocol, and we’ve made a struct adopt that protocol. Of course, in real life you’ll probably want to make the adopter’s implementation of the protocol’s methods do
 something; but the protocol says nothing about that.

Tip

A protocol can also declare a method and provide its implementation
 , thanks to protocol extensions, which I’ll discuss later in this chapter.

Why Protocols?

Perhaps at this point you’re scratching your head over why
 this is a useful thing to do. We made a Bird a Flier, but so what? If we wanted a Bird to know how to fly, why didn’t we just give Bird a fly
 method without
 adopting any protocol? The answer has to do with types. Don’t forget, a protocol is a type. Our protocol, Flier, is a type. Therefore, I can use
 Flier as a type — to declare the type of a variable, for example, or the type of a function parameter:

func tellToFly(_ f:Flier) {
 f.fly()
}

Think about that code for a moment, because it embodies the entire point of protocols. A protocol is a type — so polymorphism applies.
 Protocols give us another way of expressing the notion of type and subtype. This means that, by the substitution principle, a Flier here could be an instance of any object type — an enum, a struct, or a class. It doesn’t matter what
 object type it is, as long as it adopts the Flier protocol.
 If it adopts the Flier protocol, it can be passed where a Flier is expected. Moreover, if it adopts the Flier protocol, then it must have a fly
 method, because that’s exactly what it means
 to adopt the Flier protocol! Therefore the compiler is willing to let us send the fly
 message to this object.

The converse, however, is not true: an object with a fly
 method is not
 automatically a Flier. It isn’t enough to obey
 the requirements of a protocol; the object type must adopt
 the protocol. This code won’t compile:

struct Bee {
 func fly() {
 }
}
let b = Bee()
tellToFly(b) // compile error

A Bee can
 be sent the fly
 message, qua
 Bee. But tellToFly
 doesn’t take a Bee parameter; it takes a Flier parameter. Formally, a Bee is not
 a Flier. To make a Bee a Flier, simply declare formally that Bee adopts the Flier protocol. This code does compile:

struct Bee : Flier {
 func fly() {
 }
}
let b = Bee()
tellToFly(b)

Enough of birds and bees; we’re ready for a real-life example! As I’ve already said, Swift is chock full of protocols already. Let’s make one of our own object types adopt one. One of the most useful Swift protocols is CustomStringConvertible. The CustomStringConvertible protocol requires that we implement a description
 String property. If we do that, a wonderful thing happens: when an instance of this type is used in string interpolation, or with print
 (or the po
 command in the console), or in the String coercion initializer init(describing:)
 , the description
 property value is used automatically to represent it.

Recall, for example, the Filter enum, from earlier in this chapter. I’ll add a description
 property to it:

enum Filter : String {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 var description : String { return self.rawValue }
}

But that isn’t enough, in and of itself, to give Filter the power of the CustomStringConvertible protocol; to do that, we also need to adopt
 the CustomStringConvertible protocol formally. There is already a colon and a type in the Filter declaration, so an adopted protocol comes after a comma:

enum Filter : String, CustomStringConvertible {
 case albums = "Albums"
 case playlists = "Playlists"
 case podcasts = "Podcasts"
 case books = "Audiobooks"
 var description : String { return self.rawValue }
}

We have now made Filter formally adopt the CustomStringConvertible protocol. The CustomStringConvertible protocol requires that we implement a description
 String property; we do
 implement a description
 String property, so our code compiles. Now we can interpolate a Filter into a string, or hand it over to print
 , or coerce it to a String, and its description
 will be used automatically:

let type = Filter.albums
print("It is \(type)") // It is Albums
print(type) // Albums
let s = String(describing:type) // "Albums"

Behold the power of protocols. You can give any
 object type the power of string conversion in exactly the same way.

Note that a type can adopt more than one protocol! For example, the built-in Double type adopts CustomStringConvertible, Hashable, Strideable, and several other built-in protocols. To declare adoption of multiple protocols, list each one after the first protocol in the declaration, separated by comma. For example:

struct MyType : CustomStringConvertible, Hashable, Strideable {
 // ...
}

(Of course, that code won’t compile unless I also declare, in MyType, any required properties and methods, so that MyType really does
 adopt those protocols.)

Protocol Type Testing and Casting

A protocol is a type, and an adopter of a protocol is its subtype. Polymorphism applies. Therefore, the operators for mediating between an object’s declared type and its real type work when the object is declared as a protocol type. For example, given a protocol Flier that is adopted by both Bird and Bee, we can use the is
 operator to test whether a particular Flier is in fact a Bird:

func isBird(_ f:Flier) -> Bool {
 return f is Bird
}

Similarly, as!
 and as?
 can be used to cast an object declared as a protocol type down to its actual type. This is important to be able to do, because the adopting object will typically be able to receive messages that the protocol can’t receive. For example, let’s say that a Bird can get a worm:

struct Bird : Flier {
 func fly() {
 }
 func getWorm() {
 }
}

A Bird can fly
 qua
 Flier, but it can getWorm
 only qua
 Bird. Thus, you can’t tell just any old Flier to get a worm:

func tellGetWorm(_ f:Flier) {
 f.getWorm() // compile error
}

But if this Flier is a Bird, clearly it can
 get a worm. That is exactly what casting is all about:

func tellGetWorm(f:Flier) {
 (f as? Bird)?.getWorm()
}

Declaring a Protocol

Protocol declaration can take place only at the top level of a file. To declare a protocol, use the keyword protocol
 followed by the name of the protocol, which, being an object type, should start with a capital letter. Then come curly braces
 which may contain the following:

Properties

A property declaration in a protocol consists of var
 (not let
), the property name, a colon, its type, and curly braces containing the word get
 or the words get set
 . In the former case, the adopter’s implementation of this property can
 be writable, while in the latter case, it must
 be: the adopter may not implement a get set
 property as a read-only computed property or as a constant (let
) stored property.

To declare a static/class property, precede it with the keyword static
 . A class adopter is free to implement this as a class
 property.

Methods

A method declaration in a protocol is a function declaration without a function body — that is, it has no curly braces and thus it has no code. Any object function type is legal, including init
 and subscript
 . (The syntax for declaring a subscript in a protocol is the same as the syntax for declaring a subscript in an object type, except that there will be no function bodies, so the curly braces, like those of a property declaration in a protocol, will contain get
 or get set
 .)

To declare a static/class method, precede it with the keyword static
 . A class adopter is free to implement this as a class
 method.

If a method, as implemented by an enum or struct, might need to be declared mutating
 , the protocol must specify the mutating
 designation; the adopter cannot add mutating
 if the protocol lacks it. (However, the adopter may omit mutating
 if the protocol has it.)

A protocol can itself adopt one or more protocols; the syntax is just as you would expect — a colon after the protocol’s name in the declaration, followed by a comma-separated list of the protocols it adopts. In effect, this gives you a way to create an entire secondary hierarchy of types! The Swift headers make heavy use of this.

A protocol that adopts another protocol may repeat the contents of the adopted protocol’s curly braces, for clarity; but it doesn’t have to, as this repetition is implicit. An object type that adopts such a protocol must satisfy the requirements of this protocol and all protocols that the protocol adopts.

Protocol Composition

If the only purpose of a protocol is to combine other protocols by adopting all of them, without adding any new requirements, you can avoid formally declaring the protocol in the first place by specifying the combining protocol on the fly. To do so, join the protocol names with &
 . This is called protocol composition
 . For example:

func f(_ x: CustomStringConvertible & CustomDebugStringConvertible) {
}

That is a function declaration with a parameter whose type is specified as being some object type that adopts both the CustomStringConvertible protocol and the CustomDebugStringConvertible protocol.

New in Swift 4, a type can also be specified as a composite of a class and a protocol (or multiple protocols). This language feature solves a problem that has always been solved in Objective-C; in effect, it simply brings Swift up to par with Objective-C. A typical case in point might look something like this:

protocol MyViewProtocol : class {
 func doSomethingCool()
}
class ViewController: UIViewController {
 var v: (UIView & MyViewProtocol)?
 // ...
}

In that code, ViewController’s v
 property is typed as an Optional wrapping a composite of UIView and MyViewProtocol. UIView itself belongs to Cocoa and does not adopt MyViewProtocol; but we might easily subclass UIView and make that subclass adopt MyViewProtocol (or, as I’ll explain later, we might extend some built-in UIView subclasses to adopt MyViewProtocol). To be assigned to the v
 property, an object would need to be an instance of a UIView subclass that is also an adopter of MyViewProtocol. In this way, we guarantee to the compiler that both UIView messages and MyViewProtocol messages can be sent to a ViewController’s v
 . That, it turns out, is a fairly common thing to want to be able to do; in earlier versions of Swift, you’d have to type v
 as a MyViewProtocol and then cast to UIView in order to send it UIView messages, even if you knew that v
 would in fact always be a UIView.

Optional Protocol Members

In Objective-C, a protocol member can be declared optional, meaning that this member doesn’t have to be implemented by the adopter, but it may be. For compatibility with Objective-C, Swift allows optional protocol members, but only in a protocol explicitly bridged to Objective-C by preceding its declaration with the @objc
 attribute. In such a protocol, an optional member is declared by preceding its declaration with the keywords @objc optional
 :

@objc protocol Flier {
 @objc optional var song : String {get}
 @objc optional func sing()
}

(The @objc
 markings are needed because optional protocol members are not really a Swift feature; they are an Objective-C feature! Therefore, everything about an optional protocol member must be explicitly exposed to Objective-C, so that Objective-C can implement it. I’ll explain in Chapter 10
 how
 Objective-C implements optional protocol members.)

Only a class can adopt such a protocol:

class Bird : Flier {
 func sing() {
 print("tweet")
 }
}

An optional member is not guaranteed to be implemented by the adopter, so Swift doesn’t know whether it’s safe to send a Flier either the song
 message or the sing
 message. How Swift solves that problem depends on whether this is an optional property or an optional method.

In the case of an optional property like song
 , Swift solves the problem by wrapping its fetched value in an Optional. If the Flier adopter doesn’t implement the property, the result is nil
 and no harm done:

let f : Flier = Bird()
let s = f.song // s is an Optional wrapping a String

This is one of those rare situations where you can wind up with a double-wrapped Optional. For example, if the value of the optional property song
 were itself a String?
 , then fetching its value from a Flier would yield a String??
 :

@objc protocol Flier {
 @objc optional var song : String? {get}
 @objc optional func sing()
}
let f : Flier = Bird()
let s = f.song // s is an Optional wrapping an Optional wrapping a String

Warning

An optional property can be declared {get set}
 by its protocol, but there is no legal syntax for setting such a property in an object of that protocol type. For example, if f
 is a Flier and song
 is declared {get set}
 , you can’t set f.song
 . I regard this as a bug in the language.

In the case of an optional method like sing
 , things are more elaborate. If the method is not implemented, we must not be permitted to call it in the first place. To handle this situation, the method itself
 is automatically typed as an Optional version of its declared type. To send the sing
 message to a Flier, therefore, you must unwrap it. The safe approach is to unwrap it optionally, with a question mark:

let f : Flier = Bird()
f.sing?()

That code compiles — and it also runs safely. The effect is to send the sing
 message to f
 only if this Flier adopter implements sing
 . If this Flier adopter doesn’t
 implement sing
 , nothing happens. You could have force-unwrapped the call — f.sing!()
 — but then your app would crash if the adopter doesn’t implement sing
 .

If an optional method returns a value, that value is wrapped in an Optional as well. For example:

@objc protocol Flier {
 @objc optional var song : String {get}
 @objc optional func sing() -> String
}

If we now call sing?()
 on a Flier, the result is an Optional wrapping a String:

let f : Flier = Bird()
let s = f.sing?() // s is an Optional wrapping a String

If we force-unwrap the call — sing!()
 — the result is either a String (if the adopter implements sing
) or a crash (if it doesn’t).

Many Cocoa protocols have optional members. For example, your iOS app will have an app delegate class that adopts the UIApplicationDelegate protocol; this protocol has many methods, all of them optional. That fact, however, will have no effect on how you implement those methods; either you implement a method or you don’t. (I’ll talk more about Cocoa protocols in Chapter 10
 , and about delegate protocols in Chapter 11
 .)

Class Protocol

A protocol declared with the keyword class
 after the colon after its name is a class protocol
 , meaning that it can be adopted only by class object types:

protocol SecondViewControllerDelegate : class {
 func accept(data:Any!)
}

(There is no need to say class
 if this protocol is already marked @objc
 ; the @objc
 attribute implies that this is also a class protocol, because classes are the only Objective-C object type.)

A typical reason for declaring a class protocol is to take advantage of special memory management features that apply only to classes. I haven’t discussed memory management yet, but I’ll continue the example anyway (and I’ll repeat it when I talk about memory management in Chapter 5
):

class SecondViewController : UIViewController {
 weak var delegate : SecondViewControllerDelegate?
 // ...
}

The keyword weak
 marks the delegate
 property as having special memory management. Only a class instance can participate in this kind of special memory management. The delegate
 property is typed as a protocol, and a protocol might be adopted by a struct or an enum type. So to satisfy the compiler that this object will
 in fact be a class instance, and not
 a struct or enum instance, the protocol is declared as a class protocol.

In Swift 4, you might alternatively take advantage of class–protocol composition to accomplish the same thing:

class SecondViewController : UIViewController {
 weak var delegate : (NSObject & SecondViewControllerDelegate)?
 // ...
}

That’s legal even if SecondViewControllerDelegate has no class
 designation — but only if the object you propose to assign to the delegate
 property derives from NSObject, in which case it is
 a class instance.

Implicitly Required Initializers

Suppose that a protocol declares an initializer. And suppose that a class adopts this protocol. By the terms of this protocol, this class and any subclass it may ever have must implement this initializer. Therefore, the class must not only implement the initializer, but it must also mark it as required
 . An initializer declared in a protocol is thus implicitly required
 , and the class is forced to make that requirement explicit.

Consider this simple example, which won’t compile:

protocol Flier {
 init()
}
class Bird : Flier {
 init() {} // compile error
}

That code generates an elaborate but perfectly informative compile error message: “Initializer requirement init()
 can only be satisfied by a required
 initializer in non-final class Bird.” To compile our code, we must designate our initializer as required
 :

protocol Flier {
 init()
}
class Bird : Flier {
 required init() {}
}

The alternative, as the compile error message informs us, would be to mark the Bird class as final
 . This would mean that it cannot have any subclasses
 — thus guaranteeing that the problem will never arise in the first place. If Bird were marked final
 , there would be no need to mark its init
 as required
 .

In the above code, Bird is not
 marked as final
 , and its init
 is
 marked as required
 . This, as I’ve already explained, means in turn that any subclass of Bird that implements any designated initializers — and thus loses initializer inheritance — must implement the required initializer and mark it required
 as well.

That fact is responsible for a strange and annoying feature of real-life iOS programming with Swift. Let’s say you subclass the built-in Cocoa class UIViewController — something that you are extremely likely to do. And let’s say you give your subclass an initializer — something that you are also extremely likely to do:

class ViewController: UIViewController {
 init() {
 super.init(nibName: "ViewController", bundle: nil)
 }
}

That code won’t compile. The compile error says: “required
 initializer init(coder:)
 must be provided by subclass of UIViewController.”

What’s going on here? It turns out that UIViewController adopts a protocol, NSCoding
 . And this protocol requires an initializer init(coder:)
 . None of that is your doing; UIViewController and NSCoding are declared by Cocoa, not by you. But that doesn’t matter! This is the same situation I was just describing. Your UIViewController subclass must either inherit init(coder:)
 or must explicitly implement it and mark it required
 . Well, your subclass has implemented a designated initializer of its own — thus cutting off initializer inheritance. Therefore it must implement init(coder:)
 and mark it required
 .

But that makes no sense if you are not expecting init(coder:)
 ever to be called
 on your UIViewController subclass. You are being forced to write an initializer for which you can provide no meaningful functionality! Fortunately, Xcode’s Fix-it feature will offer to write the initializer for you, like this:

required init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
}

That code satisfies the compiler. (I’ll explain in Chapter 5
 why it’s a legal initializer even though it doesn’t fulfill an initializer’s contract.) It also deliberately crashes if it is ever called — which is fine, because ex hypothesi
 you don’t expect it ever to be called.

If, on the other hand, you do
 have functionality for this initializer, you will delete the fatalError
 line and insert that functionality in its place. A minimum meaningful implementation would be to call super.init(coder:aDecoder)
 , but of course if your class has properties that need initialization, you will need to initialize them first.

Not only UIViewController but lots
 of built-in Cocoa classes adopt NSCoding. You will encounter this problem if you subclass any
 of those classes and implement your own initializer. It’s just something you’ll have to get used to.

Literal Convertibles

One of the wonderful things about Swift is that so many of its features, rather than being built-in and accomplished by magic, are implemented in
 Swift and are exposed to view in the Swift header. Literals are a case in point. The reason you can say 5
 to make an Int whose value is 5, instead of formally initializing Int by saying Int(5)
 , is not because of magic (or at least, not entirely because of magic). It’s because Int adopts a protocol, ExpressibleByIntegerLiteral. Not only Int literals, but all
 literals work this way. The following protocols are declared in the Swift header:

	ExpressibleByNilLiteral

	ExpressibleByBooleanLiteral

	ExpressibleByIntegerLiteral

	ExpressibleByFloatLiteral

	ExpressibleByStringLiteral

	ExpressibleByExtendedGraphemeClusterLiteral

	ExpressibleByUnicodeScalarLiteral

	ExpressibleByArrayLiteral

	ExpressibleByDictionaryLiteral

Your own object type can adopt a literal convertible protocol as well. This means that a literal can appear where an instance of your object type is expected! For example, here we declare a Nest type that contains some number of eggs (its eggCount
):

struct Nest : ExpressibleByIntegerLiteral {
 var eggCount : Int = 0
 init() {}
 init(integerLiteral val: Int) {
 self.eggCount = val
 }
}

Because Nest adopts ExpressibleByIntegerLiteral, we can pass an Int where a Nest is expected, and our init(integerLiteral:)
 will be called automatically, causing a new Nest object with the specified eggCount
 to come into existence at that moment:

func reportEggs(_ nest:Nest) {
 print("this nest contains \(nest.eggCount) eggs")
}
reportEggs(4) // this nest contains 4 eggs

Generics

A generic
 is a sort of placeholder for a type, into which an actual type will be slotted later. In particular, there are situations where you want to say that a certain same
 type is to be used in several places, without specifying precisely what
 type this is to be. Swift generics allow you to say that, without sacrificing or evading Swift’s fundamental strict typing.

A motivating case in point arose earlier in this chapter, when we wrote a global factory method for dogs:

func dogMakerAndNamer(_ whattype:Dog.Type) -> Dog {
 let d = whattype.init(name:"Fido")
 return d
}

That works, but it isn’t quite what we’d like to say. In the first line, the function’s declared return type after the arrow operator is Dog. So even if we are passed a Dog subclass as a parameter, such as NoisyDog.self
 , we will instantiate that type (which is good) but then return that instance typed as its Dog superclass (which is bad). Instead of Dog, we’d like the type declared as the return type after the arrow operator to be the same
 type that we were passed as a parameter in the first line and that we instantiated in the second line — whatever that type may be. Generics provide us with a way to express that notion:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
 let d = WhatType.init(name:"Fido")
 return d
}

That’s a generic function. I haven’t yet explained the syntax used here, but already you can see the point. The repeated type WhatType is a generic type — a placeholder. It appears in three places: it is the type passed as parameter, the type instantiated in the second line, and the declared type of the returned instance (after the arrow operator). Thus, we are able to specify that this is the same
 type throughout, without having to specify exactly what
 type this is (beyond the fact that it is Dog or a Dog subclass).

However, Swift has strict typing, so the compiler needs to know precisely what type WhatType will really
 be. But in fact it does
 know, because at some other point in our code, we call
 this function. For example:

let dog = dogMakerAndNamer(NoisyDog.self)

In that call, we pass NoisyDog.self
 as the parameter. That tells the compiler what WhatType is! It is NoisyDog. In effect, the compiler now substitutes
 NoisyDog for WhatType throughout the generic, like this (pseudocode):

func dogMakerAndNamer(_:NoisyDog.Type) -> NoisyDog {
 let d = NoisyDog.init(name:"Fido")
 return d
}

That process of substitution is called resolving
 (or specializing
) the generic. The type in question is unambiguously clear for this call
 to our function, and the compiler is satisfied. And this resolution extends beyond the generic itself. For example, now that the compiler knows that this
 call to our function will return a NoisyDog instance, it can type the variable initialized to the result of the call as a NoisyDog by inference:

let dog = dogMakerAndNamer(NoisyDog.self) // dog is typed as NoisyDog

Here’s another motivating case in point: an Optional. Any type of value can be wrapped up in an Optional. Yet there is no doubt as to what type is wrapped up in a particular
 Optional. How can this be? It’s because Optional is a generic! Here’s how an Optional works.

I have already said that an Optional is an enum, with two cases: .none
 and .some
 . If an Optional’s case is .some
 , it has an associated value — the value that is wrapped by this Optional. But what is the type of that associated value? On the one hand, one wants to say that it can be any type; that, after all, is why anything can be wrapped up in an Optional. On the other hand, any given Optional that wraps a value wraps a value of some specific type. When you unwrap an Optional, that unwrapped value needs to be typed as what it is, so that it can be sent messages appropriate for that type.

The solution to this sort of problem is a generic — in this case, a generic enum. The declaration for the Optional enum in the Swift header starts like this:

enum Optional<Wrapped> {
 // ...
}

That syntax means: “In the course of this enum declaration, I’m going to be using a made-up type — a type placeholder
 — that I call Wrapped. It’s a real and individual type, but I’m not going to say more about it right now. All you need to know is that whenever I say Wrapped, I mean this one particular type. When an actual Optional is created, it will be perfectly clear what type Wrapped stands for, and then, wherever I say Wrapped, you should substitute the type that it stands for.”

Let’s look at more of the Optional declaration:

enum Optional<Wrapped> {
 case none
 case some(Wrapped)
 init(_ some: Wrapped)
 // ...
}

Having declared that Wrapped is a placeholder, we proceed to use it. There’s a case .none
 . There’s also a case .some
 , which has an associated value — of type Wrapped. We also have an initializer, which takes a parameter — of type Wrapped. Thus, the type with which we are initialized — whatever type that may be — is
 type Wrapped, and thus is the type of value that is associated with the .some
 case.

Now, in the declaration of the Optional enum, Wrapped is a placeholder. But in real life, when an actual Optional is created, it will be initialized with an actual value of some definite type. Usually, we’ll use the question-mark syntactic sugar (type String?
) and the initializer will be called for us behind the scenes, but let’s call the initializer explicitly for the sake of clarity:

let s = Optional("howdy")

Obviously, "howdy"
 here is a String. But we’re calling init(_ some: Wrapped)
 , so "howdy"
 is being supplied here as a Wrapped instance. As a result, the compiler knows that Wrapped is String throughout
 this particular Optional<Wrapped>
 . That resolves the generic! Under the hood, wherever Wrapped appears in the declaration of the Optional enum, the compiler now substitutes String. Thus, the declaration for the particular
 Optional referred to by the variable s
 looks, in the compiler’s mind, like this (pseudocode):

enum Optional<String> {
 case none
 case some(String)
 init(_ some: String)
 // ...
}

That is the pseudocode declaration of an Optional whose Wrapped placeholder has been replaced everywhere with the String type. We can summarize this by saying that s
 is an Optional<String>
 . In fact, that is legal syntax! We can create the same Optional like this:

let s : Optional<String> = "howdy"

As I’ve shown, generics do not in any way relax Swift’s strict typing. In particular, they do not postpone resolution of a type until runtime. When you use a generic, your code will still specify its real type; that real type is known with complete specificity at compile time!
 The particular region of your code where the type is expected
 uses a generic so that it
 doesn’t have to specify the type fully, but at the point where that code is used
 by other code, the type is
 specified. The placeholder is generic, but it is resolved
 to an actual specific type whenever the generic is used.

Generic Declarations

Here’s a list of places where generics, in one form or another, can be declared in Swift:

Generic protocol with Self

In a protocol, use of the keyword Self
 (note the capitalization) turns the protocol into a generic. Self
 is a placeholder meaning the type of the adopter
 . For example, here’s a Flier protocol that declares a method that takes a Self
 parameter:

protocol Flier {
 func flockTogetherWith(_ f:Self)
}

That means that if the Bird object type were to adopt the Flier protocol, its implementation of flockTogetherWith
 would need to declare its parameter as a Bird.

Generic protocol with associated type

A protocol can declare an associated type
 using an associatedtype
 statement. This turns the protocol into a generic; the associated type name is a placeholder. For example:

protocol Flier {
 associatedtype Other
 func flockTogetherWith(_ f:Other)
 func mateWith(_ f:Other)
}

An adopter will declare some particular type where the generic uses the associated type name, thus resolving the placeholder. If the Bird struct adopts the Flier protocol and declares the parameter of flockTogetherWith
 as a Bird, that declaration resolves Other to Bird for this particular adopter — and now Bird must declare the parameter for mateWith
 as a Bird as well:

struct Bird : Flier {
 func flockTogetherWith(_ f:Bird) {}
 func mateWith(_ f:Bird) {}
}

Generic functions

A function declaration can use a generic placeholder type for any of its parameters, for its return type, and within its body. The placeholder name is declared in angle brackets after the function name:

func takeAndReturnSameThing<T> (_ t:T) -> T {
 return t
}

The caller will use some particular type where the placeholder appears in the function declaration, thus resolving the placeholder:

let thing = takeAndReturnSameThing("howdy")

Here, the type of the argument "howdy"
 used in the call resolves T to String; therefore this call to takeAndReturnSameThing
 will also return a String, and the variable capturing the result, thing
 , is inferred to String as well.

Tip

New in Swift 4, a subscript can be a generic function.

Generic object types

An object type declaration can use a generic placeholder type anywhere within its curly braces. The placeholder name is declared in angle brackets after the object type name:

struct HolderOfTwoSameThings<T> {
 var firstThing : T
 var secondThing : T
 init(thingOne:T, thingTwo:T) {
 self.firstThing = thingOne
 self.secondThing = thingTwo
 }
}

A user of this object type will use some particular type where the placeholder appears in the object type declaration, thus resolving the placeholder:

let holder = HolderOfTwoSameThings(thingOne:"howdy", thingTwo:"getLost")

Here, the type of the thingOne
 argument, "howdy"
 , used in the initializer call, resolves T to String; therefore thingTwo
 must also be a String, and the properties firstThing
 and secondThing
 are Strings as well.

For generic functions and object types, which use the angle bracket syntax, the angle brackets may contain multiple placeholder names, separated by comma. For example:

func flockTwoTogether<T, U>(_ f1:T, _ f2:U) {}

The two parameters of flockTwoTogether
 can now be resolved to two different types (though they do not have
 to be different).

Type Constraints

The examples in the preceding section permit any type to be substituted for the placeholder. Alternatively, you can limit
 the types that are eligible to be used for resolving a particular placeholder. This is called a type constraint
 . The simplest form of type constraint is to put a colon and a type name after the placeholder’s name when it first appears. The type name after the colon can be a class name or a protocol name. A class name means that this type must be this class or a subclass
 of this class. A protocol name means that this type must be an adopter
 of this protocol.

For a protocol associated type, the type constraint appears as part of the associatedtype
 declaration. For example:

protocol Flier {
 func fly()
}
protocol Flocker {
 associatedtype Other : Flier // *
 func flockTogetherWith(f:Other)
}
struct Bird : Flocker, Flier {
 func fly() {}
 func flockTogetherWith(f:Bird) {}
}

In that example, Flocker’s associated type Other is constrained to be an adopter of Flier. Bird is
 an adopter of Flier; therefore it can also adopt Flocker while specifying that the parameter type in its flockTogetherWith
 implementation is Bird.

Observe that we could not have achieved the same effect without the associated type, by declaring Flocker like this:

protocol Flocker {
 func flockTogetherWith(f:Flier)
}

That’s not the same thing! That requires that a Flocker adopter specify the parameter for flockTogetherWith
 as Flier
 . We would then have had to write Bird like this:

struct Bird : Flocker, Flier {
 func fly() {}
 func flockTogetherWith(f:Flier) {}
}

The constrained associated type, on the other hand, requires that a Flocker adopter specify the parameter for flockTogetherWith
 as some Flier adopter
 (such as Bird).

For a generic function or a generic object type, the type constraint appears in the angle brackets. The global function declaration earlier in this chapter, func dogMakerAndNamer<WhatType:Dog>
 , is an example; Dog is a class, so the constraint says that WhatType must be Dog or a Dog subclass. Here’s another example, using a protocol as a constraint:

func flockTwoTogether<T:Flier>(_ f1:T, _ f2:T) {}

In that example, Flier is a protocol, so the constraint says that T must be a Flier adopter. If Bird and Insect both adopt Flier, this flockTwoTogether
 function can be called with two Bird arguments or with two Insect arguments — but not with a Bird and an Insect, because T is just one placeholder, signifying one Flier adopter type. And you can’t call flockTwoTogether
 with two String parameters, because a String is not a Flier.

A type constraint on a placeholder is often useful as a way of assuring the compiler that some message can be sent to an instance of the placeholder type. For example, let’s say we want to implement a function myMin
 that returns the smallest from a list of the same type. Here’s a promising implementation as a generic function, but there’s one problem — it doesn’t compile:

func myMin<T>(_ things:T...) -> T {
 var minimum = things[0]
 for ix in 1..<things.count {
 if things[ix] < minimum { // compile error
 minimum = things[ix]
 }
 }
 return minimum
}

The problem is the comparison things[ix] < minimum
 . How does the compiler know that the type T, the type of things[ix]
 and minimum
 , will be resolved to a type that can in fact be compared using the less-than operator in this way? It doesn’t, and that’s exactly why it rejects that code. The solution is to promise the compiler that the resolved type of T will
 in fact work with the less-than operator. The way to do that, it turns out, is to constrain T to Swift’s built-in Comparable
 protocol; adoption of the Comparable protocol exactly guarantees that the adopter does
 work with the less-than operator:

func myMin<T:Comparable>(_ things:T...) -> T {

Now myMin
 compiles, because it cannot be called except by resolving T to an object type that adopts Comparable and hence can be compared with the less-than operator. Naturally, built-in object types that you think should be comparable, such as Int, Double, String, and Character, do in fact adopt the Comparable protocol! If you look in the Swift headers, you’ll find that the built-in min
 global function is declared in just this way, and for just this reason.

A generic protocol (a protocol whose declaration mentions Self
 or has an associated type) can be used as a type only
 in a generic as a type constraint. If you try to use it in any other way, you’ll get a compile error: “Protocol can only be used as a generic constraint.
 ”

Tip

There’s a way around that restriction, called type erasure
 ; for an excellent discussion of type erasure, see
http://robnapier.net/erasure

 .

Explicit Specialization

In the examples so far, the user of a generic resolves the placeholder’s type through inference. But there’s another way to perform resolution: the user can resolve the type manually. This is called explicit specialization
 . In some situations, explicit specialization is mandatory — namely, if the placeholder type cannot be resolved through inference. There are two forms of explicit specialization:

Generic protocol with associated type

The adopter of a protocol can resolve the protocol’s associated type manually through a typealias
 declaration using the protocol’s associated type name with an explicit type assignment. For example:

protocol Flier {
 associatedtype Other
}
struct Bird : Flier {
 typealias Other = String
}

Generic object type

The user of a generic object type can resolve the object’s placeholder type(s) manually using the same angle bracket syntax used to declare the generic in the first place, with actual type names in the angle brackets. For example:

class Dog<T> {
 var name : T?
}
let d = Dog<String>()

(That explains the Optional<String>
 syntax used earlier in this chapter and in Chapter 3
 .)

You cannot explicitly specialize a generic function. You can, however, write a generic function that takes a type parameter resolving the generic. That’s what I did in my earlier dogMakerAndNamer
 example:

func dogMakerAndNamer<WhatType:Dog>(_:WhatType.Type) -> WhatType {
 let d = WhatType.init(name:"Fido")
 return d
}

The parameter to dogMakerAndNamer
 is never used within the function body, which is why it has no name (just an underscore). It does, however, serve to resolve the generic!

Another approach is to declare a generic type wrapping a nongeneric function that uses the generic type’s placeholder; explicit specialization of the generic type resolves the placeholder, and thus resolves the function:

protocol Flier {
 init()
}
struct Bird : Flier {
 init() {}
}
struct FlierMaker<T:Flier> {
 static func makeFlier() -> T {
 return T()
 }
}
let f = FlierMaker<Bird>.makeFlier() // returns a Bird

When a class is generic, you can subclass it, provided you resolve the generic. You can do this either through a matching generic subclass or by resolving the superclass generic explicitly. For example, here’s a generic Dog:

class Dog<T> {
 func speak(_ what:T) {}
}

You can subclass it as a generic whose placeholder matches that of the superclass:

class NoisyDog<T> : Dog<T> {}

That’s legal because the resolution of the NoisyDog placeholder T will resolve the Dog placeholder T. The alternative is to subclass an explicitly specialized Dog:

class NoisyDog : Dog<String> {}

In that case, a method override in the subclass can use the specialized type where the superclass uses the generic:

class NoisyDog : Dog<String> {
 override func speak(_ what:String) {}
}

Generics Are Not Covariant

A generic type specialized to a subtype is not polymorphic with respect to the same generic type specialized to a supertype. For example, suppose we have a simple generic Wrapper struct along with a Cat class and its CalicoCat subclass:

struct Wrapper<T> {
}
class Cat {
}
class CalicoCat : Cat {
}

Then you can’t assign a Wrapper specialized to CalicoCat where a Wrapper specialized to Cat is expected:

let w : Wrapper<Cat> = Wrapper<CalicoCat>() // compile error

It appears that polymorphism is failing here — but it isn’t. The two generic types, Wrapper<Cat>
 and Wrapper<CalicoCat>
 , are not superclass and subclass. Rather, if this assignment were possible, we would say that the types are covariant
 , meaning that the polymorphic relationship between the specializations of the placeholders is applied to the generic types themselves. Certain Swift built-in generic types are
 covariant; Optional is a clear example! But it’s not a general
 language feature, and there’s no way for you to specify that your
 generic types should be covariant.

Associated Type Chains

When a generic placeholder is constrained to a generic protocol with an associated type, you can refer to that type using a dot-notation chain: the placeholder name, a dot, and the associated type name.

Here’s an example. Imagine that in a game program, soldiers and archers are enemies of one another. I’ll express this by subsuming a Soldier struct and an Archer struct under a Fighter protocol that has an Enemy associated type, which is itself constrained to be a Fighter:

protocol Fighter {
 associatedtype Enemy where Enemy : Fighter
}

Tip

It’s illegal in Swift to constrain the associated type Enemy directly to be a Fighter, because of a rule that type constraints cannot recurse. This restriction is slated to be removed soon; meanwhile, I’ve worked around it by writing the constraint with a where clause (explained in the next section).

I’ll resolve that associated type manually for both the Soldier and the Archer structs:

struct Soldier : Fighter {
 typealias Enemy = Archer
}
struct Archer : Fighter {
 typealias Enemy = Soldier
}

Now I’ll create a generic struct to express the opposing camps of these fighters:

struct Camp<T:Fighter> {
}

Now suppose that a camp may contain a spy from the opposing camp. What is the type of that spy? Well, if this is a Soldier camp, it’s an Archer; and if it’s an Archer camp, it’s a Soldier. More generally, since T is a Fighter, it’s the type of the Enemy of this adopter of Fighter. I can express that neatly by a chain consisting of the placeholder name T
 , a dot, and the associated type name Enemy
 :

struct Camp<T:Fighter> {
 var spy : T.Enemy?
}

The result is that if, for a particular Camp, T is resolved to Soldier, T.Enemy
 means Archer — and vice versa
 . We have created a correct and inviolable rule for the type that a Camp’s spy
 must be. This won’t compile:

var c = Camp<Soldier>()
c.spy = Soldier() // compile error

We’ve tried to assign an object of the wrong type to this Camp’s spy
 property. But this does compile:

var c = Camp<Soldier>()
c.spy = Archer()

Longer chains of associated type names are possible — in particular, when a generic protocol has an associated type which is itself
 constrained to a generic protocol with an associated type. For example, let’s give each type of Fighter a characteristic weapon: a soldier has a sword, while an archer has a bow. I’ll make a Sword struct and a Bow struct, and I’ll unite them under a Wieldable protocol:

protocol Wieldable {
}
struct Sword : Wieldable {
}
struct Bow : Wieldable {
}

I’ll add a Weapon associated type to Fighter, which is constrained to be a Wieldable, and once again I’ll resolve it manually for each type of Fighter:

protocol Fighter {
 associatedtype Enemy where Enemy : Fighter
 associatedtype Weapon : Wieldable
}
struct Soldier : Fighter {
 typealias Weapon = Sword
 typealias Enemy = Archer
}
struct Archer : Fighter {
 typealias Weapon = Bow
 typealias Enemy = Soldier
}

Now let’s say that every Fighter has the ability to steal his enemy’s weapon. I’ll give the Fighter generic protocol a steal(weapon:from:)
 method. How can the Fighter generic protocol express the parameter types in a way that causes its adopter to declare this method with the proper types?

The from:
 parameter type is this Fighter’s Enemy. We already know how to express that: it’s the placeholder plus dot-notation with the associated type name. Here, the placeholder is the adopter of this protocol — namely, Self
 . So the from:
 parameter type is Self.Enemy
 . And what about the weapon:
 parameter type? That’s the Weapon of that Enemy! So the weapon:
 parameter type is Self.Enemy.Weapon
 :

protocol Fighter {
 associatedtype Enemy where Enemy : Fighter
 associatedtype Weapon : Wieldable
 func steal(weapon:Self.Enemy.Weapon, from:Self.Enemy)
}

(We could omit Self
 from that code, and it would compile and would mean the same thing. But Self
 would still be the implicit start of the chain, and I think explicit Self
 makes the meaning of the code clearer.)

The result is that the following declarations for Soldier and Archer correctly adopt the Fighter protocol, and the compiler approves:

struct Soldier : Fighter {
 typealias Weapon = Sword
 typealias Enemy = Archer
 func steal(weapon:Bow, from:Archer) {
 }
}
struct Archer : Fighter {
 typealias Weapon = Bow
 typealias Enemy = Soldier
 func steal(weapon:Sword, from:Soldier) {
 }
}

Where Clauses

A simple type constraint limits the types eligible for resolving a placeholder to a single type. Sometimes, you want to specify the eligible resolving types in a more elaborate way. The most flexible way to do that is to add a where clause:

	For a generic function, a where clause may appear after the signature declaration (after the parameter list, following the arrow operator and return type if included).

	For a generic type, a where clause may appear after the type declaration, before the curly braces.

	For a generic protocol, a where clause may appear after the protocol declaration, before the curly braces (this is new in Swift 4).

	For an associated type in a generic protocol, a where clause may appear at the end of the associated type declaration (this is new in Swift 4).

What sort of thing can appear in a where clause? One possibility is a comma-separated list of additional constraints on an already declared placeholder. For example, you already know that we can constrain a placeholder at the point of declaration, using a colon and a type (which might be a protocol composition):

func flyAndWalk<T: Flier> (_ f:T) {}
func flyAndWalk2<T: Flier & Walker> (_ f:T) {}
func flyAndWalk3<T: Flier & Dog> (_ f:T) {}

Using a where clause, we can move those constraints out of the angle brackets. No new functionality is gained, but the resulting notation is arguably neater:

func flyAndWalk<T> (_ f:T) where T: Flier {}
func flyAndWalk2<T> (_ f:T) where T: Flier & Walker {}
func flyAndWalk2a<T> (_ f:T) where T: Flier, T: Walker {}
func flyAndWalk3<T> (_ f:T) where T: Flier & Dog {}
func flyAndWalk3a<T> (_ f:T) where T: Flier, T: Dog {}

The real power of where clauses, however, emerges when a constraint on a placeholder is a generic protocol with an associated type. You can then use an associated type chain (described in the preceding section) to impose additional constraints on the associated type
 . This pseudocode shows what I mean; I’ve omitted the content of the where clause, to focus on what the where clause will be constraining:

protocol Flier {
 associatedtype Other
}
func flockTogether<T> (_ f:T) where T:Flier, T.Other /* ??? */ {}

In that pseudocode, the placeholder T is constrained to be a Flier — and Flier is itself a generic protocol, with an associated type Other. Therefore, whatever type resolves T will resolve Other. We can thus proceed to constrain the types eligible to resolve T.Other
 ! This, in turn, will further constrain by implication the types eligible to resolve T.

So now let’s fill in the blank in our pseudocode. What sort of restriction are we allowed to impose here? One possibility is a colon expression, specifying a class or its subclass, or a protocol adopter, just as for any type constraint. For example:

protocol Flier {
 associatedtype Other
}
struct Bird : Flier {
 typealias Other = String
}
struct Insect : Flier {
 typealias Other = Bird
}
func flockTogether<T> (_ f:T) where T:Flier, T.Other:Equatable {}

Both Bird and Insect adopt Flier, but they are not both eligible as the argument in a call to the flockTogether
 function. The flockTogether
 function can be called with a Bird argument, because a Bird’s Other associated type is resolved to String, which adopts the built-in Equatable protocol. But flockTogether
 can’t be called with an Insect argument, because an Insect’s Other associated type is resolved to Bird, which doesn’t
 adopt the Equatable protocol:

flockTogether(Bird()) // okay
flockTogether(Insect()) // compile error

The other possible restriction is to use the equality operator ==
 followed by a type. The associated type must then be exactly
 this type — not merely an adopter or subclass. For example:

protocol Flier {
 associatedtype Other
}
protocol Walker {
}
struct Kiwi : Walker {
}
struct Bird : Flier {
 typealias Other = Kiwi
}
struct Insect : Flier {
 typealias Other = Walker
}
func flockTogether<T> (_ f:T) where T:Flier, T.Other == Walker {}

The flockTogether
 function can be called with an Insect argument, because Insect adopts Flier and resolves Other to Walker. But it can’t be called with a Bird argument. Bird adopts Flier, and it resolves Other to an adopter of
 Walker, namely Kiwi — but that isn’t good enough to satisfy the ==
 restriction.

The type on the right side of the ==
 operator can itself be an associated type chain. The resolved types must then be identical to one another. For example:

protocol Flier {
 associatedtype Other
}
struct Bird : Flier {
 typealias Other = String
}
struct Insect : Flier {
 typealias Other = Int
}
func flockTwoTogether<T,U> (_ f1:T, _ f2:U)
 where T:Flier, U:Flier, T.Other == U.Other {}

The flockTwoTogether
 function can be called with a Bird and a Bird, and it can be called with an Insect and an Insect, but it can’t be called with an Insect and a Bird, because they don’t resolve the Other associated type to the same type.

The Swift header makes extensive use of where clauses with an ==
 operator, especially as a way of restricting a sequence type. Take, for example, the String append(contentsOf:)
 method, declared like this:

mutating func append<S>(contentsOf newElements: S)
 where S:Sequence, S.Element == Character

A sequence’s element type is its Element associated type. The constraint thus means that a sequence of characters — but not
 a sequence of something else, such as Int — can be concatenated to a String:

var s = "hello"
s.append(contentsOf: " world".characters) // "hello world"
s.append(contentsOf: ["!" as Character, "?" as Character])

The Array append(contentsOf:)
 method is declared a little differently:

mutating func append<S>(contentsOf newElements: S)
 where S:Sequence, Element == S.Element

An Array can consist of any type — but only one
 type. Array is a generic struct whose Element placeholder is the type of its elements. The constraint here enforces a rule that you can append to an Array the elements of any sort of Sequence, but only if they are the same kind of element as the elements of this array. If the array consists of String elements, you can add more String elements to it, but not Int elements.

New in Swift 4, a generic protocol or its associated type can have a where clause. The chief effect of this innovation is to reduce the length of associated type chains. For example, the Sequence generic protocol has an associated type Iterator, which is constrained to be an adopter of the generic IteratorProtocol, which in turn has an associated type Element. Thus, the Swift headers used to be peppered with where clauses constraining a type to a sequence’s Iterator.Element
 . In Swift 4, however, the introduction of associated type where clauses means that a Sequence itself can have an Element associated type which simply is
 its Iterator.Element
 :

protocol Sequence {
 associatedtype Element where Self.Element == Self.Iterator.Element
 // ...
}

As a result, wherever the Swift header used to say Iterator.Element
 , it can now say simply Element
 instead (as in the String and Array append(contentsOf:)
 declarations I cited a moment ago).

We can use a similar trick to shorten the associated type chain from the preceding section:

protocol Fighter {
 associatedtype Enemy where Enemy : Fighter
 associatedtype Weapon : Wieldable
 func steal(weapon:Self.Enemy.Weapon, from:Self.Enemy)
}

If we find ourselves frequently saying Enemy.Weapon
 , we can encapsulate that notion as an associated type with a where clause:

protocol Fighter {
 associatedtype Enemy where Enemy : Fighter
 associatedtype Weapon : Wieldable
 associatedtype EnemyWeapon where EnemyWeapon == Enemy.Weapon // *
 func steal(weapon:EnemyWeapon, from:Enemy) // *
}

No new functionality is gained, but the expression of what a method like steal
 does is clearer and tighter.

Extensions

An extension
 is a way of injecting your own code into an object type that has already been declared elsewhere; you are extending
 an existing object type. You can extend your own object types; you can also extend one of Swift’s object types or one of Cocoa’s object types, in which case you are adding functionality
 to a type that doesn’t belong to you!

Extension declaration can take place only at the top level of a file. To declare an extension, put the keyword extension
 followed by the name of an existing object type, then optionally a colon plus the names of any protocols you want to add to the list of those adopted by this type, and finally curly braces
 containing the usual things that go inside an object type declaration — with the following restrictions:

	An extension can’t override an existing member (but it can overload an existing method).

	An extension can’t declare a stored property (but it can declare a computed property).

	An extension of a class can’t declare a designated initializer or a deinitializer (but it can declare a convenience initializer).

Extending Object Types

In my real programming life, I sometimes extend a built-in Swift or Cocoa type just to encapsulate some missing functionality by expressing it as a property or method. Here are some examples from actual apps.

In a card game, I need to shuffle the deck, which is stored in an array. I extend Swift’s built-in Array type to give it a shuffle
 method:

extension Array {
 mutating func shuffle () {
 for i in (0..<self.count).reversed() {
 let ix1 = i
 let ix2 = Int(arc4random_uniform(UInt32(i+1)))
 self.swapAt(ix1, ix2)
 }
 }
}

Cocoa’s Core Graphics framework has many useful functions associated with the CGRect struct, and Swift already extends CGRect to add some helpful properties and methods; but there’s no shortcut for getting the center point (a CGPoint) of a CGRect, something that in practice one very often needs. I extend CGRect to give it a center
 property:

extension CGRect {
 var center : CGPoint {
 return CGPoint(x:self.midX, y:self.midY)
 }
}

An extension can declare a static or class member; since an object type is usually globally available, this can be a good way to slot a global function into an appropriate namespace. For example, in one of my apps, I find myself frequently using a certain color (a UIColor). Instead of creating that color repeatedly, it makes sense to encapsulate the instructions for generating it in a global function. But instead of making that function completely
 global, I make it — appropriately enough — a read-only class variable of UIColor:

extension UIColor {
 class var myGolden : UIColor {
 return self.init(
 red:1.000, green:0.894, blue:0.541, alpha:0.900
)
 }
}

Now I can use that color throughout my code as UIColor.myGolden
 , completely parallel to built-in class properties such as UIColor.red
 .

Extensions on one’s own object types can help to organize one’s code. A frequently used convention is to add an extension for each protocol one’s object type needs to adopt, like this:

class ViewController: UIViewController {
 // ... UIViewController method overrides go here ...
}
extension ViewController : UIPopoverPresentationControllerDelegate {
 // ... UIPopoverPresentationControllerDelegate methods go here ...
}
extension ViewController : UIToolbarDelegate {
 // ... UIToolbarDelegate methods go here ...
}

An extension on your own object type can also be a way to spread your definition of that object type over multiple files, if you feel that several shorter files are better than one long file.

When you extend a Swift struct, a curious thing happens with initializers: it becomes possible to declare an initializer and keep the implicit initializers:

struct Digit {
 var number : Int
}
extension Digit {
 init() {
 self.init(number:42)
 }
}

In that code, the explicit declaration of an initializer through an extension did not cause us to lose the implicit memberwise initializer, as would have happened if we had declared the same initializer inside the original struct declaration. Now we can instantiate a Digit by calling the explicitly declared initializer — Digit()
 — or by calling the implicit memberwise initializer — Digit(number:7)
 .

Extending Protocols

When you extend a protocol, you can add methods and properties to the protocol, just as for any object type. Unlike a protocol declaration, these methods and properties are not mere requirements, to be fulfilled by the adopter of the protocol; they are actual methods and properties, to be inherited
 by the adopter of the protocol! For example:

protocol Flier {
}
extension Flier {
 func fly() {
 print("flap flap flap")
 }
}
struct Bird : Flier {
}

Observe that Bird can now adopt Flier without implementing the fly
 method. That’s because the Flier protocol extension supplies
 the fly
 method! Bird thus inherits
 an implementation of fly
 :

let b = Bird()
b.fly() // flap flap flap

Of course, an adopter can still provide its own implementation of a method inherited from a protocol extension:

protocol Flier {
}
extension Flier {
 func fly() {
 print("flap flap flap")
 }
}
struct Insect : Flier {
 func fly() {
 print("whirr")
 }
}
let i = Insect()
i.fly() // whirr

But be warned: this kind of inheritance is not polymorphic
 . The adopter’s implementation is not an override; it is merely another implementation. The internal identity rule does not
 apply; it matters how a reference is typed:

let f : Flier = Insect()
f.fly() // flap flap flap (!!)

Even though f
 is internally an Insect (as we can discover with the is
 operator), the fly
 message is being sent to an object reference typed as a Flier, so it is Flier’s implementation of the fly
 method that is called, not Insect’s implementation.

To get something that looks like polymorphic inheritance, we must declare fly
 as a requirement in the original protocol
 :

protocol Flier {
 func fly() // *
}
extension Flier {
 func fly() {
 print("flap flap flap")
 }
}
struct Insect : Flier {
 func fly() {
 print("whirr")
 }
}

Now an Insect maintains its internal integrity:

let f : Flier = Insect()
f.fly() // whirr

The chief benefit of protocol extensions is that they allow code to be moved to an appropriate scope. Here’s an example from my Zotz app. I have four enums, each representing an attribute of a Card: Fill, Color, Shape, and Number. They all have an Int raw value. I was tired of having to say rawValue:
 every time I initialized one of these enums from its raw value, so I gave each enum a delegating initializer with no externalized parameter name, which calls the built-in init(rawValue:)
 initializer:

enum Fill : Int {
 case empty = 1
 case solid
 case hazy
 init?(_ what:Int) {
 self.init(rawValue:what)
 }
}
enum Color : Int {
 case color1 = 1
 case color2
 case color3
 init?(_ what:Int) {
 self.init(rawValue:what)
 }
}
// ... and so on ...

However, I didn’t like the repetition of my initializer declaration. This initializer is shared by all four enums, so I’d like to write it once, as part of some type from which all four enums can inherit it. That sounds like a protocol extension! An enum with a raw value automatically adopts the built-in generic RawRepresentable protocol, where the raw value type is an associated type called RawValue. So I can shoehorn my initializer into the RawRepresentable protocol:

extension RawRepresentable {
 init?(_ what:RawValue) {
 self.init(rawValue:what)
 }
}
enum Fill : Int {
 case empty = 1
 case solid
 case hazy
}
enum Color : Int {
 case color1 = 1
 case color2
 case color3
}
// ... and so on ...

The Swift standard library makes heavy use of protocol extensions as a way of making things nicely object-oriented. For example, before protocol extensions were introduced (in Swift 2.0), the only way to apply a function to a Sequence and only
 to a Sequence would be to declare a global generic function with a constraint restricting the parameter to Sequence adopters. Protocol extensions allow such functions to be moved to an appropriate scope as Sequence methods
 , like this:

extension Sequence {
 func enumerated() -> EnumeratedSequence<Self>
}

Extending Generics

When you extend a generic type, the placeholder type names are visible to your extension declaration. That’s good, because you might need to use them; but it can make your code a little mystifying, because you seem to be using an undefined type name out of the blue. It might be a good idea to add a comment, to remind yourself what you’re up to:

class Dog<T> {
 var name : T?
}
extension Dog {
 func sayYourName() -> T? { // T? is the type of self.name
 return self.name
 }
}

A generic type extension declaration can include a where clause. This has the same effect as any generic constraint: it limits which resolvers of the generic can call the code injected by this extension, and assures the compiler that your code is legal for those resolvers.

As with protocol extensions, generic extensions allow code to be moved into an appropriate scope. Recall this example from earlier in this chapter:

func myMin<T:Comparable>(_ things:T...) -> T {
 var minimum = things[0]
 for ix in 1..<things.count {
 if things[ix] < minimum {
 minimum = things[ix]
 }
 }
 return minimum
}

That’s a global function. I’d prefer to inject it into Array as a method. Array is a generic struct whose placeholder type is called Element. To make this work, I need somehow to bring along the Comparable type constraint that makes this code legal; without it, as you remember, my use of <
 won’t compile. I can do that with a where clause:

extension Array where Element:Comparable {
 func myMin() -> Element {
 var minimum = self[0]
 for ix in 1..<self.count {
 if self[ix] < minimum {
 minimum = self[ix]
 }
 }
 return minimum
 }
}

The where clause is a constraint guaranteeing that this array’s elements adopt Comparable, so the compiler permits the use of the <
 operator — and it doesn’t permit the myMin
 method to be called on an array whose elements don’t
 adopt Comparable.

The Swift standard library makes heavy use of generic extensions. For example, in real life, there is already a min
 method; myMin
 isn’t needed. The min
 method is a Sequence method — and, similar to myMin
 , it is declared through an extension on the generic Sequence protocol with a constraint guaranteeing that the sequence’s elements adopt Comparable:

extension Sequence where Self.Element : Comparable {
 func min() -> Self.Element?
}

Umbrella Types

Swift provides a few built-in types as general umbrella types, capable of embracing multiple real types under a single heading.

Any

The Any type is the universal Swift umbrella type. Where an Any object is expected, absolutely any object or function can be passed, without casting:

func anyExpecter(_ a:Any) {}
anyExpecter("howdy") // a struct instance
anyExpecter(String.self) // a struct type
anyExpecter(Dog()) // a class instance
anyExpecter(Dog.self) // a class type
anyExpecter(anyExpecter) // a function

Going the other way, if you want to type an Any object as a more specific type, you will generally have to cast down. Such a cast is legal for any specific object type or function type. A forced cast isn’t safe, but you can easily make it safe, because you can also test an Any object against any specific object type or function type. Here, anything
 is typed as Any:

if anything is String {
 let s = anything as! String
 // ...
}

The Any umbrella type is of great importance because it is the general medium of interchange between Swift and the Cocoa Objective-C APIs. When an Objective-C object type is nonspecific (Objective-C id
), it will appear to Swift as Any. Commonly encountered examples are UserDefaults, NSCoding, and key–value coding (Chapter 10
); all of these allow you to pass
 an object of indeterminate class along with a string key name, and they allow you to retrieve
 an object of indeterminate class by a string key name. That object is typed, in Swift, as Any (or as an Optional wrapping Any, so that it can be nil
).

For example:

let ud = UserDefaults.standard
ud.set("howdy", forKey:"greeting")
ud.set(Date(), forKey:"now")

The first parameter of UserDefaults set(_:forKey:)
 is typed as Any. Thus, Any functions as a general conduit for crossing the bridge between the Swift world and Cocoa’s Objective-C world.

When a Swift object is assigned or passed to an Any that acts as a conduit to Objective-C, it crosses the bridge to Objective-C. Even though you don’t have to cast it, if the object’s type is not an Objective-C type (a class derived from NSObject), it will be transformed in order to cross the bridge. If this type is automatically bridged to an Objective-C class type, it becomes that type; other types are boxed up in a way that allows them to survive the journey into Objective-C’s world, even though Objective-C can’t deal with them directly. (For full details, see Appendix A
 .)

To illustrate, suppose we have an Objective-C class Thing with a method take1id:
 , declared like this:

- (void) take1id: (id) anid;

That appears to Swift as:

func take1id(_ anid: Any)

When we pass an object to take1Id(_:)
 as its Any parameter, it crosses the bridge:

let t = Thing()
t.take1id("howdy") // String to NSString
t.take1id(1) // Int to NSNumber
t.take1id(CGRect()) // CGRect to NSValue
t.take1id(Date()) // Date to NSDate
t.take1id(Bird()) // Bird (struct) to boxed type

Coming back the other way, if Objective-C hands you an Any object, you will need to cast it down to its underlying type in order to do anything useful with it:

let ud = UserDefaults.standard
let d = ud.object(forKey:"now") as! Date

The result returned from UserDefaults object(forKey:)
 is typed as Any — actually, as an Optional wrapping an Any, because UserDefaults might need to return nil
 to indicate that no object exists for that key. But you know that it’s supposed to be a date, so you cast it down to Date. Of course, you’d better be telling the truth when you cast down with as!
 , or you will crash when the code runs and the cast turns out to be impossible. You can use the as?
 and is
 operators, if you’re in doubt, to make sure your cast is safe:

let ud = UserDefaults.standard
let d = ud.object(forKey:"now") as? Date
if d != nil {
 // ...
}

AnyObject

AnyObject is an empty protocol (requiring no properties or methods) with the special feature that all class types
 conform to it automatically. Although Objective-C APIs present Objective-C id
 as Any in Swift, Swift AnyObject is
 Objective-C id
 . AnyObject is useful primarily when you want to take advantage of the behavior
 of Objective-C id
 , as I’ll demonstrate in a moment.

A class type can be assigned directly where an AnyObject is expected; to retrieve it as its original type, you’ll need to cast down:

class Dog {
}
let d = Dog()
let anyo : AnyObject = d
let d2 = anyo as! Dog

Assigning a nonclass type to an AnyObject requires casting (with as
). The bridge to Objective-C is then crossed immediately, as I described for Any in the preceding section:

let s = "howdy" as AnyObject // String to NSString to AnyObject
let i = 1 as AnyObject // Int to NSNumber to AnyObject
let r = CGRect() as AnyObject // CGRect to NSValue to AnyObject
let d = Date() as AnyObject // Date to NSDate to AnyObject
let b = Bird() as AnyObject // Bird (struct) to boxed type to AnyObject

Suppressing type checking

Because AnyObject is Objective-C id
 , it can be used, like Objective-C id
 , to suspend the compiler’s judgment as to whether a certain message can be sent to an object. Thus, you can send a message to an AnyObject without bothering to cast down to its real type.

You can’t send just any old message to an AnyObject; the message must correspond to a class member that meets one of the following criteria:

	It is a member of an Objective-C class.

	It is a member of your own Swift subclass of an Objective-C class.

	It is a member of your own Swift extension of an Objective-C class.

	It is a member of a Swift class or protocol marked @objc
 .

This feature is fundamentally parallel to optional protocol members, which I discussed earlier in this chapter. Let’s start with two classes:

class Dog {
 @objc var noise : String = "woof"
 @objc func bark() -> String {
 return "woof"
 }
}
class Cat {}

The Dog property noise
 and the Dog method bark
 are marked @objc
 , so they are visible as potential messages to be sent to an AnyObject. To prove it, I’ll type a Cat as an AnyObject and send it one of these messages. Let’s start with the noise
 property:

let c : AnyObject = Cat()
let s = c.noise

That code, amazingly, compiles. Moreover, it doesn’t crash when the code runs! The noise
 property has been typed as an Optional wrapping its original type. Here, that’s an Optional wrapping a String. If the object typed as AnyObject doesn’t implement noise
 , the result is nil
 and no harm done.

Now let’s try it with a method call:

let c : AnyObject = Cat()
let s = c.bark?()

Again, that code compiles and is safe. If the Object typed as AnyObject doesn’t implement bark
 , no bark()
 call is performed; the method result type has been wrapped in an Optional, so s
 is typed as String?
 and has been set to nil
 . If the AnyObject turns out to have a bark
 method (for example, if it had been a Dog), the result is an Optional wrapping the returned String. If you call bark!()
 on the AnyObject instead, the result will be a String, but you’ll crash if the AnyObject doesn’t implement bark
 . Unlike an optional protocol member, you can even send the message with no unwrapping
 . This is legal:

let c : AnyObject = Cat()
let s = c.bark()

That’s just like force-unwrapping the call: the result is a String, but it’s possible to crash.

Object identity

Sometimes, what you want to know is not what type
 an object is, but whether an object itself is the particular object
 you think it is. This problem can’t arise with a value type, but it can arise with a reference type, where there can be more than one distinct reference to one and the same object. A class is a reference type, so the problem can arise with class instances.

Swift’s solution is the identity operator (===
). Its operands can be an object whose type is a class or an Optional whose wrapped type is a class (AnyObject?
), and it compares one object reference with another. It is not a comparison of values for equality, like the equality operator (==
); you’re asking whether two object references refer to one and the same object. There is also a negative version (!==
) of the identity operator.

A typical use case is that a class instance arrives from Cocoa, and you need to know whether it is in fact a particular object to which you already have a reference. For example, a Notification has an object
 property that helps identify the notification (usually, it is the original sender of the notification). We can use ===
 to test whether this object
 is the same as some object to which we already have a reference. However, object
 is typed as Any (actually, as an Optional wrapping Any), so we must cast to AnyObject in order to take advantage of the identity operator:

@objc func changed(_ n:Notification) {
 let player = MPMusicPlayerController.applicationMusicPlayer
 if n.object as AnyObject === player {
 // ...
 }
}

AnyClass

AnyClass is the type of AnyObject. It corresponds to the Objective-C Class type. It arises typically in declarations where a Cocoa API wants to say that a class is expected.

For example, the UIView layerClass
 class property is declared, in its Swift translation, like this:

class var layerClass : AnyClass {get}

That means: if you override this class property, implement your getter to return a class. This will presumably be a CALayer subclass. To return an actual class in your implementation, send the self
 message to the name of the class:

override class var layerClass : AnyClass {
 return CATiledLayer.self
}

A reference to an AnyClass object behaves much like a reference to an AnyObject object. You can send it any Objective-C message that Swift knows about — any Objective-C class
 message. To illustrate, once again I’ll start with two classes:

class Dog {
 @objc static var whatADogSays : String = "woof"
}
class Cat {}

Objective-C can see whatADogSays
 , and it sees it as a class property. Therefore you can send whatADogSays
 to an AnyClass reference:

let c : AnyClass = Cat.self
let s = c.whatADogSays

A reference to a class, such as you can obtain by applying type(of:)
 to an object, or by sending self
 to the type name, is of a type that adopts AnyClass, and you can compare references to such types with the ===
 operator. In effect, this is a way of finding out whether two references to classes refer to the same class. This construct is valuable because you can’t use the is
 operator when the thing on the right side is a type reference
 rather than a literal type name. For example:

func typeTester(_ d:Dog, _ whattype:Dog.Type) {
 if type(of:d) === whattype {
 // ...
 }
}

The condition is true
 only if d
 is identically of type whattype
 . For example, if Dog has a subclass NoisyDog, then the condition is true
 if the parameters are Dog()
 and Dog.self
 , or if they are NoisyDog()
 and NoisyDog.self
 , but not if they are NoisyDog()
 and Dog.self
 .

Collection Types

Swift, in common with most modern computer languages, has built-in collection types Array and Dictionary, along with a third type, Set. Array and Dictionary are sufficiently important that the language accommodates them with some special syntax.

Array

An array (Array, a struct) is an ordered collection of object instances (the elements
 of the array) accessible by index number, where an index number is an Int numbered from 0
 . Thus, if an array contains four elements, the first has index 0
 and the last has index 3
 . A Swift array cannot be sparse: if there is an element with index 3
 , there is also an element with index 2
 and so on.

The salient feature of Swift arrays is their strict typing. Unlike some other computer languages, a Swift array’s elements must be uniform
 — that is, the array must consist solely of elements of the same definite type. Even an empty array must have a definite element type, despite lacking elements at this moment. An array is itself typed in accordance with its element type. Two arrays whose elements are of different types are considered, themselves, to be of two different types: an array of Int elements is of a different type from an array of String elements.

If all this reminds you of Optionals, it should. Like an Optional, a Swift array is a generic. It is declared as Array<Element>
 , where the placeholder Element is the type of a particular array’s elements. And, like an Optional, Array types are covariant, meaning that they behave polymorphically in accordance with their element types: if NoisyDog is a subclass of Dog, then an array of NoisyDog can be used where an array of Dog is expected.

To declare or state the type of a given array’s elements, you could explicitly resolve the generic placeholder; an array of Int elements would thus be an Array<Int>
 . However, Swift offers syntactic sugar for stating an array’s element type, using square brackets around the name of the element type, like this: [Int]
 . That’s the syntax you’ll use most of the time.

A literal array is represented as square brackets containing a list of its elements separated by comma (and optional spaces): for example, [1,2,3]
 . The literal for an empty array is empty square brackets: []
 .

An array’s default initializer init()
 , called by appending empty parentheses to the array’s type, yields an empty array of that type. Thus, you can create an empty array of Int like this:

var arr = [Int]()

Alternatively, if a reference’s type is known in advance, the empty array []
 can be inferred to that type. Thus, you can also create an empty array of Int like this:

var arr : [Int] = []

If you’re starting with a literal array containing elements, you won’t usually need to declare the array’s type, because Swift will infer it by looking at the elements. For example, Swift will infer that [1,2,3]
 is an array of Int. If the array element types consist of a class and its subclasses, like Dog and NoisyDog, Swift will infer the common superclass as the array’s type. However, in some cases you will need to declare an array reference’s type explicitly even while assigning a literal to that array:

let arr : [Any] = [1, "howdy"] // mixed bag
let arr2 : [Flier] = [Insect(), Bird()] // protocol adopters

An array also has an initializer whose parameter is a sequence. This means that if a type is a sequence, you can split an instance of it into the elements of an array. For example:

	
Array(1...3)
 generates the array of Int [1,2,3]
 .

	
Array("hey".characters)
 generates the array of Character ["h","e","y"]
 .

	
Array(d)
 , where d
 is a Dictionary, generates an array of tuples of the key–value pairs of d
 .

Another array initializer, init(repeating:count:)
 , lets you populate an array with the same value. In this example, I create an array of 100 Optional strings initialized to nil
 :

let strings : [String?] = Array(repeating:nil, count:100)

That’s the closest you can get in Swift to a sparse array; we have 100 slots, each of which might or might not contain a string (and to start with, none of them do).

Warning

But beware of using init(repeating:count:)
 with a reference type! If Dog is a class, and you say let dogs = Array(repeating:Dog(), count:3)
 , you don’t have an array of three Dogs; you have an array consisting of three references
 to one
 Dog. I’ll give a workaround later.

Array casting and type testing

When you assign, pass, or cast an array of a certain type to another array type, you are really operating on the individual elements of the array. Thus, for example:

let arr : [Int?] = [1,2,3]

That code is actually syntactic sugar: assigning an array of Int where an array of Optionals wrapping Int is expected constitutes a request that each individual Int in the original array should be wrapped in an Optional. And that is exactly what happens:

let arr : [Int?] = [1,2,3]
print(arr) // [Optional(1), Optional(2), Optional(3)]

Similarly, suppose we have a Dog class and its NoisyDog subclass; then this code is legal:

let dog1 : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let arr = [dog1, dog2]
let arr2 = arr as! [NoisyDog]

In the third line, we have an array of Dog. In the fourth line, we apparently cast this array down to an array of NoisyDog — which really means that we cast each individual Dog in the first array to a NoisyDog (and we won’t crash when we do that, provided each element of the first array really is
 a NoisyDog).

Similarly, the as?
 operator will cast an array to an Optional wrapping an array, which will be nil
 if the requested cast cannot be performed for each element individually:

let dog1 : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let dog3 : Dog = Dog()
let arr = [dog1, dog2]
let arr2 = arr as? [NoisyDog] // Optional wrapping an array of NoisyDog
let arr3 = [dog2, dog3]
let arr4 = arr3 as? [NoisyDog] // nil

Finally, you can test each element of an array with the is
 operator by testing the array itself. For example, given the array of Dog from the previous code, you can say:

if arr is [NoisyDog] { // ...

That will be true
 if each element of the array is in fact a NoisyDog.

Array comparison

Array equality works just as you would expect: two arrays are equal if they contain the same number of elements and all the elements are pairwise equal in order:

let i1 = 1
let i2 = 2
let i3 = 3
let arr : [Int] = [1,2,3]
if arr == [i1,i2,i3] { // they are equal!

Two arrays don’t have to be of the same type to be compared against one another for equality, but the test won’t succeed unless they do in fact contain objects that are equal to one another. Here, I compare a Dog array against a NoisyDog array; this is legal if equatability is defined for two Dogs. (For example, Dog might be an NSObject subclass; or you might make Dog adopt Equatable, as I’ll explain in Chapter 5
 .) The two arrays are in fact equal, because the dogs they contain are the same dogs in the same order:

let nd1 = NoisyDog()
let d1 = nd1 as Dog
let nd2 = NoisyDog()
let d2 = nd2 as Dog
if [d1,d2] == [nd1,nd2] { // they are equal!

If the element type of your arrays is not Equatable, you can’t use the ==
 operator to compare them for equality. You can, however, use the elementsEqual(_:)
 method, which is the sequence generalization of array comparison. The two sequences must be the same length, and their elements must, pairwise, pass a test that you supply as a function taking two elements and returning a Bool.

Thus, for example, suppose Dog is a struct with a name
 property, and we decide that two Dogs are equal if their names are equal. Then if arr1
 and arr2
 are both of type [Dog]
 , you can say:

let ok = arr1.elementsEqual(arr2) {$0.name == $1.name}

Arrays are value types

Because an array is a struct, it is a value type, not a reference type. This means that every time an array is assigned to a variable or passed as argument to a function, it is effectively copied. I do not mean to imply, however, that merely assigning or passing an array is expensive, or that a lot of actual copying takes place every time. If the reference to an array is a constant, clearly no copying is necessary; and even operations that yield a new array derived from another array, or that mutate an array, may be quite efficient. You just have to trust that the designers of Swift have thought about these problems and have implemented arrays efficiently behind the scenes.

Although an array itself is a value type, its elements are treated however those elements would normally be treated. In particular, an array of class instances, assigned to multiple variables, results in multiple references to the same instances.

Array subscripting

The Array struct implements subscript methods to allow access to elements using square brackets after a reference to an array. You can use an Int inside the square brackets. For example, in an array consisting of three elements, if the array is referred to by a variable arr
 , then arr[1]
 accesses the second element.

You can also use a Range of Int inside the square brackets. For example, if arr
 is an array with three elements, then arr[1...2]
 signifies the second and third elements.

Technically, an expression like arr[1...2]
 yields something called an ArraySlice, which stands in relation to Array much as Substring stands in relation to String (Chapter 3
). It’s very similar to an array, and in general you will probably pretend that an ArraySlice is
 an array. For example, you can subscript an ArraySlice in just the same ways you would subscript an array, and an ArraySlice can be passed where an array is expected. Nevertheless, they are not the same thing. An ArraySlice is not a new object; it’s a way of pointing into a section of the original array. For this reason, its index numbers are those of the original array. For example:

let arr = ["manny", "moe", "jack"]
let slice = arr[1...2] // ["moe", "jack"]
print(slice[1]) // moe

The ArraySlice slice
 consists of two elements, "moe"
 and "jack"
 , of which "moe"
 is the first element. But these are not merely "moe"
 and "jack"
 taken from
 the original array, but the "moe"
 and "jack"
 in
 the original array. For this reason, their index numbers are not 0 and 1, but rather 1 and 2, just as in the original array. If you want to extract a new array based on this slice, coerce the slice to an Array:

let arr2 = Array(slice) // ["moe", "jack"]
print(arr2[1]) // jack

If the reference to an array is mutable (var
 , not let
), then a subscript expression can be assigned to. This alters what’s in that slot. Of course, what is assigned must accord with the type of the array’s elements:

var arr = [1,2,3]
arr[1] = 4 // arr is now [1,4,3]

If the subscript is a range, what is assigned must be a slice. You can assign a literal array, because it will be cast for you to an ArraySlice; but if what you’re starting with is an array reference, you’ll have to cast it to a slice yourself. Such assignment can change the length of the array being assigned to:

var arr = [1,2,3]
arr[1..<2] = [7,8] // arr is now [1,7,8,3]
arr[1..<2] = [] // arr is now [1,8,3]
arr[1..<1] = [10] // arr is now [1,10,8,3] (no element was removed!)
let arr2 = [20,21]
// arr[1..<1] = arr2 // compile error! You have to say this:
arr[1..<1] = ArraySlice(arr2) // arr is now [1,20,21,10,8,3]

It is a runtime error to access an element by a number larger than the largest element number or smaller than the smallest element number. If arr
 has three elements, speaking of arr[-1]
 or arr[3]
 is not illegal linguistically, but your program will crash.

Subscripting an array with a Range is an opportunity to use Swift 4’s new partial range notation. The missing value is taken to be the array’s first or last index. For example, if arr
 is [1,2,3]
 , then arr[1...]
 is [2,3]
 , and arr[...1]
 is [1,2]
 . Similarly, you can assign into a range specified as a partial range:

var arr = [1,2,3]
arr[1...] = [4,5] // arr is now [1,4,5]

Nested arrays

It is legal for the elements of an array to be arrays. For example:

let arr = [[1,2,3], [4,5,6], [7,8,9]]

That’s an array of arrays of Int. Its type declaration, therefore, is [[Int]]
 . (No law says that the contained arrays have to be the same length; that’s just something I did for clarity.)

To access an individual Int inside those nested arrays, you can chain subscript operations:

let arr = [[1,2,3], [4,5,6], [7,8,9]]
let i = arr[1][1] // 5

If the outer array reference is mutable, you can also write into a nested array:

var arr = [[1,2,3], [4,5,6], [7,8,9]]
arr[1][1] = 100

You can modify the inner arrays in other ways as well; for example, you can insert additional elements into them.

Warning

Nested arrays cannot be compared with ==
 . (I regard this as a bug in the language.) The workaround is to call the elementsEqual(_:by:)
 method. For example, if arr
 and arr2
 are both [[Int]]
 , you can compare them by saying arr.elementsEqual(arr2, by:==)
 .

Basic array properties and methods

An array is a Collection, which is itself a Sequence. If those terms have a familiar ring, they should: the same is true of a String’s underlying character sequence, which I discussed in Chapter 3
 . For this reason, an array and a character sequence bear some striking similarities to one another.

As a collection, an array’s count
 read-only property reports the number of elements it contains. If an array’s count
 is 0
 , its isEmpty
 property is true
 .

An array’s first
 and last
 read-only properties return its first and last elements, but they are wrapped in an Optional because the array might be empty and so these properties would need to be nil
 . (This is one of those rare situations in Swift where you can wind up with an Optional wrapping an Optional. For example, consider an array of Optionals wrapping Ints, and what happens when you get the last
 property of such an array.)

An array’s largest accessible index is one less than its count
 . You may find yourself calculating index values with reference to the count
 ; for example, to refer to the last two elements of arr
 , you can say:

let arr = [1,2,3]
let slice = arr[arr.count-2...arr.count-1] // [2,3]

Swift doesn’t adopt the modern convention of letting you use negative numbers as a shorthand for that calculation. On the other hand, for the common case where you want the last n
 elements of an array, you can use the suffix(_:)
 method:

let arr = [1,2,3]
let slice = arr.suffix(2) // [2,3]

Both suffix(_:)
 and its companion prefix(_:)
 yield ArraySlices, and have the remarkable feature that there is no penalty for going out of range:

let arr = [1,2,3]
let slice = arr.suffix(10) // [1,2,3] (and no crash)

Instead of describing the size of the suffix or prefix by its count, you can express the limit of the suffix or prefix by its index. And Swift 4’s partial range notation may provide yet another useful alternative:

let arr = [1,2,3]
let slice = arr.suffix(from:1) // [2,3]
let slice2 = arr[1...] // [2,3]
let slice3 = arr.prefix(upTo:1) // [1]
let slice4 = arr.prefix(through:1) // [1,2]

An array’s startIndex
 property is 0
 , and its endIndex
 property is its count
 . An array’s indices
 property is a half-open range whose endpoints are the array’s startIndex
 and endIndex
 — that is, a range accessing the entire array. Moreover, these values are Ints, so you can use ordinary arithmetic operations on them:

let arr = [1,2,3]
let slice = arr[arr.endIndex-2..<arr.endIndex] // [2,3]

But the startIndex
 , endIndex
 , and indices
 of an ArraySlice are measured against the original array; for example, after the previous code, slice.indices
 is 1..<3
 , and slice.startIndex
 is 1.

The index(of:)
 method reports the index of the first occurrence of an element in an array, but it is wrapped in an Optional so that nil
 can be returned if the element doesn’t appear in the array. In general, the comparison uses ==
 behind the scenes to identify the element being sought, and therefore the array elements must adopt Equatable (otherwise the compiler will stop you):

let arr = [1,2,3]
let ix = arr.index(of:2) // Optional wrapping 1

Alternatively, you can call index(where:)
 , supplying your own function that takes an element type and returns a Bool, and you’ll get back the index of the first element for which that Bool is true
 . In this example, my Bird struct has a name
 String property:

let aviary = [Bird(name:"Tweety"), Bird(name:"Flappy"), Bird(name:"Lady")]
let ix = aviary.index(where: {$0.name.characters.count < 5}) // Optional(2)

If what you want is not the index but the object itself, the first(where:)
 method returns it — wrapped, naturally, in an Optional.

As a sequence, an array’s contains(_:)
 method reports whether it contains an element.

 Again, you can rely on the ==
 operator if the elements are Equatables, or you can supply your own function that takes an element type and returns a Bool:

let arr = [1,2,3]
let ok = arr.contains(2) // true
let ok2 = arr.contains {$0 > 3} // false

The starts(with:)
 method reports whether an array’s starting elements match the elements of a given sequence of the same type. Once more, you can rely on the ==
 operator for Equatables, or you can supply a function that takes two values of the element type and returns a Bool stating whether they match:

let arr = [1,2,3]
let ok = arr.starts(with:[1,2]) // true
let ok2 = arr.starts(with:[1,-2]) {abs($0) == abs($1)} // true

The min
 and max
 methods return the smallest or largest element in an array, wrapped in an Optional in case the array is empty. If the array consists of Comparables, you can let the <
 operator do its work; alternatively, you can call min(by:)
 or max(by:)
 , supplying a function that returns a Bool stating whether the smaller of two given elements is the first:

let arr = [3,1,-2]
let min = arr.min() // Optional(-2)
let min2 = arr.min {abs($0)<abs($1)} // Optional(1)

If the reference to an array is mutable, the append(_:)
 and append(contentsOf:)
 instance methods add elements to the end of it. The difference between them is that append(_:)
 takes a single value of the element type, while append(contentsOf:)
 takes a sequence of the element type. For example:

var arr = [1,2,3]
arr.append(4)
arr.append(contentsOf:[5,6])
arr.append(contentsOf:7...8) // arr is now [1,2,3,4,5,6,7,8]

The +
 operator is overloaded to behave like append(contentsOf:)
 (not append(_:)
 !) when the left-hand operand is an array, except that it generates a new array, so it works even if the reference to the array is a constant (let
). If the reference to the array is mutable (var
), you can append to it in place with the +=
 operator. Thus:

let arr = [1,2,3]
let arr2 = arr + [4] // arr2 is now [1,2,3,4]
var arr3 = [1,2,3]
arr3 += [4] // arr3 is now [1,2,3,4]

If the reference to an array is mutable, the instance method insert(at:)
 inserts a single element at the given index. To insert multiple elements at once, call the insert(contentsOf:at:)
 method. Assignment into a range-subscripted array, which I described earlier, is even more flexible.

If the reference to an array is mutable, the instance method remove(at:)
 removes the element at that index; the instance method removeLast
 removes the last element. These methods also return
 the value that was removed from the array; you can ignore the returned value if you don’t need it. These methods do not wrap the returned value in an Optional, and accessing an out-of-range index will crash your program. On the other hand, popLast
 does wrap the returned value in an Optional, and is thus safe even if the array is empty.

Similar to removeLast
 and popLast
 are removeFirst
 and popFirst
 . Alternate forms removeFirst(_:)
 and removeLast(_:)
 allow you to specify how many elements to remove, but return no value; they, too, can crash if there aren’t as many elements as you specify. (popFirst
 , remarkably, operates on a slice, not an array. This is presumably for the sake of efficiency: all it has to do is increase the slice’s startIndex
 — whereas with an array, the whole array must be renumbered.)

Alternatively, or if the reference is not
 mutable, you can use the dropFirst
 and dropLast
 methods to return a slice with the end element removed. Again, you can supply a parameter stating how many elements to drop. And again, there is no penalty for dropping too many elements; you simply end up with an empty slice.

The joined(separator:)
 instance method starts with an array of arrays. It extracts their individual elements, and interposes between each sequence of extracted elements the elements of the separator:
 . The result is an intermediate sequence called a JoinSequence
 , and might have to be coerced further to an Array if that’s what you were after. For example:

let arr = [[1,2], [3,4], [5,6]]
let joined = Array(arr.joined(separator:[10,11]))
// [1, 2, 10, 11, 3, 4, 10, 11, 5, 6]

Calling joined()
 with no separator:
 is a way to flatten an array of arrays. Again, it returns an intermediate sequence (or collection), so you might want to coerce to an Array:

let arr = [[1,2], [3,4], [5,6]]
let arr2 = Array(arr.joined())
// [1, 2, 3, 4, 5, 6]

The split
 instance method breaks an array into an array of slices at elements matching the parameter, if you call split(separator:)
 , or at elements that pass a specified test, if you call split(isSeparator:
); in the latter, the parameter is a function that takes a value of the element type and returns a Bool. The separator elements themselves are eliminated:

let arr = [1,2,3,4,5,6]
let arr2 = arr.split {$0 % 2 == 0} // split at evens: [[1], [3], [5]]

The reversed
 instance method yields a new array whose elements are in the opposite order from the original.

The sort
 and sorted
 instance methods respectively sort the original array (if the reference to it is mutable) and yield a new sorted array based on the original. Once again, you get two choices: if this is an array of Comparables, you can let the <
 operator dictate the new order; alternatively, you can call sort(by:)
 or sorted(by:)
 , supplying a function that takes two parameters of the element type and returns a Bool stating whether the first parameter should be ordered before the second (just like min
 and max
). For example:

var arr = [4,3,5,2,6,1]
arr.sort() // [1, 2, 3, 4, 5, 6]
arr.sort {$0 > $1} // [6, 5, 4, 3, 2, 1]

In that last line, I provided an anonymous function. Alternatively, of course, you can pass as argument the name of a declared function. In Swift, comparison operators are
 the names of functions! Therefore, I can do the same thing like this:

var arr = [4,3,5,2,6,1]
arr.sort(by: >) // [6, 5, 4, 3, 2, 1]

New in Swift 4, the swapAt
 method accepts two Int index numbers and interchanges those elements of a mutable array:

var arr = [1,2,3]
arr.swapAt(0,2) // [3,2,1]

I demonstrated a practical use of swapAt
 earlier in this chapter, when I extended Array to include a shuffle
 method.

Array enumeration and transformation

An array is a sequence, and so you can enumerate it, inspecting or operating with each element in turn. The simplest way is by means of a for...in
 loop; I’ll have more to say about this construct in Chapter 5
 :

let pepboys = ["Manny", "Moe", "Jack"]
for pepboy in pepboys {
 print(pepboy) // prints Manny, then Moe, then Jack
}

Alternatively, you can use the forEach(_:)
 instance method. Its parameter is a function that takes an element of the array (or other sequence) and returns no value. Think of it as the functional equivalent of the imperative for...in
 loop:

let pepboys = ["Manny", "Moe", "Jack"]
pepboys.forEach {print($0)} // prints Manny, then Moe, then Jack

If you need the index numbers as well as the elements, call the enumerated
 instance method and loop on the result; what you get on each iteration is a tuple:

let pepboys = ["Manny", "Moe", "Jack"]
for (ix,pepboy) in pepboys.enumerated() {
 print("Pep boy \(ix) is \(pepboy)") // Pep boy 0 is Manny, etc.
}
// or:
pepboys.enumerated().forEach {print("Pep boy \($0.0) is \($0.1)")}

Swift also provides some powerful array transformation instance methods. Like forEach(_:)
 , these methods all enumerate the array for you, so that the loop is buried implicitly inside the method call, making your code tighter and cleaner.

The filter(_:)
 instance method yields a new array, each element of which is an element of the old array, in the same order; but some of the elements of the old array may be omitted — they were filtered out. What filters them out is a function that you supply; it accepts a parameter of the element type and returns a Bool stating whether this element should go into the new array.
 For example:

let pepboys = ["Manny", "Moe", "Jack"]
let pepboys2 = pepboys.filter {$0.hasPrefix("M")} // ["Manny", "Moe"]

Similar to filter(_:)
 is prefix(while:)
 . The difference is that prefix(while:)
 stops looping as soon as it encounters an element for which supplied function returns false
 (and returns a slice). The complement of prefix(while:)
 is drop(while:)
 ; it stops where prefix(while:)
 stops, but it returns the rest
 of the original array:

let pepboys = ["Manny", "Jack", "Moe"]
let arr1 = pepboys.filter{$0.hasPrefix("M")} // ["Manny", "Moe"]
let arr2 = pepboys.prefix{$0.hasPrefix("M")} // ["Manny"]
let arr3 = pepboys.drop{$0.hasPrefix("M")} // ["Jack", "Moe"]

The map(_:)
 instance method yields a new array, each element of which is the result of passing the corresponding element of the old array through a function that you supply. This function accepts a parameter of the element type and returns a result which may be of some other type; Swift can usually infer the type of the resulting array elements by looking at the type returned by the function.

For example, here’s how to multiply every element of an array by 2:

let arr = [1,2,3]
let arr2 = arr.map {$0 * 2} // [2,4,6]

Here’s another example, to illustrate the fact that map(_:)
 can yield an array with a different element type:

let arr = [1,2,3]
let arr2 = arr.map {Double($0)} // [1.0, 2.0, 3.0]

Here’s a real-life example showing how neat and compact your code can be when you use map(_:)
 . In order to remove all the table cells in a section of a UITableView, I have to specify the cells as an array of IndexPath objects. If sec
 is the section number, I can form those IndexPath objects individually like this:

let path0 = IndexPath(row:0, section:sec)
let path1 = IndexPath(row:1, section:sec)
// ...

Hmmm, I think I see a pattern here! I could generate my array of IndexPath objects by looping through the row values using for...in
 . But with map(_:)
 , there’s a much tighter way to express the same loop — namely, to loop through the range 0..<ct
 (where ct
 is the number of rows in the section). Since map(_:)
 is a Collection instance method, and a Range is itself a Collection, I can call map(_:)
 directly on the range:

let paths = (0..<ct).map {IndexPath(row:$0, section:sec)}

The map(_:)
 method provides a neat alternative to init(repeating:count:)
 with a reference type:

let dogs = Array(repeating:Dog(), count:3)

You probably wanted an array of three Dogs. But if Dog is a class, the array consists of three references to one and the same
 Dog instance! Instead, generate the array using map
 , like this:

let dogs = (0..<3).map {_ in Dog()}

The map(_:)
 method has a specialized companion, flatMap(_:)
 . Applied to an array, flatMap(_:)
 first calls map(_:)
 , and then does one of two oddly unrelated things to the resulting array, depending on its type:

An array of arrays

If the map function produces an array of arrays, flatMap(_:)
 flattens the inner arrays. For instance, [[1],[2]].flatMap{$0}
 is [1,2]
 . Here’s a more interesting example:

let arr = [[1, 2], [3, 4]]
let arr2 = arr.flatMap{$0.map{String($0)}} // ["1", "2", "3", "4"]

First we coerce the individual elements of each inner array to a string, thus yielding an array of arrays of String. That’s an array of arrays, so flatMap(_:)
 flattens it, and we end up with a simple array of String.

An array of Optionals

If the map function produces an array of Optionals, flatMap(_:)
 safely unwraps them, eliminating any nil
 elements. For example:

let arr : [Any] = [1, "hey", 2, "ho"]
let arr2 = arr.flatMap{$0 as? String} // ["hey", "ho"]

First we map the original array to an array of Optionals wrapping String: [nil, Optional("hey"), nil, Optional("ho")]
 . Then flatMap(_:)
 unwraps each element safely, resulting in an array of String; the nil
 elements are filtered out. This neatly solves a class of problem that arises surprisingly often.

Finally, we come to the reduce
 instance method.
 If you’ve learned LISP or Scheme, you’re probably accustomed to reduce
 ; otherwise, it can be a bit mystifying at first. It’s a way of combining
 all the elements of an array (actually, a sequence) into a single value. This value’s type — the result type — doesn’t have to be the same as the array’s element type. You supply, as the second parameter, a function that takes two parameters; the first is of the result type, the second is of the element type, and the function’s result is the combination of those two parameters, as the result type. The result of your function on each iteration becomes the function’s first parameter in the next
 iteration, along with the next element of the array as the second parameter. Thus, the output of combining pairs accumulates, and the final accumulated value is the final output of the function. However, that doesn’t explain where the first parameter for the first
 iteration comes from. The answer is that you have to supply it as the first argument of the reduce
 call.

That will all be easier to understand with a simple example. Let’s assume we’ve got an array of Int. Then we can use reduce
 to sum all the elements of the array. Here’s some pseudocode where I’ve left out the first argument of the call, so that you can think about what it needs to be:

let sum = arr.reduce(/*???*/) {$0 + $1}

Each pair of parameters will be added together to get the first parameter ($0
) on the next iteration. The second parameter on every iteration ($1
) is a successive element of the array. So the remaining question is: What should the first
 element of the array be added to? We want the actual sum of all the elements, no more and no less; so clearly the first element of the array should be added to 0
 ! So here’s actual working code:

let arr = [1, 4, 9, 13, 112]
let sum = arr.reduce(0) {$0 + $1} // 139

The +
 operator is the name of a function of the required type, so here’s another way to write the same thing:

let sum = arr.reduce(0, +)

New in Swift 4 is reduce(into:)
 , which greatly improves efficiency when the goal is to build a collection such as an array or a dictionary. The into:
 argument is passed into your function as an inout
 parameter, and persists through each iteration; instead of returning a value, your function modifies it, and the final result is its final value. Here’s a simple, silly example; we start with an array of tuples, and generate an array made of the first element of each tuple:

let arr = [("one",1), ("two",2), ("three",3)]
let keys : [String] = arr.reduce(into: []) {
 acc, pair in acc.append(pair.0)
} // keys is ["one", "two", "three"]

The into:
 parameter starts out life as an empty array; on each iteration, it arrives into our function as the first parameter, acc
 , along with a tuple from the original array of tuples, and we append to it the first element of that tuple. The example is silly because we could more easily have done the same thing with map
 , but things get more interesting when we consider the problem of splitting our original array of tuples into two
 arrays, composed of the first and second elements of the tuples, respectively:

let arr = [("one",1), ("two",2), ("three",3)]
let (keys,values) : ([String], [Int]) = arr.reduce(into: ([],[])) {
 acc, pair in acc.0.append(pair.0); acc.1.append(pair.1)
} // keys is ["one", "two", "three"]; values is [1, 2, 3]

You couldn’t do that with a single call to map
 ; you’d have to cycle through the original array of tuples twice
 . With reduce(into:)
 , both target arrays are constructed while cycling through the original array once
 .

In my real iOS programming life, I depend heavily on all of these methods, often using two or even all three of them together, nested or chained or both. Here’s an example. I have a table view that displays data divided into sections. Under the hood, the data is an array of arrays of String — a [[String]]
 — where each subarray represents the rows of a section. Now I want to filter that data to eliminate all strings that don’t contain a certain substring. I want to keep the sections intact, but if removing strings removes all
 of a section’s strings, I want to eliminate that section array entirely.

The heart of the action is the test for whether a string contains a substring. I’m going to use a Cocoa method for that, in part because it lets me do a case-insensitive search. If s
 is a string from my array, and target
 is the substring we’re looking for, then the code for looking to see whether s
 contains target
 case-insensitively is as follows:

let found = s.range(of:target, options:.caseInsensitive)

Recall the discussion of range(of:)
 in Chapter 3
 . If found
 is not nil
 , the substring was found. Here, then, is the actual code, preceded by some sample data for exercising it:

let arr = [["Manny", "Moe", "Jack"], ["Harpo", "Chico", "Groucho"]]
let target = "m"
let arr2 = arr.map {
 $0.filter {
 let found = $0.range(of:target, options:.caseInsensitive)
 return (found != nil)
 }
}.filter {$0.count > 0}
// [["Manny", "Moe"]]

Once the first two lines have finished setting up the sample data, what remains is a single statement
 — a map
 call, whose function consists of a filter
 call, with a filter
 call chained to it. If that code doesn’t prove to you that Swift is cool, nothing will.

Swift Array and Objective-C NSArray

When you’re programming iOS, you import the Foundation framework (or UIKit, which imports Foundation) and thus the Objective-C NSArray
 type. Swift’s Array is bridged to Objective-C’s NSArray. The most general medium of array interchange is [Any]
 ; if an Objective-C API specifies an NSArray, with no further type information, Swift will see this as an array of Any. This reflects the fact that Objective-C’s rules for what can be an element of an NSArray are looser than Swift’s: the elements of an NSArray do not all have to be of the same type. On the other hand, the elements of an Objective-C NSArray must be Objective-C objects
 — that is, they must be class types.

Passing a Swift array to Objective-C is thus usually easy. Typically, you’ll just pass the array, either by assignment or as an argument in a function call:

let arr = [UIBarButtonItem(), UIBarButtonItem()]
self.navigationItem.leftBarButtonItems = arr

The objects that you pass as elements of the array will cross the bridge to Objective-C in the usual way. For example:

let lay = CAGradientLayer()
lay.locations = [0.25, 0.5, 0.75]

CAGradientLayer’s locations
 property is typed as an array of NSNumber. But we can pass Double values directly, because Double is bridged to NSNumber.

To call an NSArray method on a Swift array, you may have to cast to NSArray:

let arr = ["Manny", "Moe", "Jack"]
let s = (arr as NSArray).componentsJoined(by:", ")
// s is "Manny, Moe, Jack"

A Swift Array seen through a var
 reference is mutable, but an NSArray isn’t mutable no matter how you see it. For mutability in Objective-C, you need an NSMutableArray
 , a subclass of NSArray. You can’t cast, assign, or pass a Swift array as an NSMutableArray; you have to coerce. The best way is to call the NSMutableArray initializer init(array:)
 , to which you can pass a Swift array directly. To convert back from an NSMutableArray to a Swift array, you can cast:

var arr = ["Manny", "Moe", "Jack"]
let arr2 = NSMutableArray(array:arr)
arr2.remove("Moe")
arr = arr2 as! [String]

Now let’s talk about what happens when an NSArray arrives from Objective-C into Swift. There won’t be any problem crossing the bridge: the NSArray will arrive safely as a Swift Array. But a Swift Array of what?

Of itself, an NSArray carries no information about what type of element it contains. Starting in Xcode 7, however, the Objective-C language was modified so that the declaration of an NSArray, NSDictionary, or NSSet — the three collection types that are bridged to Swift — can include element type information. (Objective-C calls this a lightweight generic
 .) Thus, for the most part, the arrays you receive from Cocoa will be correctly typed.

For example, this elegant code was previously impossible:

let arr = UIFont.familyNames.map {
 UIFont.fontNamesForFamilyName($0)
}

The result is an array of arrays of String, listing all available fonts grouped by family. That code is possible because both of those UIFont class methods are now seen by Swift as returning an array of String. Previously, those arrays were untyped, and casting down to an array of String was up to you
 .

However, lightweight generics are not omnipresent. You might read an array from a .plist
 file stored on disk with NSArray’s initializer init(contentsOf:)
 ; you might retrieve an array from UserDefaults; you might even be dealing with an Objective-C API that hasn’t been updated to use lightweight generics. In such a situation, you’re going to end up with a plain vanilla NSArray or a Swift array of Any. If that happens, you will usually want to cast down or otherwise transform this array into an array of some specific Swift type. Here’s an Objective-C class containing a method whose return type of NSArray hasn’t been marked up with an element type:

@implementation Pep
- (NSArray*) boys {
 return @[@"Manny", @"Moe", @"Jack"];
}
@end

To call that method and do anything useful with the result, it will be necessary to cast that result down to an array of String. If I’m sure of my ground, I can force the cast:

let p = Pep()
let boys = p.boys() as! [String]

As with any cast, though, be sure you don’t lie! An Objective-C array can contain more than one type of object. Don’t force such an array to be cast down to a type to which not all the elements can be cast, or you’ll crash when the cast fails; you’ll need a more deliberate strategy for eliminating or otherwise transforming the problematic elements.

Dictionary

A dictionary (Dictionary, a struct) is an unordered collection of object pairs. In each pair, the first object is the key
 ; the second object is the value
 . The idea is that you use a key to access a value. Keys are usually strings, but they don’t have to be; the formal requirement is that they be types that are Equatable and also Hashable
 , meaning that they implement an Int hashValue
 property such that equal keys have equal hash values. Thus, the hash values can be used behind the scenes for rapid key access. Swift numeric types, strings, and enums are Hashables.

As with arrays, a given dictionary’s types must be uniform. The key type and the value type don’t have to be the same as one another, and they often will not be. But within any dictionary, all keys must be of the same type, and all values must be of the same type. Formally, a dictionary is a generic, and its placeholder types are ordered key type, then value type: Dictionary<Key,Value>
 . As with arrays, however, Swift provides syntactic sugar for expressing a dictionary’s type, which is what you’ll usually use: [Key: Value]
 . That’s square brackets containing a colon (and optional spaces) separating the key type from the value type. This code creates an empty dictionary whose keys (when they exist) will be Strings and whose values (when they exist) will be Strings:

var d = [String:String]()

The colon is used also between each key and value in the literal syntax for expressing a dictionary. The key–value pairs appear between square brackets, separated by comma, just like an array. This code creates a dictionary by describing it literally (and the dictionary’s type of [String:String]
 is inferred):

var d = ["CA": "California", "NY": "New York"]

The literal for an empty dictionary is square brackets containing just a colon: [:]
 . This notation can be used provided the dictionary’s type is known in some other way. Thus, this is another way to create an empty [String:String]
 dictionary:

var d : [String:String] = [:]

New in Swift 4, you can also initialize a dictionary from a sequence of key–value tuples. This is useful particularly if you’re starting with two sequences. Suppose, for example, that we happen to have state abbreviations in one array and state names in another:

let abbrevs = ["CA", "NY"]
let names = ["California", "New York"]

We can then form those two arrays into a single array of tuples and call init(uniqueKeysWithValues:)
 to generate a dictionary:

let tuples = (abbrevs.indices).map{(abbrevs[$0],names[$0])}
let d = Dictionary(uniqueKeysWithValues: tuples)
// ["NY": "New York", "CA": "California"]

There is actually a simpler way to form those tuples — the global zip
 function, which takes two sequences and yields a sequence of tuples (a Zip2Sequence):

let tuples = zip(abbrevs, names)
let d = Dictionary(uniqueKeysWithValues: tuples)

A nice feature of zip
 is that if one sequence is longer than the other, the extra elements of the longer sequence are ignored — tuple formation simply stops when the end of the shorter sequence is reached. Thus, for example, one of the zipped sequences can be a partial range; in theory the range is infinite, but in fact the end of the other sequence ends the range as well:

let r = 1...
let names = ["California", "New York"]
let d = Dictionary(uniqueKeysWithValues: zip(r,names))
// [2: "New York", 1: "California"]

If the keys in the tuple sequence are not unique, you’ll crash at runtime when init(uniqueKeysWithValues:)
 is called. To work around that, you can use init(_:uniquingKeysWith:)
 instead. The second parameter is a function taking two values — the existing value for this key, and the new incoming value for the same key — and returning the value that should actually be used for this key. I’ll give an example later.

Another new Swift 4 way to form a dictionary is init(grouping:by:)
 . This is useful for forming a dictionary whose values are arrays
 . You start with a sequence of the elements
 of the arrays, and the initializer clumps them into arrays for you, in accordance with a function that generates the corresponding key from each value. That turns out to be a remarkably common thing to want to do, so this new initializer is a huge convenience.

For example, suppose I have a list (states
) of the 50 U.S. states in alphabetical order as an array of strings, and I want to group them by the letter they start with. Here’s a possible strategy based on two arrays (an array of String and an array of arrays of String) which I construct separately as I loop through the list and then zip together to form the dictionary:

var sectionNames = [String]()
var cellData = [[String]]()
var previous = ""
for aState in states {
 // get the first letter
 let c = String(aState.prefix(1))
 // only add a letter to sectionNames when it's a different letter
 if c != previous {
 previous = c
 sectionNames.append(c.uppercased())
 // and in that case also add new subarray to our array of subarrays
 cellData.append([String]())
 }
 cellData[cellData.count-1].append(aState)
}
let d = Dictionary(uniqueKeysWithValues: zip(sectionNames,cellData))
// ["H": ["Hawaii"], "V": ["Vermont", "Virginia"], ...

But with init(grouping:by:)
 , that becomes effectively a one-liner:

let d = Dictionary(grouping: states) {$0.prefix(1).uppercased()}

Dictionary subscripting

Access to a dictionary’s contents is usually by subscripting. To fetch a value by key, subscript the key to the dictionary reference:

let d = ["CA": "California", "NY": "New York"]
let state = d["CA"]

If you try to fetch a value through a nonexistent key, there is no error, but Swift needs a way to report failure; therefore, by default, it returns nil
 . This, in turn, implies that the value returned when you successfully access a value through a key must be an Optional wrapping the real value. After that code, therefore, state
 is not a String — it’s an Optional wrapping a String! Forgetting this is a common beginner mistake.

New in Swift 4, you can change that behavior by supplying a default
 value as part of the subscript. There is then no need for the returned value to be wrapped in an Optional. For example:

let d = ["CA": "California", "NY": "New York"]
let state = d["MD", default:"N/A"] // state is a String (not an Optional)

If the reference to a dictionary is mutable, you can also assign into a key subscript expression. If the key already exists, its value is replaced. If the key doesn’t already exist, it is created and the value is attached to it:

var d = ["CA": "California", "NY": "New York"]
d["CA"] = "Casablanca"
d["MD"] = "Maryland"
// d is now ["MD": "Maryland", "NY": "New York", "CA": "Casablanca"]

As with fetching a value by key, Swift 4 lets you supply a default
 value when assigning into a key subscript expression. This can be a source of greatly improved economy of expression. For example, consider the common task of collecting a histogram: we want to know how many times each element appears in a sequence:

let sentence = "how much wood would a wood chuck chuck"
let words = sentence.split(separator: " ").map{String($0)}

Our goal is now to make a dictionary pairing each word with the number of times it appears. Before Swift 4, a typical approach would be rather laborious, along these lines:

var d = [String:Int]()
for word in words {
 let ct = d[word]
 if ct != nil {
 d[word]! += 1
 } else {
 d[word] = 1
 }
}
// d is now ["how": 1, "wood": 2, "a": 1, "chuck": 2, "would": 1, "much": 1]

In Swift 4, however, it’s effectively a one-liner:

var d = [String:Int]()
words.forEach {word in d[word, default:0] += 1}

Earlier, I promised to give an example of init(_:uniquingKeysWith:)
 , so here it is, forming the same histogram in a silly but interesting way; I start with a values array of ones, and sum the values whenever a duplicate key is encountered:

let ones = Array(repeating: 1, count: words.count)
let d = Dictionary(zip(words,ones)){$0+$1}

Instead of assigning into a subscript expression, you can call updateValue(forKey:)
 ; it has the advantage that it returns the old value wrapped in an Optional, or nil
 if the key wasn’t already present.

By a kind of shorthand, assigning nil
 into a key subscript expression removes that key–value pair if it exists:

var d = ["CA": "California", "NY": "New York"]
d["NY"] = nil // d is now ["CA": "California"]

Alternatively, call removeValue(forKey:)
 ; it has the advantage that it returns the removed value before it removes the key–value pair. The removed value is returned wrapped in an Optional, so a nil
 result tells you that this key was never in the dictionary to begin with.

Dictionary casting and comparison

As with arrays, a dictionary type is legal for casting down, meaning that the individual elements will be cast down. Typically, only the value types will differ:

let dog1 : Dog = NoisyDog()
let dog2 : Dog = NoisyDog()
let d = ["fido": dog1, "rover": dog2]
let d2 = d as! [String : NoisyDog]

As with arrays, is
 can be used to test the actual types in the dictionary, and as?
 can be used to test and cast safely.

