


[image: Cover Page]




Table of Contents


	Cover

	Title

	Copyright

	List of Abbreviations

	Preface to the Second Edition

	Preface to the First Edition

	1 Introduction

	2 Image Acquisition
	2.1 Illumination

	2.2 Lenses

	2.3 Cameras

	2.4 Camera–Computer Interfaces

	2.5 3D Image Acquisition Devices



	3 Machine Vision Algorithms
	3.1 Fundamental Data Structures

	3.2 Image Enhancement

	3.3 Geometric Transformations

	3.4 Image Segmentation

	3.5 Feature Extraction

	3.6 Morphology

	3.7 Edge Extraction

	3.8 Segmentation and Fitting of Geometric Primitives

	3.9 Camera Calibration

	3.10 3D Reconstruction

	3.11 Template Matching

	3.12 3D Object Recognition

	3.13 Hand–Eye Calibration

	3.14 Optical Character Recognition

	3.15 Classification



	4 Machine Vision Applications
	4.1 Wafer Dicing

	4.2 Reading of Serial Numbers

	4.3 Inspection of Saw Blades

	4.4 Print Inspection

	4.5 Inspection of Ball Grid Arrays

	4.6 Surface Inspection

	4.7 Measurement of Spark Plugs

	4.8 Molding Flash Detection

	4.9 Inspection of Punched Sheets

	4.10 3D Plane Reconstruction with Stereo

	4.11 Pose Verification of Resistors

	4.12 Classification of Non-Woven Fabrics

	4.13 Surface Comparison

	4.14 3D Pick-and-Place



	References

	Index

	End User License Agreement





List of Tables


	2 Image Acquisition

	Table 2.1 The electromagnetic spectrum relevant for optics and photonics. The names of the ranges for IR and UV radiation correspond to ISO 20473:2007. The names of the colors for visible radiation (light) are due to Lee (2005).

	Table 2.2 The different lens types and their projection characteristics.

	Table 2.3 Typical sensor sizes and the corresponding pixel pitches for an image size of 640 × 480 pixels.

	Table 2.4 Analog video standards.








List of Illustrations


	1 Introduction

	Figure 1.1 The components of a typical machine vision system. An image of the object to be inspected (1) is acquired by a camera (2). The object is illuminated by the illumination (3). A photoelectric sensor (4) triggers the image acquisition. A computer (5) acquires the image through a camera–computer interface (6), in this case a frame grabber. The photoelectric sensor is connected to the frame grabber. The frame grabber triggers the strobe illumination. A device driver assembles the image (7) in the memory of the computer. The machine vision software (8) inspects the objects and returns an evaluation of the objects (9). The result of the evaluation is communicated to a PLC (11) via a digital I/O interface (10). The PLC controls an actuator (13) through a fieldbus interface (12). The actuator, e.g., an electric motor, moves a diverter that is used to remove defective objects from the production line.




	2 Image Acquisition

	Figure 2.1 Spectral radiance emitted by black bodies of different temperatures. The vertical lines denote the visible range of the spectrum.

	Figure 2.2 The interaction of light with an object. The light that falls onto the object is visualized by the black arrow. (1) Specular reflection. (2) Diffuse reflection. (3) Direct transmission. (4) Diffuse transmission. (5) Backside reflection. (6) Absorption.

	Figure 2.3 Light distribution caused by the combination of diffuse and specular reflection.

	Figure 2.4 A PCB illuminated with (a) white, (b) red, (c) green, and (d) blue light.

	Figure 2.5 A PCB illuminated with IR radiation.

	Figure 2.6 The principle of a polarizer and analyzer. The polarizer and analyzer are polarizing filters that are mounted in front of the illumination and camera, respectively. If the analyzer is turned by 90° with respect to the polarizer, light polarized by specular reflection is suppressed by the analyzer.

	Figure 2.7 (a) A PCB illuminated with a directed ring light. Note the specular reflections on the board, solder, and metallic parts of the components. (b) A PCB illuminated with a directed ring light using a polarizer and analyzer. Note that the specular reflections have been suppressed almost completely.

	Figure 2.8 Different diffuse bright-field front light constructions. (a) An LED panel or ring light with a diffuser in front of the lights. (b) A coaxial diffuse light with a semi-transparent diagonal mirror and a diffuser in front of the lights. (c) A dome light with a diffuser in front of the lights. (d) A dome light with an LED ring light and the dome itself acting as the diffuser.

	Figure 2.9 Blister pack illuminated with a dome light of the type shown in Figure 2.8(d).

	Figure 2.10 Different directed bright-field front light constructions. (a) A focused ring light. (b) A coaxial telecentric illumination with a semi-transparent diagonal mirror.

	Figure 2.11 Directed dark-field front light illumination. This type of illumination is typically constructed as an LED ring light.

	Figure 2.12 (a) An engraved serial number on a CPU and (b) Braille print on a pharmaceutical package highlighted with directed dark-field front light illumination. Note that the characters as well as the scratches on the CPU are highlighted.

	Figure 2.13 (a) Diffuse bright-field back light illumination. This type of illumination is often constructed with LED panels or fluorescent lights with a diffuser in front of the lights. (b) Reflections on the camera side of the object can occur for objects with a large depth.

	Figure 2.14 (a) Metal workpiece and (b) filament in a light bulb illuminated with diffuse bright-field back light illumination.

	Figure 2.15 Telecentric bright-field back light illumination.

	Figure 2.16 A spark plug illuminated with (a) diffuse and (b) telecentric back light illumination. Note the reflections on the camera side of the object that occur with the diffuse illumination.

	Figure 2.17 The pinhole camera. The object is imaged in a box into which a pinhole has been made. The pinhole acts as the projection center.

	Figure 2.18 The principle of refraction: the light ray entering from the top is refracted at the border between the two media with refractive indices n1 and n2.

	Figure 2.19 The geometry of a thick lens.

	Figure 2.20 The virtual image created by an object that is closer to the lens than the focal point F.

	Figure 2.21 The cardinal elements of a system of lenses. D is the diaphragm; ENP is the entrance pupil; EXP is the exit pupil.

	Figure 2.22 The principal ray of a system of lenses.

	Figure 2.23 The relation of the pinhole camera and Gaussian optics.

	Figure 2.24 Depth of field of a lens. The image of an object at the focus distance a is in focus. The images of objects nearer or farther than the focus distance are blurred.

	Figure 2.25 Two images of a depth-of-field target taken with (a) F = 2 and (b) F = 16 with a lens with f′ = 12.5 mm. Note the small depth of field in (a) and the large depth of field in (b). Also note the perspective distortion in the images.

	Figure 2.26 Diffraction will cause a point to be imaged as an Airy disk. (a) 2D image of the Airy disk. To make the outer rings visible, an LUT with a gamma function with γ = 0.4 has been used. (b) 1D profile through the Airy disk.

	Figure 2.27 The principle of telecentric lenses. A pinhole aperture stop is placed at the image-side focal point F′, letting only light rays parallel to the optical axis on the object side pass.

	Figure 2.28 An object-side telecentric lens. From the principal ray, drawn as a thick line, it can be seen that objects at different object distances are imaged at the same position. As for regular lenses, objects not in the focusing plane will create a circle of confusion.

	Figure 2.29 A bilateral telecentric lens. The lens behind the aperture stop is positioned in such a way that [image: img]. From the principal ray, drawn as a thick line, it can be seen that objects at different object distances are imaged at the same position. As for regular lenses, objects not in the focusing plane will create a circle of confusion.

	Figure 2.30 An image of a depth-of-field target taken with a telecentric lens with β = 0.17 and F = 5.6. Note that there are no perspective distortions in the image.

	Figure 2.31 An image-side telecentric lens. The principal ray, drawn as a thick line, is parallel to the optical axis in image space.

	Figure 2.32 A regular stereo setup with converging cameras. The image planes are visualized by thick solid lines. The depth of field of the two cameras is visualized by dashed lines. The common depth of field is visualized by the gray rhombus. The angles of the two cameras are exaggerated to display the common depth of field more clearly. The surface to be reconstructed is visualized by a thick solid line.

	Figure 2.33 The Scheimpflug principle. S and S′ are the object-side and image-side Scheimpflug lines.

	Figure 2.34 Refocusing by moving the image plane with respect to the principal plane P′ from IP1 to IP2 rotates the focusing plane from FP1 to FP2 around the hinge line H.

	Figure 2.35 A stereo setup with converging cameras and image planes tilted according to the Scheimpflug principle. The image planes are visualized by thick solid lines. The depth of field of the two cameras is visualized by dashed lines, which emanate from the hinge lines. The common depth of field is visualized by the gray rhombus. The angles of the two cameras are exaggerated to display the common depth of field more clearly. The surface to be reconstructed is visualized by a thick solid line.

	Figure 2.36 (a) Spherical aberration: light rays far from the optical axis do not intersect at the same point as light rays close to the optical axis. (b) Coma: light rays that pass through the lens at an angle to the optical axis do not intersect at the same point.

	Figure 2.37 Astigmatism: tangential and sagittal light rays do not intersect at the same point, creating a tangential image IT and a sagittal image IS that consist of two orthogonal lines.

	Figure 2.38 (a) Curvature of field: the tangential and sagittal images lie in two curved focal planes FT and FS. (b) Image taken with a lens that exhibits significant curvature of field: the center of the image is in focus, while the borders of the image are severely defocused.

	Figure 2.39 (a), (d) Images without distortion. (b), (e) Images with pincushion distortion. (c), (f) Images with barrel distortion.

	Figure 2.40 Chromatic aberration: light rays with different wavelengths do not intersect at a single point.

	Figure 2.41 Edge-spread function for a perfect diffraction-limited system as well as for a real lens for an edge through the optical axis and an off-axis edge in the direction perpendicular to a circle located at a distance of 5 mm from the optical axis. Note that the off-axis edge-spread function profile is not symmetric. (Adapted from Lenhardt (2017).)

	Figure 2.42 Vignetting occurs because the diaphragm is no longer the aperture stop for a part of the off-axis light rays.

	Figure 2.43 A linear CCD sensor. Light is converted into charge in the photodetectors (which are typically photodiodes for line sensors), transferred to the serial readout registers, and read out sequentially through the charge converter and amplifier.

	Figure 2.44 A full frame CCD sensor. Light is converted into charge in the photodetectors, transferred to the serial readout registers row by row, and read out sequentially through the charge converter and amplifier.

	Figure 2.45 A frame transfer CCD sensor. Light is converted into charge in the light-sensitive sensor, quickly transferred to the shielded storage array, and read out row by row from there.

	Figure 2.46 An interline transfer CCD sensor. Light is converted into charge in the light-sensitive sensor, quickly transferred to the shielded vertical transfer registers, transferred row by row to the serial readout registers, and read out from there.

	Figure 2.47 Microlenses are typically used in interline transfer sensors to increase the fill factor by focusing the light onto the light-sensitive photodiodes.

	Figure 2.48 Comparison of using (a) an interlaced camera and (b) a progressive scan camera for acquiring an image of a moving object. Note that progressive scan is essential for capturing correct images of moving objects.

	Figure 2.49 A CMOS sensor. Light is converted into charge in the photodiodes. Each row of the CMOS sensor can be selected directly for readout through the row and column select circuits.

	Figure 2.50 Comparison of using (a) a rolling shutter and (b) a global shutter for acquiring an image of a moving object. Note that the rolling shutter significantly distorts the object.

	Figure 2.51 Spectral responses of typical CCD and CMOS sensors (S1 and S2) and the HVS under photopic conditions (daylight viewing) as a function of the wavelength in nanometers. The responses have been normalized so that the maximum response is 1.

	Figure 2.52 In a single-chip color camera, a CFA is placed in front of the sensor, which allows only light of a specific range of wavelengths to pass to each photodetector. Here, the Bayer CFA is shown.

	Figure 2.53 In a three-chip color camera, the light beam coming from the lens is split into three beams by a beam splitter or prism and sent to three sensors that have different color filters.

	Figure 2.54 Spectral responses of a typical color sensor as a function of the wavelength in nanometers. Note the sensitivity in the near IR range. The responses have been normalized so that the maximum response is 1.

	Figure 2.55 The EIA-170 video signal.

	Figure 2.56 Line jitter occurs if the frame grabber’s pixel clock is not perfectly aligned with the active line period. The sampling of each line is offset by a random or systematic time Δt.

	Figure 2.57 Images of (a) a vertical edge and (c) vertical and horizontal edges. (b) (d) Gray value fluctuations of (a) and (c) caused by line jitter. The gray value fluctuations have been scaled by a factor of 5 for better visibility. Note that the fluctuations only appear for the vertical edges, indicating that in reality each line is offset by line jitter.

	Figure 2.58 A typical digital video signal. In contrast to analog video, the synchronization information is made explicit through the frame valid, line valid, and pixel clock signals.

	Figure 2.59 One IEEE 1394 data transfer cycle. The cycle starts with the cycle master sending a cycle start request. Each isochronous device is allowed to send a packet of a certain size. The remainder of the cycle is used for asynchronous packets.

	Figure 2.60 An image of the HDevelop image acquisition assistant showing a GigE Vision camera whose configuration is accessed using the GenICam standard (using GenApi). As discussed in the text, the camera’s features are mapped to GUI elements like sliders, drop-down boxes, etc. Feature categories can be selected through the Category GUI element, while the user’s level of expertise can be selected through the Visibility GUI element.

	Figure 2.61 Synchronous image acquisition from a free-running camera.

	Figure 2.62 Asynchronous image acquisition from a free-running camera.

	Figure 2.63 Triggered asynchronous image acquisition from an asynchronous reset camera.

	Figure 2.64 A stereo sensor consists of two cameras that observe the scene. The orientation of the sensors within the cameras is indicated by the two rectangles. A point is reconstructed in 3D by finding corresponding points in the two images, constructing their optical rays, and intersecting them in space. Note that the angle between the cameras has been exaggerated to show the stereo sensor geometry more clearly. Also note that the two cameras are typically contained in a single housing.

	Figure 2.65 A sheet of light sensor consists of a laser that projects a laser plane (the sheet of light, shown in light gray) onto the objects in the scene. The laser light is scattered at the points where the plane intersects the objects in the scene, forming characteristic lines (shown in dark gray). A camera captures the lines from a different viewpoint. The orientation of the sensor within the camera is indicated by the rectangle. The different distances of the objects to the laser projector produce parallaxes in the camera image that are used to reconstruct the 3D coordinates of the objects within the sheet of light. This is done by computing the optical ray of a point on the laser line in the image and intersecting it with the laser plane in 3D. The object must be moved relative to the sheet of light to reconstruct its shape. Note that the angle between the camera and the laser projector has been exaggerated to show the sheet of light sensor geometry more clearly. Also note that the camera and laser projector are typically contained in a single housing.

	Figure 2.66 A structured light sensor consists of a projector that projects multiple striped patterns of different frequencies onto the scene and a camera that observes the scene. The orientations of the sensor within the camera and of the projector device within the projector are indicated by the respective rectangles. A point is reconstructed in 3D by computing the projector column of a point in the camera image and the optical ray of this point. The projector column defines a plane in 3D. The 3D coordinates of the point are computed by intersecting the optical ray with this plane. Note that the angle between the camera and the projector has been exaggerated to show the structured light sensor geometry more clearly. Also note that the camera and projector are typically contained in a single housing.

	Figure 2.67 The different DMD layouts. (a) Regular pixel array layout. (b) Diamond pixel array layout. The axes around which the micromirrors rotate are indicated by the dashed lines. For the diamond pixel layout, the light source must be mounted to the left of the DMD. For the regular pixel layout, it must be mounted in the direction of the upper left corner of the DMD.

	Figure 2.68 Patterns corresponding to a projection of a 5-bit Gray code as well as four sinusoidal fringes with phase shifts of multiples of 90°. The 32 Gray code words correspond to the columns indicated by the arrows. The patterns are typically projected in the order from most significant bit to least significant bit, i.e., coarsest pattern to finest pattern. After this, the phase-shifted fringes are projected. The Gray code has the property that exactly one bit changes between adjacent code words. This leads to the fact that the stripes at the finest resolution are two Gray code words wide. The fringe frequency is one cycle per two Gray code words, i.e., one cycle for each stripe in the finest resolution Gray code pattern.




	3 Machine Vision Algorithms

	Figure 3.1 Run-length representation of a region.

	Figure 3.2 Different subpixel-precise contours. Contour 1 is a closed contour, while contours 2–5 are open contours. Contours 3–5 meet at a junction point.

	Figure 3.3 Examples of linear gray value transformations. (a) Original image. (b) Decreased brightness (b = −50). (c) Increased brightness (b = 50). (d) Decreased contrast (a = 0.5). (e) Increased contrast (a = 2). (f) Contrast normalization. (g) Robust contrast normalization (pl = 0, pu = 0.8).

	Figure 3.4 (a) Histogram of the image in Figure 3.3(a). (b) Corresponding cumulative histogram with probability thresholds pu and pl superimposed.

	Figure 3.5 Examples of calibrated density targets that are traditionally used for radiometric calibration in laboratory settings. (a) Density step target (image acquired with a camera with linear response). (b) Twelve-patch ISO 14524:2009 target (image simulated as if acquired with a camera with linear response).

	Figure 3.6 (a) A 2D histogram of two images taken with an exposure ratio of 0.5 with a linear camera. (b) A 2D histogram of two images taken with an exposure ratio of 0.5 with a camera with a strong gamma response curve. For better visualization, the 2D histograms are displayed with a square root LUT. Note that in both cases the values in the 2D histogram correspond to a line. Hence, linear responses cannot be distinguished from gamma responses without knowing the exact exposure ratio.

	Figure 3.7 (a) Five images taken with a linear camera with exposure times of 32, 16, 8, 4, and 2 ms. (b) Calibrated inverse response curve. Note that the response is linear, but the camera has set a slight offset in the amplifier, which prevents very small gray values from being assumed. (c) Six images taken with a camera with a gamma response with exposure times of 30, 20, 10, 5, 2.5, and 1.25 ms. (d) Calibrated inverse response curve. Note the strong gamma response of the camera.

	Figure 3.8 (a) An image of an edge. (b) Horizontal gray value profile through the center of the image. (c) The noise in (a) scaled by a factor of 5. (d) Horizontal gray value profile of the noise.

	Figure 3.9 (a) An image of an edge obtained by averaging 20 images of the edge. (b) Horizontal gray value profile through the center of the image.

	Figure 3.10 (a) An image of an edge obtained by smoothing the image of Figure 3.8(a) with a 5 × 5 mean filter. (b) Horizontal gray value profile through the center of the image.

	Figure 3.11 (a) Frequency response of the 3 × 3 mean filter. (b) Image with one-pixel-wide lines spaced three pixels apart. (c) Result of applying the 3 × 3 mean filter to the image in (b). Note that all the lines have been smoothed out. (d) Image with one-pixel-wide lines spaced two pixels apart. (e) Result of applying the 3 × 3 mean filter to the image in (d). Note that the lines have not been completely smoothed out, although they have a higher frequency than the lines in (b). Note also that the polarity of the lines has been reversed.

	Figure 3.12 (a) 1D Gaussian filter with σ = 1. (b) 2D Gaussian filter with σ = 1.

	Figure 3.13 Images of an edge obtained by smoothing the image of Figure 3.8(a). Results of (a) a Gaussian filter with σ = 1.41 and (b) a mean filter of size 5 × 5; and (c) the corresponding gray value profiles. Note that the two filters return very similar results in this example. Results of (d) a Gaussian filter with σ = 3.67 and (e) a 13 × 13 mean filter; and (f) the corresponding profiles. Note that the mean filter turns the edge into a ramp, leading to a badly defined edge, whereas the Gaussian filter produces a much sharper edge.

	Figure 3.14 Images of an edge obtained by smoothing the image of Figure 3.8(a). (a) Result with a median filter of size 5 × 5, and (b) the corresponding gray value profile. (c) Result of a 13 × 13 median filter, and (d) the corresponding profile. Note that the median filter preserves the sharpness of the edge to a great extent.

	Figure 3.15 Example of aliasing. (a) Two cosine waves, one with a frequency of 0.25 and the other with a frequency of 0.75. (b) Two cosine waves, one with a frequency of 0.4 and the other with a frequency of 0.6. Note that if both functions are sampled at integer positions, denoted by the crosses, the discrete samples will be identical.

	Figure 3.16 (a) Image of a map showing the texture of the paper. (b) Fourier transform of (a). Because of the high dynamic range of the result, H1/16u,v is displayed. Note the distinct peaks in Hu,v, which correspond to the texture of the paper. (c) Filter Gu,v used to remove the frequencies that correspond to the texture. (d) Convolution Hu,vGu,v. (e) Inverse Fourier transform of (d). (f), (g) Detail of (a) and (e), respectively. Note that the texture has been removed.

	Figure 3.17 An affine transformation of an image. Note that integer coordinates in the output image transform to non-integer coordinates in the original image, and hence must be interpolated.

	Figure 3.18 (a) A pixel in the output image is transformed back to the input image. Note that the transformed pixel center lies at a non-integer position between four adjacent pixel centers. (b) Nearest-neighbor interpolation determines the closest pixel center in the input image and uses its gray value in the output image. (c) Bilinear interpolation determines the distances to the four adjacent pixel centers and weights their gray values using the distances.

	Figure 3.19 (a) Image showing a serial number of a bank note. (b) Detail of (a). (c) Image rotated such that the serial number is horizontal using nearest-neighbor interpolation. (d) Detail of (c). Note the jagged edges of the characters. (e) Image rotated using bilinear interpolation. (f) Detail of (e). Note the smooth edges of the characters.

	Figure 3.20 (a) A part of the image in Figure 3.19(a) rotated and scaled by a factor of 16 using bilinear interpolation. (b) The same image part transformed by bicubic interpolation.

	Figure 3.21 (a) Linear interpolation kernel. (b) Cubic interpolation kernel.

	Figure 3.22 (a) Image showing a serial number of a bank note. (b) Detail of (a). (c) The image of (a) scaled down by a factor of 3 using bilinear interpolation. (d) Detail of (c). Note the different stroke widths of the vertical strokes of the letter H. This is caused by aliasing. (e) Result of scaling the image down by integrating a smoothing filter (in this case a mean filter) into the image transformation. (f) Detail of (e).

	Figure 3.23 (a), (b) Images of license plates. (c), (d) Result of a projective transformation that rectifies the perspective distortion of the license plates.

	Figure 3.24 (a) Image of the center of a CD showing a circular bar code. (b) Polar transformation of the ring that contains the bar code. Note that the bar code is now straight and horizontal.

	Figure 3.25 (a), (b) Images of prints on ICs with a rectangular ROI overlaid in light gray. (c), (d) Result of thresholding the images in (a), (b) with gmin = 90 and gmax = 255.

	Figure 3.26 (a), (b) Images of prints on ICs with a rectangular ROI overlaid in light gray. (c), (d) Gray value histogram of the images in (a) and (b) within the respective ROI. (e), (f) Result of thresholding the images in (a) and (b) with a threshold selected automatically based on the gray value histogram.

	Figure 3.27 (a) Image of a print on an IC with a rectangular ROI overlaid in light gray. (b) Gray value histogram of the image in (a) within the ROI. Note that there are no significant minima and only one significant maximum in the histogram.

	Figure 3.28 (a) Image showing a small part of a print on an IC with a one-pixel-wide horizontal ROI. (b) Gray value profiles of the image and the image smoothed with a 9 × 9 mean filter. Note that the text is substantially brighter than the local background estimated by the mean filter.

	Figure 3.29 (a) Image of a print on an IC with a rectangular ROI overlaid in light gray. (b) Result of segmenting the image in (a) with a dynamic thresholding operation with gdiff = 5 and a 31 × 31 mean filter.

	Figure 3.30 (a), (b) Two images of a sequence of 15 showing a print on the clip of a pen. Note that the letter V in the MVTec logo moves slightly with respect to the rest of the logo. (c) Reference image mr,c of the variation model computed from the 15 training images. (d) Standard deviation image sr,c. For better visibility [image: image] is displayed. (e), (f) Minimum and maximum threshold images ur,c and lr,c computed with a = b = 20 and c = d = 3.

	Figure 3.31 (a) Image showing a logo with errors in the letters T (small hole) and C (too little ink). (b) Errors displayed in white, segmented with the variation model of Figure 3.30. (c) Image showing a logo in which the letter V has moved too high and to the right. (d) Segmented errors.

	Figure 3.32 The two possible definitions of connectivity on rectangular pixel grids: (a) 4-connectivity, and (b) 8-connectivity.

	Figure 3.33 Some peculiarities occur when the same connectivity, in this case 8-connectivity, is used for the foreground and background. (a) The single line in the foreground clearly divides the background into two connected components. (b) If the line is very slightly rotated, there is still a single line, but now the background is a single component, which is counterintuitive. (c) The single region in the foreground intuitively contains one hole. However, the background is also a single connected component, indicating that the region has no hole, which is also counterintuitive.

	Figure 3.34 (a) Run-length representation of a region containing seven runs. (b) Search tree when performing a depth-first search for the connected components of the region in (a) using 8-connectivity. The numbers indicate the runs. (c) Resulting connected components.

	Figure 3.35 (a), (b) Result of computing the connected components of the regions in Figures 3.26(e) and (f). The connected components are visualized by using eight different gray values cyclically.

	Figure 3.36 The graph shows gray values that are interpolated bilinearly between four pixel centers, lying at the corners of the graph, and the intersection curve with the gray value gsub = 100 at the bottom of the graph. This curve (part of a hyperbola) is the boundary between the region with gray values > 100 and gray values < 100.

	Figure 3.37 (a) Image of a PCB with BGA solder pads. (b) Result of applying a subpixel-precise threshold to the image in (a). The part that is being displayed corresponds to the white rectangle in (a). (c) Detail of the left pad in the center row of (b).

	Figure 3.38 (a), (b) Result of selecting regions with an area ≥ 20 from the regions in Figures 3.35(a) and (b). The connected components are visualized by using eight different gray values cyclically.

	Figure 3.39 The geometric parameters of an ellipse.

	Figure 3.40 Result of thresholding the image in Figure 3.19(a) overlaid with a visualization of the ellipse parameters. The light gray lines represent the major and minor axes of the regions. Their intersection is the center of gravity of the regions. (a) The segmentation is treated as a single region. (b) The connected components of the region are used. The angle of the major axis in (a) has been used to rotate the images in Figures 3.19(b) and (c).

	Figure 3.41 (a) The smallest axis-parallel enclosing rectangle of a region. (b) The smallest enclosing rectangle of arbitrary orientation. (c) The smallest enclosing circle.

	Figure 3.42 Subpixel-precise circle position and area using the gray value and region moments. The image represents a fuzzy membership, scaled to values between 0 and 200. The solid line is the result of segmenting with a membership of 100. The dotted line is a circle that has the same center of gravity and area as the segmented region. The dashed line is a circle that has the same gray value center of gravity and gray value area as the image. (a) Shift: 0; error in the area for the region moments: 13.2%; for the gray value moments: −0.05%. (b) Shift: 5/32 pixel; error in the row coordinate for the region moments: −0.129; for the gray value moments: 0.003. (c) Shift: 1/2 pixel; error in the area for the region moments: −8.0%; for the gray value moments: −0.015%. Note that the gray value moments yield a significantly better accuracy for this small object.

	Figure 3.43 (a) Image of a BGA device. The two rectangles correspond to the image parts shown in (b) and (c). The results of inspecting the balls for correct size (gray value area ≥ 20) and correct gray value anisometry (≤ 1.25) are visualized in (b) and (c). Correct balls are displayed as solid ellipses, while defective balls are displayed as dashed ellipses.

	Figure 3.44 Example of the Minkowski addition R [image: images] S.

	Figure 3.45 Example of the dilation [image: image]

	Figure 3.46 (a) Image of a print of several characters. (b) Result of thresholding (a). (c) Connected components of (b) displayed with six different gray values. Note that the characters and their dots are separate connected components, which is undesirable. (d) Result of dilating the region in (b) with a circle of diameter 5. (e) Connected components of (d). Note that each character is now a single connected component. (f) Result of intersecting the connected components in (e) with the original segmentation in (b). This transforms the connected components into the correct shape.

	Figure 3.47 Example of the Minkowski subtraction R Ɵ S.

	Figure 3.48 Example of the erosion [image: image].

	Figure 3.49 (a) Image of several globular objects. (b) Result of thresholding (a). (c) Connected components of (b) displayed with six different gray values. Note that several objects touch each other and hence are in the same connected component. (d) Result of eroding the region in (b) with a circle of diameter 15. (e) Connected components of (d). Note that each object is now a single connected component. (f) Result of dilating the connected components in (e) with a circle of diameter 15. This transforms the correct connected components into approximately the correct shape.

	Figure 3.50 (a) Image of a print of several characters with the structuring element used for the erosion overlaid in white. (b) Result of thresholding (a). (c) Result of the erosion of (b) with the structuring element in (a). Note that the reference point of all letters “e” has been found. (d) A different set of characters with the structuring element used for the erosion overlaid in white. (e) Result of thresholding (d). (f) Result of the erosion of (e) with the structuring element in (d). Note that the reference point of the letter “o” has been identified correctly. In addition, the circular parts of the letters “p” and “q” have been extracted.

	Figure 3.51 The structuring elements for computing the boundary of a region with 8-connectivity (S8) and 4-connectivity (S4).

	Figure 3.52 (a) Detail of a larger region. (b) The 8-connected boundary of (a) computed by Eq. (3.89). (c) The 4-connected boundary of (a). (d) Linked contour of the boundary of (a).

	Figure 3.53 (a) Image of a print of several characters. (b) The structuring element used for the hit-or-miss transform; the black part is the foreground structuring element and the light gray part is the background structuring element. (c) Result of the hit-or-miss transform of the thresholded image (see Figure 3.50(e)) with the structuring element in (b). Note that only the reference point of the letter “o” has been identified, in contrast to the erosion (see Figure 3.50(f)).

	Figure 3.54 (a) Result of applying an opening with the structuring element in Figure 3.50(a) to the segmented region in Figure 3.50(b). (b) Result of applying an opening with the structuring element in Figure 3.50(d) to the segmented region in Figure 3.50(e). The result of the opening is overlaid in light gray onto the input region, displayed in black. Note that opening finds the same instances of the structuring elements as erosion but preserves the shape of the matched structuring elements.

	Figure 3.55 (a) Image of a ball-bonded die. The goal is to segment the balls. (b) Result of thresholding (a). The segmentation includes the wires that are bonded to the pads. (c) Result of performing an opening with a circle of diameter 31. The wires and the other extraneous segmentation results have been removed by the opening, and only the balls remain.

	Figure 3.56 (a) Image of size 768 × 576 showing a molded plastic part with a protrusion. (b) Result of thresholding the background of (a). (c) Result of a closing on (b) with a circle of diameter 801. Note that the protrusion (the indentation in the background) has been filled in and the circular shape of the plastic part has been recovered. (d) Result of computing the difference between (c) and (b) and performing an opening with a 5 × 5 rectangle on the difference to remove small parts. The result is the erroneous protrusion of the mold.

	Figure 3.57 The structuring elements for computing an 8-connected skeleton of a region. These structuring elements are used sequentially in all four possible orientations to find pixels that can be deleted.

	Figure 3.58 (a) Image showing a part of a PCB with several tracks. (b) Result of thresholding (a). (c) The 8-connected skeleton computed with an algorithm that uses the structuring elements in Figure 3.57 (Soille, 2003). (d) Result of computing the skeleton with an algorithm that produces fewer skeleton branches (Eckhardt and Maderlechner, 1993).

	Figure 3.59 (a) City-block distance between two points. (b) Chessboard distance. (c) Euclidean distance.

	Figure 3.60 Masks used in the two sequential scans to compute the distance transform. The left mask is used in the left-to-right, top-to-bottom scan. The right mask is used in the scan in the opposite direction.

	Figure 3.61 (a) Image showing a part of a PCB with several tracks that have spurs and mouse bites. (b) Distance transform of the result of thresholding (a). The distance image is visualized inverted (dark gray values correspond to large distances). (c) Skeleton of the segmented region. (d) Result of extracting too narrow or too wide parts of the tracks by using (c) as the ROI for (b) and thresholding the distances. The errors are visualized by drawing circles at the centers of gravity of the connected components of the error region.

	Figure 3.62 (a) Image showing a part of a PCB with several tracks that have spurs, mouse bites, pinholes, spurious copper, and open and short circuits. (b) Result of performing a gray value opening with an octagon of diameter 11 on (a). (c) Result of performing a gray value closing with an octagon of diameter 11 on (a). (d) Result of segmenting the errors in (a) by using a dynamic threshold operation with the images of (b) and (c).

	Figure 3.63 (a) Image showing a punched serial number. Because of the scratches, texture, and illumination, it is difficult to segment the characters directly. (b) Result of computing the gray range within a 9 × 9 rectangle. (c) Result of thresholding (b). (d) Result of computing the connected components of (c) and selecting the characters based on their size.

	Figure 3.64 (a) An image of a back-lit workpiece with a horizontal line that indicates the location of the idealized gray value profile in (b).

	Figure 3.65 (a) First derivative f ′(x) of the ideal gray value profile in Figure 3.64(b). (b) Second derivative f ″(x).

	Figure 3.66 (a) Image of an idealized corner, e.g., one of the corners at the bottom of the workpiece in Figure 3.64(a). (b) Gradient magnitude of (a). (c) Laplacian of (a). (d) Comparison of the edges that result from the two definitions in 2D (edges via the maxima of the gradient magnitude in the gradient direction versus edges via the zero-crossings of the Laplacian).

	Figure 3.67 (a) Gray value profile taken from the horizontal line in the image in Figure 3.64(a). (b) First derivative [image: images] of the gray value profile.