Dictionary equality is like array equality. Key types are necessarily Equatable, because they are Hashable. Value types are not necessarily Equatable, but if they are
 Equatable, ==
 and !=
 are defined as you would expect.

Basic dictionary properties and enumeration

A dictionary has a count
 property reporting the number of key–value pairs it contains, and an isEmpty
 property reporting whether that number is 0
 .

A dictionary has a keys
 property reporting all its keys, and a values
 property reporting all its values. These are effectively opaque structs providing a specialized view of the dictionary itself. You can’t assign one to a variable, or print it out; but they are collections, so you can work with them as collections.

For example, you can enumerate them with for...in
 (though you should not expect them to arrive in any particular order, as a dictionary is unordered):

var d = ["CA": "California", "NY": "New York"]
for s in d.keys {
 print(s) // NY, then CA
}

You can coerce them to an array:

var d = ["CA": "California", "NY": "New York"]
var keys = Array(d.keys) // ["NY", "CA"]

You can sort them, filter them, or map them (yielding an array). You can take their min
 or max
 . You can reduce
 them. You can compare keys
 of different dictionaries for equality:

let d : [String:Int] = ["one":1, "two":2, "three":3]
let keysSorted = d.keys.sorted() // ["one", "three", "two"]
let arr = d.values.filter{$0 < 2} // [1]
let min = d.values.min() // Optional(1)
let sum = d.values.reduce(0, +) // 6
let ok = d.keys == ["one":1, "three":3, "two":2].keys // true

You can also enumerate a dictionary itself. Each iteration provides a key–value tuple (again, arriving in no particular order, because a dictionary is unordered):

var d = ["CA": "California", "NY": "New York"]
for (abbrev, state) in d {
 print("\(abbrev) stands for \(state)")
}

The tuple members have labels key
 and value
 , so the preceding example can be rewritten like this:

var d = ["CA": "California", "NY": "New York"]
for pair in d {
 print("\(pair.key) stands for \(pair.value)")
}

You can extract a dictionary’s entire contents at once as an array (of key–value tuples) by coercing the dictionary to an array:

var d = ["CA": "California", "NY": "New York"]
let arr = Array(d)
// [(key: "NY", value: "New York"), (key: "CA", value: "California")]

New in Swift 4, when you apply filter
 to a dictionary, what you get is a dictionary (formerly, the result was an array). In addition, Swift 4 provides a mapValues
 method that yields a dictionary with its values changed according to your map function. This makes dictionary transformations much easier than in the past. So, for example:

let d = ["CA": "California", "NY": "New York"]
let d2 = d.filter {$0.value > "New Jersey"}.mapValues{$0.uppercased()}
// ["NY": "NEW YORK"]

Also new in Swift 4, you can combine two dictionaries with the merging(_:uniquingKeysWith:)
 method — or, if your reference to the first dictionary is mutable, you can call merge
 to modify it directly. The second parameter is like the second parameter of init(_:uniquingKeysWith:)
 , saying what the value should be in case the second dictionary has a key matching an existing key in the first dictionary:

let d1 = ["CA": "California", "NY": "New York"]
let d2 = ["MD": "Maryland", "NY": "New York"]
let d3 = d1.merging(d2){orig, _ in orig}
// ["MD": "Maryland", "NY": "New York", "CA": "California"]

Swift Dictionary and Objective-C NSDictionary

The Foundation framework dictionary type is NSDictionary
 , and Swift’s Dictionary type is bridged to it. The untyped API characterization of an NSDictionary will be [AnyHashable:Any]
 (AnyHashable is a type eraser
 , so that we can cope with the possibility, legal in Objective-C, that the keys may be of different hashable types).

Like NSArray, NSDictionary key and value types can now be marked in Objective-C. The most common key type in a real-life Cocoa NSDictionary is NSString, so you might well receive an NSDictionary as a [String:Any]
 . Specific typing of an NSDictionary’s values
 , however, is much rarer; dictionaries that you pass to and receive from Cocoa will very often have values of multiple
 types. It is not at all surprising to have a dictionary whose keys are strings but whose values include a string, a number, a color, and an array. For this reason, you will usually not
 cast down the entire dictionary’s type; instead, you’ll work with the dictionary as having Any values, and cast when fetching an individual value
 from the dictionary. Since the value returned from subscripting a key is itself an Optional, you will typically unwrap and cast the value as a standard single move.

Here’s an example. A Cocoa Notification object comes with a userInfo
 property. It is an NSDictionary that might itself be nil
 , so the Swift API characterizes it as [AnyHashable:Any]?
 . Let’s say I’m expecting this dictionary to be present and to contain a "progress"
 key whose value is an NSNumber containing a Double. My goal is to extract that NSNumber and assign the Double that it contains to a property, self.progress
 . Here’s one way to do that safely, using optional unwrapping and optional casting (n
 is the Notification object):

let prog = n.userInfo?["progress"] as? Double
if prog != nil {
 self.progress = prog!
}

The variable prog
 is implicitly typed as an Optional wrapping a Double. The code is safe, because if there is no userInfo
 dictionary, or if it doesn’t contain a "progress"
 key, or if that key’s value isn’t a Double, nothing happens, and prog
 will be nil
 . I then test prog
 to see whether it is
 nil
 ; if it isn’t, I know that it’s safe to force-unwrap it, and that the unwrapped value is the Double I’m after.

(In Chapter 5
 I’ll describe another syntax for accomplishing the same goal, using conditional binding.)

Conversely, here’s a typical example of creating a dictionary and handing it off to Cocoa. This dictionary is a mixed bag: its values are a UIFont, a UIColor, and an NSShadow. Its keys are all strings, which I obtain as constants from Cocoa. I form the dictionary as a literal and pass it, all in one move, with no need to cast anything:

UINavigationBar.appearance().titleTextAttributes = [
 .font: UIFont(name: "ChalkboardSE-Bold", size: 20)!,
 .foregroundColor: UIColor.darkText,
 .shadow.: {
 let shad = NSShadow()
 shad.shadowOffset = CGSize(width:1.5,height:1.5)
 return shad
 }()
]

As with NSArray and NSMutableArray, if you want Cocoa to mutate a dictionary, you must coerce to NSDictionary’s subclass NSMutableDictionary
 :

var d1 = ["NY":"New York", "CA":"California"]
let d2 = ["MD":"Maryland"]
let mutd1 = NSMutableDictionary(dictionary:d1)
mutd1.addEntries(from:d2)
d1 = mutd1 as! [String:String]
// d1 is now ["MD": "Maryland", "NY": "New York", "CA": "California"]

Set

A set (Set, a struct) is an unordered collection of unique objects. Its elements must be all of one type; it has a count
 and an isEmpty
 property; it can be initialized from any sequence; you can cycle through its elements with for...in
 (though the order of elements is not guaranteed).

The uniqueness of set elements is implemented by constraining their type to be Hashable (and hence Equatable), just like the keys of a Dictionary. Thus, the hash values can be used behind the scenes for rapid access. Checking whether a set contains a given element, which you can do with the contains(_:)
 instance method, is very
 efficient — far more efficient than doing the same thing with an array. Therefore, if element uniqueness is acceptable (or desirable) and you don’t need indexing or a guaranteed order, a set can be a much better choice of collection than an array.

There are no set literals in Swift, but you won’t need them because you can pass an array literal where a set is expected. There is no syntactic sugar for expressing a set type, but the Set struct is a generic, so you can express the type by explicitly specializing the generic:

let set : Set<Int> = [1, 2, 3, 4, 5]

In that particular example, however, there was no real need to specialize the generic, as the Int type can be inferred from the array.

It sometimes happens (more often than you might suppose) that you want to examine one element of a set as a kind of sample. Order is meaningless, so it’s sufficient to obtain any
 element, such as the first element. For this purpose, use the first
 instance property; it returns an Optional, just in case the set is empty.

The distinctive feature of a set is the uniqueness of its objects. If an object is added to a set and that object is already present, it isn’t added a second time. Conversion from an array to a set and back to an array is thus a quick and reliable way of uniquing
 the array — though of course order is not preserved:

let arr = [1,2,1,3,2,4,3,5]
let set = Set(arr)
let arr2 = Array(set) // [5, 2, 3, 1, 4], perhaps

A set is a Collection and a Sequence, so it is analogous to an array or a dictionary, and what I have already said about those types generally applies to a set as well. For example, Set has a map(_:)
 instance method; it returns an array, but of course you can turn that right back into a set if you need to:

let set : Set = [1,2,3,4,5]
let set2 = Set(set.map {$0+1}) // Set containing 2, 3, 4, 5, 6

New in Swift 4, however, applying filter
 to a Set yields a Set directly:

let set : Set = [1,2,3,4,5]
let set2 = set.filter {$0>3} // Set containing 4, 5

If the reference to a set is mutable, a number of instance methods spring to life. You can add an object with insert(_:)
 ; there is no penalty for trying to add an object that’s already in the set (and you can learn what actually happened by capturing and examining the result of the call). Alternatively, call update(with:)
 ; the difference is that if you’re trying to add an object that already has an equivalent in the set, the former doesn’t insert the new object, but the latter does.

For example, suppose a Dog struct has a name
 and a license
 property, but two Dogs are considered equivalent if just their name
 is identical. Then:

var set : Set = [Dog(name:"Fido", license:1)]
let d = Dog(name:"Fido", license:2)
set.insert(d) // [Dog(name: "Fido", license: 1)]
set.update(with:d) // [Dog(name: "Fido", license: 2)]

You can remove an object and return it by specifying the object itself, or something equatable to it, with the remove(_:)
 method; it returns the object wrapped in an Optional, or nil
 if the object was not present. You can remove and return the first object, whatever “first” may mean, with removeFirst
 ; it crashes if the set is empty, so take precautions — or use popFirst
 , which is safe.

Equality comparison (==
) is defined for sets as you would expect; two sets are equal if every element of each is also an element of the other.

If the notion of a set brings to your mind visions of Venn diagrams from elementary school, that’s good, because sets have instance methods giving you all those set operations you remember so fondly. The parameter can be a set, or it can be any sequence, which will be converted to a set; for example, it might be an array, a range, or even a character sequence:

intersection(_:)
 , formIntersection(_:)

Yields the elements of this set that also appear in the parameter. The first forms a new Set; the second is mutating.

union(_:)
 , formUnion(_:)

Yields the elements of this set along with the (unique) elements of the parameter. The first forms a new Set; the second is mutating.

symmetricDifference(_:)
 , formSymmetricDifference(_:)

Yields the elements of this set that don’t appear in the parameter, plus the (unique) elements of the parameter that don’t appear in this set. The first forms a new Set; the second is mutating.

subtracting(_:)
 , subtract(_:)

Yields the elements of this set except for those that appear in the parameter. The first forms a new Set; the second is mutating.

isSubset(of:)
 , isStrictSubset(of:)

isSuperset(of:)
 , isStrictSuperset(of:)

Returns a Bool reporting whether the elements of this set are respectively embraced by or embrace the elements of the parameter. The “strict” variant yields false
 if the two sets consist of the same elements.

isDisjoint(with:)

Returns a Bool reporting whether this set and the parameter have no elements in common.

Here’s a real-life example of elegant Set usage from one of my apps. I have a lot of numbered pictures, of which we are to choose one randomly. But I don’t want to choose a picture that has recently been chosen. Therefore, I keep a list of the numbers of all recently chosen pictures. When it’s time to choose a new picture, I convert the list of all possible numbers to a Set, convert the list of recently chosen picture numbers to a Set, and call subtracting(_:)
 to get a list of unused picture numbers! Now I choose a picture number at random and add it to the list of recently chosen picture numbers:

let ud = UserDefaults.standard
var recents = ud.object(forKey:Defaults.recents) as? [Int]
if recents == nil {
 recents = []
}
var forbiddenNumbers = Set(recents!)
let legalNumbers = Set(1...PIXCOUNT).subtracting(forbiddenNumbers)
let newNumber = Array(legalNumbers)[
 Int(arc4random_uniform(UInt32(legalNumbers.count)))
]
forbiddenNumbers.insert(newNumber)
ud.set(Array(forbiddenNumbers), forKey:Defaults.recents)

Option sets

An option set
 (OptionSet struct) is Swift’s way of treating as a struct a certain type of Cocoa enumeration. It is not, strictly speaking, a Set; but it is deliberately set-like, sharing common features with Set through the SetAlgebra
 protocol. Thus, an option set has contains(_:)
 , insert(_:)
 , and remove(_:)
 methods, along with all the various set operation methods.

The purpose of option sets is to help you grapple with Objective-C bitmasks
 . A bitmask is an integer whose bits are used as switches when multiple options are to be specified simultaneously. Such bitmasks are very common in Cocoa. In Objective-C, bitmasks are manipulated through the arithmetic bitwise-or and bitwise-and operators. Such manipulation can be mysterious and error-prone. But in Swift, thanks to option sets, bitmasks can be manipulated easily through set operations instead.

For example, when specifying how a UIView is to be animated, you are allowed to pass an options:
 argument whose value comes from the UIViewAnimationOptions enumeration, whose definition (in Objective-C) begins as follows:

typedef NS_OPTIONS(NSUInteger, UIViewAnimationOptions) {
 UIViewAnimationOptionLayoutSubviews = 1 << 0,
 UIViewAnimationOptionAllowUserInteraction = 1 << 1,
 UIViewAnimationOptionBeginFromCurrentState = 1 << 2,
 UIViewAnimationOptionRepeat = 1 << 3,
 UIViewAnimationOptionAutoreverse = 1 << 4,
 // ...
};

Pretend that an NSUInteger is 8 bits (it isn’t, but let’s keep things simple and short). Then this enumeration means that (in Swift) the following name–value pairs are defined:

UIViewAnimationOptions.layoutSubviews 0b00000001
UIViewAnimationOptions.allowUserInteraction 0b00000010
UIViewAnimationOptions.beginFromCurrentState 0b00000100
UIViewAnimationOptions.repeat 0b00001000
UIViewAnimationOptions.autoreverse 0b00010000

These values can be combined into a single value — a bitmask
 — that you pass as the options:
 argument for your animation. All Cocoa has to do to understand your intentions is to look to see which bits in the value that you pass are set to 1. So, for example, 0b00011000
 would mean that UIViewAnimationOptions.repeat
 and UIViewAnimationOptions.autoreverse
 are both true (and that the others are all false).

The question is how to form
 the value 0b00011000
 in order to pass it. You could form it directly as a literal and set the options:
 argument to UIViewAnimationOptions(rawValue:0b00011000)
 ; but that’s not a very good idea, because it’s error-prone and makes your code incomprehensible. In Objective-C, you’d use the arithmetic bitwise-or operator, analogous to this Swift code:

let val =
 UIViewAnimationOptions.autoreverse.rawValue |
 UIViewAnimationOptions.repeat.rawValue
let opts = UIViewAnimationOptions(rawValue: val)

That’s rather ugly! However, help is on the way: The UIViewAnimationOptions type is an option set struct in Swift (because it is marked as NS_OPTIONS
 in Objective-C), and therefore can be treated much like a Set. For example, given a UIViewAnimationOptions
 value, you can add an option to it using insert(_:)
 :

var opts = UIViewAnimationOptions.autoreverse
opts.insert(.repeat)

Alternatively, you can start with an array literal, just as if you were initializing a Set:

let opts : UIViewAnimationOptions = [.autoreverse, .repeat]

Tip

To indicate that no options are to be set, pass an empty option set ([]
) or, where permitted, omit the options:
 parameter altogether.

The inverse situation is that Cocoa hands you
 a bitmask, and you want to know whether a certain bit is set. In this example from a UITableViewCell subclass, the cell’s state
 comes to us as a bitmask; we want to know about the bit indicating that the cell is showing its edit control. The Objective-C way is to extract the raw values and use the bitwise-and operator:

override func didTransition(to state: UITableViewCellStateMask) {
 let editing = UITableViewCellStateMask.showingEditControlMask.rawValue
 if state.rawValue & editing != 0 {
 // ... the ShowingEditControlMask bit is set ...
 }
}

That’s a tricky formula, all too easy to get wrong. But in Swift this is an option set, so the contains(_:)
 method tells you the answer:

override func didTransition(to state: UITableViewCellStateMask) {
 if state.contains(.showingEditControlMask) {
 // ... the ShowingEditControlMask bit is set ...
 }
}

Swift Set and Objective-C NSSet

Swift’s Set type is bridged to Objective-C NSSet. The untyped medium of interchange is Set<AnyHashable>
 . Coming back from Objective-C, if Objective-C doesn’t know what this is a set of, you would probably cast down as needed. As with NSArray, however, NSSet can be marked up to indicate its element type, in which case no casting will be necessary:

override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {
 let t = touches.first // an Optional wrapping a UITouch
 // ...
}

Chapter 5.
 Flow Control and More

This chapter is a miscellany, presenting various remaining aspects of the Swift language. I’ll start by describing the syntax of Swift’s flow control constructs for branching, looping, and jumping. Next I’ll discuss a new Swift 4 language feature, key paths. Then I’ll talk about how to override operators and how to create your own operators. The chapter ends with a survey of Swift’s privacy and introspection features, and some specialized aspects of Swift memory management.

Flow Control

A computer program has a path of execution
 through its code statements. Normally, this path follows a simple rule: execute each statement in succession. But there is another possibility. Flow control
 can be used to make the path of execution skip some code statements, or repeat some code statements. Flow control is what makes a computer program “intelligent,” and not merely a simple fixed sequence of steps. By testing the truth value of a condition
 — an expression that evaluates to a Bool and is thus true
 or false
 — the program decides at that moment
 how to proceed. Flow control based on testing a condition may be divided into two general types:

Branching

The code is divided into alternative chunks, like roads that diverge in a wood, and the program is presented with a choice of possible ways to go; the truth of a condition is used to determine which chunk will actually be executed.

Looping

A chunk of code is marked off for possible repetition; the truth of a condition is used to determine whether the chunk should be executed, and then whether it should be executed again. Each repetition is called an iteration
 . Typically, some feature of the environment (such as the value of a variable) is changed on each iteration, so that the repetitions are not identical, but are successive stages in progressing through an overall task.

The chunks of code in flow control, which I refer to as blocks
 , are demarcated by curly braces
 . These curly braces constitute a scope. New local variables can be declared here, and go out of existence automatically when the path of execution exits the curly braces (Chapter 3
). For a loop, this means that local variables come into existence and go out of existence on each iteration. As with any scope, code inside the curly braces can see the surrounding higher scope (Chapter 1
).

Swift flow control is fairly simple, and by and large is similar to flow control in C and related languages. There are two fundamental syntactic differences between Swift and C, both of which make Swift simpler and clearer:

	A condition does not have to be wrapped in parentheses
 in Swift.

	The curly braces can never be omitted
 in Swift.

Moreover, Swift adds some specialized flow control features to help you grapple more conveniently with Optionals, and boasts a particularly powerful form of switch statement.

Branching

Swift has two forms of branching: the if construct, and the switch statement. I’ll also discuss conditional evaluation, a compact form of if construct.

If construct

The Swift branching construct with if
 is similar to C. Many examples of if constructs have appeared already in this book. The construct may be formally summarized as shown in Example 5-1
 .

Example 5-1.
 The Swift if construct

if condition

 {
 statements

}

if condition

 {
 statements

} else {
 statements

}

if condition

 {
 statements

} else if condition

 {
 statements

} else {
 statements

}

The third form, containing else if
 , can have as many else if
 blocks as needed, and the final else
 block may be omitted.

Here’s a real-life if construct that lies at the heart of one of my apps:

// okay, we've tapped a tile; there are three cases
if self.selectedTile == nil { // no selected tile: select and play this tile
 self.select(tile:tile)
 self.play(tile:tile)
} else if self.selectedTile == tile { // selected tile tapped: deselect it
 self.deselectAll()
 self.player?.pause()
} else { // there was a selected tile, another tile was tapped: swap them
 self.swap(self.selectedTile, with:tile, check:true, fence:true)
}

Conditional binding

In Swift, if
 can be followed immediately by a variable declaration and assignment — that is, by let
 or var
 and a new local variable name, possibly followed by a colon and a type declaration, then an equal sign and a value, as follows:

if let var

 = val

 {

This syntax, called a conditional binding
 , is actually a shorthand for conditionally unwrapping an Optional.
 The assigned value is expected to be an Optional — the compiler will stop you if it isn’t — and this is what happens:

	If the Optional is nil
 , the condition fails and the block is not executed.

	If the Optional is not
 nil
 , then:
	The Optional is unwrapped.

	The unwrapped value is assigned to the declared local variable.

	The block is executed with the local variable in scope.

Thus, a conditional binding is a convenient shorthand for safely passing an unwrapped Optional into a block. The Optional is unwrapped, and the block is executed, only if the Optional can
 be unwrapped.

It is perfectly reasonable for the local variable in a conditional binding to have the same name as an existing variable in the surrounding scope. It can even have the same name as the Optional being unwrapped! There is then no need to make up a new name, and inside the block the unwrapped value of the Optional overshadows the original Optional, which thus cannot be accessed accidentally.

Here’s an example of a conditional binding. Recall this code from Chapter 4
 , where I optionally unwrap a Notification’s userInfo
 dictionary, attempt to fetch a value from the dictionary using the "progress"
 key, and proceed only if that value turns out to be an NSNumber that can be cast down to a Double:

let prog = n.userInfo?["progress"] as? Double
if prog != nil {
 self.progress = prog!
}

We can rewrite that code as a conditional binding:

if let prog = n.userInfo?["progress"] as? Double {
 self.progress = prog
}

It is also possible to nest conditional bindings. To illustrate, I’ll rewrite the previous example to use a separate conditional binding for each Optional in the chain:

if let ui = n.userInfo {
 if let prog = ui["progress"] as? Double {
 self.progress = prog
 }
}

The result, if the chain involves many optional unwrappings, can be somewhat verbose and the nest can become deeply indented — Swift programmers like to call this the “pyramid of doom”. To help avoid the indentation, successive conditional bindings can be combined into a condition list
 , with each condition separated by comma:

if let ui = n.userInfo, let prog = ui["progress"] as? Double {
 self.progress = prog
}

In that code, the assignment to prog
 won’t even be attempted if the assignment to ui
 fails (because n.userInfo
 is nil
).

Condition lists do not have to consist solely of conditional bindings. They can include ordinary conditions. The important thing is the left-to-right order of evaluation, which allows each condition to depend upon the previous one. Thus it would be possible (though not as elegant) to rewrite the previous example like this:

if let ui = n.userInfo, let prog = ui["progress"], prog is Double {
 self.progress = prog as! Double
}

Nevertheless, I am not fond of this kind of extended condition list. I actually prefer the pyramid of doom; I find it considerably more legible, because the structure reflects perfectly the successive stages of testing. If I want to avoid the pyramid of doom, I can use a sequence of guard
 statements (“Guard”
):

guard let ui = n.userInfo else {return}
guard let prog = ui["progress"] as? Double else {return}
self.progress = prog

Switch statement

A switch statement is a neater way of writing an extended if...else if...else
 construct. In C (and Objective-C), a switch statement contains hidden traps; Swift eliminates those traps, and adds power and flexibility. As a result, switch statements are commonly used in Swift (whereas they are relatively rare in my Objective-C code).

In a switch statement, the condition involves the comparison of different possible values, called cases
 , against a single value, called the tag
 . The case comparisons are performed successively in order
 . As soon as a case comparison succeeds, that case’s code is executed and the entire switch statement is exited. The schema is shown in Example 5-2
 ; there can be as many cases as needed, and the default
 case can be omitted (subject to restrictions that I’ll explain in a moment).

Example 5-2.
 The Swift switch statement

switch tag

 {
case pattern1

:
 statements

case pattern2

:
 statements

default:
 statements

}

Here’s an actual example:

switch i {
case 1:
 print("You have 1 thingy!")
case 2:
 print("You have 2 thingies!")
default:
 print("You have \(i) thingies!")
}

In that code, a variable i
 functions as the tag. The value of i
 is first compared to the value 1
 . If it is
 1
 , that case’s code is executed and that’s all. If it is not
 1
 , it is compared to the value 2
 . If it is
 2
 , that
 case’s code is executed and that’s all. If the value of i
 matches neither of those, the default
 case’s code is executed.

In Swift, a switch statement must be exhaustive
 . This means that every
 possible value of the tag must be covered by a case. The compiler will stop you if you try to violate this rule. The rule makes intuitive sense when a value’s type allows only a limited number of possibilities; the usual example is an enum, which itself has a small, fixed set of cases as its possible values. But when, as in the preceding example, the tag is an Int, there is an infinite number of possible individual cases. Thus, a “mop-up” case must
 appear, to mop up all the cases that you didn’t write explicitly. A common way to write a “mop-up” case is to use a default
 case.

Each case’s code can consist of multiple lines; it doesn’t have to be a single line, as the cases in the preceding example happen to be. However, it must consist of at least
 a single line; it is illegal for a Swift switch case to be completely empty. It is legal for the first (or only) line of a case’s code to appear on the same line as the case, after the colon; thus, I could have written the preceding example like this:

switch i {
case 1: print("You have 1 thingy!")
case 2: print("You have 2 thingies!")
default: print("You have \(i) thingies!")
}

The minimum single line of case code is the keyword break
 ; used in this way, break
 acts as a placeholder meaning, “Do nothing.” It is very common for a switch statement to include a default
 (or other “mop-up” case) consisting of nothing but the keyword break
 ; in this way, you exhaust all possible values of the tag, but if the value is one that no case explicitly covers, you do nothing.

Now let’s focus on the comparison between the tag value and the case value. In the preceding example, it works like an equality comparison (==
); but that isn’t the only possibility. In Swift, a case value is actually a special expression called a pattern
 , and the pattern is compared to the tag value using a “secret” pattern-matching operator, ~=
 . The more you know about the syntax for constructing a pattern, the more powerful your case values and your switch statements will be.

A pattern can include an underscore (_
) to absorb all values without using them. An underscore case is thus an alternative form of “mop-up” case:

switch i {
case 1:
 print("You have 1 thingy!")
case _:
 print("You have many thingies!")
}

A pattern can include a declaration of a local variable name (an unconditional binding) to absorb all values and use the actual value. This is another alternative form of “mop-up” case:

switch i {
case 1:
 print("You have 1 thingy!")
case let n:
 print("You have \(n) thingies!")
}

When the tag is a Comparable, a case can include a Range; the test involves sending the Range the contains
 message:

switch i {
case 1:
 print("You have 1 thingy!")
case 2...10:
 print("You have \(i) thingies!")
default:
 print("You have more thingies than I can count!")
}

When the tag is an Optional, a case can test it against nil
 . Moreover, appending ?
 to a case pattern safely unwraps an Optional tag.
 Thus, if i
 is an Optional wrapping an Int:

switch i {
case 1?:
 print("You have 1 thingy!")
case let n?:
 print("You have \(n) thingies!")
case nil: break
}

When the tag is a Bool, a case can test it against a condition. Thus, by a clever perversion, you can use the cases to test any
 conditions you like — by using true
 as the tag! A switch statement thus becomes a genuine substitute for an extended if...else if
 construct. In this example from my own code, I could have used if...else if
 , but each case is just one line, so a switch statement seems clearer:

func position(for bar: UIBarPositioning) -> UIBarPosition {
 switch true {
 case bar === self.navbar: return .topAttached
 case bar === self.toolbar: return .bottom
 default: return .any
 }
}

A pattern can include a where clause adding a condition to limit the truth value of the case. This is often, though not necessarily, used in combination with a binding; the condition can refer to the variable declared in the binding:

switch i {
case let j where j < 0:
 print("i is negative")
case let j where j > 0:
 print("i is positive")
case 0:
 print("i is 0")
default:break
}

That example, however, is rather silly, as the binding isn’t actually needed. A neater approach here would be to use the new Swift 4 partial range syntax:

switch i {
case ..<0:
 print("i is negative")
case 1...:
 print("i is positive")
case 0:
 print("i is 0")
default:break
}

A pattern can include the is
 operator to test the tag’s type. In this example, assume that we have a Dog class and its NoisyDog subclass, and that d
 is typed as Dog:

switch d {
case is NoisyDog:
 print("You have a noisy dog!")
case _:
 print("You have a dog.")
}

A pattern can include a cast with the as
 (not as?
) operator. Typically, you’ll combine this with a binding that declares a local variable; despite the use of unconditional as
 , the value is conditionally cast and, if the cast succeeds, the local variable carries the cast value into the case code. Again, d
 is typed as Dog; assume that Dog implements bark
 and that NoisyDog implements beQuiet
 :

switch d {
case let nd as NoisyDog:
 nd.beQuiet()
case let d:
 d.bark()
}

You can also use as
 (not as?
) to cast down the tag (and possibly unwrap it) conditionally as part of a test against a specific match; in this example, i
 might be an Any or an Optional wrapping an Any:

switch i {
case 0 as Int:
 print("It is 0")
default:break
}

You can perform multiple tests at once by expressing the tag as a tuple and wrapping the corresponding tests in a tuple. The case passes only if every test in the test tuple succeeds against the corresponding member of the tag tuple. In this example, we start with a dictionary d
 typed as [String:Any]
 . Using a tuple, we can safely attempt to fetch and cast two values at once:

switch (d["size"], d["desc"]) {
case let (size as Int, desc as String):
 print("You have size \(size) and it is \(desc)")
default:break
}

When a tag is an enum, the cases can be cases of the enum. A switch statement is thus an excellent way to handle an enum. Here’s the Filter enum from Chapter 4
 :

enum Filter {
 case albums
 case playlists
 case podcasts
 case books
}

And here’s a switch statement, where the tag, type
 , is a Filter; no mop-up is needed, because I’ve exhausted the cases:

switch type {
case .albums:
 print("Albums")
case .playlists:
 print("Playlists")
case .podcasts:
 print("Podcasts")
case .books:
 print("Books")
}

A switch statement provides a way to extract an associated value from an enum case. Recall this enum from Chapter 4
 :

enum MyError {
 case number(Int)
 case message(String)
 case fatal
}

To extract the error number from a MyError whose case is .number
 , or the message string from a MyError whose case is .message
 , I can use a switch statement. Recall that the associated value is actually a tuple. A tuple of patterns after the matched case name is applied to the associated value. If a pattern is a binding variable, it captures the associated value. The let
 (or var
) can appear inside the parentheses or after the case
 keyword; this code illustrates both alternatives:

switch err {
case .number(let theNumber):
 print("It is a number: \(theNumber)")
case let .message(theMessage):
 print("It is a message: \(theMessage)")
case .fatal:
 print("It is fatal")
}

If the let
 (or var
) appears after the case
 keyword, I can add a where clause:

switch err {
case let .number(n) where n > 0:
 print("It's a positive error number \(n)")
case let .number(n) where n < 0:
 print("It's a negative error number \(n)")
case .number(0):
 print("It's a zero error number")
default:break
}

If I don’t want to extract the error number but just want to match against it, I can use some other pattern inside the parentheses:

switch err {
case .number(1...):
 print("It's a positive error number")
case .number(..<0):
 print("It's a negative error number")
case .number(0):
 print("It's a zero error number")
default:break
}

This same pattern also gives us yet another way to deal with an Optional tag. An Optional, as I explained in Chapter 4
 , is in fact an enum. It has two cases, .none
 and .some
 , where the wrapped value is the .some
 case’s associated value. But now we know how to extract the associated value! Thus we can rewrite yet again the earlier example where i
 is an Optional wrapping an Int:

switch i {
case .none: break
case .some(1):
 print("You have 1 thingy!")
case .some(let n):
 print("You have \(n) thingies!")
}

To combine switch case tests (with an implicit logical-or), separate them with a comma:

switch i {
case 1,3,5,7,9:
 print("You have a small odd number of thingies.")
case 2,4,6,8,10:
 print("You have a small even number of thingies.")
default:
 print("You have too many thingies for me to count.")
}

In this example, i
 is declared as an Any:

switch i {
case is Int, is Double:
 print("It's some kind of number.")
default:
 print("I don't know what it is.")
}

A comma can even combine patterns that declare binding variables, provided they declare the same variable of the same type (err
 is our MyError once again):

switch err {
case let .number(n) where n > 0, let .number(n) where n < 0:
 print("It's a nonzero error number \(n)")
case .number(0):
 print("It's a zero error number")
default:break
}

Another way of combining cases is to jump from one case to the next by using a fallthrough
 statement. When a fallthrough
 statement is encountered, the current case code is aborted
 immediately and the next case code runs unconditionally
 . The test of the next case is not performed, so the next case can’t declare any binding variables, because they would never be set. It is not uncommon for a case to consist entirely of a fallthrough
 statement:

switch pep {
case "Manny": fallthrough
case "Moe": fallthrough
case "Jack":
 print("\(pep) is a Pep boy")
default:
 print("I don't know who \(pep) is")
}

If case

When all you want to do is extract an associated value from an enum, a full switch statement may seem a bit heavy-handed. The lightweight if case
 construct lets you use in a condition the same sort of pattern syntax you’d use in a case of a switch statement. The structural difference is that, whereas a switch case pattern is compared against a previously stated tag, an if case
 pattern is followed by an equal sign and then the tag.

For example, this is another way to extract an associated value from an enum; err
 is our MyError enum once again:

if case let .number(n) = err {
 print("The error number is \(n)")
}

The condition starting with case
 can be part of a longer comma-separated condition list:

if case let .number(n) = err, n < 0 {
 print("The negative error number is \(n)")
}

Conditional evaluation

An interesting problem arises when you’d like to decide what value to use — for example, what value to assign to a variable. This seems like a good use of a branching construct. You can, of course, declare the variable first without initializing it, and then set it from within a subsequent branching construct. It would be nice, however, to use a branching construct as
 the variable’s value. Here, for example, I try (and fail) to write a variable assignment where the equal sign is followed directly by a branching construct:

let title = switch type { // compile error
case .albums:
 "Albums"
case .playlists:
 "Playlists"
case .podcasts:
 "Podcasts"
case .books:
 "Books"
}

There are languages that let you talk that way, but Swift is not one of them. However, an easy workaround does exist — use a define-and-call anonymous function, as I suggested in Chapter 2
 :

let title : String = {
 switch type {
 case .albums:
 return "Albums"
 case .playlists:
 return "Playlists"
 case .podcasts:
 return "Podcasts"
 case .books:
 return "Books"
 }
}()

In the special case where a value can be decided by a two-pronged condition, Swift provides the C ternary operator (?:
). Its scheme is as follows:

condition

 ? exp1

 : exp2

If the condition is true
 , the expression
exp1

 is evaluated and the result is used; otherwise, the expression
exp2

 is evaluated and the result is used. Thus, you can use the ternary operator while performing an assignment, using this schema:

let myVariable = condition

 ? exp1

 : exp2

What myVariable
 gets initialized to depends on the truth value of the condition. I use the ternary operator heavily in my own code. Here’s an example:

cell.accessoryType =
 ix.row == self.currow ? .checkmark : .disclosureIndicator

The context needn’t be an assignment; here, we’re deciding what value to pass as a function argument:

context.setFillColor(self.hilite ? purple.cgColor : beige.cgColor)

The ternary operator can also be used to determine the receiver of a message. In this example, one of two UIViews will have its background color set:

(self.firstRed ? v1 : v2).backgroundColor = .red

In Objective-C, there’s a collapsed form of the ternary operator that allows you to test a value against nil
 . If it is nil
 , you get to supply a substitute value. If it isn’t
 nil
 , the tested value itself is used. In Swift, the analogous operation would involve testing an Optional: if the tested Optional is nil
 , use the substitute value; if it isn’t
 nil
 , unwrap
 the Optional and use the unwrapped value. Swift has such an operator — the ??
 operator (called the nil-coalescing
 operator).

Here’s a real-life example from my own code:

func tableView(_ tv: UITableView, numberOfRowsInSection sec: Int) -> Int {
 return self.titles?.count ?? 0
}

In that example, self.titles
 is of type [String]?
 . If it’s not nil
 , I want to unwrap the array and return its count
 . But if it is
 nil
 , there is no data and thus no table to display — but I must
 return some
 number, so clearly I want to return zero. The nil-coalescing operator lets me express all that very neatly.

Expressions using ??
 can be chained:

let someNumber = i1 as? Int ?? i2 as? Int ?? 0

That code tries to cast i1
 to an Int and use that Int. If that fails, it tries to cast i2
 to an Int and use that
 Int. If that
 fails, it gives up and uses 0
 .

Loops

The usual purpose of a loop is to repeat a block of code with some simple difference on each iteration. This difference will typically serve also as a signal for when to stop the loop. Swift provides two basic loop structures: while loops and for loops.

While loops

A while loop comes in two forms, schematized in Example 5-3
 .

Example 5-3.
 The Swift while loop

while condition

 {
 statements

}

repeat {
 statements

} while condition

The chief difference between the two forms is the timing of the test. In the second form, the condition is tested after the block has executed — meaning that the block will be executed at least once.

Usually, the code inside the block will change something that alters the environment and hence the value of the condition, thus eventually bringing the loop to an end. Here’s a typical example from my own code (movenda
 is an array):

while self.movenda.count > 0 {
 let p = self.movenda.removeLast()
 // ...
}

Each iteration removes an element from movenda
 , so eventually its count
 , evaluated in the condition, falls to 0
 and the loop is no longer executed; execution then proceeds to the next line after the closing curly braces.

In its first form, a while loop can involve a conditional binding of an Optional. This provides a compact way of safely unwrapping an Optional and looping until the Optional is nil
 ; the local variable containing the unwrapped Optional is in scope inside the curly braces. Thus, my code can be rewritten more compactly:

while let p = self.movenda.popLast() {
 // ...
}

There is no Swift repeat...until
 construct; instead, negate the condition. In my own code, for example, I commonly need to walk my way up or down a hierarchy. Here, textField
 is a subview, at some depth, of some table view cell, and I want to know which
 table view cell it is a subview of. So I keep walking up the view hierarchy, investigating each superview in turn, until either I reach a table view cell or I hit the top of the view hierarchy:

var v : UIView? = textField
repeat {v = v?.superview} while !(v is UITableViewCell || v == nil)
if let c = v as? UITableViewCell {
 // ... if we get here, c is the cell
}

Similar to the if case
 construct, while case
 lets you use a switch case pattern.
 In this rather artificial example, we have an array of various MyError enums:

let arr : [MyError] = [
 .message("ouch"), .message("yipes"), .number(10), .number(-1), .fatal
]

We can extract the .message
 associated string values from the start of the array, like this:

var i = 0
while case let .message(message) = arr[i] {
 print(message) // "ouch", then "yipes"; then the loop stops
 i += 1
}

For loops

The Swift for loop is schematized in Example 5-4
 .

Example 5-4.
 The Swift for loop

for variable

 in sequence

 {
 statements

}

The for...in
 construct that forms the basis of Swift’s for loop is similar to Objective-C’s for...in
 construct. In Objective-C, this syntax is available whenever a class conforms to the NSFastEnumeration
 protocol. In Swift, it is available whenever a type adopts the Sequence protocol.

In the for...in
 construct, the variable is implicitly declared with let
 on each iteration; it is thus immutable by default. (If you need to assign to the variable within the block, write for var
 .) The variable is also local to the block. On each iteration, a successive element of the sequence is used to initialize the variable, which is then in scope inside the block.

A common use of for loops is to iterate through successive numbers. This is easy in Swift, because you can readily create a sequence of numbers on the fly — a Range:

for i in 1...5 {
 print(i) // 1, 2, 3, 4, 5
}

Under the hood, a Sequence has a makeIterator
 method which yields an iterator object adopting IteratorProtocol. According to this protocol, the iterator has a mutating next
 method that returns the next object in the sequence wrapped in an Optional, or nil
 if there is no next object. Thus, for...in
 is actually a kind of while loop:

var g = (1...5).makeIterator()
while let i = g.next() {
 print(i) // 1, 2, 3, 4, 5
}

Sometimes you may find that writing out the while loop explicitly in that way makes the loop easier to control and to customize.

The sequence will often be an existing value. It might be a character sequence — or a string, which will be treated as a character sequence — in which case the variable values are the successive Characters. It might be an array, in which case the variable values are the successive elements of the array. It might be a dictionary, in which case the variable values are key–value tuples (in no particular order). Many examples have already appeared in earlier chapters.

As I explained in Chapter 4
 , you may encounter an array coming from Objective-C whose elements will need to be cast down from Any. If your goal is to iterate through that array, you can cast down as part of the sequence specification:

let p = Pep()
// p.boys() is an array of Any, unfortunately
for boy in p.boys() as! [String] {
 // ...
}

The sequence enumerated
 method yields a succession of tuples in which each element of the original sequence is preceded by its index number. In this example from my real code, tiles
 is an array of UIViews and centers
 is an array (with the same length) of CGPoints saying where those views are to be positioned:

for (i,v) in self.tiles.enumerated() {
 v.center = self.centers[i]
}

A for...in
 construct can take a where clause, allowing you to skip some values of the sequence:

for i in 0...10 where i % 2 == 0 {
 print(i) // 0, 2, 4, 6, 8, 10
}

Like if case
 and while case
 , there’s also for case
 , permitting a switch case pattern to be used a for loop. The tag is each successive value of the sequence, so no assignment operator is used. To illustrate, let’s start again with an array of MyError enums:

let arr : [MyError] = [
 .message("ouch"), .message("yipes"), .number(10), .number(-1), .fatal
]

Here we cycle through the whole array, extracting only the .number
 associated values:

for case let .number(i) in arr {
 print(i) // 10, -1
}

Another common use of for case
 is to cast down conditionally, picking out only those members of the sequence that can be cast down safely. For example, let’s say I want to hide all subviews that happen to be buttons:

for case let b as UIButton in self.boardView.subviews {
 b.isHidden = true
}

A sequence also has instance methods, such as map(_:)
 , filter(_:)
 , and reversed
 ; you can apply these to hone the sequence through which we will cycle. In this example, I count backward by even numbers:

let range = (0...10).reversed().filter{$0 % 2 == 0}
for i in range {
 print(i) // 10, 8, 6, 4, 2, 0
}

Yet another approach is to generate the sequence by calling either stride(from:through:by)
 or stride(from:to:by:)
 . These are global functions applicable to adopters of the Strideable protocol, such as numeric types and anything else that can be incremented and decremented. Which form you use depends on whether or not you want the sequence to include the final value. The by:
 argument can be negative:

for i in stride(from: 10, through: 0, by: -2) {
 print(i) // 10, 8, 6, 4, 2, 0
}

For maximum flexibility, you can use the global sequence
 function to generate your sequence by rule. It takes two parameters — an initial value, and a generation function that returns the next value based on what has gone before. In theory, the sequence generated by the sequence
 function can be infinite in length — though this is not a problem, because the resulting sequence is “lazy,” meaning that an element isn’t generated until you ask for it. In reality, you’ll use one of two techniques to limit the result. The generation function can limit the sequence by returning nil
 to signal that the end has been reached:

let seq = sequence(first:1) {$0 >= 10 ? nil : $0 + 1}
for i in seq {
 print(i) // 1,2,3,4,5,6,7,8,9,10
}

Alternatively you can request just a piece of the infinite sequence — for example, by cycling through the sequence for a while and then stopping, or by taking a finite prefix
 :

let seq = sequence(first:1) {$0 + 1}
for i in seq.prefix(5) {
 print(i) // 1,2,3,4,5
}

The sequence
 function comes in two forms. The first form, sequence(first:next:)
 , initially hands first
 into the next:
 function and subsequently hands the previous result of the next:
 function into the next:
 function, as illustrated in the preceding examples. The second form, sequence(state:next:)
 , is more general: it repeatedly hands state
 into the next:
 function as an inout
 parameter; the next:
 function is expected to set that parameter, using it as a scratchpad, in addition to returning the next value in the sequence. An obvious illustration is the Fibonacci sequence:

let fib = sequence(state:(0,1)) { (pair: inout (Int,Int)) -> Int in
 let n = pair.0 + pair.1
 pair = (pair.1,n)
 return n
}
for i in fib.prefix(10) {
 print(i) // 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
}

Jumping

Although branching and looping constitute the bulk of the decision-making flow of code execution, sometimes even they are insufficient to express the logic of what needs to happen next. It can be useful, instead, to interrupt your code’s progress completely and jump
 to a different place within it.

The most general way to jump from anywhere to anywhere is the goto
 command, common in early programming languages but now notoriously “considered harmful.” Swift doesn’t have a goto
 command, but it does provide a repertory of controlled ways of jumping, which will, in practice, cover any real-life situation. Swift’s modes of jumping are all forms of early exit
 from the current flow of code.

Tip

The return
 statement may itself be considered a form of early exit. One function calls another, which may call another, and so on, forming a call stack. When a return
 statement is encountered, accompanied by a return value if needed, execution of the function code is aborted immediately and the path of execution comes back to the point at which the call is made. In effect, we have jumped one level up the call stack.

Shortcircuiting and labels

Swift has several ways of shortcircuiting the flow of branch and loop constructs:

fallthrough

A fallthrough
 statement in a switch case aborts execution of the current case code and immediately begins executing the code of the next case. There must be
 a next case or the compiler will stop you.

continue

A continue
 statement in a loop construct aborts execution of the current iteration and proceeds to the next iteration:

	In a while loop, continue
 means to perform immediately the conditional test.

	In a for loop, continue
 means to proceed immediately to the next iteration if there is one.

break

A break
 statement aborts the current construct:

	In a loop, break
 aborts the loop completely.

	In the code of a switch case, break
 aborts the entire switch construct.

When constructs are nested, you may need to specify which
 construct you want to continue
 or break
 . Therefore, Swift permits you to put a label
 before the start of an if construct, a switch statement, a while loop, or a for loop (or a do block, which I’ll describe later). The label is an arbitrary name followed by a colon. You can then use that label name as a second term in a continue
 or break
 statement within the labeled construct at any depth, to specify that this is the construct you are referring to.

Here’s an artificial example to illustrate the syntax. First, I’ll nest two for loops with no label:

for i in 1...5 {
 for j in 1...5 {
 print("\(i), \(j);")
 break
 }
}
// 1, 1; 2, 1; 3, 1; 4, 1; 5, 1;

As you can see from the output, that code keeps aborting the inner loop after one iteration, while the outer loop proceeds normally through all five iterations. But what if you wanted to abort the entire nested construct? The solution is a label:

outer: for i in 1...5 {
 for j in 1...5 {
 print("\(i), \(j);")
 break outer
 }
}
// 1, 1;

Throwing and catching errors

Sometimes a situation arises where further coherent progress is impossible: the entire operation in which we are engaged has failed. It can then be desirable to abort the current scope, and possibly the current function, and possibly even the function that called it, and so on, exiting to some point where we can acknowledge this failure and proceed in good order in some other way.

For this purpose, Swift provides a mechanism for throwing and catching errors
 . In keeping with its usual insistence on safety and clarity, Swift imposes certain strict conditions on the use of this mechanism, and the compiler will ensure that you adhere to them.

An error
 , in this sense, is a kind of message, presumably indicating what went wrong. This message is passed up the nest of scopes and function calls as part of the error-handling process, and the code that recovers from the failure can, if desired, read the message and determine how to proceed.

In Swift, an error must be an object of a type that adopts the Error protocol, which has just two requirements: a String _domain
 property and an Int _code
 property. The purpose of those properties is to help errors cross the bridge between Swift and Objective-C; in real life, you will be unaware of them (and in fact you won’t even see them listed in the Swift header). What you will see and use will be one of the following:

A Swift type that adopts Error

As soon as a Swift type formally declares adoption of the Error protocol, it is ready to be used as an error object; the protocol requirements are magically fulfilled for you, behind the scenes. Typically, this type will be an enum, which will communicate its message by means of its cases: different cases will distinguish different kinds of possible failure, perhaps with raw values or associated types to carry further information.

NSError

NSError is Cocoa’s class for communicating the nature of a problem; Swift extends NSError to adopt Error and bridges them to one another. If your call to a Cocoa method generates a failure, Cocoa will send you an NSError instance typed as an Error.

There are two stages of the error mechanism to consider — throwing an error, and catching an error:

	
Throwing
 an error aborts the current path of execution and hands an error object to the error mechanism.

	
Catching
 an error receives that error object from the error mechanism and responds in good order, with the path of execution resuming after the point of catching. In effect, we have jumped
 from the throwing point to the catching point.

To throw an error
 , use the keyword throw
 followed by an error object. That’s all it takes! The current block of code is immediately aborted, and the error mechanism takes over. However, to ensure that the throw
 command is used coherently, Swift imposes a rule that you can say throw
 only in a context where the error can be caught
 . What is such a context?

The primary context for throwing and catching an error is the do...catch
 construct. This consists of a do block and one or more catch blocks. It is legal to throw in the do block; an accompanying catch block can then be fed any errors thrown from within the do block. The do...catch
 construct’s schema looks like Example 5-5
 .

Example 5-5.
 The Swift do...catch
 construct

do {
 statements

 // a throw can happen here
} catch errortype

 {
 statements

} catch {
 statements

}

A single do block can be accompanied by multiple catch blocks. Catch blocks are like the cases of a switch statement, and will usually have the same logic: first, you might have specialized catch blocks, each of which is designed to handle some limited set of possible errors; finally, you might have a general catch block that acts as the default, mopping up any errors that were not caught by any of the specialized catch blocks.

In fact, the syntax
 used by a catch block to specify what sorts of error it catches is
 the pattern syntax used by a case in a switch statement! Imagine that this is
 a switch statement, and that the tag is the error object. Then the matching of that error object to a particular catch block is performed just as if you had written case
 instead of catch
 . Typically, when the Error is an enum, a specialized catch block will state at least the enum that it catches, and possibly also the case of that enum; it can have a binding, to capture the enum or its associated type; and it can have a where clause to limit the possibilities still further.

To illustrate, I’ll start by defining a couple of errors:

enum MyFirstError : Error {
 case firstMinorMistake
 case firstMajorMistake
 case firstFatalMistake
}
enum MySecondError : Error {
 case secondMinorMistake(i:Int)
 case secondMajorMistake(s:String)
 case secondFatalMistake
}

And here’s a do...catch
 construct designed to demonstrate some of the different ways we can catch different errors in different catch blocks:

do {
 // throw can happen here
} catch MyFirstError.firstMinorMistake {
 // catches MyFirstError.firstMinorMistake
} catch let err as MyFirstError {
 // catches all other cases of MyFirstError
} catch MySecondError.secondMinorMistake(let i) where i < 0 {
 // catches e.g. MySecondError.secondMinorMistake(i:-3)
} catch {
 // catches everything else
}

Now let’s talk about how the error object makes its way into each of the catch blocks:

	In a catch block with an accompanying pattern, it is up to you to capture in the pattern any desired information about the error. For example, if you want the error itself to travel as a variable into the catch block, you’ll need a binding in the pattern.

	A catch block whose pattern is only
 a binding catches any
 error under that name; for example, catch let mistake
 is a “mop-up” catch block that catches any error and calls the error object mistake
 .

	In a “mop-up” catch block with no
 accompanying pattern (that is, the bare word catch
 and no more), the error object arrives into the block automatically
 as a variable called error
 .

Let’s look again at the previous example, but this time we’ll note whether and how the error object arrives into each catch block:

do {
 // throw can happen here
} catch MyFirstError.firstMinorMistake {
 // no error object, but we know it's MyFirstError.firstMinorMistake
} catch let err as MyFirstError {
 // MyFirstError arrives as err
} catch MySecondError.secondMinorMistake(let i) where i < 0 {
 // only i arrives, but we know it's MySecondError.secondMinorMistake
} catch {
 // error object arrives as error
}

The do block of a do...catch
 construct is not the only
 place where throwing is legal. There is another such place, because there’s something else that can happen to a thrown error; instead of being caught directly, it can percolate up the call stack, leaving the current function and arriving at the point where this function was called. In this situation, the error won’t be caught here, at the point of throwing; it needs to be caught further up the call stack. Moreover, suppose a do...catch
 construct lacks a “mop-up” catch block. Then a throw inside the do block might not
 be caught here, and again, the error will percolate up the call stack, and needs to be caught further up the call stack.

We therefore need a way to say to the compiler: “Look, I understand that it looks like this throw is not happening in a context where it can be caught, but that’s only because you’re not looking far enough up the call stack. If you do look up far enough, you’ll see that a throw at this point is
 eventually caught.” That way is the throws
 keyword.

If you mark a function with the throws
 keyword, then its entire body
 becomes a legal place for throwing. The syntax for declaring a throws
 function is that the keyword throws
 appears immediately after the parameter list (and before the arrow operator, if there is one) in the function’s declaration. For example:

enum NotLongEnough : Error {
 case iSaidLongIMeantLong
}
func giveMeALongString(_ s:String) throws {
 if s.characters.count < 5 {
 throw NotLongEnough.iSaidLongIMeantLong
 }
 print("thanks for the string")
}

The addition of throws
 to a function declaration creates a distinct function type. The type of giveMeALongString
 is not (String) -> ()
 , but rather (String) throws -> ()
 . If a function receives as parameter a function that can throw, that parameter’s type needs to be specified accordingly:

func receiveThrower(_ f:(String) throws -> ()) {
 // ...
}

That function can now be called with giveMeALongString
 as argument:

func callReceiveThrower() {
 receiveThrower(giveMeALongString)
}

An anonymous function, if necessary, can include the keyword throws
 in its in
 expression, in the same place where it would appear in a normal function declaration. But this is not necessary if, as is usually the case, the anonymous function’s type is known by inference:

func receiveThrower(_ f:(String) throws -> ()) {
 // ...
}
func callReceiveThrower() {
 receiveThrower {
 s in // can say "s throws in", but not required
 if s.characters.count < 5 {
 throw NotLongEnough.iSaidLongIMeantLong
 }
 print("thanks for the string")
 }
}

Where a function type is expected, a throws
 variant of that function type is legal:

class Dog {
 func f(_ f: () -> ()) {}
}
class NoisyDog : Dog {
 override func f(_ f: () throws -> ()) {}
}

Swift also imposes a requirement on the caller
 of a throws
 function: the caller must precede the call with the keyword try
 . This keyword acknowledges, to the programmer and to the compiler, that this function can throw. But since this function can throw, there is a further requirement: this call must take place where throwing is legal! A function called with try
 can throw, so saying try
 is just like saying throw
 : you must say it either in the do block of a do...catch
 construct or in the body of a throws
 function.

But Swift also provides a clever shorthand. If you are very sure that a throws
 function will in fact not
 throw, then you can call it with the keyword try!
 instead of try
 . This relieves you of all further responsibility: you can say try!
 anywhere
 , without catching the possible throw. But be warned: if you’re wrong, and this function does
 throw when your program runs, your program can crash at that moment, because you have allowed an error to percolate, uncaught, all the way up to the top of the call stack.

In between try
 and try!
 is try?
 . This has the advantage that, like try!
 , you can use it anywhere; but, like a do...catch
 construct, it catches the throw if there is one, without crashing. If there’s a throw, you don’t receive any error information, as you would with a do...catch
 construct; but try?
 tells you if there was
 a throw, by returning nil
 . Thus, try?
 is useful particularly in situations where its expression returns a value. If there’s a throw, it returns nil
 . If there’s no throw, it wraps the returned value in an Optional. Commonly, you’ll unwrap that Optional safely in the same line with a conditional binding.

To illustrate, here’s an artificial test method that can either throw or return a String:

func canThrowOrReturnString(shouldThrow:Bool) throws -> String {
 enum Whoops : Error {
 case oops
 }
 if shouldThrow {
 throw Whoops.oops
 }
 return "Howdy"
}

We can call that method with try
 inside a do...catch
 construct:

do {
 let s = try self.canThrowOrReturnString(shouldThrow: true)
 print(s)
} catch {
 print(error)
}

At the other extreme, we can call that method with try!
 anywhere, but if the method throws, we’ll crash:

let s = try! self.canThrowOrReturnString(shouldThrow: false)
print(s)

In between, we can call our method with try?
 anywhere. If the method doesn’t throw, we’ll receive a String wrapped in an Optional; if it does throw, we won’t crash and we’ll receive nil
 (but no error information):

if let s = try? self.canThrowOrReturnString(shouldThrow: true) {
 print(s)
} else {
 print("failed")
}

Rethrows

A function that receives a throws
 function parameter, and that calls that function (with try
), and that doesn’t throw for any other
 reason, may itself be marked as rethrows
 instead of throws
 . The difference is that when a rethrows
 function is called, the caller can pass as argument a function that does not
 throw, and in that case the call doesn’t have to be marked with try
 (and the calling function doesn’t have to be marked with throws
):

func receiveThrower(_ f:(String) throws -> ()) rethrows {
 try f("ok?")
}
func callReceiveThrower() { // no throws needed
 receiveThrower { s in // no try needed
 print("thanks for the string!")
 }
}

Even if your own code never uses the keyword throw
 explicitly, you’re still very likely, in real life, to call Cocoa methods that are marked with throws
 . Therefore, you need to know how Swift’s error mechanism relates to Cocoa and Objective-C. Recall that an Objective-C method can return only one value (there are no tuples). So if a Cocoa method that returns a value has a failure and wants to hand back an NSError, how can it do it? Typically, such a method will return nil
 or false
 to indicate failure, and will also take an NSError**
 parameter as a way of communicating an error to the caller in addition to the method result; the NSError**
 parameter is similar to a Swift inout
 parameter.

For example, NSString has an initializer declared in Objective-C like this:

- (instancetype)initWithContentsOfFile:(NSString *)path
 encoding:(NSStringEncoding)enc
 error:(NSError **)error;

Objective-C code that calls that initializer must test to see whether the resulting NSString is in fact nil
 , and can examine the resulting error if it is:

NSError* err;
NSString* s =
 [[NSString alloc] initWithContentsOfFile:f
 encoding:NSUTF8StringEncoding
 error:&err];
if (s == nil) {
 NSLog(@"%@", err);
}

As you can see, the whole procedure is a lot like using a Swift inout
 parameter. An NSError variable must be prepared beforehand, and its address must be passed to the initializer as the error:
 argument. Then we have to test the initializer’s result for nil
 explicitly, to see whether the initialization succeeded. This is an annoyingly elaborate but necessary dance in Objective-C, and in Swift, prior to Swift 2.0, the dance was effectively the same.

In modern Swift, however, there’s a different
 dance — a much simpler, more pleasant one. Such an Objective-C method is automatically recast
 to take advantage of the error mechanism. The error:
 parameter is stripped from the Swift translation of the declaration, and is replaced by a throws
 marker:

init(contentsOfFile path: String, encoding enc: String.Encoding) throws

Thus there is no need to declare an NSError variable beforehand, and no need to receive the NSError by indirection. Instead, you just call the method, within the controlled conditions dictated by Swift. (I’ll show an example in a moment.) The same method bridging works also in reverse: a Swift throws
 method that is exposed to Objective-C is seen as taking an NSError**
 parameter.

Objective-C NSError and Swift Error are bridged to one another. Swift helps you cross the bridge by giving Error a localizedDescription
 property, allowing you to read NSError’s localizedDescription
 . Moreover, you can catch a specific NSError by its name. The name you’ll use is the NSError domain
 , and optionally (with dot-notation) the Cocoa name of its code
 .

For example, let’s say we call init(contentsOfFile:)
 and we want specifically to catch the error thrown when there is no such file. This NSError’s domain
 , according to Cocoa, is "NSCocoaErrorDomain"
 ; Swift sees that as CocoaError. Its code
 is 260, for which Cocoa provides the name NSFileReadNoSuchFileError (I found that out by looking in the FoundationErrors.h
 header file in Objective-C); Swift sees that as .fileReadNoSuchFile
 . Thus we can catch this specific error under the name CocoaError.fileReadNoSuchFile
 , like this:

do {
 let f = // path to some file, maybe
 let s = try String(contentsOfFile: f)
 // ... if successful, do something with s ...
} catch CocoaError.fileReadNoSuchFile {
 print("no such file")
} catch {
 print(error)
}

Objective-C sees a Swift error coherently as well. By default, it receives a Swift error as an NSError whose domain
 is the name of the Swift object type. If the Swift object type is an enum, the NSError’s code
 is the index number of its case; otherwise, the code
 is 1. When you want to provide Objective-C with a fuller complement of information, make your error type adopt one or both of these protocols:

LocalizedError

Adopts Error, adding three optional properties: errorDescription
 (NSError localizedDescription
), failureReason
 (NSError localizedFailureReason
), and recoverySuggestion
 (NSError localizedRecoverySuggestion
). Observe that these are String?
 properties; declaring them as simple String rather than Optional fails to communicate the information to Objective-C, and is a common mistake.

CustomNSError

Adopts Error, adding three properties with default implementations: errorDomain
 , errorCode
 , and errorUserInfo
 , which Objective-C will see as the NSError’s domain
 , code
 , and userInfo
 .

Failable Initializer or Throwing Initializer

An initializer can throw — that is, the initializer’s declaration is marked throws
 . So in designing an initializer, when should you prefer a failable initializer (init?
) and when should you prefer a throwing initializer (init...throws
)? No hard and fast rule can be given. Both in the Swift header and in the Swift Foundation overlay, init?
 vastly outnumbers init...throws
 . In general, init?
 implies simple failure to create an instance, whereas throws
 implies that there is useful information to be gleaned by studying the error. (At least one initializer in the Swift Foundation overlay is both, though that might be a mistake.)

Nested scopes

Sometimes, when you know that a local variable needs to exist only for a few lines of code, you might like to define an artificial scope — a custom nested scope, at the start of which you can introduce your local variable, and at the end of which that variable will be permitted to go out of scope, destroying its value automatically.

Swift does not permit you to use bare curly braces to do this. Instead, use a bare do
 construct without a catch
 :

do {
 var myVar = "howdy"
 // ... use myVar here ...
}
// now myVar is out of scope and its value is destroyed

Another use of a do block is to implement the simplest form of early exit. The do block gives you a scope to jump out of; by labeling the do block and breaking to that label, you can
 jump out of it:

out: do {
 // ...
 if somethingBadHappened {
 break out
 }
 // we won't get here if somethingBadHappened
}
// jump to here if somethingBadHappened

Defer statement

The purpose of the defer statement is to ensure that a certain block of code will be executed at the time the path of execution exits
 the current scope, no matter how.

A defer statement applies to the scope in which it appears, such as a function body, a while block, an if construct, a do block, and so on. Wherever you say defer
 , curly braces surround it somehow; the defer block will be executed when the path of execution leaves those curly braces
 . Leaving the curly braces can involve reaching the last line of code within the curly braces, or any of the forms of early exit described earlier in this section.

To see why this is useful, consider the following pair of commands:

UIApplication.shared.beginIgnoringInteractionEvents()

Stops all user touches from reaching any view of the application.

UIApplication.shared.endIgnoringInteractionEvents()

Restores the ability of user touches to reach views of the application.

It can be valuable to turn off user interactions at the start of some slightly time-consuming operation and then turn them back on after that operation, especially when, during
 the operation, the interface or the app’s logic will be in some state where the user’s tapping a button, say, could cause things to go awry. Thus, it is not uncommon for a method to be constructed like this:

func doSomethingTimeConsuming() {
 UIApplication.shared.beginIgnoringInteractionEvents()
 // ... do stuff ...
 UIApplication.shared.endIgnoringInteractionEvents()
}

All well and good — if
 we can guarantee that the only path of execution out of this function will be by way of that last line. But what if we need to return early from this function? Our code now looks like this:

func doSomethingTimeConsuming() {
 UIApplication.shared.beginIgnoringInteractionEvents()
 // ... do stuff ...
 if somethingHappened {
 return
 }
 // ... do more stuff ...
 UIApplication.shared.endIgnoringInteractionEvents()
}

Oops! We’ve just made a terrible mistake. By providing an additional path out of our doSomethingTimeConsuming
 function, we’ve created the possibility that our code might never encounter the call to endIgnoringInteractionEvents
 . We might leave our function by way of the return
 statement — and the user will then be left unable to interact with the interface. Obviously, we need to add another endIgnoring...
 call inside the if construct, just before the return
 statement. But as we continue to develop our code, we must remember, if we add further
 ways out of this function, to add yet another
 endIgnoring...
 call for each
 of them. This is madness!

The defer statement solves the problem. It lets us specify once
 what should happen when we leave this scope, no matter how
 . Our code now looks like this:

func doSomethingTimeConsuming() {
 defer {
 UIApplication.shared.endIgnoringInteractionEvents()
 }
 UIApplication.shared.beginIgnoringInteractionEvents()
 // ... do stuff ...
 if somethingHappened {
 return
 }
 // ... do more stuff ...
}

The endIgnoring...
 call in the defer block will be executed, not where it appears, but before the return
 statement, or before the last line of the method — whichever path of execution ends up leaving the function. The defer statement says: “Eventually, and as late as possible, be sure to execute this code.” We have thus ensured the necessary balance between turning off user interactions and turning them back on again. Most uses of the defer statement will probably come under this same rubric: you’ll use it to balance a command or restore a disturbed state.

Observe that in the preceding code, I placed the defer block very early in its surrounding scope. This placement is important because a defer block is itself, as a whole, executable code. If a defer block is not actually encountered
 by the path of execution
 before we exit from the surrounding scope, it won’t be executed.
 For this reason, always place your defer block as close to the start of its surrounding block as you can, to ensure that it will in fact be encountered.

If the current scope has multiple defer blocks pending, they will be called in the reverse of the order in which they were originally encountered. In effect, there is a defer stack
 ; each successive defer statement, as it is encountered, pushes its code onto the top of the stack, and exiting the scope in which a defer statement appeared pops that code and executes it.

Aborting the whole program

Aborting the whole program is an extreme form of flow control; the program stops dead in its tracks. In effect, you have deliberately crashed your own program. This is an unusual thing to do, but it can be useful as a way of raising a very red flag: you don’t really want
 to abort, so if you do
 abort, things must be so bad that you’ve no choice.

One way to abort is by calling the global function fatalError
 . It takes a String parameter permitting you to provide a message to appear in the console. I’ve already given this example:

required init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
}

That code says, in effect, that execution should never
 reach this point. We have declared init(coder:)
 just because it is required
 , and we need to satisfy the compiler; but we have no real implementation of init(coder:)
 , and we do not expect to be initialized this way. If we are
 initialized this way, something has gone very wrong, and we want
 to crash, because our program has a serious bug.

An initializer containing a fatalError
 call does not have to initialize any properties. This is because fatalError
 is declared as returning the special Never enum type, which causes the compiler to abandon any contextual requirements. Similarly, a function that returns a value does not have to return any value if a fatalError
 call is encountered.

You can also abort conditionally by calling the assert
 function. Its first parameter is a condition — something that evaluates as a Bool. If the condition is false
 , we will abort; the second parameter is a String message to appear in the console if we do
 abort. The idea here is that you are making a bet (an assertion
) that the condition is true
 — a bet that you feel so strongly about that if the condition is false
 , there’s a serious bug in your program and you want to crash so you can learn of this bug and fix it.

By default, assert
 works only when you’re developing your program. When your program is to be finalized and made public, you throw a different build switch, telling the compiler that assert
 should be ignored. In effect, the conditions in your assert
 calls are then disregarded; they are all seen as true
 . This means that you can safely leave assert
 calls in your code. By the time your program ships, of course, none of your assertions should be failing; any bugs that caused them to fail should already have been ironed out.

The disabling of assertions in shipping code is performed in an interesting way. The condition parameter is given an extra layer of indirection by declaring it as an @autoclosure
 function. This means that, even though the parameter is not
 in fact a function, the compiler will wrap it in a function; thus, the runtime needn’t call that function unless it has to. In shipping code, the runtime will not
 call that function. This mechanism averts expensive and unnecessary evaluation: an assert
 condition test may involve side effects, but the test won’t even be performed when assertions are turned off in your shipping program.

In addition, Swift provides the assertionFailure
 function. It’s like an assert
 that always fails — and, like an assert
 , it doesn’t
 fail in your shipping program where assertions are turned off. It’s a convenient synonym for assert(false)
 , as a way of assuring yourself that your code never goes where it’s never supposed to go.

Finally, precondition
 and preconditionFailure
 are similar to assert
 and assertionFailure
 , except that they do
 fail even in a shipping program.

Guard

If the need for jumping might arise, you will probably want to test a condition that decides whether to jump. Swift provides a special syntax for this situation — the guard construct. In effect, a guard construct is an if construct where you must
 exit early in response to failure of the condition. Its form is shown in Example 5-6
 .

Example 5-6.
 The Swift guard construct

guard condition

 else {
 statements

 exit

}

A guard construct, as you can see, consists solely of a condition and an else
 block. The else
 block must
 jump out of the current scope, by any of the means that Swift provides, such as return
 , break
 , continue
 , throw
 , or fatalError
 — anything that guarantees to the compiler that, in case of failure of the condition, execution absolutely will not proceed within the block that contains the guard construct.

An elegant consequence of this architecture is that, because the guard construct guarantees an exit on failure of the condition, the compiler knows that the condition has succeeded after the guard construct if we do not
 exit. Thus, a conditional binding in the condition is in scope after the guard construct
 , without introducing a further nested scope. For example:

guard let s = optionalString else {return}
// s is now a String (not an Optional)

In my own code, it’s not uncommon to have a series of guard constructs, one after another. This may seem a rather clunky and imperative mode of expression, but I’m fond of it nevertheless. It’s a nice alternative to a single elaborate if construct, or to the “pyramid of doom” that I discussed earlier; and it looks like exactly what it is, a sequence of gates through which the code must pass in order to proceed further. Here’s an actual example from my real-life code:

override func tapField(_ g: Any) {
 // g must be a gesture recognizer
 guard let g = g as? UIGestureRecognizer else {return}
 // and that gesture recognizer must have a view
 guard g.view != nil else {return}
 // okay, now we can proceed...
}

Here’s another:

var authorOfItem : String? {
 guard let authorNodes =
 self.extensionElements(
 withXMLNamespace: "http://www.tidbits.com/dummy",
 elementName: "app_author_name")
 else {return nil}
 guard let authorNode = authorNodes.last as? FPExtensionNode
 else {return nil}
 return authorNode.stringValue
}

A guard construct will also come in handy in conjunction with try?
 . Let’s presume we can’t proceed unless String(contentsOfFile:)
 succeeds. Then we can call it like this:

let f = // path to some file, maybe
guard let s = try? String(contentsOfFile: f) else {return}
// s is now a String (not an Optional)

There is also a guard case
 construct, forming the logical inverse of if case
 . To illustrate, we’ll use our MyError enum once again:

guard case let .number(n) = err else {return}
// n is now the extracted number

guard case
 helps to solve an interesting problem. Suppose we have a function whose returned value we want to check in a guard
 statement:

guard howMany() > 10 else {return}

All well and good; but suppose also that in the next
 line we want to use
 the value returned from that function. We don’t want to call the function again
 ; it might be time-consuming and it might have side effects. We want to capture
 the result of calling the function and pass that captured result on into the subsequent code. But we can’t do that with guard let
 , because that requires an Optional, and our function howMany
 doesn’t return an Optional.

What should we do? guard case
 to the rescue:

guard case let output = howMany(), output > 10 else {return}
// now output is in scope

Note that a guard construct’s conditional binding can’t use, on the left side of the equal sign, a name already declared in the same scope. This is illegal:

let s = // ... some Optional
guard let s = s else {return} // compile error

The reason is that guard let
 , unlike if let
 and while let
 , doesn’t declare the bound variable for a nested scope; it declares it for this
 scope. Thus, we can’t declare s
 here because s
 has already been declared in the same scope.

Key Paths

Key paths are a new language feature in Swift 4. In effect, they stand in relation to properties as function references stand in relation to function calls — they are a way of storing a reference to a property without actually accessing the property.

Suppose, for example, that we have a Person struct with a firstName
 property and a lastName
 property, and that we will want to access one of these properties on a Person
 p
 , without knowing until runtime which
 property we are to access. We might write something like this:

var getFirstName : Bool = // ...
let name : String = {
 if getFirstName {
 return p.firstName
 } else {
 return p.lastName
 }
}()

That’s not altogether atrocious, but it’s hardly elegant. If we do the same sort of thing in several places, the same choice must somehow be repeated in each of those places — and of course, the more choices there are, the more elaborate our code must be each time.

Key paths solve the problem by permitting us to encapsulate the notion
 of accessing a particular property of a type, such as Person’s firstName
 or lastName
 , without actually performing
 the access. That notion is expressed as an instance; therefore, we can store it as a variable, or pass it as a function parameter. That instance then acts as a token, allowing us to access the actual property on an actual instance of that type, at any future time.

The literal notation for constructing a key path is:

\Type

.property

.property

...

We start with a backslash. Then we have the name of a type, which may be omitted if the type can be inferred from the context (there are, it turns out, real-life contexts where this is possible). Finally, we have a dot followed by a property name, and this may be repeated if that property’s type itself has a property that we want to access, and so on.

Thus, in our simple case, we might store the notion of accessing a particular property as a key path variable, like this:

var prop = \Person.firstName

To perform the actual access, refer to the particular instance through its keyPath:
 subscript:

let whatname = p[keyPath:prop]

If p
 is a Person with a firstName
 of "Matt"
 and a lastName
 of "Neuburg"
 , then whatname
 is now "Matt"
 . Moreover, whatname
 is inferred to be a String, because the key path carries within itself information about the type of the property that it refers to (it is a generic).

Now imagine substituting a different key path for the value of prop
 :

prop = \Person.lastName

That substitution is legal, because lastName
 is a String, just like firstName
 . Instantly, throughout our program, all accesses performed through the keyPath:
 subscript with prop
 take on a new meaning!

Moreover, if the property referenced by a key path is writable and you have a writable object reference, then you can also set into
 the keyPath:
 subscript on that object, thus changing the value of the property:

p[keyPath:prop] = "Ethan"

Here’s another example. This is how you pin a view’s top and bottom edges to those of its superview using autolayout:

let c1 = v2.topAnchor.constraint(equalTo:v1.topAnchor)
c1.isActive = true
let c2 = v2.bottomAnchor.constraint(equalTo:v1.bottomAnchor)
c2.isActive = true

With key paths, the repetition can be rolled up into a loop:

for anch in [\UIView.topAnchor, \UIView.bottomAnchor] {
 let c = v2[keyPath:anch].constraint(equalTo:v1[keyPath:anch])
 c.isActive = true
}

In your real iOS programming life, you’ll probably use Swift key paths mostly to replace Objective-C key paths (Chapter 10
), especially in connection with key–value observing (Chapter 11
).

Operators

Swift operators such as +
 and >
 are not magically baked into the language. They are, in fact, functions; they are explicitly declared and implemented just like any other function. That is why, as I pointed out in Chapter 4
 , the term +
 can be passed as the second parameter in a reduce
 call; reduce
 expects a function taking two parameters and returning a value whose type matches that of the first parameter, and +
 is
 in fact the name of such a function. It also explains how Swift operators can be overloaded for different value types. You can use +
 with numbers, strings, or arrays — with a different meaning in each case — because two functions with the same name but different parameter types (different signatures) are two different
 functions; from the parameter types, Swift is able to determine which
 +
 function you are calling.

These facts are not merely an intriguing behind-the-scenes implementation detail. They have practical implications for you and your code. You are free to overload existing operators to apply to your
 object types. You can even invent new
 operators! In this section, we’ll do both.

First, we must talk about how operators are declared. Clearly there is some sort of syntactical hanky-panky (a technical computer science term), because you don’t call
 an operator function in the same way as a normal function. You don’t say +(1,2)
 ; you say 1+2
 . Even so, 1
 and 2
 in that second expression are
 the parameters to a +
 function call. How does Swift know that the +
 function uses this special syntax?

To see the answer, look in the Swift header:

infix operator + : AdditionPrecedence

That is an operator declaration. An operator declaration announces that this symbol is
 an operator, and tells how many parameters it has and what the usage syntax will be in relation to those parameters. The really important part is the stuff before the colon: the keyword operator
 , preceded by an operator type
 — here, infix
 — and followed by the name of the operator. The types are:

infix

This operator takes two parameters and appears between them.

prefix

This operator takes one parameter and appears before it.

postfix

This operator takes one parameter and appears after it.

The term after the colon in an operator declaration is the name of a precedence group. I’m not going to go into the details of how precedence groups are defined. The Swift header declares about a dozen of them, and you can easily see how those declarations work. You will probably have no need to declare a new precedence group; instead, you’ll just look for an operator similar to yours and copy its precedence group (or omit the colon and the precedence group from your declaration).

An operator is also a function, so you also need a function declaration stating the type of the parameters and the result type of the function. Again, the Swift header shows us an example:

func +(lhs: Int, rhs: Int) -> Int

That is one of many declarations for the +
 function in the Swift header. In particular, it is the declaration for when the parameters are both Int. In that situation, the result is itself an Int. (The local parameter names lhs
 and rhs
 , which don’t affect the special calling syntax, presumably stand for “left-hand side” and “right-hand side.”)

An operator declaration must appear at the top level of a file. The corresponding function declaration may appear either at the top level of a file or at the top level of a type declaration; in the latter case, it must be marked static
 . If the operator is a prefix
 or postfix
 operator, the function declaration must start with the word prefix
 or postfix
 ; the default is infix
 and can be omitted.

We now know enough to override an operator to work with an object type of our own! As a simple example, imagine a Vial full of bacteria:

struct Vial {
 var numberOfBacteria : Int
 init(_ n:Int) {
 self.numberOfBacteria = n
 }
}

When two Vials are combined, you get a Vial with all the bacteria from both of them. So the way to add two Vials is to add their bacteria:

extension Vial {
 static func +(lhs:Vial, rhs:Vial) -> Vial {
 let total = lhs.numberOfBacteria + rhs.numberOfBacteria
 return Vial(total)
 }
}

And here’s code to test our new +
 operator override:

let v1 = Vial(500_000)
let v2 = Vial(400_000)
let v3 = v1 + v2
print(v3.numberOfBacteria) // 900000

In the case of a compound assignment operator, the first parameter is the thing being assigned to. Therefore, to implement such an operator, the first parameter must be declared inout
 . Let’s do that for our Vial class:

extension Vial {
 static func +=(lhs:inout Vial, rhs:Vial) {
 let total = lhs.numberOfBacteria + rhs.numberOfBacteria
 lhs.numberOfBacteria = total
 }
}

Here’s code to test our +=
 override:

var v1 = Vial(500_000)
let v2 = Vial(400_000)
v1 += v2
print(v1.numberOfBacteria) // 900000

It might be useful also to override the equality comparison operator ==
 for our Vial class. This satisfies the requirement for Vial to adopt the Equatable
 protocol, but of course it won’t actually adopt it unless we tell it to:

extension Vial : Equatable {
 static func ==(lhs:Vial, rhs:Vial) -> Bool {
 return lhs.numberOfBacteria == rhs.numberOfBacteria
 }
}

Now that Vial is an Equatable, it becomes a candidate for use with methods such as index(of:)
 :

let v1 = Vial(500_000)
let v2 = Vial(400_000)
let arr = [v1,v2]
let ix = arr.index(of:v1) // Optional wrapping 0

What’s more, the complementary inequality operator !=
 has sprung to life for Vials automatically! That’s because it’s already defined for any
 Equatable in terms of the ==
 operator. By the same token, if we now override <
 for Vial and tell it to adopt Comparable, the other three comparison operators spring to life automatically as well.

Next, let’s invent a completely new operator. As an example, I’ll inject an operator into Int that raises one number to the power of another. As my operator symbol, I’ll use ^^
 (I’d like to use ^
 but it’s already in use for something else). For simplicity, I’ll omit error-checking for edge cases (such as exponents less than 1
):

infix operator ^^
extension Int {
 static func ^^(lhs:Int, rhs:Int) -> Int {
 var result = lhs
 for _ in 1..<rhs {result *= lhs}
 return result
 }
}

That’s all it takes! Here’s some code to test it:

print(2^^2) // 4
print(2^^3) // 8
print(3^^3) // 27

Here’s another example. I’ve already illustrated the use of Range’s reversed
 method to allow iteration from a higher value to a lower one. That works, but I find the notation unpleasant. There’s an asymmetry with how you iterate up; the endpoints are in the wrong order, and you have to remember to surround a literal range with parentheses:

let r1 = 1..<10
let r2 = (1..<10).reversed()

Let’s define a custom operator that calls reversed()
 for us:

infix operator >>> : RangeFormationPrecedence
func >>><Bound>(maximum: Bound, minimum: Bound)
 -> ReversedRandomAccessCollection<CountableRange<Bound>>
 where Bound : Comparable & Strideable {
 return (minimum..<maximum).reversed()
}

Now our expressions can be more symmetrical and compact:

let r1 = 1..<10
let r2 = 10>>>1

The Swift manual lists the special characters that can be used as part of a custom operator name:

/ = - + ! * % < > & | ^ ? ~

An operator name can also contain many other symbol characters (that is, characters that can’t be mistaken for some sort of alphanumeric) that are harder to type; see the manual for a formal list.

Privacy

Privacy (also known as access control
) refers to the explicit modification of the normal scope rules. I gave an example in Chapter 1
 :

class Dog {
 var name = ""
 private var whatADogSays = "woof"
 func bark() {
 print(self.whatADogSays)
 }
}

The intention here is to limit how other objects can see the Dog property whatADogSays
 . It is a private property, intended primarily for the Dog class’s own internal use: a Dog can speak of self.whatADogSays
 , but other objects should not be aware that it even exists.

Swift has five levels of privacy:

internal

The default rule is that declarations are internal
 , meaning that they are globally visible to all code in all files within the containing module
 .
 That is why Swift files within the same module can see one another’s top-level contents automatically
 , with no effort on your part. (That’s different from C and Objective-C, where files can’t see each other at all unless you explicitly show them to one another through include
 or import
 statements.)

fileprivate
 (narrower than internal
)

A thing declared fileprivate
 is visible only within its containing file
 .
 For example, two object types declared in the same file can see one another’s members declared fileprivate
 , but code in other files cannot see those members.

private
 (even narrower than fileprivate
)

A thing declared private
 is visible only within its containing curly braces
 . In effect, the visibility of an object type’s member declared private
 is limited to code within this class declaration. (A private
 declaration at the top level of a file is equivalent to fileprivate
 .)

public
 (wider than internal
)

A thing declared public
 is visible even outside its containing module
 .
 Another module must first import this module before it can see anything at all. But once another module has
 imported this module, it still won’t be able to see anything in this module that hasn’t been explicitly declared public
 . If you don’t write any modules, you might never need to declare anything public
 . If you do write a module, you must
 declare something
 public
 , or your module is useless.

open
 (even wider than public
)

If a class is declared open
 , code in another module can subclass it; it can’t do that if the class is declared merely public
 . If an open class member is declared open
 , code in another module that subclasses this class can override this member; it can’t do that without the open
 declaration.

Private and Fileprivate

Declaring something private
 restricts its visibility. In this way, you specify by inversion what the public API of this object is. Here’s an example from my own code:

class CancelableTimer: NSObject {
 private var q = DispatchQueue(label: "timer")
 private var timer : DispatchSourceTimer!
 private var firsttime = true
 private var once : Bool
 private var handler : () -> ()
 init(once:Bool, handler:@escaping () -> ()) {
 // ...
 }
 func start(withInterval interval:Double) {
 // ...
 }
 func cancel() {
 // ...
 }
}

The initializer init(once:handler:)
 and the start(withInterval:)
 and cancel
 methods, which are not
 marked private
 , are this class’s public API. They say, “Please feel free to call me!” The properties, however, are all private; no other code can see them, either to get them or to set them. They are purely for the internal use of the methods of this class. They maintain state, but it is not a state that any other code needs to know about.

Privacy is not magically violated by the existence of a special object relationship. For example, even a subclass cannot see its superclass’s private members. (This comes as a surprise to those coming from a language with a protected
 privacy level.) You can work around this by declaring the class and its subclass in the same file and declaring those members fileprivate
 instead of private
 .

New in Swift 4, an extension can see the private members of the type it extends, provided the type and the extension are in the same file:

class Dog {
 private var whatADogSays = "woof"
}
extension Dog {
 func speak() {
 print(self.whatADogSays) // ok
 }
}

In effect, an extension sees its type’s private
 as meaning fileprivate
 . This lets you break up a type into extensions without being forced to raise the type’s private members to fileprivate
 just so the extensions can see them.

It may be that on some occasions you will want to draw a distinction between the privacy of a variable regarding setting and its privacy regarding getting. To draw this distinction, place the word set
 in parentheses after its own privacy declaration. Thus, private(set) var myVar
 means that the setting
 of this variable is restricted, but says nothing about the getting
 of this variable, which is left at the default. Similarly, you can say public private(set) var myVar
 to make getting this variable public, while setting this variable is kept private. (You can use this same syntax with a subscript
 function.)

Public and Open

If you write a module, you’ll need to specify at least some object type declaration as public
 ; otherwise, code that imports your module won’t be able to see that type. Other declarations that are not declared public
 are internal, meaning that they are private to the module. Thus, judicious use of public
 declarations configures the public API of your module.

For example, in my Zotz app, which is a card game, the object types for creating and portraying cards and for combining them into a deck are bundled into a framework called ZotzDeck. Many of these types, such as Card and Deck, are declared public
 . Many utility object types, however, are not; the classes within the ZotzDeck module can see and use them, but code outside the module doesn’t need to be aware of them at all.

The members of a public object type are not, themselves, automatically public. If you want a method to be public, you have to declare it public
 . This is an excellent default behavior, because it means that these members are not shared outside the module unless you want them to be. (As Apple puts it, you must “opt in to publishing” object members.)

For example, in my ZotzDeck module, the Card class is declared public
 but its initializer is not. Why not? Because it doesn’t need to be. The way you (meaning the importer of the ZotzDeck module) get cards is by initializing a Deck; the initializer for Deck is
 declared public
 , so you can do that. There is never any reason to make a card independently of a Deck, and thanks to the privacy rules, you can’t.

Tip

If the only initializer for a public type is implicit, code in another module can’t see it and thus cannot create an instance of this type. If you want other code to be able to create an instance of this type, you must declare the initializer explicitly
 and declare it public
 .

The open
 access level draws a further distinction. It is applicable only to classes and to members of open classes. A public class can’t be subclassed in another module that can see this class; an open class can. A public member of an open class that has been subclassed in another module can’t be overridden in that subclass; an open member can.

Privacy Rules

There is an extensive set of rules for ensuring that the privacy level of related things is coherent. For example:

	A variable can’t be public if its type is private, because other code wouldn’t be able to use such a variable.

	A subclass can’t be public unless the superclass is public.

	A subclass can change an overridden member’s access level, but it cannot even see
 its superclass’s private members unless they are declared in the same file together.

And so on. I could proceed to list all the rules, but I won’t. There is no need for me to enunciate them formally. They are spelled out in great detail in the Swift manual, which you can consult if you need to. In general, you probably won’t need to; the privacy rules make intuitive sense, and you can rely on the compiler to help you with useful error messages if you violate one.

Introspection

Swift provides limited ability to introspect
 an object, letting an object display the names and values of its properties. This feature is intended for debugging, not for use in your program’s logic. For example, you can use it to modify the way your object is displayed in the Xcode Debug pane.

To introspect an object, use it as the reflecting:
 parameter when you instantiate a Mirror. The Mirror’s children
 will then be name–value tuples describing the original object’s properties. Here, for example, is a Dog class with a description
 property that takes advantage of introspection. Instead of hard-coding a list of the class’s instance properties, we introspect the instance to obtain the names and values of the properties. This means that we can later add more properties without having to modify our description
 implementation:

struct Dog : CustomStringConvertible {
 var name = "Fido"
 var license = 1
 var description : String {
 var desc = "Dog ("
 let mirror = Mirror(reflecting:self)
 for (k,v) in mirror.children {
 desc.append("\(k!): \(v), ")
 }
 return desc.dropLast(2) + ")"
 }
}

If we now instantiate Dog and pass that instance to print
 , this is what we see in the console:

Dog (name: Fido, license: 1)

By adopting the CustomReflectable protocol, we can take charge of what a Mirror’s children
 are. To do so, we supply the customMirror
 property to return our own custom Mirror object whose children
 property we have configured as a collection of name–value tuples.

In this (silly) example, we implement customMirror
 to supply altered names for our properties:

struct Dog : CustomReflectable {
 var name = "Fido"
 var license = 1
 var customMirror: Mirror {
 let children : [Mirror.Child] = [
 ("ineffable name", self.name),
 ("license to kill", self.license)
]
 let m = Mirror(self, children:children)
 return m
 }
}

The outcome is that when we po
 a Dog instance in the Xcode Debug pane console, our custom property names are displayed:

(lldb) po Dog()
* Dog
 - ineffable name : "Fido"
 - license to kill : 1

Memory Management

Swift memory management is handled automatically, and you will usually be unaware of it. Objects come into existence when they are instantiated and go out of existence as soon as they are no longer needed. Nevertheless, there are some memory management issues of which even a Swift user must be conscious.

Memory Management of Reference Types

Memory management of reference type objects is quite tricky under the hood; I’ll devote Chapter 12
 to a discussion of the underlying mechanism. Trouble typically arises when two class instances have references to one another. When that’s the case, you can have a retain cycle
 which will result in a memory leak
 , meaning that the two instances never
 go out of existence. Some computer languages solve this sort of problem with a periodic “garbage collection” phase that detects retain cycles and cleans them up, but Swift doesn’t do that; you have to fend off retain cycles manually.

One way to test for and observe a memory leak is to implement a class’s deinit
 . This method is called when the instance goes out of existence. If the instance never goes out of existence, deinit
 is never called. That’s a bad sign, if you were expecting that the instance should
 go out of existence.

Here’s an example. First, I’ll make two class instances and watch them go out of existence:

func testRetainCycle() {
 class Dog {
 deinit {
 print("farewell from Dog")
 }
 }
 class Cat {
 deinit {
 print("farewell from Cat")
 }
 }
 let d = Dog()
 let c = Cat()
}
testRetainCycle() // farewell from Cat, farewell from Dog

When we run that code, both “farewell” messages appear in the console. We created a Dog instance and a Cat instance, but the only references to them are automatic (local) variables inside the testRetainCycle
 function. When execution of that function’s body comes to an end, all automatic variables are destroyed; that is what it means to be an automatic variable. There are no other references to our Dog and Cat instances that might make them persist, and so they are destroyed in good order.

Now I’ll change that code by giving the Dog and Cat objects references to each other:

func testRetainCycle() {
 class Dog {
 var cat : Cat?
 deinit {
 print("farewell from Dog")
 }
 }
 class Cat {
 var dog : Dog?
 deinit {
 print("farewell from Cat")
 }
 }
 let d = Dog()
 let c = Cat()
 d.cat = c // create a...
 c.dog = d // ...retain cycle
}
testRetainCycle() // nothing in console

When we run that code, neither
 “farewell” message appears in the console. The Dog and Cat objects have references to one another. Those are persisting
 references (also called strong
 references). A persisting reference sees to it that, for example, as long as our Dog has a reference to a particular Cat, that Cat will not be destroyed. That’s a good thing, and is a fundamental principle of sensible memory management. The bad thing is that the Dog and the Cat have persisting references to one another
 . That’s a retain cycle! Neither the Dog instance nor the Cat instance can be destroyed, because neither of them can “go first” — it’s like Alphonse and Gaston who can never get through the door because each requires the other to precede him. The Dog can’t be destroyed first because the Cat has a persisting reference to him, and the Cat can’t be destroyed first because the Dog has a persisting reference to him.

These objects are therefore now leaking
 . Our code is over; both d
 and c
 are gone. There are no
 further references to either of these objects; neither object can ever be referred to again. No code can mention them; no code can reach them. But they live on, floating, useless, and taking up memory.

Weak references

One solution to a retain cycle is to mark the problematic reference as weak
 . This means that the reference is not
 a persisting reference. It is a weak reference
 . The object referred to can now go out of existence even while the referrer continues to exist. Of course, this presents a terrible danger, because now the object referred to may be destroyed behind the referrer’s back. But Swift has a solution for that, too: only an Optional reference can be marked as weak
 . That way, if the object referred to is
 destroyed behind the referrer’s back, the referrer will see something coherent, namely nil
 . Also, the reference must be a var
 reference, precisely because it can change spontaneously to nil
 .

Thus, this code breaks the retain cycle and prevents the memory leak:

func testRetainCycle() {
 class Dog {
 weak var cat : Cat?
 deinit {
 print("farewell from Dog")
 }
 }
 class Cat {
 weak var dog : Dog?
 deinit {
 print("farewell from Cat")
 }
 }
 let d = Dog()
 let c = Cat()
 d.cat = c
 c.dog = d
}
testRetainCycle() // farewell from Cat, farewell from Dog

I’ve gone overboard in that code. To break the retain cycle, there’s no need to make both
 Dog’s cat
 and Cat’s dog
 weak references; making just one
 of the two a weak reference is sufficient to break the cycle. That, in fact, is the usual solution when a retain cycle threatens. One of the pair will typically be more of an “owner” than the other; the one that is not
 the “owner” will have a weak reference to its “owner.”

Value types are not subject to the same memory management issues as reference types, but a value type can still be involved
 in a retain cycle with a class instance. In my retain cycle example, if Dog is a class and Cat is a struct, we still get a retain cycle. The solution is the same: make Cat’s dog
 a weak reference. (You can’t make Dog’s cat
 a weak reference if Cat is a struct; only a reference to a class type can be declared weak
 .)

Do not
 use weak references unless you have to! Memory management is not to be toyed with lightly. Nevertheless, there are real-life situations in which weak references are the right thing to do, even when no retain cycle appears to threaten. The delegation pattern (Chapter 11
) is a typical case in point; an object typically has no business owning (retaining) its delegate.

Unowned references

There’s another Swift solution for retain cycles. Instead of marking a reference as weak
 , you can mark it as unowned
 . This approach is useful in special cases where one object absolutely cannot exist without a reference to another, but where this reference need not be a persisting reference.

For example, let’s pretend that a Boy may or may not have a Dog, but every Dog must have a Boy — and so I’ll give Dog an init(boy:)
 initializer. The Dog needs a reference to its Boy, and the Boy needs a reference to his Dog if he has one; that’s potentially a retain cycle:

func testUnowned() {
 class Boy {
 var dog : Dog?
 deinit {
 print("farewell from Boy")
 }
 }
 class Dog {
 let boy : Boy
 init(boy:Boy) { self.boy = boy }
 deinit {
 print("farewell from Dog")
 }
 }
 let b = Boy()
 let d = Dog(boy: b)
 b.dog = d
}
testUnowned() // nothing in console

We can solve this by declaring Dog’s boy
 property unowned
 :

func testUnowned() {
 class Boy {
 var dog : Dog?
 deinit {
 print("farewell from Boy")
 }
 }
 class Dog {
 unowned let boy : Boy // *
 init(boy:Boy) { self.boy = boy }
 deinit {
 print("farewell from Dog")
 }
 }
 let b = Boy()
 let d = Dog(boy: b)
 b.dog = d
}
testUnowned() // farewell from Boy, farewell from Dog

An advantage of an unowned
 reference is that it doesn’t have to be an Optional — in fact, it cannot
 be an Optional — and it can be a constant (let
). But an unowned
 reference is also dangerous, because the object referred to can go out of existence behind the referrer’s back, and an attempt to use that reference will cause a crash, as I can demonstrate by this rather forced code:

var b = Optional(Boy())
let d = Dog(boy: b!)
b = nil // destroy the Boy behind the Dog's back
print(d.boy) // crash

Thus, you should use unowned
 only if you are absolutely certain that the object referred to will outlive the referrer.

Stored anonymous functions

A subtle variant of a retain cycle arises when an instance property holds a function referring to the instance:

class FunctionHolder {
 var function : (() -> ())?
 deinit {
 print("farewell from FunctionHolder")
 }
}
func testFunctionHolder() {
 let fh = FunctionHolder()
 fh.function = {
 print(fh)
 }
}
testFunctionHolder() // nothing in console

Oops! I’ve created a retain cycle, by referring, inside the anonymous function, to the object that is holding a reference to it. Because functions are closures, the FunctionHolder instance fh
 , declared outside the anonymous function, is captured by the anonymous function as a persisting reference. But the anonymous function has been assigned to the function
 property of the FunctionHolder instance fh
 , and that’s a persisting reference too. So that’s a retain cycle: the FunctionHolder persistently refers to the function, which persistently refers to the FunctionHolder.

In this situation, I cannot
 break the retain cycle by declaring the function
 property as weak
 or unowned
 . Only a reference to a class type can be declared weak
 or unowned
 , and a function is not a class. Thus, I must declare the captured value fh
 inside the anonymous function
 as weak
 or unowned
 instead.

Swift provides an ingenious syntax for doing that. At the very start of the anonymous function body, you put square brackets containing a comma-separated list of any problematic references that will be captured from the surrounding environment, each reference preceded by weak
 or unowned
 . This list is called a capture list
 . If you have a capture list, you must follow it by the keyword in
 if there’s no in
 expression already:

class FunctionHolder {
 var function : (() -> ())?
 deinit {
 print("farewell from FunctionHolder")
 }
}
func testFunctionHolder() {
 let fh = FunctionHolder()
 fh.function = {
 [weak fh] in // *
 print(fh)
 }
}
testFunctionHolder() // farewell from FunctionHolder

This syntax solves the problem. But marking a reference as weak
 in a capture list has a mild side effect that you will need to be aware of: such a reference passes into the anonymous function as an Optional. This is good, because it means that if the object referred to goes out of existence behind our back, the value of the Optional is nil
 . But of course you must also adjust your code accordingly, unwrapping the Optional as needed in order to use it. The usual technique is to perform the weak–strong dance
 : you unwrap the Optional once, right at the start of the function, in a conditional binding:

class FunctionHolder {
 var function : (() -> ())?
 deinit {
 print("farewell from FunctionHolder")
 }
}
func testFunctionHolder() {
 let fh = FunctionHolder()
 fh.function = { // here comes the weak–strong dance...
 [weak fh] in // weak
 guard let fh = fh else { return }
 print(fh) // strong
 }
}
testFunctionHolder() // farewell from FunctionHolder

The conditional binding let fh = fh
 accomplishes two goals. First, it unwraps the Optional version of fh
 that arrived into the anonymous function. Second, it declares another fh
 that is a normal (strong) reference. So if the unwrapping succeeds, this new fh
 will persist for the rest of this scope.

In that particular example, there is no way on earth that this FunctionHolder instance, fh
 , can go out of existence while the anonymous function lives on. There are no other references to the anonymous function; it persists only as a property of fh
 . Therefore I can avoid some behind-the-scenes bookkeeping overhead, as well as the weak–strong dance, by declaring fh
 as unowned
 in my capture list instead. In real life, my own most frequent use of unowned
 is precisely in this context. Very often, the reference marked as unowned
 in the capture list will be self
 .

Tip

Don’t panic! Beginners have a tendency to backstop all
 their anonymous functions with [weak self]
 . That’s unnecessary and wrong. Only a stored
 function can raise even the possibility of a retain cycle. Merely passing a function does not
 introduce such a possibility, especially if the function being passed will be called immediately. Always confirm that you actually have
 a retain cycle before concerning yourself with how to prevent a retain cycle.

Memory management of protocol-typed references

Only a reference to an instance of a class type can be declared weak
 or unowned
 . A reference to an instance of a struct or enum type cannot be so declared, because its memory management doesn’t work the same way (and is not subject to retain cycles). A reference that is declared as a protocol type, therefore, has a problem. A reference typed as a protocol that might be adopted by a struct or an enum cannot be declared weak
 or unowned
 . You can only declare a protocol-typed reference weak
 or unowned
 if the compiler knows that only a class can adopt it. You can assure the compiler of that by marking the protocol with @objc
 or class
 .

In this code, SecondViewControllerDelegate is a protocol that I’ve declared. This code won’t compile unless SecondViewControllerDelegate is declared as a class protocol:

class SecondViewController : UIViewController {
 weak var delegate : SecondViewControllerDelegate?
 // ...
}

Here’s the actual declaration of SecondViewControllerDelegate; it is
 declared as a class protocol, and that’s why the preceding code is legal:

protocol SecondViewControllerDelegate : class {
 func accept(data:Any!)
}

A protocol declared in Objective-C is implicitly marked as @objc
 and is a class protocol. Thus, this declaration from my real-life code is legal:

weak var delegate : WKScriptMessageHandler?

WKScriptMessageHandler is a protocol declared by Cocoa (in particular, by the Web Kit framework). Thus, it is implicitly marked @objc
 ; only a class can adopt WKScriptMessageHandler, and so the compiler is satisfied that the delegate
 variable will be an instance of a class, and thus the reference can be treated as weak
 .

Exclusive Access to Value Types

New in Swift 4, even value types, such as structs, can have memory management issues. In particular, a struct and its members might be directly accessed simultaneously, which could lead to unpredictable results. Fortunately, in many cases the compiler will stop you before such an issue can arise.

To illustrate, imagine that we have a Person struct with a firstName
 string property. Now let’s write a function that takes both a Person and a string as inout
 parameters:

func change(_ p:inout Person, _ s:inout String) {}

So far so good; but now imagine calling that function with both a Person and that same Person’s firstName
 as the parameters:

var p = Person(firstName: "Matt")
change(&p, &p.firstName) // compile error

In Swift 4, the compiler will stop you from doing that, with the following message: “Overlapping accesses to p
 , but modification requires exclusive access.” The problem is that the single function change
 is being given direct access to the memory of both the struct and a member of that struct, simultaneously. The struct is thus capable of being altered in some unpredictable way. Starting in Swift 4, this dangerous situation is forbidden; the compiler enforces exclusive access
 when a struct is being modified.

You may encounter that error message from the compiler under surprising circumstances. For example:

let c = UIColor.purple
var components = Array(repeating: CGFloat(0), count: 4)
c.getRed(&components[0], green: &components[1],
 blue: &components[2], alpha: &components[3]) // compile error

That code was legal in Swift 3 and before; in Swift 4, it isn’t. It doesn’t look, to the untrained eye, as if there should be an exclusive access problem; but you just have to take the compiler’s word for it. One workaround is to take control of memory access yourself, thus silencing the compiler:

components.withUnsafeMutableBufferPointer { ptr -> () in
 c.getRed(&ptr[0], green: &ptr[1], blue: &ptr[2], alpha: &ptr[3])
}

It would probably be better, however, to write a UIColor extension that assembles the array without any simultaneous memory access to multiple elements of the array:

extension UIColor {
 func getRedGreenBlueAlpha() -> [CGFloat] {
 var (r,g,b,a) = (CGFloat(0),CGFloat(0),CGFloat(0),CGFloat(0))
 self.getRed(&r, green: &g, blue: &b, alpha: &a)
 return [r,g,b,a]
 }
}

Part II.
 IDE

By now, you’re doubtless anxious to jump in and start writing an app. To do that, you need a solid grounding in the tools you’ll be using. The heart and soul of those tools can be summed up in one word: Xcode. In this part of the book we explore Xcode, the IDE
 (integrated development environment) in which you’ll be programming iOS. Xcode is a big program, and writing an app involves coordinating a lot of pieces; this part of the book will help you become comfortable with Xcode. Along the way, we’ll generate a simple working app through some hands-on tutorials.

	
Chapter 6
 tours Xcode and explains the architecture of the project
 , the collection of files from which an app is generated.

	
Chapter 7
 is about nibs. A nib
 is a file containing a drawing of your interface. Understanding nibs — knowing how they work and how they relate to your code — is crucial to your use of Xcode and to proper development of just about any app.

	
Chapter 8
 pauses to discuss the Xcode documentation and other sources of information on the API.

	
Chapter 9
 explains editing your code, testing and debugging your code, and the various steps you’ll take on the way to submitting your app to the App Store. You’ll probably want to skim this chapter quickly at first, returning to it as a detailed reference later while developing and submitting an actual app.

Chapter 6.
 Anatomy of an Xcode Project

Xcode is the application used to develop an iOS app. An Xcode project
 is the source for an app; it’s the entire collection of files and settings used to construct the app.
 To create, develop, and maintain an app, it helps to know how to manipulate and navigate an Xcode project. You’ll want to know something about Xcode, and about the nature and structure of Xcode projects and how Xcode shows them to you. That’s the subject of this chapter.

Note

The term “Xcode” is used in two ways. It’s the name of the application in which you edit and build your app, and it’s the name of an entire suite of utilities that accompanies it; in the latter sense, Instruments and the Simulator are part of Xcode. This ambiguity should generally present little difficulty.

Xcode is a powerful, complex, and extremely large program. My approach in introducing Xcode is to suggest that you adopt a kind of deliberate tunnel vision: if you don’t understand something, don’t worry about it — don’t even look at it, and don’t touch it, because you might change something important. Our survey of Xcode will chart a safe, restricted, and essential path, focusing on aspects of Xcode that you most need to understand immediately, and resolutely ignoring everything else.

For full information, study Apple’s own documentation (choose Help → Xcode Help); it may seem overwhelming at first, but what you need to know is probably in there somewhere. There are also entire books devoted to describing and explaining Xcode.

New Project

Even before you’ve written any code, an Xcode project is quite elaborate. To see this, let’s make a new, essentially “empty” project; you’ll find that it isn’t empty at all.