	Figure 3.68 Creation of the gray value profile from an inclined line. The line is shown by the heavy solid line. The circles indicate the points that are used to compute the profile. Note that they do not lie on pixel centers. The direction in which the 1D mean is computed is shown by the dashed lines.

	Figure 3.69 (a) Gray value profile taken from the horizontal line in the image in Figure 3.64(a) and averaged vertically over 21 pixels. (b) First derivative [image: images] of the gray value profile.

	Figure 3.70 (a) An image of a relay with a horizontal line that indicates the location of the gray value profile. (b) First derivative of the gray value profile without averaging. (c) First derivative of the gray value profile with vertical averaging over 21 pixels.

	Figure 3.71 Comparison of the Canny and Deriche filters. (a) Smoothing filters. (b) Edge filters.

	Figure 3.72 Result of applying the Canny edge filter with σ = 1.5 to the gray value profile in Figure 3.70(a) with vertical averaging over 21 pixels.

	Figure 3.73 Principle of extracting edge points with subpixel accuracy. The local maximum of the edge amplitude is detected. Then, a parabola is fitted through the three points around the maximum. The maximum of the parabola is the subpixel-accurate edge location. The edge amplitude was taken from the right edge in Figure 3.72.

	Figure 3.74 (a) Result of extracting 1D edges along the line shown in Figure 3.64(a). The two small images show a zoomed part around the edge positions. In this case, they both lie very close to the pixel centers. The distance between the two edges is 60.95 pixels. (b) Result of extracting 1D edges along the line shown in Figure 3.70(a). Note that the left edge, shown in detail in the upper right image, is almost exactly in the middle between two pixel centers. The distance between the two edges is 125.37 pixels.

	Figure 3.75 (a) Edge amplitude around the leftmost hole of the workpiece in Figure 3.64(a) computed with the Sobel filter and the 1-norm. (b) Thresholded edge region. (c) Skeleton of (b).

	Figure 3.76 (a) Edge amplitude around the top part of the relay in Figure 3.70(a) computed with the Sobel filter and the 1-norm. (b) Thresholded edge region. (c) Skeleton of (b).

	Figure 3.77 (a) Edge amplitude around the top part of the relay in Figure 3.70(a) computed with the second Lanser filter with α = 0.5. (b) Thresholded edge region. (c) Skeleton of (b).

	Figure 3.78 Examples of the pixels that are examined in the non-maximum suppression for different gradient directions.

	Figure 3.79 (a) Result of applying the non-maximum suppression to the edge amplitude image in Figure 3.77(a). (b) Thresholded edge region. (c) Skeleton of (b).

	Figure 3.80 (a) Result of thresholding the edge amplitude for the entire relay image in Figure 3.70(a) with a threshold of 60. This causes many irrelevant texture edges to be selected. (b) Result of thresholding the edge amplitude with a threshold of 140. This selects only the relevant edges. However, they are severely fragmented and incomplete. (c) Result of hysteresis thresholding with a low threshold of 60 and a high threshold of 140. Only the relevant edges are selected, and they are complete.

	Figure 3.81 (a) A 7 × 7 part of an edge amplitude image. (b) Fitted 2D polynomial obtained from the central 3 × 3 amplitudes in (a). The arrow indicates the gradient direction. The contour lines in the plot indicate that the edge point is offset by approximately a quarter of a pixel in the direction of the arrow.

	Figure 3.82 (a) Image of the workpiece in Figure 3.64(a) with a rectangle that indicates the image part shown in (d). (b) Thresholded workpiece. (c) Dilation of the boundary of (b) with a circle of diameter 5. This is used as the ROI for the subpixel edge extraction. (d) Subpixel-accurate edges of the workpiece extracted with the Canny filter with σ = 1.

	Figure 3.83 Comparison of the subpixel-accurate edges extracted via the maxima of the gradient magnitude in the gradient direction (dashed lines) and the edges extracted via the subpixel-accurate zero-crossings of the Laplacian. In both cases, a Gaussian filter with σ = 1 was used. Note that, since the Laplacian edges must follow the corners, they are much more curved than the gradient magnitude edges.

	Figure 3.84 (a) Image of a bolt for which the depth of the thread must be measured. (b) Result of performing a subpixel-precise thresholding operation. (c) Result of extracting the gradient magnitude edges with a Canny filter with σ = 0.7. (d) Result of extracting the Laplacian edges with a Gaussian filter with σ = 0.7. Note that for this application the Laplacian edges return the most suitable result.

	Figure 3.85 Comparison of accuracy and precision. The center of the circles indicates the true value of the feature. The dots indicate the outcome of the measurements of the feature. (a) Accurate and precise. (b) Accurate but not precise. (c) Not accurate but precise. (d) Neither accurate nor precise.

	Figure 3.86 (a) Edge image used in the accuracy experiment. (b) Edge position extracted along a horizontal line in the image with the Canny filter. The edge position is given in pixels as a function of the true shift in millimeters. (c) Error of the edge positions obtained by fitting a line through the edge positions in (b) and subtracting the line from (b). (d) Comparison of the errors obtained with the Canny and second Deriche filters.

	Figure 3.87 Result of applying a nonlinear gray value response curve to an ideal symmetric edge profile. The ideal edge profile is shown in the upper left graph and the nonlinear response in the bottom graph. The upper right graph shows the modified gray value profile along with the edge positions on the profiles. Note that the edge position is affected substantially by the nonlinear response.

	Figure 3.88 (a) Image of a calibration target. (b) Extracted subpixel-accurate edges (solid lines) and edges after the correction of lens distortions (dashed lines). Note that the lens distortions cause an error of approximately 2 pixels.

	Figure 3.89 Result of extracting 1D edges along the ruler markings on a caliper. (a) Pixel distances between the markings. (b) Distances converted to world units using camera calibration.

	Figure 3.90 (a) Image of a workpiece with the part shown in (b) indicated by the white rectangle. (b) Extracted edge within a region around the inclined edge of the workpiece (dashed line) and straight line fitted to the edge (solid line).

	Figure 3.91 (a) Image of a relay with the part shown in (b) indicated by the light gray rectangle. (b) Extracted edge within a region around the vertical edge of the relay (dashed line) and straight line fitted to the edge (solid line). To provide a better visibility of the edge and line, the contrast of the image has been reduced in (b).

	Figure 3.92 Straight line (solid line) fitted robustly to the vertical edge (dashed line). In this case, the Tukey weight function with a clipping factor of τ = 2σδ with five iterations was used. Compared to Figure 3.91(b), the line is now fitted to the straight-line part of the edge.

	Figure 3.93 (a) Image of a workpiece with circles fitted to the edges of the holes in the workpiece. (b) Details of the upper right hole with the extracted edge (dashed line) and the fitted circle (solid line).

	Figure 3.94 (a) Image of a BGA with pads extracted by subpixel-precise thresholding (see also Figure 3.37). (b) Circle fitted to the left pad in the center row of (a). The fitted circle is shown as a solid line, while the extracted contour is shown as a dashed line. The fitted circle is affected by the error in the pad, which acts like an outlier. (c) Result of robustly fitting a circle. The fitted circle corresponds to the true boundary of the pad.

	Figure 3.95 (a) Part of an image of a calibration target. (b) Ellipses fitted to the extracted edges of the circular marks of the calibration target. (c) Detail of a mark of the calibration target with the fitted ellipse.

	Figure 3.96 Example of the recursive subdivision that is performed in the Ramer algorithm. The contour is displayed as a thin line, while the approximating polygon is displayed as a thick line.

	Figure 3.97 (a) Image of a back-lit cutting tool with the part that is shown in (b)–(d) overlaid as a white rectangle. To provide better visibility of the results, the contrast of the image has been reduced in (b)–(d). (b) Subpixel-accurate edges extracted with a Lanser filter with α = 0.7. (c) Polygons extracted with the Ramer algorithm with dmax = 2. (d) Lines fitted robustly to the polygon segments using the Tukey weight function.

	Figure 3.98 (a) Image of a back-lit cutting tool. (b) Contour parts corresponding to the initial segmentation into lines with the Ramer algorithm. The contour parts are displayed in three different gray values. (c) Result of the merging stage of the line and circle segmentation algorithm. In this case, two lines and one circular arc are returned. (d) Geometric measurements obtained by fitting lines to the linear parts of the contour and a circle to the circular part. Because the camera was calibrated, the radius is calculated in millimeters.

	Figure 3.99 Camera model for a perspective camera.

	Figure 3.100 Image plane and virtual image plane.

	Figure 3.101 Effects of the distortion coefficient κ in the division model. (a) Pincushion distortion: κ > 0. (b) No distortion: κ = 0. (c) Barrel distortion: κ < 0.

	Figure 3.102 Effects of the distortion coefficients in the polynomial model. Coefficients that are not explicitly mentioned are 0. (a) K1 > 0. (b) K1 < 0. (c) K2 > 0. (d) K2 < 0. (e) K3 > 0. (f) K3 < 0. (g) P1 > 0. (h) P1 < 0. (i) P2 > 0. (j) P2 < 0.

	Figure 3.103 The projection of a point [image: image] from the untilted image plane to a point [image: image] in the tilted image plane for a camera that is telecentric in image space.

	Figure 3.104 The ray geometry of the perspective tilt camera model.

	Figure 3.105 The projection of a point [image: images] from the untilted image plane to a point [image: images] in the tilted image plane for a camera that is perspective in image space.

	Figure 3.106 Principle of line scan image acquisition.

	Figure 3.107 Camera model for a line scan camera.

	Figure 3.108 Some effects that occur for the line scan camera geometry. (a) Non-square pixels because the motion is not tuned to the line frequency of the camera. (b) Skewed pixels because the motion is not parallel to the y axis of the CCS. (c) Straight lines can project to hyperbolic arcs, even if the line sensor is perpendicular to the motion. (d) This effect is more pronounced if the motion has a nonzero z component. Note that hyperbolic arcs occur even if the lens has no distortions (κ = 0). (e) Pincushion distortion (κ > 0) for cy = 0. (f) Barrel distortion for cy = 0. (g) Pincushion distortion (κ > 0) for cy > 0. (h) Barrel distortion for cy > 0.

	Figure 3.109 Image of a HALCON calibration target.

	Figure 3.110 For perspective cameras, f, sx, and sy cannot be determined uniquely.

	Figure 3.111 For perspective cameras, f and tz cannot be determined uniquely.

	Figure 3.112 (a) Image of a caliper with a calibration target. (b) Unrectified image of the caliper. (c) Rectified image of the caliper.

	Figure 3.113 Standard deviations of (a) the principal distance f, (b) the radial distortion coefficient κ, and (c) the principal point (cx, cy)┬ as functions of the number of images that are used for calibration.

	Figure 3.114 (a) Principal distances and radial distortion coefficients and (b) principal points for a lens with two different focus settings.

	Figure 3.115 (a) Principal distances and radial distortion coefficients and (b) principal points for a lens with two different diaphragm settings (f-numbers: f/4 and f/11).

	Figure 3.116 Stereo geometry of two cameras.

	Figure 3.117 One image pair taken from a sequence of 15 image pairs used to calibrate a binocular stereo system. The calibration returns a translation vector (base) of (0.1534 m, −0.0037 m, 0.0449 m)┬ between the cameras and a rotation angle of 40.1139° around the axis (−0.0035, 1.0000, 0.0008)┬, i.e., almost around the y axis of the camera coordinate system. Hence, the cameras are rotated inward.

	Figure 3.118 Epipolar geometry of two cameras. Given the point P1 in the first image, the point P2 in the second image can only lie on the epipolar line of P1, which is the projection of the epipolar plane spanned by P1, O1, and O2 onto the second image.

	Figure 3.119 The epipolar geometry is symmetric between the two images. Furthermore, different points typically define different epipolar lines. All epipolar lines intersect at the epipoles E1 and E2, which are the projections of the opposite projective centers onto the respective image.

	Figure 3.120 Stereo image pair of a PCB. (a) Four points marked in the first image. (b) Corresponding epipolar lines in the second image. (c) Detail of (a). (d) Detail of (b). The four points in (a) have been selected manually at the tips of the triangles on the four small ICs. Note that the epipolar lines pass through the tips of the triangles in the second image.

	Figure 3.121 Because of lens distortions, the epipolar lines are generally not straight. The image shows the same image as Figure 3.120(b). The zoom has been set so that the epipole is shown in addition to the image. The aspect ratio has been chosen so that the curvature of the epipolar lines is clearly visible.

	Figure 3.122 The epipolar standard geometry is obtained if both image planes lie in the same plane. The common plane of both images must be parallel to the base. Additionally, the two images must be vertically aligned. Furthermore, it is assumed that there are no lens distortions. In this geometry, the epipolar line for a point is simply the line that has the same row coordinate as the point, i.e., the epipolar lines are horizontal and vertically aligned.

	Figure 3.123 Transformation of a stereo configuration into the epipolar standard geometry.

	Figure 3.124 Example of the rectification of a stereo image pair. The images in (a) and (b) have the same relative orientation as those in Figure 3.117. The rectified images are shown in (c) and (d). Note the trapezoidal shape of the rectified images, which is caused by the rotated cameras. Also note that the rectified images are slightly wider than the original images.

	Figure 3.125 Reconstruction of the depth z of a point depends only on the disparity d = c2 – c1 of the points, i.e., the difference of the column coordinates in the rectified images.

	Figure 3.126 Distance reconstructed for the rectified image pair in Figures 3.124(c) and (d) with the NCC. (a) Window size 3 × 3. (b) Window size 17 × 17. (c) Window size 31 × 31. White areas correspond to the points that could not be matched because the similarity was too small.

	Figure 3.127 Increasing levels of robustness of stereo matching. (a) Standard matching from the first to the second image with a window size of 17 × 17 using the NCC. (b) Result of requiring that the standard deviations of the windows is ≥ 5. (c) Result of performing the check where matching from the second to the first image results in the same disparity.

	Figure 3.128 (a)–(j) 10 images out of a sequence of 290 images of a connecting rod acquired with a sheet of light sensor. The images have been cropped to show only the laser line. (k) 3D reconstruction of the connecting rod.

	Figure 3.129 Four Gray code images of an M1 screw that has been sprinkled with titanium dioxide powder to reduce specular reflections. (a) Image with a completely bright pattern. (b)–(d) The three finest resolutions of the Gray code patterns.

	Figure 3.130 Four images of the screw in Figure 3.129 with fringes that are phase-shifted by 90° each.

	Figure 3.131 (a) Integer projector column decoded from the Gray code images in Figure 3.129. (b) Phase decoded from the phase-shift images in Figure 3.130. (c) Subpixel-precise projector column derived from (a) and (b). (d) 3D reconstruction of the M1 screw. Note that the reconstruction is so accurate that even the titanium dioxide powder is visible in the reconstruction.

	Figure 3.132 (a) Image of a PCB with a fiducial mark, which is used as the template (indicated by the white rectangle). (b) SAD computed with the template in (a) and the image in (a). (c) Result of thresholding (b) with a threshold of 20. Only a region around the fiducial is selected.

	Figure 3.133 (a) Image of a PCB with a fiducial mark with a lower contrast. (b) SAD computed with the template in Figure 3.132(a) and the image in (a). (c) Result of thresholding (b) with a threshold of 35. (d) Image of a PCB with a fiducial mark with higher contrast. (e) SAD computed with the template of Figure 3.132(a) and the image in (d). (f) Result of thresholding (e) with a threshold of 35. In both cases, it is impossible to select a threshold that returns only the region of the fiducial mark.

	Figure 3.134 (a) Image of a PCB with a fiducial mark, which is used as the template (indicated by the white rectangle). This is the same image as in Figure 3.132(a). (b) NCC computed with the template in (a) and the image in (a). (c) Result of thresholding (b) with a threshold of 0.75. The results for the darker and brighter images in Figure 3.133 are not shown because they are virtually indistinguishable from the results in (b) and (c).

	Figure 3.135 An image pyramid is constructed by successively halving the resolution of the image and combining 2 × 2 blocks of pixels in a higher resolution into a single pixel at the next lower resolution.

	Figure 3.136 (a)–(d) Image pyramid levels 2–5 of the image in Figure 3.132(a). Note that in level 5, the fiducial mark can no longer be discerned from the BGA pads.

	Figure 3.137 (a)–(d) Image pyramid levels 1–4 of an image of a PCB. Note that in level 4, all the tracks are merged into large components with identical gray values because of the smoothing that is performed when the pyramid is constructed.

	Figure 3.138 Hierarchical template matching using image pyramids. The template is the fiducial mark shown in Figure 3.132(a). To provide a better visualization, the NCC is shown for the entire image on each pyramid level. In reality, however, it is only calculated within the appropriate ROI on each level, shown in white. The matches found are displayed in black. (a) On pyramid level 4, the matching is performed in the entire image. Here, 12 potential matches are found. (b) The matching is continued within the white ROIs on level 3. Only one viable match is found in the 12 ROIs. The similarity measure and ROI around the match are displayed zoomed in the lower right corner. (c), (d) The match is tracked through pyramid levels 2 and 1.

	Figure 3.139 (a) Image of a model object. (b) Edges of (a). (c) Segmentation of (b) into lines and circles. (d) Salient points derived from the segmentation in (c).