	Start up Xcode and choose File → New → Project.

	The “Choose a template” dialog appears. The template
 is your project’s initial set of files and settings. When you pick a template, you’re really picking an existing folder full
 of files; this folder is hidden deep inside the Xcode bundle, and will essentially be copied, with a few values filled in, in order to create your project.

So, in this case, select iOS; under Application, select the Single View App template. Click Next.

	You are now asked to provide a name for your project (Product Name).
 Let’s call our new project Empty Window
 .

In a real project, you should give some thought to the project’s name, as you’re going to be living in close quarters with it. As Xcode copies the template folder, it’s going to insert the project’s name in several places, including using it as the name of the app. Thus, whatever you type at this moment is something you’ll be seeing throughout your project. (You are not locked into the name of your project forever, though, and there’s a separate setting allowing you to change at any time the name of the app that it produces. I’ll talk later about name changes; see “Renaming Parts of a Project”
 .)

Spaces are legal in the project name, the app name, and the various names of files and folders that Xcode will generate automatically; and in the few places where spaces are problematic (such as the bundle identifier, which I’ll discuss in a moment), the name you type as the Product Name will have its spaces converted to hyphens. But do not
 use any other punctuation in your project name! Such punctuation can cause Xcode features to break in subtle ways.

	Ignore the Team pop-up menu for now; I’ll discuss its significance in Chapter 9
 . Ignore the Organization Name as well; it is used only in some automatically generated code comments.

	Note the Organization Identifier field.

 The first time you create a project, this field will be blank, and you should fill it in. The goal here is to create a unique string identifying you or your organization. The convention is to start the organization identifier with com.
 and to follow it with a string (possibly with multiple dot-components) that no one else is likely to use. For example, I use com.neuburg.matt
 . Every app on a device or submitted to the App Store needs a unique bundle identifier. Your app’s bundle identifier, which is shown in gray below the organization identifier, will consist by default of the organization identifier plus a version of the project’s name; if you give every project a unique name within your personal world, the bundle identifier will uniquely identify this project and the app that it produces. (You will be able to change the bundle identifier manually later if necessary.)

	The Language pop-up menu lets you choose between Swift and Objective-C. This choice is not positively binding; it dictates the initial structure and code of the project template, but you are free to add Swift files to an Objective-C project, or Objective-C files to a Swift project. You can even start with an Objective-C project and decide later to convert it completely to Swift. (See “Bilingual Targets”
 .) For now, choose Swift.

	For this example project, make sure Use Core Data, Include Unit Tests, and Include UI Tests are not
 checked. Click Next.

	You’ve now told Xcode how to construct your project. Basically, it’s going to copy a folder called Single View App.xctemplate
 from somewhere deep within the Xcode application bundle. But you need to tell it where to copy this template folder to
 . That’s why Xcode is now presenting a Save dialog with a Create button. You are to specify the location of a folder that is about to be created — the project folder
 for this project. The project folder can go just about anywhere, and you can move it after creating it. I usually create new projects on the Desktop.

	Xcode also offers, through a checkbox, to create a git repository for your project. (You might need to click Options to see the checkbox.) In real life, this can be a great convenience (see Chapter 9
), but for now, uncheck that checkbox. If you see an Add To pop-up menu, leave it at the default, “Don’t add to any project or workspace.” Click Create.

	The Empty Window
 project folder is created on disk (on the Desktop, if that’s the location you just specified), and the project window for the Empty Window project opens in Xcode.

The project we’ve just created is a working project; it really does build an iOS app called Empty Window. To see this, you can actually build the app — and run it! The scheme and destination in the project window’s toolbar are probably listed as Empty Window → iPhone 7 Plus; that’s fine. (The scheme and destination are actually pop-up menus, so you can click on them to change their values if needed.) Choose Product → Run. After some delay, the Simulator application eventually opens and displays your app running — an empty white screen.

Note

To build
 a project is to compile its code and assemble the compiled code, together with various resources, into the actual app.

 Typically, if you want to know whether your code compiles and your project is consistently and correctly constructed, you’ll build the project (Product → Build). Alternatively, you can compile an individual file (choose Product → Perform Action → Compile [Filename]).
 To run
 a project is to launch the built app, in the Simulator or on a connected device; if you want to know whether your code works as expected, you’ll run the project (Product → Run), which automatically builds first if necessary.

The Project Window

An Xcode project embodies a lot of information about what files constitute the project and how they are to be used when building the app, such as:

	The source files (your code) that are to be compiled

	Any .storyboard
 or .xib
 files, graphically expressing interface objects to be instantiated as your app runs

	Any resources, such as icons, images, or sound files, that are to be part of the app

	All settings (instructions to the compiler, to the linker, and so on) that are to be obeyed as the app is built

	Any frameworks that the code will need when it runs

A single Xcode project window presents all of this information, as well as letting you access, edit, and navigate your code, plus reporting the progress and results of such procedures as building or debugging an app and more. This window displays a lot of information and embodies a lot of functionality! A project window is powerful and elaborate; learning to navigate and understand it takes time. Let’s pause to explore this window and see how it is constructed.

A project window has four main parts (Figure 6-1
):

[image: ios11 0601]

Figure 6-1.
 The project window

	On the left is the Navigator pane. Show and hide it with View → Navigators → Show/Hide Navigator (Command-0) or with the first View button at the right end of the toolbar.

	In the middle is the Editor pane (or simply “editor”). This is the main area of a project window. A project window nearly always displays an Editor pane, and can display multiple Editor panes simultaneously.

	On the right is the Utilities pane. Show and hide it with View → Utilities → Show/Hide Utilities (Command-Option-0) or with the third View button at the right end of the toolbar.

	At the bottom is the Debug pane. Show and hide it with View → Debug Area → Show/Hide Debug Area (Command-Shift-Y) or with the second View button at the right end of the toolbar.

Note

All Xcode keyboard shortcuts can be customized; see the Key Bindings pane of the Preferences window. Keyboard shortcuts that I cite are the defaults.

The Navigator Pane

The Navigator pane is the column of information at the left of the project window. Among other things, it’s your primary mechanism for controlling what you see in the main area of the project window (the editor). An important use pattern for Xcode is: you select something in the Navigator pane, and that thing is displayed in the editor.

It is possible to toggle the visibility of the Navigator pane (View → Navigators → Hide/Show Navigator, or Command-0); for example, once you’ve used the Navigator pane to reach the item you want to see or work on in the editor, you might hide the Navigator pane temporarily to maximize your screen real estate (especially on a smaller monitor). You can change the Navigator pane’s width by dragging the vertical line at its right edge.

The Navigator pane itself can display nine different sets of information; thus, there are actually nine navigators. These are represented by the nine icons across its top; to switch among them, use these icons or their keyboard shortcuts (Command-1, Command-2, and so on). If the Navigator pane is hidden, pressing a navigator’s keyboard shortcut both shows the Navigator pane and switches to that navigator.

Depending on your settings in the Behaviors pane of Xcode’s preferences, a navigator might show itself automatically when you perform a certain action. For example, by default, when you build your project, if warning messages or error messages are generated, the Issue navigator may appear. This automatic behavior will not prove troublesome, because it is generally precisely the behavior you want, and if it isn’t, you can change it; plus you can easily switch to a different navigator at any time.

Let’s begin experimenting immediately with the various navigators:

Project navigator (Command-1)

Click here for basic navigation through the files that constitute your project (Figure 6-2
). For example, in the Empty Window folder (these folder-like things in the Project navigator are actually called groups
), click AppDelegate.swift
 to view its code in the editor.

At the top level of the Project navigator, with a blue Xcode icon, is the Empty Window project itself; click it to view the settings associated with your project and its targets. Don’t change anything here without knowing what you’re doing! I’ll talk later in this chapter about what these settings are for.

The filter bar at the bottom of the Project navigator lets you limit what files are shown; when there are many files, this is great for quickly reaching a file with a known name. For example, try typing “delegate” in the filter bar search field. Don’t forget to remove your filter when you’re done experimenting.

Warning

Once you’ve filtered a navigator, it stays filtered until you remove the filter — even if you close the project! A common mistake is to filter a navigator, forget that you’ve done so, fail to notice the filter (because you’re looking at the navigator itself, not down at the bottom where the filter bar is), and wonder, “Hey, where did all my files go?”

[image: ios11 0602]

Figure 6-2.
 The Project navigator

Source Control navigator (Command-2)

New in Xcode 9, the Source Control navigator helps you manipulate how your project’s files are handled through version control — especially git. I’ll discuss version control in more detail in Chapter 9
 .

Symbol navigator (Command-3)

A symbol
 is a name, typically the name of a class or method. Among other things, this can be useful for navigating your code. For example, highlight the first two icons in the filter bar (the first two are blue, the third is dark), twist open the class listings in the symbol navigator, and see how quickly you can reach your code’s definition of AppDelegate’s applicationDidBecomeActive(_:)
 method.

Try highlighting the filter bar icons in various ways to see how the contents of the Symbol navigator change. Type in the search field in the filter bar to limit what appears in the Symbol navigator; for example, try typing “active” in the search field, and see what happens.

Find navigator (Command-4)

This is a powerful search facility for finding text globally in your project. You can also summon the Find navigator with Find → Find in Project (Command-Shift-F). The words above the search field show what options are currently in force; they are pop-up menus, so click one to change the options. Try searching for “delegate” (Figure 6-3
). Click a search result to jump to it in your code.

Below the search field, at the left, is the current search scope
 . This limits what files will be searched. Click it to see the Search Scopes panel. You can limit the search to a group (folder) within your project. You can also define a new scope: click New Scope to summon the scope configuration popover, where you can examine your options. Scopes are defined per user, not per project; scopes that you create here will appear in other projects.

You can type in the other search field, the one in the filter bar at the bottom, to limit further which search results are displayed. (I’m going to stop calling your attention to the filter bar now; every navigator has it in some form.)

[image: ios11 0603]

Figure 6-3.
 The Find navigator

Issue navigator (Command-5)

You’ll need this navigator primarily when your code has issues. This doesn’t refer to emotional instability; it’s Xcode’s term for warning and error messages emitted when you build your project.
 The Issue navigator can also display certain runtime issues (such as leaks, as I’ll explain in Chapter 9
).

To see the Issue navigator in action, let’s give your code a buildtime issue. Navigate (as you already know how to do, in at least three different ways) to the file AppDelegate.swift
 , and in the blank line after the last comment at the top of the file’s contents, above the import
 line, type howdy
 . Build the project (Command-B). Switch to the Issue navigator if it doesn’t appear automatically; in its Buildtime pane, it displays some error messages, showing that the compiler is unable to cope with this illegal word appearing in an illegal place. Click an issue to see it within its file. In your code, issue “balloons” may appear to the right of lines containing issues.

Now that you’ve made Xcode miserable, select “howdy” and delete it; save and build again, and your issues will be gone. If only real life were this easy!

Test navigator (Command-6)

This navigator lists test files and individual test methods and permits you to run your tests and see whether they succeeded or failed. A test is code that isn’t part of your app; rather, it calls a bit of your app’s code, or exercises your app’s interface, to see whether things behave as expected. I’ll talk more about tests in Chapter 9
 .

Debug navigator (Command-7)

By default, this navigator will appear when your code is paused while you’re debugging it. There is not a strong distinction in Xcode between running and debugging; the milieu is the same. The difference is mostly a matter of whether breakpoints are obeyed (more about that, and about debugging in general, in Chapter 9
).

To see the Debug navigator in action, you’ll need to give your code a breakpoint. Navigate once more to the file AppDelegate.swift
 , select in the line that says return true
 , and choose Debug → Breakpoints → Add Breakpoint at Current Line to make a blue breakpoint arrow appear on that line. Run the project. By default, as the breakpoint is encountered, the Navigator pane switches to the Debug navigator, and the Debug pane appears at the bottom of the window. This overall layout (Figure 6-4
) will rapidly become familiar as you debug your projects.

[image: ios11 0604]

Figure 6-4.
 The Debug layout

The Debug navigator starts with several numeric and graphical displays of profiling information (at a minimum, you’ll see CPU, Memory, Disk, and Network); click one to see extensive graphical information in the editor. This information allows you to track possible misbehavior of your app as you run it, without the added complexity of running the Instruments utility (discussed in Chapter 9
). To toggle the visibility of the profiling information
 at the top of the Debug navigator, click the “gauge” icon (to the right of the process’s name).

The Debug navigator also displays the call stack
 , with the names of the nested methods in which a pause occurs; as you would expect, you can click on a method name to navigate to it. You can shorten or lengthen the list with the first button in the filter bar at the bottom of the navigator.

The Debug pane, which can be shown or hidden at will (View → Debug Area → Hide/Show Debug Area, or Command-Shift-Y), consists of two subpanes:

The variables list (on the left)

It is populated with the variables in scope for the selected method in the call stack at the point where we are paused.

The console (on the right)

Here the debugger displays text messages; that’s how you learn of exceptions thrown by your running app, plus you can have your code deliberately send you log messages describing your app’s progress and behavior. Such messages are important, so keep an eye on the console as your app runs.
 You can also use the console to enter commands to the debugger. This can often be a better way to explore values during a pause than the variables list.

Either the variables list or the console can be hidden using the two buttons at the bottom right of the pane. The console can also be summoned by choosing View → Debug Area → Activate Console.

Breakpoint navigator (Command-8)

This navigator lists all your breakpoints. At the moment you have only one, but when you’re actively debugging a large project with many breakpoints, you’ll be glad of this navigator. Also, this is where you create special breakpoints (such as symbolic breakpoints), and in general it’s your center for managing existing breakpoints. We’ll return to this topic in Chapter 9
 .

Report navigator (Command-9)

This navigator lists your recent major actions, such as building or running (debugging) your project. Click a listing to see (in the editor) the report generated when you performed that action. The report might contain information that isn’t displayed in any other way, and also it lets you dredge up console messages from the recent past (“What was that exception I got while debugging a moment ago?”).

For example, by clicking on the listing for a successful build, and by choosing to display All and All Messages using the filter switches at the top of the report, we can see the steps by which a build takes place (Figure 6-5
). To reveal the full text of a step, click on that step and then click the Expand Transcript button that appears at the far right (and see also the menu items in the Editor menu).

[image: ios11 0605]

Figure 6-5.
 Viewing a report

When navigating by clicking in the Navigator pane, modifications to your click can determine where navigation takes place. By default, Option-click navigates in an assistant pane (discussed later in this chapter), double-click navigates by opening a new window, and Option-Shift-click summons a little heads-up pane where you can specify where to navigate (a new window, a new tab, or a new assistant pane). For the settings that govern these click modifications, see the Navigation pane of Xcode’s preferences.

The Utilities Pane

The Utilities pane is the column at the right of the project window. It contains inspectors that provide information about the current selection or its settings; if those settings can be changed, this is where you change them. It also contains libraries that function as a source of objects you may need while editing your project. The Utilities pane’s importance emerges mostly when you’re editing a .storyboard
 or .xib
 file (Chapter 7
). But it can be useful also while editing code, because Quick Help, a form of documentation (Chapter 8
), is displayed here as well, plus the Utilities pane is the source of code snippets (Chapter 9
). To toggle the visibility of the Utilities pane, choose View → Utilities → Hide/Show Utilities (Command-Option-0). You can change the Utilities pane’s width by dragging the vertical line at its left edge.

The Utilities pane consists of numerous palettes, which are clumped into multiple sets, which are themselves divided into two major groups: the top half of the pane and the bottom half of the pane. You can change the relative heights of these two halves by dragging the horizontal line that separates them.

The top half

What appears in the top half of the Utilities pane depends on what’s selected in the current editor. For example:

A code file is being edited

The top half of the Utilities pane shows either the File inspector or Quick Help. Toggle between them with the icons at the top of this half of the Utilities pane, or with their keyboard shortcuts (Command-Option-1, Command-Option-2). The File inspector consists of multiple sections, each of which can be expanded or collapsed by clicking its header; I’ll give an example of using it in Chapter 9
 when I talk about localization. Quick Help can be useful because it displays documentation (Chapter 8
).

A .storyboard
 or .xib
 file is being edited

The top half of the Utilities pane shows, in addition to the File inspector and Quick Help, the Identity inspector (Command-Option-3), the Attributes inspector (Command-Option-4), the Size inspector (Command-Option-5), and the Connections inspector (Command-Option-6). These can consist of multiple sections, each of which can be expanded or collapsed by clicking its header.

Other forms of editing may cause other inspector combinations to appear here.

The bottom half

The bottom half of the Utilities pane shows one of four libraries. Toggle between them with the icons at the top of this half of the Utilities pane, or with their keyboard shortcuts. They are the File Template library (Command-Option-Control-1), the Code Snippet library (Command-Option-Control-2), the Object library (Command-Option-Control-3), and the Media library (Command-Option-Control-4). The Object library is the most important; you’ll use it heavily when editing a .storyboard
 or .xib
 file.

To see a help pop-up describing the currently selected item in a library, press Spacebar.

The Editor

In the middle of the project window is the editor
 .
 This is where you get actual work done, reading and writing your code (Chapter 9
), or designing your interface in a .storyboard
 or .xib
 file (Chapter 7
). The editor is the core of the project window. You can hide the Navigator pane, the Utilities pane, and the Debug pane, but there is no such thing as a project window without an editor (though you can cover the editor completely with the Debug pane).

The editor provides its own form of navigation, the jump bar
 across the top.
 Not only does the jump bar show you hierarchically what file is currently being edited, but also it allows you to switch to a different file. In particular, each path component in the jump bar is also a pop-up menu. These pop-up menus can be summoned by clicking on a path component, or by using keyboard shortcuts (shown in the second section of the View → Standard Editor submenu). For example, Control-4 summons a hierarchical pop-up menu, which can be navigated entirely with the keyboard, allowing you to choose a different file in your project to edit. Moreover, each pop-up menu in the jump bar also has a filter field; to see it, summon a pop-up menu from the jump bar and start typing. Thus you can navigate your project even if the Project navigator isn’t showing.

Tip

New in Xcode 9, you can Command-click on a jump bar component to summon a menu showing the corresponding file in the Finder and its hierarchy of enclosing folders.

The symbol at the left end of the jump bar (Control-1) summons a hierarchical menu (the Related Items menu) allowing navigation to files related to the current one.

 What appears here depends not only on what file is currently being edited but on the current selection within that file. This is an extremely powerful and convenient menu, and you should take time to explore it. You can navigate to related class files (Superclasses, Subclasses, and Siblings; siblings are classes with the same superclass); you can view methods that call the currently selected method, or methods that are called by the currently selected method. Choose Generated Interface to view the public API of a Swift file or Objective-C header file as seen by Swift, or Original Source to switch from a Swift generated interface to the Objective-C original.

The editor remembers the history of things it has displayed, and you can return to previously viewed content with the Back button in the jump bar, which is also a pop-up menu from which you can choose. Alternatively, choose Navigate → Go Back (Command-Control-Left).

It is likely, as you develop a project, that you’ll want to edit more than one file simultaneously, or obtain multiple views of a single file so that you can edit two areas of it simultaneously. This can be achieved in three ways: assistants, tabs, and secondary windows.

Assistants

You can split the editor into multiple editors by summoning an assistant
 pane.
 To do so, click the second Editor button in the toolbar (“Show the Assistant editor”), or choose View → Assistant Editor → Show Assistant Editor (Command-Option-Return). Also, by default, adding the Option key to navigation opens an assistant pane; for example, Option-click in the Navigator pane, or Option-choose in the jump bar, to navigate by opening an assistant pane (or to navigate in an existing assistant pane if there is one). To remove the assistant pane, click the first Editor button in the toolbar, or choose View → Standard Editor → Show Standard Editor (Command-Return), or click the X button at the assistant pane’s top right.

You can determine how assistant panes are to be arranged. To do so, choose from the View → Assistant Editor submenu. I usually prefer All Editors Stacked Vertically, but it’s purely a matter of taste. Once you’ve summoned an assistant pane, you can split it further into additional assistant panes. To do so, click the Plus button at the top right of an assistant pane. To dismiss an assistant pane, click the X button at its top right.

An assistant pane can change intelligently what file it is editing in response to a change in what file is being edited in the primary editor pane. This is called tracking
 , and is what makes an assistant pane an assistant. To configure the tracking
 behavior of an assistant pane, use the first component in its jump bar (Control-4). This is the Tracking menu;
 it’s like the Related Items menu that I discussed a moment ago, but selecting a category determines automatic tracking behavior. If a category has multiple files, a pair of arrow buttons appears at the right end of the assistant’s jump bar, with which you can navigate between them (or use the second jump bar component, Control-5). You can turn off tracking by setting the assistant’s first jump bar component to Manual.

Tabs

You can embody the entire project window interface as a tab.
 To do so, choose File → New → Tab (Command-T), revealing the tab bar (just below the toolbar) if it wasn’t showing already. Use of a tabbed interface will likely be familiar from applications such as Safari. You can switch between tabs by clicking on a tab, or with Command-Shift-}. At first, your new tab will look largely identical to the original window from which it was spawned. But then you can make changes in a tab — change what panes are showing or what file is being edited, for example — without affecting any other tabs. Thus you can get multiple views of your project. You can assign a descriptive name to a tab: double-click on a tab name to make it editable.

Secondary windows

A secondary project window is similar to a tab, but it appears as a separate window instead of a tab in the same window.
 To create one, choose File → New → Window (Command-Shift-T). Alternatively, you can promote a tab to be a window by dragging it right out of its current window.

There isn’t a strong difference between a tab and a secondary window; which you use, and for what, will be a matter of taste and convenience. I find that the advantage of a secondary window is that you can see it at the same time as the main window, and that it can be small. Thus, when I have a file I frequently want to refer to, I might spawn off a secondary window displaying that file, sized fairly small and without any panes other than the editor.

The Project File and Its Dependents

The first item in the Project navigator (Command-1) represents the project itself. (In the Empty Window project that we created earlier in this chapter, it is called Empty Window.) Hierarchically dependent upon it are items that contribute to the building of the project.
 Many of these items, as well as the project itself, correspond to items on disk in the project folder.

To survey this correspondence, let’s view our Empty Window project in two ways simultaneously — in the Project navigator in the Xcode project window, and in the project folder in a Finder window. Select the project listing in the Project navigator and choose File → Show in Finder. The Finder displays the contents of your project folder (Figure 6-6
).

[image: ios11 0607]

Figure 6-6.
 The Project navigator (Xcode) and the project folder (Finder)

In the Finder, the most important thing in the project folder is Empty Window.xcodeproj
 . This is the project file
 , corresponding to the project listed first in the Project navigator. All Xcode’s knowledge about your project — what files it consists of and how to build the project — is stored in this file. To open a project from the Finder, double-click the project file. Alternatively, you can drag the project folder onto Xcode’s icon (in the Finder, in the Dock, or in the application switcher) and Xcode will locate the project file and open it for you.

Recall that group
 is the technical term for the folder-like objects shown in the Project navigator. Let’s consider how the groups and files displayed hierarchically down from the project in the Project navigator correspond to reality on disk as portrayed in the Finder (Figure 6-6
):

	The Empty Window group corresponds directly to the Empty Window
 folder on disk. Groups in the Project navigator don’t necessarily correspond to folders on disk in the Finder, and folders on disk in the Finder don’t necessarily correspond to groups in the Project navigator. But in this case, there is such a correspondence!

	Files within the Empty Window group, such as AppDelegate.swift
 , correspond to real files on disk that are inside the Empty Window
 folder. If you were to create additional code files (which, in real life, you would almost certainly do in the course of developing your project), you would likely put them in the Empty Window group in the Project navigator, and they, too, would then be in the Empty Window
 folder on disk. (That, however, is not a requirement; your files can live anywhere and your project will still work fine.)

	Two files in the Empty Window group, Main.storyboard
 and LaunchScreen.storyboard
 , appear in the Finder inside a folder that doesn’t visibly correspond to anything in the Project navigator, called Base.lproj
 . This arrangement has to do with localization
 , which I’ll discuss in Chapter 9
 .

	The item Assets.xcassets
 in the Project navigator corresponds to a specially structured folder Assets.xcassets
 on disk. This is an asset catalog
 ; you add resources to the asset catalog in Xcode, which maintains that folder on disk for you. I’ll talk more about the asset catalog later in this chapter, and in Chapter 9
 .

	The Products group and its contents don’t correspond to anything in the project folder. Xcode generates a reference to the executable bundle generated by building each target in your project, and by convention these references appear in the Products group.

Feel free, as you develop your project and add files to it, to add further groups to the Project navigator. The purpose of groups is to make the Project navigator work conveniently for you. For example, if some of your code files have to do with a login screen that your app sometimes presents, you might clump them together in a Login group. If your app is to contain some sound files, you might put them into a Sounds group. And so on.

A group might or might not correspond to a folder on disk. New in Xcode 9, there’s a visual distinction: a group that corresponds to a folder on disk is a folder-linked group
 , and has a solid folder icon, like the Empty Window group in Figure 6-6
 ; a group plain and simple exists purely within the Project navigator, and has a marked folder icon, like the Products group in Figure 6-6
 . You’ll encounter this distinction when creating a group, when using a group, and when renaming a group:

Creating a group

When you make a new group, there’s a choice of menu items; for example, in the contextual menu, you might see New Group and New Group With Folder. (Confusingly, the choice will sometimes be New Group and New Group Without
 Folder.) One creates a group plain and simple; the other creates a folder-linked group.

Using a group

When you place a file into a folder-linked group, it goes into the corresponding folder on disk (like the contents of the Empty Window
 folder in Figure 6-6
). When you place a file into a group plain and simple, it’s a little unclear where it will go on disk, but generally it will be at the top level of the project folder.

Renaming a group

To rename a group, select it in the Project navigator and press Return to make the name editable. When you rename a folder-linked group, the folder on disk is renamed as well.

Now that you have inspected the constants of a typical project folder, you should have little need to open a project folder ever again, except in order to double-click the project file to open the project. You should not manipulate the contents of a project folder by way of the Finder in any manner whatsoever. Instead, manipulate the project in the project window
 . The project expects things in the project folder to be a certain way; if you make any alterations to the project folder directly in the Finder, behind the project’s back, you can upset those expectations and break the project. When you work in the project window, it is Xcode itself that makes any necessary changes in the project folder, and all will be well.

The Target

A target
 is a collection of parts along with rules and settings for how to build a product from them.
 Whenever you build, what you’re really building is a target (possibly more than one target).

Select the Empty Window project at the top of the Project navigator, and you’ll see two things on the left side of the editor (Figure 6-7
): the project itself, and a list of your targets. Our Empty Window project comes with one target — the app target
 , called Empty Window (just like the project itself).
 The app target is the target that you use to build and run your app. Its settings are the settings that tell Xcode how your app is to be built; its product is the app itself.

Under certain circumstances, you might add further targets to a project:

	You might want to perform unit tests or interface tests; to do so, you’d add a target. (I’ll talk more about testing in Chapter 9
 .)

	You might write a framework as part of your iOS app; with a custom framework, you can factor common code into a single locus, and you can configure its privacy details as a namespace. A custom framework needs to be built, so it, too, is a target. (I’ll talk more about frameworks later in this chapter.)

	You might write an application extension, such as a today extension (content to appear in the notification center) or a photo editing extension (custom photo editing interface to appear in the Photos app). Those, too, are targets.

The project name and the list of targets can appear in two ways (Figure 6-7
): either as a column on the left side of the editor, or, if that column is collapsed to save space, as a pop-up menu at the top left of the editor. If, in the column or pop-up menu, you select the project
 , you edit the project
 ; if you select a target
 , you edit the target
 . I’ll use those expressions a lot in later instructions.

[image: ios9 0607b]

Figure 6-7.
 Two ways of showing the project and targets

Build Phases

Edit the app target and click Build Phases at the top of the editor (Figure 6-8
). These are the stages by which your app is built.
 The build phases
 are both a report to you on how the target will be built and a set of instructions to Xcode on how to build the target; if you change the build phases, you change the build process. Click each build phase to see a list of the files in your target to which that build phase will apply.

[image: ios9 0608]

Figure 6-8.
 The app target’s build phases

Two of the build phases have contents. The meanings of these build phases are pretty straightforward:

Compile Sources

Certain files (your code) are compiled, and the resulting compiled code is copied into the app.

This build phase typically applies to all of the target’s .swift
 files. Sure enough, it currently contains ViewController.swift
 and AppDelegate.swift
 . If you add a new Swift file to your project (typically in order to declare another class), you’ll specify that it should be part of the app target, and it will automatically be added to the Compile Sources build phase.

Copy Bundle Resources

Certain files are copied into the app, so that your code or the system can find them there when the app runs.

This build phase currently applies to the asset catalog; any resources you add to the asset catalog will be copied into your app as part of the catalog. It also currently lists your launch storyboard file, LaunchScreen.storyboard
 , and your app’s interface storyboard file, Main.storyboard
 .

Copying doesn’t necessarily mean making an identical copy. Certain types of file are automatically treated in special ways as they are copied into the app bundle. For example, copying the asset catalog means that icons in the catalog are written out to the top level of the app bundle, and the asset catalog itself is transformed into a .car
 file; copying a .storyboard
 file means that it is transformed into a .storyboardc
 file, which is itself a bundle containing nib files.

You can alter these lists manually, and sometimes you may need to do so. For instance, if something in your project, such as a sound file, is not in Copy Bundle Resources and you want it copied into the app during the build process, drag it from the Project navigator into the Copy Bundle Resources list, or (easier) click the Plus button beneath the Copy Bundle Resources list to get a helpful dialog listing everything in your project. Conversely, if something in your project is in the Copy Bundle Resources list and you don’t
 want it copied into the app, delete it from the list; this will not delete it from your project, from the Project navigator, or from the Finder, but only from the list of things to be copied into your app.

A useful trick is to add a Run Script build phase, which runs a custom shell script late in the build process. To do so, choose Editor → Add Build Phase → Add Run Script Build Phase. Open the newly added Run Script build phase to edit the custom shell script. A minimal shell script might read:

echo "Running the Run Script build phase"

The “Show environment variables in build log” checkbox causes the build process’s environment variables and their values to be listed in the build report during the Run Script build phase. This alone can be a reason to add a Run Script build phase; you can learn a lot about how the build process works by examining the environment variables.

Build Settings

Build phases are only one aspect of how a target knows how to build the app. The other aspect is build settings
 .
 To see them, edit the target and click Build Settings at the top of the editor (Figure 6-9
). Here you’ll find a long list of settings, most of which you’ll never touch. Xcode examines this list in order to know what to do at various stages of the build process. Build settings are the reason your project compiles and builds the way it does.

[image: ios11 0609]

Figure 6-9.
 Target build settings

You can determine what build settings are displayed by clicking Basic or All. The settings are combined into categories, and you can close or open each category heading to save room. To locate a setting quickly based on something you already know about it, such as its name, use the search field at the top right to filter what settings are shown.

You can determine how build settings are displayed by clicking Combined or Levels; in Figure 6-9
 , I’ve clicked Levels, in order to discuss what levels are. It turns out that not only does a target
 contain values for the build settings, but the project
 also contains values for the same build settings; furthermore, Xcode has certain built-in default build setting values. The Levels display shows all of these levels at once, so you can understand the derivation of the actual values used for every build setting.

To understand the chart, read from right to left. For example, the iOS default for the Build Active Architecture Only setting’s Debug configuration (far right) is No. But then the project comes along (second column from the right) and sets it to Yes. The target (third column from the right) doesn’t change that setting, so the result (fourth column from the right) is that the setting resolves to Yes.

You will rarely have occasion to manipulate build settings directly, as the defaults are usually acceptable. Nevertheless, you can
 change build setting values, and this is where you would do so. You can change a value at the project level or at the target level. You can select a build setting and show Quick Help in the Utilities pane to learn more about it; for further details on what the various build settings are, choose Help → Xcode Help and consult the build settings reference (click Show Topics and look under Appendixes at the left).

Configurations

There are actually multiple lists of build setting values — though only one such list applies when a particular build is performed. Each such list is called a configuration
 .

 Multiple configurations are needed because you build in different ways at different times for different purposes, and thus you’ll want certain build settings to take on different values under different circumstances.

By default, there are two configurations:

Debug

This configuration is used throughout the development process, as you write and run your app.

Release

This configuration is used for late-stage testing, when you want to check performance on a device, and for archiving the app to be submitted to the App Store.

Configurations exist at all because the project says so. To see where the project says so, edit the project and click Info at the top of the editor (Figure 6-10
). Note that these configurations are just names. You can make additional configurations, and when you do, you’re just adding to the list of names. The importance of configurations emerges only when those names are coupled with build setting values. Configurations can affect build setting values both at the project level and at the target level.

[image: ios11 0610]

Figure 6-10.
 Configurations

For example, return to the target build settings (Figure 6-9
) and type “Optim” into the search field. Now you can look at the Optimization Level build setting (Figure 6-11
). The Debug configuration value for Optimization Level is None: while you’re developing your app, you build with the Debug configuration, so your code is just compiled line by line in a straightforward way. The Release configuration value for Optimization Level is Fast, Whole Module Optimization. When your app is ready to ship, you build it with the Release configuration, so the resulting binary is optimized for speed, which is great for your users running the app on a device, but would be no good while you’re developing the app because breakpoints and stepping in the debugger wouldn’t work properly. In addition, Whole Module Optimization allows the Swift compiler to survey all your code files at once. Compilation may take longer, but the resulting optimization can be better; for example, the compiler may be able to deduce that certain class members don’t need dynamic dispatch, thus making your code even faster. And you won’t mind the delay, because you won’t do a Release build very often.

[image: ios10 0611]

Figure 6-11.
 How configurations affect build settings

Schemes and Destinations

So far, I have not said how Xcode knows which
 configuration to use during a particular build. This is determined by a scheme.

A scheme
 unites a target (or multiple targets) with a build configuration, with respect to the purpose for which you’re building. A new project comes by default with a single scheme, named after the project. Thus the Empty Window project’s single scheme is currently called Empty Window. To see it, choose Product → Scheme → Edit Scheme. The scheme editor dialog opens (Figure 6-12
).

[image: ios9 0612]

Figure 6-12.
 The scheme editor

On the left side of the scheme editor are listed various actions you might perform from the Product menu. Click an action to see its corresponding settings in this scheme.

The first action, the Build action, is different from the other actions, because it is common to all of them — the other actions all implicitly involve building. The Build action merely determines what target(s) will be built when each of the other actions is performed. For our project this means that the app target is always to be built, regardless of the action you perform.

The second action, the Run action, determines the settings that will be used when you build and run. The Build Configuration pop-up menu (in the Info pane) is set to Debug. That explains where the current build configuration comes from: whenever you build and run (Product → Run, or click the Run button in the toolbar), you’re using the Debug build configuration and the build setting values that correspond to it, because you’re using this scheme, and that’s what this scheme says to do when you build and run.

You can edit an existing scheme, and this can be useful especially as a temporary measure for doing certain kinds of specialized debugging. For example, the Run action’s Diagnostics tab contains checkboxes that let you turn on the Address Sanitizer or the Thread Sanitizer, each of which can be useful for tracking down certain types of obscure runtime error. You’d check the checkbox, build and run, work on the error, and then uncheck the checkbox again.

Alternatively, you can add a scheme. A typical approach is to duplicate an existing scheme and then modify the duplicate. For example, instead of changing your main scheme to turn on the Address Sanitizer temporarily, you might have a second scheme where the Address Sanitizer is always turned on. You would then use the Address Sanitizer by switching schemes.

Handy access to schemes and their management is through the Scheme pop-up menu in the project window toolbar (Figure 6-13
).

[image: ios11 0613]

Figure 6-13.
 The Scheme pop-up menu

The Scheme pop-up menu is something you’re going to be using a lot. Your schemes are all listed here, and thus you can easily switch between them before you build and run. Hierarchically appended to each scheme are the destinations.
 A destination
 is effectively a machine that can run your app. On any given occasion, you might want to run the app on a physical device or in the Simulator — and, if in the Simulator, you might want to specify that a particular type of device should be simulated. To make that choice, pick a destination in the Scheme pop-up menu.

Destinations and schemes have nothing to do with one another. The presence of destinations in the Scheme pop-up menu is intended as a convenience, allowing you to use this one pop-up menu to choose either a scheme or a destination, or both, in a single move. To switch easily among destinations without changing schemes, click the destination name in the Scheme pop-up menu. To switch among schemes, possibly also determining the destination (as shown in Figure 6-13
), click the scheme name in the Scheme pop-up menu.

Each simulated device has a system version that is installed on that device. At the moment, all our simulated devices are running iOS 11; thus, there is no distinction to be drawn, and the system version is not shown. However, you can download additional SDKs (systems) in Xcode’s Components preference pane. If you do, and if your app can run under more than one system version, you might also see a system version listed in the Scheme pop-up menu as part of a Simulator destination name.
 For example, if you’ve installed the iOS 10.3.1 SDK, and if your project’s deployment target (see Chapter 9
) is 10.0, the Scheme pop-up menu in the project window toolbar might say “iOS 11.0” or “iOS 10.3.1” after the destination name.

To manage destinations, choose Window → Devices and Simulators. This window is where you manage what simulated devices exist (switch to the Simulators pane if necessary). Here you can create, delete, and rename simulated devices, and specify whether a simulated device actually appears as a destination in the Scheme pop-up menu.

Tip

Xcode 9 contains a new alternative build system, currently at an experimental stage, though eventually it will become standard. It isn’t enabled by default; to try it out, you need to opt in for this project. To do so, choose File → Project Settings and, in the resulting dialog, switch the pop-up menu to New Build System (Preview).

From Project to Running App

An app file is really a special kind of folder called a package
 (and a special kind of package called a bundle
). The Finder normally disguises a package as a file and does not dive into it to reveal its contents to the user, but you can bypass this protection and investigate an app bundle with the Show Package Contents command. By doing so, you can study the internal structure of your built app bundle.

We’ll use the Empty Window app that we built earlier as a sample minimal app to investigate. You’ll have to locate it in the Finder; by default, it should be somewhere in your user ~/Library/Developer/Xcode/DerivedData
 folder, as shown in Figure 6-14
 .

[image: ios9 0614]

Figure 6-14.
 The built app, in the Finder

In the Finder, Control-click the Empty Window app, and choose Show Package Contents from the contextual menu. Here you can see the results of the build process (Figure 6-15
).

[image: ios11 0615]

Figure 6-15.
 Contents of the app package

Think of the app bundle as a transformation of the project folder. Here are some of the things it contains, and how they relate to what’s in the project folder:

Empty Window

Our app’s compiled code. The build process has compiled ViewController.swift
 and AppDelegate.swift
 into this single file, our app’s binary. This is the heart of the app, its actual executable material. When the app is launched, the binary is linked to the various frameworks, and the code begins to run. (Later in this chapter, I’ll explain in detail what “begins to run” involves.)

Main.storyboardc

Our app’s interface storyboard file. The project’s Main.storyboard
 is where our app’s interface comes from — in this case, an empty white view occupying the entire window. The build process has compiled Main.storyboard
 into a tighter format, resulting in a .storyboardc
 file, which is actually a bundle of nib files to be loaded as required while the app runs. One of these nib files, loaded as our app launches, will be the source of the white view displayed in the interface. Main.storyboardc
 occupies the same subfolder location (inside Base.lproj
) as Main.storyboard
 does in the project folder; as I said earlier, this folder structure has to do with localization (to be discussed in Chapter 9
).

LaunchScreen.storyboardc

Our app’s launch screen file. This file, the compiled version of LaunchScreen.storyboard
 , contains the interface that will be displayed briefly during the time it takes for our app to launch.

Assets.car
 , AppIcon60x60@2x.png

An asset catalog and an icon file. In preparation for this build, I added an icon image to the original asset catalog,
Assets.xcassets

 . The build process has compiled this file, resulting in a compiled asset catalog file (.car
) containing any resources that have been added to the catalog; at the same time, the icon file has been written out to the top level of the app bundle, where the system can find it.

Info.plist

A configuration file in a strict text format (a property list
 file). It is derived from, but is not identical to, the project’s Info.plist
 . It contains instructions to the system about how to treat and launch the app. For example, the project’s Info.plist
 has a calculated bundle name derived from the product name,
$(PRODUCT_NAME)

 ; in the built app’s Info.plist
 , this calculation has been performed, and the value reads Empty Window
 , which is why our app is labeled “Empty Window” on the device. Also, in conjunction with the asset catalog writing out our icon file to the app bundle’s top level, a setting has been added to the built app’s Info.plist
 telling the system the name of that icon file.

Frameworks

A number of frameworks have been added to the built app. Our app uses Swift; these frameworks contain the entirety of the Swift language! Other frameworks used by our app are built into the system, but not Swift. This packaging of the Swift frameworks into the app bundle permits Apple to evolve the Swift language rapidly and independently of any system version, and allows Swift to be backward compatible to older systems. The downside is that these frameworks increase the size of our app; but this is a small price to pay for the power and flexibility of Swift. (Perhaps in the future, when the Swift language has settled down, it will be built into the system instead of the individual app, and Swift-based apps will become smaller.)

In real life, an app bundle may contain more files, but the difference will be mostly one of degree, not kind. For example, our project might have additional .storyboard
 or .xib
 files, additional frameworks, or additional resources such as sound files. All of these would make their way into the app bundle. In addition, an app bundle built to run on a device will contain some security-related files.

You are now in a position to appreciate, in a general sense, how the components of a project are treated and assembled into an app, and what responsibilities accrue to you, the programmer, in order to ensure that the app is built correctly. The rest of this section outlines what goes into the building of an app from a project.

Build Settings

We have already talked about how build settings are determined. Xcode itself, the project, and the target all contribute to the resolved build setting values, some of which may differ depending on the build configuration. Before building, you, the programmer, will have specified a scheme; the scheme determines the build configuration, meaning the specific set of build setting values that will apply as this build proceeds.

Property List Settings

Your project contains a property list file that will be used to generate the built app’s Info.plist
 file. The file in the project does not have to be named Info.plist
 ! The app target knows what file it is because it is specified in the Info.plist File build setting. For example, in our project, the value of the app target’s Info.plist File build setting has been set to Empty Window/Info.plist
 . (Take a look at the build settings and see!)

The property list file is a collection of key–value pairs. You can edit it, and you may need to do so. There are three main ways to edit your project’s Info.plist
 :

	Select the Info.plist
 file in the Project navigator and edit in the editor. By default, the key names (and some of the values) are displayed descriptively, in terms of their functionality; for example, it says “Bundle name” instead of the actual key, which is CFBundleName
 . But you can view the actual keys: click in the editor and then choose Editor → Show Raw Keys & Values, or use the contextual menu.

In addition, you can see and edit the Info.plist
 file in its true XML form: Control-click the Info.plist
 file in the Project navigator and choose Open As → Source Code from the contextual menu. (But editing an Info.plist
 as raw XML is risky, because if you make a mistake you can invalidate the XML, causing things to break with no warning.)

	Edit the target, and switch to the Info pane. The Custom iOS Target Properties section shows effectively the same information as editing the Info.plist
 in the editor.

	Edit the target, and switch to the General pane. Some of the settings here are effectively
 ways of editing the Info.plist
 . For example, when you click a Device Orientation checkbox here, you are changing the value of the “Supported interface orientations” key in the Info.plist
 . (Other settings here are effectively ways of editing build settings. For example, when you change the Deployment Target in the Deployment Info section, you are changing the value of the iOS Deployment Target build setting.)

Some values in the project’s Info.plist
 are processed at build time to transform them into their final values in the built app’s Info.plist
 . For example, the “Executable file” key’s value in the project’s Info.plist
 is
$(EXECUTABLE_NAME)

 ; for this will be substituted the value of the EXECUTABLE_NAME
 build environment variable (which, as I mentioned earlier, you can discover by means of a Run Script build phase). Also, some additional key–value pairs are injected into the Info.plist
 during processing.

For a complete list of the possible keys and their meanings, consult Apple’s document Information Property List Key Reference
 . I’ll talk more in Chapter 9
 about some Info.plist
 settings that you’re particularly likely to edit.

Nib Files

A nib file is a description of a piece of user interface in a compiled format contained in a file with the extension .nib
 . Every app that you write is likely to contain at least one nib file. You prepare these nib files by editing a .storyboard
 or .xib
 file graphically in Xcode; in effect, you are designing some objects that you want instantiated when the app runs and the nib file loads.

A nib file is generated during the build process by compilation either from a .xib
 file, which results in a single nib file, or from a .storyboard
 file, which results in a .storyboardc
 bundle containing multiple nib files. This compilation takes place by virtue of the .storyboard
 or .xib
 file being listed in the app target’s Copy Bundle Resources build phase.

Our Empty Window project generated from the Single View App template contains an interface .storyboard
 file called Main.storyboard
 . This one file is subject to special treatment as the app’s main storyboard, not because of its name, but because it is pointed to in the Info.plist
 file by the key “Main storyboard file base name” (UIMainStoryboardFile
), using its name (“Main”) without the .storyboard
 extension — examine the Info.plist
 file and see! The result is that as the app launches, the first nib generated from this .storyboard
 file is loaded automatically to help create the app’s initial interface.

I’ll talk more about the app launch process and the main storyboard later in this chapter. See Chapter 7
 for more about editing .storyboard
 and .xib
 files and how they create instances when your code runs.

Additional Resources

Resources
 are ancillary files embedded in your app bundle, to be fetched as needed when the app runs, such as images you want to display or sounds you want to play at some point during your app’s lifetime. Making such resources available when your app runs will usually be up to your code (or to the code implied by the loading of a nib file): basically, the runtime simply reaches into your app bundle and pulls out the desired resource. In effect, your app bundle is being treated as a folder full of extra stuff.

There are two ways to add resources to your project, corresponding to two different places where they will end up in your app bundle:

The Project navigator

If you add a resource to the Project navigator, also ensuring that it appears in the Copy Bundle Resources build phase, it is copied by the build process to the top level of your app bundle.

An asset catalog

If you add a resource to an asset catalog, then when the asset catalog is copied and compiled by the build process to the top level of your app bundle, the resource will be inside it.

I’ll describe both ways of adding resources to your project.

Resources in the Project navigator

To add a resource to your project through the Project navigator, choose File → Add Files to [Project], or drag the resource from the Finder into the Project navigator. A dialog appears in which you make the following settings (Figure 6-16
 ; you might have to click Options to see them):

[image: ios9 0616]

Figure 6-16.
 Options when adding a resource to a project

Destination

You should almost certainly check this checkbox (“Copy items if needed”). Doing so causes the resource to be copied into the project folder. If you leave this checkbox unchecked, your project will be relying on a file that’s outside the project folder, where you might delete or change it unintentionally. Keeping everything your project needs inside the project folder is far safer.

Added folders

This choice matters only if what you’re adding to the project is a folder; the difference is in how the project references the folder contents:

Create groups

The folder name becomes the name of a folder-linked group within the Project navigator. The folder contents appear in this group, but they are listed individually in the Copy Bundle Resources build phase, so by default they will all be copied individually to the top level of the app bundle.

Create folder references

The folder is shown in blue in the Project navigator (a folder reference
); moreover, it is listed as a folder in the Copy Bundle Resources build phase, meaning that the build process will copy the entire folder and its contents
 into the app bundle. This means that the resources inside the folder won’t be at the top level of the app bundle, but in a subfolder within it. Such an arrangement can be valuable if you have many resources and you want to separate them into categories (rather than clumping them all at the top level of the app bundle) or if the folder hierarchy among resources is meaningful to your app. The downside of this arrangement is that the code you write for accessing a resource will have to be specific about what subfolder of the app bundle contains that resource.

Add to targets

Checking the checkbox for a target causes the resource to be added to that target’s Copy Bundle Resources build phase. Thus you will almost certainly want to check it for the app target; why else would you be adding this resource to the project? If this checkbox accidentally goes unchecked and you realize later that a resource listed in the Project navigator needs to be added to the Copy Bundle Resources build phase for a particular target, you can add it manually, as I described earlier.

Resources in an asset catalog

Asset catalogs were invented originally as a way of helping you maintain image files, and they can now accommodate any kind of data file. Keeping your resources in an asset catalog provides many advantages over keeping them at the top level of the app bundle by way of the project navigator.

For example, in the case of image files, asset catalogs allow you to draw easily a distinction that otherwise would depend upon special conventions involving the name
 of the image file. Because iOS apps can run on single-resolution, double-resolution, and triple-resolution devices, you need up to three sizes of every image. In order to work properly with the framework’s image-loading methods, such related image files must obey a special naming convention — for example, listen.png
 , listen@2x.png
 , and listen@3x.png
 . The resulting proliferation of image files in the Project navigator can be overwhelming and error-prone.

Asset catalogs alleviate the problem by assigning those special names automatically behind the scenes
 .
 I edit the asset catalog, click the Plus button at the bottom of the first column, and choose New Image Set. The result is an image set called Image
 with slots for three images at three different sizes (Figure 6-17
). I drag the images from the Finder into their respective slots. The names of the original image files don’t matter! The images are automatically copied into the project folder (inside the asset catalog folder), and there is no need for me to specify the target membership of these image files, because they are part of an asset catalog which already has correct target membership. I can rename the image set to something more descriptive than Image
 — let’s call it listen
 . The result is that my code can now load the correct image for the current screen resolution by referring to it as "listen"
 , without regard to the original name (or extension) of the images.

[image: ios11 0617]

Figure 6-17.
 Slots for an image set in the asset catalog

A parallel procedure applies to resources of other kinds. Let’s say I want to add to my app bundle a sound file called theme.mp3
 . I edit the asset catalog, click the Plus button, and choose New Data Set. A data set called Data appears, with a single slot into which I can now drag my sound file. I rename the data set — let’s call it theme
 — and now my code can access this resource by the name "theme"
 (by means of the NSDataAsset
 class).

Asset catalogs also allow you to specify different versions of a resource to be supplied for different hardware configurations — the device’s screen resolution, for example (in the case of an image), or iPhone vs. iPad (for any type of resource).

Moreover, folders in the asset catalog can be used to provide namespaces: for example, if my theme
 data set is inside an asset catalog folder called music
 , and if I’ve checked Provides Namespace in the Attributes inspector for that folder, then the data set can be accessed by the name "music/theme"
 . Thus, the sheer organizational convenience of asset catalogs is, all by itself, an incentive to use them, rather than cluttering the Project navigator and the app bundle’s top level with resource files.

Code Files

The build process knows what code files to compile to form the app’s binary because they are listed in the app target’s Compile Sources build phase. In the case of our Empty Window project, these are ViewController.swift
 and AppDelegate.swift
 . As development of your app proceeds, you will probably add further code files to the project, typically in order to declare a new object type, and they, too, will be part of the app target by default, and so will be listed in its Compile Sources build phase.

When you choose File → New → File to create a new file, you can specify either the Cocoa Touch Class template or the Swift File template. The Swift File template is little more than a blank file: it imports the Foundation framework and that’s all. If your goal is to subclass a Cocoa class, the Cocoa Touch Class template will usually be more suitable; it imports the UIKit framework, plus Xcode will write the initial class declaration for you, and in the case of some commonly subclassed superclasses, such as UIViewController and UITableViewController, it even provides stub declarations of some of that class’s methods.

When the app launches, the system knows where to find the binary inside the app’s bundle because the app bundle’s Info.plist
 file has an “Executable file” key (CFBundleExecutable
) whose value is the name of the binary; by default, the binary’s name comes from the EXECUTABLE_NAME
 environment variable (such as “Empty Window”).

Frameworks and SDKs

A framework
 is a library of compiled code used by your code. Most of the frameworks you are likely to use when programming iOS will be Apple’s built-in frameworks. These frameworks are already part of the system on the device where your app will run; they live in
/System/Library/Frameworks

 on the device, though you can’t tell that because there’s no way (normally) to inspect a device’s file hierarchy directly.

Your compiled code also needs to be connected to those frameworks when the project is being built and run on your computer. To make this possible, the iOS device’s

/System/Library/Frameworks

 is duplicated on your computer, inside Xcode itself. This duplicated subset of the device’s system is called an SDK
 (for “software development kit”). Which SDK is used depends upon what destination you’re building for.

Linking
 is the process of hooking up your compiled code with the frameworks that it needs, even though those frameworks are in one place at build time and in another place at runtime.
 Thus, for example:

When you build your code

A copy of any needed frameworks is used. This copy lives in the
/System/Library/Frameworks

 folder inside the iPhone SDK, which is located inside the Xcode app bundle.

When your code runs on a device

The code, as it starts running, looks for the frameworks that it needs on the device itself, in the device’s top-level
/System/Library/Frameworks

 folder.

Used in this way, the frameworks are part of an ingenious mechanism whereby Apple’s code is effectively incorporated dynamically into your app when the app runs. The frameworks are the locus of all the stuff that every app might need to do; they are Cocoa. That’s a lot of stuff, and a lot of compiled code. Your app gets to share in the goodness and power of the frameworks because it is linked to them. Your code works as if the framework code were incorporated into it. Yet your app is relatively tiny; it’s the frameworks that are huge.

Linking takes care of connecting your compiled code to any needed frameworks, but it isn’t sufficient to allow your code to compile in the first place. The frameworks are full of classes (such as NSString) and methods (such as range(of:)
) that your code will call. To satisfy the compiler, the frameworks publish their API in header files, which your code can import. Thus, for example, your code can speak of NSString and can call range(of:)
 because it imports the NSString
 header. Actually, what your code imports is the UIKit
 header, which in turn imports the Foundation
 header, which in turn imports the NSString
 header, which declares the range(of:)
 method.

Thus, using a framework is a two-part process:

Import the framework’s header

Your code needs this information in order to compile successfully. Your code imports a framework’s header by using the import
 keyword, specifying either that framework or a framework that itself imports the desired framework. In Swift, you specify a framework by using its module name.

Link to the framework

The compiled executable binary needs to be connected to the frameworks it will use while running, effectively incorporating the compiled code from those frameworks. As your code is built, it is linked to any needed frameworks. There are two ways in which this can happen:

The target’s Link Binary With Libraries build phase

Frameworks explicitly listed in the target’s Link Binary With Libraries build phase are linked from the binary at build time.

Module-based autolinking

Swift uses modules
 , and modules can perform autolinking
 . In Objective-C, modules and autolinking are optional features, and are governed by build settings. But in Swift, use of modules and autolinking is automatic.

Modules are cached information stored in your computer’s ~/Library/Developer/Xcode/DerivedData/ModuleCache
 folder. Merely opening a Swift project causes any imported modules to be cached here. If you drill down into the ModuleCache
 folder, you’ll see the modules for over a dozen frameworks and headers (.pcm
 files). Swift’s use of modules simplifies the importing and linking process, and improves compilation times.

Our Empty Window project uses modules and autolinking exclusively. It does not do any explicit linking. If you look in the app target’s Link Binary With Libraries build phase, it is empty. The import UIKit
 statement at the top of its code files is sufficient to cause autolinking of all the frameworks it needs.

You can also create your own framework as part of your project. A framework is a module, so this can be a useful way to structure your code, as I described in Chapter 5
 when discussing Swift privacy. To make a new framework:

	Edit the target and choose Editor → Add Target.

	Select iOS; under Framework & Library, select Cocoa Touch Framework. Click Next.

	Give your framework a name; let’s call it Coolness. You can pick a language, but I’m not sure this makes any difference, as no code files will be created. The Project and Embed in Application pop-up menus should be correctly set by default. Click Finish.

A new Coolness framework target is created in your project. If you now add a .swift
 file to the Coolness target, and inside it define an object type and declare it public
 , then, back in one of your main app target’s files, such as AppDelegate.swift
 , your code can import Coolness
 and will then be able to see that object type and its public members.

The App Launch Process

It is useful to understand how your app actually gets up and running when it is launched (by Xcode or by a user). In particular, you should know how your code is initially called, how your app’s initial instances are created, and what all of that has to do with your storyboard.

The Entry Point

Having located and loaded the binary (which, as I’ve already explained, is possible because the name of the binary is specified in the Info.plist
 file), and having linked to any needed frameworks, the system must call into the binary’s code to start it running. But where? If this app were an Objective-C program, the answer would be clear. Objective-C is C, so the entry point is the main
 function. Our project would typically have a main.m
 file containing the main
 function, like this:

int main(int argc, char *argv[]) {
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil,
 NSStringFromClass([AppDelegate class]));
 }
}

The main
 function does two things:

	It sets up a memory management environment — the @autoreleasepool
 and the curly braces that follow it.

	It calls the UIApplicationMain
 function, which does the heavy lifting of helping your app pull itself up by its bootstraps and get running.

Our app, however, is a Swift program. It has no main
 function! Instead, Swift has a special attribute: @UIApplicationMain
 . If you look in the AppDelegate.swift
 file, you can see it, attached to the declaration of the AppDelegate class:

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

This attribute essentially does everything that the Objective-C main.m
 file was doing: it creates an entry point that calls UIApplicationMain
 to get the app started.

Under certain circumstances, you might like to remove the @UIApplicationMain
 attribute and substitute a main
 file. You are free to do this. Your file can be an Objective-C file or a Swift file. Let’s say it’s to be a Swift file. You would create a main.swift
 file and make sure it is added to the app target. The name is crucial, because a file called main.swift
 gets a special dispensation: it is allowed to put executable code at the top level of the file (Chapter 1
). The file should contain essentially the Swift equivalent of the Objective-C call to UIApplicationMain
 , like this:

import UIKit
UIApplicationMain(
 CommandLine.argc,
 UnsafeMutableRawPointer(CommandLine.unsafeArgv)
 .bindMemory(
 to: UnsafeMutablePointer<Int8>.self,
 capacity: Int(CommandLine.argc)),
 nil,
 NSStringFromClass(AppDelegate.self)
)

Why might you do that sort of thing? Presumably, it would be because you want to do other things in the main.swift
 file, or because you want to customize the call to UIApplicationMain
 .

UIApplicationMain

Regardless of whether you write your own main.swift
 file or you rely on the Swift @UIApplicationMain
 attribute, you are calling UIApplicationMain
 . This one function call is the primary thing your app does. Your entire app is really nothing but a single gigantic call to UIApplicationMain
 ! Moreover, UIApplicationMain
 is responsible for solving some tricky problems as your app gets going. Where will your app get its initial instances? What instance methods will initially be called on those instances? Where will your app’s initial interface come from?
 UIApplicationMain
 to the rescue!

Here’s what happens when your app launches and UIApplicationMain
 is called:

	
UIApplicationMain
 creates your app’s first instance
 — the shared application instance, which subsequently is to be accessible in code as UIApplication.shared
 .

 The third argument in the call to UIApplicationMain
 specifies, as a string, what class the shared application instance should be an instance of. If this argument is nil
 , as will usually be the case, the default class is UIApplication. If, however, you needed to subclass UIApplication, you would specify that subclass by substituting a different value, such as NSStringFromClass(MyAppSubclass.self)
 (depending on what the subclass is called), as the third argument in an explicit call to UIApplicationMain
 .

	
UIApplicationMain
 also creates your app’s second instance
 — the application instance’s delegate
 . Delegation is an important and pervasive Cocoa pattern, described in detail in Chapter 11
 . It is crucial that every app you write have an app delegate instance. The fourth argument in the call to UIApplicationMain
 specifies, as a string, what class the app delegate instance should be. In our manual version of main.swift
 , that specification is NSStringFromClass(AppDelegate.self)
 . If we use the @UIApplicationMain
 attribute, that attribute is attached, by default, to the AppDelegate class declaration in AppDelegate.swift
 ; the attribute means: “This
 is the app delegate class!”

	If there is a main storyboard (as specified by the Info.plist
 file), UIApplicationMain
 loads it and looks inside it to find the view controller that is designated as this storyboard’s initial view controller
 (or storyboard entry point
);
 it instantiates this view controller, thus creating your app’s third instance
 , a UIViewController subclass. In the case of our Empty Window project, as constructed for us from the Single View App template, that view controller will be an instance of the class called ViewController; the code file defining this class, ViewController.swift
 , was also created by the template.

	If there is a main storyboard, UIApplicationMain
 now creates your app’s window
 — this is your app’s fourth instance
 , an instance of UIWindow (or your app delegate can substitute an instance of a UIWindow subclass). It assigns this window instance as the app delegate’s window
 property; it also assigns the initial view controller instance as the window instance’s rootViewController
 property. This view controller is now the app’s root view controller
 .

	
UIApplicationMain
 now turns to the app delegate instance and starts calling some of its code, such as application(_:didFinishLaunchingWithOptions:)
 . This is an opportunity for your own code to run! application(_:didFinishLaunchingWithOptions:)
 is a good place to put your code that initializes values and performs startup tasks; but you don’t want anything time-consuming to happen here, because your app’s interface still hasn’t appeared.

	If there is a main storyboard, UIApplicationMain
 now causes your app’s interface to appear. It does this by calling the UIWindow instance method makeKeyAndVisible
 .

	The window is now about to appear. This, in turn, causes the window to turn to the root view controller and tell it to obtain its main view, which will occupy and appear in the window. If this view controller gets its view from a .storyboard
 or .xib
 file, that view nib file is now loaded; its objects are instantiated and initialized, and they become the objects of the initial interface: the view is placed into the window, where it and its subviews are visible to the user. The view controller’s viewDidLoad
 is also called at this time — another early opportunity for your code to run.

The app is now launched and running! It has an initial set of instances — at a minimum, the shared application instance, the window, the initial view controller, and the initial view controller’s view and whatever interface objects it contains. Some of your code has run, and we are now off to the races: UIApplicationMain
 is still running (like Charlie on the M.T.A., UIApplicationMain
 never returns), and is just sitting there, watching for the user to do something, maintaining the event loop
 , which will respond to user actions as they occur. Henceforth, your app’s code will be called only in response to Cocoa events (as I’ll explain in Chapter 11
).

App Without a Storyboard

In my description of the app launch process, I used several times the phrase “if there is a main storyboard.” In the Xcode app templates, such as the Single View App template that we used to generate the Empty Window project, there is
 a main storyboard. It is possible, however, not
 to have a main storyboard. This way of structuring an app project is unusual nowadays, but it is quite viable; in fact, some of my own apps have no main storyboard.

Without a storyboard, things like creating a window instance, giving it a root view controller, assigning it to the app delegate’s window
 property, and calling makeKeyAndVisible
 on the window to show the interface, must be done by your code. To see what I mean, make a new project starting with the Single View App template; let’s call it Truly Empty. Now follow these steps:

	Edit the target. In the General pane, select “Main” in the Main Interface field and delete it (and press Tab to set this change).

	In the Project navigator, delete Main.storyboard
 from the project.

	Edit AppDelegate.swift
 ; select and delete its entire code content.

	To make a minimal working app, edit AppDelegate.swift
 in such a way as to recreate the AppDelegate class with just enough code to create and show the window, as shown in Example 6-1
 .

Example 6-1.
 An App Delegate class with no storyboard

import UIKit
@UIApplicationMain
class AppDelegate : UIResponder, UIApplicationDelegate {
 var window : UIWindow?
 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?)
 -> Bool {
 self.window = self.window ?? UIWindow()
 self.window!.backgroundColor = .white
 self.window!.rootViewController = ViewController()
 self.window!.makeKeyAndVisible()
 return true
 }
}

The result is a minimal working app with an empty white window. You can prove to yourself that the app is working normally by editing ViewController.swift
 so that its viewDidLoad
 method changes the main view’s background color:

override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = .red
}

Run the app again; sure enough, the background is now red.

You can actually omit steps 1 and 2, and Example 6-1
 will still work. What you then have is an app that has
 a main storyboard, but ignores
 it at launch time: it creates its root view controller in code, overriding the automatic behavior of UIApplicationMain
 . This approach can be useful when you want the choice of root view controller (the storyboard’s initial view controller or some other view controller) to depend on the circumstances; a common case in point is an initial sign-in screen that shouldn’t appear again once the user has signed in.

Renaming Parts of a Project

The name assigned to your project at creation time is used in many places throughout the project, leading beginners to worry that they can never rename a project without breaking something. But fear not!

First of all, you don’t usually need
 to rename the project. Typically, what you want to change is the name of the app
 — the name that the user sees on the device, associated with this app’s icon. The project name is not
 that name! Indeed, the project name is not a name that users will ever
 see. If all you want to do is change the name that appears visibly associated with the app on the device, change (or create) the “Bundle Display Name” in the Info.plist
 . In Xcode, you can do this easily by editing the Display Name text field in the General pane when you edit the target.

Still, you can
 rename a project, and it’s easy to do: select the project listing at the top of the Project navigator, press Return to make its name editable, type the new name, and press Return again. Xcode presents a dialog proposing to change some other names to match, including the app target and the built app — and, by implication, various relevant build settings. You should feel free to accept.

Changing the project name (or target name) does not automatically change the scheme name to match. There is no particular need to do so, but you can change a scheme name freely; choose Product → Manage Schemes and click on the scheme name to make it editable.

Warning

New in Xcode 9, when you change the name of a folder-linked group, Xcode automatically changes the name of the corresponding folder on disk. But Xcode does not
 change build settings, such as the Info.plist File build setting, that depend upon the name of the corresponding folder on disk. I regard that as a bug, because it means that changing the name of a group can prevent your project from building (unless you also manually change those build settings).

You can change the name of the project folder in the Finder at any time, and you can move the project folder in the Finder at will, because all build setting references to file and folder items in the project folder are relative.

Chapter 7.
 Nib Management

 In Chapter 4
 , I talked about ways of obtaining an instance. You can directly instantiate an object type:

let v = UIView()

Or you can obtain a reference to an already existing instance:

let v = self.view.subviews[0]

But there is a third way: you can load a nib
 . A nib
 is a file, in a special format, consisting of instructions for creating and configuring instances. To load a nib means, in effect, to tell that nib to follow those instructions: it does
 create and configure those instances.

My example of a UIView instance is apt, because a UIView is just the kind of instance a nib is likely to create. Nibs are edited in Xcode using a graphical interface, much like a drawing program. The idea is that you design some interface objects — mostly instances of UIView and UIView subclasses — that you want to use in your app when it runs. When your app does run, and when the moment comes where you actually need those interface objects (typically because you’re about to display them in your visible interface), you load the nib, the nib-loading process creates and configures the instances, and you receive the instances and insert them into your app’s actual interface.

In fact, because you’ll mostly be using view controllers — subclasses of UIViewController — you won’t even have to do that! View controllers already know how to work hand in hand with nibs: each of your app’s view controllers will load its own view nib and retrieve the resulting instances and put them into your interface for you, automatically
 .

You do not have
 to use nibs to create your interface objects. The loading of a nib does nothing that you could not have done directly, in code. You can instantiate a UIView or UIView subclass, you can configure it, you can construct a hierarchy of views, you can place that view hierarchy into your interface — manually, step by step, entirely in code. A nib is just a device for making that process simpler and more convenient.

Nibs are probably the least understood aspect of iOS programming. Many beginners go on using nibs without knowing what they really are, how they really work, or how to manipulate them in code — as if nibs were some kind of impenetrable magic. That’s a huge mistake. Nibs are not
 magic, and they are not hard to understand. Failure to understand nibs opens you up to all kinds of elementary, confusing mistakes that can be avoided or corrected merely by grasping the basic facts outlined in this chapter.

Note

The name nib
 , or nib file
 , has nothing to do with fountain pens or bits of chocolate. The graphical nib-design aspect of Xcode, which I call the nib editor
 ,
 used to be (up through Xcode 3.2.x) a separate application called Interface Builder. (The nib editor environment within Xcode is still often referred to as Interface Builder.) The files created by Interface Builder were given the .nib
 file extension as an acronym for “NeXTStep Interface Builder.”
 Nowadays, the file you edit directly in the nib editor will be either a .storyboard
 file or a .xib
 file; when the app is built, they are compiled into nib files (see Chapter 6
).

Are Nibs Necessary?

Since nibs are ultimately just sources of instances, you might wonder whether it is possible to do without them. Those same instances could be generated in code, so wouldn’t it be possible to dispense with nibs altogether? The simple answer is: Yes, it would. It’s quite possible to write a complex app that lacks a single .storyboard
 or .xib
 file (I’ve done it). The practical question is one of balance. Most apps use nib files as a source of at least some interface objects; but there are some aspects of interface objects that can be customized only in code, and sometimes it’s easier to generate those interface objects entirely in code at the outset. In real life your projects will probably involve some code-generated interface objects and some nib-generated interface objects (which may themselves be further modified or configured in code).

The Nib Editor Interface

Let’s explore Xcode’s nib editor interface. In Chapter 6
 , we created a simple project, Empty Window, directly from the Single View App template; it contains a storyboard file, so we’ll use that. In Xcode, open the Empty Window project, locate Main.storyboard
 in the Project navigator, and click to edit it.

[image: ios11 0701]

Figure 7-1.
 Editing a nib file

Figure 7-1
 shows the project window after selecting Main.storyboard
 . (I’ve made some additional adjustments to make the screenshot fit on the page.) The interface may be considered in four pieces:

	The bulk of the editor is devoted to the canvas
 , where you physically design your app’s interface. The canvas portrays views in your app’s interface and things that can contain views. A view
 is an interface object, which draws itself into a rectangular area. The phrase “things that can contain views” is my way of including view controllers, which are represented in the canvas even though they are not drawn in your app’s interface; a view controller isn’t a view, but it has
 a view.

	At the left of the editor is the document outline
 , listing the storyboard’s contents hierarchically by name. It can be hidden by dragging its right edge or by clicking the button at the bottom left corner below the the canvas.

	The inspectors in the Utilities pane let you edit details of the currently selected object.

	The libraries in the Utilities pane, especially the Object library, are your source of interface objects to be added to the nib.

Document Outline

The document outline portrays hierarchically the relationships between the objects in the nib. This structure differs slightly depending on whether you’re editing a .storyboard
 file or a .xib
 file.

In a storyboard file, the primary constituents are scenes
 .
 A scene is, roughly speaking, a single view controller, along with some ancillary material; every scene has a single view controller at its top level.

A view controller isn’t an interface object, but it manages an interface object, namely its view (or main view
).

 When a view controller is shown in the nib editor, its main view usually appears inside the view controller in the canvas. Thus, in Figure 7-1
 , the large highlighted rectangle in the canvas is a view controller’s main view, and is actually inside a view controller.

The view controller itself can be seen and selected in the document outline. It is also represented as an icon in the scene dock
 , which appears above the view controller in the canvas when anything in this scene is selected (Figure 7-2
). Each view controller in a storyboard file constitutes one scene. In the document outline, this scene is portrayed as a hierarchical collection of names. At the top level of the document outline are the scenes themselves. At the top level of each scene are (more or less) the same objects that appear in the view controller’s scene dock: the view controller itself, along with two proxy objects
 , the First Responder token and the Exit token. These objects — the ones displayed as icons in the scene dock, and shown at the top level of the scene in the document outline — are the scene’s top-level objects
 .

[image: ios11 0702]

Figure 7-2.
 A view controller selected in a storyboard

Objects listed in the document outline are of two kinds:

Nib objects

The view controller, along with its main view and any subviews that we care to place in that view, are real objects — potential objects that will be turned into actual instances when the nib is loaded by the running app. Such real objects to be instantiated from the nib are also called nib objects
 .

Proxy objects

The proxy objects (here, the First Responder and Exit tokens) do not
 represent instances that will come from the nib when it is loaded.
 Rather, they represent other objects, and are present to facilitate communication between nib objects and other objects (I’ll give examples later in this chapter). You can’t create or delete a proxy object; the nib editor shows them automatically.

(Also present in the document outline in Figure 7-2
 is the Storyboard Entry Point. This isn’t an object of any kind; it’s just an indication that this view controller is the storyboard’s initial view controller — in its Attributes inspector, Is Initial View Controller is checked — and corresponds to the right-pointing arrow seen at the left of this view controller in the canvas in Figure 7-1
 .)

Most nib objects listed in a storyboard’s document outline will depend hierarchically upon a scene’s view controller. For example, in Figure 7-2
 , the view controller has a main view; that view is listed as hierarchically dependent on the view controller. That makes sense, because this view belongs to this view controller. Moreover, any further interface objects that we drag into the main view in the canvas will be listed in the document outline as hierarchically dependent on the view. That makes sense, too. A view can contain other views (its subviews
) and can be contained by another view (its superview
). One view can contain many subviews, which might themselves contain subviews. But each view can have only one immediate superview. Thus there is a hierarchical tree of subviews contained by their superviews with a single object at the top. The document outline portrays that tree — as an outline.

In a .xib
 file, there are no scenes. What would be, in a .storyboard
 file, the top-level objects of a scene become, in a .xib
 file, the top-level objects of the nib itself; and the top-level interface object of a .xib
 file is usually a view. A .xib
 file can contain a view controller, but it usually doesn’t. A .xib
 file’s top-level view might well be a view that is to serve as a view controller’s main view, but that’s not a requirement. Figure 7-3
 shows a .xib
 file with a structure parallel to the single scene of Figure 7-2
 .

[image: ios11 0703]

Figure 7-3.
 A .xib file containing a view

The document outline in Figure 7-3
 lists three top-level objects. Two of them are proxy objects, termed Placeholders in the document outline: the File’s Owner, and the First Responder. The third is a real object, a view; it will be instantiated when the nib is loaded as the app runs. The document outline in a .xib
 file can’t be completely hidden; instead, it is collapsed into a set of icons representing the nib’s top-level objects, similar to a scene dock in a storyboard file, and often referred to simply as the dock
 (Figure 7-4
).

[image: ios8 0704]

Figure 7-4.
 The dock in a .xib file

At present, the document outline may seem unnecessary, because there is very little hierarchy; all objects in Figures 7-2
 and 7-3
 are readily accessible in the canvas. But when a storyboard contains many scenes, and when a view contains many levels of hierarchically arranged objects, you’re going to be very glad of the document outline, which lets you survey the contents of the nib in a nice hierarchical structure, and where you can locate and select the object you’re after. You can also rearrange the hierarchy here; for example, if you’ve made an object a subview of the wrong view, you can reposition it within this outline by dragging its name.

Tip

You can also select objects using the jump bar at the top of the editor:
 the last jump bar path component is a hierarchical pop-up menu similar to the document outline.

If the names of nib objects in the document outline seem generic and uninformative, you can change them. The name is technically a label
 , and has no special meaning, so feel free to assign nib objects labels that are useful to you. Select a nib object’s label in the document outline and press Return to make it editable, or select the object and edit the Label field in the Document section of the Identity inspector.

Canvas

The canvas provides a graphical representation of a view and its subviews, similar to what you’re probably accustomed to in any drawing program.
 The canvas is scrollable and automatically accommodates however many graphical representations it contains, and can also be zoomed (choose Editor → Zoom, or use the contextual menu or the zoom buttons at the bottom of the canvas).

Our simple Empty Window project’s Main.storyboard
 contains just one scene, so the only thing it represents in the canvas is the scene’s view controller with its main view inside it. It happens that this view controller will become our app’s window’s root view controller when the app runs; therefore its view will occupy the entire window, and will effectively be our app’s initial interface (see Chapter 6
). That gives us an excellent opportunity to experiment: any visible changes we make within this view should be visible when we subsequently build and run the app. To prove this, let’s add a subview:

	Start with the nib editor looking more or less like Figure 7-1
 .

	Look at the Object library (Command-Option-Control-3). If it’s in icon view (a grid of icons without text), click the button at the left of the filter bar to put it into list view. Click in the filter bar (or choose Edit → Filter → Filter in Library, Command-Option-L) and type “button” so that only button objects are shown in the list.
 The Button object is listed first.

	Drag the Button object from the Object library into the view controller’s main view in the canvas (Figure 7-5
), and let go of the mouse.

[image: ios11 0705]

Figure 7-5.
 Dragging a button into a view

A button is now present in the view in the canvas. The move we’ve just performed — dragging from the Object library into the canvas — is extremely characteristic; you’ll do it often as you design your interface.

Much as in a drawing program, the nib editor provides features to aid you in designing your interface. Here are some things to try:

	Select the button: resizing handles appear. (If you accidentally select it twice and the resizing handles disappear, select the view and then the button again.)

	Using the resizing handles, resize the button to make it wider: dimension information appears.

	Drag the button near an edge of the view: a guideline appears, showing standard spacing. Similarly, drag the button near the center of the view: a guideline shows you when the button is centered.

	With the button selected, hold down the Option key and hover the mouse outside the button: arrows and numbers appear showing the distance between the button and the edges of the view. (If you accidentally clicked and dragged while you were holding Option, you’ll now have two buttons. That’s because Option-dragging an object duplicates it. Select the unwanted button and press Delete to remove it.)

	Control-Shift-click on the button: a menu appears, letting you select the button or whatever’s behind it (in this case, the view, as well as the view controller because the view controller acts as a sort of top-level background to everything we’re doing here).

	Double-click the button’s title. The title becomes editable. Give it a new title, such as “Hello.” Press Return to set the new title.

To prove that we really are designing our app’s interface, we’ll run the app:

	Drag the button to a position near the top left
 corner of the canvas. (If you don’t do this, the button could be off the screen when the app runs.)

	Examine the Debug → Activate / Deactivate Breakpoints menu item. If it says Deactivate Breakpoints, choose it; we don’t want to pause at any breakpoints you may have created while reading the previous chapter.

	Make sure the destination in the Scheme pop-up menu is an iPhone simulator, such as iPhone 7 Plus.

	Choose Product → Run (or click the Run button in the toolbar).

After a heart-stopping pause, the Simulator opens, and presto, our empty window is empty no longer (Figure 7-6
); it contains a button! You can tap this button with the mouse, emulating what the user would do with a finger; the button highlights as you tap it.

[image: ios11 0706]

Figure 7-6.
 The Empty Window app’s window is empty no longer

Inspectors and Libraries

In addition to the File and Quick Help inspectors, four inspectors appear specifically in conjunction with the nib editor, and apply to whatever object is selected in the document outline, dock, or canvas:

Identity inspector (Command-Option-3)

The first section of this inspector, Custom Class, is the most important. Here you learn, and can change, the selected object’s class. Some situations in which you’ll need to change the class of an object in the nib appear later in this chapter.

Attributes inspector (Command-Option-4)

Settings here correspond to properties and methods that you might use to configure the object in code.
 For example, selecting our view and choosing from the Background pop-up menu in the Attributes inspector corresponds to setting the view’s backgroundColor
 property in code. Similarly, selecting our button and typing in the Title field is like calling the button’s setTitle(_:for:)
 method.

The Attributes inspector has sections corresponding to the selected object’s class inheritance. For example, the UIButton Attributes inspector has three sections: in addition to a Button section, there’s a Control section (because a UIButton is also a UIControl) and a View section (because a UIControl is also a UIView).

Size inspector (Command-Option-5)

The X, Y, Width, and Height fields determine the object’s position and size within its superview, corresponding to its frame
 property in code; you can equally do this in the canvas by dragging and resizing, but numeric precision can be desirable.

If autolayout is turned on (the default for new .storyboard
 and .xib
 files), the Size inspector also displays the selected object’s autolayout constraints, plus the buttons at the lower right of the canvas help you manage alignment, positioning, and constraints.

Connections inspector (Command-Option-6)

I’ll demonstrate use of the Connections inspector later in this chapter.

Two libraries are of particular importance when you’re editing a nib:

Object library (Command-Option-Control-3)

This library is your source for objects that you want to add to the nib.

Media library (Command-Option-Control-4)

This library lists media in your project, such as images that you might want to drag into a UIImageView — or directly into your interface, in which case a UIImageView is created for you.

Nib Loading

A nib file is a collection of potential instances — its nib objects. Those instances become real only if, while your app is running, the nib is loaded
 . At that moment, the nib objects contained in the nib are transformed into instances that are available to your app.

This architecture is a source of great efficiency. A nib usually contains interface; interface is relatively heavyweight stuff. A nib isn’t loaded until it is needed; indeed, it might never be loaded. Thus this heavyweight stuff won’t come into existence until and unless it is needed. In this way, memory usage is kept to a minimum, which is important because memory is at a premium in a mobile device. Also, loading a nib takes time, so loading at launch time only just the nibs needed to generate the app’s initial
 interface, and no more, makes launching faster.

There’s no such thing as “unloading” a nib. The job of the nib-loading process is to deliver some instances; when a nib is loaded, those instances are delivered, and the nib’s work, for that moment, is done. Henceforward it’s up to the running app to decide what to do with the instances that just sprang to life. It must hang on to them for as long as it needs them, and will let them go out of existence when they are no longer needed.

Think of the nib file as a set of instructions for generating instances; whenever the nib is loaded, those instructions are followed. The same nib file can thus be loaded multiple times
 , generating a new set of instances each time. Thus, a nib file is also a way of making copies of a view hierarchy. For example, a nib file might contain a piece of interface that you intend to use in several different places in your app. A nib file representing a single row of a table view might be loaded a dozen times in order to generate a dozen visible rows of that table view.

When Nibs Are Loaded

Here are some of the chief circumstances under which a nib file is commonly loaded while an app is running:

A view controller is instantiated from a storyboard

A storyboard is a collection of scenes. Each scene starts with a view controller. When that view controller is needed, it is instantiated from the storyboard. This means that a nib containing the view controller is loaded.

A view controller may be instantiated from a storyboard automatically
 . For example, as your app launches, if it has a main storyboard, the runtime looks for that storyboard’s initial view controller
 (entry point) and instantiates it (see Chapter 6
). Similarly, a storyboard typically contains several scenes connected by segues; when a segue is performed, the destination scene’s view controller is instantiated
 .

It is also possible for your code to instantiate a view controller from a storyboard manually
 . To do so, you start with a UIStoryboard instance, and then:

	You can instantiate the storyboard’s initial view controller by calling instantiateInitialViewController
 .

	You can instantiate any view controller whose scene is named within the storyboard by an identifier string by calling instantiateViewController(withIdentifier:)
 .

A view controller loads its main view from a nib

A view controller has a main view. But a view controller is a lightweight object (it’s just some code), whereas its main view is a relatively heavyweight object. Therefore, a view controller, when it is instantiated, lacks its main view
 . It obtains its main view later
 , when that view is needed because it is to be placed into the interface. (We say that a view controller loads its view lazily
 .) A view controller can obtain its main view in several ways; one way is to load its main view from a nib.

If a view controller belongs to a scene in a storyboard, and if, as will usually be the case, it contains its view in that storyboard’s canvas (as in our Empty Window example project), then there are two
 nibs involved: the nib containing the view controller, and the nib containing its main view. The nib containing the view controller was loaded in order to instantiate the view controller, as I just described; later, when that view controller instance needs its main view, the main view nib is loaded automatically
 , and the whole interface connected with that view controller springs to life.

Another fairly common configuration is that the view controller is instantiated in your code, not
 from a storyboard, but by calling the UIViewController designated initializer init(nibName:bundle:)
 . The nibName:
 parameter tells this view controller instance the name of a nib — in this case, a nib generated from a .xib
 file in your project. Later, when the view controller needs its main view, it automatically
 loads that nib and extracts its main view from it.

Your code explicitly loads a nib file

If a nib file comes from a .xib
 file, your code can load it manually
 , by calling one of these methods:

loadNibNamed(_:owner:options:)

A Bundle instance method. Usually, you’ll direct it to Bundle.main
 .

instantiate(withOwner:options:)

A UINib instance method. The nib in question was specified when UINib was instantiated and initialized with init(nibName:bundle:)
 .

Manual Nib Loading

In real life, most loading of nibs in your app will probably take place in one of the first two ways I just described — a view controller nib is loaded automatically, or a view controller loads its main view nib automatically. But the third way, where you load a nib manually in code, is perfectly viable, and you might use it sometimes. And because you do it manually, it’s the most educational way to understand the nib-loading process. So let’s practice loading a nib manually.

First we’ll create and configure a .xib
 file in our Empty Window project:

	In the Empty Window project, choose File → New → File and specify iOS → User Interface → View. This will be a .xib
 file containing a UIView instance. Click Next.

	In the Save dialog, accept the default name, View, for the new .xib
 file. Click Create.

	We are now back in the Project navigator; our View.xib
 file has been created and selected, and we’re looking at its contents in the editor. Those contents consist of a single UIView.

	Our view is too large for purposes of this demonstration, so select it and, in the Attributes inspector, change the Size pop-up menu, under Simulated Metrics, to Freeform. Handles appear around the view in the canvas; drag them to make the view smaller. About 300×250 would be a good size.

	Populate the view with some arbitrary subviews, dragging them into it from the Object library. You can also configure the view itself; for example, in the Attributes inspector, change its background color (Figure 7-7
).

[image: ios11 0706b]

Figure 7-7.
 Designing a view in a .xib file

Our goal now is to load
 this nib file, manually, in code, when the app runs. Edit ViewController.swift
 and, in the viewDidLoad
 method body, insert this line of code:

Bundle.main.loadNibNamed("View", owner: nil)

Build and run the app. Hey, what happened? Where’s the designed view from View.xib
 ? Did our nib fail to load?

No. Our nib did not
 fail to load. We loaded it! But we’ve neglected to do everything we need to do. There are three
 tasks you have to perform when you load a nib:

	Load the nib.

	Obtain the instances that it creates as it loads.

	Do something with those instances.

We performed the first
 task — we loaded the nib — but we didn’t obtain any instances from it. Thus, those instances were created and then vanished in a puff of smoke!
 In order to prevent that, we need to capture
 those instances somehow. The call to loadNibNamed(_:owner:)
 returns an array of the top-level nib objects instantiated from the loading of the nib. Those are the instances we need to capture! We have only one top-level nib object — the UIView — so it is sufficient to capture the first (and only) element of this array. Rewrite our code to look like this:

let arr = Bundle.main.loadNibNamed("View", owner: nil)!
let v = arr[0] as! UIView

We have now performed the second
 task: we’ve captured the instances that we created by loading the nib. The variable v
 now refers to a brand-new UIView instance, instantiated from the nib by loading it.

But still
 nothing seems to happen when we build and run the app, because we aren’t doing
 anything with that UIView. That’s the third
 task. Let’s fix that by doing something clear and dramatic with the UIView: we’ll put it into our interface! Rewrite our code once again:

let arr = Bundle.main.loadNibNamed("View", owner: nil)!
let v = arr[0] as! UIView
self.view.addSubview(v)

Build and run the app. There’s our view! This proves that our loading of the nib worked: we can see
 , in our running app’s interface, the view that we designed in the nib (Figure 7-8
).

[image: ios11 0706c]

Figure 7-8.
 A nib-loaded view appears in our interface

Connections

A connection
 is an entity in a nib file that unites two nib objects, running from one to the other. The connection has a direction: that’s why I use the words “from” and “to” to describe it. I’ll call the two objects the source
 and the destination
 of the connection.

There are two kinds of connection: outlet connections and action connections. The rest of this section describes them, explains how to create and configure them, and discusses the nature of the problems that they are intended to solve.

Outlets

When a nib loads and its instances come into existence, there’s a problem: those instances are useless unless you can get a reference to them. In the preceding section, we solved that problem by capturing the array of top-level objects instantiated by the loading of the nib. But there’s another way: use an outlet. This approach is more complicated — it requires some advance configuration, which can easily go wrong. But it is also more common, especially when nibs are loaded automatically.

An outlet
 is a connection that has a name
 , which is effectively just a string. When the nib loads, something unbelievably clever happens. The source object and the destination object are no longer just potential objects in a nib; they are now real, full-fledged instances. The outlet’s name is now immediately used to locate an instance property
 with that same name in the outlet’s source object, and the destination object is assigned to that property
 . The source object now has a reference to the destination object!

For example, suppose that the following four things are true:

	As defined in code, a Dog has a master
 instance property which is typed as Person.

	There’s a Dog object and a Person object in a nib.

	We make an outlet from the Dog object to the Person object in the nib.

	That outlet is named "master"
 .

In that case, when the nib loads and the Dog instance and the Person instance are created, that Person instance will be assigned as the value of that Dog instance’s master
 property (Figure 7-9
).

[image: ios8 0707]

Figure 7-9.
 How an outlet provides a reference to a nib-instantiated object

As you can see, for an outlet to work, preparation must be performed in two different places
 : in the class of the source object, where the instance property is declared, and in the nib, where the outlet is created and configured. This is a bit tricky; Xcode does try to help you get it right, but it is still possible to mess it up. (I will discuss ways of messing it up, in detail, later in this chapter.)

The Nib Owner

Consider once again the view-loading example illustrated in Figure 7-8
 . We would now like to implement that example using an outlet connection. But there is an important difference between the Dog-and-Person example I just outlined and the view-loading example. For our ViewController to use an outlet to capture a reference to a view instance created from a nib, we need an outlet that runs from an object outside
 the nib (the view controller) to an object inside
 the nib (the view).

That seems metaphysically impossible — but it isn’t. The nib editor cleverly permits such an outlet to be created, using the nib owner object
 . Before I explain what the nib owner is, I’ll tell you where to find the nib owner object in the nib editor:

In a storyboard scene

In a storyboard scene, the nib owner is the top-level view controller. It is the first object listed for that scene in the document outline, and the first object shown in the scene dock.

In a .xib
 file

In a .xib
 file, the nib owner is a proxy object. It is the first object shown in the document outline or dock, and is listed under Placeholders as the File’s Owner.

So exactly what is
 the nib owner object in the nib editor? It represents an instance that already
 exists outside
 the nib at the time that the nib is loaded. When the nib is loaded, the nib-loading mechanism doesn’t
 instantiate this object; it is already
 an instance. Instead, the nib-loading mechanism substitutes the real, already existing instance for the nib owner object, using it to fulfill any connections that involve the nib owner.

But wait! How does the nib-loading mechanism know which
 real, already existing instance to substitute for the nib owner object in the nib? It knows because it is told, in one of two ways, at nib-loading time:

Your code loads the nib

If your code loads a nib manually, either by calling loadNibNamed(_:owner:options:)
 or by calling instantiate(withOwner:options:)
 , you specify an owner object as the owner:
 argument.

A view controller loads the nib

If a view controller instance loads a nib automatically in order to obtain its main view, the view controller instance specifies itself
 as the owner object.

For example, return to our Dog object and Person object. Suppose that this time, the following five things are true:

	As defined in code, a Dog has a master
 instance property which is typed as Person.

	There is a Person nib object in our nib, but no
 Dog nib object. Instead, the nib owner object
 is a Dog.

	We configure an outlet in the nib from the Dog nib owner object
 to the Person object.

	That outlet is named "master"
 .

	When we load the nib, we specify an existing Dog instance as owner
 .

In that case, the nib-loading mechanism will match
 the Dog nib owner object with the already existing actual Dog instance that we specified as owner, and will assign the newly instantiated Person instance as that
 Dog instance’s master
 (Figure 7-10
).

[image: ios8 0708]

Figure 7-10.
 An outlet from the nib owner object

Return now to Empty View, and let’s reconfigure things to demonstrate this mechanism. We’re already loading the View nib in code in ViewController.swift
 . This code is running inside a ViewController instance. We want to use that instance as the nib owner. This will be a little tedious to configure, but bear with me, because understanding how to use this mechanism is crucial. Here we go:

	First, we need an instance property in ViewController. At the start of the body of the ViewController class declaration, insert the property declaration, like this:class ViewController: UIViewController {
 @IBOutlet var coolview : UIView!

The var
 declaration you already understand; we’re making an instance property called coolview
 . It is declared as an Optional because it won’t have a “real” value when the ViewController instance is created; it’s going to get that value through the loading of the nib, later. The @IBOutlet
 attribute is a hint to Xcode to allow us to create the outlet in the nib editor.

	Edit View.xib
 . Our first step must be to ensure that the nib owner object is designated as a ViewController instance. Select the File’s Owner proxy object and switch to the Identity inspector. In the first text field, under Custom Class, set the Name value as ViewController
 . Tab out of the text field and save.

	Now we’re ready to make the outlet! In the document outline, hold down the Control key and drag from the File’s Owner object to the View; a little line follows the mouse as you drag. Release the mouse. A little HUD
 (heads-up display) appears, listing possible outlets we are allowed to create (Figure 7-11
). There are two of them: coolview
 and view
 . Click coolview
 (not
 view
 !).

	Finally, we need to modify our nib-loading code. We no longer need to capture the top-level array of instantiated objects. That’s the whole point of this exercise! Instead, we’re going to load the nib with ourself as owner
 . This will cause our coolview
 instance property to be set automatically, so we can proceed to use it immediately:Bundle.main.loadNibNamed("View", owner: self)
self.view.addSubview(self.coolview)

[image: ios10 0708b]

Figure 7-11.
 Creating an outlet

Build and run. It works! The first line loaded the nib and set our coolview
 instance property
 to the view instantiated from the nib. Thus, the second line can display self.coolview
 in the interface, because self.coolview
 now is
 that view.

Let’s sum up what we just did. Our preparatory configuration was a little tricky, because it was performed in two places — in code, and in the nib:

	In code, there must be an instance property
 in the class whose instance will act as owner when the nib loads.

	That property must be marked
 as @IBOutlet
 ; otherwise, Xcode won’t permit us to create the outlet in the nib editor later.

	In the nib editor, the class of the nib owner object
 must be set to the class whose instance will act as owner when the nib loads.

	In the nib editor, an outlet
 must be created, with the same name as the property, from the nib owner to some nib object. (This will be possible only if the other configurations were correctly performed.)

If all those things are true, then, when the nib loads, if
 it is loaded with an owner of the correct class, that owner’s instance property will be set to the outlet destination.

Tip

When you configure an outlet to an object in the nib, that object’s name as listed in the document outline ceases to be generic (e.g. “View”) and takes on the name of the outlet (e.g. “coolview”). This name is still just a label — it has no effect on the operation of the outlet — and you can change it in the Identity inspector.

Automatically Configured Nibs

Now that we’ve created a nib owner outlet manually
 and loaded a nib manually
 , we can understand and appreciate what happens when a view controller gets its main view from a nib automatically
 . It all works exactly like what we just did! You can see this, for example, in our Empty Window project’s Main.storyboard
 , in the case of our single scene consisting of ViewController and its main view:

	In our manual example, we had to have an instance property in our nib owner class. Well, ViewController is a UIViewController, and UIViewController has a property — its view
 property! This is the property that needs to be set in order for the view controller to obtain its main view.

	In our manual example, in the nib editor, we had to make sure that the nib owner object’s class was the class whose instance really will be the owner when the nib loads. Well, in Main.storyboard
 , in the single scene, the View Controller object is
 the nib owner. Moreover, it is of the correct class, namely ViewController (the class declared in the ViewController.swift
 file). Look and see! Select the ViewController object in the storyboard and examine its class in the Identity inspector.

	In our manual example, in the nib editor, we had to make an outlet with the same name as the owner instance property, leading from the owner to the nib object. Well, in Main.storyboard
 , the ViewController object is
 the view nib owner, and it has
 an outlet called view
 which is
 connected to the main view. Look and see! Select the view controller and examine its Connections inspector (Figure 7-12
).

[image: ios11 0708c]

Figure 7-12.
 A view controller’s view outlet connection

Thus, the storyboard has already
 been configured in a manner exactly parallel to how we configured View.xib
 in the preceding section. And the result is exactly the same! When the view controller needs its view, it loads the view nib with itself as owner, the nib-loading process sees the connected view
 outlet, the view at the end of that outlet is assigned to the view controller’s view
 property, and voilà! The view controller has its main view.

Moreover, the view controller’s main view is then placed into the interface. And that
 is why whatever we design in this view in the storyboard, such as putting into it a button whose title is “Hello,” actually appears in the interface when the app runs.

Misconfigured Outlets

Setting up an outlet to work correctly involves several things being true at the same time. You should expect that at some point in the future you will fail to get this right, and your outlet won’t work properly. So be prepared! And don’t worry; this happens to everyone. The important thing is to recognize the symptoms so that you know what’s gone wrong. We’re deliberately going to make things go wrong, so that we can explore the main ways that an outlet can be incorrectly configured:

Outlet name doesn’t match a property name in the source class

Start with our working Empty Window example. Run the project to prove that all is well. Now, in ViewController.swift
 , change the property name to badview
 :

@IBOutlet var badview : UIView!

In order to get the code to compile, you’ll also have to change the reference to this property in viewDidLoad
 :

self.view.addSubview(self.badview)

The code compiles just fine. But when you run it, the app crashes with this message in the console: “This class is not key value coding-compliant for the key coolview
 .”

That message is just a technical way of saying that the name of the outlet in the nib (which is still coolview
) doesn’t match the name of a property of the nib’s owner when the nib loads — because we changed the name of that property to badview
 and thus wrecked the configuration. In effect, we had everything set up correctly, but then we went behind the nib editor’s back and removed the corresponding instance property from the outlet source’s class. When the nib loads, the runtime can’t match the outlet’s name with any property in the outlet’s source — the ViewController instance — and we crash.

There are other ways to bring about this same misconfiguration. For example, you could change things so that the nib owner is an instance of the wrong class
 :

Bundle.main.loadNibNamed("View", owner: NSObject())

We made the owner
 a plain vanilla NSObject instance. The effect is the same: the NSObject class has no property with the same name as the outlet, so the app crashes when the nib loads, complaining about the owner not being “key value coding-compliant.”

Yet another common way to make that same mistake is to make the nib owner class in the nib
 the wrong class.

Tip

New in Xcode 9, to change an outlet property’s name without breaking the connection from the nib, use Editor → Refactor → Rename.

No outlet in the nib

Fix the problem from the previous example by changing both references to the property name from badview
 back to coolview
 in ViewController.swift
 . Run the project to prove that all is well. Now we’re going to mess things up at the other end! Edit View.xib
 . Select the File’s Owner and switch to the Connections inspector, and disconnect the coolview
 outlet by clicking the X at the left end of the second cartouche. Run the project. We crash with this error message in the console: “Fatal error: unexpectedly found nil
 while unwrapping an Optional value.”

We removed the outlet from the nib. So when the nib loaded, our ViewController instance property coolview
 , which is typed as an implicitly unwrapped Optional wrapping a UIView, was never set to anything
 . Thus, it kept its initial value, which is nil
 . We then tried to use
 the implicitly unwrapped Optional by putting it into the interface:

self.view.addSubview(self.coolview)

Swift tries to obey by unwrapping the Optional for real, but you can’t unwrap nil
 , so we crash.

No view outlet

I can’t demonstrate this problem using a .storyboard
 file. What we’d like to do is disconnect
 the view
 outlet in Main.storyboard
 , but the storyboard editor guards against this. But if you could
 make this mistake, then trying to run the project would result in a crash at launch time, with a console message complaining that “the view outlet was not set.”

A nib that is to serve as the source of a view controller’s main view must
 have a connected view
 outlet from the view controller (the nib owner object) to the view. In a .xib
 file whose view is to function as a view controller’s main view, you can
 make this mistake — usually by forgetting to connect the File’s Owner view
 outlet to the view in the first place.

Deleting an Outlet

Deleting an outlet coherently — that is, without causing one of the problems described in the previous section — involves working in several places at once, just as creating an outlet does. I recommend proceeding in this order:

	Disconnect the outlet in the nib.

	Remove the outlet declaration from the code.

	Attempt compilation and let the compiler catch any remaining issues for you.

Let’s suppose, for example, that you decide to delete the coolview
 outlet from the Empty Window project. You would follow the same three-step procedure that I just outlined:

	Disconnect the outlet in the nib. To do so, edit View.xib
 , select the source object (the File’s Owner proxy object), and disconnect the coolview
 outlet in the Connections inspector by clicking the X.

	Remove the outlet declaration from the code. To do so, edit ViewController.swift
 and delete or comment out the @IBOutlet
 declaration line.

	Now attempt to build the project; the compiler issues an error on the line referring to self.coolview
 in ViewController.swift
 , because there is now no such property. Delete or comment out that line, and build again to prove that all is well.

More Ways to Create Outlets

Earlier, we created an outlet like this:

	In a class file, we declared an @IBOutlet
 instance property in a class file.

	In the nib editor, we control-dragged from the source to the destination in the document outline and chose the desired outlet property from the HUD (heads-up display).

Xcode provides many other ways to create outlets — too many to list here. I’ll survey some of the most interesting. We’ll continue to use the Empty Window project and the View.xib
 file. Keep in mind that all of this works exactly the same way for a .storyboard
 file.

To prepare, delete the outlet in View.xib
 as I described in the previous section (if you haven’t already done so). In ViewController.swift
 , create (or uncomment) the property declaration, and save:

@IBOutlet var coolview : UIView!

Now we’re ready to experiment!

Drag from source Connections inspector

You can drag from a circle in the Connections inspector in the nib editor to connect the outlet. In View.xib
 , select the File’s Owner and switch to the Connections inspector. The coolview
 outlet is listed here, but it isn’t connected: the circle at its right is open. Drag from the circle next to coolview
 to the UIView object in the nib. You can drag to the view in the canvas or in the document outline. You don’t need to hold the Control key as you drag from the circle, and there’s no HUD because you’re dragging from a specific outlet, so Xcode knows which one you mean.

Drag from destination Connections inspector

Now let’s make that same move the other way round. Delete the outlet in the nib. Select the View and look at the Connections inspector. We want an outlet that has this view as its destination: that’s a “referencing outlet.” Drag from the circle next to New Referencing Outlet to the File’s Owner object. The HUD appears: click coolview
 to make the outlet connection.

Drag from source HUD

You can summon a HUD that effectively is the same as the Connections inspector. Let’s start with that HUD. Again delete the outlet in the Connections inspector. Control-click the File’s Owner. A HUD appears, looking a lot like the Connections inspector! Drag from the circle at the right of coolview
 to the UIView.

Drag from destination HUD

Again, let’s make that same move the other way round. Delete the outlet in the Connections inspector. Either in the canvas or in the document outline, Control-click the view. There’s the HUD showing its Connections inspector. Drag from the New Referencing Outlet circle to the File’s Owner. A second HUD appears, listing possible outlets; click coolview
 .

Again, delete the outlet. Now we’re going to create the outlet by dragging between the code and the nib editor
 . This will require that you work in two places at once: you’re going to need an assistant pane (see Chapter 6
). In the main editor pane, show ViewController.swift
 . In the assistant pane, show View.xib
 , in such a way that the view is visible.

Drag from property declaration to nib

Next to the property declaration in the code, in the gutter, is an empty circle. Drag from that circle right across the barrier
 to the View in the nib editor (Figure 7-13
). You’ve done it! The outlet connection has been formed in the nib; you can see this by looking at the Connections inspector, and also because, back in the code, the circle in the gutter is now filled in.

You can hover over the filled circle, or click it, to learn what the outlet in the nib is connected to. You can click the little menu that appears when you click in the filled circle to navigate to the destination object.

[image: ios11 0712]

Figure 7-13.
 Connecting an outlet by dragging from code to nib editor

Here’s one more way — the most amazing of all. Keep the two-pane arrangement from the preceding example. Again, delete the outlet (you will probably need to use the Connections inspector or HUD in the nib editor pane to do this). Also delete the @IBOutlet
 line from the code! We’re going to create the property declaration and connect the outlet, all in a single move!

Drag from nib to code

Control-drag from the view in the nib editor across the pane barrier to just inside the body of the class ViewController
 declaration. A HUD offers to Insert Outlet or Outlet Collection (Figure 7-14
). Release the mouse. A popover appears, where you can configure the declaration to be inserted into your code. Configure it as shown in Figure 7-15
 : you want an outlet, and this property should be named coolview
 . Click Connect. The property declaration is inserted into your code, and the outlet is connected in the nib, in a single move.

[image: ios11 0713]

Figure 7-14.
 Creating an outlet by dragging from nib editor to code

[image: ios11 0714]

Figure 7-15.
 Configuring a property declaration

Warning

Making an outlet by connecting directly between code and the nib editor is cool and convenient, but don’t be fooled: there’s no such direct connection. There are always, if an outlet is to work properly, two distinct and separate things
 — an instance property in a class, and an outlet in the nib with the same name
 and coming from an instance of that class
 . It is the identity of the names and classes that allows the two to be matched at runtime when the nib loads. Xcode tries to help you get everything set up correctly, but it is not
 in fact magically connecting the code to the nib.

Outlet Collections

An outlet collection

 is an array instance property (in code) matched (in a nib) by multiple connections to objects of the same type.

For example, suppose a class contains this property declaration:

@IBOutlet var coolviews: [UIView]!

The outcome is that, in the nib editor, with an instance of this class selected, the Connections inspector lists coolviews
 — not under Outlets, but under Outlet Collections. This means that you can form multiple
 coolviews
 outlets, each one connected to a different UIView object in the nib. When the nib loads, those UIView instances become the elements of the array coolviews
 ; the order of elements in the array is the order in which the outlets were formed.

The advantage of this arrangement is that your code can refer to multiple interface objects instantiated from the nib by number (the index into the array) instead of your having to devise and manipulate a separate name for each one. This turns out to be particularly useful when forming outlets to such things as autolayout constraints and gesture recognizers.

Action Connections

An action connection, like an outlet connection, is a way of giving one object in a nib a reference to another. But it’s not a property reference; it’s a message-sending
 reference.