	Figure 3.140 (a) Template edges. (b) Distance transform of the complement of (a). For better visualization, a square root LUT is used. (c) Search image with missing edges. (d) Distance transform of the complement of (c). If the template in (a) is matched to a search image in which the edges are complete and which possibly contains more edges than the template, the template will be found. If the template in (a) is matched to a search image in which template edges are missing, the template may not be found because a missing edge will have a large distance to the closest existing edge.

	Figure 3.141 Using the Hough transform to detect a circle. (a) Image of a PCB showing a capacitor. (b) Detected edges. For every eighth edge point, the corresponding orientation is visualized by displaying the gradient vector. (c) Hough accumulator array obtained by performing the Hough transform using the edge points and orientations. A square root LUT is used to make the less populated regions of the accumulator space more visible. If a linear LUT were used, only the peak would be visible. (d) Circle detected by thresholding (c) and computing the local maxima.

	Figure 3.142 The principle of constructing the R-table in the GHT. The R-table (on the right) is constructed based on the gradient angle ϕi of each edge point of the model object and the vector ri from each edge point to the reference point o of the template.

	Figure 3.143 Example of matching an object in the image using geometric primitives. (a) The template consists of five line segments and five circular arcs. The model has been generated from the image in Figure 3.139(a). (b) The search image contains four partially occluded instances of the template along with four clutter objects. (c) Edges extracted in (b) with a Canny filter with σ = 1 and split into line segments and circular arcs. (d) The matching in this case first tries to match the largest circular arc of the model and finds four hypotheses. (e) The hypotheses are extended with the lower of the long line segments in (a). These two primitives are sufficient to estimate a rigid transform that aligns the template with the features in the image. (f) The remaining primitives of the template are matched to the image. The resulting matched primitives are displayed.

	Figure 3.144 (a) Image of a template object that is not suitable for geometric matching algorithms. Although the segmentation of the template into line segments and circular arcs in (b) only contains approximately 3 times as many edge points as the template in Figure 3.143, it contains 35 times as many geometric primitives, i.e., 350.

	Figure 3.145 (a) A search image that is difficult for the geometric matching algorithms. Here, because of the poor contrast of the circular fiducial mark, the segmentation threshold must be chosen very low so that the relevant edges of the fiducial mark are selected. Because of this, the segmentation in (b) contains a very large number of primitives that must be examined in the search.

	Figure 3.146 Six examples in which the shape-based matching algorithm finds an object (the print on the IC shown in Figure 3.144) despite severe occlusions and clutter.

	Figure 3.147 Recognizing planar objects under perspective distortions. The model points are visualized in white. (a) The inner part of a brake disk. (b) The planar top area of an engine part.

	Figure 3.148 Effect of perspective distortions in the image pyramid. (a) Original image. (b) and (c) Image pyramid levels 4 and 6 of (a). (d) Image after applying a perspective distortion to (a). (e) and (f) Image pyramid levels 4 and 6 of (d). Note that the effect of the perspective distortion becomes smaller on higher pyramid levels with respect to the pixel size.

	Figure 3.149 Splitting the model into parts. (a) Finding the corresponding image point for a single model point is often ambiguous. Here, for the indicated model point, four points in the image have a matching gradient direction, and hence are potential correspondences. The gradient directions are indicated by black and the correspondences by gray arrows. (b) For model parts (bold gray lines), it is more likely to find a unique correspondence. The gray arrow and the gray frame indicate the image points that correspond to one of the model parts.

	Figure 3.150 Transforming a model, which is defined by the model ROI in the model image, to world coordinates. To compute the world coordinates Pi of a model point pi, which was extracted in the model image, the pose of the model plane with respect to the CCS (oc, xc, yc, zc) must be known. The plane is defined by placing a planar calibration target, which defines the WCS (ow, xw, yw, zw), next to the model. The world coordinates are obtained by intersecting the optical ray through pi with the model plane. The coordinates are typically represented relative to a model reference point P0, which is defined in the model image as p0 and also projected to the model plane. It defines the origin of the MCS (om, xm, ym, zm)┬. The xy-plane of the MCS is coplanar with the xy-plane of the WCS. The orientation of the WCS within that plane can be chosen arbitrarily. Thus, all model points have a z component of 0, i.e., Pi = (xi, yi, 0)┬. Finally, the 3D object pose is defined as the rigid 3D transformation from the MCS to the CCS.

	Figure 3.151 Determining the 3D pose of a car door. (a) Model image. The model is created only from the image region that contains a planar part of the door (white outline). (b) Calibration target defining the model plane. (c) Model points (white), which were transformed to world coordinates, and the MCS (white vectors), both projected into the model image. (d) Found instance of the model visualized by the projected model points and the MCS.

	Figure 3.152 Recognizing locally deformed objects. (a) Model points. (b) Search image. (c) and (d) Local deformations at the model points in the search image in the row and column directions (a medium gray value indicates no deformations, dark values negative, and bright values positive deformations). (e) and (f) Full deformation images in the row and column directions after applying harmonic interpolation to (c) and (d). (g)–(i) Recognition results. (g) Search image with deformed model points overlaid. (h) Deformation field visualized as a deformed regular grid. (i) Rectified search image.

	Figure 3.153 Recognition of a locally deformable gasket. (a) Model points. (b) Search image, recognition result and deformation field. (c) Detected defects (marked by a white ellipse).

	Figure 3.154 Recognition of locally deformable foil packages. (a) Model image and model points. (b) Search image. (c) Recognition results and deformation fields.

	Figure 3.155 (a) Image of two metallic clamps. Object instances that are found by shape-based 3D matching are displayed as white contours. (b) CAD model from which a model for the shape-based 3D matching is created. In (a), model edges between coplanar surfaces are suppressed for visualization purposes.

	Figure 3.156 (a) View sphere. Virtual cameras, which are visualized by small black pyramids, look at the object in the center of the sphere. (c) One example view of the object. It is obtained by projecting the object into the image plane of the virtual camera that is marked by the circle in (a).

	Figure 3.157 Restricting the range of poses by using spherical coordinates. The object, which defines the model coordinate system (om, xm, ym, zm)┬, lies in the center of the view sphere, which defines the spherical coordinate system. The position of the camera (oc, xc, yc, zc)┬ can be described by the spherical coordinates longitude λ, latitude φ, and distance d. The pose range, which is visualized by bold lines, is determined by specifying minimum and maximum values for, λ, φ, and d.

	Figure 3.158 Hierarchical model. The virtual cameras on the four pyramid levels are visualized by small gray pyramids within the pose range, which is indicated by bold black lines. The gray areas indicate the set of virtual cameras that were merged to obtain a single virtual camera on the top pyramid level. On the top level, only four virtual cameras remain in this example.

	Figure 3.159 Object recognition using the hierarchical model, which is represented as a set of trees. The nodes in the trees, which are visualized by triangles, represent the views on the four pyramid levels. The edges in the trees indicate which views on a lower pyramid level were merged during the model generation to a single view on the current level. Triangles that are filled in black indicate views that had to be searched in the full 2D matching pose range. Triangles that are filled in gray indicate views that only needed to be searched within a small restricted 2D matching pose range to refine the pose. Squares indicate views for which the similarity measure exceeded a user-specified threshold. Squares on the lowest pyramid level indicate found matches.

	Figure 3.160 (a)–(c) The three channels of the model image representing the x (a), y (b), and z (c) component of the unit normal vector of the model surface. (b)–(d) Edges extracted by applying a threshold to the multi-channel edge amplitude of the model image, which corresponds to a minimum face angle of 5° (d), 30° (e), and 50° (f).

	Figure 3.161 The appearance of an imaged 3D object depends on its image location. The projection of the object at the centered location (black) and that at the two off-center locations (gray) are related by a 2D projective transformation. Note that all projections represent the same view.

	Figure 3.162 Iterative least-squares pose refinement. (a) Search image. (b)–(e) Object poses visualized by the projected model edges (black). For better visualization, the two square image parts indicated in (a) are displayed zoomed. (b) Initial pose. (c) Pose after one iteration. (d) Pose after three iterations. (e) Final pose after convergence.

	Figure 3.163 Examples for recognizing 3D objects in an image by using shape-based 3D matching. Found object instances are visualized by the projected model edges (white). (a) Metallic clamps. (b) Metallic clamp with a highly reflective surface. (c) Plastic fuse. (d) Metallic bracket. (e) Metallic cylinders. (f) Plastic tile spacers.

	Figure 3.164 Recognizing pipe joints in 3D scene data by using surface-based 3D matching. The 3D scene data is obtained by using stereo reconstruction. (a) Image of the first camera of the stereo setup. (b) CAD model of the pipe joint from which a model for the surface-based 3D matching is created. (c) Reconstructed 3D data of the search scene. (d) Object instances that are found by the surface-based 3D matching are visualized by projecting the edges of the CAD model into the image of the first camera of the stereo setup.

	Figure 3.165 (a) Point pair feature F = (F1, F2, F3, F4) of two points m1 and m2 on the object surface. The tangent planes (visualized by gray circles) at the points define the corresponding normal vectors n1 and n2. F1 is the distance between the two points. F2 and F3 are the angles of each normal vector with the vector d. F4 is the angle between both normal vectors. (b) Sampled model. For each point pair, the point pair feature of (a) is computed.

	Figure 3.166 Point pair features are stored in a hash table. (a) Three example model point pairs with similar point pair features, i.e., Fd(m1, m2) = Fd(m3, m4) = Fd(m5, m6) = F. (b) Hash table. Because F is used as the key to the hash table, the three point pairs shown in (a) are stored in the same slot A in the hash table.

	Figure 3.167 Local parameters. The reference point in the scene (gray) is assumed to lie on the surface of the object (black). (a) The first local parameter is the point index of the corresponding model point. (b) When the corresponding model point is identified, the reference point is aligned with the corresponding model point (including their normal vectors). Then, the second local parameter is the rotation angle about the normal vector.

	Figure 3.168 Multiple reference points (circles) are selected in the scene of Figure 3.164(c) to ensure that at least one reference point lies on the surface of each object instance in the scene. In this example, 10% of the scene points are randomly selected as reference points.

	Figure 3.169 Voting process. (1.) The selected scene reference point sr is paired with all other scene points si and the point pair feature F(sr, si) is computed for each pair. (2.) F (sr, si), is used as the key to the hash table. (3.) From the hash table, we obtain all model point pairs that are similar to the scene point pair. (4.) For each similar model point pair, the local parameters are computed and the corresponding cell in the accumulator array is incremented.

	Figure 3.170 Object pose after different iterations of the ICP algorithm. The pose of the model (black) and the pose of the back-transformed scene (gray) are visualized. (a) Initial pose. (b)–(d) Pose after 1, 2, and 5 ICP iterations.

	Figure 3.171 Recognition of deformable silicone baking molds in 3D data. (a) 3D CAD model with six possible grasping points (circles) for a robot. (b) 3D scene points (gray) and found deformed model (black) with the grasping points deformed in accordance with the model deformations.

	Figure 3.172 Model of an articulated six-axis robot. The rotation axes are indicated by bold lines.

	Figure 3.173 Two possible configurations of a vision-guided robot. (a) Moving camera. (b) Stationary camera. The relevant coordinate systems are indicated by their origin o and their coordinate axes x, y, and z: WCS (index w), BCS (index b), TCS (index t), and CCS (index c).

	Figure 3.174 Transformations between the four coordinate systems (camera, base, tool, and calibration object) that are involved in hand–eye calibration for the case of (a) a moving camera and (b) a stationary camera. Known transformations that are the input to the hand–eye calibration are visualized by solid lines. Unknown transformations that are determined by the hand–eye calibration are visualized by dashed lines. Note that the four transformations form a closed chain in both cases.

	Figure 3.175 (a) A rigid 3D transformation can be represented as a screw. The screw axis is visualized in light gray. (b) The position of the screw axis is defined by its moment with respect to the origin.

	Figure 3.176 Model of a SCARA robot with three parallel rotary joints and one parallel prismatic joint. The rotation axes are indicated by bold lines.

	Figure 3.177 (a) An image of two touching characters. (b) Segmented region. Note that the characters are not separated. (c) Plot of the number of pixels in each column of (b). (d) The characters have been split at the minimum of (c) at position 21.

	Figure 3.178 (a) Image with lowercase letters. (b)–(e) The features anisometry and compactness plotted for the letters “c” and “o” (b), “i” and “j” (c), “p” and “q” (d), and “h” and “k” (e). Note that the letters in (b) and (c) can be easily distinguished based on the selected features, while the letters in (d) and (e) cannot be distinguished.

	Figure 3.179 Gray value feature extraction for OCR. (a) Image of the letter “5” taken from the second row of characters in the image in Figure 3.26(a). (b) Robust contrast normalization of (a). (c) Result of zooming (b) to a size of 8 × 10 pixels. (d) Image of the letter “5” taken from the second row of characters in the image in Figure 3.26(b). (e) Robust contrast normalization of (d). (f) Result of zooming (e) to a size of 8 × 10 pixels.

	Figure 3.180 Example of a two-class classification problem in a 1D feature space in which P (ω1) = 0.3, P (ω2) = 0.7, P (x|ω1) ~ N(−3, 1.5), and P (x|ω2) ~ N(3, 2). Note that features to the left of x ≈ −0.7122 are classified as belonging to ω1, while features to the right are classified as belonging to ω2.

	Figure 3.181 Example of a three-class classification problem in a 2D feature space in which the three classes have normal distributions with different means and covariances. (a) The a posteriori probabilities of the occurrence of the three classes. (b) Regions in the 2D feature space in which the respective class has the highest probability.

	Figure 3.182 Visualization of the different probabilities and classification results for an example GMM with one Gaussian per class. (a) Samples in a 2D feature space for the three classes, which are visualized by three gray levels. (b) P (x|ω1)P (ω1). (c) P (x|ω2)P (ω2). (d) P (x|ω3)P (ω3). (e) P (x). The range of P (x) is [0, 9.9 × 10−5]. (f) P (ω1|x). (g) P (ω2|x). (h) P (ω3|x). The range of P (ωi|x) is [0, 1]. (i) Classification of the feature space into the three classes without rejection (i.e., without novelty detection). (j) Pkσ(x). The range of P (x) is [0, 1]. (k) Classification of the feature space into the three classes with rejection with a threshold of P = 0.01.

	Figure 3.183 The architecture of a linear classifier expressed as a neural network (single-layer perceptron). (a) A two-class neural network. (b) An n-class neural network. In both cases, the neural network has a single layer of processing units that are visualized by circles. They first compute the linear combination of the feature vector and the weights. After this, a nonlinear activation function is computed, which maps the output to −1 or +1 (two-class neural network) or 0 or 1 (n-class neural network).

	Figure 3.184 A linear classifier is not able to represent the XOR function because the two classes, corresponding to the two outputs of the XOR function, cannot be separated by a single line.

	Figure 3.185 The architecture of a multilayer perceptron. The neural network has multiple layers of processing units that are visualized by circles. They compute the linear combination of the results of the previous layer and the network weights, and then pass the results through a nonlinear activation function.

	Figure 3.186 (a) Logistic activation function (3.261). (b) Hyperbolic tangent activation function (3.262). (c) Softmax activation function (3.263) for two classes.

	Figure 3.187 Visualization of the different output activations and classification results for an example MLP. (a) Samples in a 2D feature space for three classes, which are visualized by three gray levels. (b)–(d) Output activations for classes 1–3. (e) Classification of the feature space into the three classes without rejection (i.e., without novelty detection). (f)–(h) Output activations for classes 1–3 when regularization and rejection class sampling is used to train the MLP. The latter step allows the MLP to perform novelty detection. (i) Classification of the feature space into the three classes with rejection.

	Figure 3.188 (a) A 2D feature space with samples from two classes that are not linearly separable. (b) A transformation into a 3D feature space with a quadratic transformation makes the classes linearly separable.

	Figure 3.189 The optimal separating hyperplane between two classes. The samples of the two classes are represented by the filled and unfilled circles. The hyperplane is shown by the solid line. The margin is shown by the dotted line between the two dashed lines that show the hyperplanes in which samples are on the margin, i.e., attain the minimum distance between the classes. The samples on the margin define the separating hyperplane. Since they “support” the margin hyperplanes, they are called support vectors.

	Figure 3.190 Visualization of the classification results for two example SVMs. (a) Samples in a 2D feature space for three classes, which are visualized by three gray levels. (b) Classification of the feature space by a ν-SVM into the three classes without rejection (i.e., without novelty detection). (c) Classification result of an SVM that was configured for novelty detection. The feature vectors that have been classified as not novel are shown in dark gray. (d) Combination of the results of the SVMs in (b) and (c).

	Figure 3.191 Novelty detection in SVMs is performed by transforming the feature vectors into a higher-dimensional space and separating the training samples from the origin by a hyperplane. The hyperplane is parameterized by its normal vector w and offset ρ. The separating hyperplane is chosen such that the margin (the distance ρ/║w║ of the hyperplane to the origin) is maximal.