An action
 is a message emitted automatically by a Cocoa UIControl
 interface object (a control
), and sent to another object, when the user does something to it, such as tapping the control. The various user behaviors that will cause a control to emit an action message are called events
 .

 To see a list of possible events, look at the UIControlEvents documentation. For example, in the case of a UIButton, the user tapping the button corresponds to the UIControlEvents.touchUpInside
 event.

For this architecture to work, the control object must know three things:

Control event

What control event to respond to.

Action

What message to send (method to call) when that control event occurs.

Target

What object to send that message to.

An action connection in a nib builds the knowledge of those three things into itself. It has the control object as its source; its destination is the target; and you tell the action connection, as you form it, what the control event and action message should be. To form the action connection, you need first to configure the class of the destination
 object so that it has a method suitable as an action message.

To experiment with action connections, we’ll need a UIControl object in a nib, such as a button. You may already have such a button in the Empty Window project’s Main.storyboard
 file. However, it’s probable that, when the app runs, we’ve been covering the button with the view that we’re loading from View.xib
 . So first clear out the ViewController class declaration body in ViewController.swift
 , so that there is no outlet property and no manual nib-loading code; this should be all that’s left:

class ViewController: UIViewController {
}

Now let’s arrange to use the view controller in our Empty Window project as a target for an action message emitted by the button’s .touchUpInside
 event (meaning that the button was tapped). We’ll need a method in the view controller that will be called by the button when the button is tapped. To make this method dramatic and obvious, we’ll have the view controller put up an alert window. Insert this method into the ViewController.swift
 declaration body:

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: "Howdy!", message: "You tapped me!", preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: "OK", style: .cancel))
 self.present(alert, animated: true)
}

The @IBAction
 attribute is like @IBOutlet
 : it’s a hint to Xcode itself, asking Xcode to make this method available in the nib editor. And indeed, if we look in the nib editor, we find that it is
 now available: edit Main.storyboard
 , select the View Controller object and switch to the Connections inspector, and you’ll find that buttonPressed:
 , which is the Objective-C name of our action method, is now listed under Received Actions.

In Main.storyboard
 , in the single scene that it contains, the top-level View Controller’s View should contain a button. (We created it earlier in this chapter: see Figure 7-5
 .) If it doesn’t, add one, and position it in the upper left corner of the view. Our goal now is to connect that button’s Touch Up Inside event, as an action, to the buttonPressed(_:)
 method in ViewController.

As with an outlet connection, there is a source and a destination. The source here is the button; the destination is View Controller, the ViewController instance acting as owner of the nib containing the button. There are many ways to form this action connection, all of them completely parallel to the formation of an outlet connection. The difference is that we must configure both
 ends of the connection. At the button (source) end, we must specify that the control event we want to use is Touch Up Inside; fortunately, this is the default for a UIButton, so we might be able to skip this step. At the view controller (destination) end, we must specify that the action method to be called is our buttonPressed(_:)
 method.

Let’s form the action connection by Control-dragging from the button to the view controller in the nib editor:

	Control-drag from the button (in the canvas or in the document outline) to the View Controller listing in the document outline (or to the view controller icon in the scene dock above the view in the canvas).

	A HUD listing possible connections appears (Figure 7-16
); it lists mostly segues, but it also lists Sent Events, and in particular it lists buttonPressed:
 .

	Click the buttonPressed:
 listing in the HUD.

[image: ios10 0715]

Figure 7-16.
 A HUD showing an action method

The action connection has now been formed. This means that when the app runs, any time the button gets a Touch Up Inside event — meaning that it was tapped — it will call the buttonPressed(_:)
 method in the target, which is the view controller instance. We know what that method should do: it should put up an alert. Try it! Build and run the app, and when the app appears in the Simulator, tap the button. It works!

More Ways to Create Actions

Other ways in which you can form the action connection in the nib, having created the action method in ViewController.swift
 , include the following:

Drag from source Connections inspector

Select the button and use the Connections inspector. Drag from the Touch Up Inside circle to the view controller. A HUD appears, listing the known action methods in the view controller; click buttonPressed:
 .

Drag from source HUD

Control-click the button. A HUD appears, similar to the Connections inspector. Proceed as in the previous case.

Drag from destination HUD

Control-click the view controller. A HUD appears, similar to the Connections inspector. Drag from buttonPressed:
 (under Received Actions) to the button. Another HUD appears, listing possible control events. Click Touch Up Inside.

Drag from action method to nib

Make an assistant pane. Arrange to see ViewController.swift
 in one pane and the storyboard in the other. The buttonPressed(_:)
 declaration in ViewController.swift
 has a circle to its left, in the gutter. Drag from that circle across the pane barrier to the button in the nib.

As with an outlet connection, the most impressive way to make an action connection is to drag from the nib editor to your code, inserting the action method and forming the action connection in the nib in a single move
 . To try this, first delete the buttonPressed(_:)
 method in your code and delete the action connection in the nib. Arrange to see ViewController.swift
 in one pane and the storyboard in the other. Now:

	Control-drag from the button in the nib editor to an empty area in the ViewController class declaration’s body. A HUD offering to create an outlet or an action
 appears in the code. Release the mouse.

	The popover view appears. This is the tricky part. By default, the popover view is offering to create an outlet connection. That isn’t what you want; you want an action connection! Change the Connection pop-up menu to Action. Now you can enter the name of the action method (buttonPressed
) and configure the rest of the declaration (the defaults are probably good enough: see Figure 7-17
).

[image: ios11 0716]

Figure 7-17.
 Configuring an action method declaration

Xcode forms the action connection in the nib, and inserts a stub method into your code:

@IBAction func buttonPressed(_ sender: Any) {
}

The method is just a stub (Xcode can’t read your mind and guess what you want the method to do), so in real life, at this point, you’d insert some functionality between those curly braces. As with an outlet connection, the filled circle next to the code in an action method tells you that Xcode believes that this connection is correctly configured, and you can click the filled circle to learn, and navigate to, the object at the source of the connection.

Misconfigured Actions

As with an outlet connection, configuring an action connection involves setting things up correctly at both ends (the nib and the code) so that they match. Thus, you can wreck an action connection’s configuration and crash your app. The typical misconfiguration is that the name of the action method as embedded in the action connection in the nib no longer matches the name of the action method in the code.

To see this, change the name of the action method in the code from buttonPressed
 to something else, like buttonPushed
 . Now run the app and tap the button. Your app crashes, displaying in the console the dreaded error message, “Unrecognized selector sent to instance.” A selector is a message — the name of a method (Chapter 2
). The runtime tried to send a message to an object, but that object turned out to have no corresponding method (because we renamed it). If you look a little earlier in the error message, it even tells you the name of this method:

-[Empty_Window.ViewController buttonPressed:]

The runtime is telling you (using Objective-C notation) that it tried to call the buttonPressed(_:)
 method in your Empty Window module’s ViewController class, but the ViewController class has no such method.

Tip

New in Xcode 9, to change an action method’s name without breaking the connection from the nib, use Editor → Refactor → Rename.

Connections Between Nibs — Not!

You cannot draw an outlet connection or an action connection between an object in a nib and an object in a different
 nib. If you expect to be able to do this, you haven’t understood what a nib is (or what a scene is, or what a connection is). For example:

	You can’t open nib editors on two different .xib
 files and Control-drag a connection from one to the other.

	In a .storyboard
 file, you cannot Control-drag a connection between an object in one scene and an object in another scene.

The reason is simple: objects in a nib together will become instances together, at the moment when the nib loads, so it makes sense to connect them in that nib, because we know what instances we’ll be talking about when the nib loads. The two objects may both be instantiated from the nib, or one of them may be a proxy object (the nib owner), but they must both be represented in the same nib
 , so that the actual instances can be configured in relation to one another on each particular occasion when this nib loads.

If an outlet connection or an action connection were drawn from an object in one nib to an object in another nib, there would be no way to understand what actual future instances the connection is supposed to connect, because they are different nibs and will be loaded at different times (if ever). The problem of communicating between an instance generated from one nib and an instance generated from another nib is a special case of the more general problem of how to communicate between instances in a program, discussed in Chapter 13
 .

Additional Configuration of Nib-Based Instances

By the time a nib finishes loading, its instances are fully fledged; they have been initialized and configured with all the attributes dictated through the Attributes and Size inspectors, and their outlets have been used to set the values of the corresponding instance properties. Nevertheless, you might want to append your own code to the initialization process as an object is instantiated from a loading nib. This section describes some ways you can do that.

A common situation is that a view controller, functioning as the owner when a nib containing its main view loads (and therefore represented in the nib by the nib owner object), has an outlet to an interface object instantiated from the nib. In this architecture, the view controller can perform further configuration on that interface object, because it has a reference to it after the nib loads — the corresponding instance property. The earliest place where it can perform such configuration is its viewDidLoad
 method. At the time viewDidLoad
 is called, the view controller’s view has loaded — that is, the view controller’s view
 property has been set to its actual main view, instantiated from the nib — and all outlets have been connected; but the view is not yet in the visible interface.

Another possibility is that you’d like the nib object to configure itself, over and above whatever configuration has been performed in the nib. Often, this will be because you’ve got a custom subclass of a built-in interface object class — in fact, you might want to create a custom class, precisely so as to have a place to put this self-configuring code. The problem you’re trying to solve might be that the nib editor doesn’t let you perform the configuration you’re after, or that you have many objects that need to be configured in some identical, elaborate way, so that it makes more sense for them to configure themselves by virtue of sharing a common class than to configure each one individually.

One approach is to implement awakeFromNib
 in your custom class. The awakeFromNib
 message is sent to all nib-instantiated objects just after they are instantiated by the loading of the nib: the object has been initialized and configured and its connections are operational.

For example, let’s make a button whose background color is always red, regardless of how it’s configured in the nib. (This is a nutty example, but it’s dramatically effective.) In the Empty Window project, we’ll create a button subclass, RedButton:

	In the Project navigator, choose File → New → File. Specify iOS → Source → Cocoa Touch Class. Click Next.

	Call the new class RedButton. Make it a subclass of UIButton. Click Next.

	Make sure you’re saving into the project folder, with the Empty Window group, and make sure the Empty Window app target is checked. Click Create. Xcode creates RedButton.swift
 .

	In RedButton.swift
 , inside the body of the RedButton class declaration, implement awakeFromNib
 :override func awakeFromNib() {
 super.awakeFromNib()
 self.backgroundColor = .red
}

We now have a UIButton subclass that turns itself red when it’s instantiated from a nib. But we have no instance of this subclass in any nib. Let’s fix that. Edit the storyboard, select the button that’s already in the main view, and use the Identity inspector to change this button’s class to RedButton
 .

Now build and run the project. Sure enough, the button is red!

A further possibility is to take advantage of the User Defined Runtime Attributes in the nib object’s Identity inspector.
 This can allow you to configure, in the nib editor, aspects of a nib object for which the nib editor itself provides no built-in interface. What you’re actually doing here is sending the nib object, at nib-loading time, a setValue(_:forKeyPath:)
 message; key paths are discussed in Chapter 10
 . Naturally, the object needs to be prepared to respond to the given key path, or your app will crash when the nib loads.

For example, one of the disadvantages of the nib editor is that it provides no way to configure layer attributes. Let’s say we’d like to use the nib editor to round the corners of our red button. In code, we would do that by setting the button’s layer.cornerRadius
 property. The nib editor gives no access to this property. Instead, we can select the button in the nib editor and use the User Defined Runtime Attributes in the Identity inspector. We set the Key Path to layer.cornerRadius
 , the Type to Number, and the Value to whatever value we want — let’s say 10 (Figure 7-18
). Now build and run; sure enough, the button’s corners are now rounded.

[image: ios8 0717]

Figure 7-18.
 Rounding a button’s corners with a runtime attribute

You can also configure a custom property of a nib object by making that property inspectable
 . To do so, add the @IBInspectable
 attribute to the property’s declaration in your code. This causes the property to be listed in the nib object’s Attributes inspector.

For example, let’s make it possible to configure our button’s border in the nib editor. At the start of the RedButton class declaration body, add this code:

@IBInspectable var borderWidth : CGFloat {
 get {
 return self.layer.borderWidth
 }
 set {
 self.layer.borderWidth = newValue
 }
}

That code declares a RedButton property, borderWidth
 , and makes it a façade in front of the layer’s borderWidth
 property. It also causes the nib editor to display that property in the Attributes inspector for any button that is an instance of the RedButton class (Figure 7-19
). The result is that when we give this property a value in the nib editor, that value is sent to the setter for this property at nib-loading time, and the button border appears with that width.

[image: ios8 0718]

Figure 7-19.
 An inspectable property in the nib editor

To intervene with a nib object’s initialization even earlier, if the object is a UIView (or a UIView subclass), you can implement init(coder:)
 . A minimal implementation would look like this:

required init?(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 // your code here
}

Chapter 8.
 Documentation

Knowledge is of two kinds. We know a subject ourselves, or we know where we can find information upon it.

Samuel Johnson, Boswell’s Life of Johnson

No aspect of iOS programming is more important than a fluid and nimble relationship with the documentation. There is a huge number of built-in Cocoa classes, with many methods and properties and other details. Apple’s documentation, whatever its flaws, is the definitive official word on how you can expect Cocoa to behave, and on the contractual rules incumbent upon you in working with this massive framework whose inner workings you cannot see directly.

Your primary access to the documentation is in Xcode, through the documentation window
 . But there are other forms of documentation and assistance. Quick Help popovers and the Quick Help inspector provide documentation without leaving the code editor. You can examine the code headers, which provide a useful overview and often contain valuable comments; and you can jump quickly to a symbol declaration. Apple provides sample code, and there are lots of additional online resources.

The Documentation Window

There are two main categories of documentation provided by Apple:

Primary documentation

The primary documentation (reference
 documentation) for Cocoa classes and other symbols is included entirely within Xcode, and is displayed in the documentation window (Window → Documentation and API Reference, or Help → Documentation and API Reference, Command-Shift-0). You can also view the same documentation online, from Apple’s server, as web pages in the browser (
https://developer.apple.com/documentation

).

Secondary documentation

Secondary documentation such as guides and sample code is available only
 from Apple’s server, and is displayed as web pages in the browser (
https://developer.apple.com/library/content/navigation/

).

Within the documentation window, the primary way into the documentation is to do a search; for example, press Command-Shift-0 (or Command-L or Command-Shift-F if you’re already in the documentation window) and type NSString
 . As you type, you’re shown the top search results pertinent to the language of your choice (Swift, Objective-C, or Other). Besides choosing with the mouse, you can navigate these results with arrow keys, and press Return to select the desired hit. In this case, you probably want the top hit, which is the NSString class documentation page. Alternatively, you can choose Show All Results to see a page listing all
 results of the search.

You can also perform a documentation window search starting from within your code
 . You’ll very often want to do this: you’re looking directly at a symbol (a type name, a function name, a property name, and so on) at its point of use in your code, and you want to know more about it. Select text in your code (or anywhere else) and choose Help → Search Documentation for Selected Text (Command-Option-Control-/). This is the equivalent of typing that text into the search field in the documentation window and asking to see the full results page.

The documentation window behaves basically as a glorified web browser. Multiple pages can appear simultaneously as tabs in the documentation window. To navigate to a new tab, hold Command as you navigate — for example, Command-click a link, or Command-click your choice in the pop-up search results window — or choose Open Link in New Tab from the contextual menu. You can navigate between tabs (Window → Show Next Tab), and each tab remembers its navigation history (Navigate → Go Back, or use the Back button in the window toolbar, which is also a pop-up menu).

A full hierarchical table of contents for the whole documentation appears in the navigator area at the far left of the documentation window; to see it if it isn’t showing, choose Editor → Show Navigator, or click the Navigator button in the window toolbar. The table of contents can display any of three panes: Swift, Objective-C, or Other. You can switch between them with buttons at the top of the table of contents. To select in the table of contents the page you’re currently viewing, choose Editor → Reveal in Navigator (or use the contextual menu).

To search for text within
 the current documentation page, use the Find menu commands. Find → Find (Command-F) summons a find bar, as in Safari.

Class Documentation Pages

In the vast majority of cases, your target documentation page will be the documentation for a class, such as the one shown in (Figure 8-1
).
 It’s important to be comfortable and conversant with the typical features and information provided by a class documentation page.

[image: ios11 0801]

Figure 8-1.
 The start of the UIButton class documentation page

Jump bar

At the top of the page is the jump bar. This has two main purposes:

Breadcrumbs

The jump bar functions as a kind of “breadcrumbs” display of where you are. The UIButton class documentation page is in the Views and Controls section of the UIKit division of the documentation. This is exactly the hierarchy in which the page is displayed in the navigator table of contents.

Navigation

Each item in the jump bar is a hierarchical menu, displaying exactly the same hierarchy displayed in the navigator table of contents. Choose a menu item to navigate there. As with the Xcode project window editor’s jump bar, you can type to filter the items of the currently selected menu.

Language

Links let you choose between Swift and Objective-C as the language for display of symbol names.

SDKs

This list tells you two important things:

	What sort of hardware
 you’re programming for when you use this class. That’s important because searches are not filtered by SDK. If you were to stumble accidentally into the NSViewController class documentation page, you might be confused about how this class fits into the rest of iOS programming, unless you notice that iOS is not listed among this class’s SDKs.

	The lowest version number
 in which this class became available — also called the class’s availability
 . The UIGraphicsImageRenderer page, for example, tells you that this class is available in iOS 10.0 and later. So you won’t be able to use it in code intended to run on iOS 9.

Framework

The framework that vends this class.

On This Page

The class reference page is divided into sections, and these are links to them, in order:

Overview

If a page has an Overview section, read it! It explains what this class is for and how to use it. It may also contain valuable links to guides that provide related information.

Topics

These are primarily the class’s members — its properties and methods — grouped
 by their purpose. Each member is accompanied by a short description; click the member itself to see further details. (I’ll talk more about that in a moment.) At the end of the Topics section, there may be further subsections including Constants, such as enums used by this class’s properties and methods, and Notifications if this class emits any; the UIApplication class documentation page is a case in point.

Relationships

There are two chief kinds of relationship that a class can have, and you’ll want to keep an eye on both of them:

Inherits from

This class’s superclass. One of the biggest beginner mistakes is failing to consult the documentation up the superclass chain. A class inherits from its superclasses, so the functionality or information you’re looking for may be in a superclass. You won’t find addTarget(_:action:for:)
 listed in the UIButton class page; it’s in the UIControl class page (UIButton’s superclass). You won’t find out that a UIButton has a frame
 property from the UIButton class page; that information is in the UIView class page (UIControl’s superclass).

Conforms to

Protocols adopted by this class. Failing to consult the documentation for adopted protocols is a serious beginner mistake. For example, you won’t find the viewWillTransition(to:with:)
 method on the UIViewController class page; you have to look in the documentation for the UIContentContainer protocol, which UIViewController adopts.

When you click the name of a property or method in a class documentation page, you’re taken to a separate page that describes it in detail. This page is laid out similarly to a class documentation page:

Jump bar

The jump bar provides breadcrumb navigation leading back to the class documentation page.

Language

The page gives you a choice of languages.

SDKs

The page lists the SDKs in which this property or method is found, including its availability. Note that the availability for a property or method need not be the same as its class’s availability, because a class can acquire (and lose) members over time. For example, the UIButton class is as old as iOS itself and is available starting in iOS 2.0, but the init(type:)
 initializer didn’t appear until iOS 9.0. (Before that, a button had to be created by a factory method buttonWithType:
 , which is still the Objective-C way and is displayed in the Objective-C version of the same page.)

On This Page

There is no separate Overview section, but there is always an initial summary of purpose (the same summary that appears on the class documentation page). The other sections of a method’s page, in particular, are:

Declaration

The formal declaration for this method, showing its parameters and return type.

Parameters

Separate explanations for each parameter.

Return Value

An explicit description of what this method returns.

Discussion

Often contains extremely important further details about how this method behaves. Always pay attention to this section!

See Also

Links to related methods and properties. Very helpful for giving you a larger perspective on how this method fits into the overall behavior of this class.

The Topics section of a class documentation page may list many class members, and these can rapidly threaten to become overwhelming. If you know the name of a class member that you’re interested in, or you want to get to a particular topic quickly, how are you going to reach it without the tedium of scrolling? Don’t forget the jump bar!
 The jump bar lists all the class members listed on the page, grouped by topic. And that list can be filtered by typing. For example, let’s say I know that the class member I’m interested in contains the term “background.” I summon the rightmost level of the jump bar, type “background,” and am shown a shortened list of just those terms (Figure 8-2
). Now it’s easy to navigate to the detail page for any of those items.

[image: ios11 0802]

Figure 8-2.
 Filtering the jump bar for the UIButton topics

Quick Help

Quick Help is a condensed rendering of the documentation on some single symbol (such as a type, function, or property name).
 It appears with regard to the current selection or insertion point automatically in the Quick Help inspector (Command-Option-2) if the inspector is showing. Thus, for example, if you’re editing code and the insertion point or selection is within the term viewDidLoad
 , documentation for the viewDidLoad
 method appears in the Quick Help inspector if it is visible. Quick Help is also available in the Quick Help inspector for interface objects selected in the nib editor.

Quick Help documentation can also be displayed as a popover window. Select a term in the code editor and choose Help → Quick Help for Selected Item (Command-Control-Shift-?). Alternatively, hold down Option and hover the mouse over a term until the cursor becomes a question mark; then Option-click the term.

Tip

When you’re developing Swift code, Quick Help is of increased importance. If you click in the name of a Swift variable whose type is inferred, Quick Help shows the inferred type (see Figure 3-1
). This can help you understand compile errors and other surprises.

The Quick Help documentation contains links. For example, click the Class Reference or Method Reference link to open the full documentation in the documentation window.

You can inject documentation for your own code into Quick Help. To do so, precede a declaration with a comment enclosed in /**...*/
 . Alternatively, use a sequence of single-line comments starting with ///
 . Within the comment, Markdown
 formatting can be used (see
http://daringfireball.net/projects/markdown/syntax)

 . The comment becomes the Description field for Quick Help; certain list items (paragraphs beginning with *
 or -
 followed by space) are treated in a special way:

	Paragraphs beginning with Parameter paramname
 :
 are incorporated into the Parameters field.

	A paragraph beginning with Throws:
 becomes the Throws field.

	A paragraph beginning with Returns:
 becomes the Returns field.

For example, here’s a function declaration with a preceding comment:

/**
Many people would like to dog their cats. So it is *perfectly*
reasonable to supply a convenience method to do so:

* Because it's cool.
* Because it's there.

* Parameter cats: A string containing cats

* Returns: A string containing dogs
*/

func dogMyCats(_ cats:String) -> String {
 return "Dogs"
}

The double asterisk in the opening comment delimiter denotes that this is documentation, and the comment’s location automatically associates it with the dogMyCats
 method whose definition follows. The word surrounded by asterisks is formatted as italics; the asterisked paragraphs become bulleted paragraphs; and the last two paragraphs become special fields. The outcome is that when dogMyCats
 is selected anywhere in my code, its documentation is displayed in Quick Help (Figure 8-3
). The first paragraph of the description is also displayed as part of code completion (see Chapter 9
).

[image: ios9 0803]

Figure 8-3.
 Custom documentation injected into Quick Help

You can also generate a documentation comment automatically. Select within the declaration line and choose Editor → Structure → Add Documentation. The comment is inserted before the declaration. The description, plus (if this is a function declaration) the Parameters, Returns, and Throws fields, as applicable, are provided as placeholders.

Tip

There are additional special documentation fields. For more information about these, see the “Markup Functionality” page of Apple’s Markup Formatting Reference

 .

Symbol Declarations

A symbol
 is a declared term, such as the name of a function, variable, or object type.

 If you can see the name of a symbol in the code editor, you can jump quickly to the declaration of that symbol. Select text and choose Navigate → Jump to Definition (Command-Control-J). Alternatively, hold down Command-Control and hover the mouse over a prospective term, until the cursor becomes a pointing finger; then Command-Control-click the term to jump to the declaration for that symbol. When you do:

	If the symbol is declared in your code, you jump to that declaration in your code; this can be helpful not only for understanding your code but also for navigating within it.

	If the symbol is declared in a Cocoa framework, you jump to the declaration in the header file. If you started in a .swift
 file, the header file that you jump to is translated into Swift. (I’ll talk more about header files in the next section.)

The precise meaning of the notion “jump” depends upon the additional modifier keys you use, and on your settings in the Navigation pane of Xcode’s preferences. By default, Command-Control-click (or Command-Control-J) jumps in the same editor, while Command-Control-Option-click (or Command-Option-Control-J) jumps in an assistant pane.

To jump to the declaration of a symbol whose name you know, even if you don’t see the name in the code before you, choose File → Open Quickly (Command-Shift-O). A search field appears. In it, type key letters from the name, which will be interpreted intelligently; for example, to search for application(_:didFinishLaunchingWithOptions:)
 , you might type appdidf
 . Possible matches are shown in a scrolling list below the search field; you can navigate this list with the mouse or by keyboard alone. Besides declarations from the framework headers, declarations in your own code are listed as well, so this, too, can be a rapid way of navigating your code.

Another way to see a list of your project’s symbols, and to navigate to a symbol declaration, is through the Symbol navigator (Chapter 6
). If the second icon in the filter bar is highlighted, these are symbols declared in your project; if not, symbols from imported frameworks are listed as well.

Header Files

Often, a header file can be a useful form of documentation — possibly the most
 useful form of documentation. The header is necessarily accurate, up-to-date, and complete; the class documentation might not be. A header consists chiefly of declarations, but it may also contain comments with helpful information; this, too, can tell you things that the class documentation might not. Also, a single header file can contain declarations for multiple classes and protocols. So it can be an excellent quick reference.

The simplest way to reach a header file is to jump to the declaration of a symbol there. For example, to reach NSString.h
 — the Foundation.NSString
 header file — Command-Control-click on the term NSString
 wherever it may appear in your code. See the previous section for the various ways of jumping to a symbol declaration; since most symbols are declared in header files, these are ways of reaching header files. Once you’re in a header file, you can navigate it conveniently through the jump bar at the top of the editor.

When you jump to a header file from your code, if the code that you started from was a Swift file, the header file, if it is written in Objective-C, may be spontaneously translated into Swift. That’s good because it tells you what you can say in Swift. But it’s bad if you were hoping to get a look at the actual Objective-C header! You can switch from a Swift translated (generated) header to the Objective-C original by choosing Navigate > Jump to Original Source, or choose Original Source from the Related Items menu at the left end of the jump bar. Conversely, to switch from an Objective-C original to its Swift translation, choose Generated Interface from the Related Items menu.

You can learn a lot about the Swift language and the built-in library functions by examining the Swift header file. The special Swift header files for Core Graphics and Foundation are also likely to prove useful.

Tip

A neat trick is to write an import
 statement just so that you can Command-Control-click it to reach a header. For example, if you import Swift
 at the top of a .swift
 file, the word Swift
 itself is a symbol that you can Command-Control-click to jump to the Swift header.

Sample Code

Apple’s online documentation (
https://developer.apple.com/library/content/navigation/

) includes plenty of sample code projects. You can view the code directly, but you can see only one file at a time, so it’s difficult to get an overview. You’ll want to click the Download Sample Code button and open the downloaded project in Xcode. With the sample code project open as a project window, you can read the code, navigate it, edit it, and of course run the project.

As a form of documentation, sample code is both good and bad. It can be a superb source of working code that you can often copy and paste and use with very little alteration in your own projects. It is usually heavily commented, because the Apple folks are aware, as they write the code, that it is intended for instructional purposes. Sample code also illustrates concepts that users have difficulty extracting from the documentation. (Users who have not grasped UITouch handling, for instance, often find that the lightbulb goes on when they discover the MoveMe example.) But the logic of a project is often spread over multiple files, and nothing is more difficult to understand than someone else’s code (except, perhaps, your own code). Moreover, what learners most need is not the fait accompli
 of a fully written project but the reasoning process that constructed the project, which no amount of commentary can provide.

My own assessment is that Apple’s sample code is uneven. Some of it is a bit careless or even faulty, while some of it is astoundingly well-written. It is generally thoughtful and instructive, though, and is definitely a major component of the documentation; it deserves more appreciation and usage than it seems to get. But it is most useful, I think, after you’ve reached a certain level of competence and comfort.

Internet Resources

Programming has become a lot easier since the Internet came along and Google started indexing it. It’s amazing what you can learn with a Google search. Your problem is very likely one that someone else has faced, solved, and written about on the Internet. Often you’ll find sample code that you can paste into your project and adapt.

Apple’s own online resources go beyond the formal documentation. There are WWDC videos (
https://developer.apple.com/videos/

) from the current and previous years. Apple also hosts developer forums (
https://forums.developer.apple.com);

 some interesting discussions take place here, and they are patrolled by some very helpful Apple employees, but the interface remains extraordinarily clunky.

Other online resources have sprung up spontaneously as iOS programming has become more popular, and lots of iOS and Cocoa programmers blog about
 their experiences. One site that I’m particularly fond of is Stack Overflow (

http://www.stackoverflow.com

); it isn’t devoted exclusively to iOS programming, of course, but lots of iOS programmers hang out there, questions are answered succinctly and correctly, and the interface lets you focus on the right answer quickly and easily.

Chapter 9.
 Life Cycle of a Project

This chapter surveys some of the main stages in the life cycle of an Xcode project, from inception to submission at the App Store. This survey will provide an opportunity to discuss some additional features of the Xcode development environment: configuring your build settings and your Info.plist
 ; editing, debugging, and testing your code; running your app on a device; profiling; localization; and final preparations for the App Store.

Runtime Environment

After creating your iOS project, you may want to make some further adjustments specifying the precise environment under which your app will be permitted to run. These are all build settings, though some of them can be more conveniently configured elsewhere:

Device Type

 The device type(s) on which your app will run natively. This is the project’s Targeted Device Family build setting; the easiest way to set it is to edit the app target, switch to the General pane, and use the Devices pop-up menu (under Deployment Info). The settings are:

iPhone (Targeted Device Family 1
)

The app will run on an iPhone or iPod touch. It can also run on an iPad, but not as a native iPad app; it runs in a reduced enlargeable window, which I call the iPhone Emulator
 (Apple sometimes refers to this as “compatibility mode”).

iPad (Targeted Device Family 2
)

The app will run only on an iPad.

Universal (Targeted Device Family 1,2
)

The app will run natively on both kinds of device.

Base SDK

 The latest
 system your app can run on. As of this writing, in Xcode 9.0, you have just two choices, iOS 11.0 and Latest iOS (iOS 11.0). They sound the same, but the latter is better (and is the default for a new project). If you update Xcode to develop for a subsequent system, any existing projects that are already set to Latest iOS
 will automatically use that newer system’s most recent SDK as their Base SDK, without you having to update their Base SDK setting manually.

iOS Deployment Target

 The earliest
 system your app can run on: in Xcode 9, this can be any major iOS system as far back as iOS 8.0. To change the project’s iOS Deployment Target setting easily, edit the project and switch to the Info tab, and choose from the iOS Deployment Target pop-up menu. The app target usually changes its corresponding build setting to match; you might want to double-check by editing the app target, switching to the General pane, and examining the Deployment Target (under Deployment Info).

Backward Compatibility

Writing an app whose Deployment Target differs from its Base SDK — that is, an app that is backward compatible
 to an earlier system — is something of a challenge. There are two chief problems:

Changed behavior

With each new system, Apple permits itself to change the way some features work. The result is that certain features that exist on different systems may work differently depending what system it is. An entire area of functionality may be handled differently on different systems, requiring you to implement or call a whole different set of methods or use a completely different set of classes. It is even possible that the very same method may do two quite different things, depending on what system the app runs on.

Unsupported features

With each new system, Apple adds new features. Your app will crash if execution encounters features not supported by the system on which it is actually running.

Changed behavior is terribly troublesome, and I have little advice to give you. Often the issue is one of sheer breakage, or breakage and repair. For example, setting UIProgressView’s progressImage
 property worked in iOS 7.0, didn’t work at all from iOS 7.1 through iOS 8.4, and then started working again in iOS 9 and later. You have no way of knowing this aside from trial and error, and working your way around it coherently is extremely tricky.

Unsupported features are a different story. If the compiler knows that a feature is unsupported by an earlier system, it will help prevent you from accidentally using that feature on that system. For example, here’s how to start drawing a small image in iOS 10 and later:

let r = UIGraphicsImageRenderer(size:CGSize(width:10,height:10))

The UIGraphicsImageRenderer class exists only in iOS 10.0 and later
 . If your deployment target is earlier
 than iOS 10.0, the compiler will stop you with an error: “UIGraphicsImageRenderer is only available on iOS 10.0 or newer.” You cannot proceed until you guarantee to the compiler that this code will run only on iOS 10 or later. And Xcode’s Fix-it feature will show you how to do that:

if #available(iOS 10.0, *) {
 let r = UIGraphicsImageRenderer(size:CGSize(width:10,height:10))
} else {
 // Fallback on earlier versions
}

The #available
 condition — an availability check
 — tests the current system against a set of requirements matching the actual availability of a feature as specified in its declaration. The UIGraphicsImageRenderer class declaration is preceded (in Swift) with this annotation:

@available(iOS 10.0, *)

For the detailed meaning of that annotation, consult the documentation. But you don’t really need to understand it! Your #available
 condition should match that annotation, and Xcode’s Fix-it will make sure that it does. You can use #available
 in an if
 condition or a guard
 condition.

You can annotate your own type and member declarations with an @available
 attribute, and your own code will then have to use an availability check. For example, if your method is declared @available(iOS 11.0, *)
 , then you can’t call that method, when the deployment target is earlier than iOS 11, without an availability check. Within such a method, you don’t need any #available(iOS 11.0, *)
 availability checks, because you’ve already guaranteed that this method won’t run on a system earlier than iOS 11.

To test
 your app on an earlier system, you’ll need a device, real or simulated, running
 that earlier system. You can download an earlier Simulator SDK going back as far as iOS 8.1 through Xcode’s Components preference pane (see Chapter 6
). To test on an earlier system than that, you’ll need an older version of Xcode, and probably an older device. This can be difficult to configure, and may not be worth the trouble.

Device Type

It can be useful, in the case of a universal app, to react to whether your code is running on an iPad, on the one hand, or an iPhone (or iPod) on the other. The current UIDevice, or the traitCollection
 of any UIViewController or UIView in the hierarchy, will tell you the current device’s type as its userInterfaceIdiom
 , which will be a UIUserInterfaceIdiom
 , either .phone
 or .pad
 .

You can load resources conditionally depending on the device type or screen resolution. In the case of images loaded from the top level of the app bundle, image files with the same name but different name suffixes (such as @2x
 and @3x
 to indicate screen resolution, or ~iphone
 and ~ipad
 to indicate device type) can be used so that the runtime will choose automatically the appropriate image variant for the current environment. However, it is simpler wherever possible to use an asset catalog (see “Resources in an asset catalog”
), which allows you to specify different images for different screen resolutions or different device types (or both) without bothering with the naming conventions.

Similarly, certain Info.plist
 settings come with name suffixes, so you can adopt one setting on one device type and another setting on another. It is quite common, for example, for a universal app to adopt one set of possible orientations on iPhone and another set on iPad: typically, the iPhone version permits a limited set of orientations and the iPad version permits all orientations. You can configure this in the General pane when you edit the target:

	Switch the Devices pop-up menu to iPhone and check the desired Device Orientation checkboxes for the iPhone.

	Switch the Devices pop-up menu to iPad and check the desired Device Orientation checkboxes for the iPad.

	Switch the Devices pop-up menu to Universal.

Even though you’re now seeing just one set of orientations, both sets are remembered. What you’ve really done is to configure two groups of “Supported interface orientations” settings in the Info.plist
 , a general set (UISupportedInterfaceOrientations
) and an iPad-only set that overrides the general case when the app runs on an iPad (UISupportedInterfaceOrientations~ipad
). Examine the Info.plist
 file to see that this is so.

In the same way, your app can load different nib files, and thus can display different interfaces, depending on the device type. For example, you can have two main storyboards, loading one of them at launch if this is an iPhone and the other if this is an iPad. Again, you can configure this in the General pane when you edit the target, and again, what you’re really doing is telling the Info.plist
 setting “Main storyboard file base name” to appear twice, once for the general case (UIMainStoryboardFile
) and once for iPad only (UIMainStoryboardFile~ipad
).
 Similarly, if your app loads a nib file, the naming of that nib file works like that of an image file: if there is an alternative nib file by the same name with ~ipad
 appended, it will load automatically if we are running on an iPad.

(My own Diabelli’s Theme app works in just that way. There is no main storyboard; instead, I create a ViewController instance and set it manually as my window’s rootViewController
 , and display the interface explicitly, as in Example 6-1
 . This causes the ViewController.xib
 nib file to be loaded, with the ViewController instance as owner, to obtain the ViewController’s main view, as explained in Chapter 7
 . But there is no ViewController.xib
 nib file! Instead, there are two
 nib files, ViewController~iphone.xib
 and ViewController~ipad.xib
 , and the runtime automatically chooses the one that corresponds to the current device type. In this way, I end up with one interface on iPhone and a different interface on iPad.)

However, you are less likely than in the past to need to distinguish one device type from another. In iOS 7 and before, entire interface object classes (such as popovers) were available only on the iPad; in iOS 8 and later, there are no iPad-only classes, and the interface classes themselves adapt if your code is running on an iPhone. Similarly, in iOS 7 and before, a universal app might need a completely different interface, and hence a different set of nib files, depending on the device type; in iOS 8 and later, size classes allow a single nib file to be configured conditionally depending on the device type. And in general the physical distinction between an iPad and an iPhone is not so sharp as in the past: thanks to devices like the iPhone 7 Plus, it’s more of a continuum.

Version Control

Sooner rather than later in the life of any real app, you should consider putting your project under version control.
 Version control is a way of taking periodic snapshots (technically called commits
) of your project. Its purpose might be:

Security

Version control can help you store your commits in a repository offsite, so that your code isn’t lost in case of a local computer glitch or some equivalent “hit by a bus” scenario.

Publication

You might want to make your project publicly available; various online sites allow ready display of code submitted through version control (such as GitHub,
https://github.com

).

Collaboration

Version control affords multiple developers ready, rational access to the same code.

Freedom from fear

A project is a complicated thing; often, changes must be made experimentally, sometimes in many files, possibly over a period of many days, before a new feature can be tested. Version control means that I can easily retrace my steps (to some previous commit) if things go badly; this gives me confidence to start down some tentative programmatic road whose outcome may not be apparent until much later. Also, if I’m confused about what programmatic road I seem to be taking, I can ask a version control system to list the changes I’ve made recently. If an ancillary bug is introduced, I can use version control to pinpoint when it happened and help discover the cause.

Xcode provides various version control facilities, which are geared chiefly to git (
http://git-scm.com

). This doesn’t mean you can’t use any other version control system with your projects; it means only that you can’t use any other version control system in an integrated fashion from inside Xcode. That’s no disaster; there are many other ways to use version control, and even with git, it is perfectly possible to ignore Xcode’s integrated version control and rely on the Terminal command line, or use a specialized third-party GUI front end such as SourceTree (
http://www.sourcetreeapp.com

).

If you prefer to manage your version control yourself, you can turn off Xcode’s version control integration more or less completely: Uncheck Enable Source Control in the Source Control preference pane, and don’t switch to the Source Control navigator. If you check Enable Source Control, three additional checkboxes let you select which automatic behaviors you want; personally, I like to leave “Add and remove files automatically” unchecked.

When you create a new project, the Save dialog includes a checkbox that offers to place a git repository into your project folder from the outset. If you have no reason to decide otherwise, I suggest that you check that checkbox! If you don’t, and if you change your mind later and want to add a git repository to an existing project, open the project and choose Source Control → Create Git Repositories. To download a working copy of an existing project from a remote server, choose Source Control → Clone and enter the required information. When you open an existing project, if that project is already managed with git, Xcode detects this and is ready instantly to display version control information in its interface.

New in Xcode 9, there are special features for integration with GitHub as a remote repository. You can enter your GitHub account information in Xcode’s Accounts preference pane. When you’ve done that, two features spring to life:

GitHub can clone directly into Xcode

When you’re in the browser looking at your GitHub repository, if you click the Clone or Download button, there’s a button offering to let you Open in Xcode.

Xcode can see your GitHub repositories

When you’re in Xcode and you choose Source Control → Clone, your GitHub repositories are listed. Select one and click Clone to clone it.

In both cases, Xcode presents a Save dialog, allowing you to clone the working copy to your hard drive and then automatically open the project.

Let’s now assume that you’ve opened a project that’s under git version control. Files in the Project navigator are now marked with their status. For example, you can distinguish modified files (M
), new untracked files (?
), and new files added to the index (A
). Commands for managing this project are available in these places:

	The Source Control menu

	The Source Control submenu of the contextual menu (summoned on the listing of files in the Project navigator)

	The Source Control navigator

	The Source Control inspector

	The Version editor

For example, having made a change in a source file, I can commit the changes for that file by choosing Source Control → Commit [Filename] in the contextual menu for that file, or commit changes in all files by choosing Source Control → Commit from the menu bar. These commands summon a comparison view of the changes; each change can be excluded from this commit (or reverted entirely), so it’s possible to group related file hunks into meaningful commits. I can also discard changes, push, and pull using the Source Control menu.

Branches, tags, and remotes are handled in the Source Control navigator. Selecting an item here causes relevant information to be displayed in the Source Control inspector; for example, selecting a branch displays its corresponding remote, and selecting a remote displays its URL. Selecting a branch also shows the log of its commits in the editor. The list of commits is filterable through a search field at the top of the editor; for example, you can filter by a word that appears in the commit message. Selecting a commit in this list displays its branches, its commit message, and its involved files, in the inspector. Double-click a commit to see its involved files and their differences from the previous commit in a comparison view.

Other relevant commands appear in the contextual menu for items in the Source Control navigator. For example, to add a remote, summon the contextual menu for the Remotes listing. To make a new branch, check out a branch, tag a branch, delete a branch, or merge a branch, summon the contextual menu for the branch listing.

The Version editor lets you see a comparison view for the file being currently edited; choose View → Version Editor → Show Version Editor, or click the third Editor button in the project window toolbar. The Version editor actually has three modes: Comparison view, Blame view, and Log view (choose from View → Version Editor, or use the pop-up menu from the third Editor button in the toolbar). In Figure 9-1
 , I’m using Comparison view to see that in the more recent version of this file (on the left) I’ve changed my titleTextAttributes
 dictionary (because the Swift language changed). The jump bar at the bottom of the Version editor permits me to view any commit’s version of the current file in the editor. If I choose Editor → Copy Source Changes, the corresponding diff text (a patch file) is placed on the clipboard.

[image: ios11 0901]

Figure 9-1.
 Version comparison

If I switch to Blame view, I can see the author of the commit for each hunk of the file; to see a hunk’s commit information in a popover, click the “i” button. It is also possible to get blame information in the normal editor: select within a line and choose Editor → Show Blame For Line (or use the contextual menu). A popover appears, describing the commit where this line changed to its current form, and buttons in that popover switch to Blame view or Comparison view.

Editing and Navigating Your Code

Many aspects of Xcode’s editing environment can be modified to suit your tastes. Your first step should be to pick a Source Editor font face and size you like in Xcode’s Fonts & Colors preference pane. Nothing is so important as being able to read and write code comfortably! I like a pleasant monospaced font. SF Mono is included and is the default; I think it’s very nice. Other possibilities might be Menlo or Consolas, or the freeware Inconsolata (
http://levien.com/type/myfonts/

) or Source Code Pro (
https://github.com/adobe-fonts/source-code-pro

). I also like a largish size (13, 14 or even 16).

New in Xcode 9, you can change the source code font size on the fly, without returning to the Fonts & Colors preference pane: choose Editor → Font Size → Increase or Decrease. You can also switch between themes: choose from the Editor → Theme hierarchical menu. Also, the Fonts & Colors preference pane now gives you a choice of cursor and line spacing (leading) settings.

Xcode has some automatic formatting, autotyping, and text selection features. Their exact behavior depends upon your settings in the Editing and Indentation tabs of Xcode’s Text Editing preference pane. I’m not going to describe these settings in detail, but I urge you to take advantage of them. Under Editing, I like to check just about everything, including Line Numbers; visible line numbers are useful when debugging. Under Indentation, I like to have just about everything checked too; I find the way Xcode lays out code to be excellent with these settings.

Tip

If you like Xcode’s smart syntax-aware indenting, but you find that once in a while a line of code isn’t indenting itself correctly, choose Editor → Structure → Re-Indent (Control-I), which autoindents the current line or selection.

With “Enable type-over completions” checked, Xcode helps balance delimiters. For example, suppose I intend to make a UIView by calling its initializer init(frame:)
 . I type as far as this:

let v = UIView(fr

Xcode automatically appends the closing right parenthesis, with the insertion point still positioned before it:

let v = UIView(fr)
// I have typed ^

If I finish typing the parameter and then type a right parenthesis, Xcode moves the insertion point through the existing right parenthesis (so that I don’t end up with two adjacent right parentheses):

let v = UIView(frame:r)
// I have typed ^

New in Xcode 9 is the “Enclose selection in matching delimiters” checkbox. With this checked, if you select some text and type a left delimiter, it doesn’t replace the selection; rather, the selection is surrounded with left and right delimiters.

Autocompletion

As you write code, you’ll take advantage of Xcode’s autocompletion feature. Cocoa type names and method names are astonishingly verbose, and whatever reduces your time and effort typing will be a relief. However, I personally do not
 check “Suggest completions while typing” under Editing; instead, I check “Use Escape key to show completion suggestions,” and when I want autocompletion to happen, I ask for it manually, by pressing Esc.

For example, suppose I want my code to create an alert. I type as far as UIAlertController(
 and press Esc. A menu pops up, listing the four initializers appropriate to a UIAlertController (Figure 9-2
). You can navigate this menu, dismiss it, or accept the selection, using the mouse or the keyboard alone. I like to use the keyboard. So, if it were not already selected by default, I would navigate to title:...
 with the Down arrow key, and press Return to accept the selected choice.

[image: ios10 0902]

Figure 9-2.
 The autocompletion menu

When I choose from the autocompletion menu, the template for the method call is entered in my code (I’ve broken it into multiple lines here):

let alert = UIAlertController(
 title: <#String?#>,
 message: <#String?#>,
 preferredStyle: <#UIAlertControllerStyle#>)

The expressions in <#...#>
 are placeholders
 , showing the type of each parameter. They appear in Xcode as cartouche-like “text tokens” to prevent them from being edited accidentally. You can select the next placeholder with Tab or by choosing Navigate → Jump to Next Placeholder (Control-/). Thus I can select a placeholder and type over it, entering the actual argument I wish to pass, select the next placeholder and type that argument, and so forth. To convert a placeholder to a normal string without the delimiters, select it and press Return, or double-click it.

Autocompletion and its contextual intelligence works for object type names, method calls, and property names. It also works when you’re entering a declaration for a function that’s inherited or defined in an adopted protocol. You don’t need to type even the initial func
 ; just type the first few letters of the method’s name. For example, in my app delegate class I might type:

applic

If I then press Esc, I see a list of methods such as application(_:didFinishLaunchingWithOptions:)
 ; these are methods that might be sent to my app delegate (by virtue of its being the app delegate, as discussed in Chapter 11
). When I choose one, the entire declaration is filled in for me, including the curly braces:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?) -> Bool {
 <#code#>
}

A placeholder for the code appears between the curly braces, and it is selected, ready for me to start entering the body of the function. If a function needs an override
 designation, Xcode’s code completion provides it.

What you type in connection with autocompletion doesn’t have to be the literal start of a symbol. As it does throughout the interface, Xcode will use intelligence in matching the components of the search term. If I know that the method I want to create is application(_:didFinishLaunchingWithOptions:)
 , I can get better search results by typing this:

appdidf

When I press Esc, application(_:didFinishLaunchingWithOptions:)
 is then first
 among the choices in the pop-up menu.

Snippets

Code autocompletion is supplemented by code snippets. A code snippet is a bit of text with an abbreviation. Code snippets are kept in the Code Snippet library (Command-Option-Control-2),

 but a code snippet’s abbreviation is globally available to code completion, so you can use a snippet without showing the library: you type the abbreviation and the snippet’s name is included among the possible completions.

For example, to enter a class
 declaration at the top level of a file, I would type class
 and press Esc, to get autocompletion, and choose Swift Subclass. The template for a class declaration appears in my code: the class name and superclass name are placeholders, the curly braces are provided, and the body of the declaration (between the curly braces) is another placeholder.

Warning

There is no way to learn a built-in code snippet’s code completion prefix (the abbreviation you would type before asking for code completion). I regard this as a serious flaw in the code snippet interface. Fortunately, the prefixes are geared to Swift keywords, so you’re likely to discover them accidentally; for example, if you type var
 and ask for code completion, you’ll find out about the obscure varget
 .

You can add your own snippets, which will be categorized as User snippets; the easiest way is to drag text into the Code Snippet library, which will result in the new snippet opening for editing. Provide a name, a description, and an abbreviation. The Completion Scopes pop-up menu lets you narrow the contexts in which the snippet will be available through code completion. In the text of the snippet, use the <#...#>
 construct to form any desired placeholders.

For example, I’ve created an outlet
 snippet (Chapter 7
) defined like this:

@IBOutlet var <#name#> : <#type#>!

And I’ve created an action
 snippet defined like this:

@IBAction func <#name#> (_ sender: Any) {
 <#code#>
}

My other snippets constitute a personal library of utility functions that I’ve developed. For example, my delay
 snippet inserts my DispatchQueue.main.asyncAfter
 wrapper function (see Chapter 11
).

Structure Stubs

New in Xcode 9, the code editor can help you with basic additions to the structure of your code by inserting snippets that function as stubs. This feature appears when you hover the mouse over your code while holding the Command key, and then click. For example:

	If you have a class declaration in your code, you can hold Command and click the left curly brace. This displays a popover with choices such as Add Method and Add Property.

	Similarly, for a method declaration, the same popover lets you Add Parameter or Add Return Type.

Choosing one of these options enters a stub with placeholders into your code, ready for you fill in the details.

Fix-it and Live Syntax Checking

Sometimes, when the compiler emits a warning or error, Xcode’s Fix-it feature can make and implement
 positive suggestions on how to avert the problem.

For instance, Figure 9-3
 , at the top, shows that I’ve accidentally forgotten the parentheses after a method call. This causes a compile error. But the stop-sign icon next to the error tells me that Fix-it has a suggestion. I click the stop-sign icon, and Figure 9-3
 , at the bottom, shows what happens: a dialog pops up, not only showing the full error message but also telling me how Fix-It proposes to fix the problem — by inserting the parentheses. If I click the Fix button in the dialog, Xcode does insert the parentheses — and the error vanishes, because the problem is solved.

[image: ios11 0903]

Figure 9-3.
 A compile error with a Fix-it suggestion

New in Xcode 9, the intelligence of Fix-it is increased. For example, if a switch statement’s tag is an enum and you omit cases, Fix-it can add them. If a type adopts a protocol and fails to implement required members, Fix-it can insert stubs for those members.

Live syntax checking is like a form of continual compilation. Even if you don’t compile or save, live syntax checking can detect the presence of a problem. This feature can be toggled on or off using the “Show live issues” checkbox in the General preference pane. Personally, I find live syntax checking intrusive. My code is almost never valid while I’m in the middle of typing, because things are always half-finished; that’s what it means to be typing! For example, merely typing the first letter of let
 and pausing will cause the syntax checker to complain of an unresolved identifier. So I’ve got “Show live issues” unchecked.

Navigation

Developing an Xcode project involves editing code in many files at once. Fortunately, Xcode provides numerous ways to navigate your code,
 many of which have been mentioned in previous chapters. Here are some of Xcode’s chief forms of navigation:

The Project navigator

 If you know something about the name of a file, you can find it quickly in the Project navigator by typing into the search field in the filter bar at the bottom of the navigator (Edit → Filter → Filter in Navigator, Command-Option-J). For example, type story
 to see just your .storyboard
 files.

The Symbol navigator

 If you highlight the first two icons in the filter bar (the first two are blue, the third is dark), the Symbol navigator lists your project’s object types and their members. Click on a symbol to navigate to its declaration in the editor. As with the Project navigator, the filter bar’s search field can help get you where you want to go.

The jump bar

Every path component of the code editor’s jump bar is a menu:

The bottom level

At the bottom level (farthest right) in the jump bar is a list of your file’s object and member declarations, in the order in which they appear (hold Command-Option while choosing the menu to see them in alphabetical order); choose one to navigate to it. This menu can also be filtered; start typing while any jump bar menu is open, to filter what the menu displays.

Higher levels

Higher-level path components are hierarchical menus; thus you can use any of them to work your way down the file hierarchy.

History

Each editor pane remembers the names of files you’ve edited in it. The Back and Forward triangles are buttons as well as pop-up menus (or choose Navigate → Go Back and Navigate → Go Forward, Command-Control-Left and Command-Control-Right).

Related items

The leftmost button in the jump bar summons the Related Items menu, a hierarchical menu of files related to the current file, such as superclasses and adopted protocols. This list even includes functions that call or are called by the currently selected function.

Tip

Your code can inject bold section titles into the jump bar’s bottom-level menu using a comment whose first word is MARK:
 . To make a divider line in the menu, type a MARK:
 comment whose value is a hyphen. The two can be combined. For example, try modifying ViewController.swift
 in our Empty Window project, and then look in the bottom-level jump bar menu:

// MARK: - View lifecycle
override func viewDidLoad() {
 super.viewDidLoad()
}

Similarly, comments starting with TODO:
 and FIXME:
 will appear in the bottom-level menu.

The assistant pane

The assistant pane lets you be in two places at once (see Chapter 6
). Hold Option while navigating to open something in an assistant pane instead of the primary editor pane.
 The Tracking menu in an assistant pane’s jump bar sets its automatic relationship to the main pane.

Tabs and windows

You can also be in two places at once by opening a tab or a separate window (again, see Chapter 6
).

Jump to definition

Navigate → Jump to Definition (Command-Control-J, Command-Control-click) lets you jump from a symbol in your code to its declaration.

Open quickly

File → Open Quickly (Command-Shift-O) opens a dialog where you can search for a symbol in your code and in the framework headers.

Breakpoints

The Breakpoint navigator lists all breakpoints in your code. Xcode lacks code bookmarks, but you can misuse a disabled breakpoint as a bookmark. Breakpoints are discussed later in this chapter.

Finding

Finding is a form of navigation.
 Xcode has both a global find (Find → Find in Project, Command-Shift-F), using the Find navigator, and an editor-level find (Find → Find, Command-F).

You’ll want to configure your search with find options:

Editor-level find options

Buttons at the right end of the search field toggle case sensitive search and regular expression search.

Global find options

The options appear above and below the search field. Above the search field, you can choose between Text, Regular Expression, Definitions (where a symbol is defined), References (where a symbol is used), and Call Hierarchy (which allows you to trace the nests of calls backward through your code, Figure 9-4
); you can search by word contents, word exact match, word start, or word end. Below the search field, you can toggle case sensitivity, and you can specify a scope determining which files will be searched: click the current scope to see the Search Scopes panel, where you can select a different scope or create a custom scope.

[image: ios9 0903a]

Figure 9-4.
 A call hierarchy in the Find navigator

To find and replace:

Editor level find and replace

Click the magnifying glass icon and choose Replace to toggle the visibility of the Replace field. You can perform a Find and then click Replace to replace that instance, or click All to replace all occurrences.

Global find and replace

Click the word Find at the left end of the search bar to summon the pop-up menu, and choose Replace. You can replace all occurrences (Replace All), or select particular find results in the Find navigator and replace only those (Replace); you can also delete
 find results from the Find navigator, to protect them from being affected by Replace All.

A sophisticated form of editor-level find is Editor → Edit All In Scope,
 which finds simultaneously all occurrences of the currently selected term within the same scope; you can use this to change the name of a variable or function throughout its scope, or just to survey how the name is used.

Refactoring

Refactoring is an intelligent form of code reorganization. Originally added to Xcode in the days when Objective-C held sway, refactoring has hitherto been unavailable to Swift programmers. New in Xcode 9, refactoring for Swift code has begun to appear. To use it, select a term in your code and choose from the Editor → Refactor hierarchical menu. As of this writing, only a few refactoring commands are operative; for example:

Rename

Like Edit All In Scope (mentioned at the end of the previous section), but its scope is the entire program. Select a symbol, such as the name of a method or class, and choose Editor → Refactor → Rename; the symbol’s declaration and all
 references to it are changed. Rename also allows you to change the name of an outlet property or action method without breaking the connection from the nib.

Extract Method

Creates a new method and moves the selected code into the body of that method, replacing the original code with a call to that method. You can then select the method call and choose Rename.

Extract Variable

Creates a new variable and assigns the selected code expression to that variable, replacing the original expression with a reference to the variable. If the same expression appears multiple times and you choose Extract All Occurrences, they are all replaced with a reference to the variable. You can then select the variable name and choose Rename.

More refactoring commands may be expected to start working as Xcode evolves further.

Running in the Simulator

When you build and run with the Simulator as the destination, you run in the Simulator application.
 A Simulator window represents a device. Depending on your app target’s Base SDK, Deployment Target, and Targeted Device Family build settings, and on what SDKs you have installed, you may have choices about the device and system to be represented by the Simulator as you choose your destination before running (see Chapter 6
).

New in Xcode 9, the Simulator can display multiple windows, representing different devices. You can run different projects in different devices simultaneously. (You can also run different projects in the same
 device simultaneously.) When you choose from the Simulator’s Hardware → Device hierarchical menu, the current device window is not closed; instead, we switch to the window representing the chosen device, launching that device’s simulator if needed.

Also new in Xcode 9, a Simulator window can display the bezel surrounding the device’s
 screen. Choose Window → Show Device Bezels to toggle this feature (for all windows). Displaying the bezel allows you press hardware buttons (the Home button, volume buttons, screen lock button) by clicking the mouse; also, certain gestures, such as swiping from the screen edge, become easier to perform.

New in Xcode 9, a Simulator window can be resized by dragging an edge or corner. Alternatively, as in previous versions of Xcode, choose from Window → Scale to zoom by an integral amount; for example, you might run a double-resolution device in the Simulator at full size to see every pixel, or at half size to save space.

You can interact with the Simulator in some of the same basic ways as you would a device. Using the mouse, you can tap on the device’s screen; hold Option to make the mouse represent two fingers moving symmetrically around their common center, and Option-Shift to represent two fingers moving in parallel. Items in the Hardware menu also let you perform hardware gestures such as rotating the device, shaking it, locking its screen, and clicking the Home button; you can also test your app by simulating certain rare events, such as a low-memory situation.

New in Xcode 9, you can toggle whether a Simulator window should automatically rotate if the orientation of the app changes to exclude the current device orientation. Choose Hardware → Rotate Device Automatically to toggle this setting. Your choice applies to all Simulator windows simultaneously.

The Debug menu in the Simulator is useful for detecting problems with animations and drawing. Slow Animations, if checked, makes animations unfold in slow motion so that you can see in detail what’s happening. The four menu items whose names begin with Color are similar to features available when running using Instruments, under the Core Animation instrument, revealing possible sources of inefficiency in screen drawing.

New in Xcode 9, the Simulator application provides a Share extension. You can select a file in the Finder, for example, and choose Share → Simulator from the contextual menu to copy the file into an open simulator.

Debugging

Debugging is the art of figuring out what’s wrong with the behavior of your app as it runs. I divide this art into two main techniques: caveman debugging and pausing your running app.

Caveman Debugging

Caveman debugging
 consists of altering your code, usually temporarily, typically by adding code to dump informative messages into the console.
 The standard procedure is to read those messages in the project window’s Debug pane as your app runs.

The Swift command for sending a message to the console is the print
 function. Using Swift’s string interpolation and the CustomStringConvertible protocol (which requires a description
 property; see Chapter 4
), you can pack a lot of useful information into a print
 call. Cocoa objects generally have a built-in description
 property implementation. For example:

print(self.view)

The output in the console reads something like this (I’ve formatted it for clarity here):

<UIView: 0x79121d40;
 frame = (0 0; 320 480);
 autoresize = RM+BM;
 layer = <CALayer: 0x79121eb0>>

We learn the object’s class, its address in memory (useful for confirming whether two instances are in fact the same instance), and the values of some additional properties.

If you’re importing Foundation — and in real-life iOS programming, you are — you also have access to the NSLog
 C function.

 It takes an NSString which operates as a format string, followed by the format arguments. A format string
 is a string containing symbols called format specifiers
 , for which values (the format arguments) will be substituted at runtime.
 All format specifiers begin with a percent sign (%
), so the only way to enter a literal percent sign in a format string is as a double percent sign (%%
). The character(s) following the percent sign specify the type of value that will be supplied at runtime. The most common format specifiers are %@
 (an object reference), %d
 (an int), %ld
 (a long), and %f
 (a double). For example:

NSLog("the view: %@", self.view)

In that example, self.view
 is the first (and only) format argument, so its value will be substituted for the first (and only) format specifier, %@
 , when the format string is printed in the console:

2015-01-26 10:43:35.314 Empty Window[23702:809945]
 the view: <UIView: 0x7c233b90;
 frame = (0 0; 320 480);
 autoresize = RM+BM;
 layer = <CALayer: 0x7c233d00>>

I like NSLog
 ’s output because it provides the current time and date, along with the process name, process ID, and thread ID (useful for determining whether two logging statements are called on the same thread). Also, NSLog
 is thread-safe, whereas print
 is not. In addition, NSLog
 output appears in the device’s console, whereas print
 output does not.

For the complete repertory of format specifiers available in a format string, see “String Format Specifiers” in Apple’s String Programming Guide
 . The format specifiers are largely based on those of the C printf
 standard library function.

The main ways to go wrong with NSLog
 (or any format string) are to supply a different number of format arguments from the number of format specifiers in the string, or to supply an argument value different from the type declared by the corresponding format specifier. I often see beginners claim that logging shows a certain value to be nonsense, when in fact it is their NSLog
 call that is nonsense; for example, a format specifier was %d
 but the value of the corresponding argument was a float. Another common mistake is treating an NSNumber as if it were the type of number it contains; an NSNumber isn’t any kind of number — it’s an object (%@
). Problems with signed vs. unsigned integers, or 32-bit vs. 64-bit numbers, can be tricky as well.

C structs are not objects, so they cannot provide a description
 . But Swift extends some of the most common C structs as Swift structs, and thus allows them to be printed with print
 . So, for example, this works:

print(self.view.frame) // (0.0,0.0,320.0,480.0)

However, you can’t do the same thing with NSLog
 . For this reason, common Cocoa structs are usually accompanied by convenience functions that render them as strings. For example:

NSLog("%@", NSStringFromCGRect(self.view.frame))
// {{0, 0}, {320, 480}}

Tip

Swift defines four special literals, particularly useful when logging because they describe their own position in the surrounding file: #file
 , #line
 , #column
 , and #function
 .

Another useful form of caveman debugging is deliberately aborting your app because something has gone seriously wrong. See the discussion of assert
 , precondition
 , and fatalError
 in Chapter 5
 . precondition
 and fatalError
 work even in a Release build. By default, assert
 is inoperative in a Release build, so it is safe to leave it in your code when your app is ready to ship; by that time, of course, you should be confident that the bad situation your assert
 was intended to detect has been debugged and will never actually occur.

Purists may scoff at caveman debugging, but I use it heavily: it’s easy, informative, and lightweight. And sometimes it’s the only way. Unlike the debugger, console logging works with any build configuration (Debug or Release) and wherever your app runs (in the Simulator or on a device). It works when pausing is impossible (because of threading issues, for example). It even works on someone else’s device, such as a tester to whom you’ve distributed your app. It’s a little tricky for a tester to get a look at the console so as to be able to report back to you, but it can be done: for example, the tester can connect the device to a computer and view its log in Xcode’s Devices and Simulators window.

The Xcode Debugger

When Xcode is running your app, you can pause in the debugger and use Xcode’s debugging facilities. The important thing, if you want to use the debugger, is that the app should be built with the Debug build configuration (the default for a scheme’s Run action). The debugger is not very helpful against an app built with the Release build configuration, not least because compiler optimizations can destroy the correspondence between steps in the compiled code and lines in your code.

Breakpoints

There isn’t a strong difference between running and debugging in Xcode; the main distinction is whether breakpoints are effective or ignored. The effectiveness of breakpoints can be toggled at two levels:

Globally (active vs. inactive)

Breakpoints as a whole are either active or inactive
 . If breakpoints are inactive, we won’t pause at any breakpoints.

Individually (enabled vs. disabled)

A given breakpoint is either enabled or disabled
 . Even if breakpoints are active, we won’t pause at this one if it is disabled. Disabling a breakpoint allows you to leave in place a breakpoint that you might need later without pausing at it every time it’s encountered.

To create a breakpoint (Figure 9-5
),
 select in the editor the line where you want to pause, and choose Debug → Breakpoints → Add/Remove Breakpoint at Current Line (Command-\). This menu item toggles between adding and removing a breakpoint for the current line. The breakpoint is symbolized by an arrow in the gutter. Alternatively, a simple click in the gutter adds a breakpoint; to remove a breakpoint gesturally, drag it out of the gutter.

[image: ios11 0904]

Figure 9-5.
 A breakpoint

To disable a breakpoint at the current line, click on the breakpoint in the gutter to toggle its enabled status. Alternatively, Control-click on the breakpoint and choose Disable Breakpoint in the contextual menu. A dark breakpoint is enabled; a light breakpoint is disabled (Figure 9-6
).

[image: ios11 0905]

Figure 9-6.
 A disabled breakpoint

To toggle the active status of breakpoints as a whole, click the Breakpoints button in the bar at the top of the Debug pane, or choose Debug → Activate/Deactivate Breakpoints (Command-Y). If breakpoints are inactive, they are simply ignored en masse
 , and no pausing at breakpoints takes place. Breakpoint arrows are blue if breakpoints are active, gray if they are inactive. The active status of breakpoints as a whole doesn’t affect the enabled or disabled status of any breakpoints.

Once you have some breakpoints in your code, you’ll want to survey and manage them. That’s what the Breakpoint navigator is for. Here you can navigate to a breakpoint, enable or disable a breakpoint by clicking on its arrow in the navigator, and delete a breakpoint.

You can also configure a breakpoint’s behavior. Control-click on the breakpoint, in the gutter or in the Breakpoint navigator, and choose Edit Breakpoint; or double-click the breakpoint. This is a very powerful facility: you can have a breakpoint pause only under a certain condition or after it has been encountered a certain number of times, and you can have a breakpoint perform one or more actions when it is encountered, such as issuing a debugger command, logging, playing a sound, speaking text, or running a script. New in Xcode 9, a breakpoint whose behavior has been configured is badged (Figure 9-7
).

[image: ios11 0905a]

Figure 9-7.
 A configured breakpoint

A breakpoint can be configured to continue automatically after performing its action when it is encountered. This can be an excellent alternative to caveman debugging: instead of inserting a print
 or NSLog
 call, which must be compiled into your code and later removed when the app is released, you can set a breakpoint that logs and continues. By definition, such a breakpoint operates only when you’re actively debugging the project; it won’t dump any messages into the console when the app runs on a user’s device, because breakpoints exist in Xcode, not on a user’s device.

Certain special kinds of breakpoint can be created in the Breakpoint navigator — click the Plus button at the bottom of the navigator and choose from its pop-up menu — or by choosing from the Debug → Breakpoints hierarchical menu:

Exception breakpoint

An exception breakpoint
 causes your app to pause at the time an exception is thrown or caught, without regard to whether the exception would crash your app later. I recommend that you create an exception breakpoint to pause on all exceptions when they are thrown, because this gives the best view of the call stack and variable values at the moment of the exception (rather than later when the crash actually occurs); you can see where you are in your code, and you can examine variable values, which may help you understand the cause of the problem. If you do create such an exception breakpoint, I also suggest that you use the contextual menu to say Move Breakpoint To → User, which makes this breakpoint global to all your projects.

Warning

Sometimes Apple’s code will throw an exception and catch it, deliberately. This isn’t a crash, and nothing has gone wrong; but if you’ve created an exception breakpoint, your app will pause at it, which can be confusing. If this happens to you, choose Debug → Continue to resume your app; if it keeps happening, you might need to disable the exception breakpoint.

Swift error breakpoint

Similar to an exception breakpoint, but it pauses when your code says throw
 .

Symbolic breakpoint

A symbolic breakpoint
 causes your app to pause when a certain method or function is called, regardless of what object called it. The method doesn’t have to be your method! Thus, a symbolic breakpoint can help you understand Cocoa’s behavior. A method may be specified in one of two ways:

Using Objective-C method notation

The instance method or class method symbol (-
 or +
) followed by square brackets containing the class name and the method name. For example:

-[UIApplication beginReceivingRemoteControlEvents]

By Objective-C method name

The Objective-C method name alone. The debugger will resolve this for you into all possible class–method pairs, as if you had entered them using the Objective-C notation that I just described. For example:

beginReceivingRemoteControlEvents

If you enter the method name (or class name) incorrectly, the symbolic breakpoint won’t do anything. Fortunately, new in Xcode 9, you’ll be assisted by code completion. In general, you’ll know if you got things right, because you’ll see the resolved breakpoint listed hierarchically below yours.

Paused at a breakpoint

When the app runs with breakpoints active and an enabled breakpoint is encountered (and assuming its conditions are met, and so on), the app pauses. In the active project window, the editor shows the file containing the point of execution, which will usually be the file containing the breakpoint. The point of execution is shown by marking the line in green; this is the line that is about
 to be executed (Figure 9-8
). Depending on the settings for Running → Pauses in the Behaviors preference pane, the Debug navigator and the Debug pane may also appear.

[image: ios11 0906]

Figure 9-8.
 Paused at a breakpoint

Here are some things you might like to do while paused at a breakpoint:

See where you are

One common reason for setting a breakpoint is to make sure that the path of execution is passing through a certain line. Functions listed in the call stack
 in the Debug navigator
 with a User icon, with the text in black, are yours; click one to see where you are paused in that function. (Listings with the text in gray are functions and methods for which you have no source code, so there would be little point clicking one unless you know something about assembly language.) You can also view and navigate the call stack using the jump bar at the top of the Debug pane.

Study variable values

In the Debug pane, variable values for the current scope (corresponding to what’s selected in the call stack) are visible in the variables list
 . You can see additional object features, such as collection elements, properties, and even some private information, by opening triangles. (Local variable values are shown even if, at the point where you are paused, those variables have not yet been initialized; such values are meaningless
 , so ignore them.)

You can use the search field to filter variables by name or value. If a formatted summary isn’t sufficiently helpful, you can send description
 (or, if this object adopts CustomDebugStringConvertible, debugDescription
) to an object variable and view the output in the console: choose Print Description of [Variable] from the contextual menu, or select the variable and click the Info button below the variables list.

You can also view a variable’s value graphically: select the variable and click the Quick Look button (an eye icon) below the variables list, or press Spacebar. For example, in the case of a CGRect, the graphical representation is a correctly proportioned rectangle.
 You can make instances of your own custom class viewable in the same way; declare the following method and return an instance of one of the permitted types (see Apple’s Quick Look for Custom Types in the Xcode

Debugger

):

@objc func debugQuickLookObject() -> Any {
 // ... create and return your graphical object here ...
}

You can also inspect a variable’s value in place in your code, by examining its data tip. To see a data tip, hover the mouse over the name of a variable in your code. The data tip is much like the display of this value in the variables list: there’s a flippy triangle that you can open to see more information, plus an Info button that displays the value description here and in the console, and a Quick Look button for showing a value graphically (Figure 9-9
).

[image: ios11 0907]

Figure 9-9.
 A data tip

Inspect your view hierarchy

You can study the view hierarchy while paused in the debugger.
 Click the Debug View Hierarchy button in the bar at the top of the Debug pane, or choose Debug → View Debugging → Capture View Hierarchy. Views are listed in an outline in the Debug navigator. The editor displays your views; this is a three-dimensional projection that you can rotate. The Object inspector and the Size inspector display information about the currently selected view.

Inspect your object graph

You can study your object graph (what objects you’ve created and how they are referring to one another) while paused in the debugger. I’ll talk more about that later in this chapter.

Manage expressions

An expression is code to be added to the variables list and evaluated every time we pause. Choose Add Expression from the contextual menu in the variables list. The expression is evaluated within the current context in your code, so be careful of side effects.

Talk to the debugger

You can communicate directly with the debugger through the console. Xcode’s debugger interface is a front end to the real
 debugger, LLDB
 (
http://lldb.llvm.org);

 by talking directly to LLDB, you can do everything that you can do through the Xcode debugger interface, and more. Common commands are:

fr v
 (short for frame variable
)

Alone, prints out all variables locally in scope, similar to the display in the variables list. Alternatively, can be followed by the name of a variable you want to examine.

ty loo
 (short for type lookup
)

Followed by a type name, dumps a full declaration for the type, listing all its members (properties and methods).

p
 (or expression
 , expr
 , or simply e
)

Evaluates, in the current context, any expression in the current language. Be careful of your expression’s side effects!

po
 (meaning “print object”)

Like p
 , but displays the value of the expression in accordance with its description
 or debugDescription
 (similar to Print Description).

Fiddle with breakpoints

You are free to create, destroy, edit, enable and disable, and otherwise manage breakpoints dynamically even while your app is running, which is useful because where you’d like to pause next might depend on what you learn while you’re paused here. Indeed, this is one of the main advantages of breakpoints over caveman debugging. To change your caveman debugging, you have to stop the app, edit it, rebuild it, and start running the app all over again. But to fiddle with breakpoints, you don’t have to be stopped; you don’t even have to be paused! An operation that went wrong, if it doesn’t crash your app, can probably be repeated in real time; so you can just add a breakpoint and try again. For example, if tapping a button produces the wrong results, you can add a breakpoint to the action method and tap the button again; you pass through the same code, and this time you can work out what the trouble is.

Step or continue

To proceed with your paused app, you can either resume running until the next breakpoint is encountered (Debug → Continue) or take one step and pause again. Also, you can select in a line and choose Debug → Continue to Current Line (or Continue to Here from the contextual menu), which effectively sets a breakpoint at the chosen line, continues, and removes the breakpoint. The step commands (in the Debug menu) are:

Step Over

Pause at the next line.

Step Into

Pause in your function that the current line calls, if there is one; otherwise, pause at the next line.

Step Out

Pause when we return from the current function.

You can access these commands through convenient buttons in the bar at the top of the Debug pane. Even if the Debug pane is collapsed, the bar containing the buttons appears while running.

Start over, or abort

To kill the running app, click Stop in the toolbar (Product → Stop, Command-Period). Clicking the Home button in the Simulator (Hardware → Home) or on the device does not
 stop the running app in the multitasking world of iOS 4 and later.

You can make changes to your code while the app is running or paused, but those changes are not magically communicated to the running app; there are programming milieus where that sort of thing is possible, but Xcode is not among them. You must stop the app and run in the normal way (which includes building) to see your changes in action.

Testing

A test
 is code that isn’t part of your app target; its purpose is to make sure that your app works as expected. Tests can be of two kinds:

Unit tests

A unit test exercises your app target internally
 , from the point of view of its code
 .
 For example, a unit test might call some method in your app target code, handing it various parameters and looking to see if the expected result is returned each time, not just under normal conditions but also when incorrect or extreme inputs are supplied.

Interface (UI) tests

An interface test exercises your app externally
 , from the point of view of a user
 . Such a test guides your app through use case scenarios by effectively tapping buttons with a ghost finger, watching to make sure that the interface behaves as expected.

Tests should ideally be written and run constantly as you develop your app. It can even be useful to write unit tests before
 writing the real code, as a way of developing a working algorithm. Having initially ascertained that your code passes your tests, you continue to run those tests to detect whether a bug has been introduced during the course of development.

Tests are bundled in a separate target of your project (see Chapter 6
). The application templates give you an opportunity to add a test target at the time you create your project: in the second dialog (“Choose options”), where you name your project, you can check Include Unit Tests or Include UI Tests, or both. Alternatively, you can easily create a new test target at any time: make a new target and specify iOS → Test → iOS Unit Testing Bundle or iOS UI Testing Bundle. Your tests do not run until you explicitly run them. Tests can be managed and run easily from the Test navigator as well as from within a test class file.

A test class is a subclass of XCTestCase (which is itself a subclass of XCTest). A test method is an instance method of a test class, returning no value and taking no parameters, whose name starts with test
 . The test target depends upon the app target, meaning that before a test class can be compiled and built, the app target must be compiled and built.

Tip

To build your test target, so as to learn whether its code compiles successfully, choose Product → Build For → Testing.

A test method may call one or more test asserts; in Swift, these are global functions whose names begin with XCTAssert
 . For a list of these functions, see Apple’s document Testing With Xcode
 , in the “Writing Test Classes and Methods” chapter, under “Assertions Listed by Category.” Unlike the corresponding Objective-C macros, the Swift test assert functions do not
 take format strings (the way NSLog
 does); each takes a simple message string. Test assert functions marked as being “for scalars” are not really for scalars in Swift, because in Swift there are no scalars (as opposed to objects): they apply to any types that adopt Equatable or Comparable.

A test class may also contain utility methods that are called by the test methods. In addition, you can override any of four special methods inherited from XCTestCase:

setUp
 class method

Called once before all
 test methods in the class.

setUp
 instance method

Called before each
 test method.

tearDown
 instance method

Called after each
 test method.

tearDown
 class method

Called once after all
 test methods in the class.

As an alternative to the tearDown
 instance method, you can use a teardown block
 . To do so, call self.addTeardownBlock(_:)
 with a function (typically an anonymous function) to be called at teardown time; self
 here is the XCTestCase instance. When the teardown block is called depends on where it is added; if you call addTeardownBlock
 within a test method, the block is called only on exit from that method, but if you call it in the setUp
 instance method, the block is called after every test method, because the block was added freshly before every test method.

Running a test also runs the app. The test target’s product is a bundle; a unit test bundle is loaded into the app as it launches, whereas an interface test bundle is loaded into a special test runner app generated for you by Xcode. Resources, such as test data, can be included in the bundle. You might use setUp
 to load such resources; you can get a reference to the bundle by way of the test class, by saying Bundle(for:type(of:self))
 .

Unit tests can see into the app target, because they are part of the same app; but, being a bundle, they also constitute a module. Therefore, the test target must import the app target as a module. To overcome privacy restrictions, the import
 statement should be preceded by the @testable
 attribute; this attribute temporarily changes internal
 (explicit or implicit) to public
 throughout the app target.

As an example of writing and running a unit test method, let’s use our Empty Window project. Give the ViewController class a (nonsensical) instance method dogMyCats
 :

func dogMyCats(_ s:String) -> String {
 return ""
}

The method dogMyCats
 is supposed to receive any string and return the string "dogs"
 . At the moment, though, it doesn’t; it returns an empty string instead. That’s a bug. Now we’ll write a test method to ferret out this bug.

First, we’ll need a unit test target:

	In the Empty Window project, choose File → New → Target and specify iOS → Test → iOS Unit Testing Bundle.

	Call the product EmptyWindowTests
 ; observe that the target to be tested is the app target.

	Click Finish.

In the Project navigator, a new group has been created, EmptyWindowTests, containing a single test file,
EmptyWindowTests.swift

 . It contains a test class EmptyWindowTests, including stubs for two test methods, testExample
 and testPerformanceExample
 ; comment out those two methods. We’re going to replace them with a test method that calls dogMyCats
 and makes an assertion about the result:

	At the top of EmptyWindowTests.swift
 , where we are importing XCTest, we must also import the app target:@testable import Empty_Window

	Prepare an instance property in the declaration of the EmptyWindowTests class to store our ViewController instance:var viewController = ViewController()

	Write the test method. Its name must start with test
 ! Let’s call it testDogMyCats
 . It has access to the ViewController instance as self.viewController
 :func testDogMyCats() {
 let input = "cats"
 let output = "dogs"
 XCTAssertEqual(output,
 self.viewController.dogMyCats(input),
 "Failed to produce \(output) from \(input)")
}

We are now ready to run our test! There are many ways to do this. Switch to the Test navigator, and you’ll see that it lists our test target, our test class, and our test method. You can run a test method, or the whole class suite, using the contextual menu or with Run buttons that appear when you hover the mouse over a listing. Even better, in EmptyWindowTests.swift
 itself, there’s a diamond-shaped indicator in the gutter to the left of the class declaration and the test method name; when you hover the mouse over it, it changes to a Run button. You can click that button to run, respectively, all tests in this class or an individual test. Or, to run all tests, you can choose Product → Test. (After running a test, to run just that test again, choose Product → Perform Action → Test Again.)

Tip

You can also edit a scheme’s Test action to dictate what tests will be run when you choose Product → Test.

So now let’s run testDogMyCats
 . The app target is compiled and built; the test target is compiled and built. (If any of those steps fails, we can’t test, and we’ll be back on familiar ground with a compile error or a build error.) The app launches in the Simulator, and the test runs.

The test fails! (Well, we knew that was going to happen, didn’t we?) A red X mark appears in EmptyWindowTests.swift
 next to the declaration of testDogMyCats
 . The best place to survey what went wrong is the Report navigator. The Tests pane displays the assertion failure (Figure 9-10
). The Logs pane goes into much more detail; by expanding transcripts, you can see the full console output from the test run, including any caveman debugging messages (print
) that you may have sent from your test code.

[image: ios11 0907b]

Figure 9-10.
 The Report navigator reports a test failure

Now let’s fix our code. In ViewController.swift
 , modify dogMyCats
 to return "dogs"
 instead of an empty string. Now run the test again. It passes!

When a test failure occurs, you might like to pause at the point where the assertion is about to fail. To do so, in the Breakpoint navigator, click the Plus button at the bottom and choose Add Test Failure Breakpoint. This is like an Exception breakpoint, pausing on the assert line in your test method just before it reports failure. You could then switch to the method being tested, for example, and debug it, examining its variables and so forth, to work out the reason for the impending failure.

There’s a helpful feature allowing you to navigate between a method and a test that calls it: when the selection is within a method, the Related Items menu in the jump bar includes Test Callers. The same is true of the Tracking menu in an assistant pane.

In our example, we made a new ViewController instance in order to initialize EmptyWindowTests’s self.viewController
 . But what if our test required us to get a reference to the existing
 ViewController instance? This is the same general problem of getting a reference to an instance that crops up so often in iOS programming (see “Instance References”
 , and Chapter 13
). The test code runs inside a bundle that is effectively injected into your running app. This means that it can see app globals such as UIApplication.shared
 . From there, you can work your way to the desired reference:

if let viewController =
 (UIApplication.shared.delegate as? AppDelegate)?
 .window?.rootViewController as? ViewController {
 // ...
}

Now let’s experiment with interface testing. I’m going to assume that you still have (from Chapter 7
) a button in the Empty Window interface with an action connection to a ViewController method that summons an alert. We’ll write a test that taps that button and makes sure that the alert is summoned. Add an iOS UI Testing Bundle to the project; call it EmptyWindowUITests
 .

Interface test code is based on accessibility
 , a feature that allows the screen interface to be described verbally and to be manipulated programmatically. It revolves around three classes:
 XCUIElement, XCUIApplication (an XCUIElement subclass), and XCUIElementQuery.
 To a large extent, you can avoid learning anything about these classes, because accessibility actions are recordable
 . This means that you can generate your code by performing the actual actions that constitute the test. Let’s try it:

	In the testExample
 stub method, create a new empty line and leave the insertion point within it.

	Choose Editor → Start Recording UI Test. (Alternatively, there’s a Record button at the bottom of the project window, in the debug bar.) The app launches in the Simulator.

	Tap the button in the interface. When the alert appears, tap OK to dismiss it.

	Return to Xcode and choose Editor → Stop Recording UI Test. Also choose Product → Stop to stop running in the Simulator.

The following code has been generated (assuming that your interface button’s title is “Hello”):

let app = XCUIApplication()
app.buttons["Hello"].tap()
app.alerts["Howdy!"].buttons["OK"].tap()

The app
 object, obviously, is an XCUIApplication instance. Properties such as buttons
 and alerts
 return XCUIElementQuery objects. Subscripting such an object returns an XCUIElement, which can then be sent action methods such as tap
 .

Now run the test by clicking in the diamond in the gutter at the left of the testExample
 declaration. The app launches in the Simulator, and a ghost finger performs the same actions we performed, tapping first the button in the interface and then, when the alert appears, the OK button that dismisses it. The test ends and the app stops running in the simulator. The test passes!

The important thing, however, is that if the interface stops looking and behaving as it does now, the test will not
 pass. For example, in Main.storyboard
 , select the button and, under Control in the Attributes inspector, uncheck Enabled. The button is still there, but it can’t be tapped; we’ve broken the interface. Run the test. The test fails, and the Report navigator explains why: when we came to the Tap the “OK” Button step, we first had to perform Find the “OK” Button, and we failed because there was no alert. Ingeniously, the report also incorporates screen shots so that we can inspect the state of the interface during the test. Under Tap “OK” Button, double-click Automatic Screenshot; you’re shown the screen at that moment, displaying clearly the disabled interface button (and no alert).

Fix the bug by enabling the button once again. If you now choose Product → Test, all tests in all test suites are run, both the unit tests and the interface tests, and they all pass. Our app may be trivially simple, but it’s definitely working!

New in Xcode 9, XCUIElement has a waitForExistence(timeout:)
 method. This solves a long-standing problem where a UI test might not wait long enough for a specified element to appear. If we were worried about that problem, we might manually modify our recorded test code along these lines:

let app = XCUIApplication()
app.buttons["Hello"].waitForExistence(timeout: 10)
app.buttons["Hello"].tap()
app.alerts["Howdy!"].waitForExistence(timeout: 10)
app.alerts["Howdy!"].buttons["OK"].tap()

During interface testing, your app is in effect being viewed from the outside, as a human being would view it. As I’ve already said, that depends upon accessibility. Standard interface objects are accessible, but other interface that you create might not be. Select an interface element in the nib editor to view its accessibility characteristics in the Identity inspector. Run the app in the Simulator and choose Xcode → Open Developer Tool → Accessibility Inspector to explore in real time the accessibility characteristics of whatever is under the cursor. For more about adding useful accessibility to your interface objects, see Apple’s Accessibility Programming Guide for iOS
 .

Clean

From time to time, during repeated testing and debugging, and before making a different sort of build (switching from Debug to Release, or running on a device instead of the Simulator), it’s a good idea to clean
 your target.
 This means that existing builds will be removed and caches will be cleared, so that all code will be considered to be in need of compilation and you can build your app from scratch.

Cleaning removes the cruft, quite literally. For example, suppose you have been including a certain resource in your app, and you decide it is no longer needed. You can remove it from the Copy Bundle Resources build phase (or from your project as a whole), but that doesn’t necessarily remove it from your built app. This sort of leftover resource can cause all kinds of mysterious trouble. The wrong version of a nib may seem to appear in your interface; code that you’ve edited may seem to behave as it did before the edit. Cleaning removes the built app, and very often solves the problem.

I think of cleaning as having several levels or degrees:

Shallow clean

Choose Product → Clean, which removes the built app and some of the intermediate information in the build folder.

Deeper clean

Hold Option and choose Product → Clean Build Folder, which removes the entire build folder.

Insanely clean

Quit Xcode. Open your user ~/Library/Developer/Xcode/DerivedData
 folder and move all its contents to the trash. This is a complete clean for every project you’ve opened recently — plus the module cache. Removing the module cache can reset Swift itself, thus causing occasional mysterious compilation, code-completion, or syntax coloring issues to go away.

In addition to cleaning your project, you should also remove your app from the Simulator. This is for the same reason as cleaning the project: when the app is built and copied to the Simulator, existing resources inside the built app may not be removed (in order to save time), and this may cause the app to behave oddly. To clean out the current simulator while running the Simulator, choose Hardware → Erase All Content and Settings. To clean out all
 simulators, quit the Simulator and say, in the Terminal:

$ xcrun simctl erase all

Running on a Device

Eventually, you’ll want to progress from running and testing and debugging in the Simulator to running and testing and debugging on a real device.

 The Simulator is nice, but it’s only a simulation; there are many differences between the Simulator and a real device. The Simulator is really your computer, which is fast and has lots of memory, so problems with memory management and speed won’t be exposed until you run on a device. User interaction with the Simulator is limited to what can be done with a mouse: you can click, you can drag, you can hold Option to simulate use of two fingers, but more elaborate gestures can be performed only on an actual device. And many iOS facilities, such as the accelerometer and access to the music library, are not present on the Simulator at all, so that testing an app that uses them is possible only
 on a device.

Running your app on a device requires a Developer Program membership, which in turn requires an annual fee. You may balk initially, but sooner or later you’re going to get over it and accept that this fee is worth paying.

Note

Since Xcode 7, Apple has provided the ability to configure your app to run on a device, for testing purposes, without
 a paid Developer Program membership. This ability, however, is limited, and I’m not going to document it here.

Obtaining a Developer Program Membership

To obtain a Developer Program membership, go to the Apple Developer Program web page (
https://developer.apple.com/programs/

) and initiate the enrollment process. When you’re starting out, the Individual program is sufficient. The Organization program costs no more, but adds the ability to privilege additional team members in various roles. (You do not
 need the Organization program merely in order to distribute your built app to other users for testing.)

Your Developer Program membership involves two things:

An Apple ID

The user ID that identifies you at Apple’s site (along with the corresponding password). You’ll use your Developer Program Apple ID for all kinds of things. In addition to letting you prepare an app to run on a device, this same Apple ID lets you post on Apple’s development forums, download Xcode beta versions, and so forth.

A team
 name

You, under the same Apple ID, can belong to more than one team
 . On each team, you will have one or more roles
 dictating your privileges. If you are the head (or sole member) of the team, you are the team agent
 , meaning that you can do everything: you can develop apps, run them on your device, submit apps to the App Store, and receive the money for any paid apps that sell copies there.

Having established your Developer Program Apple ID, you should enter it into the Accounts preference pane in Xcode. Click the Plus button at the bottom left and select Apple ID as the type of account to add. Provide the Apple ID and password. From now on, Xcode will identify you through the team name(s) associated with this Apple ID; you shouldn’t need to tell Xcode this password again.

Signing an App

Running an app on a device is a remarkably complicated business. You will need to sign
 the app as you build it. An app that is not properly signed for a device will not run on that device (assuming you haven’t jailbroken the device). Signing an app requires two things:

An identity

An identity represents Apple’s permission for a given team to develop, on this computer
 , apps that can run on a device. It consists of two parts:

A private key

The private key is stored in the keychain on your computer. Thus, it identifies a computer where this team can potentially
 develop device-targeted apps.

A certificate

A certificate is a virtual permission slip from Apple. It contains the public key matching the private key (because you told Apple the public key when you asked for the certificate). With a copy of this certificate, any machine holding the private key can actually
 be used to develop device-targeted apps under the name of this team.

A provisioning profile

A provisioning profile is a virtual permission slip from Apple, uniting four things:

	An identity
 .

	An app
 , identified by its bundle identifier.

	A list of eligible devices
 , identified by their unique device identifiers (UDIDs).

	A list of entitlements
 . An entitlement is a special privilege that not every app needs, such as the ability to talk to iCloud. You won’t concern yourself with entitlements
 unless you write an app that needs one.

Thus, a provisioning profile is sufficient for signing an app as you build it. It says that on this
 Mac it is permitted to build this
 app such that it will run on these
 devices.

There are two types of identity, and hence two types of certificate, and hence two types of provisioning profile: development
 and distribution
 (a distribution certificate is also called a production
 certificate). We are concerned here with the development identity, certificate, and profile; I’ll talk about the distribution side later.

The only thing that belongs entirely to you is the private key in your computer’s keychain. Apple is the ultimate keeper of all other information: your certificates, your provisioning profiles, what apps and what devices you’ve registered. Your communication with Apple, when you need to verify or obtain a copy of this information, will take place through one of two means:

The developer member center

A set of web pages at
https://developer.apple.com/account/

 . If you have a Developer Program membership, you can come here and click Certificates, IDs & Profiles (or go directly to
https://developer.apple.com/account/ios/certificate/)

 to access all features and information to which you are entitled by your membership type and role. (This is the area of Apple’s site formerly referred to as the Portal
 .)

Xcode

Just about everything you would need to do at the developer member center can be done through Xcode instead. When all goes well, using Xcode is a lot simpler! If there’s a problem, you can head for the developer member center to iron it out.

Automatic Signing

Apple provides two distinct ways of obtaining and managing certificates and profiles — automatic signing, and manual signing. You distinguish between them on a per-app basis. For new projects, automatic signing is the default. This is indicated by the fact that the “Automatically manage signing” checkbox is checked in the Signing section of the General pane when you edit your project’s app target (Figure 9-14
).

Let’s suppose that you have neither a development certificate in your computer’s keychain nor a development profile for any app. But you do have a Developer Program Apple ID, and you’ve entered it into Xcode’s Accounts preference pane. Then, when you create a new project (File → New → Project) and specify a template (such as the iOS Single View App template), you’ll see, on the next screen that appears, below where you type the new project’s name, a pop-up menu listing all the teams with which your Apple ID is associated. If you belong to more than one team, specify the desired team here.

When you then create the project on disk and the project window opens, everything happens automatically
 . Your computer’s keychain creates a private key for a development certificate. The public key is sent to Apple. The actual development certificate is created at the developer member center, and is downloaded and installed into your computer’s keychain. You’ve got a development identity!

If you’ve never run on any device before, and if you haven’t manually registered any devices at the developer member center, that’s as far as Xcode can go for now. You’ll see some errors in the Signing section of the General pane when you edit the app target, similar to Figure 9-11
 .

[image: ios11 0908a]

Figure 9-11.
 Xcode knows of no devices

Now connect a device via USB to your computer and select it as the destination, either under Product → Destination or in the Scheme pop-up menu in the project window toolbar. This causes the error in Figure 9-11
 to change: a Register Device button now appears (Figure 9-12
). Click it!

[image: ios11 0908aa]

Figure 9-12.
 Xcode offers to register a device

The problem is resolved; the error vanishes. You can switch to the Report navigator to learn what just happened (Figure 9-13
).

[image: ios11 0908b]

Figure 9-13.
 Xcode has registered a device for us

As the Report navigator tells us, the device has been registered — and a development provisioning profile has been created (and has been stored in your ~/Library/MobileDevice/Provisioning Profiles
 folder). This is a universal iOS Team Provisioning Profile — and that is all you need in order to run any basic app on any device! Figure 9-14
 shows the resulting display in the Signing section of the General pane when you edit the app target.

[image: ios10 0908]

Figure 9-14.
 Xcode manages signing credentials automatically

You are now almost ready to run this project on this device, as I’ll explain in a moment. There may, however, be one further step: you might have to disconnect the device from USB and connect it again. This is so that Xcode can recognize the device afresh and prepare for debugging on it. This process is rather time-consuming; a progress indication is shown at the top of the project window, and in the Devices and Simulators window (Figure 9-15
).

[image: ios11 0908aaa]

Figure 9-15.
 Xcode prepares for debugging on a device

The good news is that once you already
 have a development certificate, and once Xcode has already
 generated and downloaded a universal iOS Team Provisioning Profile, and once your device is already
 registered with Apple and prepared by Xcode for debugging, none
 of that will be necessary ever again. When you create a new project, you supply your team name. Xcode thus knows everything it needs to know! The development certificate is valid for this computer, the universal iOS Team Provisioning Profile is universal, and the device is registered with Apple and prepared for debugging. Therefore, you should from now on be able to create a project and run it on this device immediately
 .

If you decide for any reason that you don’t want a project’s signing to be managed automatically by Xcode, simply uncheck the “Automatically manage signing” checkbox. This causes Xcode to take its hands off completely. Not only will it not automatically generate a development certificate or a development profile, but also it won’t use any profile that it has created automatically; you will have to do everything
 manually and deliberately. (This, Apple hopes, should prevent the confusing situations we’ve seen in the past, where Xcode would try to assist automatically but would often mysteriously and silently fail, along with automatic generation of extra profiles and other unwanted behavior.)

Obtaining a Development Certificate Manually

Now let’s go back a couple of steps. Suppose that for some reason you need to obtain a development certificate manually. How would you do it?

The full procedure, which is somewhat elaborate, is as follows:

	You launch Keychain Access and choose Keychain Access → Certificate Assistant → Request a Certificate from a Certificate Authority. Using your name and email address as identifiers, you generate and save to disk a 2048-bit RSA certificate request file. Your private key is stored in your keychain then and there; the certificate request containing your public key has been saved temporarily onto your computer. (For example, you might save it to the desktop.)

	In your browser, at the developer member center, you go to the Certificates page and click the Plus button at the top right. You specify that you want an iOS App Development certificate. You are taken to an interface allowing you to upload the saved certificate request file. You upload it, and the certificate is generated; you click its listing at the developer member center to expose the Download button, and click Download.

	You locate and double-click the file you just downloaded; Keychain Access automatically imports the certificate and stores it in your keychain, where Xcode is able to see it from now on.

You do not need to keep the certificate request file or the downloaded certificate file; your keychain contains all the needed credentials. If this has worked, you can see the certificate in your keychain, read its details, and observe that it is valid and linked to your private key (Figure 9-16
). Moreover, you should be able to confirm that Xcode now knows about this certificate: in the Accounts preference pane, click your Apple ID on the left and your team name on the right, and click Manage Certificates; you should see your certificate listed under iOS Development Certificates.

[image: ios11 0909]

Figure 9-16.
 A valid development certificate

If this is your very first time obtaining any certificate from the developer member center, you will need another
 certificate: the WWDR Intermediate Certificate
 . This is the certificate that certifies that certificates issued by WWDR (the Apple Worldwide Developer Relations Certification Authority) are to be trusted. (You can’t make this stuff up.) Xcode should automatically install this in your keychain; if not, you can obtain a copy of it manually by clicking a link at the bottom of the page at the developer member center where you begin the process of adding a certificate.

Obtaining a Development Provisioning Profile Manually

A provisioning profile, as I’ve already mentioned, unites an identity, a device, and an app bundle identifier. If things have gone well, you should by now have obtained a development provisioning profile
 automatically from within Xcode, because you have “Automatically manage signing” checked in the Signing section of the General pane when you edit the app target.
 You can confirm your possession of an applicable universal development provisioning profile by clicking the “i” button next to the words Xcode Managed Profile (Figure 9-14
): a popover displays information about the provisioning profile, as shown in Figure 9-17
 . The “*” in that popover tells you that this is a universal profile.

[image: ios11 0910]

Figure 9-17.
 A universal development profile

The universal development profile allows you to run any
 app on the targeted device for testing purposes, provided that the app doesn’t require special entitlements (such as using iCloud). If you turn on any entitlements for an app target (which you would do by making a change in the Capabilities pane when you edit the app target), and if you’re using automatic signing, Xcode will communicate with the developer member center to attach those entitlements to your registered app; then it will create a new provisioning profile that includes those entitlements, download it, and use it for this project.

If, instead, you were to uncheck
 “Automatically manage signing”, the Provisioning Profile item becomes a pop-up menu under Signing (Debug), where you can import or download a profile. You would need to create this profile manually, at the developer member center, as follows:

	First, the device
 must be registered at the developer member center. Look under Devices to see if it is. If it isn’t, click the Plus button and enter a name for this device along with its UDID. You can copy the device’s UDID from its listing in Xcode’s Devices and Simulators window. Alternatively, you can submit a tab-delimited text file of UDIDs and names.

	Next, the app
 must be registered at the developer member center. Look under Identifiers → App IDs to see if it is. If it isn’t, add it, as follows: Click Plus. Enter a name for this app. Enter the bundle identifier under Explicit App ID exactly as shown in Xcode, in the Bundle Identifier field under General when you edit the app target.

(If your app uses special entitlements, this step is also where you’d associate those entitlements manually with the app.)

	Under Provisioning Profiles, click Plus. Ask for an iOS App Development profile. On the next screen, choose the App ID. (You’ll see an option to create a “wildcard” development profile; this is a universal development profile, but it’s a manually generated
 universal development profile. Do not
 choose that! Create a development profile specifically targeted at this app.)

On the next screen, check your development certificate. On the next screen, select the device(s) you want to run on. On the next screen, give this profile a name, and click Generate.

	In Xcode, use the Provisioning Profile pop-up menu to download your profile from the developer member center.

The result, for an actual app of mine for which I’ve elected to use manual signing, is shown in Figure 9-18
 .

[image: ios11 0910b]

Figure 9-18.
 Manual code signing

If you’re using manual signing, no automatic actions will be performed; Xcode will keep its hands off, and you will need do everything through the developer member center. If you have a profile for your app already, and if you switch on some entitlements in the Capabilities pane, you’ll need to return to the member center, confirm that those entitlements are associated with your app, and create and download a new profile.

Warning

The Signing (Debug) and Signing (Release) sections of the General pane are indirectly configuring the Provisioning Profile and Code Signing Identity build settings. Do not
 attempt to configure those build settings directly! It’s all too easy to make a mistake. Use the app target General pane.

Running the App

Once you have a development profile applicable to an app and a device (or, in the case of the universal team profile, all apps and all registered devices), you can connect the device, choose it as the destination in the Scheme pop-up menu, and build and run the app. If you’re asked for permission to access your keychain, grant it. If necessary, Xcode will install the associated provisioning profile onto the device.

The app is built, loaded onto your device, and runs there. As long as you launch the app from Xcode, everything is just as when running in the Simulator: you can run, or you can debug, and the running app is in communication with Xcode, so that you can stop at breakpoints, read messages in the console, profile your app with Instruments, and so on. The outward difference is that to interact physically with the app, you use the device, not the Simulator.

New in Xcode 9 and iOS 11, you can configure your device to allow Xcode to build and run apps on it wirelessly. To do so, start with the device connected via USB; locate the device in the Devices and Simulators window and check “Connect via network.” The device is now paired
 with Xcode, and can be used as a build and run destination provided it is connected via Wi-Fi to the local network or to some other network that your computer can access by its IP address. You can build and run from Xcode, pausing at breakpoints and receiving console messages, even though the device is not physically tethered to your computer. This would be useful, for example, if the app you’re testing requires the device to be manipulated in ways that are difficult when the device is tethered by a USB cable.

Managing Development Certificates and Devices

Starting in Xcode 8, you’re allowed to have more than one development certificate. Thus, management of development certificates may not be necessary. All you have to do, in order to run on a device on another computer, is what you did on the first computer. If you’re using automatic signing, a new certificate will be generated for you — one that doesn’t conflict with the old certificate.

When a device is attached to the computer, it appears in Xcode’s Devices and Simulators window. If this device has never been prepared for development, you can ask Xcode to prepare it for development. You can then build and run onto the device. If the device isn’t registered at the member center, a dialog appears offering to let you register it; click Register Device, and now the device is
 registered. Your automatically generated provisioning profile is modified to include this device, and you are now able to build and run on it.

The Devices and Simulators window can be used to communicate in other ways with a connected device. You can see (and copy) the device’s UDID. You can see (and delete) apps that have been installed for development using Xcode. You can view the device’s console log in real time. (The interface for this is a little obscure: click the tiny up-arrow at the bottom left of the Devices pane.) Using the Gear menu, you can see provisioning profiles that have been installed on the device. You can see log reports for crashes that took place on the device. And you can take screenshots that image your device’s screen; you’ll need to do this for your app when you submit it to the App Store.

Profiling

Xcode provides tools for probing the internal behavior of your app graphically and numerically, and you should keep an eye on those tools. The gauges
 in the Debug navigator allow you to monitor key indicators, such as CPU and memory usage, any time you run your app. Memory debugging gives you a graphical view of your app’s objects and their ownership chains, and can even reveal memory leaks. And Instruments, a sophisticated and powerful utility application, collects profiling data that can help track down problems and provide the numeric information you need to improve your app’s performance and responsiveness.

Gauges

The gauges in the Debug navigator are operating whenever you build and run your app. Click on a gauge to see further detail displayed in the editor. The gauges do not provide highly detailed information, but they are extremely lightweight and always active, so they are an easy way to get a general sense of your running app’s behavior at any time. If there’s a problem, such as a prolonged period of unexpectedly high CPU usage or a relentless unchecked increase in memory usage, you can spot it in the gauges and then use Instruments to help track it down.

There are four basic gauges: CPU, Memory, Disk, and Network. Depending on the circumstances, you may see additional gauges. For example, an Energy Impact gauge appears when running on a device, and for certain devices, a GPU gauge may appear as well. If your app is iCloud-enabled, you’ll also see an iCloud gauge.

In Figure 9-19
 , I’ve been heavily exercising my app for a few moments, repeatedly performing the most memory-intensive actions I expect the user to perform. These actions do cause some spikes in memory usage, but my app’s memory usage then always settles back down and levels off, so I don’t suspect any memory issues.

[image: ios11 0911]

Figure 9-19.
 The Debug navigation gauges

Warning

Note that Figure 9-19
 is the result of running on a device.
 Running in the Simulator gives completely different — and misleading — results.