	Figure 3.192 Example architecture of a CNN for OCR. A character is scaled to a 28 × 28 input image (I). The image is convolved using 20 filters of size 5 × 5, resulting in 20 feature maps (FM) of size 24 × 24. After this, ReLUs are applied and the feature maps are subsampled using 2 × 2 max pooling, resulting in 20 feature maps of size 12 × 12. These feature maps are convolved with 50 filters of size 5 × 5 × 20, followed by ReLUs and max pooling, resulting in 50 feature maps of size 4 × 4. These 800 features serve as the input of an MLP that consists of two fully connected (FC) layers: a hidden layer with 500 units and an output layer (O) with 82 units.

	Figure 3.193 (a), (b) Images of prints on ICs. (c), (d) Result of the segmentation of the characters (light gray) and the OCR (black). The images are segmented with a threshold that is selected automatically based on the gray value histogram (see Figure 3.26). Furthermore, only the last two lines of characters are selected. Additionally, irrelevant characters like the “–” are suppressed based on the height of the characters.




	4 Machine Vision Applications

	Figure 4.1 Image of a wafer. Note that the dies are arranged in a rectangular grid, which is horizontally aligned.

	Figure 4.2 (a) Autocorrelation of the wafer image. Higher gray values indicate higher correlation values. The ROI for the maximum extraction is visualized by the white rectangle. The local maxima are displayed as white crosses. The white circle indicates the local maximum that represents the die size. (b) Rectangle representing the extracted die size. Note that for visualization purposes, the rectangle is arbitrarily positioned in the center of the image.

	Figure 4.3 (a) Template used for matching. The ROI from which the shape model is created is displayed in white. (b) Best match found by shape-based matching.

	Figure 4.4 Cutting lines that can be used to slice the wafer.

	Figure 4.5 Image of the center part of a CD. The serial number is printed in the outermost annulus. For visualization purposes, it is highlighted with a white border.

	Figure 4.6 (a) Mean image with the segmentation result of the dynamic thresholding operation overlaid in white. (b) Original image with the circle fitted to the border of the segmentation result overlaid in white. Holes in the segmentation result have previously been filled before the circle is fitted.

	Figure 4.7 Zoomed part of the original image. The fitted circle (solid line) and the inner and outer borders of the annulus (dashed lines) that restrict the polar transformation are overlaid in white.

	Figure 4.8 Annulus that contains the serial number transformed to polar coordinates. Note that for visualization purposes the transformed image is split into three parts, which from top to bottom correspond to the angle intervals [0, 2π/3) , [2π/3, 4π/3) , and [4π/3, 2π).

	Figure 4.9 Result of the dynamic thresholding operation for the three image parts of Figure 4.8. Note that the three parts are framed for a better visualization.

	Figure 4.10 Segmented characters for the three image parts of Figure 4.8. The characters are displayed in three different gray values. Note that the three parts are framed for a better visualization.

	Figure 4.11 Result of the OCR overlaid as white text in the upper left image corner. The segmented character regions, which have been transformed back into the original image, are overlaid in white.

	Figure 4.12 Image of a back-lit saw blade that is used for teeth inspection.

	Figure 4.13 (a) Contours that result from subpixel-precise thresholding. To provide better visibility of the extracted contours, the contrast of the image has been reduced. (b) Detail of (a) (original contrast).

	Figure 4.14 (a) Contour parts that are obtained by splitting the original contour into circular arcs and line segments. The contour parts are displayed in three different gray values. (b) Remaining tooth sides obtained after eliminating contour parts that are too short or too long and after eliminating circular arcs.

	Figure 4.15 (a) Zoomed part of a saw tooth. The contour part that represents the tooth back is displayed in white. (b) Line with the same start and end points as the contour part in (a). (c) Line robustly fitted to the contour part in (a).

	Figure 4.16 Three example teeth with the fitted lines from which the included angle is computed: (a) 41.35°; (b) 38.08°; (c) 41.64°. Note that the contrast of the images has been reduced for visualization purposes.

	Figure 4.17 (a) Image of a relay taken with diffuse front light bright-field illumination. (b) Reference image for which only the ROI is shown.

	Figure 4.18 (a) Variation image derived from the reference image shown in Figure 4.17(b). (b) Detail of the variation image.

	Figure 4.19 Results of print inspection. Detected errors are indicated by black ellipses together with the expected edges from the reference image, which are outlined in white. Note that the contrast of the images has been reduced for visualization purposes. (a) Missing parts of the print, smears, and splashes. (b) Misaligned parts of the print.

	Figure 4.20 Image of a BGA. The image has been acquired with directed dark-field front light illumination. The balls appear as doughnut-like structures, while the surroundings of the balls appear dark. (a) The whole image. (b) Upper left part of the BGA.

	Figure 4.21 Cutout of an image that contains wrongly sized and shaped balls.

	Figure 4.22 The model for the BGA shown in Figure 4.20. The rectangles indicate the positions where balls should lie.

	Figure 4.23 (a) Missing balls (indicated by white diamonds) and extraneous balls (indicated by white crosses). (b) Wrongly placed balls (indicated by white plus signs at the expected position).

	Figure 4.24 (a) Image of a doorknob using directed bright-field front light illumination. (b) Image of the same doorknob using directed dark-field front light illumination using an LED ring light. Note that the scratch in the surface is clearly visible.

	Figure 4.25 (a) Result of the dynamic threshold operation. Note that for visualization purposes, only a zoomed part enclosing the doorknob is shown. (b) Doorknob region that is obtained after filling the holes in (a).

	Figure 4.26 (a) Detailed view of the segmented region of Figure 4.25(a). Note the gaps in the border region of the square. (b) Result of the closing visualized for the same part as in (a) with the gaps successfully closed.

	Figure 4.27 (a) Structuring element that matches the upper and lower borders of the inner squares. (b) Structuring element that matches the left and right borders of the inner squares. (c) Result of the opening with the structuring elements of (a) and (b).

	Figure 4.28 (a) ROI (black) containing the planar surface of the doorknob. (b) Margin of the ROI overlaid in white onto the original image. Note that neither the white border of the doorknob nor the white borders of the inner squares are contained. The contrast of the image has been reduced for visualization purposes.

	Figure 4.29 (a) Region resulting from dynamic thresholding overlaid in white onto the original image (with reduced contrast). Note that noise is contained in the region. (b) Result obtained after eliminating connected components of (a) that are smaller than 4 pixels. Note that not all the noise could be eliminated. (c) Result of the surface inspection with the detected scratch displayed in white.

	Figure 4.30 (a) Zoomed part of a second example image. (b) Result of the surface inspection of the image in (a). The margin of the found defect is overlaid in white onto the original image (with reduced contrast).

	Figure 4.31 Two example images of a spark plug. (a) Spark plug with a correct gap size. (b) Spark plug with a gap size that is too large.

	Figure 4.32 Two out of a set of 14 images of a transparent calibration target in different poses. The images are used to calibrate the camera.

	Figure 4.33 (a) Template image from which the model representation is created. The model region is indicated by the gray rectangle. The reference point of the model is visualized as a gray cross. The rectangle within which the measurement of the gap size is performed and its center are displayed in white. (b) Contour representation of the model created.

	Figure 4.34 (a) Image of a spark plug to be measured. The transformed model contour at the pose of the found spark plug is overlaid as a bold white line. The transformed measurement rectangle is displayed as a thin white line. (b) Gray value profile of the measurement rectangle. The 1D edges are extracted by computing the local extrema of the first derivative of the gray value profile.

	Figure 4.35 Three example results of the spark plug measurement. The measured edge points are visualized by a line perpendicular to the measurement direction. (a) Spark plug with a correct gap size. (b) Spark plug with a gap size that is too small. (c) Spark plug with a gap size that is too large.

	Figure 4.36 (a) Circular molded plastic part with a flash at the upper right part of its border. (b) Result of thresholding the dark object. For visualization purposes, in the following, only a zoomed part of the image is displayed, which is indicated by the gray rectangle.

	Figure 4.37 (a) Opened object region in the zoomed image part displayed in Figure 4.36(b). (b) Difference between original and opened object region. (c) Segmented flash region obtained by opening the difference region with a rectangular structuring element of size 5 × 5.

	Figure 4.38 Distance image obtained after applying a distance transform to the opened object region, whose margin is displayed in gray. The margin of the segmented flash region is displayed in white. Bright gray values in the distance image correspond to large distances. For better visualization, the distance image is displayed with a square root LUT.

	Figure 4.39 (a) One-pixel-wide boundary region (black) of the opened object region of Figure 4.37(a) and the flash region (gray). (b) Intersection of the boundary region with the flash region. The computed end points of the intersection region are indicated by small crosses. They can be used to compute the angle range of the molding flash.

	Figure 4.40 Result of the molding flash detection with region morphology. The maximum distance, the angle of the start and end points of the detected flash, and the corresponding angle range are overlaid as white text in the upper left corner of the image. The associated circle sector (dashed), the enclosed segment of the boundary (solid), and its end points (crosses) are displayed in white. To provide a better visibility, the contrast of the image has been reduced.

	Figure 4.41 (a) Result of the edge extraction in the zoomed image part displayed in Figure 4.36. Adjacent edge segments have been merged. (b) Circle robustly fitted to the contour of (a). (c) The extracted contour (gray line), the contour of the fitted circle (solid black line), and the contour of a circle with a radius enlarged by MinFlashSize (dashed black line). The intersection points of the extracted contour and the enlarged circle represent the desired start and end points of the flash.

	Figure 4.42 Function that holds the corrected distance values DistancesOffset for all contour points. Intervals of contour points with positive function values represent the molding flashes.

	Figure 4.43 Result of the molding flash detection with subpixel-precise contours. The maximum distance, the angle of the start and end points of the detected flash, and the corresponding angle range, are overlaid as white text in the upper left corner of the image. The associated sector of the fitted circle (dashed), the enclosed circle segment (solid), and the end points of the flash (crosses) are displayed in white. To provide better visibility, the contrast of the image has been reduced.

	Figure 4.44 (a) Image of a punched sheet that contains circular and oval holes. (b) Edges extracted from the image in (a).

	Figure 4.45 (a) Circular arcs selected from the edges in Figure 4.44(b). (b) Detail of Figure 4.44(a) along with the selected edges. Note that the contrast of the image has been reduced for visualization purposes.

	Figure 4.46 (a) The overall inspection result. The fitted circles are displayed in white together with their radii. For the two oval holes, the distance between the centers of the two circles is given. (b) Detail of Figure 4.44(a) along with the fitted circle. Note that the shape of the hole is not perfectly circular. Note also that the contrast of the image has been reduced for visualization purposes.

	Figure 4.47 Two stereo image pairs of the calibration target. In (a) and (c), the images of the first camera are shown; while (b) and (d) show the respective images of the second camera.

	Figure 4.48 Stereo image pair of an intake manifold acquired with the stereo system. In (a), the image taken by the first camera is shown, while (b) displays the image from the second camera.

	Figure 4.49 The images of the first (a) and second (b) camera rectified to the epipolar standard geometry.

	Figure 4.50 (a) The distance of the object surface from the stereo system. Bright values indicate a larger distance than dark values. For better visibility, [image: image] is displayed. (b) The quality of the match between the two rectified images. Bright values indicate good matches.

	Figure 4.51 (a) Histogram of the direction image. Note that the gradient directions are stored in 2-degree steps in the direction image. (b) Image of the intake manifold along with four arrows that indicate the mean gradient direction in the regions that correspond to the four major peaks of the histogram displayed in (a).

	Figure 4.52 (a) Rectified image of the intake manifold along with the outlines of the two planes. (b) A 3D plot of the surface of the intake manifold.

	Figure 4.53 The two different types of resistors that must be verified: (a) 33 Ω and (b) 1.1 Ω.

	Figure 4.54 (a) Artificial template image of a generic resistor. (b) Contour representation of the model that is used for matching.

	Figure 4.55 (a), (c) Images that are used to create the models of the prints “330” and “1R1.” The found resistor is indicated by the outer white rectangle. The ROI for the model creation is indicated by the inner white rectangle. (b), (d) Contour representation of the created models.

	Figure 4.56 Verification result for an example image that shows a 33 Ω (a) and a 1.1 Ω (b) resistor. The border of the found resistor is overlaid as a white rectangle. The pose of the found print is indicated by the overlaid white contours. The pose and type of the resistor are displayed in the upper left corner of the image.

	Figure 4.57 Three samples out of a set of 22 different types of non-woven fabrics.

	Figure 4.58 The progression of the error during the training of the classifier. Note that initially the error drops off steeply while leveling out to almost flat at the end.

	Figure 4.59 Wrongly classified images. The upper row displays the misclassified images; the lower row shows one image of the class to which the image displayed above has been assigned erroneously.

	Figure 4.60 One sample of each of the 22 classes of non-woven fabrics.

	Figure 4.61 The disparity image returned by the sheet of light sensor.

	Figure 4.62 The reconstructed 3D model of the reference part. (a) Gray-coded top view, where higher parts are displayed brighter. (b) Perspective view.

	Figure 4.63 The reconstructed 3D model of the produced object. (a) The orientation of the produced object does not correspond to the orientation of the reference object. (b) The reconstructed model of the produced object has been aligned with the reference model.

	Figure 4.64 The result of the surface comparison for a produced part where one hole is missing. (a) Reconstructed surface. (b) Result of surface comparison with the missing hole being indicated.

	Figure 4.65 The result of the surface comparison for a produced part where all holes are in a slightly wrong position. (a) Reconstructed surface. (b) Result of surface comparison with the wrong positions of the holes being indicated.

	Figure 4.66 The result of the surface comparison for a produced part where all holes are too small. (a) Reconstructed surface. (b) Result of surface comparison with the wrong size of the holes being indicated.

	Figure 4.67 (a) The setup of the pick-and-place application using a stationary 3D image acquisition device. (b) A screwdriver that is to be handled by the 3D pick-and-place application.

	Figure 4.68 The calibration object used for the hand–eye calibration: (a) Screwdriver held by the robot. (b) Surface model of the calibration object. Note that we must include a part of the robot’s gripper into the surface model, i.e., the calibration object consists of the screwdriver and of that part of the robot’s gripper, to allow a unique determination of the calibration object’s pose.

	Figure 4.69 3D object model created from a 3D calibration image. (a) Gray-coded representation of the 3D image, where higher parts appear darker. (b) Recognized 3D calibration object (overlaid in white).

	Figure 4.70 (a) Object to be grasped placed on the working area. (b) 3D image of the object to be grasped.

	Figure 4.71 (a) Recognized object to be grasped (overlaid in white). (b) Gripper of the robot moved to the grasping pose.

	Figure 4.72 The pile of objects to be grasped: (a) picture of the scene with four screwdrivers, (b) Gray-coded representation of the 3D image of the objects, where higher parts appear darker.

	Figure 4.73 (a) Picking and (b) moving the top-most object.

	Figure 4.74 Picking of the remaining objects. From top to bottom: A picture of the remaining objects, the 3D image of the objects, the robot in the grasping pose, and the picked object.








Guide


	Cover

	Table of Contents

	Begin Reading





Pages


	C1

	iii

	iv

	v

	xv

	xvi

	xvii

	xviii

	xix

	xx

	xxi

	xxii

	1

	2

	3

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	182

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	265

	266

	267

	268

	269

	270

	271

	272

	273

	274

	275

	276

	277

	278

	279

	280

	281

	282

	283

	284

	285

	286

	287

	288

	289

	290

	291

	292

	293

	294

	295

	296

	297

	298

	299

	300

	301

	302

	303

	304

	305

	306

	307

	308

	309

	310

	311

	312

	313

	314

	315

	316

	317

	318

	319

	320

	321

	322

	323

	324

	325

	326

	327

	328

	329

	330

	331

	332

	333

	334

	335

	336

	337

	338

	339

	340

	341

	342

	343

	344

	345

	346

	347

	348

	349

	350

	351

	352

	353

	354

	355

	356

	357

	358

	359

	360

	361

	362

	363

	364

	365

	366

	367

	368

	369

	370

	371

	372

	373

	374

	375

	376

	377

	378

	379

	380

	381

	382

	383

	384

	385

	386

	387

	388

	389

	390

	391

	392

	393

	394

	395

	396

	397

	398

	399

	400

	401

	402

	403

	404

	405

	406

	407

	408

	409

	410

	411

	412

	413

	414

	415

	416

	417

	418

	419

	420

	421

	422

	423

	424

	425

	426

	427

	428

	429

	430

	431

	432

	433

	434

	435

	436

	437

	438

	439

	440

	441

	442

	443

	444

	445

	446

	447

	448

	449

	450

	451

	452

	453

	454

	455

	456

	457

	458

	459

	461

	462

	463

	464

	465

	466

	467

	468

	469

	470

	471

	472

	473

	475

	476

	477

	478

	479

	480

	481

	482

	483

	484

	485

	486

	487

	488

	489

	490

	491

	492

	493

	494

	e1









Machine Vision Algorithms and Applications


Edited by



Carsten Steger




Markus Ulrich




Christian Wiedemann





2nd, completely revised and enlarged Edition


[image: Wiley Logo]





Authors

Dr. Carsten Steger
MVTec Software GmbH
Machine Vision Technologies
Neherstr. 1
Machine Vision Technologies
81675 München
Germany

Dr. Markus Ulrich
MVTec Software GmbH
Neherstr. 1
81675 München
Germany

Dr. Christian Wiedemann
MVTec GmbH
Neherstr. 1
81675 München
Germany





All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-41365-2

ePDF ISBN: 978-3-527-81290-5

ePub ISBN: 978-3-527-81289-9

Mobi ISBN: 978-3-527-81291-2

Cover Design Adam Design, Weinheim, Germany

Typesetting SPi Global, Chennai, India

Printing and Binding






List of Abbreviations


ADC analog-to-digital converter.

AOI area of interest.

API application programming interface.

APS active pixel sensor.

BCS base coordinate system.

BGA ball grid array.

BRDF bidirectional reflectance distribution function.

CAD computer-aided design.

CCD charge-coupled device.

CCIR Comité consultatif international pour la radio.

CCS camera coordinate system.

CD compact disk.

CFA color filter array.

CLProtocol Camera Link Protocol.

CMOS complementary metal-oxide semiconductor.

CNN convolutional neural network.

CPU central processing unit.

CWM continuous-wave-modulated.

DCS distributed control system.

DFT discrete Fourier transform.

DHCP Dynamic Host Configuration Protocol.

DLP digital light processing.

DMA direct memory access.

DMD digital micromirror device.

DN digital number.

DPS digital pixel sensor.

DR dynamic range.

DSNU dark signal nonuniformity.

DSP digital signal processor.

EIA Electronic Industries Alliance.

EM expectation maximization.

EMVA European Machine Vision Association.

FFT fast Fourier transform.

FPGA field-programmable gate array.

GenApi Generic application programming interface for configuring cameras.

GenCP Generic Control Protocol.

GenICam Generic Interface for Cameras.

GenTL Generic Transport Layer.

GHT generalized Hough transform.

GMM Gaussian mixture model.

GPIO general-purpose input/output.

GPU graphics processing unit.

GUI graphical user interface.

GVCP GigE Vision Control Protocol.

GVSP GigE Vision Streaming Protocol.

HTTP Hypertext Transfer Protocol.

HVS human visual system.

I/O input/output.

IC integrated circuit.

ICP iterative closest point.

ICS image coordinate system.

IDE integrated development environment.

IEEE Institute of Electrical and Electronics Engineers.

IP Internet Protocol.

IPCS image plane coordinate system.

IPv4 Internet Protocol, version 4.

IPv6 Internet Protocol, version 6.

IR infrared.

IRLS iteratively reweighted least-squares.

ISO International Organization for Standardization.

kNN k nearest-neighbor.

LCD liquid-crystal display.

LCOS liquid crystal on silicon.

LED light-emitting diode.

LLA Link-Local Address.

LUT lookup table.

LVDS low-voltage differential signaling.

MCS model coordinate system.

MLP multilayer perceptron.

NCC normalized cross-correlation.

NN nearest-neighbor.

NTSC National Television System Committee.

OCR optical character recognition.

PAL phase alternating line.

PC personal computer.

PCB printed circuit board.

PFNC pixel format naming convention.

PLC programmable logic controller.

PLL phase-locked loop.

PM pulse-modulated.

PRNU photoresponse nonuniformity.

PTP Precision Time Protocol.

RANSAC random sample consensus.

ReLU rectified linear unit.

ROI region of interest.

SAD sum of absolute gray value differences.

SCARA Selective Compliant Arm for Robot Assembly.

SED mean squared edge distance.

SFNC standard features naming convention.

SGD stochastic gradient descent.

SLR single-lens reflex.

SNR signal-to-noise ratio.

SSD sum of squared gray value differences.

SVD singular value decomposition.

SVM support vector machine.

TCP Transmission Control Protocol.

TCS tool coordinate system.

TOF time-of-flight.

U3VCP USB3 Vision Control Protocol.

U3VSP USB3 Vision Streaming Protocol.

UDP User Datagram Protocol.

USB Universal Serial Bus.

UV ultraviolet.

WCS world coordinate system.

WWW World Wide Web.

XML extensible markup language.






Preface to the Second Edition


It has been almost exactly ten years since the first edition of this book was published. Many things that we stated in the preface to the first edition of this book have remained constant. Increasing automation has continued to provide the machine vision industry with above-average growth rates. Computers have continued to become more powerful and have opened up new application areas.

On the other hand, many things have changed in the decade since the first edition was published. Efforts to standardize camera–computer interfaces have increased significantly, leading to several new and highly relevant standards. MVTec has participated in the development of many of these standards. Furthermore, sensors that acquire 3D data have become readily available in the machine vision industry. Consequently, 3D machine vision algorithms play an increasingly important role in machine vision applications, especially in the field of robotics. Machine learning (classification) is another technology that has become increasingly important.

The second edition of this book has been extended to reflect these changes. In Chapter 2, we have added a discussion of the latest camera–computer interface and image acquisition standards. Furthermore, we have included a discussion of 3D image acquisition devices. Since many of these sensors use Scheimpflug optics, we have also added a discussion of this important principle. In Chapter 3, we have extended the description of the algorithms that are used in 3D image acquisition devices to perform the 3D reconstruction. Furthermore, we describe camera models and calibration algorithms for cameras that use Scheimpflug optics. The growing importance of 3D processing is reflected by new sections on hand–eye calibration and 3D object recognition. Furthermore, the section on classification has been extended by algorithms that have become increasingly important (in particular, novelty detection and convolutional neural networks). In Chapter 4, we have added two new application examples that show how the 3D algorithms can be used to solve typical 3D applications. Overall, the book has grown by more than 35%.

The applications we present in this book are based on the machine vision software HALCON, developed by MVTec Software GmbH. To make it possible to also publish an electronic version of this book, we have changed the way by which HALCON licenses can be obtained. MVTec now provides the HALCON Student Edition for selected universities and academic research institutes. Please contact your lecturer or local distributor to find out whether you are entitled to participate in this program. Note that the student version of HALCON 8.0 is no longer available. To download the applications discussed in Chapter 4, please visit www.machine-vision-book.com.

The first edition of this book has been used extensively in the lectures “Image understanding I: Machine vision algorithms” given by Carsten Steger at the Department of Informatics of the Technical University of Munich, “Industrial Photogrammetry” given by Markus Ulrich at the Department of Civil, Geo, and Environmental Engineering of the Technical University of Munich, and “Industrielle Bildverarbeitung und Machine Vision” given by Markus Ulrich at the Institute of Photogrammetry and Remote Sensing of the Karlsruhe Institute of Technology. We have integrated the feedback we have received from the students into this edition of the book. A substantial part of the new material is based on the lecture “Image understanding II: Robot vision” given by Carsten Steger since 2011 at the Department of Informatics of the Technical University of Munich.

We would like to express our gratitude to several of our colleagues who have helped us in the writing of the second edition of this book. Jean-Marc Nivet provided the images in Figures 3.129–3.131 and proof-read Sections 2.5 and 3.10. Julian Beitzel supported us by preparing the pick and place example described in Section 4.14. We are also grateful to the following colleagues for proof-reading various sections of this book: Thomas Hopfner (Section 2.4), Christoph Zierl (Section 2.4), Andreas Hofhauser (Section 3.12.1), Bertram Drost (Section 3.12.3), Tobias Böttger (Section 3.13), Patrick Follmann (Sections 3.13 and 3.15.3.4), and David Sattlegger (Section 3.15.3.4). Finally, we would like to thank Martin Preuß and Stefanie Volk of Wiley-VCH who were responsible for the production of this edition of the book.

We invite you to send us suggestions on how to improve this book. You can reach us at authors@machine-vision-book.com.

München, July 2017

Carsten Steger, Markus Ulrich, Christian Wiedemann






Preface to the First Edition


The machine vision industry has enjoyed a growth rate well above the industry average for many years. Machine vision systems currently form an integral part of many machines and production lines. Furthermore, machine vision systems are continuously deployed in new application fields, in part because computers get faster all the time and thus enable applications to be solved that were out of reach just a few years ago.

Despite its importance, there are few books that describe in sufficient detail the technology that is important for machine vision. While there are numerous books on image processing and computer vision, very few of them describe the hardware components that are used in machine vision systems to acquire images (illuminations, lenses, cameras, and camera–computer interfaces). Furthermore, these books often only describe the theory, but not its use in real-world applications. Machine vision books, on the other hand, often do not describe the relevant theory in sufficient detail. Therefore, we feel that a book that provides a thorough theoretical foundation of all the machine vision components and machine vision algorithms, and that gives non-trivial practical examples of how they can be used in real applications, is highly overdue.

The applications we present in this book are based on the machine vision software HALCON, developed by MVTec Software GmbH. To enable you to get a hands-on experience with the machine vision algorithms and applications that we discuss, this book contains a registration code that enables you to download, free of charge, a student version of HALCON as well as all the applications we discuss. For details, please visit www.machine-vision-book.com.

While the focus of this book is on machine vision applications, we would like to emphasize that the principles we will present can also be used in other application fields, e.g., photogrammetry or medical image processing.

We have tried to make this book accessible to students as well as practitioners (OEMs, system integrators, and end-users) of machine vision. The text requires only a small amount of mathematical background. We assume that the reader has a basic knowledge of linear algebra (in particular, linear transformations between vector spaces expressed in matrix algebra), calculus (in particular, sums and differentiation and integration of one- and two-dimensional functions), Boolean algebra, and set theory.

This book is based on a lecture and lab course entitled “Machine vision algorithms” that Carsten Steger has given annually since 2001 at the Department of Informatics of the Technical University of Munich. Parts of the material have also been used by Markus Ulrich in a lecture entitled “Close-range photogrammetry” given annually since 2005 at the Institute of Photogrammetry and Cartography of the Technical University of Munich. These lectures typically draw an audience from various disciplines, e.g., computer science, photogrammetry, mechanical engineering, mathematics, and physics, which serves to emphasize the interdisciplinary nature of machine vision.

We would like to express our gratitude to several of our colleagues who have helped us in the writing of this book. Wolfgang Eckstein, Juan Pablo de la Cruz Gutiérrez, and Jens Heyder designed or wrote several of the application examples in Chapter 4. Many thanks also go to Gerhard Blahusch, Alexa Zierl, and Christoph Zierl for proof-reading the manuscript. Finally, we would like to express our gratitude to Andreas Thoß and Ulrike Werner of Wiley-VCH for having the confidence that we would be able to write this book during the time HALCON 8.0 was completed.

We invite you to send us suggestions on how to improve this book. You can reach us at authors@machine-vision-book.com.

München, May 2007

Carsten Steger, Markus Ulrich, Christian Wiedemann






1
Introduction


Machine vision is one of the key technologies in manufacturing because of increasing demands on the documentation of quality and the traceability of products. It is concerned with engineering systems, such as machines or production lines, that can perform quality inspections in order to remove defective products from production or that control machines in other ways, e.g., by guiding a robot during the assembly of a product.

Some of the common tasks that must be solved in machine vision systems are as follows (Fraunhofer Allianz Vision, 2003):


	Object identification is used to discern different kinds of objects, e.g., to control the flow of material or to decide which inspections to perform. This can be based on special identification symbols, e.g., character strings or bar codes, or on specific characteristics of the objects themselves, such as their shape.

	Position detection is used, for example, to control a robot that assembles a product by mounting the components of the product at the correct positions, such as in a pick-and-place machine that places electronic components onto a printed circuit board (PCB). Position detection can be performed in two or three dimensions, depending on the requirements of the application.

	Completeness checking is typically performed after a certain stage of the assembly of a product has been completed, e.g., after the components have been placed onto a PCB, to ensure that the product has been assembled correctly, i.e., that the right components are in the right place.

	Shape and dimensional inspection is used to check the geometric parameters of a product to ensure that they lie within the required tolerances. This can be used during the production process but also after a product has been in use for some time to ensure that the product still meets the requirements despite wear and tear.

	Surface inspection is used to check the surface of a finished product for imperfections such as scratches, indentations, protrusions, etc.



Figure 1.1 displays an example of a typical machine vision system. The object (1) is transported mechanically, e.g., on a conveyor belt. In machine vision applications, we would often like to image the object in a defined position. This requires mechanical handling of the object and often also a trigger that triggers the image acquisition, e.g., a photoelectric sensor (4). The object is illuminated by a suitably chosen or specially designed illumination (3). Often, screens (not shown) are used to prevent ambient light from falling onto the object and thereby lowering the image quality. The object is imaged with a camera (2) that uses a lens that has been suitably selected or specially designed for the application. The camera delivers the image to a computer (5) through a camera–computer interface (6), e.g., a frame grabber. The device driver of the camera–computer interface assembles the image (7) in the memory of the computer. If the image is acquired through a frame grabber, the illumination may be controlled by the frame grabber, e.g., through strobe signals. If the camera–computer interface is not a frame grabber but a standard interface, such as IEEE 1394, USB, or Ethernet, the trigger will typically be connected to the camera and illumination directly or through a programmable logic controller (PLC). The computer can be a standard industrial PC or a specially designed computer that is directly built into the camera. The latter configuration is often called a smart camera. The computer may use a standard processor, a digital signal processor (DSP), a field-programmable gate array (FPGA), or a combination of the above. The machine vision software (8) inspects the objects and returns an evaluation of the objects (9). The result of the evaluation is communicated to a controller (11), e.g., a PLC or a distributed control system (DCS). Often, this communication is performed by digital input/output (I/O) interfaces (10). The PLC, in turn, typically controls an actuator (13) through a communication interface (12), e.g., a fieldbus or serial interface. The actuator, e.g., an electric motor, then moves a diverter that is used to remove defective objects from the production line.

[image: image]
Figure 1.1 The components of a typical machine vision system. An image of the object to be inspected (1) is acquired by a camera (2). The object is illuminated by the illumination (3). A photoelectric sensor (4) triggers the image acquisition. A computer (5) acquires the image through a camera–computer interface (6), in this case a frame grabber. The photoelectric sensor is connected to the frame grabber. The frame grabber triggers the strobe illumination. A device driver assembles the image (7) in the memory of the computer. The machine vision software (8) inspects the objects and returns an evaluation of the objects (9). The result of the evaluation is communicated to a PLC (11) via a digital I/O interface (10). The PLC controls an actuator (13) through a fieldbus interface (12). The actuator, e.g., an electric motor, moves a diverter that is used to remove defective objects from the production line.


As can be seen from the large number of components involved, machine vision is inherently multidisciplinary. A team that develops a machine vision system will require expertise in mechanical engineering, electrical engineering, optical engineering, and software engineering.

To maintain the focus of this book, we have made a conscious decision to focus on the aspects of a machine vision system that are pertinent to the system until the relevant information has been extracted from the image. Therefore, we will forgo a discussion of the communication components of a machine vision system that are used after the machine vision software has determined its evaluation. For more information on these aspects, please consult Caro (2003); Berge (2004); Mahalik (2003).

In this book, we will try to give you a solid background on everything that is required to extract the relevant information from images in a machine vision system. We include the information that we wish someone had taught us when we started working in the field. In particular, we mention several idiosyncrasies of the hardware components that are highly relevant in applications, which we had to learn the hard way.

The hardware components that are required to obtain high-quality images are described in Chapter 2: illumination, lenses, cameras, and camera–computer interfaces. We hope that, after reading this chapter, you will be able to make informed decisions about which components and setups to use in your application.

Chapter 3 discusses the most important algorithms that are commonly used in machine vision applications. It is our goal to provide you with a solid theoretical foundation that will help you in designing and developing a solution for your particular machine vision task.

To emphasize the engineering aspect of machine vision, Chapter 4 contains a wealth of examples and exercises that show how the machine vision algorithms discussed in Chapter 3 can be combined in non-trivial ways to solve typical machine vision applications.






2
Image Acquisition


In this chapter, we will take a look at the hardware components that are involved in obtaining an image of the scene we want to analyze with the algorithms presented in Chapter 3. Illumination makes the essential features of an object visible. Lenses produce a sharp image on the sensor. The sensor converts the image into a video signal. Finally, camera–computer interfaces (frame grabbers, bus systems like USB, or network interfaces like Ethernet) accept the video signal and convert it into an image in the computer’s memory.


2.1 Illumination

The goal of illumination in machine vision is to make the important features of the object visible and to suppress undesired features of the object. To do so, we must consider how the light interacts with the object. One important aspect is the spectral composition of the light and the object. We can use, for example, monochromatic light on colored objects to enhance the contrast of the desired object features. Furthermore, the direction from which we illuminate the object can be used to enhance the visibility of features. We will examine these aspects in this section.


2.1.1 Electromagnetic Radiation

Light is electromagnetic radiation of a certain range of wavelengths, as shown in Table 2.1. The range of wavelengths visible for humans is 380–780 nm. Electromagnetic radiation with shorter wavelengths is called ultraviolet (UV) radiation. Electromagnetic radiation with even shorter wavelengths consists of X-rays and gamma rays. Electromagnetic radiation with longer wavelengths than the visible range is called infrared (IR) radiation. Electromagnetic radiation with even longer wavelengths consists of microwaves and radio waves.