Memory Debugging

Memory debugging lets you pause your app and view a graphical display of your object hierarchy at that moment. This is valuable not only for detecting problems but also for understanding your app’s object structure.

To use memory debugging, run the app and click the Debug Memory Graph button in the debug bar (Figure 9-20
). The app pauses, and you are shown a drawing of your app’s objects, linked by their chains of ownership. The Debug navigator lists your objects hierarchically; click an object to see a different part of the graph. Double-click an object in the graph to refocus the graph on that object.

In my app, the UIWindow has as its root view controller a ViewController whose view’s subviews include a MyBoard view whose tiles
 property is an array of Tile views. Figure 9-20
 displays that situation.

[image: ios11 0911a]

Figure 9-20.
 A memory graph

At the cost of some additional overhead, you can enable the malloc stack before running your app: edit the scheme’s Run action and check Diagnostic → Logging → Malloc Stack. When you’ve done that, selecting an object in the memory graph display provides a backtrace in the Memory inspector that tells you how
 each object came into being. Hover over a line of the backtrace and click the right-arrow button to jump to that line of your code.

Memory debugging also detects memory leaks. Such leaks will cause an error icon to appear, and are listed in the Runtime pane of the Issue navigator. For example, suppose we run the leaking Cat and Dog example from Chapter 5
 , where I have a Dog class instance and a Cat class instance with persisting references to one another and there are no other references to either instance, so they are both leaking. The leaking Cat and Dog are listed in the Issue navigator, and clicking one them displays a graph of the problem: the Cat and the Dog are retaining one another (Figure 9-21
).

[image: ios11 0911b]

Figure 9-21.
 The memory graph displays a leak

Instruments

You can use Instruments on the Simulator or the device. The device is where you’ll do your ultimate testing, for maximum verisimilitude.

To get started with Instruments, set the desired destination in the Scheme pop-up menu in the project window toolbar, and choose Product → Profile. Your app builds using the Profile action for your scheme; by default, this uses the Release build configuration, which is probably what you want. If you’re running on a device, you may see some validation warnings, but you can safely ignore them. Instruments launches; if your scheme’s Instrument pop-up menu for the Profile action is set to Ask on Launch (the default), Instruments presents a dialog where you choose a template.

Alternatively, click Profile In Instruments in a Debug navigator gauge editor; this is convenient when the gauges have suggested a possible problem, and you want to reproduce that problem under the more detailed monitoring of Instruments. Instruments launches, selecting the appropriate template for you. A dialog offers two options: Restart stops your app and relaunches it with Instruments, whereas Transfer keeps your app running and hooks Instruments into it.

When the Instruments main window appears, it can be further customized to profile the kind of data that particularly interests you, and you can save the structure of the Instruments window as a custom template. You may have to click the Record button, or choose File → Record Trace, to get your app running. Now you should interact with your app like a user; Instruments will record its statistics.

Use of Instruments is an advanced topic, which is largely beyond the scope of this book. Indeed, an entire book could (and really should) be written about Instruments alone. For proper information, you should read Apple’s documents, especially the Instruments User Guide
 . Also, many WWDC videos from current and prior years are about Instruments; look particularly for sessions with “Instruments” or “Performance” in their names. Here, I’ll just demonstrate, without much explanation, the sort of thing Instruments can do.

Figure 9-22
 shows me doing much the same thing in Instruments that I did with the Debug navigator gauges in Figure 9-19
 . I’ve set the destination to my device. I choose Product → Profile; when Instruments launches, I choose the Allocations template. With my app running under Instruments, I exercise it for a while and then pause Instruments, which meanwhile has charted my memory usage. Examining the chart, I find that there are spikes up to about 38MB, but the app in general settles down to a much lower level (less than 10MB). Those are very gentle and steady memory usage figures, so I’m happy.

[image: ios11 0912]

Figure 9-22.
 Instruments graphs memory usage over time

Another field of Instruments expertise is the ability to detect memory leaks (similar to the memory graph leak detection I discussed earlier). In Figure 9-23
 , I’ve again run the retain cycle code from Chapter 5
 . I’ve profiled the app using the Leaks template. Instruments has detected the leak, and has diagrammed the issue.

[image: ios11 0913]

Figure 9-23.
 Instruments describes a retain cycle

In this final example, I’m curious as to whether I can shorten the time it takes my Diabelli’s Theme app to load a photo image. I’ve set the destination to a device, because that’s where speed matters and needs to be measured. I choose Product → Profile. Instruments launches, and I choose the Time Profiler template. When the app launches under Instruments on the device, I load new images repeatedly to exercise this part of my code.

In Figure 9-24
 , I’ve paused Instruments, and am looking at what it’s telling me. Opening the triangles in the lower portion of the window, I can drill down to my own code, indicated by the user icon.

[image: ios11 0914]

Figure 9-24.
 Drilling down into the time profile

By double-clicking the listing of that line, I can see my own code, time-profiled (Figure 9-25
). The profiler is drawing my attention to the call to CGImageSourceCreateThumbnailAtIndex
 ; this is where we’re spending most of our CPU time. That call is in the ImageIO framework; it isn’t my code, so I can’t make it run any faster. It may be, however, that I could load the image another way; for example, at the expense of some temporary memory usage, perhaps I could load the image at full size and scale it down by redrawing myself. If I’m concerned about speed here, I could spend a little time experimenting. The point is that now I know what
 the experiment should be. This is just the sort of focused, fact-based numerical analysis at which Instruments excels.

[image: ios11 0916]

Figure 9-25.
 My code, time-profiled

Localization

A device can be set by the user to prefer a certain language as its primary language. You might like the text in your app’s interface to respond to this situation by appearing in that language. This is achieved by localizing
 the app for that language. You will probably want to implement localization relatively late in the lifetime of the app, after the app has achieved its final form, in preparation for distribution.

Localization operates through localization folders
 in your project folder and in the built app bundle. When your app runs on a system whose language corresponds to a localization folder, if a needed resource is present in that localization folder, that resource is loaded automatically.

Any type of resource can live in these localization folders; for example, you can have one version of an image to be loaded for one language, and another version of that image for another language. You will be most concerned, however, with text
 that is to appear in your interface. Such text must be maintained in specially formatted .strings
 files, with special names. For example:

	To localize your Info.plist
 file, use InfoPlist.strings
 .

	To localize your Main.storyboard
 , use Main.strings
 .

	To localize your code strings, use Localizable.strings
 .

You don’t have to create or maintain these files manually. Instead, you can work with exported XML files in the standard .xliff
 format. Xcode will generate .xliff
 files automatically, based on the structure and content of your project; it will also read them and will turn them automatically into the various localized .strings
 files.

To experiment with localization, our app needs some localizable content:

	Edit the target and enter a value in the Display Name text field in the General pane. Our Empty Window app already says “Empty Window” here, but it’s in gray, indicating that this is merely an automatic
 display name; enter “Empty Window” explicitly (and press Tab), to make this an actual
 display name. You have now created a “Bundle display name” key (CFBundleDisplayName
) in the Info.plist
 file. That key will be localized.

	Edit Main.storyboard
 and confirm that it contains a button whose title is “Hello.” That title will be localized. (It will help the example if you also widen the button to about 100 points.)

	Edit ViewController.swift
 . The code here contains some literal strings, such as "Howdy!"
 :
@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: "Howdy!", message: "You tapped me!",
 preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: "OK", style: .cancel))
 self.present(alert, animated: true)
}

That code won’t
 be localized, unless we modify it. Your code needs to call the global NSLocalizedString
 function; the first parameter is a key into a .strings
 file, the value:
 parameter gives the default string if there’s no .strings
 file for the current language, and the comment:
 parameter provides an explanatory comment. So modify our buttonPressed
 method to look like this:@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: NSLocalizedString("Greeting",
 value:"Howdy!", comment:"Howdy!"),
 message: NSLocalizedString("Tapped",
 value:"You tapped me!", comment:"You tapped me!"),
 preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: NSLocalizedString("Accept",
 value:"OK", comment:"OK"),
 style: .cancel))
 self.present(alert, animated: true)
}

Now we’re going to give our project an actual localization, and export an editable .xliff
 file expressing the details of that localization:

	Edit the project. Under Localizations, click the Plus button. In the pop-up menu that appears, choose French. In the dialog, click Finish.

	Still editing the project, choose Editor → Export For Localization. In the dialog that appears, include Existing Translations and check French (the default). You’re about to create a folder, so call it something like Empty Window Localization and save it to the desktop.

The result is that an XML file called fr.xliff
 is generated. Examining this file, you’ll observe that our app’s localizable strings have all been discovered:

	For our Info.plist
 file in the project, Xcode has created a corresponding <file>
 element. When imported, this element will be turned into a localized InfoPlist.strings
 file.

	For every .storyboard
 and .xib
 file, Xcode has run ibtool
 to extract the text, and has created a corresponding <file>
 element. When imported, these elements will be turned into eponymous localized .strings
 files.

	For our code files containing a call to NSLocalizedString
 , Xcode has run genstrings
 to parse the file, and has created a corresponding <file>
 element. When imported, this element will be turned into a localized Localizable.strings
 file.

Now let’s pretend that you are the French translator, tasked with creating the French localization of this app. Your job is to modify the fr.xliff
 file by providing a <target>
 tag for every <source>
 tag that is to be translated into French. Your edited file might contain, at the appropriate places, translations like this (note that the id
 and ObjectID
 attributes will be different in your actual fr.xliff
 file):

<trans-unit id="RoQ-mP-swT.normalTitle">
 <source>Hello</source>
 <target>Bonjour</target>
 <note>Class="UIButton"; normalTitle="Hello"; ObjectID="RoQ-mP-swT";</note>
</trans-unit>

<trans-unit id="CFBundleDisplayName">
 <source>Empty Window</source>
 <target>Fenêtre Vide</target>
</trans-unit>
<trans-unit id="CFBundleName">
 <source>$(PRODUCT_NAME)</source>
 <target>$(PRODUCT_NAME)</target>
</trans-unit>

<trans-unit id="Accept">
 <source>OK</source>
 <target>OK</target>
 <note>Dismiss</note>
</trans-unit>
<trans-unit id="Greeting">
 <source>Howdy!</source>
 <target>Bonjour!</target>
 <note>Say hello</note>
</trans-unit>
<trans-unit id="Tapped">
 <source>You tapped me!</source>
 <target>Vous m'avez tapé</target>
 <note>User tapped button</note>
</trans-unit>

Finally, let’s tell our project about these localizations:

	Edit the project.

	Choose Editor → Import Localizations; in the dialog, locate and open the edited fr.xliff
 file.

Xcode processes the file and creates the corresponding files in the project. In particular, there is now a fr.lproj
 folder containing .strings
 files in the correct format, which is a collection of key–value pairs like this:

/* Optional comments are C-style comments */
"key" = "value";

The .strings
 files in our fr.lproj
 include the following:

	An InfoPlist.strings
 file, localizing our Info.plist
 file. It reads like this:/* (No Comment) */
"CFBundleDisplayName" = "Fenêtre Vide";

/* (No Comment) */
"CFBundleName" = "$(PRODUCT_NAME)";

	A Main.strings
 file, localizing Main.storyboard
 . It will be similar to this:/* Class="UIButton"; normalTitle="Hello"; ObjectID="RoQ-mP-swT"; */
"RoQ-mP-swT.normalTitle" = "Bonjour";

	A Localizable.strings
 file, localizing the strings in our code. It looks like this:/* Dismiss */
"Accept" = "OK";

/* Say hello */
"Greeting" = "Bonjour!";

/* User tapped button */
"Tapped" = "Vous m'avez tapé";

Now for the moment of truth: we’re going to test our French localization! Build and run the project in the Simulator. The project runs in English, so the button title is “Hello,” and the alert that it summons when you tap it contains “Howdy!”, “You tapped me!”, and “OK.” Stop the project in Xcode; in the Simulator, the app in the Springboard is labeled Empty Window.

Now we’re going to transport ourselves magically to France:

	In the Simulator, launch the Settings app and change the language to French (General → Language & Region → iPhone Language → Français). Click Done. An action sheet asks to confirm that we want to Change to French. Do so.

	After a pause, the language changes. Quit the Settings app and look at our app in the Springboard again. Its name is now displayed as Fenêtre Vide.

	Tap the app in the Springboard to run it. The button in the interface has the title Bonjour.

	Tap the button. The alert contains “Bonjour,” “Vous m’avez tapé!”, and “OK.”

Our app is localized for French! Of course, our app is also very small and simple. It’s wise to wait until quite late in the development process before starting on localization. Nevertheless, if our app is subsequently modified, we can again export the localization as an .xliff
 file, edit the file as needed, and reimport it to incorporate any changes.

In real life, preparing your nib files to deal with localization will take some additional work. In particular, you’ll want to use autolayout, configuring your interface so that interface objects containing text have room to grow and shrink to compensate for the change in the length of their text in different languages. New in Xcode 9, if your storyboard is localized, the nib editor will treat objects like fixed-width autolayout buttons as errors, because they cannot change size when the text changes.

To test your interface under different localizations, you can also preview
 your localized nib files within Xcode, without running the app. Edit a .storyboard
 or .xib
 file and open an assistant pane, and switch the Tracking menu to Preview. A menu at the lower right lists localizations; choose from the menu to switch between them. A “double-length pseudolanguage” stress-tests your interface with really long localized replacement text.

Distribution

By distribution
 is meant providing to others who are not developers on your team your built app for running on their devices. There are two primary kinds of distribution:

Ad Hoc distribution

You are providing a copy of your app to a limited set of known users so that they can try it on specific devices and report bugs, make suggestions, and so forth.

App Store distribution

You are providing the app to the App Store so that anyone can download it (possibly for a fee) and run it. An App Store distribution to the App Store is also the basis of another way of having known users test your app, namely through TestFlight.

Making an Archive

To create a copy of your app for distribution, you need first to build an archive
 of your app. An archive is basically a preserved build. It has three main purposes:

Distribution

An archive will serve as the basis for subsequent distribution of the app; the distributed app will be exported
 from the archive.

Reproduction

Every time you build, conditions can vary, so the resulting app might behave slightly differently. But an archive preserves a specific built binary; every distribution from a particular archive is guaranteed to contain an identical binary, and thus will behave the same way. This fact is important for testing: if a bug report comes in based on an app distributed from a particular archive, you can distribute that archive to yourself and run it, knowing that you are testing exactly the same app.

Symbolication

The archive includes a .dSYM
 file which allows Xcode to accept a crash log and report the crash’s location in your code. This allows you to deal with crash reports from users.

Here’s how to build an archive of your app:

	Set the destination in the Scheme pop-up menu in the project window toolbar to Generic iOS Device. Until you do this, the Product → Archive menu item will be disabled. You do not
 have to have a device connected; you are not building to run on a particular
 device, but saving an archive that will run on some
 device.

	If you like, edit the scheme to confirm that the Release build configuration will be used for the Archive action. This is the default, but it does no harm to double-check.

	Choose Product → Archive. The app is compiled and built. The archive itself is stored in a date folder within your user ~/Library/Developer/Xcode/Archives
 folder. Also, it is listed in Xcode’s Organizer window (Window → Organizer) under Archives
 ; this window may open spontaneously to show the archive you’ve just created. You can add a comment here; you can also change the archive’s name (this won’t affect the name of the app).

You’ve just signed your archive with a development profile; that’s good, because it means you can run the archived build directly on your device. A development profile can’t be used to make an Ad Hoc or App Store build of your app, but when you export the archive to form an Ad Hoc or App Store build, Xcode will substitute
 the appropriate distribution profile for the development profile that you used for archiving.

Obtaining a Distribution Certificate

If you’re using automatic signing, and if you have no distribution certificate, then when you first export the archive to the App Store (as I’ll describe later in this chapter), Xcode will offer to obtain a distribution certificate for you, along with a distribution profile.

Otherwise, you can request a distribution certificate through Xcode’s Accounts preference pane: select your Apple ID, choose your team, click Manage Certificates, click the Plus button at the bottom left, and ask for an iOS Distribution certificate. Alternatively, you can obtain the distribution certificate by working through your keychain and the developer member center, just as I described earlier for a development certificate.

Once you’ve obtained a distribution certificate, you’ll see it in your keychain. It will look just like Figure 9-16
 , except that it will say “iPhone Distribution” instead of “iPhone Development.”

If you already have a distribution certificate, there is a pitfall to watch out for: Xcode will happily permit you to make a new distribution certificate, but this will not
 be the same distribution certificate you already have, and thus will not work with any distribution profiles you already have.

A case in point is when you change computers. Your distribution certificate is back in the keychain of your old computer. On your new computer, Xcode reports the existence of the distribution certificate (in the Accounts preference pane, under Manage Certificates), but tells you that it isn’t
 in the keychain of this
 computer (Figure 9-26
). You can ask for a new distribution certificate at this point, but you probably shouldn’t. What you need is the existing
 distribution certificate.

[image: ios11 0916b]

Figure 9-26.
 Xcode reports a missing distribution certificate

The only way to obtain a copy of an existing distribution certificate is to return to the computer that has that certificate in its keychain, and export
 it from that computer. To do so, on the old computer where the distribution certificate is
 in the keychain, in the Accounts preference pane, under Manage Certificates, Control-click on that certificate and choose Export Certificate from the contextual menu. You’ll be asked to save the resulting file, securing it with a password. The password is needed because this file, a .p12
 file, contains the private key from your keychain.

Now copy the .p12
 file to the new computer. (You could email it to yourself, for example.) On that computer, open the exported file, using the same password. The certificate is imported into your keychain. You can then throw the file away on both computers; it has done its job.

Obtaining a Distribution Profile

If you’re using automatic signing for this project, Xcode will probably be able to create an appropriate distribution profile for you automatically when you export your archive.

Otherwise, you’re going to have to create your profile manually, at the developer member center. Alternatively, if you are
 using automatic signing, but when you try to export your archive (as described in the next section) there’s an error and the export fails, you’ll have to stop
 using automatic signing and create your profile manually instead.

Here’s how to obtain a distribution profile manually:

	If this is to be an Ad Hoc distribution profile, collect the UDIDs of all the devices where this build is to run, and make sure you’ve added each of them at the developer member center under Devices. (For an App Store distribution profile, omit this step.)

	Make sure that the app is registered at the developer member center, as I described earlier in this chapter.

	At the developer member center, under Provisioning Profiles, click the Plus button to ask for a new profile. In the Add iOS Provisioning Profile form, specify an Ad Hoc profile or an App Store profile. On the next screen, choose your app from the pop-up menu. On the next screen, choose your distribution certificate. On the next screen, for an Ad Hoc profile only, specify the devices you want this app to run on. On the next screen, give the profile a name.

Be careful about the profile’s name, as you might need to be able to recognize it later from within Xcode! My own practice is to assign a name containing the term “AdHoc” or “AppStore” and the name of the app.

	Click Generate to generate the profile. You should subsequently be able to download the profile from within Xcode (and if not, you can click Download at the developer member center).

Ad Hoc Distribution

Apple’s docs say that an Ad Hoc distribution
 build should include an icon that will appear in iTunes, but my experience is that this step, though it does work, is unnecessary. If you want to include this icon, it should be a PNG or JPEG file, 512×512 pixels in size, and its name should be iTunesArtwork
 , with no file extension
 . Make sure the icon is included in the build, being present in the Copy Bundle Resources build phase. (After adding this icon, you’ll need to make a new archive of your app.)

Here are the steps for creating an Ad Hoc distribution file from an archive:

	In the Organizer window, under Archives, select the archive and click the Export button at the upper right of the window. A dialog appears. Here, you are to specify a method; choose Ad Hoc. Click Next.

	In the next screen, you may be offered various options. For example:Thinning

Thinning means that multiple copies of the app can be created, each containing resources appropriate only to one type of device, simulating what the App Store will do when the user downloads the app to a device. There would normally be no need for this, though it might be interesting to learn the size of your thinned app.

Rebuild from Bitcode

Bitcode allows the App Store to regenerate your app to incorporate future optimizations. If you’re going to be using bitcode when you upload to the App Store, you might like to use it when you perform your Ad Hoc build. Personally, I avoid bitcode, so I would uncheck this checkbox.

Strip Swift symbols

Check this box to reduce the build size somewhat.

	In the next screen, you may be offered a choice between automatic and manual signing. An automatically generated Ad Hoc distribution profile will be configured to run on all devices registered for your team at the developer member center. If you choose manual signing, you’ll see another screen where you can specify the certificate and choose an Ad Hoc distribution profile from the member center.

	The archive is prepared, and a summary window is displayed. The name of the provisioning profile is shown, so you can tell that the right thing is happening. Click Export.

	You are shown a dialog for saving a folder. The file will be inside that folder, with the suffix .ipa
 (“iPhone app”), accompanied by .plist
 and log files describing the export process.

	Locate in the Finder the .ipa
 file you just saved. Provide this file to your users with instructions.

A user should copy the .ipa
 file to a safe location, such as the Desktop, and then launch iTunes and drag the .ipa
 file from the Finder onto the iTunes icon in the Dock (or double-click the .ipa
 file). Then the user should connect the device to the computer, make certain the app is present in the list of apps for this device and that it will be installed on the next sync
 , and finally sync the device to cause the app to be copied to it. (If this isn’t the first version of your app that you’ve distributed to your Ad Hoc testers, the user might need to delete the current version from the device beforehand; otherwise, the new version might not be copied to the device when syncing.)

If you listed your own device as one of the devices for which this Ad Hoc distribution profile was to be enabled, you can obey these instructions yourself to make sure the Ad Hoc distribution is working as expected. First, remove from your device any previous
 copies of this app (such as development copies) and any profiles that might be associated with this app (you can do that through the Devices and Simulators window in Xcode). Then copy the app onto your device by syncing with iTunes as just described. The app should run on your device, and you should see the Ad Hoc distribution profile on your device. Because you are not privileged over your other Ad Hoc testers, what works for you should work for them.

There is a registration limit of 100 devices per year per developer (not per app), which limits your number of Ad Hoc testers. Devices used for development are counted against this limit. You can work around this limit, and provide your betas more conveniently to testers, by using TestFlight beta testing instead.

TestFlight beta testing lifts the limit of 100 devices to a limit of 2000 testers (Apple says that this number will soon increase to 10000), and is more convenient than Ad Hoc distribution because your users download and install prerelease versions of your app directly from the App Store onto their devices through the TestFlight app. Configuration is performed at the iTunes Connect site; a prerelease version uploaded to iTunes Connect must be archived as if for App Store distribution (see the discussion of App Store submission later in this chapter). See the “TestFlight Beta Testing” chapter of Apple’s iTunes Connect Developer Guide.

Warning

Prerelease versions of your app intended for distribution to beta testers (as opposed to internal testers who have direct access to your iTunes Connect account) require review by Apple.

Final App Preparations

As the big day approaches when you’re thinking of submitting your app to the App Store, don’t let the prospect of huge fame and massive profits hasten you past the all-important final stages of app preparation. Apple has a lot of requirements, and failure to meet them can cause your app to be rejected. Take your time. Make a checklist and go through it carefully. See Apple’s App Distribution Guide
 as well as the “Icon and Image Design” chapter of the Human Interface Guidelines
 for full details.

Icons in the app

The simplest way to provide your app with icons is to use the asset catalog. If you’re not using an asset catalog for icons and you’d like to switch to using one, edit the target and, in the General pane, under App Icons and Launch Images, next to App Icons Source, click the Use Asset Catalog button. The Use Asset Catalog button then changes to a pop-up menu listing the asset catalog’s name and the name of the image set within the catalog to be used for icons.

The image sizes needed are listed in the asset catalog itself. Select an image slot and look in the Attributes inspector. Confusingly, “2x” or “3x” means that the image should be double or triple the listed dimensions for an icon; thus, for example, an iPhone app icon listed as “60pt” or “60×60,” but also with “3x,” means that you should provide an image measuring 180×180. To determine which slots should be displayed, use the checkboxes in the Attributes inspector when you select an icon set or launch image set (Figure 9-27
). To add an image, drag it from the Finder into the appropriate slot.

[image: ios11 0919]

Figure 9-27.
 Icon slots in the asset catalog

An icon file must be a PNG file, without alpha transparency.
 It should be a full square; the rounding of the corners will be added for you. Apple seems nowadays to prefer simple, cartoony images with a few bright colors and possibly a gentle gradient background.

When your app is built and the asset catalog is processed, the icons are written out to the top level of the app bundle and are given appropriate names (Figure 6-15
); at the same time, an appropriate entry is written into the app’s Info.plist
 , enabling the system to find and display the icon on a device. The details are complicated, but you won’t have to worry about them — that is exactly why you’re using the asset catalog!

App icon sizes have changed over the years. If your app is to be backward-compatible to earlier systems, you may need additional icons in additional sizes, corresponding to the expectations of those earlier systems. Conversely, new devices can come along, bringing with them new icon size requirements (this happened when the iPad Pro appeared on the scene). Again, this is exactly the sort of thing the asset catalog will help you with.

Optionally, you may elect to include smaller versions of your icon to appear when the user does a search on the device, as well as in the Settings app if you include a settings bundle. However, I never include those icons; the system’s scaled-down versions of my app icons look fine to me.

Other icons

When you submit an app to the App Store, you will need to supply a 1024×1024 PNG or high-quality JPEG icon to be displayed at the App Store (the marketing icon
). Apple’s guidelines say that it should not merely be a scaled-up version of your app’s icon; but it must not differ perceptibly from your app’s icon, either, or your app will be rejected (I know this from bitter experience).

New in Xcode 9, the marketing icon can be included in the asset catalog. There’s a slot for it, along with the slots for the real app icons (Figure 9-28
).

[image: ios11 0919b]

Figure 9-28.
 Marketing icon slot in the asset catalog

If you created an iTunesArtwork
 icon for Ad Hoc distribution, you may wish to delete it from the Copy Bundle Resources build phase now.

Launch images

There is a delay between the moment when the user taps your app’s icon to launch it and the moment when your app is up and running and displaying its initial window.
 To cover this delay and give the user a visible indication that something is happening, a launch image needs to be displayed during that interval.

The launch image needn’t be detailed. It might be just a blank depiction of the main elements or regions of the interface that will be present when the app has finished launching. In this way, when the app does
 finish launching, the transition from the launch image to the real app will be a matter of those elements or regions being filled in.

In iOS 7 and before, the launch image was literally an image (a PNG file). It had to be included in your app bundle, and it had to obey certain naming conventions. As the variety of screen sizes and resolutions of iOS devices proliferated, so did the number of required launch images. The asset catalog, introduced in iOS 7, was helpful in this regard. But with the introduction of the iPhone 6 and iPhone 6 Plus, the entire situation threatened to become unmanageable.

For this reason, iOS 8 introduced a better solution. Instead of a set of launch images, you now provide a launch nib file
 — a single .xib
 or .storyboard
 file containing a single view to be displayed as a launch image. You construct this view using subviews and autolayout. Thus, the view is automatically reconfigured to match the screen size and orientation of the device on which the app is launching, and label and button text can be localized.

By default, a new app project comes with a LaunchScreen.storyboard
 file. This is where you design your launch image. The Info.plist
 points to this file as the value of its “Launch screen interface file base name” key (UILaunchStoryboardName
). You can configure the Info.plist
 , if necessary, by editing the target and setting the Launch Screen File field (under App Icons and Launch Images).

You should take advantage of this feature — and not merely because it is convenient. The presence of a “Launch screen interface file base name” key in your Info.plist
 tells the system that your app runs natively on newer device types. Without it, your app will be displayed zoomed; for example, on an iPhone 6, it will be displayed as if this were just a big iPhone 5. In effect, you won’t be getting all the pixels you’re entitled to (and the display will be somewhat fuzzy).

Warning

As far as I can tell, custom fonts included in your app bundle cannot be displayed in a launch nib file. This is evidently because they have not yet been loaded at the time the launch screen needs to be displayed.

Screenshots and video previews

When you submit your app to the App Store, you will be asked for one or more screenshots of your app in action to be displayed at the App Store.
 You should take these screenshots beforehand and be prepared to provide them during the app submission process. You can provide a screenshot corresponding to the screen size of every device on which your app can run, in the corresponding resolution, or you can reuse your largest-size screenshot for smaller sizes.

You can obtain screenshots either from the Simulator or from a device connected to the computer:

Simulator

Run the app in the Simulator with the desired device type as your destination. Choose File → New Screen Shot. Hold the Option key if you want to specify the screen shot’s name and location.

Device

In Xcode, in the Devices and Simulators window, locate your connected device under Devices and click Take Screenshot. Alternatively, choose Debug → View Debugging → Take Screenshot of [Device].

You can also take a screenshot on a device by clicking the screen lock button and the Home button simultaneously. Now the screenshot is in the Camera Roll in the Photos app, and you can communicate it to your computer in any convenient way (such as by emailing it to yourself).

You can also submit to the App Store a video preview showing your app in action. It can be up to 30 seconds long, in H.264 or Apple ProRes format. Your computer can capture video of your device if it is running macOS 10.10 (“Yosemite”) or later. Your device must be sufficiently modern to have a Lightning connector:

	Connect the device to the computer and launch QuickTime Player. Choose File → New Movie Recording.

	If necessary, set the Camera and Microphone to the device, using the pop-up menu from the down-pointing chevron button next to the Record button that appears when you hover the mouse over the QuickTime Player window.

	Start recording, and exercise the app on the device. When you’re finished, stop recording and save.

The resulting movie file can be edited in iMovie or Final Cut Pro to prepare it for submission to the App Store. For example, in iMovie:

	After importing the movie file, choose File → New App Preview.

	Edit! When you’re done editing, choose File → Share → App Preview. This ensures the correct resolution and format.

For more details, see the “App Preview” section of the “First Steps” chapter of Apple’s iTunes Connect Developer Guide.

Property list settings

A number of settings in the Info.plist
 are crucial to the proper behavior of your app. You should peruse Apple’s Information Property List Key Reference
 for full information. Most of the required keys are created as part of the template, and are given reasonable default values, but you should check them anyway. The following are particularly worthy of attention:

Bundle display name (CFBundleDisplayName
)

The name that appears under your app’s icon on the device screen; this name needs to be short in order to avoid truncation. I talked earlier in this chapter about how to localize the display name. You can enter this value directly in the General pane when you edit your app target.

Supported interface orientations (UISupportedInterfaceOrientations
)

This key designates the totality of orientations in which the app is ever permitted to appear. You can perform this setting with checkboxes in the General pane of the target editor. But you may also need to edit the Info.plist
 manually to rearrange
 the order of possible orientations, because on an iPhone the first
 orientation listed may be the one into which the app will actually launch.

Required device capabilities (UIRequiredDeviceCapabilities
)

You should set this key if the app requires capabilities that are not present on all devices. But don’t use this key unless it makes no sense for your app to run at all
 on a device lacking the specified capabilities.

Bundle version (CFBundleVersion
)

Your app needs a version number.
 The best place to set it is the General pane of the target editor. Things are a little confusing here because there are two fields:

Version

Corresponds in the Info.plist
 to “Bundle versions string, short” (CFBundleShortVersionString
).

Build

Corresponds in the Info.plist
 to “Bundle version” (CFBundleVersion
).

As far as I can determine, Apple will pay attention to the former if it is set, and otherwise will fall back on the latter. In general I play it safe and set both to the same value when submitting to the App Store. The value needs to be a version string
 , such as "1.0"
 . The version string will be displayed at the App Store, distinguishing one release from another. Failure to increment the version string when submitting an update will cause the update to be rejected. It is legal, however, to increment the Build number without incrementing the Version number, and you will need to do so if you submit several successive builds of the same prospective release (during the course of TestFlight testing, or because you found a bug and had to withdraw a submitted binary before it appeared on the App Store).

Submission to the App Store

When you’re satisfied that your app works well, and you’ve installed or collected all the necessary resources, you’re ready to submit your app to the App Store for distribution.
 To do so, you’ll need to make preparations at the iTunes Connect web site.
 You can find a link to it on the iOS developer pages when you’ve logged in at Apple’s site. Alternatively, you can go directly to
http://itunesconnect.apple.com

 and log in with your developer Apple ID.

Note

The first time you visit iTunes Connect, you should go to the Contracts section and complete submission of your contract. You can’t offer any apps for sale until you do, and even free apps require completion of a contractual form.

I’m not going to recite all the steps you have to go through to tell iTunes Connect about your app, as these are described thoroughly in Apple’s iTunes Connect Developer Guide
 , which is the final word on such matters. But here are some of the main pieces of information you will sooner or later have to supply (and see also
https://developer.apple.com/app-store/product-page/

):

Your app’s name

This is the name that will appear at the App Store; it need not be identical to the short name that will appear under the app’s icon on the device, dictated by the “Bundle display name” setting in your Info.plist
 file.

 Apple now requires that this name be 30 characters or fewer. You can get a rude shock when you submit your app’s information to iTunes Connect and discover that the name you wanted is already taken. There is no reliable way to learn this in advance, and such a discovery can necessitate a certain amount of last-minute scrambling on your part. (Can you guess how I know that?)

Subtitle

A description of the app, 30 characters or fewer, that will appear below the name at the App Store.

Description

You must supply a description of fewer than 4,000 characters; Apple recommends fewer than 580 characters, and the first paragraph is the most important, because this may be all that users see at first when they visit the App Store. It must be pure text, without HTML and without character styling.

Promotional text

A short description, 170 characters or fewer, that will appear above the description. The significance of the promotional text is that you can change it for an existing app, without uploading a new build.

Keywords

This is a comma-separated list shorter than 100 characters. These keywords will be used, in addition to your app’s name, to help users discover your app through the Search feature of the App Store.

Support

The URL of a web site where users can find more information about your app; it’s good to have the site ready in advance.

Copyright

Do not include a copyright symbol in this string; it will be added for you at the App Store.

SKU number

This is arbitrary, so don’t get nervous about it. It’s just a unique identifier, unique within the world of your own apps. It’s convenient if it has something to do with your app’s name. It needn’t be a number; it can actually be any string.

Price

You don’t get to make up a price. You have to choose from a list of pricing “tiers.”

Availability Date

There’s an option to make the app available as soon as it is approved, and this will typically be your choice.

Tip

As you submit information, click Save often! If the connection goes down and you haven’t explicitly saved, all your work can be lost. (Can you guess how I know that?)

When you’re ready to upload the app for which you’ve already submitted the information at iTunes Connect, you can perform the upload using Xcode. I’m assuming that you’re able to archive and export your app, as I described already for Ad Hoc distribution; this time, you’re going to export for App Store distribution. Select the archived build in the Organizer and click Upload to App Store. The screen of options is slightly different from the options for an Ad Hoc distribution: you won’t see anything about app thinning, because that depends on how the user obtains the app; you’ll see the bitcode checkbox; and there’s a checkbox for uploading symbols, which should make it easier to analyze crash reports.

After some time, a screen is displayed summarizing the .ipa
 content, and you can now click Export to save to disk or Upload to proceed to upload to iTunes Connect. If you clicked Upload, the upload will be performed, and the app will be validated at the far end.

Alternatively, you can use Application Loader. Export the archive as an .ipa
 file, as for an Ad Hoc distribution, but when selecting a method for export, choose App Store. Launch Application Loader by choosing Xcode → Open Developer Tool → Application Loader, and hand it the .ipa
 file.

After uploading the archive, you have one final step to perform. Wait for the binary to be processed at Apple’s end. (You should receive an email informing you of when processing has completed.) Then return to iTunes Connect, where you submitted your app information. You will now be able to select the binary, save, and submit the app for review.

You will subsequently receive emails from Apple informing you of your app’s status as it passes through various stages: “Waiting For Review,” “In Review,” and finally, if all has gone well, “Ready For Sale” (even if it’s a free app). Your app will then appear at the App Store.

Part III.
 Cocoa

The Cocoa Touch frameworks provide the general capabilities needed by any iOS application. Buttons can be tapped, text can be read, screens of interface can succeed one another, because Cocoa makes it so. To use the framework, you must learn to let the framework use you. You must put your code in the right place so that it will be called at the right time. You must fulfill certain obligations that Cocoa expects of you. You master Cocoa by being Cocoa’s obedient servant. In this part of the book, that’s what you’ll learn to do.

	
Chapter 10
 describes how Cocoa is organized and structured through such Objective-C language features as subclassing, categories, and protocols. Then some important built-in Cocoa object types are introduced. The chapter concludes with a description of Cocoa key–value coding and a look at how the root NSObject class is organized.

	
Chapter 11
 presents Cocoa’s event-driven model of activity, along with its major design patterns and event-related features — notifications, delegation, data sources, target–action, the responder chain, and key–value observing. The chapter concludes with some words of wisdom about managing the barrage of events Cocoa will be throwing at you, and how to escape that barrage momentarily with delayed performance.

	
Chapter 12
 is about Cocoa memory management. I’ll explain how memory management of reference types works. Then some special memory management situations are described: autorelease pools, retain cycles, notifications and timers, nib loading, and CFTypeRefs. The chapter concludes with a discussion of Cocoa property memory management, and advice on how to debug memory management issues.

	
Chapter 13
 discusses the question of how your objects are going to see and communicate with one another within the confines of the Cocoa-based world. It concludes with some advice about adhering to the model–view–controller architecture.

Finally, don’t forget to read Appendix A
 for more detail about how Objective-C and Swift interact and cooperate.

Chapter 10.
 Cocoa Classes

When you program iOS, you’re programming Cocoa. The Cocoa API is written mostly in Objective-C, and Cocoa itself consists mostly of Objective-C classes, derived from the root class, NSObject. When programming iOS, you’ll be making heavy use of the built-in Cocoa classes.

This chapter introduces Cocoa’s class structure and explains how you’ll interact with it as an iOS programmer. It discusses how Cocoa is conceptually organized, in terms of its underlying Objective-C features, and then surveys some of the most commonly encountered Cocoa utility classes, concluding with a discussion of the Cocoa root class and its features, which are inherited by all Cocoa classes.

Subclassing

Cocoa effectively hands you a large repertory of objects that already know how to behave in certain desirable ways. A UIButton, for example, knows how to draw itself and how to respond when the user taps it; a UITextField knows how to display editable text, how to summon the keyboard, and how to accept keyboard input.

Often, the default behavior or appearance of an object supplied by Cocoa won’t be quite what you’re after, and you’ll want to customize it. This does not
 necessarily mean that you need to subclass! Cocoa classes are heavily endowed with methods that you can call, and properties that you can set, precisely in order to customize an instance, and these will be your first resort. Always study the documentation for a Cocoa class to see whether instances can already be made to do what you want. For example, the class documentation for UIButton shows that you can set a button’s title, title color, internal image, background image, and many other features and behaviors, without subclassing.

In addition, many built-in classes use delegation
 (Chapter 11
) as the preferred way of letting you customize their behavior. For example, you wouldn’t subclass UIApplication (the class of the singleton shared application instance) just in order to respond when the application has finished launching, because the delegate mechanism provides
 a way to do that — namely, the UIApplicationDelegate method application(_:didFinishLaunchingWithOptions:)
 . That’s why the templates give us an AppDelegate class, which is not
 a UIApplication subclass, but which does
 adopt the UIApplicationDelegate protocol.

In fact, subclassing is one of the rarer ways in which your code will relate to Cocoa. Knowing when to subclass can be somewhat tricky, but the general rule is that you probably shouldn’t
 subclass unless you’re explicitly invited to do so. Most built-in Cocoa Touch classes will never need subclassing (and some, in their documentation, downright forbid it).

Nevertheless, sometimes setting properties and calling methods and using delegation won’t suffice to customize an instance the way you want to. In such cases, a Cocoa class may provide methods that are called internally as an instance does its thing, allowing you to customize that class’s behavior by subclassing and overriding. You don’t have the source code for any of Cocoa’s built-in classes, but you can still subclass them, creating a new class that acts just like a built-in class except for the modifications you provide.

Certain Cocoa Touch classes are indeed subclassed routinely, constituting the exception that proves the rule.
 For example, a plain vanilla UIViewController, not subclassed, is very rare, and an iOS app without at least one UIViewController subclass would be practically impossible.

Another case in point is UIView. Cocoa Touch is full of built-in UIView subclasses that behave and draw themselves as needed (UIButton, UITextField, and so on), and you will rarely need to subclass any of them. On the other hand, you might create your own
 UIView subclass, whose job would be to draw itself in some completely new way.

 You don’t actually draw a UIView; rather, when a UIView needs drawing, its draw(_:)
 method is called so that the view can draw itself. So the way to draw a UIView in some completely custom manner is to subclass UIView and implement draw(_:)
 in the subclass. As the documentation says, “Subclasses that … draw their view’s content should override this method and implement their drawing code there.” The documentation is saying that you need
 to subclass UIView in order to draw content that is completely your own.

For example, suppose we want our window to contain a horizontal line. There is no horizontal line interface widget built into Cocoa, so we’ll just have to roll our own — a UIView that draws itself as a horizontal line. Let’s try it:

	In our Empty Window example project,
 choose File → New → File and specify iOS → Source → Cocoa Touch Class, and in particular a subclass of UIView. Call the class MyHorizLine. Xcode creates MyHorizLine.swift
 . Make sure it’s part of the app target.

	In MyHorizLine.swift
 , replace the contents of the class declaration with this (without further explanation):required init?(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 self.backgroundColor = .clear
}
override func draw(_ rect: CGRect) {
 let c = UIGraphicsGetCurrentContext()!
 c.move(to:CGPoint(x: 0, y: 0))
 c.addLine(to:CGPoint(x: self.bounds.size.width, y: 0))
 c.strokePath()
}

	Edit the storyboard. Find UIView in the Object library (it is called simply “View”), and drag it into the View object in the canvas. You may resize it to be less tall.

	With the UIView that you just dragged into the canvas still selected, use the Identity inspector to change its class to MyHorizLine.

Build and run the app in the Simulator. You’ll see a horizontal line corresponding to the location of the top of the MyHorizLine instance in the nib. Our view has drawn itself as a horizontal line, because we subclassed it to do so.

In that example, we started with a bare UIView that had no drawing functionality of its own. That’s why there was no need to call super
 ; the default implementation of UIView’s draw(_:)
 does nothing. But you might also be able to subclass a built-in UIView subclass to modify the way it already draws itself. For example, the UILabel documentation shows that two methods are present for exactly this purpose. Both drawText(in:)
 and textRect(forBounds:limitedToNumberOfLines:)
 explicitly tell us: “This method should only be overridden by subclasses that want to [modify how the label is drawn].” The implication is that these are methods that will be called for us, automatically, by Cocoa, as a label draws itself; thus, we can subclass UILabel and implement these methods in our subclass to modify how a particular label draws itself.

Here’s an example from one of my own apps, in which I subclass UILabel to make a label that draws its own rectangular border and has its content inset somewhat from that border, by overriding drawText(in:)
 . As the documentation tells us: “In your overridden method, you can configure the current context further and then invoke super
 to do the actual drawing [of the text].” Let’s try it:

	In the Empty Window project, make a new class file, a UILabel subclass; call the class MyBoundedLabel.

	In MyBoundedLabel.swift
 , insert this code into the body of the class declaration:override func drawText(in rect: CGRect) {
 let context = UIGraphicsGetCurrentContext()!
 context.stroke(self.bounds.insetBy(dx: 1.0, dy: 1.0))
 super.drawText(in: rect.insetBy(dx: 5.0, dy: 5.0))
}

	Edit the storyboard, add a UILabel to the interface, and change its class in the Identity inspector to MyBoundedLabel.

Build and run the app, and you’ll see how the rectangle is drawn and the label’s text is inset within it.

Categories and Extensions

A category
 is an Objective-C language feature that allows code to reach right into an existing class and inject additional methods.
 This is comparable to a Swift extension (Chapter 4
). Using a Swift extension, you can add class or instance methods to a Cocoa class; the Swift headers make heavy use of extensions, both as a way of organizing Swift’s own object types and as a way of modifying Cocoa classes. In the same way, Cocoa uses categories to organize its own classes.

Tip

Objective-C categories have names, and you may see references to these names in the headers, the documentation, and so forth. However, the names are effectively meaningless, so don’t worry about them.

How Swift Uses Extensions

If you look in the main Swift header, you’ll see that many native object type declarations consist of an initial declaration followed by a series of extensions. For example, after declaring the generic struct Array<Element>
 , the header proceeds to declare nearly a dozen extensions on the Array struct. Some of these add protocol adoptions; most of them don’t. All of them add declarations of properties or methods to Array; that’s what extensions are for.

These extensions are not, of themselves, functionally significant; the header could
 have declared the Array struct with all of those properties and methods within the body of a single declaration. Instead, it breaks things up into multiple extensions. The extensions are simply a way of clumping related functionality together, organizing this object type’s members so as to make them easier for human readers to understand.

In the Swift Core Graphics header, just about everything
 is an extension. Here Swift is adapting types defined elsewhere — adapting Swift numeric types for use with Core Graphics and the CGFloat numeric type, and adapting Cocoa structs such as CGPoint and CGRect as Swift object types.

How You Use Extensions

For the sake of object-oriented encapsulation, you will often want to write a function that you inject, as a method, into an existing object type. To do so, you’ll write an extension. Subclassing merely to add a method or two is heavy-handed — and besides, it often wouldn’t help you do what you need to do. (Also, extensions work on all three flavors of Swift object type, whereas you can’t subclass a Swift enum or struct.)

For example, suppose you wanted to add a method to Cocoa’s UIView class. You could subclass UIView and declare your method, but then it would be present only in your UIView subclass and in subclasses of that subclass: it would not
 be present in UIButton, UILabel, and all the other built-in UIView subclasses — because they are subclasses of UIView, not of your
 subclass, and you can’t do anything to change that. An extension, on the other hand, solves the problem beautifully: you inject your method into UIView, and it is inherited by all built-in UIView subclasses as well.

You can use protocol extensions to inject functionality into classes in a selective but unified manner. Suppose I want UIButton and UIBarButtonItem — which is not a UIView, but does have button-like behavior — to share a certain method. I can declare a protocol with a method, implement that method in a protocol extension, and then use extensions to make UIButton and UIBarButtonItem adopt that protocol and thus acquire that method:

protocol ButtonLike {
 func behaveInButtonLikeWay()
}
extension ButtonLike {
 func behaveInButtonLikeWay() {
 // ...
 }
}
extension UIButton : ButtonLike {}
extension UIBarButtonItem : ButtonLike {}

Chapter 4
 provides some examples of extensions I’ve written in my real iOS programming life (see “Extensions”
). Also, as I explain there, I often use extensions in the same way as the Swift headers do, organizing my code for a single object type into multiple extensions simply for clarity.

How Cocoa Uses Categories

Cocoa uses categories as an organizational tool very much as Swift uses extensions. The declaration of a class will often be divided by functionality into multiple categories; often, these will even appear in separate header files.

A good example is NSString. NSString is defined as part of the Foundation framework, and its basic methods are declared in NSString.h
 . Here we find that NSString itself, aside from its initializers, has just two members, length
 and character(at:)
 , because these are regarded as the minimum functionality that a string needs in order to be a string.

Additional NSString methods — those that create a string, deal with a string’s encoding, split a string, search in a string, and so on — are clumped into categories. These are shown in the Swift translation of the header as extensions. So, for example, after the declaration for the NSString class itself, we find this in the Swift translation of the header:

extension NSString {
 func substring(from: Int) -> String
 func substring(to: Int) -> String
 // ...
}

That, as it turns out, is actually Swift’s translation of this Objective-C code:

@interface NSString (NSStringExtensionMethods)
- (NSString *)substringFromIndex:(NSUInteger)from;
- (NSString *)substringToIndex:(NSUInteger)to;
// ...
@end

That notation — the keyword @interface
 , followed by a class name, followed by another name in parentheses — is an Objective-C category.

Moreover, although the declarations for some of Cocoa’s NSString categories appear in this same file, NSString.h
 , many of them appear elsewhere. For example:

	A string may serve as a file pathname, so we also find a category on NSString in NSPathUtilities.h
 , where methods and properties such as pathComponents
 are declared for splitting a pathname string into its constituents and the like.

	In NSURL.h
 , which is primarily devoted to declaring the NSURL class (and its
 categories), there’s also another NSString category, declaring methods for dealing with percent-escaping in a URL string, such as addingPercentEncoding(withAllowedCharacters:)
 .

	Off in a completely different framework (UIKit), NSStringDrawing.h
 adds two further NSString categories, with methods like draw(at:withAttributes:)
 having to do with drawing a string in a graphics context.

This organization means that the NSString methods are not gathered in a single header file. In general, fortunately, this won’t matter to you as a programmer, because an NSString is an NSString, no matter how it acquires its methods.

Protocols

Objective-C has protocols, and these are generally comparable to and compatible with Swift protocols (see Chapter 4
). Since classes are the only Objective-C object type, all Objective-C protocols are seen by Swift as class protocols. Conversely, Swift protocols marked as @objc
 are implicitly class protocols and can be seen by Objective-C. Cocoa makes extensive use of protocols.

For example, let’s talk about how Cocoa objects are copied. Some objects can be copied; some can’t. This has nothing to do with an object’s class heritage. Yet we would like a uniform method to which any object that can
 be copied will respond. So Cocoa defines a protocol named NSCopying
 , which declares just one required method, copyWithZone:
 . Here’s how the NSCopying protocol is declared in Objective-C (in NSObject.h
):

@protocol NSCopying
- (id)copyWithZone:(nullable NSZone *)zone;
@end

That’s translated into Swift as follows:

protocol NSCopying {
 func copy(with zone: NSZone? = nil) -> Any
}

The NSCopying protocol declaration in NSObject.h
 , however, is not a statement that NSObject conforms to NSCopying. Indeed, NSObject does not
 conform to NSCopying! This doesn’t compile:

let obj = NSObject().copy(with:nil) // compile error

But this does compile, because NSString does
 conform to NSCopying:

let s = ("hello" as NSString).copy(with: nil)

Here’s another example. A typical Cocoa pattern is that Cocoa wants to say: “An instance of any class will do here, provided it implements the following methods.” That, obviously, is a protocol. For example, consider how a protocol is used in connection with a table view (UITableView). A table view gets its data from a data source. For this purpose, UITableView declares a dataSource
 property, like this:

@property (nonatomic, weak, nullable) id <UITableViewDataSource> dataSource;

That’s translated into Swift as follows:

weak var dataSource: UITableViewDataSource?

UITableViewDataSource is a protocol. The table view is saying: “I don’t care what class my data source belongs to, but whatever it is, it should conform to the UITableViewDataSource protocol.” Such conformance constitutes a promise that the data source will implement at least the required instance methods tableView(_:numberOfRowsInSection:)
 and tableView(_:cellForRowAt:)
 , which the table view will call when it needs to know what data to display. When you use a UITableView, and you want to provide it with a data source object, the class of that object will
 adopt UITableViewDataSource and will
 implement its required methods. Here’s a typical example from one of my real-life apps:

class NewGameController : UIViewController {
 @IBOutlet weak var tableView : UITableView?
 override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView?.dataSource = self // *
 }
}
extension NewGameController : UITableViewDataSource {
 func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 3
 }
 func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 // ...
 return cell
 }
}

If the class of self
 , NewGameController, assigned in the starred line to the table view’s dataSource
 property, did not declare adoption of the UITableViewDataSource protocol, or if it didn’t implement the methods required for such adoption, that code would not compile.

Far and away the most pervasive use of protocols in Cocoa is in connection with the delegation pattern. I’ll discuss this pattern in detail in Chapter 11
 , but you can readily see an example in our handy Empty Window project: the AppDelegate class provided by the project template is declared like this:

class AppDelegate: UIResponder, UIApplicationDelegate { // ...

AppDelegate’s chief purpose on earth is to serve as the shared application’s delegate. The shared application object is a UIApplication, and UIApplication’s delegate
 property is declared like this:

unowned(unsafe) var delegate: UIApplicationDelegate?

(I’ll explain the unsafe
 modifier in Chapter 12
 .) The UIApplicationDelegate
 type is a protocol. This is how the shared UIApplication object knows that its delegate might be capable of receiving messages such as application(_:didFinishLaunchingWithOptions:)
 . So the AppDelegate class officially announces its role by explicitly adopting the UIApplicationDelegate protocol.

Warning

You might be tempted to try to inject a method into a class that adopts a Cocoa delegate protocol by extending the protocol and implementing the delegate method in the protocol extension. That isn’t going to work, because Objective-C can’t see Swift protocol extensions (see Appendix A
). You can call such a method from Swift, but Cocoa is never
 going to call it, because it doesn’t know that the method implementation exists.

A Cocoa protocol has its own documentation page. When the UIApplication class documentation tells you that the delegate
 property is typed as a UIApplicationDelegate, it’s implicitly telling you that if you want to know what messages a UIApplication’s delegate might receive, you need to look in the UIApplicationDelegate protocol documentation. You won’t find application(_:didFinishLaunchingWithOptions:)
 mentioned anywhere in the UIApplication class documentation page! It’s documented in the UIApplicationDelegate protocol documentation page.

This separation of information can be particularly confusing when a class adopts a protocol. When a class’s documentation mentions that the class conforms to a protocol, don’t forget to examine that protocol’s documentation! The latter might contain important information about how the class behaves. To learn what messages can be sent to an object, you need to look upward through the superclass inheritance chain; you also need to look at any protocols that this object’s class (or superclass) conforms to. For example, UIViewController has a viewWillTransition(to:with:)
 method that you might have good reason to implement. But, as I already mentioned in Chapter 8
 , you won’t find that out by looking at the UIViewController class documentation page: you have to look in the documentation for the UIContentContainer protocol, which UIViewController adopts.

Informal Protocols

You may occasionally see, online or in the Cocoa documentation, a reference to an informal protocol
 . An informal protocol isn’t really a protocol at all; it’s just an Objective-C trick for providing the compiler with a knowledge of a method name so that it will allow a message to be sent without complaining.

There are two complementary ways to implement an informal protocol. One is to define a category on NSObject; this makes any object eligible to receive the messages listed in the category. The other is to define a protocol to which no class formally conforms; instead, messages listed in the protocol are sent only to objects typed as id
 (AnyObject), thus suppressing any possible objections from the compiler (see “Suppressing type checking”
).

These techniques were widespread in Cocoa before Objective-C protocols could declare methods as optional; now they are largely unnecessary, and are also mildly dangerous. Nowadays, very few informal protocols remain — but they do exist. For example, NSKeyValueCoding (discussed later in this chapter) is an informal protocol; you may see the term NSKeyValueCoding in the documentation and elsewhere, but there isn’t actually any such type: it’s a category on NSObject.

Optional Methods

Objective-C protocols, and Swift protocols marked as @objc
 , can have optional members (see “Optional Protocol Members”
).

 The question thus arises: How, in practice, is an optional method feasible? We know that if a message is sent to an object and the object can’t handle that message, an exception is raised and your app will likely crash. But a method declaration is a contract suggesting that the object can
 handle that message. If we subvert that contract by declaring a method that might or might not be implemented, aren’t we inviting crashes?

The answer is that Objective-C is both dynamic and introspective. Objective-C can ask an object whether it can deal with a message without actually sending it that message. The key method here is NSObject’s responds(to:)
 method (Objective-C respondsToSelector:
), which takes a selector parameter (see Chapter 2
) and returns a Bool. Thus it is possible to send a message to an object conditionally
 — that is, only if it would be safe to do so.

Demonstrating responds(to:)
 in Swift is generally a little tricky, because it’s hard to get Swift to throw away its strict type checking long enough to let us send an object a message to which it might not respond. In this artificial example, I start by defining, at top level, a class that derives from NSObject, because otherwise we can’t send responds(to:)
 to it, along with an @objc
 protocol to declare the message that I want to send conditionally (an informal protocol!):

class MyClass : NSObject {
}
@objc protocol Dummy {
 func woohoo()
}

Now I can say this:

let mc = MyClass()
if mc.responds(to: #selector(Dummy.woohoo)) {
 (mc as AnyObject).woohoo()
}

Note the cast of mc
 to AnyObject. This causes Swift to abandon its strict type checking (see “Suppressing type checking”
); we can now send this object any message that Swift knows about, provided it is susceptible to Objective-C introspection — that’s why I marked my protocol declaration as @objc
 to start with. As you know, Swift provides a shorthand for sending a message conditionally — append a question mark to the name of the message. I could have written this:

let mc = MyClass()
(mc as AnyObject).woohoo?()

Behind the scenes, those two approaches are exactly the same; the latter is syntactic sugar for the former. In response to the question mark, Swift is calling responds(to:)
 for us, and will refrain from sending woohoo
 to this object if it doesn’t
 respond to this selector.

That explains also how optional protocol members work. It is no coincidence that Swift treats optional protocol members like AnyObject members. Here’s the example I gave in Chapter 4
 :

@objc protocol Flier {
 @objc optional var song : String {get}
 @objc optional func sing()
}

When you call sing?()
 on an object typed as a Flier, responds(to:)
 is called behind the scenes to determine whether this call is safe. That is also why optional protocol members work only on @objc
 protocols and classes derived from NSObject: Swift is relying here on a purely Objective-C feature.

You wouldn’t want to send a message optionally, or call responds(to:)
 explicitly, before sending just any old message, because it isn’t generally necessary except with optional methods, and it slows things down a little. But Cocoa does in fact call responds(to:)
 on your objects as a matter of course. To see that this is true, implement responds(to:)
 on the AppDelegate class in our Empty Window project and instrument it with logging:

override func responds(to aSelector: Selector) -> Bool {
 print(aSelector)
 return super.responds(to:aSelector)
}

The output on my machine, as the Empty Window app launches, includes the following:

application:handleOpenURL:
application:openURL:sourceApplication:annotation:
application:openURL:options:
applicationDidReceiveMemoryWarning:
applicationWillTerminate:
applicationSignificantTimeChange:
application:willChangeStatusBarOrientation:duration:
application:didChangeStatusBarOrientation:
application:willChangeStatusBarFrame:
application:didChangeStatusBarFrame:
application:deviceAccelerated:
application:deviceChangedOrientation:
applicationDidBecomeActive:
applicationWillResignActive:
applicationDidEnterBackground:
applicationWillEnterForeground:
applicationWillSuspend:
application:didResumeWithOptions:
application:shouldSaveApplicationState:
application:supportedInterfaceOrientationsForWindow:
application:performFetchWithCompletionHandler:
application:didReceiveRemoteNotification:fetchCompletionHandler:
application:willFinishLaunchingWithOptions:
application:didFinishLaunchingWithOptions:

That’s Cocoa, checking to see which of the optional UIApplicationDelegate protocol methods (including some undocumented methods) are actually implemented by our AppDelegate instance — which, because it is the UIApplication object’s delegate and formally conforms to the UIApplicationDelegate protocol, has explicitly agreed that it might
 be willing to respond to any of those messages. The entire delegate pattern (Chapter 11
) depends upon this technique. Observe the policy followed here by Cocoa: it checks all the optional protocol methods once, when it first meets the object in question, and presumably stores the results; thus, the app is slowed a tiny bit by this one-time initial bombardment of responds(to:)
 calls, but now Cocoa knows all the answers and won’t have to perform any of these same checks on the same object later.

Some Foundation Classes

The Foundation classes of Cocoa provide basic data types and utilities that will form the basis of your communication with Cocoa.
 Obviously I can’t list all of them, let alone describe them fully, but I can survey those that you’ll probably want to be aware of before writing even the simplest iOS program. For more information, start with Apple’s list of the Foundation classes in the Foundation framework documentation page.

In many situations, you can use Foundation classes implicitly, while working with Swift classes. That’s because of Swift’s ability to bridge
 between its own classes and those of Foundation. For example, String is bridged to NSString (Chapter 3
), and Array is bridged to NSArray (Chapter 4
). Thus, a String and an NSString can be cast to one another, and an Array and an NSArray can be cast to one another. But you’ll rarely need to cast, because in places where the Objective-C API expects you to pass an NSString or an NSArray, these will be typed in the Swift translation of that API as a String or an Array. Moreover, when you use String or Array in the presence of Foundation, some NSString and NSArray properties and methods spring to life.

The Swift Foundation “overlay” puts a native Swift interface in front of many other Foundation types. The Swift interface is distinguished by dropping the “NS” prefix that marks Foundation class names; for example, Objective-C NSData is accessed through Swift Data, and Objective-C NSDate is accessed through Swift Date — though you can still use NSData and NSDate directly if you really want to. Again, the Swift and Objective-C types are bridged to one another, and the API shows the Swift type, so casting and passing works as you would expect. The Swift types provide many conveniences that the Objective-C types do not; for example, they may declare adoption of appropriate Swift protocols such as Equatable, Hashable, and Comparable, and, in some cases, they may be value types (structs) where the Objective-C types are reference types (classes).

Tip

There are two kinds of bridging to be distinguished here. String and Array are native Swift types, with an independent existence. Date and Data, on the other hand, aren’t native Swift types; they are façades for NSDate and NSData, meaning that you cannot use them except in the presence of Cocoa’s Foundation framework.

NSRange and NSNotFound

NSRange is a C struct (see Appendix A
) of importance in dealing with some of the classes I’m about to discuss.
 Its components are integers, location
 and length
 . For example, an NSRange whose location
 is 1
 starts at the second element of something (because element counting is always zero-based), and if its length
 is 2
 it designates this element and the next.

A Swift Range and a Cocoa NSRange are constructed very differently from one another. A Swift Range is defined by two endpoints. A Cocoa NSRange is defined by a starting point and a length. Nevertheless, Swift goes to some lengths to help you work with an NSRange. The Foundation overlay defines an initializer init(location:length:)
 , and gives NSRange set-like methods such as contains(_:)
 and union(_:)
 (and, new in Swift 4, makes it adopt Hashable). You can coerce a Swift Range whose endpoints are Ints to an NSRange, and you can coerce from an NSRange to a Swift Range (resulting in an Optional wrapping a Range, for reasons I’ll explain in a moment):

// Range to NSRange
let r = 2..<4
let nsr = NSRange(r) // (2,2), an NSRange
// NSRange to Range
let nsr2 = NSRange(location: 2, length: 2)
let r2 = Range(nsr2) // Optional wrapping Range 2..<4

Unfortunately, there’s a common situation where a Swift Range’s endpoints are not
 Ints — they are String.Index
 , because you’re working with a Swift String. Meanwhile, on the Cocoa side, an NSString still uses an NSRange whose components are integers. Not only is there a type mismatch, there’s also a value mismatch, because (as I explained in Chapter 3
) a String is indexed on its characters, meaning its graphemes, but an NSString is indexed on its Unicode codepoints.

Sometimes, Swift will solve the problem by crossing the bridge for you in both directions; here’s an example I’ve already used:

let s = "hello"
let range = s.range(of:"ell") // Optional wrapping Range 1..<4

The range(of:)
 method in that code is actually a Cocoa method. Swift has cast the String s
 to an NSString for us, called a Foundation method that returns an NSRange, and coerced the NSRange to a Swift Range (wrapped in an Optional), adjusting its value as needed, entirely behind the scenes.

On other occasions, however, you will want to perform that coercion explicitly. For this purpose, new in Swift 4, Range has an initializer init(_:in:)
 , taking an NSRange and the String to which the resulting range is to apply:

let range = NSRange(location: 1, length: 3)
let r = Range(range, in:"hello") // Optional wrapping 1..<4 of String.Index

Also new in Swift 4, NSRange has the converse initializer init(_:in:)
 , taking a Range of String.Index
 and the String to which it applies:

let s = "hello"
let range = NSRange(s.range(of:"ell")!, in: s) // (1,3), an NSRange

Before Swift 4, the way to get that same NSRange was to cast the String to an NSString so as to be able to call NSString’s range(of:)
 directly:

let s = "hello"
let range = (s as NSString).range(of:"ell") // (1,3), an NSRange

NSNotFound
 is a constant integer indicating that some requested element was not found.
 The true numeric value of NSNotFound
 is of no concern; you always compare against NSNotFound
 itself, to learn whether a result is meaningful. For example, if you ask for the index of a certain object in an NSArray and the object isn’t present, the result is NSNotFound
 :

let arr = ["hey"] as NSArray
let ix = arr.index(of:"ho")
if ix == NSNotFound {
 print("it wasn't found")
}

Why does Cocoa resort to an integer value with a special meaning in this way? Because it has to. The result could not be 0
 to indicate the absence of the object, because 0
 would indicate the first element of the array. Nor could it be -1
 , because an NSArray index value is always positive. Nor could it be nil
 , because Objective-C can’t return nil
 when an integer is expected (and even if it could, it would be seen as another way of saying 0
). Contrast Swift, whose Array index(of:)
 method returns an Int wrapped in an Optional, allowing it to return nil
 to indicate that the target object wasn’t found.

If a search returns a range and the thing sought is not present, the location
 component of the resulting NSRange will be NSNotFound
 . This means that, when you turn an NSRange into a Swift Range, the NSRange’s location
 might be NSNotFound
 , and Swift needs to be able to express that as a nil
 Range. That’s why the initializers for coercing an NSRange to a Range are failable. It is also why, when you call NSString’s range(of:)
 method on a Swift String, the result is an Optional:

let s = "hello"
let r = s.range(of:"ha") // nil; an Optional wrapping a Swift Range

NSString and Friends

NSString
 is the Cocoa object version of a string. NSString and Swift String are bridged to one another, and you will often move between them without thinking, passing a Swift String to Cocoa, calling Cocoa NSString methods on a Swift String, and so forth. For example:

let s = "hello"
let s2 = s.capitalized

In that code, s
 is a Swift String and s2
 is a Swift String, but the capitalized
 property actually belongs to Cocoa. In the course of that code, a Swift String has been bridged to NSString and passed to Cocoa, which has processed it to get the capitalized string; the capitalized string is an NSString, but it has been bridged back to a Swift String. In all likelihood, you are not conscious of the bridging; capitalized
 feels like a native String property, but it isn’t — as you can readily prove by trying to use it in an environment where Foundation is not imported.

In some cases, Swift may fail to cross the bridge implicitly for you, and you will need to cast explicitly. For example, if s
 is a Swift string, you can’t call appendingPathExtension
 on it directly:

let s = "MyFile"
let s2 = s.appendingPathExtension("txt") // compile error

You have to cast explicitly to NSString:

let s2 = (s as NSString).appendingPathExtension("txt")

Similarly, to use NSString’s substring(to:)
 , you must cast the String to an NSString beforehand:

let s2 = (s as NSString).substring(to:4)

A better solution, wherever possible, is to stay entirely within the Swift world; thus, instead of the preceding example, we can call prefix
 , which is a native Swift method, not a Foundation method:

let s2 = s.prefix(4)

As I explained in Chapter 3
 , however, those two calls are not equivalent: they can give different answers! The reason is that String and NSString have fundamentally different notions of what constitutes an element of a string (see “The String–NSString Element Mismatch”
). A String must resolve its elements into characters, which means that it must walk the string, coalescing any combining codepoints; an NSString behaves as if it were an array of UTF-16 codepoints. On the Swift side, each increment in a String.Index
 corresponds to a true character, but access by index or range requires walking the string; on the Cocoa side, access by index or range is extremely fast, but might not correspond to character boundaries. (See the “Characters and Grapheme Clusters” chapter of Apple’s String Programming Guide
 .)

Another important difference between a Swift String and a Cocoa NSString is that an NSString is immutable. This means that, with NSString, you can do things such as obtain a new string based on the first — as capitalized
 and substring(to:)
 do — but you can’t change the string in place
 . To do that, you need another class, a subclass of NSString, NSMutableString
 . Swift String isn’t bridged to NSMutableString, so you can’t get from String to NSMutableString merely by casting. To obtain an NSMutableString, you’ll have to make one. The simplest way is with NSMutableString’s initializer init(string:)
 , which expects an NSString — meaning that you can pass a Swift String. Coming back the other way, you can cast all the way from NSMutableString to a Swift String in one move, because an NSMutableString is an NSString:

let s = "hello"
let ms = NSMutableString(string:s)
ms.deleteCharacters(in:NSRange(location: ms.length-1, length:1))
let s2 = (ms as String) + "ion" // now s2 is a Swift String, "hellion"

As I said in Chapter 3
 , native Swift String methods are thin on the ground. All the real string-processing power lives over on the Cocoa side of the bridge. So you’re going to be crossing that bridge a lot! And this will not be only for the power of the NSString and NSMutableString classes. Many other useful classes are associated with them.

For example, suppose you want to search a string for some substring. All the best ways come from Cocoa:

	An NSString can be searched using various range
 methods, with numerous options such as ignoring diacriticals, ignoring case, starting at the end, and insisting that the substring occupy the start or end of the searched string.

	Perhaps you don’t know exactly what you’re looking for: you need to describe it structurally. A Scanner
 (Objective-C NSScanner) lets you walk through a string looking for pieces that fit certain criteria; for example, with Scanner (and CharacterSet, Objective-C NSCharacterSet) you can skip past everything in a string that precedes a number and then extract the number.

	By specifying the .regularExpression
 search option, you can search using a regular expression
 . Regular expressions are also supported as a separate class, NSRegularExpression
 , which in turn uses NSTextCheckingResult to describe match results.

	More sophisticated automated textual analysis is supported by some additional classes, such as NSDataDetector, an NSRegularExpression subclass that efficiently finds certain types of string expression such as a URL or a phone number, and NSLinguisticTagger, which actually attempts to analyze text into its grammatical parts of speech.

In this example, our goal is to replace all occurrences of the word “hell” with the word “heaven.” We don’t want to replace mere occurrences of the substring
 “hell” — for example, “hello” should be left intact. Thus our search needs some intelligence as to what constitutes a word boundary. That sounds like a job for a regular expression. Swift doesn’t have regular expressions, so the work has to be done by Cocoa:

var s = "hello world, go to hell"
let r = try! NSRegularExpression(
 pattern: "\\bhell\\b",
 options: .caseInsensitive)
s = r.stringByReplacingMatches(
 in: s,
 range: NSRange(s.startIndex..<s.endIndex, in:s),
 withTemplate: "heaven")
// s is "hello world, go to heaven"

NSString also has convenience utilities for working with a file path string, and is often used in conjunction with URL (Objective-C NSURL), which is another Foundation type worth looking into, along with its companion types, URLComponents (Objective-C NSURLComponents) and URLQueryItem (Objective-C NSURLQueryItem
). In addition, NSString — like some other classes discussed in this section — provides methods for writing out to a file’s contents or reading in a file’s contents; the file can be specified either as a string file path or as a URL.

An NSString carries no font and size information. Interface objects that display strings (such as UILabel) have a font
 property that is a UIFont; but this determines the single
 font and size in which the string will display. If you want styled text — where different runs of text have different style attributes (size, font, color, and so forth) — you need to use NSAttributedString
 , along with its supporting classes NSMutableAttributedString, NSParagraphStyle, and NSMutableParagraphStyle. These allow you to style text and paragraphs easily in sophisticated ways. The built-in interface objects that display text can display an attributed string.

String drawing in a graphics context can be performed with methods provided through the NSStringDrawing category on NSString and on NSAttributedString.

NSDate and Friends

A Date
 (Objective-C NSDate) is a date and time, represented internally as a number of seconds since some reference date.

 Calling Date’s initializer init()
 — i.e., saying Date()
 — gives you a Date object for the current date and time. Many date operations will also involve the use of DateComponents (Objective-C NSDateComponents), and conversions between Date and DateComponents
 require use of a Calendar
 (Objective-C NSCalendar). Here’s an example of constructing a date based on its calendrical values:

let greg = Calendar(identifier:.gregorian)
let comp = DateComponents(calendar: greg,
 year: 2017, month: 8, day: 10, hour: 15)
let d = comp.date // Optional wrapping Date

Similarly, DateComponents provides the correct way to do date arithmetic. Here’s how to add one month to a given date:

let d = Date() // or whatever
let comp = DateComponents(month:1)
let greg = Calendar(identifier:.gregorian)
let d2 = greg.date(byAdding: comp, to:d) // Optional wrapping Date

Because a Date is essentially a wrapper for a TimeInterval (a Double), Swift can overload the arithmetic operators so that you can do arithmetic directly on a Date:

let d = Date()
let d2 = d + 4 // i.e. 4 seconds later

You can express the range between two dates as a DateInterval (Objective-C NSDateInterval
). DateIntervals can be compared, intersected, and checked for containment:

let greg = Calendar(identifier:.gregorian)
let d1 = DateComponents(calendar: greg,
 year: 2017, month: 1, day: 1, hour: 0).date!
let d2 = DateComponents(calendar: greg,
 year: 2017, month: 8, day: 10, hour: 15).date!
let di = DateInterval(start: d1, end: d2)
if di.contains(Date()) { // are we currently between those two dates?

You will also likely be concerned with dates represented as strings. If you don’t take explicit charge of a date’s string representation, it is represented by a string whose format may surprise you. For example, if you simply print
 a Date, you are shown the date in the GMT timezone, which can be confusing if that isn’t where you live. A simple solution is to call description(with:)
 , whose parameter is a Locale
 (Objective-C NSLocale) comprising the user’s current time zone, language, region format, and calendar settings:

print(d)
// 2017-08-10 22:00:00 +0000
print(d.description(with:Locale.current))
// Thursday, August 10, 2017 at 3:00:00 PM Pacific Daylight Time

For full control over date strings, use DateFormatter
 (Objective-C NSDateFormatter), which takes a format string describing how the date string is laid out:

let df = DateFormatter()
df.dateFormat = "M/d/y"
let s = df.string(from: Date())
// 7/31/2017

DateFormatter knows how to make a date string that conforms to the user’s local conventions. In this example, we call the class method dateFormat(fromTemplate:options:locale:)
 with the current locale as configured on the user’s device. The template:
 is a string listing the date components to be used, but their order, punctuation, and language are left up to the locale:

let df = DateFormatter()
let format = DateFormatter.dateFormat(
 fromTemplate:"dMMMMyyyyhmmaz", options:0,
 locale:Locale.currentLocale())
df.dateFormat = format
let s = df.string(from:Date())

The result is the date shown in the user’s time zone and language, using the correct linguistic conventions. It involves a combination of region format and language, which are two separate settings. Thus:

	On my device, the result might be “July 31, 2017, 8:23 PM PDT.”

	If I change my device’s region
 to France, it might be “31 July 2017 8:23 PM GMT-7.”

	If I also change my device’s language
 to French, it might be “31 juillet 2017 8:23 PM UTC−7.”

DateFormatter can also parse a date string into a Date — but be sure that the date format is correct. This attempt to parse a string will fail, because the date format doesn’t match the way the string is constructed:

let df = DateFormatter()
df.dateFormat = "M/d/y"
let d = df.date(from: "31/7/2017") // nil; should have been "d/M/y"

NSNumber

An NSNumber
 is an object that wraps a numeric value. The wrapped value can be any standard Objective-C numeric type (including BOOL, the Objective-C equivalent of Swift Bool).
 In Swift, everything is an object — a number is a Struct instance — so it comes as a surprise to Swift users that NSNumber is needed. But an ordinary number in Objective-C is not an object (it is a scalar; see Chapter 1
), so it cannot be used where an object is expected. Thus, NSNumber solves an important problem for Objective-C, converting a number into an object and back again.

Swift does its best to shield you from having to deal directly with NSNumber. It bridges Swift numeric types to Objective-C in two different ways:

As a scalar

If Objective-C expects an ordinary number, a Swift number is bridged to an ordinary number (a scalar). For example:

UIView.animate(withDuration: 1,
 animations: whatToAnimate, completion: whatToDoLater)

Objective-C animateWithDuration:animations:completion:
 takes a C double as its first parameter. The Swift numeric object that you supply as the first argument to animate(withDuration:animations:completion:)
 becomes a C double.

As an NSNumber

If Objective-C expects an object, a Swift numeric type is bridged to an NSNumber (including Bool, because NSNumber can wrap an Objective-C BOOL). For example:

UserDefaults.standard.set(1, forKey:"Score")

Objective-C setObject:forKey:
 takes an Objective-C object as its first parameter. The Swift numeric object that you supply as the first argument to set(_:forKey:)
 becomes an NSNumber.

Naturally, if you need to cross the bridge explicitly, you can. You can cast a Swift number to an NSNumber:

let n = 1 as NSNumber

Coming back from Objective-C to Swift, an NSNumber (or an Any that is actually an NSNumber) can be unwrapped by casting it down to a numeric type — provided the wrapped numeric value matches the type. To illustrate, I’ll fetch the NSNumber that I created in UserDefaults by bridging a moment ago:

let n = UserDefaults.standard.value(forKey:"Score")
// n is an Optional<Any> containing an NSNumber
let i = n as! Int // legal
let ii = n as! Double // legal

An NSNumber object is just a wrapper and no more. It can’t be used directly for numeric calculations; it isn’t a number. It wraps
 a number. One way or another, if you want a number, you have to extract it from the NSNumber.

An NSNumber subclass, NSDecimalNumber, on the other hand, can
 be used in calculations, thanks to a bunch of arithmetic methods:

let dec1 = 4.0 as NSDecimalNumber
let dec2 = 5.0 as NSDecimalNumber
let sum = dec1.adding(dec2) // 9.0

NSDecimalNumber is useful particularly for rounding, because there’s a handy way to specify the desired rounding behavior.

Underlying NSDecimalNumber is the Decimal struct (Objective-C NSDecimal); it is an NSDecimalNumber’s decimalValue
 . In Objective-C, NSDecimal comes with C functions that are faster than NSDecimalNumber methods. In Swift, things are even better, because the arithmetic operators are overloaded to allow you to do Decimal arithmetic; thus, you are likely to prefer working with Decimal over NSDecimalNumber:

let dec1 = Decimal(4.0)
let dec2 = Decimal(5.0)
let sum = dec1 + dec2

NSValue

NSValue
 is NSNumber’s superclass. It is used for wrapping nonnumeric C values, such as C structs, where an object is expected. The problem being solved here is parallel to the problem solved by NSNumber: a Swift struct is an object, but a C struct is not, so a struct cannot be used in Objective-C where an object is expected.

Convenience methods provided through the NSValueUIGeometryExtensions category on NSValue allow easy wrapping and unwrapping of such common structs as CGPoint, CGSize, CGRect, CGAffineTransform, UIEdgeInsets, and UIOffset
 ; additional categories allow easy wrapping and unwrapping of NSRange, CATransform3D
 , CMTime, CMTimeMapping, CMTimeRange, MKCoordinate, and MKCoordinateSpan. (You are unlikely to need to store any other kind of C value in an NSValue, but if you do need to, you can.) For example:

let pt = self.oldButtonCenter // a CGPoint
let val = NSValue(cgPoint:pt)

But you will rarely need to deal with NSValue explicitly, because, starting in Swift 3.0.1 (Xcode 8.1), Swift will wrap any of those common structs in an NSValue for you as it crosses the bridge from Swift to Objective-C. Here’s an example from my own real-life code:

let pt = CGPoint(
 x: screenbounds.midX + r * cos(rads),
 y: screenbounds.midY + r * sin(rads)
)
// apply an animation of ourself to that point
let anim = CABasicAnimation(keyPath:"position")
anim.fromValue = self.position
anim.toValue = pt

In that code, self.position
 and pt
 are both CGPoints. The CABasicAnimation properties fromValue
 and toValue
 need to be Objective-C objects (that is, class instances) so that Cocoa can obey them to perform the animation. In Swift 3.0 and before, it was therefore necessary to wrap self.position
 and pt
 as NSValue objects. Nowadays, you don’t have to do that; Swift wraps those CGPoints as NSValue objects for you, Cocoa is able to interpret and obey them, and the animation works correctly.

The same thing is true of an array of common structs. Again, animation is a case in point. If you assign an array of CGPoint to a CAKeyframeAnimation’s values
 property, the animation will work properly, without your having to map the CGPoints to NSValues first. That’s because Swift maps them for you as the array crosses the bridge.

NSData

Data
 (Objective-C NSData) is a general sequence of bytes (UInt8); basically, it’s just a buffer, a chunk of memory. In Objective-C, NSData is immutable; the mutable version is its subclass NSMutableData. In Swift, however, where Data is a bridged value type imposed in front of NSData, a Data object is mutable if it was declared with var
 , just like any other value type. Moreover, because a Data object represents a byte sequence, Swift makes it a Collection (and therefore a Sequence), causing Swift features such as enumeration with for...in
 , subscripting, and append(_:)
 to spring to life. Thus, although you can work with NSData and NSMutableData if you want to (by casting to cross the bridge), you are much more likely to prefer Data.

In practice, Data tends to arise in two main ways:

When downloading from the Internet

For example, URLSession (Objective-C NSURLSession) supplies whatever it retrieves from the Internet as Data. Transforming it from there into (let’s say) a string, specifying the correct encoding, would then be up to you.

When serializing an object

The typical use case is that you’re storing an object as a file or in user preferences (UserDefaults). For example, you can’t store a UIColor value directly into user preferences. So if the user has made a color choice and you need to save it, you transform the UIColor into a Data object (using NSKeyedArchiver) and save that:

let ud = UserDefaults.standard
let c = UIColor.blue
let cdata = NSKeyedArchiver.archivedData(withRootObject:c)
ud.set(cdata, forKey: "myColor")

Tip

New in Swift 4, you can serialize Swift types (enums, structs, classes not derived from NSObject) to Data, using the Codable protocol. I’ll talk about that later in this chapter.

NSMeasurement and Friends

The Measurement type (Objective-C NSMeasurement), introduced in iOS 10, embodies the notion of a measurement by some unit (Unit, Objective-C NSUnit). A unit may be along some dimension that may be expressible in different units convertible to one another; by reducing values in different units of the same dimension to a base unit, a Measurement permits you to perform arithmetic operations and conversions.

The dimensions, which are all subclasses of the (abstract) Dimension class (Objective-C NSDimension, an NSUnit subclass), have names like UnitAngle and UnitLength (Objective-C NSUnitAngle, NSUnitLength), and have class properties vending an instance corresponding to a particular unit type; for example, UnitAngle has class properties degrees
 and radians
 and others, and UnitLength has class properties miles
 and kilometers
 and others.

To illustrate, I’ll add 5 miles to 6 kilometers:

let m1 = Measurement(value:5, unit: UnitLength.miles)
let m2 = Measurement(value:6, unit: UnitLength.kilometers)
let total = m1 + m2

The answer, total
 , is 14046.7 meters under the hood, because meters are the base unit of length. But it can be converted to any length unit:

let totalFeet = total.converted(to: .feet).value // 46084.9737532808

If your goal is to output a measurement as a user-facing string, use a MeasurementFormatter
 (Objective-C NSMeasurementFormatter). Its behavior is locale-dependent by default, expressing the value and the units as the user would expect:

let mf = MeasurementFormatter()
let s = mf.string(from:total) // "8.728 mi"

My code says nothing about miles, but the MeasurementFormatter outputs "8.728 mi"
 because my device is set to United States and English. If my device is set to France and French, the very same code outputs "14,047 km"
 — using the French decimal point notation and the French preferred unit of distance measurement.

Equality and Comparison

In Swift, the equality and comparison operators can be overridden for an object type that adopts Equatable and Comparable (“Operators”
). But Objective-C operators can’t do that; they are applicable only to scalars. Objective-C therefore performs comparison of object instances in a special way, and it can be useful to know about this when working with Cocoa classes.

To permit determination of whether two objects are “equal” — whatever that may mean for this object type — an Objective-C class must implement isEqual(_:)
 , which is inherited from NSObject. Swift will help out by treating NSObject as Equatable and by permitting the use of the ==
 operator, implicitly converting it to an isEqual(_:)
 call. Thus, if a class derived from NSObject implements isEqual(_:)
 , ordinary Swift comparison will work. For example:

let n1 = 1 as NSNumber
let n2 = 2 as NSNumber
let n3 = 3 as NSNumber
let ok = n2 == 2 // true [image: 1]

let ok2 = n2 == 2 as NSNumber // true [image: 2]

let ix = [n1,n2,n3].index(of:2) // Optional wrapping 1 [image: 3]

That code seems to do three impossible things before breakfast:

[image: 1]

We directly compare an Int to an NSNumber, and we get the right answer, as if we were comparing the Int to the integer wrapped by that NSNumber.

[image: 2]

We directly compare two NSNumber objects to one another, and we get the right answer, as if we were comparing the integers that they wrap.

[image: 3]

We treat an array of NSNumber objects as an array of Equatables and call the index(of:)
 method, and we successfully determine which NSNumber object is “equal” to an actual number.

There are three parts to this apparent magic:

	The Ints are being wrapped in NSNumber objects for us.

	The ==
 operator (also used behind the scenes by the index(of:)
 method) is being converted to an isEqual(_:)
 call.

	NSNumber implements isEqual(_:)
 to compare two NSNumber objects by comparing the numeric values that they wrap.

Therefore the equality comparisons all work correctly.

If an NSObject subclass doesn’t
 implement isEqual(_:)
 , it inherits NSObject’s implementation, which compares the two objects for identity (like Swift’s ===
 operator). For example, these two Dog objects can be compared with the ==
 operator, even though Dog does not adopt Equatable, because they derive from NSObject — but Dog doesn’t implement isEqual(_:)
 , so ==
 defaults to NSObject’s identity comparison:

class Dog : NSObject {
 var name : String
 init(_ name:String) {self.name = name}
}
let d1 = Dog("Fido")
let d2 = Dog("Fido")
let ok = d1 == d2 // false

Similarly, in Objective-C it is up to individual classes to supply ordered comparison methods. The standard method is compare(_:)
 , which returns one of three cases of ComparisonResult
 (Objective-C NSComparisonResult):

.orderedAscending

The receiver is less than the argument.

.orderedSame

The receiver is equal to the argument.

.orderedDescending

The receiver is greater than the argument.

Swift comparison operators (<
 and so forth) do not
 magically call compare(_:)
 for you. You can’t compare two NSNumber values directly:

let n1 = 1 as NSNumber
let n2 = 2 as NSNumber
let ok = n1 < n2 // compile error

You will typically fall back on calling compare(_:)
 yourself:

let n1 = 1 as NSNumber
let n2 = 2 as NSNumber
let ok = n1.compare(n2) == .orderedAscending // true

On the other hand, where Swift overlays its own type in front of a Foundation type, that type can
 adopt Equatable and Comparable, and now comparison operators do
 work. For example, you can’t compare two NSDate values with <
 , but you can
 compare two Date values.

NSArray and NSMutableArray

NSArray
 is Objective-C’s array object type. It is fundamentally similar to Swift Array, and they are bridged to one another; but NSArray elements must be objects (classes and class instances), and they don’t have to be of a single type. For a full discussion of how to bridge back and forth between Swift Array and Objective-C NSArray, implicitly and by casting, see “Swift Array and Objective-C NSArray”
 .

An NSArray’s length is its count
 , and an element can be obtained by index number using object(at:)
 . The index of the first element, as with a Swift Array, is zero, so the index of the last element is count
 minus one.

Instead of calling object(at:)
 , you can use subscripting with an NSArray. This is not because NSArray is bridged to Swift Array, but because NSArray implements an Objective-C method, objectAtIndexedSubscript:
 , which is the Objective-C equivalent of a Swift subscript
 getter. In fact, when you examine the NSArray header file translated into Swift, this method is shown as a subscript
 declaration!

You can seek an object within an array with index(of:)
 or indexOfObjectIdentical(to:)
 ; the former’s idea of equality is to call isEqual(_:)
 , whereas the latter uses object identity (like Swift’s ===
). As I mentioned earlier, if the object is not found in the array, the result is NSNotFound
 .

Like an Objective-C NSString, an NSArray is immutable. This doesn’t mean you can’t mutate any of the objects it contains; it means that once the NSArray is formed you can’t remove an object from it, insert an object into it, or replace an object at a given index. To do those things while staying in the Objective-C world, you can derive a new array consisting of the original array plus or minus some objects, or use NSArray’s
 subclass, NSMutableArray
 . Swift Array is not bridged to NSMutableArray; if you want an NSMutableArray, you must create it. The simplest way is with the NSMutableArray initializers, init()
 or init(array:)
 .

Once you have an NSMutableArray, you can call methods such as NSMutableArray’s add(_:)
 and replaceObject(at:with:)
 . You can also assign into an NSMutableArray using subscripting. Again, this is because NSMutableArray implements a special Objective-C method, setObject:atIndexedSubscript:
 ; Swift recognizes this as equivalent to a subscript
 setter.

Coming back the other way, you can cast an NSMutableArray down to a Swift array:

let marr = NSMutableArray()
marr.add(1) // an NSNumber
marr.add(2) // an NSNumber
let arr = marr as NSArray as! [Int]

Cocoa provides ways to search or filter an array by passing a function. You can also derive a sorted version of an array, supplying the sorting rules in various ways, or if it’s a mutable array, you can sort it directly. You might prefer to perform those kinds of operation in the Swift Array world, but it can be useful to know how to do them the Cocoa way. For example:

let pep = ["Manny", "Moe", "Jack"] as NSArray
let ems = pep.objects(
 at: pep.indexesOfObjects { (obj, idx, stop) -> Bool in
 return (obj as! NSString).range(
 of: "m", options:.caseInsensitive
).location == 0
 }
) // ["Manny", "Moe"]

NSDictionary and NSMutableDictionary

NSDictionary
 is Objective-C’s dictionary object type. It is fundamentally similar to Swift Dictionary, and they are bridged to one another. But NSDictionary keys and values must be objects (classes and class instances), and they don’t have to be of a single type; the keys must conform to NSCopying and be hashable. See “Swift Dictionary and Objective-C NSDictionary”
 for a full discussion of how to bridge back and forth between Swift Dictionary and Objective-C NSDictionary, including casting.

An NSDictionary is immutable; its mutable subclass is NSMutableDictionary
 . Swift Dictionary is not bridged to NSMutableDictionary; you can most easily make an NSMutableDictionary with an initializer, init()
 or init(dictionary:)
 , and you can cast an NSMutableDictionary down to a Swift Dictionary type.

The keys of an NSDictionary are distinct (using isEqual(_:)
 for comparison). If you add a key–value pair to an NSMutableDictionary, then if that key is not already present, the pair is simply added, but if the key is already present, then the corresponding value is replaced. This is parallel to the behavior of Swift Dictionary.

The fundamental use of an NSDictionary is to request an entry’s value by key (using object(forKey:)
); if no such key exists, the result is nil
 . In Objective-C, nil
 is not an object, and thus cannot be a value in an NSDictionary; the meaning of this response is thus unambiguous. Swift handles this by treating the result of object(forKey:)
 as an Optional wrapping an Any.

Subscripting is possible on an NSDictionary or an NSMutableDictionary for similar reasons to why subscripting is possible on an NSArray or an NSMutableArray. NSDictionary implements objectForKeyedSubscript:
 , and Swift understands this as equivalent to a subscript
 getter. In addition, NSMutableDictionary implements setObject:forKeyedSubscript:
 , and Swift understands this as equivalent to a subscript
 setter.

You can get from an NSDictionary a list of keys (allKeys
), a list of values (allValues
), or a list of keys sorted by value. You can also walk through the key–value pairs, and you can even filter an NSDictionary by a test against its values.

NSSet and Friends

An NSSet
 is an unordered collection of distinct objects. “Distinct” means that no two objects in a set can return true
 when they are compared using isEqual(_:)
 . Learning whether an object is present in a set is much more efficient than seeking it in an array, and you can ask whether one set is a subset of, or intersects, another set. You can walk through (enumerate) a set with the for...in
 construct, though the order is of course undefined. You can filter a set, as you can an NSArray. Indeed, much of what you can do with a set is parallel to what you can do with an array, except that of course you can’t do anything with a set that involves the notion of ordering.

To escape even that restriction, you can use an ordered set
 .
 An ordered set (NSOrderedSet) is very
 like an array, and the methods for working with it are similar to the methods for working with an array — you can even fetch an element by subscripting (because it implements objectAtIndexedSubscript:
). But an ordered set’s elements must be distinct. An ordered set provides many of the advantages of sets: for example, as with an NSSet, learning whether an object is present in an ordered set is much more efficient than for an array, and you can readily take the union, intersection, or difference with another set. Since the distinctness restriction will often prove no restriction at all (because the elements were going to be distinct anyway), it can be worthwhile to use NSOrderedSet instead of NSArray where possible.

An NSSet is immutable. You can derive one NSSet from another by adding or removing elements, or you can use its subclass, NSMutableSet
 . Similarly, NSOrderedSet has its mutable counterpart, NSMutableOrderedSet
 (which you can insert into by subscripting, because it implements setObject:atIndexedSubscript:
). There is no penalty for adding to a set an object that the set already contains; nothing is added (and so the distinctness rule is enforced), but there’s no error.

NSCountedSet
 , a subclass of NSMutableSet, is a mutable unordered collection of objects that are not
 necessarily distinct (this concept is often referred to as a bag
). It is implemented as a set plus a count of how many times each element has been added.

Swift Set is bridged to NSSet, and the Swift Foundation overlay even allows you to initialize an NSSet from a Swift array literal. But NSSet elements must be objects (classes and class instances), and they don’t have to be of a single type. For details, see “Swift Set and Objective-C NSSet”
 . NSMutableSet, NSCountedSet, NSOrderedSet, and NSMutableOrderedSet are easily formed from a set or an array using an initializer. Coming back the other way, you can cast an NSMutableSet or NSCountedSet down to a Swift Set (similar to an NSMutableArray). Because of their special behaviors, however, you are much more likely to leave an NSCountedSet or NSOrderedSet in its Objective-C form for as long you’re working with it.

NSIndexSet

IndexSet
 (Objective-C NSIndexSet) represents a collection of unique whole numbers; its purpose is to express element numbers of an ordered collection, such as an array. Thus, for instance, to retrieve multiple elements simultaneously from an NSArray, you specify the desired indexes as an IndexSet. It is also used with other things that are array-like; for example, you pass an IndexSet to a UITableView to indicate what sections to insert or delete.

NSIndexSet is immutable; it has a mutable subclass, NSMutableIndexSet. As with other Swift types imposed in front of Foundation types, however, IndexSet gets to do all sorts of convenient Swift magic. IndexSet is a value type, so it is mutable if the declaration uses var
 . Comparison and arithmetic operators work directly with IndexSet values. Even more important, an IndexSet acts like a Set: it adopts the SetAlgebra protocol, and methods like contains(_:)
 and intersection(_:)
 spring to life. Thus you probably won’t need NSMutableIndexSet at all.

To take a specific example, let’s say you want to speak of the elements at indexes 1, 2, 3, 4, 8, 9, and 10 of an array. IndexSet expresses this notion in some compact implementation that can be readily queried. The actual implementation is opaque, but you can imagine that this IndexSet might consist of two Ranges, 1...4
 and 8...10
 , and IndexSet’s methods actually invite you to think of it as a Set of Ranges:

let arr = ["zero", "one", "two", "three", "four", "five",
 "six", "seven", "eight", "nine", "ten"]
var ixs = IndexSet()
ixs.insert(integersIn: Range(1...4))
ixs.insert(integersIn: Range(8...10))
let arr2 = (arr as NSArray).objects(at:ixs)
// ["one", "two", "three", "four", "eight", "nine", "ten"]

To walk through (enumerate) the index values specified by an IndexSet, you can use for...in
 ; alternatively, you can walk through an IndexSet’s indexes or ranges by calling various enumerate...
 methods that let you pass a function returning a Bool.

NSNull

The NSNull
 class does nothing but supply a pointer to a singleton object, NSNull()
 . This singleton object is used to stand for nil
 in situations where an actual Objective-C object is required and nil
 is not permitted. For example, you can’t use nil
 as the value of an element of an Objective-C collection (such as NSArray, NSDictionary, or NSSet), so you’d use NSNull()
 instead. Swift will bridge an Array of Optional for you, as it crosses into Objective-C, by substituting NSNull()
 for any nil
 elements — and will perform the inverse operation when you cast an NSArray down to an Array of Optional, substituting nil
 for any NSNull()
 elements.

You can test an object for equality against NSNull()
 using the ordinary equality operator (==
), because it falls back on NSObject’s isEqual(_:)
 , which is identity comparison. This is a singleton instance, and therefore identity comparison works.

Immutable and Mutable

Cocoa Foundation has a notion of class pairs where the superclass is immutable and the subclass is mutable, similar to the Swift distinction between a constant (let
) and a true variable (var
). For example, the fact that NSArray is “immutable” means much the same thing as the fact that a Swift Array is referred to with let
 : you can’t append or insert into this array, or replace or delete an element of this array; but if its elements are reference types — and of course, for an NSArray, they are
 reference types — you can mutate an element in place.

The reason why Cocoa needs these immutable/mutable pairs is to prevent unauthorized mutation. An NSArray object, say, is an ordinary class instance — a reference type. Thus, if NSArray were mutable, a class with an NSArray property could have that array mutated by some other object, behind this class’s back. To prevent that from happening, a class will work internally and temporarily with a mutable instance, but then store and vend to other classes an immutable instance, thus protecting the value from being changed by anyone else. (Swift doesn’t face the same issue, because its fundamental built-in object types such as String, Array, and Dictionary are structs, and therefore are value types, which cannot be mutated in place; they can be changed only by being replaced, and that is something that can be guarded against, or detected through a setter observer.)

The documentation may not make it completely obvious that the mutable classes obey and, if appropriate, override the methods of their immutable superclasses. For example, dozens of NSMutableArray methods are not listed on NSMutableArray’s class documentation page, because they are inherited from NSArray. And when such methods are inherited by the mutable subclass, they may be overridden to fit the mutable subclass. For example, NSArray’s init(array:)
 generates an immutable array, but NSMutableArray’s init(array:)
 — which isn’t even listed on the NSMutableArray documentation page, because it is inherited from NSArray — generates a mutable array.

That fact also answers the question of how to make an immutable array mutable, and vice versa
 . This single method, init(array:)
 , can transform an array between immutable and mutable in either direction. You can also use copy
 (produces an immutable copy) and mutableCopy
 (produces a mutable copy), both inherited from NSObject; but these are not as convenient because they yield an Any which must then be cast.

Warning

These immutable/mutable class pairs are all implemented as class clusters
 , which means that Cocoa uses a secret class, different from the documented class you work with.
 You may discover this by peeking under the hood; for example, saying NSStringFromClass(type(of:s))
 , where s
 is an NSString, might yield a mysterious value "__NSCFString"
 . You should not spend any time wondering about this secret class. It is subject to change without notice and is none of your business; you should never have looked at it in the first place.

Property Lists

A property list
 is a string (XML) representation of data.
 The Foundation classes NSString, NSData, NSArray, and NSDictionary are the only Cocoa classes that can be converted into a property list. Moreover, an NSArray or NSDictionary can be converted into a property list only if the only classes it collects are these classes, along with NSDate and NSNumber. (This is why, as I mentioned earlier, you must convert a UIColor into a Data object in order to store it in user defaults; the user defaults storage is
 a property list.)

The primary use of a property list is to store data as a file. It is a way of serializing
 a value — saving it to disk in a form from which it can be reconstructed.
 NSArray and NSDictionary provide convenience methods write(toFile:atomically:)
 and write(to:atomically:)
 that generate property list files given a string pathname or file URL, respectively; conversely, they also provide initializers that create an NSArray object or an NSDictionary object based on the property list contents of a given file. For this very reason, you are likely to start with one of these classes when you want to create a property list. (The NSString and NSData write
 methods just write the data out as a file directly, not as a property list.)

Here, for example, I’ll create an array of strings and write it out to disk as a property list file:

let arr = ["Manny", "Moe", "Jack"]
let fm = FileManager.default
let temp = fm.temporaryDirectory
let f = temp.appendingPathComponent("pep.plist")
(arr as NSArray).write(to: f, atomically: true)

The result is a file that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>Manny</string>
 <string>Moe</string>
 <string>Jack</string>
</array>
</plist>

When you reconstruct an NSArray or NSDictionary object from a property list file in this way, the collections, string objects, and data objects in the collection are all immutable. If you want them to be mutable, or if you want to convert an instance of one of the other property list classes to a property list, you’ll use the PropertyListSerialization class (Objective-C NSPropertyListSerialization; see the Property List Programming Guide
).

Tip

New in Swift 4, you can serialize Swift types (enums, structs, classes not derived from NSObject) to a property list, using the Codable protocol. I’ll talk about that in the next section.

Codable

New in Swift 4, you can serialize an object without crossing the bridge into the Objective-C world, provided it adopts the Codable
 protocol. In effect, every native Swift type and every Foundation overlay type does
 adopt the Codable protocol! This means, among other things, that enums and structs can easily be serialized, something that was previously quite tricky.

There are three main use cases, involving three pairs of classes to serialize the object and extract it again later:

Property lists

Use PropertyListEncoder and PropertyListDecoder.

JSON

Use JSONEncoder and JSONDecoder.

NSCoder

Use NSKeyedArchiver and NSKeyedUnarchiver.

In every case, what you’re encoding to and decoding from is a Data object.

To illustrate, let’s rewrite the previous example, serializing an array of strings to a property list, without casting it to an NSArray. This works because because both Swift Array and Swift String adopt Codable:

let arr = ["Manny", "Moe", "Jack"]
let fm = FileManager.default
let temp = fm.temporaryDirectory
let f = temp.appendingPathComponent("pep.plist")
let penc = PropertyListEncoder()
penc.outputFormat = .xml
let d = try! penc.encode(arr)
try! d.write(to: f)
/*
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>Manny</string>
 <string>Moe</string>
 <string>Jack</string>
</array>
</plist>
*/

That example doesn’t do anything that we couldn’t have done with NSArray. But now consider, for instance, an index set. You can’t write an NSIndexSet directly into a property list using Objective-C, because Objective-C has no notion of NSIndexSet as a property list type. But the Swift Foundation overlay type, IndexSet, is Codable:

let penc = PropertyListEncoder()
penc.outputFormat = .xml
let d = try! penc.encode(IndexSet([1,2,3]))
/*
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>indexes</key>
 <array>
 <dict>
 <key>length</key>
 <integer>3</integer>
 <key>location</key>
 <integer>1</integer>
 </dict>
 </array>
</dict>
</plist>
*/

Notice how cleverly Swift has encoded this object. You can’t put an IndexSet into a property list — but this property list doesn’t contain any IndexSet! It is composed entirely of legal property list types — a dictionary containing an array of dictionaries whose values are numbers. And Swift can extract the encoded object from the property list:

let ix = try! PropertyListDecoder().decode(IndexSet.self, from: d)
// [1,2,3]

Your own custom types can adopt Codable and thus make themselves encodable in the same way. In fact, in the simplest case, adopting Codable is all
 you have to do! If the type’s properties are themselves Codable, the right thing will happen automatically. The Codable protocol has two required methods, but we don’t have to implement them because default implementations are injected through a protocol extension (though we could
 implement them if we wanted to customize the details of encoding and decoding).

For example, here’s a simple Person struct:

struct Person : Codable {
 let firstName : String
 let lastName : String
}

Person adopts Codable, so we can turn a Person into a property list:

let p = Person(firstName: "Matt", lastName: "Neuburg")
let penc = PropertyListEncoder()
penc.outputFormat = .xml
let d = try! penc.encode(p)
/*
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>firstName</key>
 <string>Matt</string>
 <key>lastName</key>
 <string>Neuburg</string>
</dict>
</plist>
*/

Observe that this would work just as well for, say, an array of Person, or a dictionary with Person values, or any Codable struct with a Person property.

Recall that, because UserDefaults is a property list, an object that isn’t a property list type must be archived to a Data object in order to store it in UserDefaults. Earlier, I demonstrated with a UIColor:

let ud = UserDefaults.standard
let c = UIColor.blue
let cdata = NSKeyedArchiver.archivedData(withRootObject:c)
ud.set(cdata, forKey: "myColor")

A Swift 4 PropertyListEncoder creates a Data object, so we can use it to store a Person object in UserDefaults:

let ud = UserDefaults.standard
let p = Person(firstName: "Matt", lastName: "Neuburg")
let pdata = try! PropertyListEncoder().encode(p)
ud.set(pdata, forKey: "person")

The outcome is not substantially different from calling NSKeyedArchiver’s archivedData(withRootObject:)
 , because the Data object generated by archivedData(withRootObject:)
 is itself a property list.

Encoding as JSON is similar to encoding as a property list:

let p = Person(firstName: "Matt", lastName: "Neuburg")
let jenc = JSONEncoder()
jenc.outputFormatting = .prettyPrinted
let d = try! jenc.encode(p)
print(String(data:d, encoding:.utf8)!)
/*
{
 "firstName" : "Matt",
 "lastName" : "Neuburg"
}
*/

The final use case is encoding or decoding through an NSCoder
 . There are various situations where Cocoa lends you an NSCoder object and invites you to put some data into it or pull some data out of it. For example, UIViewController implements a system of saving and restoring state, so that if your app might be terminated, it can save its state and appear in that same state the next time the user launches it. Your view controller will implement encodeRestorableState(with:)
 and decodeRestorableState(with:)
 ; in both cases the parameter is an NSCoder.