Monochromatic light is characterized by its wavelength λ. If light is composed of a range of wavelengths, it is often compared to the spectrum of light emitted by a black body. A black body is an object that absorbs all electromagnetic radiation that falls onto it and thus serves as an ideal source of purely thermal radiation. Therefore, the light spectrum of a black body is directly related to its temperature. The spectral radiance of a black body is given by Planck’s law (Planck, 1901; Wyszecki and Stiles, 1982):

(2.1) [image: image]


Table 2.1 The electromagnetic spectrum relevant for optics and photonics. The names of the ranges for IR and UV radiation correspond to ISO 20473:2007. The names of the colors for visible radiation (light) are due to Lee (2005).

	Range	Name	Abbreviation	Wavelength λ
	Ultraviolet	Extreme UV
Vacuum UV
Deep UV
Mid UV
Near UV	–
UV-C
UV-B
UV-A	1 nm–100 nm
100 nm–190 nm
190 nm–280 nm
280 nm–315 nm
315 nm–380 nm
	Visible	Blue-purple
Blue
Green-blue
Blue-green
Green
Yellow-green
Yellow
Orange
Red
Red-purple		380 nm–430 nm
430 nm–480 nm
480 nm–490 nm
490 nm–510 nm
510 nm–530 nm
530 nm–570 nm
570 nm–580 nm
580 nm–600 nm
600 nm–720 nm
720 nm–780 nm
	Infrared	Near IR
Mid IR
Far IR	IR-A
IR-B
IR-C	780 nm–1.4 µm
1.4 µm–3 µm
3 µm–50 µm
50 µm–1 mm



Here, c = 2.997 924 58 × 108 m s−1 is the speed of light, h = 6.626 0693 × 10−34 J s is the Planck constant, and k = 1.380 6505 × 10−23 J K−1 is the Boltzmann constant. The spectral radiance is the energy radiated per unit wavelength by an infinitesimal patch of the black body into an infinitesimal solid angle of space. Hence, its unit is W sr−1 m−2 nm−1.

Figure 2.1 displays the spectral radiance for different temperatures T. It can be seen that black bodies at 300 K radiate primarily in the middle and far IR range. This is the radiation range that is perceived as heat. Therefore, this range of wavelengths is also called thermal IR. The radiation of an object at 1000 K just starts to enter the visible range. This is the red glow that can be seen first when objects are heated. For T = 3000 K, the spectrum is that of an incandescent lamp (see Section 2.1.2). Note that it has a strong red component. The spectrum for T = 6500 K is used to represent average daylight. It defines the spectral composition of white light. The spectrum for T = 10000 K produces light with a strong blue component.

[image: image]
Figure 2.1 Spectral radiance emitted by black bodies of different temperatures. The vertical lines denote the visible range of the spectrum.

Because of the correspondence of the spectra with the temperature of the black body, the spectra also define so-called correlated color temperatures (CIE 15:2004).



2.1.2 Types of Light Sources

Before we take a look at how to use light in machine vision, we will discuss the types of light sources that are commonly used in machine vision.

Incandescent lamps create light by sending an electrical current through a thin filament, typically made of tungsten. The current heats the filament and causes it to emit thermal radiation. The heat in the filament is so high that the radiation is in the visible range of the electromagnetic spectrum. The filament is contained in a glass envelope that contains either a vacuum or a halogen gas, such as iodine or bromine, which prevents oxidation of the filament. Filling the envelope with a halogen gas has the advantage that the lifetime of the lamp is increased significantly compared to using a vacuum. The advantage of incandescent lamps is that they are relatively bright and create a continuous spectrum with a correlated color temperature of 3000–3400 K. Furthermore, they can be operated with low voltage. One of their disadvantages is that they produce a large amount of heat: only about 5% of the power is converted to light; the rest is emitted as heat. Other disadvantages are short lifetimes and the inability to use them as flashes. Furthermore, they age quickly, i.e., their brightness decreases significantly over time.

Xenon lamps consist of a sealed glass envelope filled with xenon gas, which is ionized by electricity, producing a very bright white light with a correlated color temperature of 5500–12 000 K. They are commonly divided into continuous-output short- and long-arc lamps as well as flash lamps. Xenon lamps can produce extremely bright flashes at a rate of more than 200 flashes per second. Each flash can be extremely short, e.g., 1–20 µs for short-arc lamps. One of their disadvantages is that they require a sophisticated and expensive power supply. Furthermore, they exhibit aging after several million flashes.

Like xenon lamps, fluorescent lamps are gas-discharge lamps that use electricity to excite mercury vapor in a noble gas, e.g., argon or neon, causing UV radiation to be emitted. This UV radiation causes a phosphor salt coated onto the inside of the tube that contains the gas to fluoresce, producing visible light. Different coatings can be chosen, resulting in different spectral distributions of the visible light with correlated color temperatures of 3000–6000 K. Fluorescent lamps are driven by alternating current. This results in a flickering of the lamp with the same frequency as the current. For machine vision, high-frequency alternating currents of 22 kHz or more must be used to avoid spurious brightness changes in the images. The main advantages of fluorescent lamps are that they are inexpensive and can illuminate large areas. Some of their disadvantages are a short lifetime, rapid aging, and an uneven spectral distribution with sharp peaks for certain frequencies. Furthermore, they cannot be used as flashes.

A light-emitting diode (LED) is a semiconductor device that produces narrowspectrum (i.e., quasi-monochromatic) light through electroluminescence: the diode emits light in response to an electric current that passes through it. The color of the emitted light depends on the composition and condition of the semiconductor material used. The possible range of colors comprises IR, visible, and near UV radiation. White LEDs can also be produced: they internally emit blue light, which is converted to white light by a coating with a yellow phosphor on the semiconductor. One advantage of LEDs is their longevity: lifetimes larger than 100 000 hours are not uncommon. Furthermore, they can be used as flashes with fast reaction times and almost no aging. Since they use direct current, their brightness can be controlled easily. In addition, they use comparatively little power and produce little heat. The main disadvantage of LEDs is that their performance depends on the ambient temperature of the environment in which they operate. The higher the ambient temperature, the lower the performance of the LED and the shorter its lifetime. However, since LEDs have so many practical advantages, they are currently the primary illumination technology used in machine vision applications.



2.1.3 Interaction of Light and Matter

Light can interact with objects in various ways, as shown in Figure 2.2.

Reflection occurs at the interfaces between different media. The microstructure of the object (essentially the roughness of its surface) determines how much of the light is reflected diffusely and how much specularly. Diffuse reflection scatters the reflected light more or less evenly in all directions. For specular reflection, the incoming and reflected light ray lie in a single plane. Furthermore, their angles with respect to the surface normal are identical. Hence, the macrostructure (shape) of the object determines the direction into which the light is reflected specularly. In practice, however, specular reflection is never perfect (as it is for a mirror). Instead, specular reflection causes a lobe of intense reflection for certain viewing angles, depending on the angle of the incident light, as shown in Figure 2.3. The width of the side lobe is determined by the microstructure of the surface.

[image: image]
Figure 2.2 The interaction of light with an object. The light that falls onto the object is visualized by the black arrow. (1) Specular reflection. (2) Diffuse reflection. (3) Direct transmission. (4) Diffuse transmission. (5) Backside reflection. (6) Absorption.

[image: image]
Figure 2.3 Light distribution caused by the combination of diffuse and specular reflection.

Reflection at metal and dielectric surfaces, e.g., glass or plastics, causes light to become partially polarized. Polarization occurs for diffuse as well as specular reflection. In practice, however, polarization caused by specular reflection dominates.

The fraction of light reflected by the surface is given by the bidirectional reflectance distribution function (BRDF). The BRDF is a function of the direction of the incoming light, the viewing direction, and the wavelength of the light. If the BRDF is integrated over both directions, the reflectivity of the surface is obtained. It depends only on the wavelength.

Note that reflection also occurs at the interface between two transparent media. This may cause backside reflections, which can lead to double images.

Transmission occurs when the light rays pass through the object. Here, the light rays are refracted, i.e., they change their direction at the interface between the different media. This is discussed in more detail in Section 2.2.2.1. Depending on the internal and surface structure of the object, the transmission can be direct or diffuse. The fraction of light that passes through the object is called its transmittance. Like reflectivity, it depends, among other factors, on the wavelength of the light.

Finally, absorption occurs if the incident light is converted into heat within the object. All light that is neither reflected nor transmitted is absorbed. If we denote the light that falls onto the object by I, the reflected light by R, the transmitted light by T, and the absorbed light by A, the law of conservation of energy dictates that I = R + T + A. In general, dark objects absorb a significant amount of light.

All of the above quantities except specular reflection depend on the wavelength of the light that falls onto the object. Wavelength-dependent diffuse reflection and absorption give opaque objects their characteristic color. Likewise, wavelength-dependent transmission gives transparent objects their characteristic color.

Finally, it should be noted that real objects are often more complex than the simple model described above. For example, an object may consist of several layers of different materials. The top layer may be transparent to some wavelengths and reflect others. Further layers may reflect parts of the light that has passed through the layers above. Therefore, establishing a suitable illumination for real objects often requires a significant amount of experimentation.



2.1.4 Using the Spectral Composition of the Illumination

As mentioned in the previous section, colored objects reflect certain portions of the light spectrum, while absorbing other portions. This can often be used to enhance the visibility of certain features by employing an illumination source that uses a range of wavelengths that is reflected by the objects that should be visible and is absorbed by the objects that should be suppressed. For example, if a red object on a green background is to be enhanced, red illumination can be used. The red object will appear bright, while the green object will appear dark.

Figure 2.4 illustrates this principle by showing a PCB illuminated with white, red, green, and blue light. While white light produces a relatively good average contrast, the contrast of certain features can be enhanced significantly by using colored light. For example, the contrast of the large component in the lower left part of the image is significantly better under red illumination because the component itself is light orange, while the print on the component is dark orange. Therefore, the component itself can be segmented more easily with red illumination. Note, however, that red illumination reduces the contrast of the print on the component, which is significantly better under green illumination. Red illumination also enhances the contrast of the copper-colored plated through holes. Blue illumination, on the other hand, maximizes the contrast of the light blue resistor in the center of the row of five small components.

[image: image]
Figure 2.4 A PCB illuminated with (a) white, (b) red, (c) green, and (d) blue light.

[image: image]
Figure 2.5 A PCB illuminated with IR radiation.

Since charge-coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) sensors are sensitive to IR radiation (see Section 2.3.3.4), IR radiation can often also be used to enhance the visibility of certain features, as shown in Figure 2.5. For example, the tracks can be made visible easily with IR radiation since the matt green solder resist that covers the tracks and makes them hard to detect in visible light is transparent to IR radiation.

All of the above effects can also be achieved through the use of white light and color filters. However, since a lot of efficiency is wasted if white light is created only to be filtered out later, it is almost always preferable to use colored illumination from the start.

Nevertheless, there are filters that are useful for machine vision. As we have seen previously, CCD and CMOS sensors are sensitive to IR radiation. Therefore, an IR cut filter is often useful to avoid unexpected brightness or color changes in the image. On the other hand, if the object is illuminated with IR radiation, an IR pass filter, i.e., a filter that suppresses the visible spectrum and lets only IR radiation pass, is often helpful.

Another useful filter is a polarizing filter. As mentioned in Section 2.1.3, light becomes partially polarized through reflection at metal and dielectric surfaces. To suppress this light, we can mount a polarizing filter in front of the camera and turn it in such a way that the polarized light is suppressed. Since unpolarized light is only partially polarized through reflection, an even better suppression of specular reflections can be achieved if the light that falls onto the object is already polarized. This principle is shown in Figure 2.6. The polarizing filters in front of the illumination and camera are called polarizer and analyzer, respectively.

The effect of using polarizing filters is shown in Figure 2.7. Figure 2.7(a) shows a PCB illuminated with a directed ring light. This causes specular reflections on the board, solder, and metallic parts of the components. Using a polarizer and analyzer almost completely suppresses the specular reflections, as shown in Figure 2.7(b).

[image: image]
Figure 2.6 The principle of a polarizer and analyzer. The polarizer and analyzer are polarizing filters that are mounted in front of the illumination and camera, respectively. If the analyzer is turned by 90° with respect to the polarizer, light polarized by specular reflection is suppressed by the analyzer.

[image: image]
Figure 2.7 (a) A PCB illuminated with a directed ring light. Note the specular reflections on the board, solder, and metallic parts of the components. (b) A PCB illuminated with a directed ring light using a polarizer and analyzer. Note that the specular reflections have been suppressed almost completely.



2.1.5 Using the Directional Properties of the Illumination

While the spectral composition of light can often be used advantageously, in machine vision most often the directional properties of the illumination are used to enhance the visibility of the essential features.

By directional properties, we mean two different effects. On the one hand, the light source may be diffuse or directed. In the first case, the light source emits the light more or less evenly in all directions. In the second case, the light source emits the light in a very narrow range of directions. In the limiting case, the light source emits only parallel light rays in a single direction. This is called telecentric illumination. Telecentric illumination uses the same principles as telecentric lenses (see Section 2.2.4).

On the other hand, the placement of the light source with respect to the object and camera is important. Here, we can discern different aspects. If the light source is on the same side of the object as the camera, we speak of front light. This is also often referred to as incident light. However, since incident light often means the light that falls onto an object, we will use the term front light throughout this book. If the light source is on the opposite side of the object to the camera, we speak of back light. This is sometimes also called transmitted light, especially if images of transparent objects are acquired. If the light source is placed at an angle to the object so that most of the light is reflected to the camera, we speak of bright-field illumination. Finally, if the light is placed in such a way that most of the light is reflected away from the camera, and only light of certain parts of the object is reflected to the camera, we speak of dark-field illumination.

All of the above criteria are more or less orthogonal to each other and can be combined in various ways. We will discuss the most commonly used combinations below.



2.1.5.1 Diffuse Bright-Field Front Light Illumination

A diffuse bright-field front light illumination can be built in several ways, as shown in Figure 2.8. LED panels or ring lights with a diffuser in front of the lights have the advantage that they are easy to construct. The light distribution, however, is not perfectly homogeneous, unless the light panel or ring is much larger than the object to be imaged. Furthermore, no light comes from the direction in which the camera looks through the illumination. Coaxial diffuse lights are regular diffuse light sources for which the light is reflected onto the object through a semi-transparent mirror, through which the camera also acquires the images. Since there is no hole through which the camera must look, the light distribution is more uniform. However, the semi-transparent mirror can cause ghost images. Dome lights try to achieve a perfectly homogeneous light distribution either by using a dome-shaped light panel with a diffuser in front of the lights or by mounting a ring light into a diffusely reflecting dome. In the latter case, multiple internal reflections cause the light to show no preferred direction. Like the LED panels or ring lights, the dome lights have the slight disadvantage that no light comes from the direction of the hole through which the camera looks at the object.

[image: image]
Figure 2.8 Different diffuse bright-field front light constructions. (a) An LED panel or ring light with a diffuser in front of the lights. (b) A coaxial diffuse light with a semi-transparent diagonal mirror and a diffuser in front of the lights. (c) A dome light with a diffuser in front of the lights. (d) A dome light with an LED ring light and the dome itself acting as the diffuser.

[image: image]
Figure 2.9 Blister pack illuminated with a dome light of the type shown in Figure 2.8(d).

Diffuse bright-field front light illumination is typically used to prevent shadows and to reduce or prevent specular reflections. It can also be used to look through transparent covers of objects, e.g., the transparent plastic on blister packs (see Figure 2.9).



2.1.5.2 Directed Bright-Field Front Light Illumination

Directed bright-field front light illumination comes in two basic varieties, as shown in Figure 2.10. One way to construct it is to use tilted ring lights. This is typically used to create shadows in cavities or around the objects of interest. One disadvantage of this type of illumination is that the light distribution is typically uneven. A second method is to use a coaxial telecentric illumination to image specular objects. Here, the principle is that object parts that are parallel to the image plane reflect the light to the camera, while all other object parts reflect the light away from the camera. This requires a telecentric lens. Furthermore, the object must be aligned very well to ensure that the light is reflected to the camera. If this is not ensured mechanically, the object may appear completely dark.

[image: image]
Figure 2.10 Different directed bright-field front light constructions. (a) A focused ring light. (b) A coaxial telecentric illumination with a semi-transparent diagonal mirror.



2.1.5.3 Directed Dark-Field Front Light Illumination

Directed dark-field front light illumination is typically constructed as an LED ring light, as shown in Figure 2.11. The ring light is mounted at a very small angle to the object’s surface. This is used to highlight indentations and protrusions of the object. Hence, the visibility of structures like scratches, texture, or engraved characters can be enhanced. An example of the last two applications is shown in Figure 2.12.

[image: image]
Figure 2.11 Directed dark-field front light illumination. This type of illumination is typically constructed as an LED ring light.