In the past, the only objects you could encode or decode in this situation were NSObject subclasses adopting the Cocoa NSCoding
 protocol. Now, however, you can encode or decode a Swift Codable object as well. The NSCoder in question will be either an NSKeyedArchiver
 , when you’re encoding, or an NSKeyedUnarchiver, when you’re decoding. These subclasses, respectively, provide methods encodeEncodable(_:forKey:)
 , which takes a Codable object, and decodeDecodable(_:forKey:)
 , which produces a Codable object. Thus, your Codable adopters can pass into and out of an archive by way of NSCoder, side-by-side with your NSCoding adopters.

As I mentioned earlier, your Codable adopter can take more control of the encoding and decoding process. You can map between your object’s property names and the archive’s key names by adding a CodingKeys enum, and you can provide your own implementation of the injected encode(to:)
 and decode(from:)
 methods. For more information, consult the help document “Encoding and Decoding Custom Types.”

Accessors, Properties, and Key–Value Coding

An Objective-C instance variable is structurally similar to a Swift instance property: it’s a variable that accompanies each instance of a class, with a lifetime and value associated with that particular instance. An Objective-C instance variable, however, is usually private, in the sense that instances of other classes can’t see it (and Swift can’t see it). If an instance variable is to be made public, an Objective-C class will typically implement accessor methods
 : a getter method and (if this instance variable is to be publicly writable) a setter method. This is such a common thing to do that there are naming conventions:

The getter method

A getter should have the same name as the instance variable (without an initial underscore if the instance variable has one). Thus, if the instance variable is named myVar
 (or _myVar
), the getter method should be named myVar
 .

The setter method

A setter method’s name should start with set
 , followed by a capitalized version of the instance variable’s name (without an initial underscore if the instance variable has one). The setter should take one parameter — the new value to be assigned to the instance variable. Thus, if the instance variable is named myVar
 (or _myVar
), the setter should be named setMyVar:
 .

This pattern — a getter method, possibly accompanied by an appropriately named setter method — is so common that there’s a shorthand: an Objective-C class can declare a property
 , using the keyword @property
 and a name. Here, for example, is a line from the UIView class declaration (ignore the material in the parentheses):

@property(nonatomic) CGRect frame;

Within Objective-C, this declaration constitutes a promise that there is a getter accessor method frame
 returning a CGRect, along with a setter accessor method setFrame:
 that takes a CGRect parameter.

When Objective-C formally declares a @property
 in this way, Swift sees it as a Swift property
 . Thus, UIView’s frame
 property declaration is translated directly into a Swift declaration of an instance property frame
 of type CGRect:

var frame: CGRect

An Objective-C property name, however, is mere syntactic sugar. When you set a UIView’s frame
 property, you are actually calling its setFrame:
 setter method, and when you get a UIView’s frame
 property, you are actually calling its frame
 getter method. In Objective-C, use of the property is optional; Objective-C code can, and often does, call the setFrame:
 and frame
 methods directly
 . But you can’t do that in Swift! If an Objective-C class has a formal @property
 declaration, the accessor methods are hidden from Swift
 .

An Objective-C property declaration can include the word readonly
 in the parentheses. This indicates that there is a getter but no setter. So, for example (ignore the other material in the parentheses):

@property(nonatomic,readonly,strong) CALayer *layer;

Swift will reflect this restriction with {get}
 after the declaration, as if this were a computed read-only property; the compiler will not permit you to assign to such a property:

var layer: CALayer { get }

An Objective-C property and its accompanying accessor methods have a life of their own, independent of any underlying instance variable. Although accessor methods may literally be ways of accessing an invisible instance variable, they don’t have to be. When you set a UIView’s frame
 property and the setFrame:
 accessor method is called, you have no way of knowing what that method is really doing: it might be setting an instance variable called frame
 or _frame
 , but who knows? In this sense, accessors and properties are a façade, hiding the underlying implementation. This is similar to how, within Swift, you can set a variable without knowing or caring whether it is a stored variable or a computed variable.

Swift Accessors

Just as Objective-C properties are actually a shorthand for accessor methods, so Objective-C treats Swift properties as a shorthand for accessor methods — even though no such methods are formally present. If you, in Swift, declare that a class has a property prop
 , Objective-C can call a prop
 method to get its value or a setProp:
 method to set its value, even though you have not implemented such methods
 . Those calls are routed to your property through implicit
 accessor methods.

In Swift, you should not
 write explicit
 accessor methods for a property; the compiler will stop you if you attempt to do so. If you need to implement an accessor method explicitly and formally, use a computed property. Here, for example, I’ll add to my UIViewController subclass a computed color
 property with a getter and a setter:

class ViewController: UIViewController {
 @objc var color : UIColor {
 get {
 print("someone called the getter")
 return .red
 }
 set {
 print("someone called the setter")
 }
 }
}

Objective-C code can now call explicitly the implicit setColor:
 and color
 accessor methods — and when it does, the computed property’s setter and getter methods are in fact called:

ViewController* vc = [ViewController new];
[vc setColor:[UIColor redColor]]; // "someone called the setter"
UIColor* c = [vc color]; // "someone called the getter"

This proves that, in Objective-C’s mind, you have
 provided setColor:
 and color
 accessor methods.

You can even change
 the Objective-C names of accessor methods! To do so, follow the @objc
 attribute with the Objective-C name in parentheses. You can add it to a computed property’s setter and getter methods, or you can add it to a property itself:

@objc(hue) var color : UIColor?

Objective-C code can now call hue
 and setHue:
 accessor methods directly.

If, in speaking to Objective-C, you need to pass a selector for an accessor method, precede the contents of the #selector
 expression with getter:
 or setter:
 . For example, #selector(setter:color)
 is "setHue:"
 if we have modified our color
 property’s Objective-C name with @objc(hue)
 (or "setColor:"
 if we have not).

If all you want to do is add functionality to the setter, use a setter observer. For example, to add functionality to the Objective-C setFrame:
 method in your UIView subclass, you can override the frame
 property and write a didSet
 observer:

class MyView: UIView {
 override var frame : CGRect {
 didSet {
 print("the frame setter was called: \(super.frame)")
 }
 }
}

Key–Value Coding

Cocoa can dynamically call an accessor method (or access an Objective-C instance variable) based on a string name specified at runtime, through a mechanism called key–value coding
 (KVC).
 The string name is the key
 ; what is passed or returned is the value
 . The basis for key–value coding is the NSKeyValueCoding protocol, an informal protocol; it is actually a category injected into NSObject. A Swift class, to be susceptible to key–value coding, must therefore be derived from NSObject.

The fundamental Cocoa key–value coding methods are value(forKey:)
 and setValue(_:forKey:)
 . When one of these methods is called on an object, the object is introspected.
 In simplified terms, first the appropriate accessor method is sought; if it doesn’t exist, the instance variable is accessed directly. Another useful pair of methods is dictionaryWithValues(forKeys:)
 and setValuesForKeys(_:)
 , which allow you to get and set multiple key–value pairs by way of a dictionary with a single command.

The value in key–value coding must be an Objective-C object, and is typed in Swift as Any. When calling value(forKey:)
 , you’ll receive an Optional wrapping an Any; you’ll want to cast this down safely to its expected type.

A class is key–value coding compliant
 (or KVC compliant
) on a given key if it provides the accessor methods, or possesses the instance variable, required for access through that key.
 An attempt to access a key for which a class is not
 key–value coding compliant will cause a crash at runtime. It is useful to be familiar with the message you’ll get when such a crash occurs, so let’s cause it deliberately:

let obj = NSObject()
obj.setValue("hello", forKey:"keyName") // crash

The console says: “This class is not key value coding-compliant for the key keyName.”
 The last word in that error message, despite the lack of quotes, is the key string that caused the trouble.

What would it take for that method call not
 to crash? The class of the object to which it is sent would need to have a setKeyName:
 setter method (or a keyName
 or _keyName
 instance variable). In Swift, as I demonstrated in the previous section, an instance property implies the existence of accessor methods. Thus, we can use Cocoa key–value coding on an instance of any NSObject subclass that has a declared property, provided the key string is the string name of that property. Let’s try it! Here is such a class:

class Dog : NSObject {
 @objc var name : String = ""
}

And here’s our test:

let d = Dog()
d.setValue("Fido", forKey:"name") // no crash!
print(d.name) // "Fido" - it worked!

Alternatively, it would be possible to use Swift’s key path mechanism (Chapter 5
):

d[keyPath:\Dog.name] = "Rover"

That is a completely different mechanism! A Swift KeyPath object cannot be magically transformed into an NSString, which is what Objective-C uses for its keys in key–value coding. Nonetheless, you might prefer to use the Swift mechanism where possible, because Objective-C’s value(forKey:)
 provides no type information, so that the result must be cast down, whereas a Swift KeyPath is strongly typed (because it is a generic, parameterized on the type of the corresponding property).

If you do need to use Cocoa key–value coding, you can get Swift to provide some measure of safety by using #keyPath
 notation. This is similar to #selector
 syntax (Chapter 2
): you’re asking Swift to form a string for you, and Swift will refuse to do so if the compiler can’t confirm that the key in question is legal. For example, earlier we crashed by saying this:

let obj = NSObject()
obj.setValue("hello", forKey:"keyName") // crash

But if we had used #keyPath
 notation, our code wouldn’t have crashed — because it wouldn’t even have compiled:

let obj = NSObject()
obj.setValue("howdy", forKey: #keyPath(NSObject.keyName)) // compile error

But this compiles, because Swift knows that Dog has a name
 property:

let d = Dog()
d.setValue("Fido", forKey:#keyPath(Dog.name))

Uses of Key–Value Coding

Cocoa key–value coding allows you, in effect, to decide at runtime, based on a string, what accessor to call. In the simplest case, you’re using a string to access a dynamically specified property. That’s useful in Objective-C code; but such unfettered introspective dynamism is contrary to the spirit of Swift, and in translating my own Objective-C code into Swift I have generally found myself accomplishing the same ends by other means.

Here’s an example. In a flashcard app, I have a class Term, representing a Latin word. It declares many properties. Each card displays one term, with its various properties shown in different labels. If the user taps any of three labels, I want the interface to change from the term that’s currently showing to the next term whose value is different for the particular property that this label represents. The code is therefore the same for all three labels; the only difference is which property
 to consider as we hunt for the next term to be displayed. In Objective-C, by far the simplest way to express this parallelism is through key–value coding:

NSInteger tag = g.view.tag; // the tag tells us which label was tapped
NSString* key = nil;
switch (tag) {
 case 1: key = @"lesson"; break;
 case 2: key = @"lessonSection"; break;
 case 3: key = @"lessonSectionPartFirstWord"; break;
}
// get current value of corresponding instance variable
NSString* curValue = [[self currentCardController].term valueForKey: key];

In Swift, however, it’s easy to implement the same dynamism using an array of anonymous functions:

let tag = g.view!.tag - 1
let arr : [(Term) -> String] = [
 {$0.lesson}, {$0.lessonSection}, {$0.lessonSectionPartFirstWord}
]
let f = arr[tag]
let curValue = f(self.currentCardController().term)

Nevertheless, key–value coding remains valuable in programming iOS, especially because a number of built-in Cocoa classes permit you to use it in special ways. For example:

	If you send value(forKey:)
 to an NSArray, it sends value(forKey:)
 to each of its elements and returns a new array consisting of the results, an elegant shorthand. NSSet behaves similarly.

	NSDictionary implements value(forKey:)
 as an alternative to object(forKey:)
 (useful particularly if you have an NSArray of dictionaries). Similarly, NSMutableDictionary treats setValue(_:forKey:)
 as a synonym for set(_:forKey:)
 , except that the first parameter can be nil
 , in which case removeObject(forKey:)
 is called.

	NSSortDescriptor sorts an NSArray by sending value(forKey:)
 to each of its elements. This makes it easy to sort an array of dictionaries on the value of a particular dictionary key, or an array of objects on the value of a particular property.

	NSManagedObject, used in conjunction with Core Data, is guaranteed to be key–value coding compliant for attributes you’ve configured in the entity model. Thus, it’s common to access those attributes with value(forKey:)
 and setValue(_:forKey:)
 .

	CALayer and CAAnimation permit you to use key–value coding to define and retrieve the values for arbitrary
 keys, as if they were a kind of dictionary; they are, in effect, key–value coding compliant for every key
 . This is extremely helpful for attaching identifying and configuration information to an instance of one of these classes. That, in fact, is my own most common way of using Cocoa key–value coding in Swift.

KVC and Outlets

Key–value coding lies at the heart of how outlet connections work (Chapter 7
). The name of the outlet in the nib is a string. It is key–value coding that turns the string into a hunt for a matching property at nib-loading time.

Suppose, for example, that you have a class Dog with an @IBOutlet
 property master
 typed as a Person, and you’ve drawn a "master"
 outlet from that class’s representative in the nib to a Person nib object. When the nib loads, the outlet name "master"
 is translated though key–value coding to the accessor method name setMaster:
 , and your Dog instance’s setMaster:
 implicit accessor method is called with the Person instance as its parameter — thus setting the value of your Dog instance’s master
 property to the Person instance (Figure 7-9
).

If something goes wrong with the match between the outlet name in the nib and the name of the property in the class, then at runtime, when the nib loads, Cocoa’s attempt to use key–value coding to set a value in your object based on the name of the outlet will fail, and will generate an exception, complaining that the class is not key–value coding compliant
 for the key (the outlet name) — that is, your app will crash at nib-loading time.
 A likely way for this to happen is that you formed the outlet correctly but then later changed the name of (or deleted) the property in the class (see “Misconfigured Outlets”
).

Key Paths

A Cocoa key path
 allows you to chain keys in a single expression. If an object is key–value coding compliant for a certain key, and if the value of that key is itself an object that is key–value coding compliant for another key, you can chain those keys by calling value(forKeyPath:)
 and setValue(_:forKeyPath:)
 . A key path string looks like a succession of key names joined using dot-notation. For example, valueForKeyPath("key1.key2")
 effectively calls value(forKey:)
 on the message receiver, with "key1"
 as the key, and then takes the object returned from that call and calls value(forKey:)
 on that object, with "key2"
 as the key.

To illustrate this shorthand, imagine that our object myObject
 , of class MyClass, has an instance property theData
 which is an array of dictionaries such that each dictionary has a name
 key and a description
 key:

@objc var theData = [
 [
 "description" : "The one with glasses.",
 "name" : "Manny"
],
 [
 "description" : "Looks a little like Governor Dewey.",
 "name" : "Moe"
],
 [
 "description" : "The one without a mustache.",
 "name" : "Jack"
]
]

We can use key–value coding with a key path to drill down into that array of dictionaries:

let arr = myObject.value(forKeyPath:"theData.name") as! [String]

The result is an array consisting of the strings "Manny"
 , "Moe"
 , and "Jack"
 . If you don’t see why, review what I said earlier about how NSArray and NSDictionary implement value(forKey:)
 .

Swift #keyPath
 syntax can chain property names with dot-notation, similar to a Cocoa key path. In that example, however, we could not have achieved the same result using Swift #keyPath
 syntax. The expression #keyPath(MyClass.theData.name)
 is structurally legal, but it won’t compile. The Swift compiler knows that a MyClass has a property theData
 that’s an array of dictionaries, but it does not know that every dictionary has a "name"
 key. Thus, you are compelled to pass a string as your key path, and hope that the string is correct. If, on the other hand, theData
 were typed as an array of Dog, that expression would be legal, because Dog has a name
 property.

Array Accessors

Cocoa key–value coding is a powerful technology with many additional ramifications. (See Apple’s Key-Value Coding Programming Guide
 for full information.) I’ll illustrate just one of them. Key–value coding allows an object to synthesize a key whose value appears to be an array (or a set), even if it isn’t.
 You implement specially named accessor methods; key–value coding sees them when you try to use the corresponding key.

To illustrate, I’ll add these methods to MyClass, the class of our object myObject
 :

@objc func countOfPepBoys() -> Int {
 return self.theData.count
}
@objc func objectInPepBoysAtIndex(_ ix:Int) -> Any {
 return self.theData[ix]
}

By implementing countOf...
 and objectIn...AtIndex
 , I’m telling the key–value coding system to act as if the given key — "pepBoys"
 , in this case — exists and is an array. An attempt to fetch the value of the key "pepBoys"
 by way of key–value coding will succeed, and will return an object that can be treated as an NSArray, though in fact it is a proxy object (an NSKeyValueArray). Thus we can now say things like this:

let arr = myObject.value(forKey:"pepBoys")!
let arr2 = myObject.value(forKeyPath:"pepBoys.name")!

In that code, arr
 is the array proxy, and arr2
 is the same array of the names of the three Pep Boys as before. The example seems pointless: the underlying implementation is already
 an array, so how does saying "pepBoys"
 here differ from saying "theData"
 , as we did before? It doesn’t. But it could! Imagine that there is no simple actual array — that the result of countOfPepBoys
 and objectInPepBoysAtIndex(_:)
 is obtained through some completely different sort of operation. In effect, we have created a key that acts as an NSArray façade; we could have anything at all behind it.

The Secret Life of NSObject

Because every Objective-C class inherits from NSObject, it’s worth taking some time to explore NSObject. NSObject is constructed in a rather elaborate way:

	It defines some native class methods and instance methods having mostly to do with the basics of instantiation and of method sending and resolution.

	It adopts the NSObject protocol. This protocol declares instance methods having mostly to do with memory management, the relationship between an instance and its class, and introspection. Because all the NSObject protocol methods are required, the NSObject class implements them all. In Swift, the NSObject protocol is called NSObjectProtocol, to avoid name clash.

	It implements convenience methods related to the NSCopying, NSMutableCopying, and NSCoding protocols, without formally adopting those protocols. NSObject intentionally doesn’t adopt these protocols because this would cause all other classes to adopt them, which would be wrong. But thanks to this architecture, if a class does
 adopt one of these protocols, you can call the corresponding convenience method. For example, NSObject implements the copy
 instance method, so you can call copy
 on any instance, but you’ll crash unless the instance’s
 class also adopts the NSCopying protocol and implements copy(with:)
 .

	A large number of methods are injected into NSObject by more than two dozen categories on NSObject, scattered among various header files. For example, awakeFromNib
 (see Chapter 7
) comes from the UINibLoadingAdditions category on NSObject, declared in UINibLoading.h
 .

	A class object is an object. Therefore all Objective-C classes, which are objects of type Class, inherit from NSObject. Therefore, any instance method of NSObject can be called on a class object as a class method!
 For example, responds(to:)
 is defined as an instance method by the NSObject protocol, but it can (therefore) be treated also as a class method and sent to a class object.

Taken as a whole, the NSObject methods may be considered under the following rough classification:

Creation, destruction, and memory management

Methods for creating an instance, such as alloc
 and copy
 , along with methods for learning when something is happening in the lifetime of an object, such as initialize
 and dealloc
 , plus methods that manage memory.

Class relationships

Methods for learning an object’s class and inheritance, such as superclass
 , isKind(of:)
 , and isMember(of:)
 .

Object introspection and comparison

Methods for asking what would happen if an object were sent a certain message, such as responds(to:)
 , for representing an object as a string (description
), and for comparing objects (isEqual(_:)
).

Message response

Methods for meddling with what does happen when an object is sent a certain message, such as doesNotRecognizeSelector(_:)
 . If you’re curious, see the Objective-C Runtime Programming Guide
 .

Message sending

Methods for sending a message dynamically. For example, perform(_:)
 takes a selector as parameter, and sending it to an object tells that object to perform that selector. This might seem identical to just sending that message to that object, but what if you don’t know what message to send until runtime? Moreover, variants on perform
 allow you to send a message on a specified thread, or send a message after a certain amount of time has passed (perform(_:with:afterDelay:)
 and similar).

Chapter 11.
 Cocoa Events

All of your app’s executable code lies in its functions. The impetus for a function being called must come from somewhere. One of your functions may call another, but who will call the first function in the first place? How, ultimately, will any
 of your code ever
 run?

After your app has completely finished launching, none
 of your code runs. UIApplicationMain
 just sits and loops — the event loop
 — waiting for something to happen. In general, the user needs to do
 something, such as touching the screen, or switching away from your app. When something does happen, the runtime detects it and informs your app, and Cocoa can call your code.

But Cocoa can call your code only if your code is there to be called. Your code is like a panel of buttons, waiting for Cocoa to press one. If something happens that Cocoa feels your code needs to know about and respond to, it presses the right button — if the right button is there. To put it another way, Cocoa wants to send your code a message, but your code must have ears to hear.

The art of Cocoa programming lies in knowing what
 messages Cocoa would like to send your app. You organize your code, right from the start, with those messages in mind. Cocoa makes certain promises about how and when it will dispatch messages to your code. These are Cocoa’s events
 . Your job is to know what those events are and how they will arrive; armed with that knowledge, you can arrange for your code to respond to them.

The specific events that you can receive are listed in the documentation. The overall architecture of how and when events are dispatched and the ways in which your code arranges to receive them is the subject of this chapter.

Reasons for Events

Broadly speaking, the reasons you might receive an event may be divided informally into four categories. These categories are not official; I made them up. Often it isn’t completely clear which of these categories an event fits into. But they are still generally useful for visualizing how and why Cocoa interacts with your code:

User events

The user does something interactive, and an event is triggered directly. Obvious examples are events that you get when the user taps or swipes the screen, or types a key on the keyboard.

Lifetime events

These are events notifying you of the arrival of a stage in the life of the app, such as the fact that the app is starting up or is about to go into the background, or of a component of the app, such as the fact that a UIViewController’s view has just loaded or is about to be removed from the screen.

Functional events

Cocoa is about to do something, and turns to you in case you want to supply additional functionality. I would put into this category UIView’s draw(_:)
 (your chance to have a view draw itself) and UILabel’s drawText(in:)
 (your chance to modify the look of a label), with which we experimented in Chapter 10
 .

Query events

Cocoa turns to you to ask a question; its behavior will depend upon your answer. For example, the way data appears in a table (a UITableView) is that whenever Cocoa needs a cell for a row of the table, it turns to you and asks for the cell.

Subclassing

A built-in Cocoa class may define methods that Cocoa itself will call if you override them in a subclass, so that your custom behavior, and not (merely) the default behavior, will take place.

An example I gave in Chapter 10
 was UIView’s draw(_:)
 . This is what I call a functional event. By overriding draw(_:)
 in a UIView subclass, you dictate the full procedure by which a view draws itself. You don’t know exactly when this method will be called, and you don’t care; when it is, you draw, and this guarantees that the view will always appear the way you want it to. (You never
 call draw(_:)
 yourself; if some underlying condition has changed and you want the view to be redrawn, you call setNeedsDisplay
 and let Cocoa call draw(_:)
 in response.)

Built-in UIView subclasses may have other functional event methods you’ll want to customize through subclassing. Typically this will be in order to change the way the view is drawn, without taking command of the entire drawing procedure yourself. In Chapter 10
 I gave an example involving UILabel and its drawText(in:)
 . A similar case is UISlider, which lets you customize the position and size of the slider’s “thumb” by overriding thumbRect(forBounds:trackRect:value:)
 .

UIViewController is a class meant for subclassing. Of the methods listed in the UIViewController class documentation, just about all are methods you might have reason to override. If you create a UIViewController subclass in Xcode, you’ll see that the template already includes a couple of method overrides to get you started. For example, viewDidLoad
 is called to let you know that your view controller has obtained its main view (its view
), so that you can perform initializations; it’s an obvious example of a lifetime event. And UIViewController has many other lifetime events that you can and will override in order to get fine control over what happens when. For example, viewWillAppear
 means that your view controller’s view is about to be placed into the interface; viewDidAppear
 means that your view controller’s view has
 been placed into the interface; viewDidLayoutSubviews
 means that your view has been positioned within its superview; and so on.

What you override in order to receive an event may be the getter of a computed property, rather than a method. A case in point is UIViewController’s supportedInterfaceOrientations
 . This is a property that you’ll override as a computed variable, to receive what I call a query event. Your job is to return a bitmask (“Option sets”
) telling Cocoa what orientations your view can appear in at this moment — whenever that may be. You trust Cocoa to call this method at the appropriate moments, so that if the user rotates the device, your app’s interface will or won’t be rotated to compensate, depending on what value you return.

When you’re looking for events that you can receive through subclassing, be sure to look upward though the inheritance hierarchy. For example, if you’re wondering how to be notified when your custom UILabel subclass is embedded into another view, you won’t find the answer in the UILabel class documentation; a UILabel receives the appropriate event by virtue of being a UIView. In the UIView class documentation, you’ll learn that you can override didMoveToSuperview
 to be informed when this happens. By the same token, look upward through adopted protocols as well. If you’re wondering how to be notified when your view controller’s view is about to undergo app rotation, you won’t find out by looking in the UIViewController class documentation; a UIViewController receives the appropriate event by virtue of adopting the UIContentContainer protocol. In the UIContentContainer protocol documentation, you’ll learn that you can override viewWillTransition(to:with:)
 .

Nevertheless, as I said in Chapter 10
 , subclassing and overriding is far from being the most important or common way of arranging to receive events. Aside from UIViewController, it is hard to think of any
 built-in Cocoa class that you will regularly
 subclass for this purpose. The majority of your communication from Cocoa will be through other means.

Notifications

Cocoa provides your app with a single NotificationCenter
 instance (Objective-C NSNotificationCenter), available as NotificationCenter.default
 . This instance, the notification center
 , is the basis of a mechanism for sending messages called notifications
 . A notification is a Notification
 instance (Objective-C NSNotification). The idea is that any object can be registered with the notification center to receive certain notifications. Another object can hand the notification center a notification to send out; this is called posting
 the notification. The notification center will then send that notification to all objects that are registered to receive it.

Cocoa itself posts notifications through the notification center, and your code can register to receive them. Thus, notifications are a way of receiving events from Cocoa. You’ll find a separate Notifications section in the documentation for a class that provides them.

You may also want to post notifications yourself, as a way of communicating with your own code. The notification mechanism is often described as a dispatching or broadcasting mechanism, and with good reason. It lets an object send a message without knowing or caring what object or how many objects receive it. This relieves your app’s architecture from the formal responsibility of somehow hooking up instances just so a message can pass from one to the other (which can sometimes be quite tricky or onerous, as discussed in Chapter 13
). When objects are conceptually “distant” from one another, notifications can be a fairly lightweight way of permitting one to message the other.

A Notification instance has three pieces of information associated with it, which can be retrieved through properties:

name

A string which identifies the notification’s meaning. This string is typed as a Notification.Name
 , a struct adopting RawRepresentable with a String rawValue
 . Built-in Cocoa notification names are vended as static Notification.Name
 properties of this struct. In this way,
 notification name constants are all namespaced inside Notification.Name
 , and can be referred to using dot-notation. I’ll show examples in a moment.

object

An instance associated with the notification; typically, the instance that posted it.

userInfo

An Optional dictionary; if not nil
 , it contains additional information associated with the notification. What information it will contain, and under what keys, depends on the particular notification; you have to consult the documentation. For example, the documentation tells us that UIApplication’s UIApplicationDidChangeStatusBarOrientation
 notification includes a userInfo
 dictionary with a key UIApplicationStatusBarOrientationUserInfoKey
 whose value is the status bar’s previous orientation. When you post a notification
 yourself, you can put anything you like into the userInfo
 for the notification’s recipient(s) to retrieve.

Receiving a Notification

To register to receive a notification, you send one of two messages to the notification center. One is addObserver(_:selector:name:object:)
 . The parameters are as follows:

observer:

The instance to which the notification is to be sent. This will typically be self
 ; it would be quite unusual for one instance to register a different instance as the receiver of a notification.

selector:

The message to be sent to the observer instance when the notification occurs. The designated method should should take one parameter, which will be the Notification instance. The selector must specify correctly a method that is exposed to Objective-C; Swift’s #selector
 syntax will help you with that (see Chapter 2
).

name:

The name
 of the notification you’d like to receive. If this parameter is nil
 , you’re asking to receive all
 notifications associated with the object designated in the object:
 parameter.

object:

The object
 of the notification you’re interested in, which will usually be the object that posted it. If this is nil
 , you’re asking to receive all
 notifications with the name designated in the name:
 parameter. (If both the name:
 and object:
 parameters are nil
 , you’re asking to receive all notifications!)

For example, in one of my apps I want to change the interface whenever the device’s built-in music player starts playing a different song. The API for the music player belongs to the MPMusicPlayerController class; this class provides a notification to tell me when the music player changes what song is being played, listed under Notifications in the MPMusicPlayerController class documentation as MPMusicPlayerControllerNowPlayingItemDidChange
 .

It turns out, looking at the documentation, that this notification won’t be posted at all unless
 I first call MPMusicPlayerController’s beginGeneratingPlaybackNotifications
 instance method. This architecture is not uncommon; Cocoa saves itself some time and effort by not sending out certain notifications unless they are switched on, as it were. So my first job is to get an instance of MPMusicPlayerController and call this method:

let mp = MPMusicPlayerController.systemMusicPlayer
mp.beginGeneratingPlaybackNotifications()

Now I register myself to receive the desired playback notification:

NotificationCenter.default.addObserver(self,
 selector: #selector(nowPlayingItemChanged),
 name: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil)

(As I mentioned earlier, I can refer to the notification name using dot-notation. There is no need for me to specify explicitly that this is a Notification.Name
 , as Swift already knows that.)

As a result, whenever an MPMusicPlayerControllerNowPlayingItemDidChange
 notification is posted, my nowPlayingItemChanged
 method will be called. Note that this method must be marked @objc
 so that Objective-C can see it (the Swift compiler will help out by ensuring this when you use #selector
 syntax):

@objc func nowPlayingItemChanged (_ n:Notification) {
 self.updateNowPlayingItem()
 // ... and so on ...
}

Heavy use of addObserver(_:selector:name:object:)
 means that your code ends up peppered with methods that exist solely in order to be called by the notification center. There is nothing about these methods that tells you what they are for — you may want to use explicit comments in order to remind yourself — and the methods are separate from the registration call, which can make your code rather confusing.

This problem is solved by using the other
 way of registering to receive a notification — by calling addObserver(forName:object:queue:using:)
 . It returns a value, whose purpose I’ll explain in a moment. The queue:
 will usually be nil
 ; a non-nil
 queue:
 is for background threading. The name:
 and object:
 parameters are just like those of addObserver(_:selector:name:object:)
 . Instead of an observer and a selector, however, you provide a Swift function consisting of the actual code to be executed when the notification arrives. This function should take one parameter — the Notification itself. You can use an anonymous function so that your response to the notification becomes part of the registration:

let ob = NotificationCenter.default.addObserver(
 forName: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil, queue: nil) { _ in
 self.updateNowPlayingItem()
 // ... and so on ...
 }

Warning

Use of addObserver(forName:...)
 can involve you in some memory management complications that I’ll talk about in Chapter 12
 .

Unregistering

An object that you register as a recipient of a notification needs eventually to be unregistered so that the notification center will stop sending messages to it. This might be merely because the registered object no longer needs to hear about this notification. But there is also a more important reaon: the registered object may eventually go out of existence.

In the old days, if you failed to unregister an object as a notification recipient and that object went out of existence, your app would crash the next time the notification was sent — because the runtime was trying to send a message to an object that was now missing in action. That is no longer the case; in iOS 9, Apple introduced a safety check, so that if the notification center tries to send a message to a nonexistent object, there is no crash, and the notification center unregisters the object for you.

You cannot, however, completely neglect the business of unregistering. In particular, if you called addObserver(forName:object:queue:using:)
 , an observer token object was returned. This object, even if you ignore it, is kept alive by the notification center. The notification center can thus continue to send notifications to this object, and the function you supplied will be called. So you can have a memory leak at best (I’ll talk more about that in Chapter 12
) and chaos at worst.

To unregister an object as a recipient of notifications, call the notification center’s removeObserver(_:)
 method. Alternatively, you can unregister an object for just a specific set of notifications with removeObserver(_:name:object:)
 . The object passed as the first argument is the object that is no longer to receive notifications. What object that is depends on how you registered in the first place:

You called addObserver(_:selector:name:object:)

You supplied
 an observer originally; that is the observer you will now unregister. This will typically be self
 .

You called addObserver(forName:object:queue:using:)

The call returned
 an observer token object typed as an NSObjectProtocol (its real class and nature are undocumented); that is the observer you will now unregister.

In order to unregister an object, then, you need a reference to that object. That means you cannot
 ignore the observer token returned by addObserver(forName:object:queue:using:)
 ; you need to keep a reference to it, so that you can unregister it. And you need an appropriate event that will serve as the right moment to unregister.

If you’re calling addObserver(forName:object:queue:using:)
 multiple times from the same class, you’re going to end up receiving from the notification center multiple observer tokens, which you need to preserve so that you can unregister all of them later. If your plan is to unregister everything at once, one way to handle this situation is through an instance property that is a mutable collection. My favored approach is a Set property:

var observers = Set<NSObject>()

Each time I register for a notification by calling addObserver(forName:object:queue:using:)
 , I capture the result and add it to the set:

let ob = NotificationCenter.default.addObserver(
 forName: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: nil, queue: nil) { _ in
 self.updateNowPlayingItem()
 // ... and so on ...
 }
self.observers.insert(ob as! NSObject)

When it’s time to unregister, I enumerate the set and empty it:

for ob in self.observers {
 NotificationCenter.default.removeObserver(ob)
}
self.observers.removeAll()

Tip

You can introspect the notification center while paused in the debugger; type po NotificationCenter.default
 to see a list of registered notifications, with the name, object, recipient, and options for each. The object and recipient are listed as memory addresses, but you can learn more from such an address by typing expr -l objc -O --
 followed by the address.

Posting a Notification

Although you’ll be interested mostly in receiving notifications from Cocoa, you can, as I mentioned earlier, take advantage of the notification mechanism as a way of communicating between your own objects. One reason for doing this might be that two objects are conceptually distant or independent from one another. You should probably avoid using notifications merely to compensate for a failure to devise proper lines of communication between objects, but they are certainly appropriate in some circumstances. (I’ll raise this point again in Chapter 13
 .)

To use notifications in this way, your objects must play both roles in the communication chain. One of your objects (or more than one) will register to receive a notification, identified by name or object or both, as I’ve already described. Another of your objects will post a notification, identified in the same way. The notification center will then pass the message along from the poster to the registered recipient(s).

To post a notification, send to the notification center the message post(name:object:userInfo:)
 . You are defining the name:
 yourself, so you’ll have to coerce a string into a Notification.Name
 . There are two main places to do this:

In the name:
 argument

You perform the coercion directly in the method call. This is an easy approach, but it’s error-prone: you’ll need to perform the same coercion twice, both to post the notification and to register to receive it, and the repeated string literal is an invitation to make a typing mistake and have things mysteriously go wrong.

In a Notification.Name
 extension

You define a namespaced constant, and you use that constant both when posting the notification and when registering for it. This approach localizes the coercion in a single place; it’s a little more work than the first approach, but it’s the correct approach, and you should use it.

For example, one of my apps is a simple card game. The game needs to know when a card is tapped. But a card knows nothing about the game; when it is tapped, it simply emits a virtual shriek by posting a notification. I’ve defined my notification name by extending Notification.Name
 :

extension Notification.Name {
 static let cardTapped = Notification.Name("cardTapped")
}

When a card is tapped, I respond like this:

NotificationCenter.default.post(name: .cardTapped, object: self)

The game object has registered for the .cardTapped
 notification, so it hears about this and retrieves the notification’s object
 ; now it knows what card was tapped and can proceed correctly.

Timer

A Timer (Objective-C NSTimer) is not, strictly speaking, a notification; but it behaves very similarly.
 It is an object that gives off a signal (fires
) after the lapse of a certain time interval. The signal is a message to one of your instances. Thus you can arrange to be notified when a certain time has elapsed. The timing is not perfectly accurate, but it’s pretty good.

Timer management is not exactly tricky, but it is a little unusual. A timer that is actively watching the clock is said to be scheduled
 . A timer may fire once, or it may be a repeating
 timer. To make a timer go out of existence, it must be invalidated
 . A timer that is set to fire once is invalidated automatically after it fires; a repeating timer repeats until you
 invalidate it by sending it the invalidate
 message. An invalidated timer should be regarded as off-limits: you cannot revive it or use it for anything further, and you should probably not send any messages to it.

For example, one of my apps is a game with a score; I want to penalize the user, by diminishing the score, for every ten seconds that elapses after each move without the user making a further move. So each time the user makes a move, I create and schedule a repeating timer whose time interval is ten seconds (after invalidating any existing timer); in the method that the timer calls, I diminish the score.

The straightforward way to create a timer is with one of two scheduledTimer
 class methods. These methods both create the timer and schedule it, so that the timer begins watching the clock immediately:

scheduledTimer(timeInterval:target:selector:userInfo:repeats:)

The target:
 and selector:
 determine what message will be sent to what object when the timer fires; the method in question should take one parameter, which will be a reference to the timer. The userInfo:
 is just like the userInfo:
 of a notification.

scheduledTimer(withTimeInterval:repeats:block:)

You provide a function to be called when the timer fires; the function should take one parameter, which will be a reference to the timer.

A repeating Timer is often maintained as an instance property, so that you can invalidate it later on. However, you should not
 call scheduledTimer(timeInterval:target:selector:userInfo:repeats:)
 as the initializer in the declaration of a Timer instance property! You can crash at runtime, when the Timer tries to send a message to an object that has not yet been fully instantiated. Instead, declare the property as an Optional wrapping a Timer, and schedule the Timer in an instance method such as viewDidLoad
 .

A Timer has a tolerance
 property, which is a time interval signifying how long after the timer would
 fire you’re willing to grant before it really does
 fire. The documentation suggests that you can improve device battery life and app responsiveness by supplying a value of at least 10 percent of the timeInterval
 .

Warning

Timers have some memory management implications that I’ll discuss in Chapter 12
 .

Delegation

Delegation
 is an object-oriented design pattern, a relationship between two objects, in which a primary object’s behavior is customized or assisted by a secondary object. The secondary object is the primary object’s delegate
 .
 No subclassing is involved, and indeed the primary object is agnostic about the delegate’s class.

As implemented by Cocoa, here’s how delegation works. A built-in Cocoa class has an instance property, usually called delegate
 (it will certainly have delegate
 in its name). For some instance of that Cocoa class, you set the value of this property to an instance of one of your
 classes. At certain moments in its activity, the Cocoa class promises to turn to its delegate for instructions by sending it a certain message: if the Cocoa instance finds that its delegate is not nil
 , and that its delegate is prepared to receive that message, the Cocoa instance sends the message to the delegate, thus giving your class, functioning as the delegate, a chance to determine the Cocoa instance’s behavior.

Delegation is one of Cocoa’s main uses of protocols (Chapter 10
). In the old days, delegate methods were listed in the Cocoa class’s documentation, and their names were made known to the compiler through an informal protocol (a category on NSObject). Nowadays, a class’s delegate methods are usually listed in a genuine protocol with its own documentation. There are over 70 Cocoa delegate protocols, showing how heavily Cocoa relies on delegation. Most delegate methods are optional, but in a few cases you’ll discover some that are required.

Cocoa Delegation

To customize a Cocoa instance’s behavior through delegation, you start with one of your classes, which adopts the relevant delegate protocol. When the app runs, you set the Cocoa instance’s delegate
 property (or whatever its name is) to an instance of your class. You might do this in code; alternatively, you might do it in a nib, by connecting an instance’s delegate
 outlet (or whatever it’s called) to an appropriate instance that is to serve as delegate. Your delegate class will probably do other things besides serving as this instance’s delegate. Indeed, one of the nice things about delegation is that it leaves you free to slot delegate code into your class architecture however you like; the delegate type is a protocol, so the actual delegate can be an instance of any
 class.

In this simple example, I want to ensure that my app’s root view controller, a UINavigationController, doesn’t permit the app to rotate — the app should appear only in portrait orientation when this view controller is in charge. But UINavigationController isn’t my class; it belongs to Cocoa. My own class is a different
 view controller, a UIViewController subclass, which acts as the UINavigationController’s child. How can the child tell the parent how to rotate? Well, UINavigationController has a delegate
 property, typed as UINavigationControllerDelegate (a protocol). It promises to send this delegate the navigationControllerSupportedInterfaceOrientations(_:)
 message when it needs to know how to rotate. So my view controller, in response to a very early lifetime event, sets itself as the UINavigationController’s delegate. It also implements the navigationControllerSupportedInterfaceOrientations(_:)
 method. Presto, the problem is solved:

class ViewController : UIViewController, UINavigationControllerDelegate {
 override func viewDidLoad() {
 super.viewDidLoad()
 self.navigationController?.delegate = self
 }
 func navigationControllerSupportedInterfaceOrientations(
 _ nav: UINavigationController) -> UIInterfaceOrientationMask {
 return .portrait
 }
}

An app’s shared application instance, UIApplication.shared
 , has a delegate that serves such an important role in the life of the app that the Xcode app templates automatically supply one — a class called AppDelegate. I described in Chapter 6
 how an app gets started by calling UIApplicationMain
 , which instantiates the AppDelegate class and makes that instance the delegate of the shared application instance (which it has also created). As I pointed out in Chapter 10
 , AppDelegate formally adopts the UIApplicationDelegate protocol, signifying that it is ready to serve in this role; responds(to:)
 is then sent to the app delegate to see what UIApplicationDelegate protocol methods it implements. Thereafter, the application delegate instance is sent messages letting it know of major events in the lifetime of the app. That is why the UIApplicationDelegate protocol method application(_:didFinishLaunchingWithOptions:)
 is so important; it is one of the earliest opportunities for your
 code to run.

Tip

The UIApplication delegate methods are also provided as notifications.
 This lets an instance other than the app delegate hear conveniently about application lifetime events, by registering for them. A few other classes provide duplicate events similarly; for example, UITableView’s tableView(_:didSelectRowAt:)
 delegate method is matched by a notification UITableViewSelectionDidChange
 .

By convention, many Cocoa delegate method names contain the modal verbs should
 , will
 , or did
 . A will
 message is sent to the delegate just before something happens; a did
 message is sent to the delegate just after something happens. A should
 method is special: it returns a Bool, and you are expected to respond with true
 to permit something or false
 to prevent it.
 The documentation tells you what the default response is; you don’t have to implement a should
 method if the default response is always acceptable.

In many cases, a property will control some overall behavior, while a delegate method lets you modify that behavior based on circumstances at runtime. For example, whether the user can tap the status bar to make a scroll view scroll quickly to the top is governed by the scroll view’s scrollsToTop
 property; but even if this property’s value is true
 , you can prevent this behavior for a particular
 tap by returning false
 from the scroll view delegate’s scrollViewShouldScrollToTop(_:)
 .

When you’re searching the documentation for how you can be notified of a certain event, be sure to consult the corresponding delegate protocol, if there is one. For example, you’d like to know when the user taps in a UITextField to start editing it. You won’t find anything relevant in the UITextField class documentation; what you’re after is textFieldDidBeginEditing(_:)
 in the UITextFieldDelegate protocol.

Implementing Delegation

The Cocoa pattern of a delegate whose responsibilities are described by a protocol is one that you will want to imitate in your own code. Setting up this pattern takes some practice, and can be a little time-consuming, but it is often the correct approach, because it appropriately assigns knowledge and responsibility to the various objects involved.

Consider an actual case. In one of my apps I present a view controller, a UIViewController subclass called ColorPickerController, whose view contains three sliders that the user can move to choose a color. When the user taps Done or Cancel, the view should be dismissed; but first, the code that presented this view needs to hear about what color the user chose. So I need to send a message from the ColorPickerController instance back to the instance that presented it
 .

Here is the declaration for the message that I want the ColorPickerController to send before it goes out of existence:

func colorPicker (_ picker:ColorPickerController,
 didSetColorNamed theName:String?,
 to theColor:UIColor?)

The question is: where and how should this method be declared?

Now, it happens that in my app I know the class of the instance that will in fact present the ColorPickerController: it is a SettingsController. So I could simply declare this method in SettingsController and stop. But that would mean that the ColorPickerController, in order to send this message to the SettingsController, must know
 that the instance that presented it is
 a SettingsController. Surely it is a mere contingent
 fact that the instance being sent this message is a SettingsController; it should be open to any
 class to present and dismiss a ColorPickerController, and thus to be eligible to receive this message.

Therefore we want ColorPickerController itself
 to declare the method that it itself is going to call
 ; and we want it to send the message blindly to some receiver, without regard to the class of that receiver. That’s what a protocol is for! The solution, then, is for ColorPickerController to define a protocol, with this method as part of that protocol, and for the class that presents a ColorPickerController to conform to that protocol. ColorPickerController also has an appropriately typed delegate
 property; this provides the channel of communication, and tells the compiler that sending this message is legal:

protocol ColorPickerDelegate : class {
 // color == nil on cancel
 func colorPicker (_ picker:ColorPickerController,
 didSetColorNamed theName:String?,
 to theColor:UIColor?)
}
class ColorPickerController : UIViewController {
 weak var delegate: ColorPickerDelegate?
 // ...
}

(For the weak
 attribute and the class
 designation, see Chapter 5
 .) When my SettingsController instance creates and configures a ColorPickerController instance, it also sets itself as that ColorPickerController’s delegate
 — which it can do, because it adopts the protocol:

extension SettingsController : ColorPickerDelegate {
 func showColorPicker() {
 let colorName = // ...
 let c = // ...
 let cpc = ColorPickerController(colorName:colorName, color:c)
 cpc.delegate = self
 self.present(cpc, animated: true)
 }
 func colorPicker (_ picker:ColorPickerController,
 didSetColorNamed theName:String?,
 to theColor:UIColor?) {
 // ...
 }
}

Now, when the user picks a color, the ColorPickerController knows
 to whom it should send colorPicker:didSetColorNamed:to:
 — namely, its delegate! And the compiler allows this, because the delegate has adopted the ColorPickerDelegate protocol:

@IBAction func dismissColorPicker(_ sender : Any?) { // user tapped Done
 let c : UIColor? = self.color
 self.delegate?.colorPicker(self, didSetColorNamed: self.colorName, to: c)
}

Data Sources

A data source
 is like a delegate, except that its methods supply the data for another object to display.
 The chief Cocoa classes with data sources are UITableView, UICollectionView, UIPickerView, and UIPageViewController. In each case, the data source must formally adopt a data source protocol with required methods.

It comes as a surprise to some beginners that a data source is necessary at all. Why isn’t a table’s data just a property of the table? The reason is that such an architecture would violate generality. Use of a data source separates the object that displays the data from the object that manages the data, and leaves the latter free to store and obtain that data however it likes (see on model–view–controller in Chapter 13
). The only requirement is that the data source must be able to supply information quickly, because it will be asked for it in real time when the data needs displaying.

Another surprise is that the data source is different from the delegate. But this again is only for generality; it’s an option, not a requirement. There is no reason why the data source and the delegate should not be the same object, and most of the time they probably will be. Indeed, in most cases, data source methods and delegate methods will work closely together; you won’t even be conscious of the distinction.

In this example from one of my apps, I implement a UIPickerView
 that allows the user to configure a game by saying how many stages it should consist of (“1 Stage,” “2 Stages,” and so on). The first two methods are UIPickerView data source methods; the third method is a UIPickerView delegate method. It takes all three methods to supply the picker view’s content:

extension NewGameController: UIPickerViewDataSource, UIPickerViewDelegate {
 func numberOfComponents(in pickerView: UIPickerView) -> Int {
 return 1
 }
 func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {
 return 9
 }
 func pickerView(_ pickerView: UIPickerView,
 titleForRow row: Int, forComponent component: Int) -> String? {
 return "\(row+1) Stage" + (row > 0 ? "s" : "")
 }
}

Actions

An action
 is a message emitted by an instance of a UIControl subclass (a control
) reporting a significant user event taking place in that control. The UIControl
 subclasses are all simple interface objects that the user can interact with directly, such as a button (UIButton) or a segmented control (UISegmentedControl).

The significant user events (control events
) are listed under UIControlEvents in the Constants section of the UIControl class documentation.
 Different controls implement different control events: for example, a segmented control’s Value Changed event signifies that the user has tapped to select a different segment, but a button’s Touch Up Inside event signifies that the user has tapped the button. Of itself, a control event has no external effect; the control responds visually (for example, a tapped button looks tapped), but it doesn’t automatically share the information that the event has taken place. If you want to know when a control event takes place, so that you can respond to it in your code, you
 must arrange for that control event to trigger an action message
 .

Here’s how it works. A control maintains an internal dispatch table
 : for each control event, there can be any number of target–action pairs, in each of which the action
 is a message selector (the name of a method) and the target
 is the object to which that message is to be sent.

 When a control event occurs, the control consults its dispatch table, finds all the target–action pairs associated with that control event, and sends each action message to the corresponding target (Figure 11-1
).

[image: ios8 1101]

Figure 11-1.
 The target–action architecture

There are two ways to manipulate a control’s action dispatch table:

Action connection

You can configure an action connection in a nib. I described in Chapter 7
 how to do this, but I didn’t completely explain the underlying mechanism. Now all is revealed: an action connection formed in the nib editor is a visual way of configuring a control’s action dispatch table.

Code

You can use code to operate directly on the control’s action dispatch table. The key method here is the UIControl instance method addTarget(_:action:for:)
 , where the target:
 is an object, the action:
 is a selector, and the for:
 parameter is a UIControlEvents bitmask (“Option sets”
). Unlike a notification center, a control also has methods for introspecting the dispatch table.

Recall the example of a control and its action from Chapter 7
 . We have a buttonPressed(_:)
 method:

@IBAction func buttonPressed(_ sender: Any) {
 let alert = UIAlertController(
 title: "Howdy!", message: "You tapped me!", preferredStyle: .alert)
 alert.addAction(
 UIAlertAction(title: "OK", style: .cancel))
 self.present(alert, animated: true)
}

This sort of method is an action handler
 . Its purpose is to be called when the user taps a certain button in the interface. In Chapter 7
 , we arranged for that to happen by setting up an action connection in the nib: we connected the button’s Touch Up Inside event to the ViewController buttonPressed(_:)
 method. In reality, we were forming a target–action pair and adding that target–action pair to the button’s dispatch table for the Touch Up Inside control event.

Instead of making that arrangement in the nib, we could have done the same thing in code. Suppose we had never
 drawn that action connection. And suppose that, instead, we have an outlet connection from the view controller to the button, called self.button
 . Then the view controller, after the nib loads, can configure the button’s dispatch table like this:

self.button.addTarget(self,
 action: #selector(buttonPressed),
 for: .touchUpInside)

Warning

A control event can have multiple target–action pairs. You might configure it this way intentionally, but it is also possible to do so accidentally. Unintentionally giving a control event a target–action pair without removing its existing
 target-action pair is an easy mistake to make, and can cause some very mysterious behavior. For example, if we had formed an action connection in the nib and
 configured the dispatch table in code, a tap on the button would cause buttonPressed(_:)
 to be called twice
 .

The signature for the action selector can be in any of three forms:

	The fullest form takes two parameters:
	The control.

	The UIEvent that generated the control event.

	A shorter form, the one most commonly used, omits the second parameter. buttonPressed(_:)
 is an example; it takes one parameter. When buttonPressed(_:)
 is called through an action message emanating from the button, its parameter will be a reference to the button.

	There is a still shorter form that omits both parameters.

What is the UIEvent, and what is it for? Well, a touch event
 is generated whenever the user does something with a finger (sets it down on the screen, moves it, raises it from the screen). UIEvents are the lowest-level objects charged with communication of touch events to your app. A UIEvent is basically a timestamp (a Double) along with a collection (Set) of touch events (UITouch). The action mechanism deliberately shields you from the complexities of touch events, but by electing to receive the UIEvent
 , you can still deal with those complexities if you want to.

Warning

Curiously, none of the action selector parameters provide any way to learn which
 control event triggered the current action selector call! Thus, for example, to distinguish a Touch Up Inside control event from a Touch Up Outside control event, their corresponding target–action pairs must specify two different action handlers; if you dispatch them to the same action handler, that handler cannot discover which control event occurred.

The Responder Chain

A responder
 is an object that knows how to receive UIEvents directly (see the previous section).
 It knows this because it is an instance of UIResponder
 or a UIResponder subclass. If you examine the Cocoa class hierarchy, you’ll find that just about any class that has anything to do with display on the screen is a responder. A UIView is a responder. A UIWindow is a responder. A UIViewController is a responder. Even a UIApplication is a responder. Even the app delegate is a responder!

A UIResponder has four low-level methods for receiving touch-related UIEvents:

	
touchesBegan(_:with:)

	
touchesMoved(_:with:)

	
touchesEnded(_:with:)

	
touchesCancelled(_:with:)

These methods — the touch methods
 — are called to notify a responder of a touch event. No matter how your code ultimately hears about a user-related touch event — indeed, even if your code never
 hears about a touch event (because Cocoa reacted in some automatic way to the touch, without your code’s intervention) — the touch was initially communicated to a responder through one of the touch methods.

The mechanism for this communication starts by deciding which responder the user touched. The UIView methods hitTest(_:with:)
 and point(inside:with:)
 are called until the correct view (the hit-test view
) is located. Then UIApplication’s sendEvent(_:)
 method is called, which calls UIWindow’s sendEvent(_:)
 , which calls the correct touch method of the hit-test view (a responder).

The responders in your app participate in a responder chain
 , which essentially links them up through the view hierarchy.
 A UIView can sit inside another UIView, its superview
 , and so on until we reach the app’s UIWindow (a UIView that has no superview). The responder chain, from bottom to top, looks roughly like this:

	The UIView that we start with (here, the hit-test view).

	If this UIView is a UIViewController’s view
 , that UIViewController.

	The UIView’s superview.

	Go back to step 2 and repeat! Keep repeating until we reach…

	The UIWindow.

	The UIApplication.

	The UIApplication’s delegate.

The next responder up the responder chain is a responder’s next responder
 , which is obtained from a responder through its next
 property (which returns an Optional wrapping a UIResponder). Thus the responder chain can be walked upward from any responder to the top of the chain.

Deferring Responsibility

The responder chain can be used to let a responder defer responsibility for handling a touch event. If a responder receives a touch event and can’t handle it, the event can be passed up the responder chain to look for a responder that can
 handle it. This can happen in two main ways:

	The responder doesn’t implement the relevant touch method.

	The responder implements the relevant touch method to call super
 .

For example, a plain vanilla UIView has no native implementation of the touch methods. Thus, by default, even if a UIView is the hit-test view, the touch event effectively falls through the UIView and travels up the responder chain, looking for someone to respond to it. In certain situations, it might make sense for you to defer responsibility for this touch to the main background view, or even to the UIViewController that controls it.

Nil-Targeted Actions

A nil-targeted
 action is a target–action pair in which the target is nil
 .
 There is no designated target object, so the following rule is used: starting with the hit-test view (the view with which the user is interacting), Cocoa walks up the responder chain, one responder at a time, looking for an object that can respond to the action message:

	If a responder is found that handles this message, that method is called on that responder, and that’s the end.

	If we get all the way to the top of the responder chain without finding a responder to handle this message, the message goes unhandled (with no penalty) — in other words, nothing happens.

Suppose, for example, that we were to configure a button in code, like this:

self.button.addTarget(nil,
 action: #selector(buttonPressed),
 for: .touchUpInside)

That’s a nil-targeted action. So what happens when the user taps the button? First, Cocoa looks in the UIButton itself to see whether it responds to buttonPressed
 . If not, it looks in the UIView that is its superview. And so on, up the responder chain. For example, there is surely a view controller that owns the view that contains the button. If the class of this view controller is the only class that does in fact implement buttonPressed
 , tapping the button will cause the view controller’s buttonPressed
 to be called — even though the view controller is not the target!

It’s obvious how to construct a nil-targeted action in code: you set up a target–action pair where the target is nil
 , as in the preceding example. But how do you construct a nil-targeted action in a nib? The answer is: you form a connection to the First Responder proxy object (in the dock).
 That’s what the First Responder proxy object is for! The First Responder isn’t a real object with a known class, so before you can connect an action to it, you have to define the action message within the First Responder proxy object, like this:

	Select the First Responder proxy in the nib, and switch to the Attributes inspector.

	You’ll see a table (probably empty) of user-defined nil-targeted First Responder actions. Click the Plus button and give the new action a name; it must take a single parameter (so that its name will end with a colon).

	Now you can Control-drag from a control, such as a UIButton, to the First Responder proxy to specify a nil-targeted action with the name you specified.

Tip

In Swift 4, your buttonPressed
 declaration must be marked @objc
 (or @IBAction
). Otherwise, Cocoa won’t be able to find it as it walks up the responder chain.

Key–Value Observing

Key–value observing, or KVO
 , is a notification mechanism that doesn’t use the notification center. Perhaps a better architectural analogy would be with the target–action mechanism; KVO is a target–action mechanism that works between any
 two objects. KVO allows one object to be registered directly with another object
 so as to be notified when a value in that other object changes. Moreover, the observed object doesn’t actually have to do
 anything. When the value in the observed object changes, the registered object — the observer — is automatically
 notified.

When you use KVO with Cocoa, the observer will be your
 object; you will write the code that will respond when the observer is notified of the change for which it has registered. But the observed object, the one with which you register to hear about changes, needn’t be your object at all; in fact, it often will not be. Many Cocoa objects promise to behave in a KVO compliant way. Certain frameworks, such as the AVFoundation framework, don’t implement delegation or notifications very much; instead, they expect you to use KVO to hear about what they are doing. Thus, KVO notification can be an important form of Cocoa event.

The process of using KVO may be broken down into stages:

Registration

The object that desires to hear about future changes in a value belonging to the observed object must register with that observed object.

Change

A change takes place in the value belonging to the observed object, and it must take place in a special way — a KVO compliant way. Typically, this means using a key–value coding compliant accessor to make the change. Setting a property passes through a key–value coding compliant accessor.

Notification

The observer is automatically notified that the value in the observed object has changed.

Unregistration

The observer eventually unregisters to prevent the arrival of further notifications about the observed value of the observed object.

The Cocoa API for registration and notification works like this: you call addObserver(_:forKeyPath:options:context:)
 on the object whose property you want to observe; the observer’s observeValue(forKeyPath:of:change:context:)
 is then called for every change for which this observer was registered, constituting a nasty bottleneck. New in Swift 4, however, there’s a revised API for key–value observing, and I’m going to assume that you’ll want to use this rather than the Cocoa API.

Here’s how the Swift 4 key–value observing API works. You register by calling observe(_:options:changeHandler:)
 on the object whose property you want to observe, with these parameters:

First parameter

A Swift key path (Chapter 5
). If this is a literal, the class can be omitted, because it can be inferred as the type of the object to which we’re sending this message.

options:

An NSKeyValueObservingOptions bitmask (an option set). This lets you specify such things as when you want to be notified (only when the observed value changes, or now as well) and what information you want included in the notification (the old value, the new value, or both).

changeHandler

A function to be called as a way of sending the notification. It should take two parameters; these will be the object with which we are registered and an NSKeyValueObservedChange object whose properties give you information such as the old value and the new value if you requested them in the options:
 argument. The changeHandler:
 function will typically be an anonymous function, thus making the notification function part of the registration.

In the past, it was necessary to unregister from the observed object before the observer went out of existence, because the observed object might try to send a message to a nonexistent observer. Unregistration is performed through a message to the observed object, namely removeObserver(_:forKeyPath:context:)
 — which means that the observer needs to maintain a reference to the observed object. That becomes unnecessary with the new Swift 4 key–value observing API.

In the Swift 4 API, the original call to observe(_:options:changeHandler:)
 , with which we registered in the first place, returns an object of class NSKeyValueObservation. This, and not the caller of observe(_:options:changeHandler:)
 , is the actual registered observer! It
 maintains a reference to the observed object, so you don’t have to. Moreover, this object will unregister the observation, by calling removeObserver(_:forKeyPath:context:)
 , when it itself goes out of existence (or when it is sent the invalidate
 message). Thus, if you maintain the NSKeyValueObservation in an instance property, it will go out of existence, at the latest, when you do — and at that moment will unregister itself in good order.

Before iOS 11, it was also necessary to unregister before the observed object
 went out of existence. That’s because an object that went out of existence with observers registered with it would cause your app to crash immediately. However, new in iOS 11, the observed object can go out of existence in good order even if observers are still registered with it.

Apart from that, however, Cocoa key–value observing is unchanged in iOS 11. The Swift 4 key–value observing API is a language feature, not an SDK feature; it puts a convenient mechanism in front of the Cocoa API, but it still uses
 the Cocoa API. When you call observe(_:options:changeHandler:)
 , Swift calls addObserver(_:forKeyPath:options:context:)
 to register the observer with the observed object. The NSKeyValueObservation object implements observeValue(forKeyPath:of:change:context:)
 to receive notification messages, which it passes on to you. And the NSKeyValueObservation object calls removeObserver(_:forKeyPath:context:)
 to unregister itself with the observed object.

Warning

In iOS 10 and before, you can use the Swift 4 key–value observing API, because it merely uses the Cocoa key–value observing API under the hood; but you must still take care to unregister the NSKeyValueObservation object before the observed object goes out of existence, or your app will crash.

To illustrate, let’s posit two objects — a MyClass1 instance called objectA
 , and a MyClass2 instance called objectB
 . MyClass1 has a value
 property that we want to observe:

class MyClass1 : NSObject { [image: 1]

 @objc dynamic var value : Bool = false [image: 2]

}

[image: 1]

The object to be observed must be an instance of a class derived from NSObject; otherwise, you won’t be able to call observe(_:options:changeHandler:)
 on it. That’s because the mechanism for being observed is a feature of NSObject.

[image: 2]

The property to be observed must be declared @objc
 in order to expose it to Objective-C. It must also be declared dynamic
 . That’s because KVO works by swizzling the accessor methods; Cocoa needs to be able to reach right in and change this object’s code, and it can’t do that unless the property is dynamic
 .

MyClass2 contains code that registers with a MyClass1 to hear about changes in its value
 property:

class MyClass2 {
 var obs = Set<NSKeyValueObservation>() [image: 1]

 func registerWith(_ mc:MyClass1) {
 let opts : NSKeyValueObservingOptions = [.old, .new]
 let ob = mc.observe(\.value, options: opts) { obj, change in [image: 2]

 // obj is the observed object
 // change is an NSKeyValueObservedChange
 if let oldValue = change.oldValue {
 print("old value was \(oldValue)")
 }
 if let newValue = change.newValue {
 print("new value is \(newValue)")
 }
 }
 obs.insert(ob) [image: 3]

 }
}

[image: 1]

MyClass2 has an instance property for maintaining NSKeyValueObservation objects. As with Notification observer tokens, I like to use a Set for this purpose.

[image: 2]

MyClass2 will register with a MyClass1 instance by calling observe(_:options:changeHandler:)
 . Note the use of the Swift key path to specify the value
 property. I’ve illustrated the use of NSKeyValueObservingOptions by asking for both the old and new values of the observed property when a notification arrives. That information arrives into the notification function inside an NSKeyValueObservedChange object.

[image: 3]

The call to observe(_:options:changeHandler:)
 returns an NSKeyValueObservation object. It is crucial
 to ensure the continued existence of this object; otherwise, it will go out of existence and unregister itself before the notification can ever arrive! Therefore, I store it in the Set instance property that was declared for this purpose.

Presume now that we have a persistent MyClass2 instance, objectB
 , and that its registerWith(_:)
 has been called with argument objectA
 , a MyClass1 instance that is also persistent. So much for registration! Now let’s talk about change and notification. Somehow, someone sets objectA
 ’s value
 to true
 , thus changing it in a KVO compliant way. At that moment, the notification is sent and the anonymous function is called! The following appears in the console:

old value was false
new value is true

Finally, let’s talk about unregistering. Delightfully, there is nothing to talk about! In iOS 11, it doesn’t matter whether objectA
 goes out of existence before objectB
 or the other way around. When objectB
 does go out of existence, the obs
 property is destroyed, and so the NSKeyValueObservation is destroyed — and at that moment, if objectA
 still exists, the NSKeyValueObservation unregisters itself. Everything happens automatically and in good order.

In general your real-life use of KVO in programming iOS will likely be no more complex than that. Cocoa key–value observing, however, is a deep and complex mechanism; consult Apple’s Key-Value Observing Guide
 for full information.

Swamped by Events

Cocoa has the potential to send lots
 of events, telling you what the user has done, informing you of each stage in the lifetime of your app and its objects, asking for your input on how to proceed. To receive the events that you need to hear about, your code is peppered with entry points
 — methods that you have written with just the right name and in just the right class so that they can be called by Cocoa through events. In fact, it is easy to imagine that in many cases your code for a class will consist almost entirely of entry points.

Arranging all those entry points is one of your primary challenges as an iOS programmer. You know what you want to do, but you don’t get to “just do it.” You have to divide up your app’s functionality and allocate it in accordance with when and how Cocoa is going to call into your code. You know the events that Cocoa is going to want to send you, and you need to be prepared to receive them. Thus, before you’ve written a single line of your own code, the skeleton structure of a class is likely to have been largely mapped out for you.

Suppose, for example, that your iPhone app presents an interface consisting of a table view. You’ll probably subclass UITableViewController (a built-in UIViewController subclass); an instance of your subclass will own and control the table view, and you’ll probably use it as the table view’s data source and delegate as well. In this single class, then, you’re likely to want to implement at a minimum
 the following methods:

init(coder:)
 or init(nibName:bundle:)

UIViewController lifetime method, where you perform instance initializations.

viewDidLoad

UIViewController lifetime method, where you perform view-related initializations.

viewDidAppear

UIViewController lifetime method, where you set up states that need to apply only while your view is onscreen. For example, if you’re going to register for a notification or set up a timer, this is a likely place to do it.

viewDidDisappear

UIViewController lifetime method, where you reverse what you did in viewDidAppear
 . For example, this would be a likely place to unregister for a notification or invalidate a repeating timer that you set up in viewDidAppear
 .

supportedInterfaceOrientations

UIViewController query method, where you specify what device orientations are allowed for this view controller’s main view.

numberOfSections(in:)

tableView(_:numberOfRowsInSection:)

tableView(_:cellForRowAt:)

UITableView data source query methods, where you specify the contents of the table.

tableView(_:didSelectRowAt:)

UITableView delegate user action method, where you respond when the user taps a row of the table.

deinit

Swift class instance lifetime method, where you perform end-of-life cleanup.

Suppose, further, that you do in fact use viewDidAppear
 to register for a notification and to set up a timer, using the target–selector architecture; then you must also implement the methods specified by those selectors.

We already have, then, about a dozen methods whose presence is effectively boilerplate. These are not your
 methods; you
 are never going to call them. They are Cocoa’s
 methods, which you have placed here so that each can be called at the appropriate moment in the life story of your app.

A Cocoa program thus consists of numerous disconnected entry points, each with its own meaning, each called at its own set moment. The logic of such a program is far from obvious; a Cocoa program, even your
 program, even while you’re writing it, is hard to read and hard to understand. To figure out what our hypothetical class does, you have to know already
 such things as when viewDidAppear
 is called and how it is typically used; otherwise, you don’t know what this method is for. Moreover, because of your code’s object-oriented structure, multiple methods in this class (and perhaps others) will be managing the same instance properties; your program’s logic is divided among methods and even among classes.

Your challenges are compounded by surprises involving the order
 of events. Beginners (and even experienced programmers) are often mystified when their iOS program doesn’t work as expected, because they have wrong expectations about when an entry point will be called, or what the state of an instance will be when it is
 called. To make matters worse, the order of events isn’t even reliable; my apps often break when I upgrade them from one iOS version to the next, because the new version of iOS is sending certain events in a different order from the old version.

How will you find your way through the swamp of events that a Cocoa program consists of? There’s no easy solution, but here’s some simple advice:

Write comments

Comment every method, quite heavily if need be, saying what that method does and under what circumstances you expect it to be called — especially if it is an entry point, where it is Cocoa itself that will do the calling.

Debug

Instrument your code heavily during development with caveman debugging (print
 and NSLog
 ; see Chapter 9
). As you test your code, keep an eye on the console output and check whether the messages make sense. You may be surprised at what you discover. If things don’t work as expected, add breakpoints and run the app again so you can see the order of execution and watch the variables and properties as they change.

Perhaps the most common kind of mistake in writing a Cocoa app is not that there’s a bug in your code itself, but that you’ve put the code in the wrong place
 . Your code isn’t running, or it’s running at the wrong time, or the pieces are running in the wrong order. I see questions about this sort of thing all the time on the various online user forums (these are all actual examples that appeared over the course of just two days):

	
There’s a delay between the time when my view appears and when my button takes on its correct title.

That’s because you put the code that sets the button’s title in viewDidAppear
 . That’s too late
 ; your code needs to run earlier, perhaps in viewWillAppear
 .

	
My subviews are positioned in code and they’re turning out all wrong.

That’s because you put the code that positions your subviews in viewDidLoad
 . That’s too early
 ; your code needs to run later, when your view’s dimensions have been determined.

	
My view is rotating even though my view controller’s supportedInterfaceOrientations
 says not to.

That’s because you implemented supportedInterfaceOrientations
 in the wrong class
 . Only the topmost view controller in the view controller hierarchy is consulted through this property.

	
I set up an action connection for Value Changed on a text field, but my code isn’t being called when the user edits.

That’s because you connected the wrong control event
 ; a text field emits Editing Changed, not Value Changed.

Delayed Performance

Your code is executed in response to some event; but your code in turn may trigger a new event or chain of events. Sometimes this causes bad things to happen: there might be a crash, or Cocoa might appear not to have done what you said to do. To solve this problem, sometimes you just need to step outside Cocoa’s own chain of events for a moment and wait for everything to settle down before proceeding.

The technique for doing this is called delayed performance
 .
 You tell Cocoa to do something, not right this moment, but in a little while, when things have settled down. Perhaps you need only a very short delay, possibly even as short as zero seconds, just to let Cocoa finish doing something, such as laying out the interface. Technically, you’re allowing the current run loop to finish, completing and unwinding the entire current call stack, before proceeding further with your own code.

When you program iOS, you’re likely to be using delayed performance a lot more than you might expect. With experience, you’ll develop a kind of sixth sense for when delayed performance might be the solution to your difficulties.

The main way to get delayed performance in iOS programming is by calling DispatchQueue’s after(when:execute:)
 method. It takes a function stating what should happen after the specified time has passed. Here’s a utility function that encapsulates the call:

func delay(_ delay:Double, closure:@escaping () -> ()) {
 let when = DispatchTime.now() + delay
 DispatchQueue.main.asyncAfter(deadline: when, execute: closure)
}

That utility function is so important that I routinely paste it at the top level of the AppDelegate class file in every app I write. It’s going to come in handy, I know! To use it, I call delay
 with a delay time (usually a very small number of seconds such as 0.1
) and an anonymous function saying what to do after the delay. Note that what you propose to do in this anonymous function will be done later on; you’re deliberately breaking out of your own code’s line-by-line sequence of execution. So a delayed performance call will be the last call in its own surrounding function, and cannot return any value.

In this actual example from one of my own apps, the user has tapped a row of a table, and my code responds by creating and showing a new view controller:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController?.pushViewController(t, animated: true)
}

Unfortunately, the innocent-looking call to my TracksViewController initializer init(mediaItemCollection:)
 can take a moment to complete, so the app comes to a stop with the table row highlighted — very briefly, but just long enough to startle the user. To cover this delay with a sense of activity, I’ve rigged my UITableViewCell subclass to show a spinning activity indicator when it’s selected:

override func setSelected(_ selected: Bool, animated: Bool) {
 if selected {
 self.activityIndicator.startAnimating()
 } else {
 self.activityIndicator.stopAnimating()
 }
 super.setSelected(selected, animated: animated)
}

But there’s a problem: the spinning activity indicator never appears and never spins. The reason is that the events are stumbling over one another here. UITableViewCell’s setSelected(_:animated:)
 isn’t called until the UITableView delegate method tableView(_:didSelectRowAt:)
 has finished. But the delay we’re trying to paper over is during
 tableView(_:didSelectRowAt:)
 ; the whole problem is that it doesn’t
 finish fast enough.

Delayed performance to the rescue! I’ll rewrite tableView(_:didSelectRowAt:)
 so that it finishes immediately — thus triggering setSelected(_:animated:)
 immediately and causing the activity indicator to appear and spin — and I’ll use delayed performance to call init(mediaItemCollection:)
 later on, when the interface has ironed
 itself out:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 delay(0.1) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController?.pushViewController(t, animated: true)
 }
}

Chapter 12.
 Memory Management

Class instances, both in Swift and in Objective-C, are reference types (see “Value Types and Reference Types”
). Behind the scenes, Swift and Objective-C memory management for reference types works essentially the same way. Such memory management, as I pointed out in Chapter 5
 , can be a tricky business.

Fortunately, Swift uses ARC (automatic reference counting), so you don’t have to manage the memory for every reference type object explicitly and individually, as was once necessary in Objective-C. Thanks to ARC, you are far less likely to make a memory management mistake, and more of your time is liberated to concentrate on what your app actually does instead of dealing with memory management concerns.

Still, even in Swift, even with ARC, it is possible to make a memory management mistake, or to be caught unawares by Cocoa’s memory management behavior. A memory management mistake can lead to runaway excessive memory usage, crashes, or mysterious misbehavior of your app. Cocoa memory management can be surprising in individual cases, and you need to understand, and prepare for, what Cocoa is going to do.

Principles of Cocoa Memory Management

The reason why reference type memory must be managed at all is that references to reference type objects are merely pointers. The real object pointed to occupies a hunk of memory that must be explicitly set aside when the object is brought into existence and that must be explicitly freed up when the object goes out of existence. The memory is set aside when the object is instantiated, but how is this memory to be freed up, and when should it happen?

An object must go out of existence neither too late nor too soon. Matters are made more complicated by the fact that multiple objects can have a pointer (a reference) to the very same object. To illustrate, imagine three objects, Manny, Moe, and Jack, where both Manny and Moe have references to Jack:

Too late

At the very latest, an object should go out of existence when no other objects have a pointer to it. If both Manny and Moe go out of existence, and if no other object has a reference to Jack, Jack should go out of existence too. An object without a pointer to it is useless; it is occupying memory, but no other object has, or can ever get, a reference to it. This is a memory leak
 .

Too soon

If any object has a pointer to another, that other object must not
 go out of existence. If both Manny and Moe have a pointer to the object Jack, and if Manny somehow causes Jack to go out of existence now, poor old Moe is left with a pointer to nothing (or worse, to garbage). A pointer whose object has been destroyed behind the pointer’s back is a dangling pointer
 . If Moe subsequently uses that dangling pointer to send a message to the object that he thinks is there, the app will crash.

To prevent both memory leakage and dangling pointers, there is a policy of manual memory management based on a number, maintained by every reference type object, called its retain count
 .
 The rule is that other objects can increment or decrement an object’s retain count — and that’s all they are allowed to do. As long as an object’s retain count is positive, the object will persist. No object has the direct power to tell another object to be destroyed; rather, as soon as an object’s retain count is decremented to zero, it is destroyed automatically.

By this policy, every object that needs Jack to persist should increment Jack’s retain count, and should decrement it once again when it no longer needs Jack to persist. As long as all objects are well-behaved in accordance with this policy, the problem of manual memory management is effectively solved:

	There cannot be any dangling pointers, because any object that has a pointer to Jack has incremented Jack’s retain count, thus ensuring that Jack persists.

	There cannot be any memory leaks, because any object that no longer needs Jack decrements Jack’s retain count, thus ensuring that eventually Jack will go out of existence — namely, when the retain count reaches zero, indicating that no object needs Jack any longer.

Rules of Cocoa Memory Management

An object is well-behaved with respect to memory management as long as it adheres to certain very simple, well-defined rules in conformity with the basic concepts of memory management. The underlying ethic is that each object that has a reference to a reference type object is responsible solely for its own memory management of that object, in accordance with these rules. If all objects that ever get a reference to this reference type object behave correctly with respect to these rules, the object’s memory will be managed correctly and it will go out of existence exactly when it is no longer needed:

	If Manny or Moe explicitly instantiates
 Jack — by directly calling an initializer — then the initializer increments
 Jack’s retain count.

	If Manny or Moe makes a copy
 of Jack — by calling copy
 or mutableCopy
 or any other method with copy
 in its name — then the copy method increments
 the retain count of this new, duplicate Jack.

	If Manny or Moe acquires
 a reference to Jack (not through explicit instantiation or copying), and needs Jack to persist
 — long enough to work with Jack in code, or long enough to be the value of an instance property — then he himself increments
 Jack’s retain count. (This is called retaining
 Jack.)

	If and only if Manny or Moe has done any of those things — that is, if Manny or Moe has ever directly or indirectly caused Jack’s retain count to be incremented — then when he himself no longer needs his reference to Jack, before letting go of that reference, he decrements
 Jack’s retain count to balance exactly all previous increments that he himself has performed. (This is called releasing
 Jack.) Having released Jack, Manny or Moe should then assume that Jack no longer exists, because if this causes Jack’s retain count to drop to zero, Jack will
 no longer exist. This is the golden rule of memory management
 — the rule that makes memory management work coherently and correctly.

A general way of understanding the golden rule of memory management is to think in terms of ownership
 . If Manny has created, copied, or retained Jack — that is, if Manny has ever incremented Jack’s retain count — Manny has asserted ownership of Jack. Both Manny and Moe can own Jack at the same time, but each is responsible only for managing his own ownership of Jack correctly. It is the responsibility of an owner of Jack eventually to decrement Jack’s retain count — to release Jack, thus resigning ownership of Jack. The owner thus says: “Jack may or may not persist after this, but as for me, I’m done with Jack, and Jack can go out of existence as far as I’m concerned.” At the same time, a nonowner of Jack must never
 release Jack. As long as all objects behave this way with respect to Jack, Jack will not leak nor will any pointer to Jack be left dangling.

What ARC Is and What It Does

Once upon a time, retaining and releasing an object was a matter of you, the programmer, literally sending retain
 and release
 messages to it. NSObject still implements retain
 and release
 , but under ARC (and in Swift) you can’t call them. That’s because ARC is calling them for you! That’s ARC’s job — to do for you what you would have had to do if memory management were still up to the programmer.

ARC is implemented as part of the compiler. The compiler is literally modifying your code by inserting retain
 and release
 calls behind the scenes. Thus, for example, when you receive a reference type object by calling some method, ARC immediately retains it so that it will persist for as long as this same code continues to run; then ARC releases it when the code comes to an end. Similarly, when you create or copy a reference type object, ARC knows that its retain count has been incremented, and releases it when the code comes to an end.

ARC is very conservative, but also very accurate. In effect, ARC retains at every juncture that might have the slightest implications for memory management: it retains when an object is received as an argument, it retains when an object is assigned to a variable, and so forth. It may even insert temporary variables, behind the scenes, to enable it to refer sufficiently early to an object so that it can retain it. But of course it eventually also releases to match.

How Cocoa Objects Manage Memory

Built-in Cocoa objects will take ownership of objects that you hand to them, by retaining them, if it makes sense for them to do so, and will of course then balance that retain with a release later. Indeed, this is so generally true that if a Cocoa object is not
 going to retain an object you hand it, there will be a note to that effect in the documentation.

A collection, such as an NSArray or an NSDictionary, is a particularly obvious case in point (see Chapter 10
 for a discussion of the common collection classes). An object can hardly be an element of a collection if that object can go out of existence at any time; so when you add an element to a collection, the collection asserts ownership of the object by retaining it. Thereafter, the collection acts as a well-behaved owner. If this is a mutable collection, then if an element is removed from it, the collection releases that element. If the collection object goes out of existence, it releases all its elements.

Prior to ARC, removing an object from a mutable collection constituted a potential trap. Consider the following Objective-C code:

id obj = myMutableArray[0]; // an NSMutableArray
[myMutableArray removeObjectAtIndex: 0]; // bad idea in non-ARC code!
// ... could crash here by referring to obj ...

As I just said, when you remove an object from a mutable collection, the collection releases it. So, without ARC, the second line of that code involves an implicit release of the object that used to be element 0 of myMutableArray
 . If this reduces the object’s retain count to zero, it will be destroyed. The pointer obj
 will then be a dangling pointer, and a crash may be in our future when we try to use it as if it were a real object.

With ARC, however, that sort of danger doesn’t exist. Assigning a reference type object to a variable retains it! But we did
 assign this object to a variable, obj
 , before
 we removed it from the collection. Thus that code is perfectly safe, and so is its Swift equivalent:

let obj = myMutableArray[0]
myMutableArray.removeObject(at:0)
// ... safe to refer to obj ...

The first line retains the object. The second line releases the object, but that release balances the retain that was placed on the object when the object was placed in the collection originally. Thus the object’s retain count is still more than zero, and it continues to exist for the duration of this code.

Autorelease Pool

When a method creates an instance and returns that instance, some memory management hanky-panky has to take place. For example, consider this simple code:

func makeImage() -> UIImage? {
 if let im = UIImage(named:"myImage") {
 return im
 }
 return nil
}

Think about the retain count of im
 , the UIImage we are returning. This retain count has been incremented by our call to the UIImage initializer UIImage(named:)
 . According to the golden rule of memory management, as we pass im
 out of our own control by returning it, we should decrement the retain count of im
 , thus balancing the increment and surrendering ownership. But when can we possibly do that? If we do it before
 the line return im
 , the retain count of im
 will be zero and it will vanish in a puff of smoke; we will be returning a dangling pointer. But we can’t do it after
 the line return im
 , because when that line is executed, our code comes to an end.

Clearly, we need a way to vend this object without decrementing its retain count now
 — so that it stays in existence long enough for the caller to receive and work with it — while ensuring that at some future time we will
 decrement its retain count, so as to balance our init(named:)
 call and fulfill our own management of this object’s memory. The solution is something midway between releasing the object and not releasing it — ARC autoreleases
 it.

Here’s how autoreleasing works. Your code runs in the presence of something called an autorelease pool
 .
 When ARC autoreleases an object, that object is placed in the autorelease pool, and a number is incremented saying how many times this object has been placed in this autorelease pool. From time to time, when nothing else is going on, the autorelease pool is automatically drained
 . This means that the autorelease pool releases each of its objects, the same number of times as that object was placed in this autorelease pool, and empties itself of all objects. If that causes an object’s retain count to be zero, so be it; the object is destroyed in the usual way. So autoreleasing an object is just like releasing it, but with a proviso, “later, not right this second.”

In general, autoreleasing and the autorelease pool are merely an implementation detail. You can’t see them; they are just part of how ARC works. But sometimes, on very rare occasions, you might want to drain the autorelease pool yourself. Consider the following code (it’s slightly artificial, but that’s because demonstrating the need to drain the autorelease pool isn’t easy):

func test() {
 let path = Bundle.main.path(forResource:"001", ofType: "png")!
 for j in 0 ..< 50 {
 for i in 0 ..< 100 {
 let im = UIImage(contentsOfFile: path)
 }
 }
}

That method does something that looks utterly innocuous; it loads an image. But it loads it repeatedly in a loop. As the loop runs, memory climbs constantly (Figure 12-1
); by the time our method comes to an end, our app’s memory usage has reached almost 34MB. This is not because the images aren’t being released each time through the loop; it’s because a lot of intermediate
 objects — things you’ve never even heard of, such as NSPathStore2 objects — are secondarily generated by our call to init(contentsOfFile:)
 and are autoreleased
 . As we keep looping, those objects are all sitting there, piling up in the autorelease pool by the tens of thousands, waiting for the pool to be drained. When our code finally comes to an end, the autorelease pool is
 drained, and our memory usage drops precipitately back down to almost nothing.

[image: ios9 1200]

Figure 12-1.
 Memory usage grows during a loop

Granted, 34MB isn’t exactly a massive amount of memory. But you may imagine that a more elaborate inner loop might generate more and larger autoreleased objects, and that our memory usage could potentially rise quite significantly. Thus, it would be nice to have a way to drain the autorelease pool manually
 now and then during the course of a loop with many iterations. Swift provides such a way — the global autoreleasepool
 function, which takes a single argument that you’ll supply as a trailing anonymous function. Before the anonymous function is called, a special temporary autorelease pool is created, and is used for all autoreleased objects thereafter. After the anonymous function exits, the temporary autorelease pool is drained and goes out of existence. Here’s the same method with an autoreleasepool
 call wrapping the inner loop:

func test() {
 let path = Bundle.main.path(forResource:"001", ofType: "png")!
 for j in 0 ..< 50 {
 autoreleasepool {
 for i in 0 ..< 100 {
 let im = UIImage(contentsOfFile: path)
 }
 }
 }
}

The difference in memory usage is dramatic: memory holds roughly steady at less than 2MB (Figure 12-2
). Setting up and draining the temporary autorelease pool probably involves some overhead, so if possible you may want to divide your loop into an outer and an inner loop, as shown in the example, so that the autorelease pool is not set up and torn down on every iteration.

[image: ios9 1200b]

Figure 12-2.
 Memory usage holds steady with an autorelease pool

Memory Management of Instance Properties

Before ARC, managing memory for instance properties (Objective-C instance variables, Chapter 10
) was one of the trickiest parts of Cocoa programming. The correct behavior is to retain a reference type object when you assign it to a property, and then release it when either of these things happens:

	You assign a different value to the same property.

	The instance whose instance property this is goes out of existence.

In order to obey the golden rule of memory management, the object taking charge of this memory management — the owner — clearly needs to be the object whose instance property this is. The only way to ensure that memory management of a property is handled correctly, therefore, is to implement it in the setter method
 for that property. The setter must release whatever object is currently the value of the property, and must retain whatever object is being assigned to that property. The exact details can be quite tricky (what if they are the same object?), and before ARC it was easy for programmers to get them wrong. And that, of course, is not the only
 memory management needed; to prevent a leak when the owner goes out of existence, the owner’s dealloc
 method (the Objective-C equivalent of deinit
) had to be implemented to release every object being retained as the value of a property.

Fortunately, ARC understands all that, and the memory of instance properties, like the memory of all variables, is managed correctly for you.

This fact also gives us a clue as to how to release an object on demand. This is a valuable thing to be able to do, because an object may be using a lot of memory. You don’t want to put too great a strain on the device’s memory, so you want to release the object as soon as you’re done with it. Also, when your app goes into the background and is suspended, the Watchdog process will terminate it in the background if it is found to be using too much memory; so you might want to release this object when you are notified that the app is about to be backgrounded. (I talked about that problem in Chapter 3
 .)

You can’t call release
 explicitly, so you need another way to do it, some way that is consonant with the design and behavior of ARC. The solution is to assign something else — something small — to this property. That causes the object that was previously the value of this property to be released. A commonly used approach is to type this property as an Optional — possibly, to simplify matters, an implicitly unwrapped Optional. This means that nil
 can be assigned to it, purely as a way of replacing the object that is the instance property’s current value and releasing it.

Retain Cycles and Weak References

As I explained in Chapter 5
 , you can get yourself into a retain cycle where two objects have references to one another: for example, each is the value of the other’s instance property. If such a situation is allowed to persist until no other objects have a reference to either of these objects, then neither can go out of existence, because each has a retain count greater than zero and neither will “go first” and release the other. Since these two objects, ex hypothesi
 , can no longer be referred to by any object except one another, this situation can now never be remedied — these objects are leaking.

The solution is to step in and modify how the memory is managed for one of these references. By default, a reference is a persisting
 reference (what ARC calls a strong
 or retain
 reference): assigning to it retains the assigned value. In Swift, you can declare a reference type variable as weak
 or as unowned
 to change the way its memory is managed:

weak

A weak
 reference takes advantage of a powerful ARC feature. When a reference is weak, ARC does not
 retain the object assigned to it. This seems dangerous, because it means that the object might go out of existence behind our backs, leaving us with a dangling pointer and leading to a potential crash later on. But ARC is very clever about this. It keeps track of all weak references and all objects assigned to them. When such an object’s retain count drops to zero and the object is about to be destroyed, just before the object’s deinit
 is called, ARC sneaks in and assigns nil
 to the reference — that’s why a weak
 reference in Swift must be an Optional declared with var
 , so that ARC can do that. Thus, provided you handle the Optional coherently, nothing bad can happen.

unowned

An unowned
 reference is a different kettle of fish. When you mark a reference as unowned
 , you’re telling ARC to take its hands off completely: it does no memory management at all when something is assigned to this reference. This really is
 dangerous — if the object referred to goes out of existence, you really can
 be left with a dangling pointer and you really can
 crash. That is why you must never use unowned
 unless you know that the object referred to will not
 go out of existence: unowned
 is safe, provided the object referred to will outlive the object that refers to it. That is why an unowned
 object should be some single object, assigned only once, without which the referrer cannot exist at all.

In real life, a weak reference is commonly used to connect an object to its delegate (Chapter 11
). A delegate is an independent entity; there is usually no reason why an object needs to claim ownership of its delegate, and indeed an object is usually its delegate’s servant, not its owner. Ownership, if there is any, often runs the other way; Object A might create and retain
 Object B, and make itself Object B’s delegate. That’s potentially a retain cycle. Therefore, most delegates should be declared as weak references:

class ColorPickerController : UIViewController {
 weak var delegate: ColorPickerDelegate?
 // ...
}

Unfortunately, properties of built-in Cocoa classes that keep weak references are sometimes non-ARC
 weak references (because they are old and backward-compatible, whereas ARC is new). Such properties are declared using the keyword assign
 . For example, CLLocationManager’s delegate
 property is declared like this:

@property(assign, nonatomic, nullable)
 id<CLLocationManagerDelegate> delegate;

In Swift, that declaration is translated like this:

unowned(unsafe) var delegate: CLLocationManagerDelegate?

The Swift term unowned
 and the Objective-C term assign
 are synonyms; they tell you that there’s no ARC memory management here. The unsafe
 designation is a further warning inserted by Swift; unlike your own code, where you won’t use unowned
 unless it is safe, Cocoa’s unowned
 is potentially dangerous and you need to exercise caution.

Even though your
 code is using ARC, the fact that Cocoa’s code is not
 using ARC means that memory management mistakes can still occur. A reference such as a CLLocationManager’s delegate
 can end up as a dangling pointer, pointing at garbage, if the object to which that reference was pointing has gone out of existence. If anyone (you or Cocoa) tries to send a message by way of such a reference, the app will then crash — and, since this typically happens long after the point where the real mistake occurred, figuring out the cause of the crash can be quite difficult. The typical sign of such a crash is that EXC_BAD_ACCESS
 is reported in connection with memory management activity (Figure 12-3
). (This is the sort of situation in which you might need to turn on zombies in order to debug, as I’ll describe later in this chapter.)

[image: ios11 1201]

Figure 12-3.
 A crash from messaging a dangling pointer

Defending against this kind of situation is up to you. If you assign some object to a non-ARC unsafe reference, such as a CLLocationManager’s delegate
 , and if that object is about to go out of existence at a time when this reference still exists, you
 have a duty to assign nil
 (or some other object) to that reference, thus rendering it harmless.

Unusual Memory Management Situations

This section discusses some situations that call for some special memory management handling on your part.

Notification Observers

When you register with the notification center by calling addObserver(forName:object:queue:using:)
 , as I described in Chapter 11
 , there’s a trap: you can end up with a leak, which can potentially be extremely serious, because what leaks is usually your entire view controller and its properties:

	The observer token object returned from the call to addObserver(forName:object:queue:using:)
 is retained by the notification center until you unregister it.

	The observer token may also be retaining you (self
) through the function that you provided as the last parameter. The reason is that functions are closures, and this function is very likely to refer to self
 .

Thus, the observer token object will leak until you unregister, and if the function retains you, you
 will leak until you unregister. Moreover, you cannot solve this problem by unregistering from the notification center in deinit
 , because deinit
 isn’t going to be called so long as you are registered.

It is evident that, in order to solve this problem, we must maintain a reference to the observer. An instance property of self
 is the obvious place. As I suggested in Chapter 11
 , a Set is a good solution, as we may have multiple observers to maintain:

var observers = Set<NSObject>()
override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 let ob = NotificationCenter.default.addObserver(
 forName: .woohoo, object:nil, queue:nil) { _ in
 print(self.description)
 }
 self.observers.insert(ob as! NSObject)
}

We now have references to any observers, so we can proceed to unregister them. But we cannot do this in deinit
 , so we’ll have to do it at some other time. viewWillDisappear:
 is a natural alternative:

override func viewDidDisappear(_ animated: Bool) {
 super.viewDidDisappear(animated)
 for ob in self.observers {
 NotificationCenter.default.removeObserver(ob)
 }
}

But we now get a shock when we run our code and discover that self
 is still leaking!
 The reason is that self
 is still maintaining a reference to the observer, and the observer is still maintaining a reference to self
 — we’ve got a retain cycle!

There are two ways to solve this:

Break the retain cycle

Proceed as I suggested in “Stored anonymous functions”
 : mark self
 as weak
 or (preferably) unowned
 in the anonymous function:

forName: .woohoo, object:nil, queue:nil) { [unowned self] _ in
 print(self.description)
}

Perform manual memory management

In viewDidDisappear
 , when we unregister the observers, we also release them by emptying the set:

for ob in self.observers {
 NotificationCenter.default.removeObserver(ob)
}
self.observers.removeAll()

KVO Observers

The NSKeyValueObservation object that you get when you call observe(_:options:changeHandler:)
 is quite similar to the observer token object you get from the notification center. You maintain a reference to the NSKeyValueObservation object, because otherwise the notification message won’t arrive. However, you’re probably not going to tell the NSKeyValueObservation object to unregister itself (by calling invalidate
); rather, you’ll just let it go out of existence naturally when you yourself go out of existence.

The problem is that if your notification function refers to self
 , you won’t
 go out of existence; you and the NSKeyValueObservation object will both leak, the NSKeyValueObservation
 object won’t unregister itself, and your deinit
 will never be called:

var obs = Set<NSKeyValueObservation>()
func registerWith(_ mc:MyClass1) {
 let opts : NSKeyValueObservingOptions = [.old, .new]
 let ob = mc.observe(\.value, options: opts) { obj, change in
 print(self) // leak!
 }
 obs.insert(ob)
}

Once again, the reason is that you’ve got a retain cycle, just as in in “Stored anonymous functions”
 . You are retaining the observer object, but the observer object, through the notification function, is also retaining you. And once again, the solution is the same; mark self
 as unowned
 in the notification function:

let ob = mc.observe(\.value, options:opts) {[unowned self] obj, change in

Timers

The class documentation for Timer (Chapter 10
) says that “run loops maintain strong references to their timers”; it then says of scheduledTimer(timeInterval:target:selector:userInfo:repeats:)
 that “The timer maintains a strong reference to target
 until it (the timer) is invalidated.” This should set off alarm bells in your head: “Danger, Will Robinson, danger!” The documentation is warning you that as long as a repeating timer has not been invalidated, the target is being retained by the run loop; the only way to stop this is to send the invalidate
 message to the timer. (With a non-repeating timer, the problem arises less starkly, because the timer invalidates itself immediately after firing.)

Moreover, the target:
 argument is probably self
 . This means that you (self
) are being retained, and cannot go out of existence until you invalidate the timer. So when will you that? This is the same quandary we faced with notifications. You can’t do it in your deinit
 implementation, because as long as the timer is repeating and has not been sent the invalidate
 message, deinit
 won’t be called. You therefore need to find another appropriate moment for sending invalidate
 to the timer, such as viewDidDisappear
 :

var timer : Timer!
override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 self.timer = Timer.scheduledTimer(timeInterval: 1, target: self,
 selector: #selector(fired), userInfo: nil, repeats: true)
 self.timer.tolerance = 0.1
}
@objc func fired(_ t:Timer) {
 print("timer fired")
}
override func viewDidDisappear(_ animated: Bool) {
 super.viewDidDisappear(animated)
 self.timer.invalidate()
}

Alternatively, you can call scheduledTimer(withTimeInterval:repeats:block:)
 instead. Now there is no retained target:
 , but there is a retained function, and you must take the same precautions as in “Stored anonymous functions”
 . If the timer is a repeating timer, you are retaining it so that you can invalidate it later; but the timer is retaining the function you hand to it as the block:
 argument. If that involves a reference to self
 , it will retain self
 , causing a retain cycle. The good news is that if you mark self
 as weak
 or unowned
 in the function, you can
 invalidate the timer in deinit
 . Thus, the following does not
 leak; deinit
 is called, the timer is invalidated, and everything goes out of existence in good order:

var timer : Timer!
override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 self.timer = Timer.scheduledTimer(withTimeInterval: 1, repeats: true) {
 [unowned self] t in // *
 self.fired(t)
 }
 self.timer.tolerance = 0.1
}
func fired(_ t:Timer) {
 print("timer fired")
}
deinit {
 self.timer.invalidate()
}

Other Unusual Situations

Other Cocoa objects with unusual memory management behavior will usually be called out clearly in the documentation. For example, the UIWebView documentation warns: “Before releasing an instance of UIWebView for which you have set a delegate, you must first set its delegate
 property to nil
 .” And a CAAnimation object retains its delegate
 ; this is exceptional and can cause serious trouble if you’re not conscious of it (as usual, I speak from bitter experience).

There are also situations where the documentation fails to warn of any special memory management considerations, but you can wind up with a retain cycle anyway. Discovering the problem can be tricky. Areas of Cocoa that have given me trouble include UIKit Dynamics (a UIDynamicBehavior’s action
 handler) and WebKit (a WKWebKit’s WKScriptMessageHandler).

Three Foundation collection classes — NSPointerArray
 , NSHashTable
 , and NSMapTable

 — are similar respectively to NSMutableArray, NSMutableSet, and NSMutableDictionary, except that (among other things) their memory management policy is up to you. An NSHashTable created with the weakObjects
 class method, for example, maintains ARC-weak references to its elements, meaning that they are replaced by nil
 if the retain count of the object to which they were pointing has dropped to zero. You may find uses for these classes as a way of avoiding retain cycles.

Nib Loading and Memory Management

When a nib loads, it instantiates its nib objects (Chapter 7
). What happens to these instantiated objects? A view retains its subviews, but what about the top-level objects, which are not subviews of any view? The answer is, in effect, that they do not have elevated retain counts; if someone doesn’t immediately retain them, they’ll simply vanish in a puff of smoke.

If you don’t want that to happen — and if you did, why would you be loading this nib in the first place? — you need to capture a reference to the top-level objects instantiated from the nib. There are two mechanisms for doing this.

The first approach is to capture the result of the nib-loading code. When a nib is loaded by calling Bundle’s loadNibNamed(_:owner:options:)
 or UINib’s instantiate(withOwner:options:)
 , an array is returned consisting of the top-level objects instantiated by the nib-loading mechanism. So it’s sufficient to retain this array, or the objects in it. We did that in Chapter 7
 when we loaded a nib and assigned the result to a variable, like this:

let arr = Bundle.main.loadNibNamed("View", owner: nil)!
let v = arr[0] as! UIView
self.view.addSubview(v)

The other possibility is to configure the nib owner with outlets that will retain the nib’s top-level objects when they are instantiated. We did that in Chapter 7
 when we set up an outlet like this:

class ViewController: UIViewController {
 @IBOutlet var coolview : UIView!

We then loaded the nib with this view controller as owner:

Bundle.main.loadNibNamed("View", owner: self)
self.view.addSubview(self.coolview)

The first line instantiates the top-level view from the nib, and the nib-loading mechanism assigns it to self.coolview
 . Since self.coolview
 is a strong reference, it retains the view. Thus, the view is still there when we insert it into the interface in the second line.

It is common, however, for @IBOutlet
 properties that you declare to be marked weak
 .
 This is not obligatory, and it probably does no harm to omit the weak
 designation. The reason such outlets work properly even when they are
 designated weak
 is that you use this designation only when this is an outlet to an object that you know will be retained by someone else — for example, it’s already a subview of your view controller’s main view. A view controller retains its main view, and a view is retained by its superview, so the nib-loading process will cause this view to be retained, and there is no need for your @IBOutlet
 property to retain it as well.

Memory Management of CFTypeRefs

A CFTypeRef is a pure C analog to an Objective-C object. In Objective-C, CFTypeRef types are distinguished by the suffix Ref
 at the end of their name. In Swift, however, this Ref
 suffix is dropped. For example, a CGContextRef is a CFTypeRef, and is known in Swift as a CGContext.

A CFTypeRef is a pointer to an opaque C struct (see Appendix A
), where “opaque” means that the struct has no directly accessible components. This struct acts as a pseudo-object; a CFTypeRef is analogous to an object type. In Objective-C, the fact that this thing is not an object is particularly obvious, because the code that operates upon a CFTypeRef is not object-oriented. A CFTypeRef has no properties or methods, and you do not send any messages to it; you work with CFTypeRefs entirely through global C functions. In Swift’s Core Graphics overlay, however, those global C functions are hand-tweaked to look
 like methods; for example, the CGContextDrawLinearGradient
 C function is called, in Swift, by sending the drawLinearGradient
 message to a CGContext pseudo-object, just as if a CGContext were an object and drawLinearGradient
 were an instance method.

For example, here’s some Swift code for drawing a gradient; con
 is a CGContext, sp
 is a CGColorSpace, and grad
 is a CGGradient (all of them being CFTypeRefs):

let con = UIGraphicsGetCurrentContext()!
let locs : [CGFloat] = [0.0, 0.5, 1.0]
let colors : [CGFloat] = [
 0.8, 0.4, // starting color, transparent light gray
 0.1, 0.5, // intermediate color, darker less transparent gray
 0.8, 0.4, // ending color, transparent light gray
]
let sp = CGColorSpaceCreateDeviceGray()
let grad = CGGradient(colorSpace: sp,
 colorComponents: colors, locations: locs, count: 3)!
con.drawLinearGradient(grad,
 start: CGPoint(x:89,y:0), end: CGPoint(x:111,y:0), options:[])

Despite being only a pseudo-object, a CFTypeRef is a reference type, and its memory must be managed in just the same way as that of a real object. Therefore, a CFTypeRef pseudo-object has a retain count! And this retain count works exactly as for a true object, in accordance with the golden rule of memory management. A CFTypeRef must be retained when it comes within the sphere of influence of an owner who wants it to persist, and it must be released when that owner no longer needs it.

In Objective-C, the golden rule, as applied to CFTypeRefs, is that if you obtained a CFTypeRef object through a function whose name contains the word Create
 or Copy
 , its retain count has been incremented. In addition, if you are worried about the object persisting, you’ll retain it explicitly by calling the CFRetain
 function to increment its retain count. To balance your Create
 , Copy
 , or CFRetain
 call, you must eventually release the object. By default, you’ll do that by calling the CFRelease
 function; some CFTypeRefs, however, have their own dedicated object release functions — for example, for CGPath, there’s a dedicated CGPathRelease
 function. There’s no ARC management of CFTypeRefs in Objective-C, so you have to do all of this yourself, explicitly.

In Swift, however, you will never
 need to call CFRetain
 , or any form of CFRelease
 ; indeed, you cannot. Swift will do it for you, behind the scenes, automatically.

Think of CFTypeRefs as living in two worlds: the CFTypeRef world of pure C, and the memory-managed object-oriented world of Swift. When you obtain a CFTypeRef pseudo-object, it crosses the bridge
 from the CFTypeRef world into the Swift world. From that moment on, until you are done with it, it needs memory management. Swift is aware of this, and for the most part, Swift itself will use the golden rule and will apply correct memory management. Thus, for example, the code I showed earlier for drawing a gradient is in fact memory-management complete. In Objective-C, we would have to release sp
 and grad
 , because they arrived into our world through Create
 calls; if we failed to do this, they would leak. In Swift, however, there is no need, because Swift will do it for us. (See Appendix A
 for more about how objects move between the CFTypeRef world and the memory-managed object world.)

Working with CFTypeRefs in Swift is thus much easier than in Objective-C. In Swift, you can treat CFTypeRef pseudo-objects as actual objects! For example, you can assign a CFTypeRef to a property in Swift, or pass it as an argument to a Swift function, and its memory will be managed correctly; in Objective-C, those are tricky things to do.

It is possible that you may receive a CFTypeRef through some API that lacks memory management information. Such a value will come forcibly to your attention, because it will arrive into Swift, not as a CFTypeRef, but as an Unmanaged generic wrapping the actual CFTypeRef. This is a form of warning that Swift does not know how to proceed with the memory management of this pseudo-object. You will in fact be unable
 to proceed until you unwrap the CFTypeRef by calling the Unmanaged object’s takeRetainedValue
 or takeUnretainedValue
 method. You will call whichever method tells Swift how to manage the memory for this object correctly. For a CFTypeRef with an incremented retain count (usually acquired through a function with Create
 or Copy
 in its name), call takeRetainedValue
 ; otherwise, call takeUnretainedValue
 .

Property Memory Management Policies

In Objective-C, a @property
 declaration (see Chapter 10
) includes a statement of the memory management policy implemented by the corresponding setter accessor method. It is useful to be aware of this and to know how such policy statements are translated into Swift.

For example, earlier I said that a UIViewController retains its view
 (its main view). How do I know this? Because the @property
 declaration tells me so:

@property(null_resettable, nonatomic, strong) UIView *view;

The term strong
 means that the setter retains the incoming UIView object. The Swift translation of this declaration doesn’t add any attribute to the variable:

var view: UIView!

The default in Swift is that a variable referring to a reference object type is
 a strong reference — a persisting reference. This means that it retains the object. Thus, you can safely conclude from this declaration that a UIViewController retains its view
 .

The possible memory management policies for a Cocoa property are:

strong
 , retain
 (no Swift equivalent)

The default. The two terms are pure synonyms of one another; retain
 is the term inherited from pre-ARC days. Assignment to this property releases the existing value (if any) and retains the incoming value.

copy
 (no Swift equivalent, or @NSCopying
)

The same as strong
 or retain
 , except that the setter copies the incoming value by sending copy
 to it; the incoming value must be an object of a type that adopts NSCopying, to ensure that this is possible. The copy, which has an increased retain count already, becomes the new value.

weak
 (Swift weak
)

An ARC-weak reference. The incoming object value is not retained, but if it goes out of existence behind our back, ARC will magically substitute nil
 as the value of this property, which must be typed as an Optional declared with var
 .

assign
 (Swift unowned(unsafe)
)

No memory management. This policy is inherited from pre-ARC days, and is inherently unsafe (hence the additional unsafe
 warning in the Swift translation of the name): if the object referred to goes out of existence, this reference will become a dangling pointer and can cause a crash if you subsequently try to use it.

The copy
 policy is used by Cocoa particularly when an immutable class has a mutable subclass (such as NSString and NSMutableString, or NSArray and NSMutableArray; see Chapter 10
). The idea is to deal with the danger of the setter’s caller passing an object of the mutable subclass. This is possible, because, in accordance with the substitution principle of polymorphism (Chapter 4
), wherever an instance of a class is expected, an instance of its subclass can be passed. But it would be bad if this were to happen, because now the caller might keep a reference to the incoming value and, since it is in fact mutable, could later mutate it behind our back. To prevent this, the setter calls copy
 on the incoming object; this creates a new instance, separate from the object provided — and belonging to the immutable class.

In Swift, this problem is unlikely to arise with strings and arrays, because on the Swift side these are value types (structs) and are effectively copied when assigned, passed as an argument, or received as a return value. Thus, Cocoa’s NSString and NSArray property declarations, when translated into Swift as String and Array property declarations, don’t show any special marking corresponding to Objective-C copy
 . But Cocoa types that are not
 bridged to Swift value types do
 show a marking: @NSCopying
 . For example, the declaration of the attributedText
 property of a UILabel appears like this in Swift:

@NSCopying var attributedText: NSAttributedString?

NSAttributedString has a mutable subclass, NSMutableAttributedString. You’ve probably configured this attributed string as an NSMutableAttributedString, and now you’re assigning it as the UILabel’s attributedText
 . UILabel doesn’t want you keeping a reference to this mutable string and mutating it in place, since that would change the value of the property without passing through the setter. Thus, it copies the incoming value to ensure that what it has is a separate immutable NSAttributedString.

You can do exactly the same thing in your own code, and you will want to do so. Merely providing the @NSCopying
 designation on a property is sufficient; Swift will enforce the copy
 policy and will take care of the actual copying for you when code assigns to this property:

class StringDrawer {
 @NSCopying var attributedString : NSAttributedString!
 // ...
}

If, as is sometimes the case, your own class wants the internal ability to mutate the value of this property while preventing a mutable value from arriving from outside, put a private computed property façade in front of it that transforms it to the corresponding mutable type:

class StringDrawer {
 @NSCopying var attributedString : NSAttributedString!
 private var mutableAttributedString : NSMutableAttributedString! {
 get {
 if self.attributedString == nil {return nil}
 return NSMutableAttributedString(
 attributedString:self.attributedString)
 }
 set {
 self.attributedString = newValue
 }
 }
 // ...
}

@NSCopying
 can be used only
 for instance properties of classes, not of structs or enums — and only in the presence of Foundation, because that is where the NSCopying protocol is defined, which the type of a variable marked as @NSCopying
 must adopt.

Debugging Memory Management Mistakes

Though far less likely to occur under ARC (and Swift), memory management mistakes still can
 occur, especially because a programmer is prone to suppose (wrongly) that they can’t. Experience suggests that you should use every tool at your disposal to ferret out possible mistakes. Here are some of those tools (and see Chapter 9
):

	The memory gauge in the Debug navigator charts memory usage whenever your app runs, allowing you to observe possible memory leakage or other unwarranted heavy memory use. Note that memory management in the Simulator is not necessarily indicative of reality! Always observe the memory gauge with the app running on a device before making a judgment.

	Instruments (Product → Profile) has excellent tools for noticing leaks and tracking memory management of individual objects.

	Good old caveman debugging can help confirm that your objects are behaving as you want them to. Implement deinit
 with a print
 call. If it isn’t called, your object is not going out of existence. This technique can reveal problems that even Instruments will not directly expose.

	Memory graphing (“Memory Debugging”
) will draw you a picture of the ownership relations between your objects; in conjunction with Malloc Stack, it will trace that ownership through the actual retain calls.

	Dangling pointers are particularly difficult to track down, but they can often be located by “turning on zombies.” This is easy in Instruments with the Zombies template.
 Alternatively, edit the Run action in your scheme, switch to the Diagnostics tab, and check Enable Zombie Objects. The result is that an object that goes out of existence is replaced by a “zombie” that will report to the console if a message is sent to it (“message sent to deallocated instance”). Be sure to turn zombies back off when you’ve finished tracking down your dangling pointers. Don’t use zombies with the Leaks instrument: zombies are
 leaks.

	The Address Sanitizer
 (also in the scheme’s Run action’s Diagnostics tab) lets you debug even more subtle forms of memory misuse. Here, for example, we’re doing a Very Bad Thing, writing directly into memory that doesn’t belong to us:let b = UnsafeMutablePointer<CGFloat>.allocate(capacity:3)
b.initializeFrom([0.1, 0.2, 0.3])
b[4] = 0.4

That code probably won’t crash; it corrupts memory silently. But if we run our app under Address Sanitizer, it detects the problem and reports a heap buffer overflow.

Even these tools may not help you with every possible memory management issue. For example, some objects, such as a UIView containing a large image, are themselves small (and thus may not cause the memory gauge or Instruments to register large memory use) but require a large backing store nevertheless; maintaining references to too many such objects can cause your app to be summarily killed by the system. This sort of issue is not easy to track down.

Chapter 13.
 Communication Between Objects

As soon as an app grows to more than a few objects, puzzling questions can arise about how to send a message or communicate data between one object and another. The problem is essentially one of architecture. It may require some planning to construct your code so that all the pieces fit together and information can be shared as needed at the right moment. This chapter presents some organizational considerations that will help you arrange for one object to be able to communicate with another.

The problem of communication often comes down to one object being able to see
 another: the object Manny needs to be able to find the object Jack repeatedly and reliably over the long term so as to be able to send Jack messages.

One obvious solution is an instance property of Manny whose value is
 Jack. This is appropriate particularly when Manny and Jack share certain responsibilities or supplement one another’s functionality. The application object and its delegate, a table view and its data source, a view controller and the view that it controls — these are cases where the former must have an instance property pointing at the latter.

This does not necessarily imply that Manny needs to assert ownership of Jack as a matter of memory management policy (see Chapter 12
) — but it might. An object does not typically retain its delegate or its data source; similarly, an object that implements the target–action pattern, such as a UIControl, does not retain its target. By using a weak reference and typing the property as an Optional, and then treating the Optional coherently and safely, Manny can avoid owning Jack while coping with the possibility that his supposed reference to Jack will turn out to be nil
 . On the other hand, a view controller is useless without a view to control; once it has a view, it will retain it, releasing it only when it itself goes out of existence.

Objects can perform two-way communication without both of them holding references to one another. It may be sufficient for one
 of them to have a reference to the other — because the former, as part of a message to the latter, can include a reference to himself. For example, Manny might send a message to Jack where one of the parameters is a reference to Manny; this might merely constitute a form of identification, or an invitation to Jack to send a message back to Manny if Jack needs further information while doing whatever this method does. Manny thus makes himself, as it were, momentarily visible to Jack; Jack should not wantonly retain Manny (especially since there’s an obvious risk of a retain cycle). Again, this is a common pattern. The parameter of the delegate message textFieldShouldBeginEditing(_:)
 is a reference to the UITextField that sent the message. The first parameter of a target–action message is a reference to the control that sent the message.

But how is Manny to obtain a reference to Jack in the first place? That’s a very big question. Much of the art of iOS programming, and of object-oriented programming generally, lies in one object getting a reference
 to some other object (see “Instance References”
). Every case is different and must be solved separately, but certain general patterns emerge, and this chapter will outline some of them.

There are also ways for Manny to send a message that Jack receives
 without having to send it directly to
 Jack — possibly without even knowing or caring who Jack is. Notifications and key–value observing are examples, and I’ll mention them in this chapter as well.

Finally, the chapter ends with a section on the larger question of what kinds of objects need
 to see one another, within the general scope of a typical iOS program.

Visibility by Instantiation

Every instance comes from somewhere and at someone’s behest: some object sent a message commanding this instance to come into existence in the first place. The commanding object therefore has a reference to the instance at that moment. When Manny creates Jack, Manny has a reference to Jack.

That simple fact can serve as the starting point for establishing future communication. If Manny creates Jack and knows that he (Manny) will need a reference to Jack in the future, Manny can keep the reference that he obtained by creating Jack in the first place. Or, it may be that what Manny knows is that Jack will need a reference to Manny in the future; Manny can supply that reference immediately after creating Jack, and Jack will then keep it.

Delegation is a case in point. Manny may create Jack and immediately make himself Jack’s delegate, as in my example code in Chapter 11
 :

let cpc = ColorPickerController(colorName:colorName, color:c)
cpc.delegate = self

Indeed, if this crucial, you might endow Jack with an initializer so that Manny can create Jack and hand Jack a reference to himself at the same time
 , to help prevent any slip-ups. Compare the approach taken by UIBarButtonItem, where three different initializers, such as init(title:style:target:action:)
 , require as a parameter the target
 to which future messages will be sent by the UIBarButtonItem.

When Manny creates Jack, it might not be a reference to Manny himself that Jack needs, but to something that Manny knows or has. You will presumably endow Jack with a method so that Manny can hand that information across; again, it might be reasonable to make that method Jack’s initializer, if Jack simply cannot live without the information.

Recall this example from Chapter 11
 . It comes from a table view controller. The user has tapped a row of the table. We create a secondary table view controller, a TracksViewController instance, handing it the data it will need, and display the secondary table view. I have deliberately devised TracksViewController to have a designated initializer init(mediaItemCollection:)
 , making it virtually obligatory for a TracksViewController to have access, from the moment it comes into existence, to the data it needs:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 delay(0.1) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController?.pushViewController(t, animated: true)
 }
}

In that example, self
 does not keep a reference to the new TracksViewController instance, nor does the TracksViewController acquire a reference to self
 . But self
 does create the TracksViewController instance, and so, for one brief shining moment, it has a reference to it. Therefore self
 takes advantage of that moment to hand the TracksViewController instance the information it needs. There will be no better moment to do this. Knowing the moment, and taking care not to miss it, is part of the art of data communication.

Nib-loading is also a case in point. The loading of a nib is a way of instantiating objects from the nib. Proper preparation is essential in order to ensure that there’s a reference for those objects, so that they don’t simply vanish in a puff of smoke (“Nib Loading and Memory Management”
). The moment when the nib loads is the moment when the nib’s owner or the code that loads the nib is in contact with those objects; it takes advantage of that moment to secure those references.

Beginners are often puzzled by how two objects are to get a reference to one another if they will be instantiated from different
 nibs — either different .xib
 files or different scenes in a storyboard. It is frustrating that you can’t draw a connection between an object in nib A and an object in nib B; it’s particularly frustrating when you can see both objects sitting right there in the same storyboard.

 But, as I explained earlier (“Connections Between Nibs — Not!”
), such a connection would be meaningless, which is why it’s impossible. These are different nibs, and they will load at different times. However, some object (Manny) is going to be the owner when nib A loads, and some object (Jack) is going to be the owner when nib B loads. Perhaps they (Manny and Jack) can then see each other, in which case, given all the necessary outlets, the problem is solved. Or perhaps some third object (Moe) can see both of them and will introduce them to one another, providing a communication path for them.

For example, when a segue in a storyboard is triggered, the segue’s destination view controller is instantiated, and the segue has a reference to it. At the same time, the segue’s source view controller already exists, and the segue has a reference to it as well. So the segue sends the source view controller the prepare(for:sender:)
 message, containing a reference to itself (the segue) as the first parameter. Think of the segue as Moe; it is bringing Manny (the source view controller) and Jack (the destination view controller) together. This is the source view controller’s chance (Manny’s moment) to obtain a reference to the newly instantiated destination view controller (a reference to Jack), by asking the segue for it — and now the source view controller can make itself the destination view controller’s delegate, hand it any needed information, and so forth.

Visibility by Relationship

Objects may acquire the ability to see one another automatically by virtue of their position in a containing structure. Before worrying about how to supply one object with a reference to another, consider whether there may already
 be a chain of references leading from one to the other.

For example, a subview can see its superview, through its superview
 property. A superview can see all its subviews, through its subviews
 property, and can pick out a specific subview through that subview’s tag
 property, by calling the viewWithTag(_:)
 method. A subview in a window can see its window, through its window
 property. Thus, by working your way up or down the view hierarchy by means of these properties, it may be possible to obtain the desired reference.

Similarly, a responder (Chapter 11
) can see the next object up the responder chain, through the next
 property — which also means, because of the structure of the responder chain, that a view controller’s main view can see the view controller. In this code from one of my apps, I work my way up from a view some way down the view hierarchy to obtain a reference to the view controller that’s in charge of this whole scene (and there are similar examples in Chapter 5
):

var r : UIResponder! = sender
repeat { r = r.next } while !(r is UIViewController)

Similarly, view controllers are themselves part of a hierarchy and therefore can see one another. If a view controller is currently presenting a view through a second view controller, the latter is the former’s presentedViewController
 , and the former is the latter’s presentingViewController
 . If a view controller is the child of a UINavigationController, the latter is its navigationController
 . A UINavigationController’s visible view is controlled by its visibleViewController
 . And from any of these, you can reach the view controller’s view through its view
 property, and so forth.

All of these relationships are public. So if you can get a reference to just one object within any of these structures or a similar structure, you can effectively navigate the whole structure through a chain of references and lay your hands on any other object within the structure.

Global Visibility

Some objects are globally visible — that is, they are visible to all other objects. Object types themselves are an important example. As I pointed out in Chapter 4
 , it is perfectly reasonable to use a Swift struct with static members as a way of providing globally available namespaced constants (“Struct As Namespace”
).

Classes sometimes have class methods or properties that vend singleton instances. Some of these singletons, in turn, have properties pointing to other objects, making those other objects likewise globally visible. For example, any object can see the singleton UIApplication instance as UIApplication.shared
 . So any object can also see the app’s primary window, because that is the singleton UIApplication instance’s keyWindow
 property, and any object can see the app delegate, because that is its delegate
 property. And the chain continues: any object can see the app’s root view controller, because that is the primary window’s rootViewController
 — and from there, as I said in the previous section, we can navigate the view controller hierarchy and the view hierarchy.

You, too, can make your own objects globally visible by attaching them to a globally visible object. For example, a public property of the app delegate, which you are free to create, is globally visible by virtue of the app delegate being globally visible (by virtue of the shared application being globally visible).

Another globally visible object is the shared defaults object obtained as UserDefaults.standard
 .
 This object is the gateway to storage and retrieval of user defaults, which is similar to a dictionary (a collection of values named by keys). The user defaults are automatically saved when your application quits and are automatically available when your application is launched again later, so they are one of the ways in which your app maintains information between launches. But, being globally visible, they are also a conduit for communicating values within your app.

For example, in one of my apps there’s a preference setting I call Default.hazyStripy
 . This determines whether a certain visible interface object (a card in a game) is drawn with a hazy fill or a stripy fill. This is a setting that the user can change, so there is a preferences interface allowing the user to make this change. When the user displays this preferences interface, I examine the Default.hazyStripy
 setting in the user defaults to configure the preferences interface to reflect it in a segmented control (called self.hazyStripy
):

func setHazyStripy () {
 let hs = UserDefaults.standard
 .object(forKey:Default.hazyStripy) as! Int
 self.hazyStripy.selectedSegmentIndex = hs
}

Conversely, if the user interacts with the preferences interface, tapping the hazyStripy
 segmented control to change its setting, I respond by changing the actual Default.hazyStripy
 setting in the user defaults:

@IBAction func hazyStripyChange(_ sender: Any) {
 let hs = self.hazyStripy.selectedSegmentIndex
 UserDefaults.standard.set(hs, forKey: Default.hazyStripy)
}

But here’s the really interesting part. The preferences interface is not the only object that uses the Default.hazyStripy
 setting in the user defaults; the drawing code that actually draws the hazy-or-stripy-filled card also uses it, so as to know how the card should draw itself! When the user leaves the preferences interface and the card game reappears, the cards are redrawn — consulting the Default.hazyStripy
 setting in UserDefaults in order to do so:

override func draw(_ rect: CGRect) {
 let hazy : Bool = UserDefaults.standard
 .integer(forKey:Default.hazyStripy) == HazyStripy.hazy.rawValue
 CardPainter.shared.drawCard(self.card, hazy:hazy)
}

Thus there is no need for the card object and the view controller object that manages the preferences interface to be able to see one another, because they can both see this common object, the Default.hazyStripy
 user default. UserDefaults becomes, in itself, a global conduit for communicating information from one part of my app to another.

Notifications and Key–Value Observing

Notifications (Chapter 11
) can be a way to communicate between objects that are conceptually distant from one another without bothering to provide any
 way for one to see the other. All they really need to have in common is a knowledge of the name of the notification. Every object can see the notification center — it is a globally visible object — so every object can arrange to post or receive a notification.

Using a notification in this way may seem lazy, an evasion of your responsibility to architect your objects sensibly. But sometimes one object doesn’t need to know, and indeed shouldn’t know, what object (or objects) it is sending a message to.

Recall the example I gave in Chapter 11
 . In a simple card game app, the game needs to know when a card is tapped. A card, when it is tapped, knowing nothing about the game, simply emits a virtual shriek by posting a notification; the game object has registered for this notification and takes over from there:

NotificationCenter.default.post(name: .cardTapped, object: self)

Here’s another example, taking advantage of the fact that notifications are a broadcast mechanism. In one of my apps, the app delegate may detect a need to tear down the interface and build it back up again from scratch. If this is to happen without causing memory leaks (and all sorts of other havoc), every view controller that is currently running a repeating Timer needs to invalidate that timer (Chapter 12
). Rather than my having to work out what view controllers those might be, and endowing every view controller with a method that can be called, I simply have the app delegate shout “Everybody stop timers!”, by posting a notification. All
 my view controllers that run timers have registered for this notification, and they know what to do when they receive it.

By the same token, Cocoa itself provides notification versions of many delegate and action messages. For example, the app delegate has a method for being told when the app goes into the background, but other objects might need to know this too; those objects can register for the corresponding notification.

Similarly, key–value observing can be used to keep two conceptually distant objects synchronized with one another: a property of one object changes, and the other object hears about the change. As I said in (Chapter 11
), entire parts of Cocoa routinely expect you to use this when you want to be notified of a change in an object property. You can configure the same sort of thing with your own objects.

Model–View–Controller

In Apple’s documentation and elsewhere, you’ll find references to the term model–view–controller
 , or MVC
 .

 This refers to an architectural goal of maintaining a distinction between three functional aspects of a program where the user can view and edit information — meaning, in effect, a program with a graphical user interface. The notion goes back to the days of Smalltalk, and much has been written about it since then, but informally, here’s what the terms mean:

Model

The data and its management, often referred to as the program’s “business logic” — the hard-core stuff that the program is really all about.

View

What the user sees and interacts with.

Controller

The mediation between the model and the view.

Consider, for example, a game where the current score is displayed to the user:

A label displays the score (view)

A UILabel that shows the user the current score for the game in progress is view
 ; it is effectively nothing but a pixel-maker, and its business is to know how to draw itself. The knowledge of what
 it should draw — the score, and the fact that this is
 a score — lies elsewhere.

A rookie programmer might try to use the score displayed by the UILabel as the actual score: to increment the score, read the UILabel’s string, turn that string into a number, increment the number, turn the number back into a string, and present that string in place of the previous string. That is a gross violation of the MVC philosophy! The view presented to the user should reflect
 the score; it should not store
 the score.

The score is maintained (model)

The score is data being maintained internally; it is model
 . It could be as simple as an instance property along with a public increment
 method or as complicated as a Score object with a raft of methods.

The score is numeric, whereas a UILabel displays a string; this alone is enough to show that the view and the model are naturally different.

The score is updated (controller)

Telling the score when to change, and causing the updated score to be reflected in the user interface, is the work of the controller
 . This will be particularly clear if we imagine that the model’s numeric score needs to be transformed in some way for presentation to the user.

For example, suppose the UILabel that presents the score reads: “The score is 20.” The model is presumably storing and providing the number 20, so what’s the source of the phrase “The score is…”? Whoever is causing this phrase to precede the score in the presentation of the score to the user is a controller.

[image: ios8 1302]

Figure 13-1.
 Model–view–controller

Even this simplistic example (Figure 13-1
) illustrates very well the advantages of MVC. By separating powers in this way, we allow the aspects of the program to evolve with a great degree of independence. Do you want a different font and size in the presentation of the score? Change the view; the model and controller need know nothing about it, but will just go on working exactly as they did before. Do you want to change the phrase that precedes the score? Change the controller; the model and view are unchanged.

Adherence to MVC is particularly appropriate in a Cocoa app, because Cocoa itself adheres to it. The very names of Cocoa classes reveal the MVC philosophy that underlies them. A UIView is a view. A UIViewController is a controller; its purpose is to embody the logic that tells the view what to display. In Chapter 11
 we saw that a UIPickerView does not hold the data it displays; it gets that data from a data source. So the UIPickerView is a view; the data maintained by the data source is model (and the data source itself is probably a controller).

A further distinction, found in Apple’s documentation, is this: true model material and true view material should be quite reusable, in the sense that they can be transferred wholesale into some other app; controller material is generally not reusable, because it is concerned with how this
 app mediates between the model and the view.

MVC helps to provide answers about what objects need to be able to see what other objects in your app. A controller object will usually need to see a model object and a view object. A model object, or a group of model objects, usually won’t need to see outside itself. A view object typically doesn’t need to see outside itself specifically
 , but structural devices such as delegation, data source, and target–action allow a view object to communicate agnostically with a controller.

Appendix A.
 C, Objective-C, and Swift

You are an iOS programmer, and you’ve chosen to adopt Apple’s new language, Swift. And this means that you’ll never have to concern yourself with Apple’s old
 language, Objective-C, right? Wrong.

Objective-C is not dead. Far from it. You
 may be using Swift, but Cocoa is not. Programming iOS involves communicating with Cocoa and its supplementary frameworks. The APIs for those frameworks are written in Objective-C — or in its underlying base language, C. Messages that you send to Cocoa using Swift are being translated for you into Objective-C. Objects that you send and receive back and forth across the Swift/Objective-C bridge are Objective-C objects. Some objects that you send from Swift to Objective-C are even being translated for you into other object types, or into nonobject types.

You need to understand what Objective-C expects from you when you are sending messages across the language bridge. You need to know what Objective-C is going to do
 with those messages. You need to know what is coming from
 Objective-C, and how it will be represented in Swift. Your app may even include some Objective-C code as well as Swift code, so you need to know how the parts of your own app will communicate with each other.

This appendix summarizes certain linguistic features of C and Objective-C, and describes how Swift interfaces with those features. I do not explain here how to write Objective-C! For example, I’ll talk about Objective-C methods and method declarations, because you need to know how to call an Objective-C method from Swift; but I’m not going to explain how to call an Objective-C method in Objective-C
 . Earlier editions of this book teach C and Objective-C systematically and in detail, and I recommend consulting one for information about those languages.

The C Language

Objective-C is a superset of C; to put it another way, C provides the linguistic underpinnings of Objective-C. Everything that is true of C is true also of Objective-C. It is possible, and often necessary, to write long stretches of Objective-C code that are, in effect, pure C. Some of the Cocoa APIs are written in C. Therefore, in order to know about Objective-C, it is necessary to know about C.

C statements, including declarations, must end in a semicolon. Variables must be declared before use. A variable declaration consists of a data type name followed by the variable name, optionally followed by assignment of an initial value:

int i;
double d = 3.14159;

The C typedef
 statement starts with an existing type name and defines a new synonym for it:

typedef double NSTimeInterval;

C Data Types

C is not an object-oriented language; its data types are not objects (they are scalars
). The basic built-in C data types are all numeric: char (one byte), int (four bytes), float and double (floating-point numbers), and varieties such as short (short integer), long (long integer), unsigned short, and so on. Objective-C adds NSInteger, NSUInteger (unsigned), and CGFloat. The C bool type is actually a numeric, with zero representing false; Objective-C adds BOOL, which is also a numeric. The C native text type (string) is actually a null-terminated array of char.

Swift explicitly supplies numeric types that interface directly with C numeric types, even though Swift’s types are objects and C’s types are not. Swift type aliases provide names that correspond to the C type names: a Swift CBool is a C bool, a Swift CChar is a C char (a Swift Int8), a Swift CInt is a C int (a Swift Int32), a Swift CFloat is a C float (a Swift Float), and so on. Swift Int interchanges with NSInteger; Swift UInt interchanges with NSUInteger. Swift ObjCBool represents Objective-C BOOL. CGFloat is adopted as a Swift type name.

A major difference between C and Swift is that C (and therefore Objective-C) implicitly coerces when values of different numeric types are assigned, passed, compared to, or combined with one another; Swift doesn’t, so you must coerce explicitly to make types match exactly, as I described in Chapter 3
 .

The native C string type, a null-terminated array of char, may be typed in Swift as [Int8]
 or [CChar]
 (recall that CChar is
 Int8) or, for reasons that will be clear later, as UnsafePointer<Int8>
 or UnsafePointer<CChar>
 . A C string can’t be formed as a literal in Swift, but you can pass a Swift String where a C string is expected. If you need to create a C string variable, the NSString utf8String
 property or the Swift Foundation overlay’s cString(using:)
 method can be used to form a C string. Alternatively, you can use the String utf8CString
 property (a ContiguousArray<CChar>
) or the withCString
 method; in this example, I cycle through the “characters” of the C string until I reach the null terminator (I’ll explain the pointee
 property a bit later):

"hello".withCString {
 var cs = $0 // UnsafePointer<Int8>
 while cs.pointee != 0 {
 print(cs.pointee)
 cs += 1 // or: cs = cs.successor()
 }
}

In the other direction, a UTF-8 C string (including ASCII) can be rendered into a Swift String by way of a Swift String initializer such as init(cString:)
 or init?(validatingUTF8:)
 . To specify some other encoding, call the static method decodeCString(_:as:)
 .

C Enums

A C enum is numeric; values are some form of integer, and can be implicit (starting from 0) or explicit. Enums arrive in various forms into Swift, depending on exactly how they are declared. Let’s start with the simplest (and oldest) form:

enum State {
 kDead,
 kAlive
};
typedef enum State State;

(The typedef
 in the last line merely allows C programs to use the term State
 as the name of this type instead of the more verbose enum State
 .) In C, enumerand names kDead
 and kAlive
 are not “cases” of anything; they are not namespaced. They are constants, and as they are not explicitly initialized, they represent 0 and 1 respectively. An enum declaration can specify the integer type further; this one doesn’t, so the values are typed in Swift as UInt32.

This old-fashioned sort of C enum arrives as a Swift struct adopting the RawRepresentable protocol, and its enumerands (here, kDead
 and kAlive
) arrive into Swift as synonyms for instances of the State struct with an appropriate rawValue
 (here, 0 and 1 respectively). Notice that I didn’t say anything about namespacing! The enumerands are bare names, not members of the State struct; you say kDead
 , not State.kDead
 .

The idea is that you can use the State struct, and in particular the enumerand names, as a medium of interchange wherever a State enum arrives from or is expected by C. Thus, if a C function setState
 takes a State enum parameter, you can call it with one of the State enumerand names:

setState(kDead)

If you are curious about what integer is represented by the name kDead
 , you have to take its rawValue
 . You can also create an arbitrary State value by calling its init(rawValue:)
 initializer — there is no compiler or runtime check to see whether this value is one of the defined constants. But you aren’t expected to do either of those things.

Now let’s talk about another form of C enum. Starting back in Xcode 4.4, a C enum notation was introduced that uses the NS_ENUM
 macro:

typedef NS_ENUM(NSInteger, UIStatusBarAnimation) {
 UIStatusBarAnimationNone,
 UIStatusBarAnimationFade,
 UIStatusBarAnimationSlide,
};

That notation explicitly specifies the integer type and associates a type name with this enum as a whole. Swift imports an enum declared this way as a Swift enum
 with the name and raw value type intact. This is a true Swift enum, so the enumerand names become namespaced case names. Moreover, Swift automatically subtracts the common prefix from the case names:

enum UIStatusBarAnimation : Int {
 case none
 case fade
 case slide
}

Going the other way, a Swift enum with an Int raw value type can be exposed to Objective-C using the @objc
 attribute. Thus, for example, Objective-C sees this Swift enum as an enum with type NSInteger and enumerand names StarBlue
 , StarWhite
 , and so on:

@objc enum Star : Int {
 case blue
 case white
 case yellow
 case red
}

Another variant of C enum notation, using the NS_OPTIONS
 macro, is suitable for bitmasks:

typedef NS_OPTIONS(NSUInteger, UIViewAutoresizing) {
 UIViewAutoresizingNone = 0,
 UIViewAutoresizingFlexibleLeftMargin = 1 << 0,
 UIViewAutoresizingFlexibleWidth = 1 << 1,
 UIViewAutoresizingFlexibleRightMargin = 1 << 2,
 UIViewAutoresizingFlexibleTopMargin = 1 << 3,
 UIViewAutoresizingFlexibleHeight = 1 << 4,
 UIViewAutoresizingFlexibleBottomMargin = 1 << 5
};

An enum declared this way arrives into Swift as a struct adopting the OptionSet protocol. The OptionSet protocol adopts the RawRepresentable protocol, so this is a struct with a rawValue
 instance property holding the underlying integer. The C enum case names are represented by static properties, each of whose values is an instance of this struct; the names of these static properties are imported with the common prefix subtracted:

struct UIViewAutoresizing : OptionSet {
 init(rawValue: UInt)
 static var flexibleLeftMargin: UIViewAutoresizing { get }
 static var flexibleWidth: UIViewAutoresizing { get }
 static var flexibleRightMargin: UIViewAutoresizing { get }
 static var flexibleTopMargin: UIViewAutoresizing { get }
 static var flexibleHeight: UIViewAutoresizing { get }
 static var flexibleBottomMargin: UIViewAutoresizing { get }
}

Thus, for example, when you say UIViewAutoresizing.flexibleLeftMargin
 , it looks
 as if you are initializing a case of a Swift enum, but in fact this is an instance of the UIViewAutoresizing struct
 , whose rawValue
 property has been set to the value declared by the original C enum — which, for .flexibleLeftMargin
 , is 1<<0
 . Because a static property of this struct is
 an instance of the same struct, you can, as I explained in “Inference of Type Name with Static/Class Members”
 , omit the struct name when supplying a static property name where the struct is expected:

self.view.autoresizingMask = .flexibleWidth

Moreover, because this is an OptionSet struct, set-like operations can be applied — thus permitting you to manipulate the bitmask by working with instances as if this were a Set:

self.view.autoresizingMask = [.flexibleWidth, .flexibleHeight]

Tip

In Objective-C, where an NS_OPTIONS
 enum is expected, you pass 0
 to indicate that no options are provided. In Swift, where a corresponding struct is expected, you pass []
 (an empty set) or omit the options:
 parameter entirely. Some NS_OPTIONS
 enums have an explicit option that means
 0
 ; Swift sometimes won’t bother to import its name, because passing []
 means the same thing. For example, to set a UIViewAutoresizing value to UIViewAutoresizingNone
 in Swift, set it to []
 (not .none
).

Unfortunately, you may occasionally encounter a bitmask enum whose Cocoa API hasn’t been marked NS_OPTIONS
 , and thus isn’t imported into Swift as an OptionSet. Here’s an example:

typedef enum NSGlyphProperty : NSInteger {
 NSGlyphPropertyNull = (1 << 0),
 NSGlyphPropertyControlCharacter = (1 << 1),
 NSGlyphPropertyElastic = (1 << 2),
 NSGlyphPropertyNonBaseCharacter = (1 << 3)
} NSGlyphProperty;

That’s obviously a bitmask, but in Objective-C it is marked with NS_ENUM
 , not NS_OPTIONS
 , and so in Swift it’s a simple enum. To work with it as a bitmask, you are forced to take its raw value and use the arithmetic bitwise-or and bitwise-and operators, just as in Objective-C:

let property = self.lm.propertyForGlyph(at:lastCharRange)
let mask1 = property.rawValue
let mask2 = NSLayoutManager.GlyphProperty.controlCharacter.rawValue
return mask1 & mask2 != 0 // can't say .contains here

Also, some common lists of alternatives are not implemented as enums in the first place. This is not problematic, but it is inconvenient. For example, the names of the AVFoundation audio session categories are just global NSString constants:

NSString *const AVAudioSessionCategoryAmbient;
NSString *const AVAudioSessionCategorySoloAmbient;
NSString *const AVAudioSessionCategoryPlayback;
// ... and so on ...

Even though this is a list of alternatives with an obvious common prefix, Swift doesn’t magically transform it into an AVAudioSessionCategory enum or struct with abbreviated names. When you want to specify the Playback category, you have to use the whole name, AVAudioSessionCategoryPlayback
 . Such constants are jokingly referred to by Apple as “stringly typed.”

New in Swift 4, however, at least some
 “stringly typed” constants are
 imported as static struct properties. This is accomplished by means of the NS_STRING_ENUM
 and NS_EXTENSIBLE_STRING_ENUM
 Objective-C macros. For example, the names of the NSAttributedString attribute keys used to be simple string constants (type NSString*
), just like the audio session categories; now, however, they are typed as NSAttributedStringKey types:

NSAttributedStringKey const NSFontAttributeName;
NSAttributedStringKey const NSParagraphStyleAttributeName;
NSAttributedStringKey const NSForegroundColorAttributeName;
// ... and so on ...

The result is that these are imported into Swift 4 as static properties of an NSAttributedStringKey struct (.name
 , .paragraphStyle
 , .foregroundColor
 , and so on).

C Structs

A C struct is a compound type whose elements can be accessed by name using dot-notation after a reference to the struct. For example:

struct CGPoint {
 CGFloat x;
 CGFloat y;
};
typedef struct CGPoint CGPoint;

After that declaration, it becomes possible to talk like this in C:

CGPoint p;
p.x = 100;
p.y = 200;

A C struct arrives wholesale into Swift as a Swift struct, which is thereupon endowed with Swift struct features. Thus, for example, CGPoint in Swift has x
 and y
 CGFloat instance properties, as you would expect; but it also magically acquires the implicit memberwise initializer! In addition, a zeroing initializer with no parameters is injected; thus, saying CGPoint()
 makes a CGPoint whose x
 and y
 are both 0. Extensions can supply additional features, and the Swift CoreGraphics header adds a few to CGPoint:

extension CGPoint {
 static var zero: CGPoint { get }
 init(x: Int, y: Int)
 init(x: Double, y: Double)
}

As you can see, a Swift CGPoint has additional initializers accepting Int or Double arguments, along with another way of making a zero CGPoint, CGPoint.zero
 . CGSize is treated similarly. CGRect is particularly well endowed with added methods and properties in Swift, allowing you to do things in a Swiftier way. (I’ll talk more about that in a bit.)

The fact that a Swift struct is an object, while a C struct is not, does not pose any problems of communication. You can assign or pass a Swift CGPoint, for example, where a C CGPoint is expected, because CGPoint came from C in the first place.
 The fact that Swift has endowed CGPoint with object methods and properties doesn’t matter; C doesn’t see them. All that C cares about are the x
 and y
 elements of this CGPoint, which are communicated from Swift to C without difficulty.

C Pointers

A C pointer is an integer designating the location in memory (the address
) where the real data resides. Allocating and disposing of that memory is a separate matter. The declaration for a pointer to a data type is written with an asterisk after the data type name; a space can appear on either or both sides of the asterisk. These are equivalent declarations of a pointer-to-int:

int *intPtr1;
int* intPtr2;
int * intPtr3;

The type name itself is int*
 (or, with a space, int *
). Objective-C, for reasons that I’ll explain later, uses C pointers heavily, so you’re going to be seeing that asterisk a lot if you look at any Objective-C.

A C pointer arrives into Swift as an UnsafePointer or, if writable, an UnsafeMutablePointer; this is a generic, and is specified to the actual type of data pointed to. (A pointer is “unsafe” because Swift isn’t managing the memory for, and can’t even guarantee the integrity of, what is pointed to.)

For example, here’s an Objective-C UIColor method declaration; I haven’t discussed this syntax yet, but just concentrate on the types in parentheses:

- (BOOL) getRed: (CGFloat *) red
 green: (CGFloat *) green
 blue: (CGFloat *) blue
 alpha: (CGFloat *) alpha;

CGFloat is a basic numeric type. The type CGFloat *
 , despite the space, states that these parameters are all CGFloat*
 — that is, pointer-to-CGFloat.

The Swift translation of that declaration looks, in effect, like this:

func getRed(_ red: UnsafeMutablePointer<CGFloat>,
 green: UnsafeMutablePointer<CGFloat>,
 blue: UnsafeMutablePointer<CGFloat>,
 alpha: UnsafeMutablePointer<CGFloat>) -> Bool

UnsafeMutablePointer in this context is used like a Swift inout
 parameter: you declare and initialize a var
 of the appropriate type beforehand, and then pass its address as argument by way of the &
 prefix operator. When you pass the address of a reference in this way, you are in fact creating and passing a pointer:

var r : CGFloat = 0
var g : CGFloat = 0
var b : CGFloat = 0
var a : CGFloat = 0
c.getRed(&r, green: &g, blue: &b, alpha: &a)

In C, to access the memory pointed to by a pointer, you use an asterisk before the pointer’s name: *intPtr
 is “the thing pointed to by the pointer intPtr
 .” In Swift, you use the pointer’s pointee
 property.

In this example, we receive a stop
 parameter typed originally as a BOOL*
 , a pointer-to-BOOL; in Swift, it’s an UnsafeMutablePointer<ObjCBool>
 . To set the BOOL at the far end of this pointer, we set the pointer’s pointee
 :

// mas is an NSMutableAttributedString, r is an NSRange, f is a UIFont
mas.enumerateAttribute(.font, in: r) { value, r, stop in
 if let value = value as? UIFont, value == f {
 // ...
 stop.pointee = true
 }
}

The most general type of C pointer is pointer-to-void (void*
), also known as the generic pointer
 . The term void
 here means that no type is specified; it is legal in C to use a generic pointer wherever a specific type of pointer is expected, and vice versa
 . In effect, pointer-to-void casts away type checking as to what’s at the far end of the pointer. This will appear in Swift as a “raw” pointer, either UnsafeRawPointer
 or UnsafeMutableRawPointer
 . In general, when you encounter pointers of this type, if you need to access the underlying data, you’ll start by rebinding
 its memory to an unsafe pointer generic specified to the underlying type:

// buff is a CVImageBuffer
if let baseAddress = CVPixelBufferGetBaseAddress(buff) {
 // baseAddress is an UnsafeMutableRawPointer
 let addrptr = baseAddress.assumingMemoryBound(to: UInt8.self)
 // addrptr is an UnsafeMutablePointer<UInt8>
 // ...
}

C Arrays

A C array contains a fixed number of elements of a certain data type. Under the hood, it is a contiguous block of memory sized to accommodate this number of elements of this data type. For this reason, the name of an array in C is the name of a pointer — to the first element of the array. For example, if arr
 has been declared as an array of int, the term arr
 can be used wherever a value of type int*
 (a pointer-to-int) is expected. The C language will indicate an array type either by appending square brackets to a reference or as a pointer.

(That explains why C strings may be typed in Swift as an unsafe pointer to Int8 or CChar: a C string is an array of char, so it’s a pointer to char.)

For example, the C function CGContextStrokeLineSegments
 is declared like this:

void CGContextStrokeLineSegments(CGContextRef c,
 const CGPoint points[],
 size_t count
);

The second parameter is a C array of CGPoints; that’s what the square brackets tell you. A C array carries no information about how many elements it contains, so to pass this C array to this function, you must also tell
 the function how many elements the array contains; that’s what the third parameter is for. A C array of CGPoint is a pointer to a CGPoint, so this function’s declaration is translated into Swift like this:

func __strokeLineSegments(
 between points: UnsafePointer<CGPoint>?,
 count: Int)

Now, you’re not really expected to call this function; the CGContext Swift overlay provides a pure Swift version, strokeLineSegments
 , which takes a Swift array of CGPoint (with no need to provide a count
). But let’s say you wanted to call __strokeLineSegments
 instead. How would you do it?

To call __strokeLineSegments
 and pass it a C array of CGPoints, it would appear that you need to make
 a C array of CGPoints. A C array is not, by any stretch of the imagination, a Swift array; so how on earth will you do this? Surprise! You don’t have to. Even though a Swift array is not a C array, you can pass a pointer to a Swift array here. In fact, you don’t even need to pass a pointer; you can pass a reference to a Swift array itself
 . And since this is not a mutable pointer, you can declare the array with let
 ; indeed, you can even pass a Swift array literal! No matter which approach you choose, Swift will convert to a C array for you as the argument crosses the bridge from Swift to C:

let c = UIGraphicsGetCurrentContext()!
let arr = [CGPoint(x:0,y:0),
 CGPoint(x:50,y:50),
 CGPoint(x:50,y:50),
 CGPoint(x:0,y:100),
]
c.__strokeLineSegments(between: arr, count: arr.count)

However, you can
 form a C array if you really want to. To do so, you must first set aside the block of memory yourself: declare an UnsafeMutablePointer of the desired type, calling the class method allocate(capacity:)
 with the desired number of elements. You can then write the element values directly into memory. You could do this by manipulating the pointee
 , but you can also use subscripting, which might be a lot more convenient. Finally, since the UnsafeMutablePointer is
 a pointer, you pass it
 , not a pointer to it, as argument:

let c = UIGraphicsGetCurrentContext()!
let arr = UnsafeMutablePointer<CGPoint>.allocate(capacity:4)
arr[0] = CGPoint(x:0,y:0)
arr[1] = CGPoint(x:50,y:50)
arr[2] = CGPoint(x:50,y:50)
arr[3] = CGPoint(x:0,y:100)
c.__strokeLineSegments(between: arr, count: 4)

If you’re going to do that, however, you really need to take upon yourself the full details of memory management. Having allocated this pointer’s memory and assigned values into it, you should remove the values and deallocate the memory:

let arr = UnsafeMutablePointer<CGPoint>.allocate(capacity:4)
defer {
 arr.deinitialize()
 arr.deallocate(capacity:4)
}

The same convenient subscripting is available when you receive
 a C array. In this example, col
 is a UIColor; comp
 is typed as an UnsafePointer to CGFloat. That is really a C array of CGFloat — and so you can access its elements by subscripting:

if let comp = col.cgColor.__unsafeComponents,
 let sp = col.cgColor.colorSpace,
 sp.model == .rgb {
 let red = comp[0]
 let green = comp[1]
 let blue = comp[2]
 let alpha = comp[3]
 // ...
}

C Functions

A C function declaration starts with the return type (which might be void
 , meaning no returned value), followed by the function name, followed by a parameter list, in parentheses, of comma-separated pairs consisting of the type followed by the parameter name. The parameter names are purely internal. C functions are global, and Swift can call them directly.

For example, here’s the C declaration for an Audio Services function:

OSStatus AudioServicesCreateSystemSoundID(
 CFURLRef inFileURL,
 SystemSoundID* outSystemSoundID)

An OSStatus is basically an Int32. A CFURLRef is a CFTypeRef (“Memory Management of CFTypeRefs”
), called CFURL in Swift. A SystemSoundID is a UInt32, and the *
 makes this a C pointer, as we already know. The whole thing thus translates directly into Swift:

func AudioServicesCreateSystemSoundID(
 _ inFileURL: CFURL,
 _ outSystemSoundID: UnsafeMutablePointer<SystemSoundID>) -> OSStatus

CFURL is (for reasons that I’ll explain later) interchangeable with NSURL and Swift URL; so here we are, calling this C function in Swift:

let sndurl = Bundle.main.url(forResource: "test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)

In iOS programming, the vast majority of commonly used C global functions operate on a struct; they have the name of that struct as the first element of their name, and have that struct itself as their first parameter. In Swift, such functions are often overshadowed by instance method representations; the struct name is stripped from the name of the function, and the function is applied as a method to an instance of that struct.

For example, in Objective-C, the way to construct a CGRect from scratch is with the CGRectMake
 function, and the way to divide a CGRect is with the CGRectDivide
 function:

CGRect rect = CGRectMake(10,10,100,100);
CGRect arrow;
CGRect body;
CGRectDivide(rect, &arrow, &body, arrowHeight, CGRectMinYEdge);

In Swift, CGRectMake
 is overshadowed by the CGRect struct initializer init(x:y:width:height:)
 , and CGRectDivide
 is overshadowed by the CGRect divided
 method:

let rect = CGRect(x: 10, y: 10, width: 100, height: 100)
let (arrow, body) = rect.divided(atDistance: arrowHeight, from: .minYEdge)

In C, a function has a type based on its signature, and the name of a function is a reference to the function, and so it is possible to pass a function — sometimes referred to as a pointer-to-function
 — by using the function’s name where a function of that type is expected. In a declaration, a pointer-to-function may be symbolized by an asterisk in parentheses.

For example, here’s the declaration for a C function from the Audio Toolbox framework:

OSStatus AudioServicesAddSystemSoundCompletion(SystemSoundID inSystemSoundID,
 CFRunLoopRef __nullable inRunLoop,
 CFStringRef __nullable inRunLoopMode,
 AudioServicesSystemSoundCompletionProc inCompletionRoutine,
 void * __nullable inClientData)

(I’ll explain the term __nullable
 later.) What’s an AudioServicesSystemSoundCompletionProc? It’s this:

typedef void (*AudioServicesSystemSoundCompletionProc)(
 SystemSoundID ssID,
 void* __nullable clientData);

A SystemSoundID is a UInt32, so that tells you, in the rather tortured syntax that C uses for these things, that an AudioServicesSystemSoundCompletionProc is a pointer to a function taking two parameters (typed UInt32 and pointer-to-void) and returning no result.

Amazingly, you can pass a Swift function where a C pointer-to-function is expected! As always when passing a function, you can define the function separately and pass its name, or you can form the function inline as an anonymous function. If you’re going to define the function separately, it must be a function
 — meaning that it cannot be a method. A function defined at the top level of a file is fine; so is a function defined locally within a function.

So here’s my AudioServicesSystemSoundCompletionProc, declared at the top level of a file:

func soundFinished(_ snd:UInt32, _ c:UnsafeMutableRawPointer?) {
 AudioServicesRemoveSystemSoundCompletion(snd)
 AudioServicesDisposeSystemSoundID(snd)
}

And here’s my code for playing a sound file as a system sound, including a call to AudioServicesAddSystemSoundCompletion
 :

let sndurl = Bundle.main.url(forResource: "test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesAddSystemSoundCompletion(snd, nil, nil, soundFinished, nil)
AudioServicesPlaySystemSound(snd)

Objective-C

Objective-C is built on the back of C. It adds some syntax and features, but it continues to use C syntax and data types, and remains C under the hood.

Unlike Swift, Objective-C has no namespaces. For this reason, different frameworks distinguish their contents by starting their names with different prefixes. The “CG” in “CGFloat” stands for Core Graphics, because it is declared in the Core Graphics framework. The “NS” in “NSString” stands for NeXTStep, a historical name for the framework that later became Cocoa. And so on.

Objective-C Objects and C Pointers

All the data types and syntax of C are part of Objective-C. But Objective-C is also object-oriented, so it needs a way of adding objects to C. It does this by taking advantage of C pointers. C pointers accommodate having anything at all at the far end of the pointer; management of whatever is pointed to is a separate matter, and that’s just what Objective-C takes care of. Thus, Objective-C object types are expressed using C pointer syntax.

For example, here’s the Objective-C declaration for the addSubview:
 method:

- (void)addSubview:(UIView *)view;

I haven’t discussed Objective-C method declaration syntax yet, but focus on the type declaration for the view
 parameter, in parentheses: it is UIView*
 . This appears to mean “a pointer to a UIView.” It does mean that — and it doesn’t. What’s at the far end of the pointer is certainly a UIView instance. But all
 Objective-C object references are pointers. Thus, the fact that this is a pointer is merely a consequence of the fact that it’s an object.

The Swift translation of this method declaration doesn’t appear to involve any pointers:

func addSubview(_ view: UIView)

In general, in Swift, you will simply pass a reference to a class instance where Objective-C expects a class instance; the fact that an asterisk is used in the Objective-C declaration to express the fact that this is an object won’t matter. What you pass as argument when calling addSubview(_:)
 from Swift is a UIView instance — which is exactly what Objective-C expects. There is, of course, a sense in which you are
 passing a pointer when you pass a class instance — because classes are reference types! Thus, a class instance is actually seen the same way by both Swift and Objective-C; the difference is that Swift doesn’t use pointer notation
 .

Objective-C’s id
 type is a general pointer to an object — the object equivalent of C pointer-to-void. Any object type can be assigned or cast to or from an id
 . Because id
 is itself a pointer, a reference declared as id
 doesn’t use an asterisk; it is rare (though not impossible) to encounter an id*
 .

Objective-C Objects and Swift Objects

Objective-C objects are classes and instances of classes. They arrive into Swift more or less intact. You won’t have any trouble subclassing Objective-C classes or working with instances of Objective-C classes.

The same is true in reverse. If Objective-C expects an object, it expects a class, and Swift can provide it. In the most general case, where Objective-C expects an id
 , you can pass a class instance, and Objective-C will be able to deal with it. But the only kind of object that Objective-C can fully
 deal with is an instance of an NSObject subclass. Instances of other classes can’t be introspected by Objective-C, and everything else has to be bridged or boxed in order to survive the journey into Objective-C’s world, as I’ll explain later.

Swift can see just about all aspects of an Objective-C class type (for how Swift sees Objective-C properties and accessors, see Chapter 10
). The reverse, however, is not true. Many features of Swift are completely meaningless to Objective-C — and therefore those features are simply invisible to Objective-C. Objective-C can’t see any of the following:

	Swift enums, except for an @objc
 enum with an Int raw value

	Swift structs, except for structs that come ultimately from C (or that are bridged)

	Swift classes not derived from NSObject

	Swift protocols not marked @objc

	Protocol extensions

	Generics

	Tuples

	Nested types

Nothing in that list can be directly exposed to Objective-C — and, by implication, nothing that involves
 anything in that list can be exposed to Objective-C. For example, suppose we have a class MyClass not derived from NSObject. Then if your UIViewController subclass has a property typed as a MyClass, that property cannot be exposed to Objective-C. If your UIViewController subclass has a method that receives or returns a value typed as a MyClass, that method cannot be exposed to Objective-C.

Nevertheless, you are perfectly free to use such properties and methods, even in a class (such as a UIViewController subclass) that is
 exposed to Objective-C. Objective-C simply won’t be able see those aspects of the class that would be meaningless to it.

Exposure of Swift to Objective-C

New in Swift 4, invisibility of Swift code to Objective-C is the norm
 . With a few exceptions, even if Objective-C can
 theoretically see a thing, it won’t
 see it unless you explicitly expose it to Objective-C. You do that with the @objc
 attribute.

Let’s talk first about the “few exceptions” I just mentioned. These are things in your Swift code that Objective-C will be able to see automatically, without
 an explicit @objc
 attribute:

	Classes that derive from NSObject. Such a class will be declared in Swift either as subclassing NSObject itself or as subclassing some NSObject subclass, typically a class defined by Cocoa (such as UIViewController).

	Within such a class, overrides of methods that are defined in Objective-C (such as UIViewController’s viewDidLoad
) or are defined in Swift but marked @objc
 .

	Within such a class, implementations of members of protocols that are defined in Objective-C (such as NSCoding’s init(coder:)
) or are defined in Swift but marked @objc
 .

	Within such a class, instance properties marked @IBOutlet
 or @IBInspectable
 and methods marked @IBAction
 (see Chapter 7
), and instance properties marked @NSManaged
 .

Otherwise, to expose to Objective-C a property, method, or protocol, mark it with @objc
 . The compiler will stop you if you try to expose to Objective-C something that it is unable to see (such as a property whose type Objective-C cannot see or cannot understand). A protocol marked as @objc
 automatically becomes a class protocol.

Tip

This behavior is new in Swift 4. In Swift 3, a member of a class exposed to Objective-C is itself automatically
 exposed to Objective-C if Objective-C is capable of seeing it. If you are not ready to adopt the Swift 4 behavior, you can retain the Swift 3 behavior by turning on the “Swift 3 @objc
 Inference” build setting — though this will raise a compiler warning.

A useful trick, if you have several methods that you need to expose explicitly to Objective-C, is to clump them into an extension which is itself marked @objc
 ; there is then no need to mark those methods with @objc
 individually. If most or all of a class’s members are to be exposed to Objective-C, you can mark the class @objcMembers
 ; again, there is then no need to mark those members with @objc
 individually. Conversely, if a class member would be exposed to Objective-C and you want to prevent this, you can mark it @nonobjc
 .

There are two additional uses of @objc
 :

Expose a member of a nonObjective-C class

Even if a class is not exposed to Objective-C, it can be useful to mark a member of that class with @objc
 so that your Swift code can take advantage of an Objective-C language feature with regard to that member. For example, a Timer (Chapter 11
) can call a method of a nonObjective-C class when it fires, but only if that method is marked @objc
 , because the method is specified with a selector (Chapter 2
) — and selectors are an Objective-C feature (as I’ll explain later in this appendix).

Change the Objective-C name of something

When you mark something with @objc
 , you can add parentheses containing the name by which you want Objective-C to see this thing. You are free to do this even for a class or a class member that Objective-C can see already. An example appeared in Chapter 10
 when I changed the name by which Objective-C sees a property accessor.

Bridged Types and Boxed Types

Swift will convert certain native nonclass types to their Objective-C class equivalents for you. The following native Swift structs are bridged to Objective-C class types:

	String to NSString

	Numbers (and Bool) to NSNumber

	Array to NSArray

	Dictionary to NSDictionary

	Set to NSSet

Bridging has two immediate practical consequences for your code:

Parameter passing

You can pass an instance of the Swift struct where the Objective-C class is expected. In fact, in general you’ll rarely even encounter the Objective-C class, because the Swift rendering of the API will display it as the Swift struct. If an Objective-C method takes an NSString, you’ll see it in Swift as taking a String, and so on.

Casting

You can cast between the Swift struct and the Objective-C class. When casting from Swift to Objective-C, this is not a downcast, so the bare as
 operator is all you need. But casting from Objective-C to Swift, except for NSString to String, involves adding type information — NSNumber wraps some specific numeric type, and the collection types contain elements of some specific type — so you might need to cast down with as!
 (or as?
) in order to specify that type.

Also, certain common Objective-C structs that can easily be wrapped by NSValue in Objective-C are bridged to NSValue in Swift. The common structs are CGPoint, CGSize, CGRect, CGAffineTransform, UIEdgeInsets, UIOffset, NSRange, CATransform3D, CMTime, CMTimeMapping, CMTimeRange, MKCoordinate, and MKCoordinateSpan.

In addition, Cocoa Foundation classes are overlaid by Swift types, whose names are the same but without the “NS” prefix. Often, extra functionality is injected to make the type behave in a more Swift-like way; and, where appropriate, the Swift type may be a struct, thus allowing you to take advantage of Swift value type semantics. For example, NSMutableData becomes largely otiose, because Data, the overlay for Objective-C NSData, is a struct with mutating
 methods and can thus be declared with let
 or var
 . And Date, the overlay for Objective-C NSDate, adopts Equatable and Comparable, so that (for example) an NSDate method like earlierDate:
 can be replaced by the >
 operator.

The Swift overlay types are all bridged to their Foundation counterparts. The Swift rendering of an Objective-C API will show you the Swift overlay type rather than the Objective-C type; for example, a Cocoa method that takes or returns an NSDate in Objective-C will take or return a Date in Swift. If necessary, you can cast between bridged types; for example, you can turn a Date into an NSDate with as
 .

The Swift Any type can accept any type of instance, directly. Objective-C id
 is rendered as Any in Swift. This means that wherever an Objective-C API accepts an id
 parameter, that parameter is typed in Swift as Any and can be passed any Swift value whatever. If that value is of a bridged type, the bridge is crossed automatically
 , just as if you had cast explicitly with as
 . A String becomes an NSString, an Array becomes an NSArray, a number is wrapped in an NSNumber, a CGPoint or other common struct is wrapped in an NSValue, a Data becomes an NSData, and so forth.

The same rule applies when you pass a Swift collection to Objective-C, with regard to the collection’s elements. If an element is of a bridged type, the bridge is crossed automatically
 . The typical case in point is an array. The elements of an array of Int become NSNumbers. The elements of an array of CGPoint become NSValues. In the case of an array with an Optional element type, any nil
 elements become NSNull instances (Chapter 10
).

What happens when an object tries to cross the bridge from Swift to Objective-C, but that instance is not
 of a bridged type? (Such an object might be an enum, a struct of a nonbridged type, or a class that doesn’t derive from NSObject.) On the one hand, Objective-C can’t do anything with this object: it can’t introspect or even understand it. On the other hand, the object needs to be allowed to cross the bridge somehow, especially because you, on the Swift side, might ask for the object back again later, and it needs to be returned to you intact.

For example, suppose Person is a struct with a firstName
 and a lastName
 property. Then you need to be able to do something like this:

// lay is a CALayer
let p = Person(firstName: "Matt", lastName: "Neuburg")
lay.setValue(p, forKey: "person")
// ... time passes ...
if let p2 = lay.value(forKey: "person") as? Person {
 print(p2.firstName, p.lastName) // Matt Neuburg
}

Amazingly, this works. How? The answer, in a nutshell, is that Swift boxes
 this object into something that Objective-C can see as
 an object, even though Objective-C can’t do
 anything with that object other than store and retrieve it. How Swift does this is irrelevant; it’s an implementation detail, and none of your business. It happens that in this case the Person object is wrapped up in a _SwiftValue
 , but that name is unimportant. What’s important is that it is an Objective-C object, wrapping the value we provided. In this way, Objective-C is able to store the object for us, in its box, and hand it back to us intact upon request. Like Pandora, Objective-C will cope perfectly well as long as it doesn’t look in the box!

Objective-C Methods

In Objective-C, method parameters can (and nearly always do) have external names, and the name of a method as a whole is not distinct from the external names of the parameters. The parameter names are part
 of the method name, with a colon appearing where each parameter would need to go. For example, here’s a typical Objective-C method declaration from Cocoa’s NSString class:

- (NSString *)stringByReplacingOccurrencesOfString:(NSString *)target
 withString:(NSString *)replacement

The Objective-C name of that method is stringByReplacingOccurrencesOfString:withString:
 . The name contains two colons, so the method takes two parameters, which the declaration tells us are NSString parameters.

The declaration for an Objective-C method has three parts:

	Either +
 or -
 , meaning that the method is a class method or an instance method, respectively.

	The data type of the return value, in parentheses. It might be void
 , meaning no returned value.

	The name of the method, split after each colon so as to make room for the parameters. Following each colon is the data type of the parameter, in parentheses, followed by a placeholder (internal) name for the parameter.

When Swift calls an Objective-C method, there’s an obvious mismatch between the rules and conventions of the two languages. A Swift method is a function; it has parentheses, and if its parameters have external names (labels), they appear inside the parentheses. The function name that precedes the parentheses is clearly distinct from the contents of the parentheses. But an Objective-C method name involves no
 parentheses; if it takes parameters, the stuff before the first colon is effectively the external name of the first parameter.

Before Swift 3, the general solution to this mismatch was a simple algorithm. Everything
 before the first colon in Objective-C precedes the parentheses in Swift, and the first Swift parameter will therefore have no
 external name:

func stringByReplacingOccurrencesOfString(
 _ target:String, withString replacement:String) // Swift 2.2 and before

Starting in Swift 3, however, the Objective-C method’s Swift name is rendered more Swift-like, by a rather involved process called renamification
 , which is performed by a component called the Clang importer
 , mediating between the two languages. The renamification rules are rather elaborate, but you don’t need to know the details; you can get a sense of how they behave from the way they transform the stringByReplacingOccurrencesOfString:withString:
 method into a Swift function:

	Swift prunes redundant initial type names. We’re starting with a string, and it’s obvious from the return type that a string is returned, so there’s no point saying string
 at the start. We are thus left with byReplacingOccurrencesOfString:withString:
 .

	Swift prunes initial by
 . That’s a common Cocoa locution, but Swift finds it merely verbose. Now we’re down to replacingOccurrencesOfString:withString:
 .

	Swift prunes redundant final type names. It’s obvious that the parameters are strings, so there’s no point saying string
 at the end of the parameter names. That leaves replacingOccurrencesOf:with:
 .

	Finally, Swift decides where to split the first parameter name into the Swift method name (before the parentheses) and the external first parameter name (inside the parentheses). Here, Swift sees that what’s left of the first parameter name ends with a preposition, of
 , so it splits before that preposition.

Here’s the resulting renamification of this method:

func replacingOccurrences(
 of target:String, with replacement:String)

And here’s an actual example of calling it:

let s = "hello"
let s2 = s.replacingOccurrences(of: "ell", with:"ipp")
// s2 is now "hippo"

Now let’s talk about what happens going the other way: How does Objective-C see methods declared in Swift? The simplest case is that the first parameter should have no externalized name. For example, here’s a Swift method intended as the action method of a button in the interface:

@IBAction func doButton(_ sender: Any?) {
 // ...
}

That method is seen by Objective-C as doButton:
 . That is the canonical form for an action method with one parameter, and for that reason I like to declare my action methods along those lines.

If a Swift method’s first parameter does have an externalized name, then, as seen by Objective-C, that externalized name is appended to what precedes the parentheses — in general, by inserting a preposition with
 . For example, here’s a Swift method:

func makeHash(ingredients stuff:[String]) {
 // ...
}

That method is seen by Objective-C as makeHashWithIngredients:
 . But if the externalized name of the first parameter is a preposition, then it is appended directly
 to what precedes the parentheses. For example:

func makeHash(of stuff:[String]) {
 // ...
}

That method is seen by Objective-C as makeHashOf:
 .

What about Objective-C internal parameter names in Swift? When you call
 an Objective-C method from Swift, Objective-C’s internal names for the parameters don’t matter; you don’t use them, and you don’t need to know or care what they are. When you override
 an Objective-C method in Swift, on the other hand, code completion will suggest internal names corresponding to the Objective-C internal names — but you are free to change them. For example, here’s the Objective-C declaration of the UIViewController prepareForSegue:sender:
 instance method:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(nullable id)sender;

When you override that method in your UIViewController subclass, the suggested template, in accordance with the renamification rules, looks like this:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 // ...
}

But, as I just said, you are free to change the internal names; they are local variable names for your use inside the function body, and Objective-C doesn’t care about them. This is a valid (but weird) override of prepareForSegue:sender:
 in Swift:

override func prepare(for war: UIStoryboardSegue, sender bow: Any?) {
 // ...
}

Unlike Swift, Objective-C does not permit overloading of methods. Two ViewController instance methods called myMethod:
 returning no result, one taking a CGFloat parameter and one taking an NSString parameter, would be illegal in Objective-C. Therefore, two such Swift methods, though legal as far as Swift is concerned, would be illegal if they were both visible to Objective-C. It’s fine for methods to be overloads of one another in Swift, as long as you don’t expose more than one of those methods to Objective-C.

Objective-C has its own version of a variadic parameter. For example, the NSArray instance method arrayWithObjects:
 is declared like this:

+ (id)arrayWithObjects:(id)firstObj, ... ;

Unlike Swift, such methods in Objective-C must somehow be told explicitly how many arguments are being supplied. Many such methods, including arrayWithObjects:
 , use a nil
 terminator; that is, the caller supplies nil
 after the last argument, and the callee knows when it has reached the last argument because it encounters nil
 . A call to arrayWithObjects:
 in Objective-C would look something like this:

NSArray* pep = [NSArray arrayWithObjects: manny, moe, jack, nil];

Objective-C cannot call (or see) a Swift method that takes a variadic parameter. Swift, however, can
 call an Objective-C method that takes a variadic parameter, provided that it is marked NS_REQUIRES_NIL_TERMINATION
 . arrayWithObjects:
 is
 marked in this way, so you can say NSArray(objects:1, 2, 3)
 and Swift will supply the missing nil
 terminator.

Objective-C Initializers and Factories

Objective-C initializer methods are instance methods; actual instantiation is performed using the NSObject class method alloc
 , for which Swift has no equivalent (and doesn’t need one), and the initializer message is sent to the instance that results. For example, this is how you create a UIColor instance by supplying red, green, blue, and alpha values in Objective-C:

UIColor* col = [[UIColor alloc] initWithRed:0.5 green:0.6 blue:0.7 alpha:1];

The name of that initializer, in Objective-C, is initWithRed:green:blue:alpha:
 . It’s declared like this:

- (UIColor *)initWithRed:(CGFloat)red green:(CGFloat)green
 blue:(CGFloat)blue alpha:(CGFloat)alpha;

In short, an initializer method, to all outward appearances, is just an instance method like any other in Objective-C.

Swift, nevertheless, is able to detect that an Objective-C initializer is
 an initializer, because the name is special — it starts with init
 ! Therefore, Swift is able to translate an Objective-C initializer into a Swift initializer. The word init
 is stripped from the start of the method name, and the preposition with
 , if it appears, is stripped as well. What’s left is the external name of the first parameter. Thus, Swift translates Objective-C initWithRed:green:blue:alpha:
 into the Swift initializer init(red:green:blue:alpha:)
 , which is declared like this:

init(red: CGFloat, green: CGFloat, blue: CGFloat, alpha: CGFloat)

And you’d call it like this:

let col = UIColor(red: 0.5, green: 0.6, blue: 0.7, alpha: 1.0)

The same principle operates in reverse: for example, a Swift initializer init(value:)
 is visible to and callable by Objective-C under the name initWithValue:
 .

There is a second way to create an instance in Objective-C. Very commonly, a class will supply a class
 method that is a factory
 for instances. For example, the UIColor class has a class factory method colorWithRed:green:blue:alpha:
 , declared as follows:

+ (UIColor*) colorWithRed: (CGFloat) red green: (CGFloat) green
 blue: (CGFloat) blue alpha: (CGFloat) alpha;

Swift detects a factory method of this kind by some pattern-matching rules — a class method that returns an instance of the class, and whose name begins with the name of the class, stripped of its prefix — and translates it as an initializer
 , stripping the class name (and the with
) from the start of the first parameter name. If the resulting initializer exists already, as it does in this example, then Swift treats the factory method as superfluous and suppresses it completely! Thus, the Objective-C class method colorWithRed:green:blue:alpha:
 isn’t callable from Swift, because it would be identical to the init(red:green:blue:alpha:)
 that already exists.

Selectors

An Objective-C method will sometimes expect as parameter the name of a method to be called later. Such a name is called a selector
 . For example, the Objective-C UIControl addTarget:action:forControlEvents:
 method can be called as a way of telling a button in the interface, “From now on, whenever you are tapped, send this message to this object.” The message, the action:
 parameter, is a selector.

You may imagine that, if this were a Swift method, you’d be passing a function here. A selector, however, is not the same as a function. It’s just a name. Objective-C, unlike Swift, is so dynamic that it is able, at runtime, to construct and send an arbitrary message to an arbitrary object based on the name alone. But even though it is just a name, a selector is not exactly a string, either. It is, in fact, a separate object type, designated in Objective-C declarations as SEL and in Swift declarations as Selector.

Before Swift 2.2, the only way to form a selector in Swift was to use a literal string. In most cases, you could use a bare literal string:

b.addTarget(self, action: "doNewGame:",
 forControlEvents: .TouchUpInside) // before Swift 2.2

The trouble with that syntax is that it is error-prone. Forming a literal selector string by hand is an invitation to form the string incorrectly, resulting in a selector that at best will fail to work, and at worst will cause your app to crash. Swift solves this problem (starting in Swift 2.2) by providing #selector
 syntax (described in Chapter 2
). That example would now be written like this:

b.addTarget(self, action: #selector(doNewGame), for: .touchUpInside)

The use of #selector
 syntax has numerous advantages. In addition to translating the method name to a selector for you, the compiler can check for the existence of the method in question, and can stop you from telling Objective-C to use a selector to call a method that isn’t exposed to Objective-C (which would cause a crash at runtime).

Indeed, #selector
 syntax means that you will probably never
 need to form a selector from a literal string! Nevertheless, you can do so if you really want to. The rules for forming the string from the method name are completely mechanical:

	The string starts with everything that precedes the left parenthesis in the method name.

	If the method takes no parameters
 , stop. That’s the end of the string.

	If the method’s first parameter has an external parameter name, append With
 and a capitalized version of that name, unless it is a preposition, in which case append a capitalized version of it directly.

	Add a colon.

	If the method takes exactly one parameter
 , stop. That’s the end of the string.

	If the method takes more than one parameter, add the external names of all remaining parameters, with a colon after each external parameter name.

Observe that this means that if the method takes any parameters, its Objective-C name string will end with a colon
 . Capitalization counts, and the name should contain no spaces or other punctuation except for the colons.

To illustrate, here are some Swift method declarations, with their Objective-C name strings given in a comment:

func sayHello() -> String // "sayHello"
func say(_ s:String) // "say:"
func say(string s:String) // "sayWithString:"
func say(of s:String) // "sayOf:"
func say(_ s:String, times n:Int) // "say:times:"

CFTypeRefs

A CFTypeRef is a pointer to an opaque struct that acts as a pseudo-object. (I talked about CFTypeRef pseudo-objects and their memory management in Chapter 12
 .) CFTypeRef functions are global C functions. Swift can call C functions, as I’ve already said; and before renamification, CFTypeRef code would appear almost as if Swift were C. For example:

// before Swift 3:
let con = UIGraphicsGetCurrentContext()!
let sp = CGColorSpaceCreateDeviceGray()
// ... colors and locs are arrays of CGFloat ...
let grad = CGGradientCreateWithColorComponents (sp, colors, locs, 3) [image: 1]

CGContextDrawLinearGradient (
 con, grad, CGPointMake(89,0), CGPointMake(111,0), []) [image: 2]

Nowadays, as part of renamification, many commonly used CFTypeRef functions (such as those in the Core Graphics framework) are recast as if the CFTypeRef objects were genuine class instances, with the functions themselves recast as instance methods, parallel to what I described for CGRect structs earlier. The last two lines of the preceding code are a case in point:

[image: 1]

In Objective-C, a CFTypeRef is created with some sort of Create
 function. In Swift, the CFTypeRef is treated as an object type name, and the syntax looks more like an initializer, complete with external parameter names.

[image: 2]

In Objective-C, a CFTypeRef function operating on a CFTypeRef pseudo-object takes that object as its first parameter (con
 in this example). In Swift, the pseudo-object is treated as a real object, and the function becomes a method call sent to it, again with external parameter names.

Thus, those lines are recast in Swift like this:

let con = UIGraphicsGetCurrentContext()!
let sp = CGColorSpaceCreateDeviceGray()
// ... colors and locs are arrays of CGFloat ...
let grad = CGGradient(colorSpace: sp,
 colorComponents: colors, locations: locs, count: 3)
con.drawLinearGradient(grad,
 start: CGPoint(x:89,y:0), end: CGPoint(x:111,y:0), options:[])

Many CFTypeRefs are toll-free bridged
 to corresponding Objective-C object types. For example, CFString and NSString, CFNumber and NSNumber, CFArray and NSArray, CFDictionary and NSDictionary are all toll-free bridged (and there are many others). Such pairs are interchangeable by casting. This is much easier in Swift than in Objective-C. In Objective-C, ARC memory management doesn’t apply to CFTypeRefs; therefore you must perform a bridging cast
 , to tell Objective-C how to manage this object’s memory as it crosses between the memory-managed world of Objective-C objects and the unmanaged world of C and CFTypeRefs. But in Swift, CFTypeRefs are
 memory-managed, and so there is no need for a bridging cast; you can just cast, plain and simple.

For example, in this code from one of my apps, I’m using the ImageIO framework. This framework has a C API (which has not been renamified) and uses CFTypeRefs. CGImageSourceCopyPropertiesAtIndex
 returns a CFDictionary whose keys are CFStrings. The easiest way to obtain a value from a dictionary is by subscripting, but you can’t do that with a CFDictionary, because it isn’t an object — so I cast it to a Swift dictionary. The key kCGImagePropertyPixelWidth
 is a CFString, but when I try to use it directly in a subscript, Swift allows me to do so:

let result = CGImageSourceCopyPropertiesAtIndex(src, 0, nil)!
let d = as! [AnyHashable:Any]
let width = d[kCGImagePropertyPixelWidth] as! CGFloat

Similarly, in this code, I form a dictionary d
 using CFString keys — and then I pass it to the CGImageSourceCreateThumbnailAtIndex
 function where a CFDictionary is expected:

let d : [AnyHashable:Any] = [
 kCGImageSourceShouldAllowFloat : true,
 kCGImageSourceCreateThumbnailWithTransform : true,
 kCGImageSourceCreateThumbnailFromImageAlways : true,
 kCGImageSourceThumbnailMaxPixelSize : w
]
let imref = CGImageSourceCreateThumbnailAtIndex(src, 0, d as CFDictionary)!

A CFTypeRef is a pointer (to a pseudo-object), so it is interchangeable with C pointer-to-void. This can result in a perplexing situation in Swift. If a C API casts a CFTypeRef as a pointer-to-void, Swift will see it as an UnsafeRawPointer. How can you cast between this and the actual CFTypeRef? You cannot use the memory binding technique that I used earlier to turn an UnsafeRawPointer into an UnsafePointer generic, because the CFTypeRef does not lie at the far end of the pointer; it is
 the pointer.

We might simply call the global unsafeBitCast
 function, but that’s dangerous because it gives the resulting CFTypeRef no memory management. The correct approach is to pass through an Unmanaged generic to apply memory management; its fromOpaque
 static method takes an UnsafeRawPointer, and its toOpaque
 instance method yields an UnsafeMutableRawPointer. (I owe this technique to Martin R.; see
http://stackoverflow.com/a/33310021/1187415.)

To illustrate, I’ll repeat the preceding example where I called CGImageSourceCopyPropertiesAtIndex
 , but this time I won’t cast to a Swift dictionary; I’ll work with the result as a CFDictionary to extract the value of its kCGImagePropertyPixelWidth
 key. To do so, I’ll call CFDictionaryGetValue
 , which takes an UnsafeRawPointer parameter and returns an UnsafeRawPointer result. To form the parameter, I’ll cast a CFString to an UnsafeMutableRawPointer; to work with the result, I’ll cast an UnsafeRawPointer
 to a CFNumber. No one in his right mind would ever write this code, but it does work:

let result = CGImageSourceCopyPropertiesAtIndex(src, 0, nil)!
let key = kCGImagePropertyPixelWidth // CFString
let p1 = Unmanaged.passUnretained(key).toOpaque() // UnsafeMutableRawPointer
let p2 = CFDictionaryGetValue(result, p1) // UnsafeRawPointer
let n = Unmanaged<CFNumber>.fromOpaque(p2!).takeUnretainedValue() // CFNumber
var width : CGFloat = 0
CFNumberGetValue(n, .cgFloatType, &width) // width is now 640.0

Blocks

A block
 is a C language feature introduced by Apple starting in iOS 4. It is very like a C function, but it is not a C function; it behaves as a closure and can be passed around as a reference type. A block, in fact, is parallel to and compatible with a Swift function, and indeed the two are interchangeable: you can pass a Swift function where a block is expected, and when a block is handed to you by Cocoa it appears as a function.

In C and Objective-C, a block declaration is signified by the caret character (^
), which appears where a function name (or an asterisk in parentheses) would appear in a C function declaration. For example, the NSArray instance method sortedArrayUsingComparator:
 takes an NSComparator parameter, which is defined through a typedef
 like this:

typedef NSComparisonResult (^NSComparator)(id obj1, id obj2);

To read that declaration, it helps to start in the middle and work your way outward; it says: “NSComparator is the type of a block taking two id
 parameters and returning an NSComparisonResult.” In Swift, therefore, that typedef
 is translated as (Any, Any) -> ComparisonResult
 . It is then trivial to supply a function of the required type as argument when you call sortedArray(comparator:)
 in Swift. For example:

let arr = ["Mannyz", "Moey", "Jackx"]
let arr2 = (arr as NSArray).sortedArray { s1, s2 in
 let c1 = String((s1 as! String).last!)
 let c2 = String((s2 as! String).last!)
 return c1.compare(c2)
} // [Jackx, Moey, Mannyz]

In many cases, there won’t be a typedef
 , and the type of the block will appear directly in a method declaration. Here’s the Objective-C declaration for a UIView class method that takes two block parameters:

+ (void)animateWithDuration:(NSTimeInterval)duration
 animations:(void (^)(void))animations
 completion:(void (^ __nullable)(BOOL finished))completion;

In that declaration, animations:
 is a block taking no parameters (void
) and returning no value, and completion:
 is a block taking one BOOL parameter and returning no value. Here’s the Swift translation:

class func animate(withDuration duration: TimeInterval,
 animations: @escaping () -> Swift.Void,
 completion: ((Bool) -> Swift.Void)? = nil)

That’s a method that you would call
 , passing a function as argument where a block parameter is expected (and see Chapter 2
 for an example of actually doing so). Here’s a method that you would implement
 , where a function is passed to you
 . This is the Objective-C declaration:

- (void)webView:(WKWebView *)webView
 decidePolicyForNavigationAction:(WKNavigationAction *)navigationAction
 decisionHandler:(void (^)(WKNavigationActionPolicy))decisionHandler;

You implement this method, and it is called when the user taps a link in a web view, so that you can decide how to respond. The third parameter is a block that takes one parameter — a WKNavigationActionPolicy, which is an enum — and returns no value. The block is passed to you as a Swift function, and you respond by calling
 the function to report your decision:

func webView(_ webView: WKWebView,
 decidePolicyFor navigationAction: WKNavigationAction,
 decisionHandler: @escaping (WKNavigationActionPolicy) -> Swift.Void) {
 // ...
 decisionHandler(.allow)
}

A C function is not a block, but you can also use a Swift function where a C function is expected, as I demonstrated earlier in this appendix. Going in the other direction, to declare a type as a C pointer-to-function, mark the type as @convention(c)
 . For example, here are two Swift method declarations:

func blockTaker(_ f:() -> ()) {}
func functionTaker(_ f:@convention(c)() -> ()) {}

Objective-C sees the first as taking an Objective-C block, and the second as taking a C pointer-to-function.

API Markup

When Swift was first introduced to the programming public in June of 2014, it was immediately evident that its strict, specific typing was a poor match for Objective-C’s dynamic, loose typing. The chief problems were:

Too many Optionals

In Objective-C, any object instance reference can be nil
 . But in Swift, only an Optional can be nil
 .

The default solution was to use implicitly unwrapped Optionals as the medium of object interchange between Objective-C and Swift. But this was a blunt instrument, especially because most objects arriving from Objective-C were never in fact
 going to be nil
 .

Too many umbrella collections

In Objective-C, a collection type such as NSArray can contain elements of multiple object types, and the collection itself is agnostic as to what types of elements it contains. But a Swift collection type can contain elements of just one type, and is itself typed according to that element type.

The default solution was for every collection to arrive from Objective-C typed as having AnyObject elements; it then had to be cast down explicitly on the Swift side. It was particularly galling to ask for a view’s subviews
 , for example, and get back an [AnyObject]
 which had to be cast down to a [UIView]
 — when nothing could be more obvious than that a view’s subviews would in fact all be UIView objects.

These problems have subsequently been solved by modifying the Objective-C language to permit markup
 of declarations in such a way as to communicate to Swift a more specific knowledge of what to expect.

An Objective-C object type can be marked as nullable
 or nonnull
 , to specify, respectively, that it might or will never be nil
 . In the same way, C pointer types can be marked __nullable
 or __nonnull
 . Using these markers obviates all need for implicitly unwrapped Optionals as a medium of interchange; every type can be either a normal type or a simple Optional, and if it’s an Optional, there’s a good reason for it. Thus, implicitly unwrapped Optionals are a rare sight in the Cocoa APIs nowadays.

If you’re writing an Objective-C header file and you don’t mark up any of it as to nullability, you’ll return to the bad old days: Swift will see your types as implicitly unwrapped Optionals. For example, here’s an Objective-C method declaration:

- (NSString*) badMethod: (NSString*) s;

In the absence of markup, Swift sees that as follows:

func badMethod(_ s: String!) -> String!

As soon as your header file contains any markup, the Objective-C compiler will complain until it is completely marked up. To help you with this, you can mark an entire stretch of your header file with a default nonnull
 setting; you will then need to mark up only the exceptional nullable
 types:

NS_ASSUME_NONNULL_BEGIN
- (NSString*) badMethod: (NSString*) s;
- (nullable NSString*) goodMethod: (NSString*) s;
NS_ASSUME_NONNULL_END

Swift sees that with no implicitly unwrapped Optionals:

func badMethod(_ s: String) -> String
func goodMethod(_ s: String) -> String?

To mark an Objective-C collection type as containing a certain type of element, the element type can appear in angle brackets (<>
) after the name of the collection type but before the asterisk. This is an Objective-C method that returns an array of strings:

- (NSArray<NSString*>*) pepBoys;

Swift sees the return type of that method as [String]
 , and there will be no need to cast it down.

In the declaration of an actual Objective-C collection type, a placeholder name stands for the type in angle brackets. For example, the declaration for NSArray starts like this:

@interface NSArray<ObjectType>
- (NSArray<ObjectType> *)arrayByAddingObject:(ObjectType)anObject;
// ...

The first line says that we’re going to use ObjectType as the placeholder name for the element type. The second line says that the arrayByAddingObject:
 method takes an object of the element type and returns an array of the element type. If a particular array is declared as NSArray<NSString*>*
 , the ObjectType placeholder would be resolved to NSString*
 . (You can see why Apple refers to this as a “lightweight generic.”)

In Swift, classes marked up as lightweight generics are imported into Swift as actual generics even if they are not bridged collection types. For example, suppose I declare my own Objective-C class, parallel to NSArray:

@interface Thing<ObjectType> : NSObject
- (void) giveMeAThing:(nonnull ObjectType)anObject;
@end

The Thing class arrives into Swift declared as a generic:

class Thing<ObjectType> : NSObject where ObjectType : AnyObject {

Thing thus has to be instantiated by resolving the generic somehow. Often, it will be resolved explicitly:

let t = Thing<NSString>()
t.giveMeAThing("howdy") // an Int would be illegal here

The details are quite involved; for full information, see proposal SE-0057 at

https://github.com/apple/swift-evolution

 .

Bilingual Targets

It is legal for a target to be a bilingual target
 — one that contains both Swift files and Objective-C files. A bilingual target can be useful for various reasons. You might want to take advantage of Objective-C language features. You might want to incorporate third-party code written in Objective-C. You might want to incorporate your own existing
 code written in Objective-C. Your app itself may have been written in Objective-C originally, and now you want to migrate part of it (or all of it, in stages) into Swift.

The key question is how, within a single target, Swift and Objective-C hear about one another’s code in the first place. Recall that Objective-C, unlike Swift, has a visibility problem already: Objective-C files cannot automatically see one another. Instead, each Objective-C file that needs to see another Objective-C file must be instructed explicitly to see that file, usually with an #import
 directive at the top of the first file. In order to prevent unwanted exposure of private information, an Objective-C class declaration is conventionally spread over two
 files: a header file (.h
) containing the @interface
 section, and a code file (.m
) containing the @implementation
 section. Also conventionally, only .h
 files are ever imported. Thus, if declarations of class members, constants, and so forth are to be public, they are placed in a .h
 file.

Visibility of Swift and Objective-C to one another depends upon this convention: it works through .h
 files. There are two directions of visibility, and they operate separately through two special .h
 files:

How Swift sees Objective-C

When you add a Swift file to an Objective-C target, or an Objective-C file to a Swift target, Xcode offers to create a bridging header
 . This is a .h
 file in the project
 . Its default name is derived from the target name — for example, MyCoolApp-Bridging-Header.h
 — but the name is arbitrary and can be changed, provided you change the target’s Objective-C Bridging Header build setting to match. (Similarly, if you decline the bridging header and you decide later that you want one, create a .h
 file manually and point to it in the target’s Objective-C Bridging Header build setting.)

An Objective-C .h
 file will then be visible to Swift provided you #import
 it in this bridging header.

How Objective-C sees Swift

If you have a bridging header, then when you build your target, the appropriate top-level declarations of all
 your Swift files are automatically
 translated into Objective-C and are used to construct a hidden
 bridging header inside the Intermediates
 build folder for this target, deep inside your DerivedData
 folder. The easiest way to see this is with the following Terminal command:

$ find ~/Library/Developer/Xcode/DerivedData -name "*Swift.h"

This will reveal the name of the hidden bridging header. For example, for a target called MyCoolApp, the hidden bridging header is called MyCoolApp-Swift.h
 . The name may involve some transformation; for example, a space in the target name is translated into an underscore. Alternatively, examine (or change) the target’s Objective-C Generated Interface Header Name build setting.

Your Objective-C files will be able to see your Swift declarations, provided you #import
 this hidden bridging header into each Objective-C file that needs to see it.

For simplicity, I will refer to these two bridging headers as the visible
 and invisible
 bridging headers, respectively.

For example, let’s say that I’ve added to my Swift target, called MyCoolApp, a Thing class written in Objective-C. It is distributed over two files, Thing.h
 and Thing.m
 . Then:

	For Swift code to see the Thing class, I need to #import "Thing.h"
 in the visible
 bridging header (MyCoolApp-Bridging-Header.h
).

	For Thing class code to see my Swift declarations, I need to import the invisible
 bridging header (#import "MyCoolApp-Swift.h"
) at the top of Thing.m
 .

Tip

Once you’ve imported the invisible bridging header into an Objective-C file, you can Control-Command-click its name to open it. This shows you your app’s entire Swift API as seen as by Objective-C!

On that basis, here’s the procedure I use for turning my own Objective-C apps into Swift apps:

	Pick a .m
 file to be translated into Swift. Objective-C cannot subclass a Swift class, so if you have defined both a class and its subclass in Objective-C, start with the subclass. Leave the app delegate class for last.

	Remove that .m
 file from the target. To do so, select the .m
 file and use the File inspector.

	In every Objective-C file that #import
 s the corresponding .h
 file, remove that #import
 statement and import in its place the invisible bridging header (if you aren’t importing it in this file already).

	If you were importing the corresponding .h
 file in the visible bridging header, remove the #import
 statement.

	Create the .swift
 file for this class. Make sure it is added to the target.

	In the .swift
 file, declare the class and provide stub declarations for all members that were being made public in the .h
 file. If this class needs to adopt Cocoa protocols, adopt them; you may have to provide stub declarations of required protocol methods as well. If this file needs to refer to any other classes that your target still declares in Objective-C, import their .h
 files in the visible bridging header.

	The project should now compile! It doesn’t work, of course, because you have not written any real code in the .swift
 file. But who cares about that? Time for a beer!

	Now fill out the code in the .swift
 file. My technique is to translate more or less line-by-line from the original Objective-C code, even though the outcome is not particularly idiomatic or Swifty.

	When the code for this .m
 file is completely translated into Swift, build and run and test. If the runtime complains (probably accompanied by crashing) that it can’t find this class, find all references to it in the nib editor and reenter the class’s name in the Identity inspector (and press Tab to set the change). Save and try again.

	On to the next .m
 file! Repeat all of the above steps.

	When all of the other files have been translated, translate the app delegate class. At this point, if there are no Objective-C files left in the target, you can delete the main.m
 file (replacing it with a @UIApplicationMain
 attribute in the app delegate class declaration) and the .pch
 (precompiled header) file.

Your app should now run, and is now written in pure Swift (or is, at least, as pure as you intend to make it). Now go back and think about the code, making it more Swifty and idiomatic. You may well find that things that were clumsy or tricky in Objective-C can be made much neater and clearer in Swift.

Note also that you can do a partial
 conversion of an Objective-C class by extending it in Swift. This can be useful as a stage along the path to total conversion, or you might quite reasonably write only one or two methods of an Objective-C class in Swift, just because Swift makes it so much easier to say or understand certain kinds of thing. However, Swift cannot see the Objective-C class’s members unless they are made public, so methods and properties that you were previously keeping private in the Objective-C class’s .m
 file may have to be declared in its .h
 file.

Index

A

	
aborting
 , Aborting the whole program

	
access control
 , Privacy

	
access, exclusive
 , Exclusive Access to Value Types

	
accessibility
 , Testing

	
accessors
 , Accessors, Properties, and Key–Value Coding

	
Accounts preferences
 , Version Control
 , Obtaining a Developer Program Membership
 , Obtaining a Development Certificate Manually
 , Obtaining a Distribution Certificate

	
actions
 , Action Connections
 , Actions

	
connections
 , Action Connections

	
connections, creating
 , Action Connections

	
handler
 , Actions

	
misconfiguring
 , Misconfigured Actions

	
nil-targeted
 , Nil-Targeted Actions

	
selector signatures
 , Actions

	
target
 , Actions

	
Ad Hoc distribution
 , Distribution
 , Ad Hoc Distribution

	
address operator
 , Modifiable Parameters
 , C Pointers

	
Address Sanitizer
 , Debugging Memory Management Mistakes

	
adopt a protocol
 , Protocols

	
Allocations instrument
 , Instruments

	
ampersand
 (see
 address operator)

	
anonymous functions
 , Anonymous Functions

	
abbreviated syntax
 , Anonymous Functions

	
capture list
 , Stored anonymous functions

	
define-and-call
 , Define-and-Call

	
parameter list and return type
 , Anonymous Functions

	
retain cycles
 , Stored anonymous functions

	
throws
 , Throwing and catching errors

	
trailing
 , Anonymous Functions

	
Any
 , Any

	
AnyClass
 , AnyClass

	
AnyHashable
 , Swift Dictionary and Objective-C NSDictionary

	
AnyObject
 , AnyObject
 -Object identity

	
object identity
 , Object identity

	
suppressing type checking
 , Suppressing type checking

	
API
 , Preface

	
tweaking
 , Why Optionals?
 , Failable initializers

	
app bundle
 , From Project to Running App

	
app delegate
 , UIApplicationMain
 , Cocoa Delegation

	
app launch process
 , UIApplicationMain

	
app name
 , Renaming Parts of a Project
 , Property list settings
 , Submission to the App Store

	
localizing
 , Localization

	
App Store
 , Submission to the App Store

	
App Store distribution
 , Distribution

	
app target
 , The Target

	
app version number
 , Property list settings

	
app without main storyboard
 , App Without a Storyboard

	
app without nibs
 , Nib Management

	
app, registering
 , Obtaining a Development Provisioning Profile Manually

	
append
 , String
 , Basic array properties and methods

	
Apple ID
 , Obtaining a Developer Program Membership

	
ARC
 , Memory Management

	(see also
 memory management)

	
architecture
 , Summary and Conclusion

	
archive
 , Making an Archive

	
arguments
 , Function Parameters and Return Value

	
arithmetic operators
 , Arithmetic operations

	
Array
 , Array

	
arrays
 , Array
 -Swift Array and Objective-C NSArray

	
bridging
 , Swift Array and Objective-C NSArray
 , NSValue
 , NSArray and NSMutableArray
 , Bridged Types and Boxed Types

	
C arrays
 , C Arrays

	
casting
 , Array casting and type testing

	
concatenating
 , Basic array properties and methods

	
declaration
 , Array

	
enumerating
 , Array enumeration and transformation

	
equality
 , Array comparison

	
flattening
 , Basic array properties and methods

	
indexing
 , Array subscripting

	
initializers
 , Array

	
literal
 , Array

	
mutating
 , Array subscripting

	
nested
 , Nested arrays

	
Optional
 , Array casting and type testing

	
properties and methods
 , Basic array properties and methods

	
searching
 , Basic array properties and methods

	
sorting
 , Basic array properties and methods

	
subscripting
 , Array subscripting

	
testing element type
 , Array casting and type testing

	
transforming
 , Array enumeration and transformation

	
uniquing
 , Set

	
ArraySlice
 , Array subscripting

	
arrow operator
 , Function Parameters and Return Value

	
as
 , Casting Down
 , Protocol Type Testing and Casting
 , Switch statement

	
assert
 , Aborting the whole program

	
asset catalog
 , Resources in an asset catalog
 , Icons in the app

	
compiled
 , From Project to Running App

	
nonimage resources
 , Resources in an asset catalog

	
assignment
 , Variables

	
compound
 , Arithmetic operations

	
conditional
 , Conditional evaluation

	
multiple
 , Tuple

	
assistant pane
 , The Editor
 , Navigation

	
associated type
 , Generic Declarations

	
associated type chains
 , Associated Type Chains

	
associated value
 , Associated Values
 , Switch statement
 , While loops
 , For loops

	
Attributes inspector
 , The Utilities Pane
 , Inspectors and Libraries

	
autoclosure
 , Aborting the whole program

	
autocompletion
 , Autocompletion

	
autolinking
 , Frameworks and SDKs

	
automatic signing
 , Automatic Signing

	
automatic variables
 , Variable Scope and Lifetime

	
autorelease
 , Autorelease Pool

	
availability
 , Class Documentation Pages

	
available
 , Backward Compatibility

	
awakeFromNib
 , Additional Configuration of Nib-Based Instances

B

	
backslash
 , String
 , Key Paths

	
backward compatibility
 , Backward Compatibility

	
bag
 , NSSet and Friends

	
balancing delimiters
 , Editing and Navigating Your Code

	
base class
 , Subclass and Superclass

	
Base SDK build setting
 , Runtime Environment

	
Behaviors preferences
 , The Navigator Pane

	
beta testing
 , Ad Hoc Distribution

	
bilingual target
 , Bilingual Targets

	
binary numbers
 , Int

	
binding, conditional
 , Conditional binding
 , While loops
 , Guard

	
bitmasks
 , Option sets
 , C Enums

	
bitwise operators
 , Arithmetic operations
 , Option sets

	(see also
 option sets)

	
blame
 , Version Control

	
blocks, C
 , Function As Value
 , Blocks

	
blocks, flow control
 , Flow Control

	
body of a function
 , Function Parameters and Return Value

	
bookmarking a line of code
 , Navigation

	
Bool
 , Bool

	
BOOL
 , NSNumber

	
Boolean operators
 , Bool

	
boxing
 , Bridged Types and Boxed Types

	
branching
 , Flow Control
 -Conditional evaluation

	
shortcircuiting
 , Shortcircuiting and labels

	
break
 , Shortcircuiting and labels

	
Breakpoint navigator
 , The Navigator Pane

	
breakpoints
 , Breakpoints

	
bridged types
 , Bridged Types and Boxed Types
 , Bridged Types and Boxed Types

	(see also
 boxing)

	
Any and id
 , Any
 , Bridged Types and Boxed Types

	
AnyObject and id
 , AnyObject

	
Array and NSArray
 , Swift Array and Objective-C NSArray
 , NSArray and NSMutableArray
 , Bridged Types and Boxed Types

	
array elements
 , Swift Array and Objective-C NSArray
 , NSValue
 , Bridged Types and Boxed Types

	
casting
 , Bridging to Objective-C

	
CFTypeRefs
 , CFTypeRefs

	
Dictionary and NSDictionary
 , Swift Dictionary and Objective-C NSDictionary

	
Error and NSError
 , Throwing and catching errors

	
Foundation
 , Some Foundation Classes
 , Bridged Types and Boxed Types

	
number and NSNumber
 , NSNumber

	
Set and NSSet
 , NSSet and Friends

	
String and NSString
 , String
 , NSString and Friends

	
struct and NSValue
 , NSValue
 , Bridged Types and Boxed Types

	
bridging header
 , Bilingual Targets

	
build
 , New Project

	
build configurations
 , Configurations

	
build phases
 , Build Phases

	
build settings
 , Build Settings

	
build system, new
 , Schemes and Destinations

	
bundle display name
 , Renaming Parts of a Project
 , Localization

	
bundle identifier
 , New Project

	
bundle, app
 , From Project to Running App

	
bundle, test
 , Testing

C

	
C
 , The C Language
 -C Functions

	(see also
 Objective-C)

	
arrays
 , C Arrays

	
blocks
 , Blocks

	
data types
 , C Data Types

	
enums
 , C Enums

	
functions
 , C Functions

	
numeric types
 , Other numeric types

	
pointer-to-function
 , C Functions
 , Blocks

	
pointer-to-void
 , C Pointers

	
pointers
 , C Pointers

	
strings
 , C Data Types

	
structs
 , NSValue
 , C Structs

	
Calendar
 , NSDate and Friends

	
call stack
 , Jumping
 , The Navigator Pane
 , Paused at a breakpoint

	
calling a function
 , Functions
 , Function Parameters and Return Value

	
canvas
 , The Nib Editor Interface
 , Canvas

	
Capabilities pane
 , Obtaining a Development Provisioning Profile Manually

	
capitalization
 , Variables

	
capture list
 , Stored anonymous functions

	
captured variable references
 , Closures

	
preserving
 , Closure Preserving Its Captured Environment

	
setting
 , Closure Setting a Captured Variable

	
case (of enum)
 , Enums

	
case (of switch statement)
 , Switch statement

	
casting
 , Casting
 -Bridging to Objective-C

	
safely
 , Type Testing and Casting Down Safely
 , Switch statement

	
categories
 , Categories and Extensions

	
caveman debugging
 , Caveman Debugging

	
certificate
 , Signing an App

	
exporting
 , Obtaining a Distribution Certificate

	
CFTypeRefs
 , CFTypeRefs

	
memory management
 , Memory Management of CFTypeRefs

	
chains, associated type
 , Associated Type Chains

	
chains, Optional
 , Optional chains

	
Character
 , Character and String Index

	
character sequence
 , Character and String Index

	
characters vs. codepoints
 , String

	
characters, escaped
 , String

	
class clusters
 , Immutable and Mutable

	
class documentation page
 , Class Documentation Pages

	
class members
 , Instances

	
class methods
 , Methods

	
of NSObject
 , The Secret Life of NSObject

	
vs. static methods
 , Class Properties and Methods

	
class of object in nib, changing
 , Inspectors and Libraries

	
class properties
 , Variable Scope and Lifetime
 , How properties are accessed

	
vs. static properties
 , Class Properties and Methods

	
class protocols
 , Class Protocol

	
classes
 , Classes
 -Class Properties and Methods

	(see also
 object types)

	
class methods
 , Class Properties and Methods

	
class properties
 , Class Properties and Methods

	
deinitializers
 , Class Deinitializer

	
documentation
 , Class Documentation Pages

	
generic, subclassing
 , Explicit Specialization

	
hierarchy
 , Subclass and Superclass

	
inheritance
 , Inheritance

	
initializers
 , Class Initializers

	
initializers, inheritance
 , Subclass initializers

	
instances, multiple references
 , Reference type instances are pointers

	
instances, mutating
 , Modifiable Parameters
 , Reference type instances are mutable

	
methods, overriding
 , Overriding

	
methods, overriding, preventing
 , Overriding
 , Public and Open

	
omitting type name
 , Enums

	
polymorphism
 , Polymorphism

	
properties, overriding
 , Class Properties and Methods

	
reference types
 , Value Types and Reference Types

	
references to
 , AnyClass

	
static methods
 , Class Properties and Methods

	
static properties
 , Class Properties and Methods

	
subclass and superclass
 , Subclass and Superclass

	
subclassing, preventing
 , Subclass and Superclass
 , Public and Open

	
subscripts, overriding
 , The keyword super

	
umbrella type
 , Umbrella Types
 , AnyClass

	
cleaning
 , Clean

	
closures
 , Closures
 -Escaping Closures

	(see also
 anonymous functions)

	
captured variable references
 , Closures

	
captured variable references, preserving
 , Closure Preserving Its Captured Environment

	
captured variable references, setting
 , Closure Setting a Captured Variable

	
escaping
 , Escaping Closures
 , Functions and reference types

	
returned from function
 , Function Returning Function

	
Cocoa
 , Cocoa Classes
 -Model–View–Controller

	
actions
 , Actions

	
categories
 , Categories and Extensions

	
data sources
 , Data Sources

	
delegation
 , Delegation

	
events
 , Cocoa Events

	
Foundation classes
 , Some Foundation Classes

	
key–value coding
 , Key–Value Coding

	
key–value observing
 , Key–Value Observing

	
memory management
 , Memory Management

	
notifications
 , Notifications

	
protocols
 , Protocols

	
responder chain
 , The Responder Chain

	
subclassing
 , Subclassing
 , Subclassing

	
Codable
 , Codable

	
code completion
 , Autocompletion

	
code signing
 (see
 signing an app)

	
Code Snippet library
 , The Utilities Pane
 , Snippets

	
code strings, localizing
 , Localization

	
code, location
 , Functions
 , Cocoa Events

	
codepoints, Unicode
 , String

	
vs. characters
 , String

	
coercion, numeric
 , Numeric coercion
 , C Data Types

	
coercion, Range and NSRange
 , NSRange and NSNotFound

	
coercion, String and Int
 , String

	
collections, Foundation
 , NSIndexSet
 -Immutable and Mutable

	
collections, memory management
 , How Cocoa Objects Manage Memory
 , Other Unusual Situations

	
collections, Swift
 , Collection Types
 -Swift Set and Objective-C NSSet

	
colon

	
adopting protocol
 , Protocols

	
argument label
 , External Parameter Names

	
enum raw value type
 , Raw Values

	
generic type constraint
 , Type Constraints

	
key–value
 , Dictionary

	
label
 , Shortcircuiting and labels

	
parameter name
 , Function Parameters and Return Value

	
superclass
 , Inheritance

	
ternary operator
 , Conditional evaluation

	
variable type
 , Variable Declaration

	
comma

	
arguments
 , Function Parameters and Return Value

	
array literal
 , Array

	
condition list
 , Conditional binding

	
dictionary literal
 , Dictionary

	
generic constraints
 , Where Clauses

	
generic placeholders
 , Generic Declarations

	
parameters
 , Function Parameters and Return Value

	
protocol
 , Protocols
 , Why Protocols?

	
switch case
 , Switch statement

	
tuples
 , Tuple

	
variadics
 , Variadic Parameters

	
comments
 , Ground of Being

	
self-documenting
 , Quick Help

	
communication between objects
 , Communication Between Objects

	
Comparable
 , Type Constraints

	
compare
 , Equality and Comparison

	
comparison of Objective-C objects
 , Equality and Comparison

	
comparison operators
 , Comparison

	
ComparisonResult
 , Equality and Comparison

	
compatibility, backward
 , Backward Compatibility

	
compile error
 , Ground of Being

	
compile single file
 , New Project

	
Compile Sources build phase
 , Build Phases

	
compiler
 , Ground of Being

	
completion, code
 , Autocompletion

	
completion, type-over
 , Editing and Navigating Your Code

	
Components preferences
 , Schemes and Destinations

	
composition of protocols
 , Protocol Composition

	
compound assignment operators
 , Arithmetic operations

	
computed variable initializer
 , Computed Initializer

	
computed variables
 , Computed Variables

	
concatenating arrays
 , Basic array properties and methods

	
concatenating strings
 , String

	
condition list
 , Conditional binding

	
conditional assignment
 , Conditional evaluation

	
conditional binding
 , Conditional binding
 , While loops
 , Guard

	
conditional evaluation
 , Conditional evaluation

	
conditional initialization
 , Variable Declaration

	
conditions
 , Bool
 , Flow Control

	
configurations
 , Configurations

	
conform to a protocol
 , Protocols

	
connections
 , Connections

	
action
 , Action Connections

	
between nibs
 , Connections Between Nibs — Not!
 , Visibility by Instantiation

	
creating
 , The Nib Owner
 , More Ways to Create Outlets
 , Action Connections

	
deleting
 , Deleting an Outlet

	
outlet
 , Outlets
 , KVC and Outlets

	
Connections inspector
 , The Utilities Pane
 , Automatically Configured Nibs
 , Deleting an Outlet

	
console
 , The Navigator Pane
 , Caveman Debugging

	
constants
 , Variables
 , Variable Declaration
 , Struct As Namespace
 , Reference type instances are mutable

	
constraints in nib files
 , Inspectors and Libraries

	
constraints, type
 , Type Constraints

	
extensions
 , Extending Generics

	
multiple
 , Where Clauses

	
contains
 , Character and String Index
 , Range
 , Basic array properties and methods

	
continue
 , Shortcircuiting and labels

	
control events
 , Action Connections
 , Actions

	
control flow
 (see
 flow control)

	
convenience initializers
 , Kinds of class initializer

	
convention(c)
 , Blocks

	
Copy Bundle Resources build phase
 , Build Phases

	
copying instances
 , Reference type instances are pointers

	
count
 , String
 , Basic array properties and methods
 , Set

	
covariant
 , Polymorphism
 , Explicit Specialization

	
crash

	
class not key–value coding compliant
 , Misconfigured Outlets
 , Key–Value Coding
 , KVC and Outlets

	
could not cast value
 , Type Testing and Casting Down Safely

	
deallocated object
 , Retain Cycles and Weak References

	
loaded nib but view outlet was not set
 , Misconfigured Outlets

	
not enough bits
 , Other numeric types

	
unexpectedly found nil
 , The keyword nil
 , Misconfigured Outlets

	
unrecognized selector
 , Selectors
 , Misconfigured Actions

	
creating an action connection
 , Action Connections

	
creating an enum
 , Enums

	
creating an instance
 , Instances
 , Initializers

	
creating an outlet
 , More Ways to Create Outlets

	
curly braces
 , Ground of Being
 , Function Parameters and Return Value
 , Anonymous Functions
 , Computed Variables
 , Setter Observers
 , String
 , Object Type Declarations and Features
 , How to write an initializer
 , Subscripts
 , Class Deinitializer
 , Declaring a Protocol
 , Extensions
 , Flow Control

	
currying
 , Curried Functions

	
CustomNSError
 , Throwing and catching errors

	
CustomReflectable
 , Introspection

	
CustomStringConvertible
 , Why Protocols?

D

	
dance, weak–strong
 , Stored anonymous functions

	
dangling pointers
 , Principles of Cocoa Memory Management

	
Data
 , NSData

	
data sources
 , Data Sources

	
data tips
 , Paused at a breakpoint

	
Date
 , NSDate and Friends

	
DateComponents
 , NSDate and Friends

	
DateFormatter
 , NSDate and Friends

	
DateInterval
 , NSDate and Friends

	
dates
 , NSDate and Friends

	
Debug menu (Simulator)
 , Running in the Simulator

	
Debug navigator
 , The Navigator Pane
 , Paused at a breakpoint
 , Gauges

	
Debug pane
 , The Navigator Pane
 , Paused at a breakpoint

	
debugger, Xcode
 , The Xcode Debugger

	
debugging
 , Debugging
 -Paused at a breakpoint

	
memory management
 , Memory Debugging
 , Debugging Memory Management Mistakes

	
Decimal
 , NSNumber

	
decimal point
 , Double

	
declaration

	
jumping to
 , Symbol Declarations

	
of arrays
 , Array

	
of dictionaries
 , Dictionary

	
of enums
 , Enums

	
of extensions
 , Extensions

	
of functions
 , Function Parameters and Return Value

	
of generics
 , Generic Declarations

	
of object types
 , Object Type Declarations and Features

	
of operators
 , Operators

	
of protocols
 , Declaring a Protocol

	
of sets
 , Set

	
of variables
 , Variable Declaration

	
decoding and encoding
 , Codable

	
defer statement
 , Defer statement

	
deferred initialization
 , Why Optionals?

	
define-and-call
 , Define-and-Call

	
deinit
 , Class Deinitializer

	
not called
 , Memory Management of Reference Types
 , Notification Observers

	
delayed performance
 , Delayed Performance

	
delegate
 , Delegation

	
memory management
 , Retain Cycles and Weak References

	
delegating initializers
 , Delegating initializers

	
delegation
 (see
 delegate)

	
deleting an outlet
 , Deleting an Outlet

	
delimiters, balancing
 , Editing and Navigating Your Code

	
Deployment Target build setting
 , Runtime Environment

	
description
 , Why Protocols?

	
Design Patterns (book)
 , Summary and Conclusion

	
designated initializers
 , Kinds of class initializer
 , Subclass initializers

	
destinations
 , Schemes and Destinations

	
developer member center
 , Signing an App

	
development provisioning profile
 , Obtaining a Development Provisioning Profile Manually

	
device types, running on different
 , Device Type

	
device, registering
 , Automatic Signing
 , Obtaining a Development Provisioning Profile Manually

	
device, running on
 , Running on a Device

	
Devices and Simulators window
 , Managing Development Certificates and Devices

	
dictionaries
 , Dictionary
 -Swift Dictionary and Objective-C NSDictionary

	
casting
 , Dictionary casting and comparison

	
creating
 , Dictionary

	
declaration
 , Dictionary

	
enumerating
 , Basic dictionary properties and enumeration

	
equality
 , Dictionary casting and comparison

	
keys
 , Basic dictionary properties and enumeration

	
literals
 , Dictionary

	
merging
 , Basic dictionary properties and enumeration

	
mutating
 , Dictionary subscripting

	
properties
 , Basic dictionary properties and enumeration

	
subscripting
 , Dictionary subscripting

	
testing type
 , Dictionary casting and comparison

	
transformations
 , Basic dictionary properties and enumeration

	
values
 , Basic dictionary properties and enumeration

	
Dictionary
 , Dictionary

	
didSet
 , Setter Observers

	
dispatch table
 , Actions

	
dispatch, dynamic
 , Polymorphism

	
display name
 , Renaming Parts of a Project
 , Localization

	
distributing your app
 , Distribution

	
distribution provisioning profile
 , Obtaining a Distribution Profile

	
do
 , Nested scopes

	
do...catch
 , Throwing and catching errors

	
dock
 , Document Outline

	
document outline
 , Document Outline

	
documentation
 , Documentation
 -Internet Resources

	
class
 , Class Documentation Pages

	
comments
 , Quick Help

	
delegate
 , Cocoa Delegation

	
immutable vs. mutable classes
 , Immutable and Mutable

	
protocols
 , Protocols

	
searching
 , The Documentation Window

	
documentation window
 , Documentation

	
doom, pyramid of
 , Conditional binding

	
dot-notation
 , Everything Is an Object?
 , Namespaces

	
function references
 , Function Reference Scope

	
key paths
 , Key Paths

	
Optionals
 , Optional chains

	
tuples
 , Tuple

	
Double
 , Double

	
downcasting
 (see
 casting)

	
drawing a view
 , Subclassing

	
drawing text
 , NSString and Friends

	
drop
 , Array enumeration and transformation

	
dropFirst
 , Character and String Index
 , Basic array properties and methods

	
dropLast
 , Character and String Index
 , Basic array properties and methods

	
dynamic
 , Key–Value Observing

	
dynamic dispatch
 , Polymorphism

E

	
early exit
 , Jumping

	
edit all in scope
 , Finding

	
editing

	
a storyboard
 , The Nib Editor Interface

	
a xib file
 , Document Outline

	
the project
 , The Target

	
the target
 , The Target

	
your code
 , Editing and Navigating Your Code

	
editor
 , The Editor

	
elementsEqual
 , Array comparison

	
Empty Window example project
 , New Project
 , Canvas
 , Subclassing

	
encapsulation
 , Object Types and APIs

	
encoding and decoding
 , Codable

	
endIndex
 , Character and String Index
 , Basic array properties and methods

	
ensure code is executed
 , Defer statement

	
entitlements
 , Signing an App
 , Obtaining a Development Provisioning Profile Manually

	
entry point, code
 , The Entry Point
 , Swamped by Events

	
entry point, storyboard
 , Document Outline

	
enumerated
 , Tuple
 , Array enumeration and transformation
 , For loops

	
enums
 , Enums
 -Why Enums?

	(see also
 object types)

	
associated value
 , Associated Values
 , Switch statement
 , While loops
 , For loops

	
C enums
 , C Enums

	
declaration
 , Enums

	
equality
 , Enums

	
indirect
 , Advantages of value types vs. reference types

	
initializers
 , Enum Initializers

	
initializing
 , Enums

	
methods
 , Enum Methods

	
omitting type name
 , Enums

	
properties
 , Enum Properties

	
raw value
 , Raw Values

	
subscripts
 , Enum Methods

	
equal sign
 , Variables

	
equality of Objective-C objects
 , Equality and Comparison

	
equality of Swift objects
 , Operators

	
equality operators
 , Comparison

	
Equatable
 , Operators

	
Error
 , Throwing and catching errors

	
ErrorPointer
 , Throwing and catching errors

	
errors
 , Throwing and catching errors
 -Throwing and catching errors

	
catching
 , Throwing and catching errors

	
Objective-C
 , Throwing and catching errors

	
throwing
 , Throwing and catching errors

	
errors, compiler
 , Ground of Being

	
ambiguous
 , Overloading

	
cannot invoke index
 , Basic array properties and methods

	
cannot use instance member
 , Property initialization

	
closure cannot implicitly capture
 , Functions and reference types

	
expected declaration
 , Functions

	
expressions are not allowed
 , Functions

	
heterogeneous collection
 , Array

	
initializer requirement
 , Implicitly Required Initializers

	
overlapping accesses
 , Exclusive Access to Value Types

	
protocol can only be used
 , Type Constraints

	
required initializer must be provided
 , Implicitly Required Initializers
 , Implicitly Required Initializers

	
return from initializer
 , How to write an initializer

	
self used
 , Referring to self

	
use of unresolved identifier self
 , Property initialization

	
value of optional type not unwrapped
 , Optional

	
escaped characters
 , String

	
escaping
 , Escaping Closures
 , Functions and reference types

	
evaluation, conditional
 , Conditional evaluation

	
event-based programming
 , Swamped by Events

	
events
 , Action Connections
 , Cocoa Events

	
exception breakpoint
 , Breakpoints

	
exclamation mark
 , Unwrapping an Optional
 , Implicitly unwrapped Optional
 , Optional chains
 , Casting Down
 , Optional Protocol Members

	
exclusive access
 , Exclusive Access to Value Types

	
exit, early
 , Jumping

	
explicit specialization
 , Explicit Specialization

	
explicit variable type
 , Variable Declaration

	
exporting certificates
 , Obtaining a Distribution Certificate

	
exporting from an archive
 , Making an Archive

	
extensions
 , Extensions
 , How Swift Uses Extensions

	(see also
 categories)

	
declaring
 , Extensions

	
generics
 , Extending Generics

	
generics, type constraints
 , Extending Generics

	
object types
 , Extending Object Types
 , Extending Object Types

	
protocols
 , Extending Protocols
 , How You Use Extensions

	
restrictions on
 , Extensions

	
structs
 , Extending Object Types

	
external parameter names
 , External Parameter Names

	
initializers
 , How to write an initializer

	
methods
 , Objective-C Methods

	
subscripts
 , Subscripts

F

	
factory

	
for functions
 , Function Returning Function

	
for instances
 , Type Reference

	
factory methods, Objective-C
 , Objective-C Initializers and Factories

	
failable initializers
 , Failable initializers
 , Subclass initializers

	
fallthrough
 , Switch statement
 , Shortcircuiting and labels

	
false
 , Bool

	
Fast, Whole Module Optimization
 , Polymorphism
 , Configurations

	
fatal error
 (see
 crash)

	
fatalError
 , Aborting the whole program

	
File inspector
 , The Utilities Pane

	
File Template library
 , The Utilities Pane

	
file templates
 , Code Files

	
file, Swift, structure
 , The Structure of a Swift File

	
fileprivate
 , Privacy

	
File’s Owner
 , The Nib Owner

	
filter
 , Character and String Index
 , Array enumeration and transformation
 , Basic dictionary properties and enumeration

	
final
 , Subclass and Superclass
 , Overriding

	
Find navigator
 , The Navigator Pane
 , Finding

	
finding
 , Finding

	(see also
 searching)

	
first
 , Character and String Index
 , Basic array properties and methods

	
First Responder proxy object
 , Nil-Targeted Actions

	
Fix-it
 , Fix-it and Live Syntax Checking

	
flag
 , Bool

	
flatMap
 , Array enumeration and transformation

	
flavors (of object type)
 , Three Flavors of Object Type

	
Float
 , Other numeric types

	
flow control
 , Flow Control
 -Guard

	
folder-linked group
 , The Project File and Its Dependents

	
folders in an Xcode project
 , The Project File and Its Dependents
 , Resources in the Project navigator

	
font
 , NSString and Friends

	
for
 , For loops

	
for case
 , For loops

	
for...in
 , For loops

	
forced unwrap operator
 , Unwrapping an Optional

	
forEach
 , Array enumeration and transformation

	
format string
 , Caveman Debugging

	
Foundation framework
 , Modules
 , Some Foundation Classes

	
frameworks
 , Modules
 , Frameworks and SDKs

	
creating
 , Frameworks and SDKs

	
embedded
 , Frameworks and SDKs

	
linking
 , Frameworks and SDKs

	
Swift
 , From Project to Running App

	
function in function
 , Function In Function

	
functional events
 , Reasons for Events

	
functions
 , Functions
 , Functions
 -Selectors

	
anonymous
 , Anonymous Functions

	
anonymous, retain cycles
 , Stored anonymous functions

	
anonymous, throws
 , Throwing and catching errors

	
body
 , Function Parameters and Return Value

	
C blocks
 , Blocks

	
C functions
 , C Functions

	
calling
 , Functions
 , Function Parameters and Return Value

	
closures
 , Closures

	
curried
 , Curried Functions

	
declaration
 , Functions
 , Function Parameters and Return Value

	
default parameter values
 , Default Parameter Values

	
define-and-call
 , Define-and-Call

	
external parameter names
 , External Parameter Names

	
generic
 , Generic Declarations

	
global
 , The Structure of a Swift File
 , Modules

	
global, class method instead
 , Extending Object Types

	
global, instance method instead
 , Extending Protocols

	
ignored parameters
 , Ignored Parameters

	
internal parameter names
 , Function Parameters and Return Value

	
local
 , Function In Function

	
mathematical
 , Arithmetic operations

	
modifiable parameters
 , Modifiable Parameters

	
overloading
 , Overloading

	
recursion
 , Recursion

	
reference
 , Function References and Selectors

	
reference types
 , Functions and reference types

	
result
 , Function Parameters and Return Value

	
result, ignoring
 , Function Parameters and Return Value

	
rethrows
 , Throwing and catching errors

	
return value
 , Function Parameters and Return Value

	
returned from function
 , Function Returning Function

	
signature
 , Function Signature

	
throws
 , Throwing and catching errors

	
throws, calling
 , Throwing and catching errors

	
trailing
 , Anonymous Functions

	
type
 , Function As Value

	
values
 , Function As Value

	
variadic parameters
 , Variadic Parameters

G

	
garbage collection
 , Memory Management of Reference Types

	
gauges
 , The Navigator Pane
 , Profiling

	
generate
 , For loops

	
generated interface
 , The Editor

	
generic pointer
 , C Pointers

	
generics
 , Generics
 -Where Clauses

	
associated type chains
 , Associated Type Chains

	
classes, subclassing
 , Explicit Specialization

	
declaration
 , Generic Declarations

	
extensions
 , Extending Generics

	
functions
 , Generic Declarations

	
object types
 , Generic Declarations

	
protocols
 , Generic Declarations

	
protocols, constraining associated type
 , Where Clauses

	
resolving
 , Generics

	
resolving explicitly
 , Explicit Specialization

	
specializing
 , Generics

	
specializing explicitly
 , Explicit Specialization

	
type constraints
 , Type Constraints

	
type constraints, extensions
 , Extending Generics

	
type constraints, multiple
 , Where Clauses

	
type, telling compiler
 , Type Constraints

	
where clauses
 , Where Clauses

	
where clauses, extensions
 , Extending Generics

	
getter
 , Computed Variables
 , Accessors, Properties, and Key–Value Coding

	
git
 , Version Control

	
GitHub
 , Version Control

	
global constants
 , Struct As Namespace

	
global functions
 , The Structure of a Swift File
 , Modules

	
class method instead
 , Extending Object Types

	
instance method instead
 , Extending Protocols

	
global variables
 , The Structure of a Swift File
 , Variable Scope and Lifetime

	
initialization
 , Lazy Initialization

	
globally visible instances
 , Global Visibility

	
golden rule of memory management
 , Rules of Cocoa Memory Management

	
groups
 , The Navigator Pane
 , The Project File and Its Dependents

	
guard
 , Guard

	
guard case
 , Guard

	
guard let
 , Guard

H

	
hand-tweaking the APIs
 , Why Optionals?
 , Failable initializers

	
handlers
 , Function As Value

	(see also
 functions)

	
Hashable
 , Dictionary

	
hasPrefix
 , String

	
hasSuffix
 , String

	
header files
 , Header Files

	
bridging
 , Bilingual Targets

	
Core Graphics
 , How Swift Uses Extensions

	
jumping to
 , Header Files

	
Objective-C
 , Bilingual Targets

	
Swift
 , Modules
 , Header Files

	
heads-up display
 , The Nib Owner

	
hexadecimal number
 , Int

	
hierarchy of classes
 , Subclass and Superclass

	
hierarchy of views
 , Document Outline

	
HUD
 , The Nib Owner

I

	
IBAction
 , Action Connections

	
IBInspectable
 , Additional Configuration of Nib-Based Instances

	
IBOutlet
 , The Nib Owner

	
weak
 , Nib Loading and Memory Management

	
icons
 , From Project to Running App
 , Icons in the app

	
marketing
 , Other icons

	
id
 , Umbrella Types

	
identifiers and reserved words
 , Privacy

	
identity
 , Signing an App

	
Identity inspector
 , The Utilities Pane
 , Inspectors and Libraries

	
identity operator
 , Object identity

	
if
 , If construct

	
if case
 , If case

	
if let
 , Conditional binding

	
image files
 , Resources in an asset catalog

	
immutable Objective-C classes
 , Immutable and Mutable

	
iMovie
 , Screenshots and video previews

	
implicit initializer
 , Initializers
 , Struct Initializers, Properties, and Methods
 , Kinds of class initializer

	
implicitly unwrapped Optional
 , Implicitly unwrapped Optional

	
import statement
 , The Structure of a Swift File
 , Frameworks and SDKs

	
in
 , Anonymous Functions

	
index
 , Character and String Index
 , Character and String Index
 , Basic array properties and methods

	
enumerate with
 , Tuple
 , Array enumeration and transformation
 , For loops

	
indexing a string
 , Character and String Index
 , Range

	
indexing an array
 , Array subscripting

	
IndexSet
 , NSIndexSet

	
indices
 , Basic array properties and methods

	
indirect
 , Advantages of value types vs. reference types

	
inferred variable type
 , Variable Declaration

	
learning
 , Other numeric types

	
Info.plist
 , From Project to Running App
 , Property List Settings
 , Property list settings

	(see also
 property list settings)

	
informal protocols
 , Informal Protocols

	
inheritance
 , Inheritance

	
inheritance of initializers
 , Subclass initializers

	
init
 , How to write an initializer

	
with self
 , Delegating initializers

	
with super
 , Subclass initializers

	
with type reference
 , Type Reference

	
init(coder:)
 , Implicitly Required Initializers

	
initialization
 , Variables
 , Variable Declaration

	
conditional
 , Variable Declaration

	
deferred
 , Why Optionals?

	
lazy
 , Lazy Initialization

	
of enums
 , Enums

	
of nib-based instances
 , Additional Configuration of Nib-Based Instances

	
of Optionals
 , The keyword nil

	
of properties
 , How to write an initializer

	
initialization of properties
 , Property initialization

	
initializers
 , Initializers

	
class
 , Class Initializers

	
convenience
 , Kinds of class initializer

	
delegating
 , Delegating initializers

	
designated
 , Kinds of class initializer

	
enum
 , Enum Initializers

	
failable
 , Failable initializers
 , Subclass initializers

	
implicit
 , Initializers

	
implicit, class
 , Kinds of class initializer

	
implicit, enum
 , Enums

	
implicit, struct
 , Struct Initializers, Properties, and Methods

	
inheritance
 , Subclass initializers

	
Objective-C
 , Objective-C Initializers and Factories

	
overriding
 , Subclass initializers

	
recursive
 , Delegating initializers

	
required
 , Required initializers
 , Type Reference
 , Implicitly Required Initializers

	
required by Cocoa
 , Implicitly Required Initializers

	
struct
 , Struct Initializers, Properties, and Methods

	
inout
 , Modifiable Parameters

	
insert
 , Character and String Index
 , Basic array properties and methods

	
instance methods
 , Instances
 , Methods

	
instance properties
 , Instances
 , Variable Scope and Lifetime
 , How properties are accessed

	
instance variables, Objective-C
 , Accessors, Properties, and Key–Value Coding

	
instances
 , Instances
 -The Keyword self
 , Instance References

	
copying
 , Reference type instances are pointers

	
creation
 , Instances
 , Initializers
 , Instance References

	
getting a reference
 , Instance References
 , Communication Between Objects

	
globally visible
 , Global Visibility

	
initial
 , UIApplicationMain

	
lifetime
 , Instance References

	
literals instead
 , Literal Convertibles

	
multiple references
 , Reference type instances are pointers

	
mutating
 , Modifiable Parameters
 , Reference type instances are mutable

	
nib-based
 , Nib Loading

	
nib-based, memory management
 , Nib Loading and Memory Management

	
relationships between
 , Visibility by Relationship

	
state
 , Why Instances?

	
type
 , Polymorphism

	
type, learning
 , Type Reference

	
type, telling compiler
 , Casting

	
type, testing
 , Type Testing and Casting Down Safely

	
instantiation
 , Instances
 , Initializers
 , Instance References

	
nib-based
 , Nib Management

	
Instruments
 , Profiling
 , Debugging Memory Management Mistakes

	
Int
 , Int

	
Interface Builder
 , Nib Management

	
interface tests
 , Testing

	
internal
 , Privacy

	
internal identity principle
 , Polymorphism

	
internal parameter names
 , Function Parameters and Return Value

	
internationalization
 (see
 localization)

	
Internet as documentation
 , Internet Resources

	
interpolation, string
 , String
 , String

	
interval operators
 , Range

	
introspection
 , Introspection
 , Optional Methods
 , Key–Value Coding

	
invisible bridging header
 , Bilingual Targets

	
iOS Deployment Target build setting
 , Runtime Environment

	
is
 , Type Testing and Casting Down Safely
 , Protocol Type Testing and Casting

	
isEmpty
 , String
 , Basic array properties and methods
 , Set

	
isEqual
 , Equality and Comparison

	
Issue navigator
 , The Navigator Pane

	
issues, live
 , Fix-it and Live Syntax Checking

	
iteration
 , Flow Control

	
iTunes Connect
 , Submission to the App Store

J

	
joined
 , String
 , Basic array properties and methods

	
jump bar
 , The Editor
 , Navigation

	
Debug pane
 , Paused at a breakpoint

	
documentation
 , Class Documentation Pages

	
injecting comments
 , Navigation

	
nib editor
 , Document Outline

	
Related Items menu
 , The Editor

	
Tracking menu
 , The Editor

	
jumping
 , Jumping
 -Guard

	
jumping to declaration
 , Symbol Declarations

	
jumping to header files
 , Header Files

K

	
Key Bindings preferences
 , The Project Window

	
key paths
 , Key Paths
 , Key Paths

	
keyboard shortcuts in Xcode
 , The Project Window

	
Keychain Access
 , Obtaining a Development Certificate Manually

	
keys (dictionary)
 , Dictionary

	
key–value coding
 , Key–Value Coding
 -Array Accessors

	
key–value coding compliant
 , Key–Value Coding

	
key–value observing
 , Key–Value Observing

	
key–value pairs
 , Dictionary

	
KVC
 , Key–Value Coding

	
KVO
 , Key–Value Observing

L

	
labels (flow control)
 , Shortcircuiting and labels

	
labels (nib editor)
 , Document Outline

	
changed by outlet
 , The Nib Owner

	
labels (tuples)
 , Tuple

	
labels in function calls
 , External Parameter Names

	(see also
 external parameter names)

	
last
 , Character and String Index
 , Basic array properties and methods

	
launch images
 , Launch images

	
launch nib
 , Launch images

	
launch process of an app
 , UIApplicationMain

	
layer, configuring in the nib
 , Additional Configuration of Nib-Based Instances

	
lazy initialization
 , Lazy Initialization

	
lazy loading of views
 , When Nibs Are Loaded

	
Leaks instrument
 , Instruments

	
leaks, memory
 , Memory Management of Reference Types
 , Gauges
 , Memory Debugging
 , Principles of Cocoa Memory Management
 , Retain Cycles and Weak References

	
let
 , Variables
 , Variable Declaration
 , Reference type instances are mutable

	
lifetime
 , Variables
 , Scope and Lifetime
 , Instance References

	(see also
 scope)

	
lifetime events
 , Reasons for Events

	
LIFO
 , Object Types and APIs

	
lightweight generics
 , Swift Array and Objective-C NSArray
 , API Markup

	
line
 , Ground of Being

	
linking
 , Frameworks and SDKs

	
literals

	
array
 , Array

	
dictionary
 , Dictionary

	
logging
 , Caveman Debugging

	
numeric
 , Int

	
string
 , String

	
where instance expected
 , Literal Convertibles

	
live issues
 , Fix-it and Live Syntax Checking

	
LLDB
 , Paused at a breakpoint

	
loading a nib
 , Nib Management
 , Nib Loading

	
local variables
 , Variable Scope and Lifetime

	
Locale
 , NSDate and Friends

	
localization
 , Localization
 -Localization

	
LocalizedError
 , Throwing and catching errors

	
logging
 , Caveman Debugging

	
C structs
 , Caveman Debugging

	
logical operators
 , Bool

	
looping
 , Flow Control
 , Loops

	
shortcircuiting
 , Shortcircuiting and labels

	
lowercased
 , String

M

	
main function
 , The Entry Point

	
main storyboard
 , Nib Files
 , UIApplicationMain
 , Device Type

	
main storyboard, app without
 , App Without a Storyboard

	
main view of view controller
 , Document Outline

	
loaded from nib
 , When Nibs Are Loaded

	
main.swift file
 , Functions
 , The Entry Point

	
maintenance of state
 , Object Types and APIs

	
map
 , Array enumeration and transformation

	
mapValues
 , Basic dictionary properties and enumeration

	
Markdown
 , Quick Help

	
marketing icon
 , Other icons

	
math functions
 , Arithmetic operations

	
max
 , Basic array properties and methods

	
Measurement
 , NSMeasurement and Friends

	
MeasurementFormatter
 , NSMeasurement and Friends

	
Media library
 , The Utilities Pane
 , Inspectors and Libraries

	
member center
 , Signing an App

	
members
 , Object Members

	
memberwise initializer
 , Struct Initializers, Properties, and Methods

	
memory graph
 , Memory Debugging

	
memory leaks
 , Memory Management of Reference Types
 , Gauges
 , Memory Debugging
 , Principles of Cocoa Memory Management
 , Retain Cycles and Weak References

	
memory management
 , Memory Management
 -Exclusive Access to Value Types
 , Memory Management
 -Debugging Memory Management Mistakes

	
anonymous functions
 , Stored anonymous functions

	
ARC
 , What ARC Is and What It Does

	
autorelease pool
 , Autorelease Pool

	
CFTypeRefs
 , Memory Management of CFTypeRefs

	
collections
 , How Cocoa Objects Manage Memory
 , Other Unusual Situations

	
dangling pointers
 , Principles of Cocoa Memory Management

	
debugging
 , Debugging Memory Management Mistakes

	
delegates
 , Retain Cycles and Weak References

	
golden rule
 , Rules of Cocoa Memory Management

	
graph
 , Memory Debugging

	
leaks
 , Memory Management of Reference Types
 , Memory Debugging
 , Principles of Cocoa Memory Management

	
mutable Objective-C classes
 , Property Memory Management Policies

	
nib-loaded objects
 , Nib Loading and Memory Management

	
nilifying unsafe references
 , Retain Cycles and Weak References

	
notifications
 , Notification Observers

	
ownership
 , Rules of Cocoa Memory Management

	
properties
 , Memory Management of Instance Properties

	
properties, Objective-C
 , Property Memory Management Policies

	
protocol references
 , Memory management of protocol-typed references

	
retain cycles
 , Memory Management of Reference Types
 , Retain Cycles and Weak References

	
retains, unusual
 , Other Unusual Situations

	
timers
 , Timers

	
Unmanaged
 , Memory Management of CFTypeRefs

	
unowned references
 , Unowned references
 , Retain Cycles and Weak References

	
unsafe references
 , Retain Cycles and Weak References

	
weak references
 , Weak references
 , Retain Cycles and Weak References

	
merging dictionaries
 , Basic dictionary properties and enumeration

	
messages
 , Everything Is an Object?

	
sending optionally
 , Optional Protocol Members
 , Optional Methods

	
to Optionals
 , Optional chains

	
to self
 , The Keyword self

	
metatype
 , Type Reference
 , Type Reference

	
methods
 , Object Members
 , Methods

	(see also
 functions)

	
class
 , Methods

	
enums
 , Enum Methods

	
external parameter names
 , Objective-C Methods

	
inheritance
 , Inheritance

	
instance
 , Instances
 , Methods

	
instance, secret life
 , Methods

	
mutating
 , Enum Methods
 , Struct Initializers, Properties, and Methods
 , Reference type instances are mutable

	
Objective-C
 , Objective-C Methods
 , Objective-C Methods

	
omitting type name
 , Enums

	
optional
 , Optional Protocol Members
 , Optional Methods

	
overriding
 , Overriding

	
overriding and polymorphism
 , Polymorphism

	
overriding, preventing
 , Overriding
 , Public and Open

	
selectors
 , Selectors

	
static
 , Methods

	
static vs. class
 , Class Properties and Methods

	
structs
 , Struct Initializers, Properties, and Methods

	
min
 , Basic array properties and methods

	
Mirror
 , Introspection

	
model–view–controller
 , Model–View–Controller

	
modules
 , The Structure of a Swift File
 , Modules
 , Frameworks and SDKs

	
privacy
 , Public and Open

	
multiline string literals
 , String

	
mutable Objective-C classes
 , Immutable and Mutable

	
NSCopying
 , Property Memory Management Policies

	
mutating an instance
 , Modifiable Parameters
 , Reference type instances are mutable
 , Reference type instances are mutable

	
mutating methods
 , Enum Methods
 , Struct Initializers, Properties, and Methods
 , Reference type instances are mutable

	
MVC
 , Model–View–Controller

N

	
name of app
 , Property list settings
 , Submission to the App Store

	
localizing
 , Localization

	
names of accessors
 , Accessors, Properties, and Key–Value Coding

	
changing
 , Swift Accessors

	
namespaces
 , Namespaces
 , Nested Object Types
 , Struct As Namespace
 , Extending Object Types

	
Objective-C
 , Objective-C

	
naming image files
 , Resources in an asset catalog

	
navigating your code
 , Navigation

	
Navigation preferences
 , The Navigator Pane

	
Navigator pane
 , The Navigator Pane

	
nested arrays
 , Nested arrays

	
nested scopes
 , Nested scopes

	
nested types
 , Namespaces
 , Object Type Declarations and Features
 , Nested Object Types

	
Never
 , Aborting the whole program

	
NeXTStep
 , Nib Management

	
nib editor
 , Nib Management

	
nib files
 , Nib Files
 , Nib Management
 -Additional Configuration of Nib-Based Instances

	
launch
 , Launch images

	
loading
 , Nib Loading

	
localizing
 , Localization

	
nib objects
 , Document Outline

	
nib owner
 , The Nib Owner

	
nib-based instantiation
 , Nib Management
 , Nib Loading and Memory Management

	
nibs, apps without
 , Nib Management

	
nibs, connections between
 , Connections Between Nibs — Not!
 , Visibility by Instantiation

	
nil
 , The keyword nil

	
in Objective-C collections
 , NSNull

	
signaling failure
 , Why Optionals?

	
signaling no data
 , Why Optionals?

	
unwrapping
 , The keyword nil

	
nil-coalescing operator
 , Conditional evaluation

	
nil-targeted actions
 , Nil-Targeted Actions

	
nilifying unsafe references
 , Retain Cycles and Weak References

	
nonnull
 , API Markup

	
nonobjc
 , Exposure of Swift to Objective-C

	
Notification
 , Notifications

	
Notification.Name
 , Notifications

	
forming from string
 , Posting a Notification

	
NotificationCenter
 , Notifications

	
notifications
 , Notifications

	
matching delegate methods
 , Cocoa Delegation

	
posting
 , Posting a Notification

	
registering
 , Receiving a Notification

	
retain cycles
 , Notification Observers

	
unregistering
 , Unregistering
 , Notification Observers

	
when appropriate
 , Posting a Notification
 , Notifications and Key–Value Observing

	
NSArray
 , Swift Array and Objective-C NSArray
 , NSArray and NSMutableArray

	
proxy (key–value coding)
 , Array Accessors

	
NSAttributedString
 , NSString and Friends

	
NSCoder
 , Codable

	
NSCoding
 , Implicitly Required Initializers
 , Codable

	
NSCopying
 , Protocols
 , Property Memory Management Policies

	
NSCountedSet
 , NSSet and Friends

	
NSDataAsset
 , Resources in an asset catalog

	
NSDecimalNumber
 , NSNumber

	
NSDictionary
 , Swift Dictionary and Objective-C NSDictionary
 , NSDictionary and NSMutableDictionary

	
NSError
 , Throwing and catching errors

	
NSErrorPointer
 , Throwing and catching errors

	
NSFastEnumeration
 , For loops

	
NSHashTable
 , Other Unusual Situations

	
NSKeyedArchiver
 , NSData
 , Codable

	
NSLinguisticTagger
 , NSString and Friends

	
NSLog
 , Caveman Debugging

	
NSMapTable
 , Other Unusual Situations

	
NSMutableArray
 , Swift Array and Objective-C NSArray
 , NSArray and NSMutableArray

	
NSMutableDictionary
 , Swift Dictionary and Objective-C NSDictionary
 , NSDictionary and NSMutableDictionary

	
NSMutableOrderedSet
 , NSSet and Friends

	
NSMutableSet
 , NSSet and Friends

	
NSMutableString
 , NSString and Friends

	
NSNotFound
 , NSRange and NSNotFound

	
NSNull
 , NSNull

	
NSNumber
 , NSNumber

	
NSObject
 , Subclass and Superclass
 , The Secret Life of NSObject
 -The Secret Life of NSObject

	
equality
 , Equality and Comparison

	
NSObjectProtocol
 , The Secret Life of NSObject

	
NSOrderedSet
 , NSSet and Friends

	
NSPointerArray
 , Other Unusual Situations

	
NSRange
 , NSRange and NSNotFound

	
NSRegularExpression
 , NSString and Friends

	
NSSet
 , NSSet and Friends

	
NSString
 , String
 , NSString and Friends

	
NSValue
 , NSValue

	
nullable
 , API Markup

	
numeric literals
 , Int

	
numeric types, C
 , Other numeric types

	
numeric types, Swift
 , Numbers

O

	
objc
 , Selectors
 , Optional Protocol Members
 , Suppressing type checking
 , Memory management of protocol-typed references
 , Swift Accessors
 , C Enums
 , Exposure of Swift to Objective-C

	
objcMembers
 , Exposure of Swift to Objective-C

	
Object library
 , The Utilities Pane
 , Canvas

	
object types
 , Object Types
 -Class Properties and Methods

	
declaration
 , Object Type Declarations and Features

	
definition over multiple files
 , Extending Object Types
 , How You Use Extensions

	
extensions
 , Extending Object Types

	
flavors
 , Three Flavors of Object Type

	
generic
 , Generic Declarations

	
generic, extensions
 , Extending Generics

	
initializers
 , Initializers

	
methods
 , Methods

	
nested
 , Nested Object Types

	
Objective-C
 , Objective-C Objects and Swift Objects

	
passing or assigning
 , Type Reference

	
polymorphism
 , Type Reference

	
properties
 , Properties

	
reference vs. value
 , Value Types and Reference Types

	
references to
 , Type Reference

	
references to, Objective-C
 , Objective-C Objects and C Pointers

	
scope
 , Object Type Declarations and Features

	
subscripts
 , Subscripts

	
umbrella types
 , Umbrella Types

	
Objective-C
 , C, Objective-C, and Swift
 -API Markup

	(see also
 bridged types)

	
accessors
 , Computed Variables
 , Accessors, Properties, and Key–Value Coding

	
categories
 , Categories and Extensions

	
collections
 , NSIndexSet
 -Immutable and Mutable

	
comparison
 , Equality and Comparison

	
equality
 , Equality and Comparison

	
factory methods
 , Objective-C Initializers and Factories

	
header files
 , Bilingual Targets

	
id
 , Umbrella Types
 , Objective-C Objects and C Pointers

	
immutable vs. mutable classes
 , Immutable and Mutable

	
initializers
 , Objective-C Initializers and Factories

	
instance variables
 , Accessors, Properties, and Key–Value Coding

	
lightweight generics
 , Swift Array and Objective-C NSArray
 , API Markup

	
methods
 , Objective-C Methods

	
namespaces
 , Objective-C

	
object references
 , Objective-C Objects and C Pointers

	
object types
 , Objective-C Objects and Swift Objects

	
Optionals and
 , Why Optionals?

	
properties
 , Accessors, Properties, and Key–Value Coding

	
protocols
 , Protocols

	
setter
 , Setter Observers

	
subscripts
 , NSArray and NSMutableArray
 -NSSet and Friends

	
Swift class member exposure to
 , Exposure of Swift to Objective-C

	
Swift features invisible to
 , Objective-C Objects and Swift Objects

	
Swift, in one target with
 , Bilingual Targets

	
Swift, translating app into
 , Bilingual Targets

	
objects
 , Everything Is an Object?

	(see also
 object types)

	
communication between
 , Communication Between Objects

	
graphing
 , Memory Debugging

	
identity of two
 , Object identity

	
octal numbers
 , Int

	
open
 , Privacy

	
operator syntax
 , Everything Is an Object?
 , Operators

	
operators
 , Operators
 -Operators

	
arithmetic
 , Arithmetic operations

	
bitwise
 , Arithmetic operations
 , Option sets

	(see also
 option sets)

	
Boolean
 , Bool

	
comparison
 , Comparison

	
compound assignment
 , Arithmetic operations

	
creating
 , Operators

	
declaration
 , Operators

	
equality
 , Comparison

	
identity
 , Object identity

	
interval
 , Range

	
nil-coalescing
 , Conditional evaluation

	
overriding
 , Operators

	
ternary
 , Conditional evaluation

	
unwrap
 , Unwrapping an Optional
 , Optional chains

	
Optimization Level build setting
 , Configurations

	
optimizing
 , Profiling

	
option sets
 , Option sets
 , C Enums

	
empty
 , Option sets

	
Optional chains
 , Optional chains

	
optional message sending
 , Optional Protocol Members
 , Optional Methods

	
optional methods
 , Optional Protocol Members
 , Optional Methods

	
optional properties
 , Optional Protocol Members

	
optional unwrap operator
 , Optional chains

	
Optionals
 , Optional
 -Why Optionals?

	
casting
 , Type Testing and Casting Optionals

	
chain
 , Optional chains

	
comparison
 , Comparison with Optional

	
creating
 , Optional

	
declaration
 , Optional

	
deferred initialization
 , Why Optionals?

	
double-wrapped
 , Optional Protocol Members
 , Basic array properties and methods

	
empty
 , The keyword nil

	
enum
 , Associated Values

	
enum, generic
 , Generics

	
equality
 , Comparison with Optional

	
implicitly unwrapped
 , Implicitly unwrapped Optional

	
initialization
 , The keyword nil

	
messages to
 , Optional chains

	
nil
 , The keyword nil

	
Objective-C and
 , Why Optionals?

	
properties
 , Optional properties

	
type
 , Optional

	
type, testing
 , Type Testing and Casting Optionals

	
unwrapping
 , Unwrapping an Optional
 , The keyword nil
 , Conditional binding
 , Switch statement
 , Conditional evaluation
 , While loops
 , Guard

	
wrapping
 , Optional

	
wrapping array elements
 , Array casting and type testing

	
OptionSet
 , Option sets
 , C Enums

	
organization identifier
 , New Project

	
Organizer window
 , Making an Archive

	
orientation of interface
 , Property list settings

	
outlet collections
 , Outlet Collections

	
outlet connections
 , Outlets
 , KVC and Outlets

	
outlets
 , Outlets

	
creating
 , More Ways to Create Outlets

	
deleting
 , Deleting an Outlet

	
misconfiguring
 , Misconfigured Outlets

	
overflow
 , Arithmetic operations

	
overlay, Swift
 , Some Foundation Classes
 , Bridged Types and Boxed Types

	
overloading
 , Overloading

	
Objective-C
 , Objective-C Methods

	
overriding
 , Overriding

	
initializers
 , Subclass initializers

	
polymorphism and
 , Polymorphism

	
preventing
 , Overriding
 , Public and Open

	
owner (memory management)
 , Rules of Cocoa Memory Management

	
owner (nib)
 , The Nib Owner

P

	
parameter list
 , Function Parameters and Return Value

	
in anonymous function
 , Anonymous Functions

	
omitting
 , Anonymous Functions

	
parameters
 , Function Parameters and Return Value

	
default values
 , Default Parameter Values

	
external names
 , External Parameter Names

	
external names, initializers
 , How to write an initializer

	
external names, methods
 , Objective-C Methods

	
external names, subscripts
 , Subscripts

	
functions as
 , Function As Value

	
ignoring
 , Ignored Parameters

	
internal names
 , Function Parameters and Return Value

	
modifiable
 , Modifiable Parameters

	
variadic
 , Variadic Parameters

	
parentheses

	
calling a function
 , Function Parameters and Return Value

	
coercion
 , Numeric coercion

	
declaring a function
 , Function Parameters and Return Value

	
instantiating an object type
 , Instances
 , Initializers

	
order of operations
 , Bool
 , Arithmetic operations

	
signifying Void
 , Void Return Type and Parameters
 , Tuple

	
tuples
 , Tuple

	
partial range
 , Range

	
patterns, switch statement
 , Switch statement

	
persistence
 (see
 lifetime)

	
persisting references
 , Memory Management of Reference Types

	
placeholders, generic
 , Generics

	(see also
 generics)

	
placeholders, nib editor
 (see
 proxy objects)

	
playgrounds
 , The Scope of This Book

	
pointee
 , Modifiable Parameters
 , C Pointers

	
pointer-to-void
 , C Pointers

	
pointers
 , Modifiable Parameters
 , Reference type instances are pointers
 , Objective-C Objects and C Pointers
 , CFTypeRefs

	
C
 , C Pointers

	
dangling
 , Principles of Cocoa Memory Management

	
generic
 , C Pointers

	
polymorphism
 , Polymorphism

	
pool, autorelease
 , Autorelease Pool

	
popFirst
 , Basic array properties and methods

	
popLast
 , Basic array properties and methods

	
Portal
 , Signing an App

	
posting a notification
 , Notifications

	
precondition
 , Aborting the whole program

	
prefix
 , Character and String Index
 , Basic array properties and methods
 , Array enumeration and transformation

	
previews, video
 , Screenshots and video previews

	
print
 , Ground of Being
 , Variadic Parameters
 , String
 , Caveman Debugging

	(see also
 logging)

	
privacy
 , Privacy
 , Privacy

	
private
 , Privacy

	
product name
 , New Project

	
profile
 (see
 provisioning profile)

	
profiling
 , Profiling

	
project
 , Anatomy of an Xcode Project

	
renaming
 , Renaming Parts of a Project

	
project file
 , The Project File and Its Dependents

	
project folder
 , The Project File and Its Dependents
 , Renaming Parts of a Project

	
Project navigator
 , The Navigator Pane
 , Navigation

	
project templates
 , New Project

	
project window
 , The Project Window

	
properties
 , Object Members
 , Variable Scope and Lifetime
 , Properties

	(see also
 variables)

	
accessors
 , Swift Accessors

	
class
 , Variable Scope and Lifetime
 , How properties are accessed

	
classes, overriding
 , Class Properties and Methods

	
computed initialization
 , Computed Initializer

	
deferred initialization
 , Why Optionals?

	
dynamic
 , Key–Value Observing

	
enums
 , Enum Properties

	
initialization
 , How to write an initializer
 , Property initialization

	
initialization, classes
 , Class Initializers

	
inspectable
 , Additional Configuration of Nib-Based Instances

	
instance
 , Instances
 , Variable Scope and Lifetime
 , How properties are accessed

	
lazy initialization
 , Lazy Initialization

	
memory management
 , Memory Management of Instance Properties

	
Objective-C
 , Accessors, Properties, and Key–Value Coding

	
Objective-C, memory management
 , Property Memory Management Policies

	
omitting type name
 , Enums

	
Optional
 , Optional properties

	
optional
 , Optional Protocol Members

	
overriding
 , Class Properties and Methods

	
private
 , Privacy

	
releasing
 , Memory Management of Instance Properties

	
static
 , Variable Scope and Lifetime
 , How properties are accessed

	
static vs. class
 , Class Properties and Methods

	
static, initialization
 , Lazy Initialization

	
static, struct
 , Struct As Namespace

	
structs
 , Struct Initializers, Properties, and Methods

	
property list settings
 , Property List Settings
 , Property list settings

	
dependent on device type
 , Device Type

	
property lists
 , Property Lists

	
protocols
 , Protocols
 -Literal Convertibles
 , Protocols

	
adopter
 , Generic Declarations

	
adopting
 , Protocols

	
associated type
 , Generic Declarations

	
associated type, chaining
 , Associated Type Chains

	
associated type, constraining
 , Where Clauses

	
casting
 , Protocol Type Testing and Casting

	
class
 , Class Protocol

	
composition
 , Protocol Composition

	
conforming to
 , Protocols

	
declaration
 , Declaring a Protocol

	
delegate
 , Implementing Delegation

	
documentation
 , Protocols

	
extensions
 , Extending Protocols
 , How You Use Extensions

	
constraining associated type
 , Extending Generics

	
extensions, invisible to Objective-C
 , Protocols

	
generic
 , Generic Declarations

	
constraining associated type
 , Where Clauses

	
implicitly required initializers
 , Implicitly Required Initializers

	
informal
 , Informal Protocols

	
literal convertible
 , Literal Convertibles

	
memory management
 , Memory management of protocol-typed references

	
Objective-C
 , Protocols

	
optional members
 , Optional Protocol Members
 , Optional Methods

	
testing type
 , Protocol Type Testing and Casting

	
provisioning profile
 , Signing an App

	
development
 , Obtaining a Development Provisioning Profile Manually

	
distribution
 , Obtaining a Distribution Profile

	
universal
 , Obtaining a Development Provisioning Profile Manually

	
proxy objects
 , Document Outline
 , The Nib Owner

	
public
 , Privacy

	
pyramid of doom
 , Conditional binding

Q

	
query events
 , Reasons for Events

	
question mark
 , Optional
 , Optional chains
 , Type Testing and Casting Down Safely
 , Optional Protocol Members
 , Switch statement
 , Conditional evaluation
 , Conditional evaluation

	
Quick Help
 , The Utilities Pane
 , Quick Help

	
Quick Look a variable
 , Paused at a breakpoint

	
quotes
 , String

R

	
Range
 , Range

	
range, indexing with
 , Range
 , Array subscripting

	
range, partial
 , Range

	
range, string
 , String
 , NSRange and NSNotFound

	
raw value
 , Raw Values

	
RawRepresentable
 , Extending Protocols

	
read-only variables
 , Computed Variables

	
recursion
 , Recursion

	
recursive initializers
 , Delegating initializers

	
recursive references
 , Advantages of value types vs. reference types

	
reduce
 , Array enumeration and transformation

	
refactoring
 , Refactoring

	
Refactoring (book)
 , Summary and Conclusion

	
reference
 , Variables
 , Variables and Simple Types

	
reference types
 , Value Types and Reference Types

	
memory management
 , Memory Management

	
references

	
getting
 , Instance References
 , Communication Between Objects

	
persisting
 , Memory Management of Reference Types

	
recursive
 , Advantages of value types vs. reference types

	
strong
 , Memory Management of Reference Types

	
to class types
 , AnyClass

	
to functions
 , Function References and Selectors

	
to object types
 , Type Reference

	
to object types, Objective-C
 , Objective-C Objects and C Pointers

	
to same object
 , Reference type instances are pointers
 , Object identity

	
unowned
 , Unowned references
 , Retain Cycles and Weak References

	
unsafe
 , Retain Cycles and Weak References

	
weak
 , Weak references
 , Retain Cycles and Weak References

	
registering a device
 , Automatic Signing
 , Obtaining a Development Provisioning Profile Manually

	
registering an app
 , Obtaining a Development Provisioning Profile Manually

	
registering for a notification
 , Receiving a Notification

	
regular expressions
 , NSString and Friends

	
Related Items menu
 , The Editor

	
releasing a property
 , Memory Management of Instance Properties

	
remove
 , Character and String Index
 , Basic array properties and methods

	
removeFirst
 , Basic array properties and methods

	
removeLast
 , Basic array properties and methods

	
removeSubrange
 , Range

	
removeValue
 , Dictionary subscripting

	
renamification
 , Objective-C Methods
 , CFTypeRefs

	
renaming a project or target
 , Renaming Parts of a Project

	
REPL
 , The Scope of This Book

	
replaceSubrange
 , Range

	
replacing
 , Finding

	
Report navigator
 , The Navigator Pane
 , Testing

	
required initializers
 , Required initializers
 , Type Reference
 , Implicitly Required Initializers

	
reserved words
 , Privacy

	
resolution, screen
 , Resources in an asset catalog
 , Device Type

	
resolving a generic
 , Generics
 , Explicit Specialization

	
resources
 , Additional Resources

	
app bundle
 , Resources in the Project navigator

	
asset catalog
 , Resources in an asset catalog

	
dependent on device type
 , Device Type

	
responder
 , The Responder Chain

	
responder chain
 , The Responder Chain

	
responds
 , Optional Methods

	
result of a function
 , Function Parameters and Return Value

	
ignoring
 , Function Parameters and Return Value

	
retain count
 , Principles of Cocoa Memory Management

	
retain cycles
 , Memory Management of Reference Types
 , Retain Cycles and Weak References

	
anonymous functions
 , Stored anonymous functions

	
notifications
 , Notification Observers

	
timers
 , Timers

	
retains, unusual
 , Other Unusual Situations

	
rethrows
 , Throwing and catching errors

	
return
 , Function Parameters and Return Value

	
omitting
 , Anonymous Functions

	
return function from function
 , Function Returning Function

	
return value of anonymous function
 , Anonymous Functions

	
return value of function
 , Function Parameters and Return Value

	
reversed
 , Range
 , Basic array properties and methods

	
root class
 , Subclass and Superclass

	
root view controller
 , UIApplicationMain

	
run
 , New Project

	
running on a device
 , Running on a Device

S

	
sample code, Apple’s
 , Sample Code

	
scalars
 , Everything Is an Object?
 , NSNumber
 , C Data Types

	
Scanner
 , NSString and Friends

	
scene
 , Document Outline

	
scene dock
 , Document Outline

	
Scheme pop-up menu
 , Schemes and Destinations

	
schemes
 , Schemes and Destinations

	
scientific notation
 , Double

	
scope
 , Scope and Lifetime

	
exiting early
 , Jumping

	
nested
 , Nested scopes

	
object types
 , Object Type Declarations and Features

	
variable
 , Variable Scope and Lifetime

	
screen resolution
 , Resources in an asset catalog
 , Device Type

	
screencasts
 , Screenshots and video previews

	
screenshots
 , Screenshots and video previews

	
SDKs
 , Schemes and Destinations
 , Frameworks and SDKs

	
older
 , Backward Compatibility

	
searching arrays
 , Basic array properties and methods

	
searching for symbols
 , Symbol Declarations
 , Header Files

	
searching the documentation
 , The Documentation Window

	
searching your code
 , Finding

	
Selector
 , Selectors

	
selectors
 , Selectors
 , Selectors

	
self
 , The Keyword self

	
in escaping functions
 , Escaping Closures
 , Functions and reference types

	
in initializers
 , Referring to self
 , Kinds of class initializer

	
in instance methods
 , The Keyword self
 , Object Type Declarations and Features

	
in property initialization
 , Property initialization

	
in static/class methods
 , Object Type Declarations and Features

	
polymorphism
 , Polymorphism

	
polymorphism in class methods
 , Type Reference

	
with type name
 , Type Reference

	
Self
 , Type Reference
 , Generic Declarations
 , Associated Type Chains

	
semicolon
 , Ground of Being

	
sequence
 , For loops

	
array initializer
 , Array

	
character
 , Character and String Index

	
enumerating with index
 , Tuple
 , For loops

	
generating
 , For loops

	
range indexing
 , Range

	
transforming
 , For loops

	
Sequence
 , For loops

	
serialization
 , Property Lists

	
Set
 , Set

	
sets
 , Set
 -Swift Set and Objective-C NSSet
 , NSSet and Friends

	
declaration
 , Set

	
equality
 , Set

	
initializers
 , Set

	
literals
 , Set

	
mutating
 , Set

	
operations
 , Set

	
option sets
 , Option sets
 , C Enums

	
sampling
 , Set

	
transformations
 , Set

	
setter
 , Computed Variables
 , Accessors, Properties, and Key–Value Coding

	
private
 , Private and Fileprivate

	
setter observers
 , Setter Observers

	
shared application instance
 , UIApplicationMain

	
shortcircuiting
 , Shortcircuiting and labels

	
should, delegate method names with
 , Cocoa Delegation

	
side effects
 , Function Parameters and Return Value

	
signature of a function
 , Function Signature

	
signing an app
 , Signing an App

	
automatic
 , Automatic Signing

	
manual
 , Obtaining a Development Provisioning Profile Manually

	
Simulator
 , Running in the Simulator

	
Single View App template
 , New Project

	
singleton
 , Lazy Initialization

	
Size inspector
 , The Utilities Pane
 , Inspectors and Libraries

	
slice
 , Array subscripting

	
snippets
 , Snippets

	
sort
 , Basic array properties and methods

	
sorted
 , Basic array properties and methods

	
sorting arrays
 , Basic array properties and methods

	
Source Control navigator
 , The Navigator Pane

	
Source Control preferences and menu
 , Version Control

	
specializing a generic
 , Generics
 , Explicit Specialization

	
splatting
 , Variadic Parameters

	
split
 , Character and String Index
 , Basic array properties and methods

	
square brackets
 , Subscripts
 , Array
 , Dictionary

	
stack
 , Object Types and APIs

	
stack, call
 , Jumping
 , The Navigator Pane
 , Paused at a breakpoint

	
startIndex
 , Character and String Index
 , Basic array properties and methods

	
starts
 , Basic array properties and methods

	
state, instance
 , Why Instances?

	
state, maintenance
 , Object Types and APIs

	
statement
 , Ground of Being

	
static members
 , Instances

	
static methods
 , Methods

	
vs. class methods
 , Class Properties and Methods

	
static properties
 , Variable Scope and Lifetime
 , How properties are accessed

	
initialization
 , Lazy Initialization

	
struct
 , Struct As Namespace

	
vs. class properties
 , Class Properties and Methods

	
stepping
 , Paused at a breakpoint

	
stored variables
 , Computed Variables

	
storyboard files
 , Nib Files

	(see also
 main storyboard)

	
compiled
 , From Project to Running App

	
dependent on device type
 , Device Type

	
editing
 , The Nib Editor Interface

	
entry point
 , Document Outline

	
launch
 , Launch images

	
stride
 , For loops

	
String
 , String

	
String.Index
 , Character and String Index

	
strings
 , String
 -Range

	
C strings
 , C Data Types

	
characters
 , Character and String Index

	
coercion
 , String

	
comparison
 , String

	
concatenating
 , String

	
equality
 , String

	
format
 , Caveman Debugging

	
indexing
 , Character and String Index
 , Range

	
initializers
 , String

	
interpolation
 , String
 , String

	
length
 , String
 , String

	
literals
 , String

	
modifying
 , Character and String Index
 , Range

	
notification names
 , Posting a Notification

	
range
 , String
 , NSRange and NSNotFound

	
searching
 , String

	
substrings
 , String
 -Range
 , NSString and Friends

	
Unicode
 , String

	
strong references
 , Memory Management of Reference Types

	
structs
 , Structs
 -Struct As Namespace

	(see also
 object types)

	
bridged to Objective-C classes
 , NSValue
 , Bridged Types and Boxed Types

	
C structs
 , NSValue
 , C Structs

	
C structs, logging
 , Caveman Debugging

	
initializers
 , Struct Initializers, Properties, and Methods

	
initializers, extensions
 , Extending Object Types

	
methods
 , Struct Initializers, Properties, and Methods

	
omitting type name
 , Enums

	
properties
 , Struct Initializers, Properties, and Methods

	
static properties
 , Struct As Namespace

	
subscripts
 , Struct Initializers, Properties, and Methods

	
styled text
 , NSString and Friends

	
subclass
 , Subclass and Superclass

	
subclassing

	
in Cocoa
 , Subclassing
 , Subclassing

	
preventing
 , Subclass and Superclass
 , Public and Open

	
UIApplication
 , Subclassing

	
UILabel
 , Subclassing

	
UIView
 , Subclassing
 , Subclassing

	
UIViewController
 , Subclassing
 , Subclassing

	
subscripting
 , Character and String Index
 , Range
 , Array subscripting
 , Dictionary subscripting

	
Objective-C
 , NSArray and NSMutableArray
 -NSSet and Friends

	
subscripts
 , Subscripts

	
classes
 , The keyword super

	
enums
 , Enum Methods

	
overriding
 , The keyword super

	
structs
 , Struct Initializers, Properties, and Methods

	
substitution principle
 , Polymorphism

	
Substring
 , Character and String Index

	
subview
 , Document Outline

	
suffix
 , Character and String Index
 , Basic array properties and methods

	
super
 , The keyword super

	
in initializers
 , Subclass initializers

	
superclass
 , Subclass and Superclass

	
superview
 , Document Outline

	
supported interface orientations
 , Property list settings

	
swapAt
 , Basic array properties and methods

	
swapping variables
 , Tuple

	
Swift
 , Preface
 , The Architecture of Swift
 -Exclusive Access to Value Types

	
Swift 3 objc inference
 , Exposure of Swift to Objective-C

	
Swift and Objective-C in one target
 , Bilingual Targets

	
Swift header
 , Modules

	
Swift overlay (Foundation)
 , Some Foundation Classes
 , Bridged Types and Boxed Types

	
switch
 , Switch statement

	
Symbol navigator
 , The Navigator Pane
 , Navigation

	
symbolic breakpoint
 , Breakpoints

	
symbols, searching for
 , Symbol Declarations
 , Header Files

	
syntax checking
 , Fix-it and Live Syntax Checking

T

	
tabs in Xcode
 , The Editor

	
target
 , The Target

	
bilingual
 , Bilingual Targets

	
framework
 , Frameworks and SDKs

	
test
 , Testing

	
Targeted Device Family build setting
 , Runtime Environment

	
target–action
 , Actions

	
team
 , Obtaining a Developer Program Membership

	
templates, file
 , Code Files

	
templates, project
 , New Project

	
ternary operator
 , Conditional evaluation

	
test bundle
 , Testing

	
Test Failure breakpoint
 , Testing

	
Test navigator
 , The Navigator Pane

	
test target
 , Testing

	
testable
 , Testing

	
TestFlight
 , Ad Hoc Distribution

	
tests
 , Testing

	
text, drawing
 , NSString and Friends

	
text, styled
 , NSString and Friends

	
thinning an app
 , Ad Hoc Distribution

	
throw
 , Throwing and catching errors

	
throws
 , Throwing and catching errors

	
Time Profiler instrument
 , Instruments

	
timers
 , Timer

	
timers and retain cycles
 , Timers

	
times
 , NSDate and Friends

	
top level
 , The Structure of a Swift File
 , Modules

	(see also
 global)

	
top-level objects (nib)
 , Document Outline

	
tracking
 , The Editor

	
trailing function
 , Anonymous Functions

	
true
 , Bool

	
try
 , Throwing and catching errors

	
tuples
 , Tuple

	
tweaking the APIs
 , Why Optionals?
 , Failable initializers

	
Type
 , Type Reference

	
type alias
 , Function As Value
 , Tuple

	
type checking, suppressing
 , Suppressing type checking

	
type constraints
 , Type Constraints

	
multiple
 , Where Clauses

	
type eraser
 , Swift Dictionary and Objective-C NSDictionary

	
type name, omitting
 , Enums

	
type of function
 , Function As Value

	
type of instance vs. type of variable
 , Polymorphism

	
type of instance, testing
 , Type Testing and Casting Down Safely

	
type of Optional
 , Optional

	
type of variable
 , Variables
 , Variable Declaration

	
type placeholders
 , Generics

	(see also
 generics)

	
type references
 , Type Reference

	
type(of:)
 , Type Reference

	
type-over completions
 , Editing and Navigating Your Code

	
typecasting
 (see
 casting)

	
types
 , Object Type Declarations and Features

	(see also
 object types)

U

	
UDID
 , Signing an App

	
UI tests
 , Testing

	
UIApplication
 , UIApplicationMain
 , Subclassing

	
UIApplicationMain
 , UIApplicationMain

	
UIBackgroundTaskIdentifier
 , Variable Declaration

	
UIControl
 , Action Connections
 , Actions

	
UILabel
 , Subclassing

	
UIPickerView
 , Data Sources

	
UIResponder
 , The Responder Chain

	
UIView
 , Subclassing
 , Subclassing

	(see also
 views)

	
UIViewController
 , Subclassing
 , Subclassing

	(see also
 view controller)

	
umbrella types
 , Umbrella Types

	
underflow
 , Arithmetic operations

	
underscore

	
argument label
 , External Parameter Names

	
assignment to
 , Function Parameters and Return Value
 , Tuple

	
mop-up switch case
 , Switch statement

	
parameter name
 , Ignored Parameters
 , Function References and Selectors

	
parameter name, anonymous function
 , Anonymous Functions

	
Unicode
 , String

	
UnicodeScalar
 , String

	
unique an array
 , Set

	
Unit
 , NSMeasurement and Friends

	
unit tests
 , Testing

	
universal app
 , Runtime Environment

	
universal provisioning profile
 , Obtaining a Development Provisioning Profile Manually

	
Unmanaged
 , Memory Management of CFTypeRefs

	
unowned references
 , Unowned references
 , Retain Cycles and Weak References

	
unregistering for a notification
 , Unregistering
 , Notification Observers

	
unsafe references
 , Retain Cycles and Weak References

	
UnsafeMutablePointer
 , Modifiable Parameters
 , C Pointers

	
UnsafeMutableRawPointer
 , C Pointers

	
UnsafePointer
 , C Pointers

	
UnsafeRawPointer
 , C Pointers

	
casting to CFTypeRef
 , CFTypeRefs

	
until
 , While loops

	
unwrapping an Optional
 , Unwrapping an Optional

	
updateValue
 , Dictionary subscripting

	
uppercased
 , String

	
URL
 , NSString and Friends

	
User Defined Runtime Attributes
 , Additional Configuration of Nib-Based Instances

	
user events
 , Reasons for Events

	
UserDefaults
 , Struct As Namespace
 , Global Visibility

	
UTF-8, UTF-16, UTF-32
 , String

	
Utilities pane
 , The Utilities Pane

V

	
value types
 , Value Types and Reference Types

	
memory management
 , Exclusive Access to Value Types

	
values (dictionary)
 , Dictionary

	
var
 , Variables
 , Variable Declaration
 , Reference type instances are mutable

	
variables
 , Variables
 , Variables and Simple Types
 -Built-In Simple Types

	
coercion
 , Numeric coercion

	
computed
 , Computed Variables

	
declaration
 , Variables
 , Variable Declaration

	
façade
 , Computed Variables

	
functions as value of
 , Function As Value

	
global
 , The Structure of a Swift File
 , Variable Scope and Lifetime

	
global, initialization
 , Lazy Initialization

	
initialization
 , Variables

	
initialization of Optional
 , The keyword nil

	
lazy
 , Lazy Initialization

	
lifetime
 , Variables
 , Variable Scope and Lifetime

	
local
 , Variable Scope and Lifetime

	
read-only
 , Computed Variables

	
scope
 , Variable Scope and Lifetime

	
setter observers
 , Setter Observers

	
stored
 , Computed Variables

	
swapping
 , Tuple

	
type
 , Variables
 , Variable Declaration

	
type vs. instance type
 , Polymorphism

	
variables list
 , The Navigator Pane
 , Paused at a breakpoint

	
variadic parameters
 , Variadic Parameters

	
Objective-C
 , Objective-C Methods

	
version control
 , Version Control

	
version string
 , Property list settings

	
video previews
 , Screenshots and video previews

	
view controller
 , Document Outline
 , When Nibs Are Loaded

	
initial
 , UIApplicationMain
 , Document Outline
 , When Nibs Are Loaded

	
view debugging
 , Paused at a breakpoint

	
views
 , The Nib Editor Interface

	
drawing
 , Subclassing

	
visibility
 (see
 scope)

	
visibility, instance
 , Communication Between Objects

	
visible bridging header
 , Bilingual Targets

	
Void
 , Void Return Type and Parameters
 , Tuple

	
void
 , C Pointers

W

	
warnings, compiler
 , Ground of Being

	
weak references
 , Weak references
 , Retain Cycles and Weak References

	
weak–strong dance
 , Stored anonymous functions

	
where
 , Where Clauses
 , Extending Generics
 , Switch statement
 , For loops

	
while
 , While loops

	
while case
 , While loops

	
while let
 , While loops

	
Whole Module Optimization
 , Polymorphism
 , Configurations

	
willSet
 , Setter Observers

	
windows, secondary, in Xcode
 , The Editor

	
WWDR Intermediate Certificate
 , Obtaining a Development Certificate Manually

X

	
Xcode
 , Anatomy of an Xcode Project
 -Submission to the App Store

	(see also
 nib editor)

	
xib files
 , Nib Files

	
editing
 , Document Outline

	
xliff files
 , Localization

Z

	
zombies
 , Debugging Memory Management Mistakes

About the Author

Matt Neuburg
 started programming computers in 1968, when he was 14 years old, as a member of a literally underground high school club, which met once a week to do timesharing on a bank of PDP-10s by way of primitive teletype machines. He also occasionally used Princeton University’s IBM-360/67, but gave it up in frustration when one day he dropped his punch cards. He majored in Greek at Swarthmore College, and received his PhD from Cornell University in 1981, writing his doctoral dissertation (about Aeschylus) on a mainframe. He proceeded to teach Classical languages, literature, and culture at many well-known institutions of higher learning, most of which now disavow knowledge of his existence, and to publish numerous scholarly articles unlikely to interest anyone. Meanwhile he obtained an Apple IIc and became hopelessly hooked on computers again, migrating to a Macintosh in 1990. He wrote some educational and utility freeware, became an early regular contributor to the online journal TidBITS
 , and in 1995 left academe to edit MacTech
 magazine. In August 1996 he became a freelancer, which means he has been looking for work ever since. He is the author of Frontier: The Definitive Guide
 , REALbasic: The Definitive Guide
 , and AppleScript: The Definitive Guide
 , as well as Programming iOS 11
 (all for O’Reilly Media).

Colophon

The animal on the cover of iOS 11 Programming Fundamentals with Swift
 is a harp seal (Pagophilus groenlandicus
), a Latin name that translates to “ice-lover from Greenland.” These animals are native to the northern Atlantic and Arctic Oceans, and spend most of their time in the water, only going onto ice packs to give birth and molt. As earless (“true”) seals, their streamlined bodies and energy-efficient swimming style make them well-equipped for aquatic life. While eared seal species like sea lions are powerful swimmers, they are considered semiaquatic because they mate and rest on land.

The harp seal has silvery-gray fur, with a large black marking on its back that resembles a harp or wishbone. They grow to be 5–6 feet long, and weigh 300–400 pounds as adults. Due to their cold habitat, they have a thick coat of blubber for insulation. A harp seal’s diet is very varied, including several species of fish and crustaceans. They can remain underwater for an average of 16 minutes to hunt for food, and are able to dive several hundred feet.

Harp seal pups are born without any protective fat, but are kept warm by their white coat, which absorbs heat from the sun. After nursing for 12 days, the seal pups are abandoned, having tripled their weight due to their mother’s high-fat milk. In the subsequent weeks until they are able to swim off the ice, the pups are very vulnerable to predators and will lose nearly half of their weight. Those that survive reach maturity after 4–8 years (depending on their gender), and have an average lifespan of 35 years.

Harp seals are hunted commercially off the coasts of Canada, Norway, Russia, and Greenland for their meat, oil, and fur. Though some of these governments have regulations and enforce hunting quotas, it is believed that the number of animals killed every year is underreported. Public outcry and efforts by conservationists have resulted in a decline in market demand for seal pelts and other products, however.

The cover image is from Wood’s Animate Creation
 . The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	
Preface

	
The Scope of This Book

	
Versions

	
Acknowledgments

	
From the Programming iOS 4 Preface

	
Conventions Used in This Book

	
Using Code Examples

	
Safari® Books Online

	
How to Contact Us

	
I. Language

	
1. The Architecture of Swift

	
Ground of Being

	
Everything Is an Object?

	
Three Flavors of Object Type

	
Variables

	
Functions

	
The Structure of a Swift File

	
Scope and Lifetime

	
Object Members

	
Namespaces

	
Modules

	
Instances

	
Why Instances?

	
The Keyword self

	
Privacy

	
Design

	
Object Types and APIs

	
Instance Creation, Scope, and Lifetime

	
Summary and Conclusion

	
2. Functions

	
Function Parameters and Return Value

	
Void Return Type and Parameters

	
Function Signature

	
External Parameter Names

	
Overloading

	
Default Parameter Values

	
Variadic Parameters

	
Ignored Parameters

	
Modifiable Parameters

	
Function In Function

	
Recursion

	
Function As Value

	
Anonymous Functions

	
Define-and-Call

	
Closures

	
How Closures Improve Code

	
Function Returning Function

	
Closure Setting a Captured Variable

	
Closure Preserving Its Captured Environment

	
Escaping Closures

	
Curried Functions

	
Function References and Selectors

	
Function Reference Scope

	
Selectors

	
3. Variables and Simple Types

	
Variable Scope and Lifetime

	
Variable Declaration

	
Computed Initializer

	
Computed Variables

	
Setter Observers

	
Lazy Initialization

	
Built-In Simple Types

	
Bool

	
Numbers

	
String

	
Character and String Index

	
Range

	
Tuple

	
Optional

	
4. Object Types

	
Object Type Declarations and Features

	
Initializers

	
Properties

	
Methods

	
Subscripts

	
Nested Object Types

	
Instance References

	
Enums

	
Raw Values

	
Associated Values

	
Enum Initializers

	
Enum Properties

	
Enum Methods

	
Why Enums?

	
Structs

	
Struct Initializers, Properties, and Methods

	
Struct As Namespace

	
Classes

	
Value Types and Reference Types

	
Subclass and Superclass

	
Class Initializers

	
Class Deinitializer

	
Class Properties and Methods

	
Polymorphism

	
Casting

	
Casting Down

	
Type Testing and Casting Down Safely

	
Type Testing and Casting Optionals

	
Bridging to Objective-C

	
Type Reference

	
Protocols

	
Why Protocols?

	
Protocol Type Testing and Casting

	
Declaring a Protocol

	
Protocol Composition

	
Optional Protocol Members

	
Class Protocol

	
Implicitly Required Initializers

	
Literal Convertibles

	
Generics

	
Generic Declarations

	
Type Constraints

	
Explicit Specialization

	
Associated Type Chains

	
Where Clauses

	
Extensions

	
Extending Object Types

	
Extending Protocols

	
Extending Generics

	
Umbrella Types

	
Any

	
AnyObject

	
AnyClass

	
Collection Types

	
Array

	
Dictionary

	
Set

	
5. Flow Control and More

	
Flow Control

	
Branching

	
Loops

	
Jumping

	
Key Paths

	
Operators

	
Privacy

	
Private and Fileprivate

	
Public and Open

	
Privacy Rules

	
Introspection

	
Memory Management

	
Memory Management of Reference Types

	
Exclusive Access to Value Types

	
II. IDE

	
6. Anatomy of an Xcode Project

	
New Project

	
The Project Window

	
The Navigator Pane

	
The Utilities Pane

	
The Editor

	
The Project File and Its Dependents

	
The Target

	
Build Phases

	
Build Settings

	
Configurations

	
Schemes and Destinations

	
From Project to Running App

	
Build Settings

	
Property List Settings

	
Nib Files

	
Additional Resources

	
Code Files

	
Frameworks and SDKs

	
The App Launch Process

	
The Entry Point

	
UIApplicationMain

	
App Without a Storyboard

	
Renaming Parts of a Project

	
7. Nib Management

	
The Nib Editor Interface

	
Document Outline

	
Canvas

	
Inspectors and Libraries

	
Nib Loading

	
When Nibs Are Loaded

	
Manual Nib Loading

	
Connections

	
Outlets

	
The Nib Owner

	
Automatically Configured Nibs

	
Misconfigured Outlets

	
Deleting an Outlet

	
More Ways to Create Outlets

	
Outlet Collections

	
Action Connections

	
More Ways to Create Actions

	
Misconfigured Actions

	
Connections Between Nibs — Not!

	
Additional Configuration of Nib-Based Instances

	
8. Documentation

	
The Documentation Window

	
Class Documentation Pages

	
Quick Help

	
Symbol Declarations

	
Header Files

	
Sample Code

	
Internet Resources

	
9. Life Cycle of a Project

	
Runtime Environment

	
Backward Compatibility

	
Device Type

	
Version Control

	
Editing and Navigating Your Code

	
Autocompletion

	
Snippets

	
Structure Stubs

	
Fix-it and Live Syntax Checking

	
Navigation

	
Finding

	
Refactoring

	
Running in the Simulator

	
Debugging

	
Caveman Debugging

	
The Xcode Debugger

	
Testing

	
Clean

	
Running on a Device

	
Obtaining a Developer Program Membership

	
Signing an App

	
Automatic Signing

	
Obtaining a Development Certificate Manually

	
Obtaining a Development Provisioning Profile Manually

	
Running the App

	
Managing Development Certificates and Devices

	
Profiling

	
Gauges

	
Memory Debugging

	
Instruments

	
Localization

	
Distribution

	
Making an Archive

	
Obtaining a Distribution Certificate

	
Obtaining a Distribution Profile

	
Ad Hoc Distribution

	
Final App Preparations

	
Screenshots and video previews

	
Property list settings

	
Submission to the App Store

	
III. Cocoa

	
10. Cocoa Classes

	
Subclassing

	
Categories and Extensions

	
How Swift Uses Extensions

	
How You Use Extensions

	
How Cocoa Uses Categories

	
Protocols

	
Informal Protocols

	
Optional Methods

	
Some Foundation Classes

	
NSRange and NSNotFound

	
NSString and Friends

	
NSDate and Friends

	
NSNumber

	
NSValue

	
NSData

	
NSMeasurement and Friends

	
Equality and Comparison

	
NSArray and NSMutableArray

	
NSDictionary and NSMutableDictionary

	
NSSet and Friends

	
NSIndexSet

	
NSNull

	
Immutable and Mutable

	
Property Lists

	
Codable

	
Accessors, Properties, and Key–Value Coding

	
Swift Accessors

	
Key–Value Coding

	
Uses of Key–Value Coding

	
KVC and Outlets

	
Key Paths

	
Array Accessors

	
The Secret Life of NSObject

	
11. Cocoa Events

	
Reasons for Events

	
Subclassing

	
Notifications

	
Receiving a Notification

	
Unregistering

	
Posting a Notification

	
Timer

	
Delegation

	
Cocoa Delegation

	
Implementing Delegation

	
Data Sources

	
Actions

	
The Responder Chain

	
Deferring Responsibility

	
Nil-Targeted Actions

	
Key–Value Observing

	
Swamped by Events

	
Delayed Performance

	
12. Memory Management

	
Principles of Cocoa Memory Management

	
Rules of Cocoa Memory Management

	
What ARC Is and What It Does

	
How Cocoa Objects Manage Memory

	
Autorelease Pool

	
Memory Management of Instance Properties

	
Retain Cycles and Weak References

	
Unusual Memory Management Situations

	
Notification Observers

	
KVO Observers

	
Timers

	
Other Unusual Situations

	
Nib Loading and Memory Management

	
Memory Management of CFTypeRefs

	
Property Memory Management Policies

	
Debugging Memory Management Mistakes

	
13. Communication Between Objects

	
Visibility by Instantiation

	
Visibility by Relationship

	
Global Visibility

	
Notifications and Key–Value Observing

	
Model–View–Controller

	
A. C, Objective-C, and Swift

	
The C Language

	
C Data Types

	
C Enums

	
C Structs

	
C Pointers

	
C Arrays

	
C Functions

	
Objective-C

	
Objective-C Objects and C Pointers

	
Objective-C Objects and Swift Objects

	
Exposure of Swift to Objective-C

	
Bridged Types and Boxed Types

	
Objective-C Methods

	
Objective-C Initializers and Factories

	
Selectors

	
CFTypeRefs

	
Blocks

	
API Markup

	
Bilingual Targets

	
Index

OEBPS/Image00079.jpg
User taps button

Button

Button’s dispatch table

Touch Down
Touch Up Inside * myObject <@ buttonPressed:
Touch Up Outside

‘myObject

OEBPS/Image00078.jpg
x

App Store
ios
1024pt

OEBPS/Image00081.gif

OEBPS/Image00080.gif
33.79 VB

OEBPS/Image00083.jpg
/‘__ >core is incremented

MODEL CONTROLLER VIEW

"The scoreis
20"

User sees score in
interface

OEBPS/Image00082.jpg
libobjec.A.dylib®

0x10ab77940
0x10ab77943
0x10ab77945
0x10ab77948
0x10ab7794b
@x10ab7794F

objc_msgSend:

<+0>:
<351
<531
<4851
<+113
<+15:

testq
jle
movg
movg
andl
shlg

s%rdi, %rdi
0x10ab77990
(%rdi), %rie
srsi, %ril
ox18(%r1e), %riid
$0x4, %¥ril

i <r8e>

- Thread 1: EXC_BAD_ACCESS

OEBPS/Image00000.jpg
Dog class

Dog instance

OEBPS/Image00075.jpg
// 1oad the CGImage at the desired size

let d : NSDictionary =
KCBInageSourceShouldAllonFloat as String: true,
KCGInageSourceCreateThunbnailWithTransforn as String: true,
KCGInageSourceCreateThunbnailFronnageAluays as String: true,
kCGImageSourceThunbnaiMaxPixelSize a5 String: max(Int(maxw), Int(naxh))

]
let inref = CoInageSourceCreateThumbnailAtIndex(sze, 8, d)! s

OEBPS/Image00077.jpg
iPhone App
105 7-11
60pt
%
2
iPad App. iPad Pro App
108 7-11 105 8-11

76pt B3.5pt

OEBPS/Image00076.jpg
Signing certificates for *Matt Neuburg":

05 Development Certficates | Creator Date Created _ Status.
[Clgromit Matt Neuburg /8/16
i0S Distribution Certificates

08 Distribution Matthew Neuburg ~ 11/12/16 Not in Keychain

OEBPS/Image00003.gif

OEBPS/Image00004.gif

OEBPS/Image00001.jpg
Dog class

0\
%aﬁw instance

]

Dog instance Dog instance

OEBPS/Image00002.jpg

OEBPS/Image00074.jpg
1 |
CPU Usage l
lln il

® Time Profiler | Profile | Root

Weightv ~Self Weight Symbol Name
1645 100.0% 0s vMomApp2 (1354)

1585 86.4% os iain Thread OxB7ef5

1565 94.8% 0s [J__ wstan_iibayidoyib

1565 94.8% Os P4 wmain MomApoz

1565 94.8% os [0 VUiApplicationMain Ui

T.485 89.8% os [VGSEventRunModal_Grapicsservices

1485 89.8% os [VCFRunLoopRunSpeciic_CoreFoundaiion

1485 89.8% os [V_CFRunLoopRun_Coreroundation

1215 73.3% os V_CFRUNLOOP.IS_SERVICING_THE MAIN_DISPATCH_QUEUE___Coreroundation
1215 73.3% os [V_dispatch_main_queue_callback_4CF |bdispaich aylo

1.205 73.0% os [V_dispatch_source invoke_I1odispatch dyio

1.205 73.0% os [V_dispatch_source Jatcn_and_call_baispaich ayo

1.205 73.0% os ['V_dispatch_continuation_pop I bispatch dyib

1.205 73.0% os [0 V_dispatch_client_callout_[l5dispatch dylo

1.205 73.0% os Wthunk for @callee_owned (1 >)_MomAsp?

1.205 73.0% os “Voartial apply for closure #1in ViewController dsplayActvityindicatorwhile
1.205 73.0% os ‘Velosure #1 in ViewController displayActivityindicatorWhileDoing () 1o
1.205 73.0% os Vspecialized closure #1 in ViewController.displayotivityindicatorileD
.20 72.8% os Voartial apply for closure #1 in ViewController.newGame(imageSource
1205 72.8% o5 ‘Vclosure #1 in ViewController newGame(mageSource-song: 1o/

‘vspecialized closure #1 in ViewController.newGame(mageSource:s
1.065 64.4% 0s »CGimageSourceCreateThumbnallAtindex _Imagel0

130.00ms_7.9% 0s »MyBoard newGame(image:song) MomAppZ

OEBPS/Image00084.jpg
OREILLY"

i0S 11°*

Programming
Fundamentals
with Swift

SWIFT, XCODE, AND COCOA BASICS

Matt Neuburg

OEBPS/Image00072.jpg
AllHeap &

(00:05.000

00:10.000

[00:15.000

b

OEBPS/Image00073.jpg
@) Leakchecks o

© Leaks | 22 Cycles & Roots | Leak Cycles

4 Type Details Graph
Cycles (1)
1 ¥Dog #1in testRetainCycle #1 0 in ViewControllerviewDidLoad() - 2 .. Simple Cycle.
<Dog #1in testRetainCycle #1 () in ViewControllerviewDidLoad() OX6.
cat

<Cat #1n testRetainCycle #1 {) In ViewController-viewDidLoad() OX®.
dog
<Dog #1in testRetainCycle #1 () in ViewControllerviewDidLoad() OX6.

([Dog #1 in testRetainCycie #1 () in ViewGontroller.viewbidLoad()]

THUTPUIIOE. . A——

v
((cat#1 ntestRetainGycte #1 () in ViewController-viewDidLoad) |

OEBPS/Image00086.jpg

OEBPS/Image00070.jpg
UWindow

O 4 ; O

Suit cosurs content Uview NsMutabienrmay malosceé> Weowd Comtguo.<UNews Tie

malloc<4g>

OEBPS/Image00071.jpg
MyApp - 1834 2 issues
{0 Memory Issues - (2 leaked types)

v 3 1 instence of Cat #1 i testRetain
Cycle #1 0 n ViewControlerviewia
Losd) leaked
13 0x6080000285c0

v [1 instance of Dog #1 in testRetain

Cycle #1) in ViewControlerviewDia
Load(leaked ¢

3 0x608000028360
Dog #1in..DidLoady

OEBPS/Image00068.jpg
O Automatically manage signing
Xeod will create and update profies, app 105, and
certficates,

¥ Signing (Debug)

Provisioning Profile [89 Bottles Dev Bo

Team Matt Neuburg

Signing Certificate Phone Developer: Matt Neuburg (JESVQCAS72)

OEBPS/Image00069.jpg
Memory Use

[P Energy Impact Cod

I N, 108me
N 055

Memory o

Duration: 42 sec:
Figh: 35.3 M8
Low: Zero K&

OEBPS/Image00066.jpg
v iPhone Developer: Matt Neuburg (JESVQCAS72) certificate
§ 105 Developer: Matt Neuburg (Matt Neuburg) prvate key
eoce iPhone Developer: Matt Neuburg (JESVACA972)
=== iPhone Developer: Matt Neuburg (JESVQCA972)
7" | issued by: Apple Worldwide Developer Relations Certification Authority
| Expires: Wednesday, November 8, 2017 at 8:00:14 PM Pacific Standard
Time

@ This certificate is valid

OEBPS/Image00067.jpg
i0S Team Provisioning Profile: *
Created Jul 28, 2017 (Expires in 11

o months)

e sian App ID: *

weetd () Vatches bundie 1D
“com.neuburg.matt Empty-Window"

— Certificates: 2 Included

G D hdudosrnewestdaniag cenificats:

OEBPS/Image00065.jpg
ece Devices

Sognectach ' Argos3 is busy: Preparing debugger support for Argos3

Xcode will continue when Argos3 s finished.

OEBPS/Image00063.jpg
A Repair target Empty Window
Team Matt Neuburg (Automatic) | Platform 105
© Diagnose problem
o
O Register device "Argos3" on team "Matt Neuburg”
@ Create i0S App Development provisioning profile for bundie identifier “com.neuburg.matt Empty-Window"

o Signing update finished 7/28/17, 6:08 PM,
Noissues.

OEBPS/Image00064.jpg
Automatically manage signing.
Xeoce will create ana upcaze
profies, app 1Ds, and certiicates.

Team (Matt Neuburg

Provisioning Profile Xcode Managed Profile (O

Signing Certificate iPhone Developer: Matt Neuburg (JE...

OEBPS/Image00061.jpg
Status @ Failed to create provisioning profile.
There are no devices registered in your account on
the developer website. plug in and solect a device
10 have Xcode register i

@ No profiles for ‘com.neuburg.matt Empty-
Window were found
¥eode could't ind ay i0S App Development
provisioning profies matching
‘com. neubirg matt Empty- Windov

OEBPS/Image00062.jpg
fsn't registered on the

Status @ Device "Argos:
developer portal
The device must be registered in order to be
included in a provisioning profl.

Register Device

OEBPS/Image00059.jpg
ZeroBs | 38

3
ZeroKBfs | 0 let i = self.view.frame)
g teariali yxl y
| > (origin = (x = 0, y = 0),size = (width = 320, height = 568) © O 0
] g

ar() bl
State:isAni. b b
veTowindo. 45 i

pearance.

OEBPS/Image00060.jpg
v EmptyWindowTests » EmptyWindowTests
© v [testoogMyCats)

Assertion Failure: EmptyWindowTests.swift:47: XCTAssertEqual failed: (dog:
is not equal to (") - Failed to produce dogs from cats

OEBPS/Image00057.gif
21

OEBPS/Image00058.gif
21

OEBPS/Image00055.gif
19

21

OEBPS/Image00056.gif
19

OEBPS/Image00054.jpg
Find) Gall Hierarchy

[Q-GameBoardControtlerstopAlCardAnimations) @

Swit Ignoring Cased
v [GamsBoardControlerstopAlGardAnimations(
[GameBoardController caraDoubleTapped()
[GameBoardControlercaraTapped)
v [GamsBoardControlirsaveStatel
v [GamsBoardControlirstartGamelreshDock)
» [GameBoardCantroler gameFailed
» [GameBoardControllergameOver)
[GameBoardGontrolleriowWiLayoutSubviews)
v [SetingsControlerdoNewGame()
» [SettingsController.choseLayout(-}
» [GameBoardControllerviswWillDisappear()

OEBPS/Image00052.jpg
let alert = UIAlertController(|

@ urAlertController ()

@ urAlertController? (coder: NSCoder)

[@ ulalertController (nibName: String?, bundl
UIAlertController (title!

Bundle?)

OEBPS/Image00053.jpg
let transform2 : CGAffineTransform = transformi

nverted '@ Function produc

let transform2 : CGAffineTransform = transformi.inverted

© Function produces expected type ‘CGAffineTransform’; did you mean to call it with (0’2
Insert ()"

OEBPS/Image00050.jpg
Declaration
Description

Parameters

Returns

func dogMyCats(_ cat:

String) -> String

Many people would lice to dog ther cats. So it is
perfectly reasonable to supply a convenience
method to do so:

+ Because i's cool.
 Because t's there

cats
Astring containing cats

A string containing dogs

OEBPS/Image00051.jpg
UINavigationBar.appearance().titleTextAttributes = [
.font : UIFont(name: "ChalkboardSE-Bold", size:

20)1,
.foregroundColor : UIColor.darkText,

.shadow : lend {

(shad : NSShadow) in
shad.shadow0ffset = CGSize(width: 1.5,height:

1.5)

1

i8] Albumen2) " switta) 7/30/17 Matt Neuburg 2636210 (HEAD)

UINavigationBar.appearance().titleTextAttributes = [
NSFontAttributeName : UIFont(name: "ChalkboardSE-

Bold", size: 20
NSForegroundColorAttributeName :

UIColor.darkText,
NSShadowAttributeName : lend {

(shad : NSShadow) in

shad.shadow0ffset = CGSize(width: 1.5,height:
1.5)

1

81 Albumen2) " switta) (11/25/16 Matt Neuburg 5016059

OEBPS/Image00048.jpg
Views and Controls) €| UlButton

Class

UlButton

A control that executes your custom code in response to user
interactions.

Overview

When you tap a button, or select a button that has focus, the button performs
any actions attached to it. You communicate the purpose of a button using a
text label, an image, or both. The appearance of buttons is configurable, 5o you
can tint buttons or format titles to match the design of your app. You can add
buttons to your interface programmatically or using Interface Builder.

Figure 1

Button ®

Language
Swift | Objective-C

SDKs

108 2.0+
08 9.0+

Framework
UIKit

On This Page
Overview
Topics.
Relationships

OEBPS/Image00049.jpg
Contro]

Cla

U

iBution
UiDatePicker
UrPageControl
UisegmentedControl
uisiider

Uistepper

B
c
B
c
c

vvvyvid

(@ eckgrouna

o)

M func backgroundimage(for: UControiState)

M| func setBackgroundimage(Ulimage?, for: UIControlState)
P var currentBackgroundimage: Ulimage?

M func backgroundRect(forBounds: CGRect)

OEBPS/Image00046.jpg
Custom Class

Ciass [RedButton Ohd
Module [Current -~ Empty Window |8

Identity

[value
layorcomerRadius Number & 10

OEBPS/Image00047.jpg
De=E i o

Red Button

OEBPS/Image00045.jpg
orviton
object (1
.

Arguments

== ———y

OEBPS/Image00043.jpg
Connection ((Outlet 5

))

P

9
]
A

class V

OEBPS/Image00044.jpg
‘Action Segue
Show
Show Detail
Present Modally
Present As Popover

Custom
Sent Events.
buttonPresse
Non-Adaptive AtSon Segue
Push (deprecated)
Modal (deprecated)

OEBPS/Image00041.jpg
import UIKit

class ViewController: UIViewController {

@IBOutlet var coolview : UIView!
9 override func viewDidLoad() {
10 super.viewDidLoad()
B8 <\ [IIMonua) i ok1eho7pszinitonding) o beicho7pszinito

© Placknoiders

sutton

OEBPS/Image00042.jpg
import UIKit

class ViewController: UIViewController {

:
verride func viewDidLoad() {
10 super.viewDidLoad()

®| < >/|I|Mmu.n\>i bK1ch07p321nibLoading) 1 bk1ch07p321nibC

Labe!

sutton

OEBPS/Image00039.jpg
@ Placeholders @ Placeholders

B Fie's Ownor
5 Frst Respond

8] utton

OEBPS/Image00040.jpg
Relstonzhp.
Show
Show Detail

000

OEBPS/Image00037.jpg
Dog dass Person class

Dog dlass has a Person
instance property called
master

nib has a Dog object with an
outlet called "master"
toa Person object

nib

"master"

nib loads...

Dog instance ." %{> ." Person instance

Dog instance’s
master propertyis
areference to Person
instance

OEBPS/Image00038.jpg
Dog class Person dass.

Dog class has a Person
instance property called
master

Dog instance .’

nib’s nib owner objectis of
Dog class, and has an outlet
called "master” toa
Person object

Dog |:|'> q nib

"master"

nib loads

with Dog
instance as
owner...

same Dog instance ." |:|l> N

master

Person instance

Dog instance’s
master property is
areference to Person
instance

OEBPS/Image00035.jpg
Label

Button

OEBPS/Image00036.jpg
Carrier 9:10 AM -

Label

Button

OEBPS/Image00032.gif

OEBPS/Image00033.jpg
Do0eB
Loty e

Button and sends an action message toa 0
target object when is tapped.

‘Segmented Control - Displays.
multiple segments, sach of which
| functions s a discrets button

Toxt Fold - Dsplays sable
[Text | ext and sands an action mesaage
1. rge olect when Reum 1

oo+ £ ol e

OEBPS/Image00030.jpg
v [5] View Controller Scene

» L view

51 Frst Responder

Bt

* Storyboard Entry Point

OEBPS/Image00031.jpg
@ Placeholders
1 Fies Owner
T First Responder

» Clview

OEBPS/Image00028.jpg
Image Image

" 2x 3x

Universal

OEBPS/Image00029.jpg
88 < > [Empty Window) [Em..cow) [Mai..ard) [Mai..se)) [5 Vie..ene) (£) View Controller
v [View Controer Scene
v (3) View Convrolier oo

5 Frst Responder

et

Storyboard Entry Point

——
] Viewas:iPhoneSE («C:R) — 75% +

Deoe=E v i o

View
Content Mode (ScaleToril |
Somantic (Unspecified B

Interaction Enabled
e Touch

:I

Tint | B | Defauit

Drawing @ Opaque
O Hidden
@ Clears Graphics Context
O Clip to Bounds
Autoresize Subviews.

Stietchina olf] ol
oo @ B

Labe] L A ey scad amaun o

Button - ineffent
Button sends an sctffn

s and
5

‘Segmented ControT Displays.
multiple segments, each of which
unctions a2 a discrate buttan,

£ ol e

OEBPS/Image00026.jpg
Name

» [CodeSignature
Applcon60XE0@2xpng
Assets.car

v [Baselproj
" LaunchScreen.storyboarde
. Mainstoryboarde

B Empty Window
v 1 Frameworks

libswiftCore.dyb
libswiftCoreFoundation.dylib
libswiftCoreGraphics.dylib
libswiftCorelmage.dylib
libswiftDarwin.dyb
liswiftDispatch.dylib
libswiftFoundation.dylib
liswiftObjectiveC.dylib
libswittos.dyb
libswiftQuartzCore dylib
libswitUIKitdyl>

Info.plst

libswiftRemoteMirrordylib

Piginfo

OEBPS/Image00027.jpg
Destination: @ Copy items if needed

Added folders: @) Create groups
(O Create folder references

OEBPS/Image00034.jpg
Carrier & 10:35 AM -

Button

OEBPS/Image00025.jpg
e0e [Library

Name

v [Developer
» [Coresimulator
» [Shared
» [Toolchains
v [Xcode
» [Archives
v [DerivedData
v [Empty Window-exiqfvynfdfafhaleojsigvotsrx
v [Build
» [Intermediates.noindex
v [Products
v [Debug-iphonesimulator
4 Empty Window
» [Empty_ Window.swiftmodule

OEBPS/Image00021.jpg
Info Build Settings

¥ Deployment Target

05 Deployment Target

¥ configurations
Name

» Debug
» Release

T =

No Configurations Set
No Configurations Set

OEBPS/Image00022.jpg
Basic

Customized Levels | + Q- optim
v Swift Compiler - Code Generation
P Empty Window
Disable Safety Chocks Noo
¥ Optimization Level <Multiple values> &
Debug

None [-Onone] &
Release

Fast, Whole Module Optimization [-O -whole-module-optimization] &

OEBPS/Image00019.jpg
> Targot Dependencios (0 tems)

¥ Compile Sources (2 items)

£ ViewController.awift ..in Empty Window

£ AppDelegate.switt ...in Empty Window

%
P Link Binary With Libraries (0 items)

¥ Copy Bundie Resources (3 tems)

LaunchScrsen.storyboard
5 Asssta xcassots .in Empty Window
Main storyboard

T

OEBPS/Image00020.jpg
General Capabilities

Basic Customized

¥ Architectures.
Setting
Additional SDKs
Arehitoctures
Base SDK
¥ Build Active Architecture Only
Debug
Release
Supported Platforms
Valid Architectures.

Resource

Combined

Tags Info Build Settings

+

Prrosoned

Standard architectures
Latest 108 (105 11.0) ¢
<Multiple values> &

Yes<
No
05

Prmoty Windou

BuidPhases Build Rules.

B empty window

Latest i0S (108 11.0)
<Multiple values> &
Yes

0S Defau

Standard architeotures .
Latest 108 (05 11.0) &
No

No

No©

105 2

OEBPS/Image00017.jpg
[Name

BHERQAOQ
v [Empty Window v [Empty Window
v [Empty Window +1 AppDelegate.swift
© AppDelegate.swt > [Assets.xcassets
- ViewControlersuit v [Baselproj

[Main.storyboard
55 Assets. xcassets
) Launcnscreen.storyooard

) Main.storyboard
Info pist

.. ViewControllerswitt

& Empty Windowxcodeproj

‘) LaunchScreen storyboard

Infoplist
» [Products

OEBPS/Image00018.jpg
] B4 s e Emn indow

T projct E
PROJECT [v & Empty Window
&) Empty Window
Targets
TARGETS 7 Empty Window

Add Target. farget

OEBPS/Image00015.jpg
BE®RQAOED B 8 < > [B Empty Window) 1 Empty Window) .. AppDelegate.swift) [AppDelegate
w55 Empty Window FID 15772 Qo 10 import UIKit
1
W 12 eurapplicationMain
34.1MB 13 class AppDelegate: UIResponder, UIApplicationDelegate {
%
Zesole 15 var window: UIWindow?
@ Network Zero KBjs 16
- 7
v @ Thresd 1 Queus: com.appls main-tnvesd (seri) = G e SR S

710 AppDelegate.applcation sdiFiishLaunchingWi...
I 1 @obio AppDelegateappiication(-cidFinishLaunch.
[0 2 -{UiAppiication _handieDelegateCalloacksWithOpt
[3 -(UiAppiication _caliniilizationDelegatesForMain
3 4 -(Uihppiication _runWithMainScenesransitionCont
[5 _111-L_UiCanvasLifecycleMonitor Compatabirt
[0 6 +LUICanvas _enaueuePostSettingUpdateTransac.
7 -L_UiCanvasLfecycleMonfor_ Compatabilty _sch.
Os

[9_52-L UiAppiicationCanves _transtonLfecyciest,

{_UicanvasLifecycleMonftor. Compatability actv.

10 -{_UiApplcationCanvas _ransitonLfecycisState.

Oz

(CanvasL fecycleSettingsDiffAction pe.

didFinishLaunchingWithOptions launchOptions:
[UTApplicationLaunchoptionsKey: Any]?) —> Bool {
19 1/ Override point for customization after application

launch.
7 b
= » > o 2@ % < |) @) I oAppDelegate.applicat..aunchingWithOptions:)

» (3 application = (UiAppiication) 0x000071c345701210
23 taunchOptions = (Uikppicatint aunchOptonsiey - Any.
> [sel = (mpty Windov AppDelegate) 0x00006000003,

(11db)

(@ Fiter =8

W oo

Ao | ® @

OEBPS/Image00016.jpg
B < > 7 Empty Window) Build Empty Window : 8:50:05 AM

v A Build targot Empty Window

Project Empty Window | Configuration Debug | Destination iPhone 7 Plus | SOK Simulator - 10S 11.0

@ Process product packaging
¥ @ Compile Switt source files

1@ Compile AppDelegate.swit ...n [Users/mattneubeicap/Deskiop/Empty Window/Empty Window

1© Compile ViewController.swift ...in /Users/matineubelcap/Desktop/Empty Window/Empty Window

1 Merge Empty_Window.swiftmodule ...n /Users/mattneubelcap/Library/Developer/Xcode/DerivedData/Em.
@ Copy Empty_Window-Swift.h _.in [Users/mattneubelcap/Library/Developer/Xcode/DerivedData/Empty_Wind.
© Link [Users/mattneubelcapiLibrary/Developer/Xcode/DerivedData/Empty_Window-exiafvynfdfathaleojsigvots.
1© Copy xB6_64.swiftmodule ...n [Users/matineubelcap/Library/Developer/Xcode/DerivedData/Empty_Window.
1 Copy xB6_64.swiftdoc ...in [UsersjmatineubelcapiLibrary/Developer/Xcode/DerivedData/Empty_Window-exl
1 Compile Storyboard file LaunchScreen.storyboard ...in [Users/matineubelcap/Desktop/Empty Window/Empt.
1 Compile Storyboard file Main.storyboard ...in /Users/matineubelcap/Deskiop/Empty Window/Empty Window.
© Compile asset catalogs.
@ Process Info.plist ...in /Users/matineubelcap/Desktop/Empty Window/Empty Window
© Link Storyboards.
© Copy Swit standard libraries into Empty Window.app ..in /Users/mattneubelcap/Library/Developer/Xcode.
© Touch Empty Window.app ..in [Users/mattneubelcapiLibrary/Developer/Xcode/DerivedData/Empty_Window.
@ Sign Empty Window.app ...n /Users/mattneubelcap/Library/Developer/Xcode/DerivedData/Empty_Window-e.

o Bulld succosded 7/25/17, 8:50 AM
Noissues.

OEBPS/Image00023.jpg
7 Empty Window) g iPhone &

B Info Aguments Options Diagnostics

1 target

Test Executable Empty Window.app s
»F o =

Debug executable

Profie
>
."RR‘“" Debug Process As (=) Me (mattneuburg
Analyze
> B
0. Launon @ Automatically
* P Release O Waitfor exscutable to be launched

[Duplicate Scheme | [Manage Schemes.] [Shared

OEBPS/Image00024.jpg
0]

e
= Q A @ Edit Scheme.

~ New Scheme.

Manage Schemes
ty Window Sy
ppDelegate swift

Window

ienControllerswift
ain storyboard
ssets.xcassets
unchSereenstoryooard
fo.plist

ucts

Device
] No devices connected to My Mac'

Buid Only Device
7 Generc 0 Device

i0S Simulators
@ iPad (5th generation)

B iPad A

8 Pad A2

@ iPad Pro (9.7 inch)

@8 Pad Pro (10.5-inch)

@ Pad Pro (12.9 inch)

@8 iPad Pro (12.8-inch) (2nd generation)

@ Phone 55

8 Prone &

@ Prone 6 Plus

8 Phone Bs

@ Phone Bs Plus

8 Prone 7

@ Phone 7 Plus

8 Phone SE

Add Additional Simulators.
Download Simulators.

OEBPS/Image00010.jpg
Quick Help.

Deciaration Lot percentage: CGFloat

pt.x / s.bounds.size.width

Dectarea In MySider.swift

OEBPS/Image00011.jpg
B Q& o

@ Uictvityindicatorview
[Uertview

[UicoliectionReusableView
[uicontrol

UlButton

UiDatepicker
UlPageControl

>
>
>
>
v

UisegmentedControl
uisiiger

Uistepper

Uiswiten
UlfextFiela

@ Uiinputview,
[UlLaoel

[UNavigationBar
[Ulpickerview

Yyvvvy

OEBPS/Image00008.gif

OEBPS/Image00009.gif

OEBPS/Image00006.gif

OEBPS/Image00007.gif

OEBPS/Image00005.gif

OEBPS/Image00014.jpg
Find) Text) Containing

[Qasigere
Tonorng Cases

in Project

Sresultsin 1 file

v . AppDelegate swift
1= 11 AppDslegate.switt
- class AppDelegate: UResponder, UiApplcationDelegato {
- class AppDelogate: UlResponder. UlAppicationDelegate {

OEBPS/Image00012.jpg
®©® (>][W) (Aemp.dow) s Prone 5] [[Running Empty Window on Phone 5.

BERALQ o 8 8 <
v 5 Empty Window
v (21 Empty Window
. AppDelegate st
. ViewControler.switt
| Main.storyboard

65 Assets xcassets
| Launcnscreen.storyooard
Infopist
[Products

E®p>a s 2Dy

&y Empty Window) [Empty Window) . ViewCantroler.swift

import UIKit
class ViewController: UIViewController {
override func viewdidLoad() {

super.viewDidLoad()

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
}

> [application = (/zzpcaior) 0x0000716621300... (11db)
I aunchOptions = (Uzpicaton aunchoptonsc

> 3 selt

N Crra—c

Auto S

@ [0 Appbetegate.spp..chingWitnOgtions)

Viewcontroler oo

Identity and Type show
On Demand Resource Tags

Only resaurces are ta

Target Membership. sho

Toxt Settings

Toxt Encoding [[No Explicit Encoding |
Line Endings ((No Expicit Lne Endings [

ndont Using (Spaces B

ndent

® o

fuch Class - A cacos
Touch class

Ul Tost Case Class - A class
implamenting a nit tost

Unit Test Case Class - A class.
implamenting a urit tost

W00 88 (@riter

OEBPS/Image00013.jpg
BERQAANOE=E
v [Empty Window
v [Empty Window
. AppDelegate swift

| ViewControler swit
| Main storyboard

52 Assets.xcassets
| Launcascreen storyboard

Infoplist
1 products