[image: image]
Figure 2.12 (a) An engraved serial number on a CPU and (b) Braille print on a pharmaceutical package highlighted with directed dark-field front light illumination. Note that the characters as well as the scratches on the CPU are highlighted.

[image: image]
Figure 2.13 (a) Diffuse bright-field back light illumination. This type of illumination is often constructed with LED panels or fluorescent lights with a diffuser in front of the lights. (b) Reflections on the camera side of the object can occur for objects with a large depth.



2.1.5.4 Diffuse Bright-Field Back Light Illumination

Diffuse bright-field back light illumination consists of a light source, often made from LED panels or fluorescent lights, and a diffuser in front of the lights. The light source is positioned behind the object, as shown in Figure 2.13(a). Back light illumination only shows the silhouette of opaque objects. Hence, it can be used whenever the essential information can be derived from the object’s contours. For transparent objects, back light illumination can be used in some cases to make the inner parts of the objects visible because it avoids the reflections that would be caused by front light illumination. One drawback of diffuse bright-field back light illumination is shown in Figure 2.13(b). Because the illumination is diffuse, for objects with a large depth, some parts of the object that lie on the camera side of the object can be illuminated. Therefore, diffuse back light illumination is typically only used for objects that have a small depth.

Figure 2.14 displays two kinds of objects that are usually illuminated with a diffuse bright-field back light illumination: a flat metal workpiece and a filament in a light bulb.

[image: image]
Figure 2.14 (a) Metal workpiece and (b) filament in a light bulb illuminated with diffuse bright-field back light illumination.

[image: image]
Figure 2.15 Telecentric bright-field back light illumination.



2.1.5.5 Telecentric Bright-Field Back Light Illumination

Directed bright-field back light illumination is usually constructed using telecentric illumination, as shown in Figure 2.15, to prevent the problem that the camera side of the object is also illuminated. For a perspective lens, the image of the telecentric light would be a small spot in the image because the light rays are parallel. Therefore, telecentric back light illumination must use telecentric lenses. The illumination must be carefully aligned with the lens. This type of illumination produces very sharp edges at the silhouette of the object. Furthermore, because telecentric lenses are used, there are no perspective distortions in the image. Therefore, this kind of illumination is frequently used in measurement applications.

Figure 2.16 compares the effects of using diffuse and telecentric bright-field back light illuminations on part of a spark plug. In both cases, a telecentric lens was used. Figure 2.16(a) clearly shows the reflections on the camera side of the object that occur with the diffuse illumination. These reflections do not occur for the telecentric illumination, as can be seen from Figure 2.16(b).

[image: image]
Figure 2.16 A spark plug illuminated with (a) diffuse and (b) telecentric back light illumination. Note the reflections on the camera side of the object that occur with the diffuse illumination.




2.2 Lenses

A lens is an optical device through which light is focused in order to form an image inside a camera, in our case on a digital sensor. The purpose of the lens is to create a sharp image in which fine details can be resolved. In this section, we will take a look at the image geometry created by different kinds of lenses as well as the major lens aberrations that may cause the image quality to be less than perfect, and hence may influence the accuracy of some of the algorithms described in Chapter 3.


2.2.1 Pinhole Cameras

If we neglect the wave nature of light, we can treat light as rays that propagate in straight lines in a homogeneous medium. Consequently, a model for the image created by a camera is given by the pinhole camera, as shown in Figure 2.17. Here, the object on the left side is imaged on the image plane on the right side. The image plane is one of the faces of a box in which a pinhole has been made on the opposite side to the image plane. The pinhole acts as the projection center. The pinhole camera produces an upside-down image of the object.

From the similar triangles on the left and right sides of the projection center, it is clear that the height y′ of the image of the object is given by

(2.2) [image: image]

where y is the height of the object, a is the distance of the object to the projection center, and c is the distance of the image plane to the projection center. The distance c is called the camera constant or the principal distance. Equation (2.2) shows that, if we increase the principal distance c, the size y′ of the image of the object also increases. On the other hand, if we increase the object distance a, then y′ decreases.

[image: image]
Figure 2.17 The pinhole camera. The object is imaged in a box into which a pinhole has been made. The pinhole acts as the projection center.



2.2.2 Gaussian Optics

The simple model of a pinhole camera does not model real lenses sufficiently well. Because of the small pinhole, very little light will actually pass to the image plane, and we would have to use very long exposure times to obtain an adequate image. Therefore, real cameras use lenses to collect light in the image. Lenses are typically formed from a piece of shaped glass or plastic. Depending on their shape, lenses can cause the light rays to converge or to diverge.


2.2.2.1 Refraction

Lenses are based on the principle of refraction. A light ray traveling in a certain medium will travel at a speed v, slower than the speed of light in vacuum c. The ratio n = c/v is called the refractive index of the medium. The refractive index of air at the standard conditions for temperature and pressure is 1.000 2926, which is typically approximated by 1. Different kinds of glasses have refractive indices roughly between 1.48 and 1.62.

When a light ray meets the border between two media with different refractive indices n1 and n2 at an angle of α1 with respect to the normal to the boundary, it is split into a reflected ray and a refracted ray. For the discussion of lenses, we are interested only in the refracted ray. It will travel through the second medium at an angle of α2 to the normal, as shown in Figure 2.18. The relation of the two angles is given by the law of refraction (Born and Wolf, 1999; Lenhardt, 2017):

(2.3) [image: image]

The refractive index n actually depends on the wavelength λ of the light: n = n(λ). Therefore, if white light, which is a mixture of different wavelengths, is refracted, it is split up into different colors. This effect is called dispersion.

As can be seen from Eq. (2.3), the law of refraction is nonlinear. Therefore, it is obvious that imaging through a lens is, in contrast to the pinhole model, a nonlinear process. In particular, this means that in general light rays emanating from a point (a so-called homocentric pencil) will not converge to a single point after passing through a lens. For small angles α to the normal of the surface, however, we may replace sin α with α (Lenhardt, 2017). With this paraxial approximation, the law of refraction becomes linear again:

(2.4) [image: image]

[image: image]
Figure 2.18 The principle of refraction: the light ray entering from the top is refracted at the border between the two media with refractive indices n1 and n2.

The paraxial approximation leads to Gaussian optics, in which a homocentric pencil will converge again to a single point after passing through a lens that consists of spherical surfaces. Hence, Gaussian optics is the ideal for all optical systems. All deviations from Gaussian optics are called aberrations. The goal of lens design is to construct a lens for which Gaussian optics hold for angles α that are large enough that they are useful in practice.



2.2.2.2 Thick Lens Model

Let us now consider what happens with light rays that pass through a lens. For our purposes, a lens can be considered as two adjacent refracting centered spherical surfaces with a homogeneous medium between them. Furthermore, we will assume that the medium outside the lens is identical on both sides of the lens. Lenses have a finite thickness. Hence, the model we are going to discuss, shown in Figure 2.19, is called the thick lens model (Born and Wolf, 1999; Lenhardt, 2017). For the discussion, we use the conventions and notation of DIN 1335:2003-12. Light rays travel from left to right. All horizontal distances are measured in the direction of the light. Consequently, all distances in front of the lens are negative. Furthermore, all upward distances are positive, while all downward distances are negative.

The object in front of the lens is projected to its image behind the lens. The lens has two focal points F and F′, at which rays parallel to the optical axis that enter the lens from the opposite side of the respective focal point converge. The principal planes P and P′ are given by the intersection of parallel rays that enter the lens from one side with the corresponding rays that converge to the focal point on the opposite side. The focal points F and F′ have a distance of f and f′ from P and P′, respectively. Since the medium is the same on both sides of the lens, we have f = −f′, and f′ is the focal length of the lens. The object is at a distance of a from P (the object distance), while its image is at a distance of a′ from P′ (the image distance). The optical axis, shown as a dotted line in Figure 2.19, is the axis of symmetry of the two spherical surfaces of the lens. The surface vertices V and V′ are given by the intersection of the lens surfaces with the optical axis. The nodal points N and N′ have a special property that is described below. Since the medium is the same on both sides of the lens, the nodal points are given by the intersection of the principal planes with the optical axis. If the media were different, the nodal points would not lie in the principal planes.

[image: image]
Figure 2.19 The geometry of a thick lens.

With the above definitions, the laws of imaging with a thick lens can be stated as follows:


	A ray parallel to the optical axis before entering the lens passes through F′.

	A ray that passes through F leaves the lens parallel to the optical axis.

	A ray that passes through N passes through N′ and does not change its angle with the optical axis.



As can be seen from Figure 2.19, all three rays converge at a single point. Since the imaging geometry is completely defined by F, F′, N, and N′, they are called the cardinal elements of the lens. Note that, for all object points that lie in a plane parallel to P and P′, the corresponding image points also lie in a plane parallel to P and P′. This plane is called the image plane.

As for the pinhole camera, we can use similar triangles to determine the essential relationships between the object and its image. For example, it is easy to see that y/a = y′/a′. Consequently, similar to Eq. (2.2) we have

(2.5) [image: image]

By introducing the magnification factor β = y′/y, we also see that β = a′/a. By using the two similar triangles above and below the optical axis on each side of the lens having F and F′ as one of its vertices and the optical axis as one of its sides, we obtain (using the sign conventions mentioned above): y′/y = f/(f − a) and y′/y = (f′ − a′)/f′. Hence, with f = −f′ we have

(2.6) [image: image]

This equation is very interesting. It tells us where the light rays will intersect, i.e., where the image will be in focus, if the object distance a is varied. For example, if the object is brought closer to the lens, i.e., the absolute value of a is decreased, the image distance a′ must be increased. Likewise, if the object distance is increased, the image distance must be decreased. Therefore, focusing corresponds to changing the image distance. It is interesting to look at the limiting cases. If the object moves to infinity, all the light rays are parallel, and consequently a′ = f′. On the other hand, if we move the object to F, the image plane would have to be at infinity. Bringing the object even closer to the lens, we see that the rays will diverge on the image side. In Eq. (2.6), the sign of a′ will change. Consequently, the image will be a virtual image on the object side of the lens, as shown in Figure 2.20. This is the principle that is used in a magnifying glass.

[image: image]
Figure 2.20 The virtual image created by an object that is closer to the lens than the focal point F.

[image: image]
Figure 2.21 The cardinal elements of a system of lenses. D is the diaphragm; ENP is the entrance pupil; EXP is the exit pupil.

From β = y′/y = f/(f − a) = f ′/(f′ + a), we can also see that, for constant object distance a, the magnification β increases if the focal length f′ increases.

Real lens systems are more complex than the thick lens we have discussed so far. To minimize aberrations, they typically consist of multiple lenses that are centered on their common optical axis. An example of a real lens is shown in Figure 2.21. Despite its complexity, a system of lenses can still be regarded as a thick lens, and can consequently be described by its cardinal elements. Figure 2.21 shows the position of the focal points F and F′ and the nodal points N and N′ (and thus the position of the principal planes). Note that for this lens the object side focal point F lies within the second lens of the system. Also note that N′ lies in front of N.



2.2.2.3 Aperture Stop and Pupils

Real lenses have a finite extent. Furthermore, to control the amount of light that falls on the image plane, lenses typically have a diaphragm (also called an iris) within the lens system. The size of the opening of the diaphragm can typically be adjusted with a ring on the lens barrel. The diaphragm of the lens in Figure 2.21 is denoted by D. In addition, other elements of the lens system, such as the lens barrel, may limit the amount of light that falls on the image plane. Collectively, these elements are called stops. The stop that limits the amount of light the most is called the aperture stop of the lens system (ISO 517:2008). Note that the aperture stop is not necessarily the smallest stop in the lens system because lenses in front or behind the stop may magnify or shrink the apparent size of the stop as the light rays traverse the lens. Consequently, a relatively large stop may be the aperture stop for the lens system.

Based on the aperture stop, we can define two important virtual apertures in the lens system (Born and Wolf, 1999; ISO 517:2008). The entrance pupil defines the area at the entrance of the lens system that can accept light. The entrance pupil is the (typically virtual) image of the aperture stop in the optics that come before it. Rays that pass through the entrance pupil are able to enter the lens system and pass through it to the exit. Similarly, the exit pupil is the (typically virtual) image of the aperture stop in the optics that follow it. Only rays that pass through this virtual aperture can exit the system. The entrance and exit pupils of the lens system in Figure 2.21 are denoted by ENP and EXP, respectively.

We can single out a very important light ray from the pencil that passes through the lens system: the principal or chief ray. It passes through the center of the aperture stop. Virtually, it also passes through the center of the entrance and exit pupils. Figure 2.22 shows the actual path of the principal ray as a thick solid line. The virtual path of the principal ray through the centers of the entrance pupil Q and the exit pupil Q′ is shown as a thick dashed line. In this particular lens, the actual path of the principal ray passes very close to Q. Figure 2.22 also shows the path of the rays that touch the edges of the entrance and exit pupils as thin lines. As for the principal ray, the actual paths are shown as solid lines, while the virtual paths to the edges of the pupils are shown as dashed lines. These rays determine the light cone that enters and exits the lens system, and consequently the amount of light that falls onto the image plane.

Another important characteristic of the lens is the pupil magnification factor

(2.7) [image: image]

i.e., the ratio of the diameters of the exit and entrance pupils. It can be shown that it also relates the object and image side field angles to each other (Lenhardt, 2017):

[image: image]
Figure 2.22 The principal ray of a system of lenses.

(2.8) [image: image]

Note that ω′ in general differs from ω, as shown in Figure 2.22. The angles are identical only if βp = 1. Equation (2.7) gives us a simple method to check whether a lens has different image and object side field angles: we simply need to look at the lens from the front and the back. If the sizes of the entrance and exit pupils differ, the field angles differ.



2.2.2.4 Relation of the Pinhole Model to Gaussian Optics

With the above, we can now discuss how the pinhole model is related to Gaussian optics. We can see that the light rays in the pinhole model correspond to the principal rays in Gaussian optics. In the pinhole model, there is a single projection center, whereas in Gaussian optics there are two projection centers: one in the entrance pupil for the object side rays and one in the exit pupil for the image side rays. Furthermore, for Gaussian optics, in general ω′ ≠ ω, whereas ω′ = ω for the pinhole camera. To reconcile these differences, we must ensure that the object and image side field angles are identical. In particular, the object side field angle ω must remain the same since it is determined by the geometry of the objects in the scene. Furthermore, we must create a single projection center. Because ω must remain constant, this must be done by (virtually) moving the projection center in the exit pupil to the projection center in the entrance pupil. As shown in Figure 2.23, to perform these modifications, we must virtually shift the image plane to a point at a distance c from the projection center Q in the entrance pupil, while keeping the image size constant. As described in Section 2.2.1, c is called the camera constant or the principal distance. This creates a new image side field angle ω″. From tan ω = tan ω″, we obtain y/a = y′/c, i.e.,

(2.9) [image: image]

The last equation is derived in Lenhardt (2017). The principal distance c is the quantity that can be determined through camera calibration (see Section 3.9). Note that it can differ substantially from the focal length f′ (in our example by almost 10%). Also note that c depends on the object distance a. Because of Eq. (2.6), c also depends on the image distance a′. Consequently, if the camera is focused to a different depth it must be recalibrated.

[image: image]
Figure 2.23 The relation of the pinhole camera and Gaussian optics.




2.2.3 Depth of Field

Up to now, we have focused our discussion on the case in which all light rays converge again to a single point. As shown by Eq. (2.6), for a certain object distance a, the image plane (IP) must lie at the corresponding image distance a′. Hence, only objects lying in a plane parallel to the image plane, i.e., perpendicular to the optical axis, will be in focus. Objects not lying in this focusing plane (FP) will appear blurred. For objects lying farther from the camera, e.g., the object at the distance af in Figure 2.24, the light rays will intersect in front of IP at an image distance of [image: img]. Likewise, the light rays of objects lying closer to the camera, e.g., at the distance an, will intersect behind IP at an image distance of [image: img]. In both cases, the points of the object will be imaged as a circle of confusion having a diameter of [image: img] and [image: img], respectively.

Often, we want to acquire sharp images even though the object does not lie entirely within a plane parallel to the image plane. Since the sensors that are used to acquire the image have a finite pixel size, the image of a point will still appear in focus if the size of the circle of confusion is in the same order as the size of the pixel (between 1.25 µm and 10 µm for current sensors).

As we can see from Figure 2.24, the size of the blur circle depends on the extent of the ray pencil, and hence on the diameter of the entrance pupil. In particular, if the diaphragm is made smaller, and consequently the entrance pupil becomes smaller, the diameter of the circle of confusion will become smaller. Let us denote the permissible diameter of the circle of confusion by d′. If we set [image: image] we can calculate the image distances af and an of the far and near planes that will result in a diameter of the circle of confusion of d′ (see Lenhardt, 2017):

[image: image]
Figure 2.24 Depth of field of a lens. The image of an object at the focus distance a is in focus. The images of objects nearer or farther than the focus distance are blurred.

(2.10) [image: image]

In terms of the magnification β, Eq. (2.10) can also be written as (see Lenhardt, 2017):

(2.11) [image: image]

Here, F denotes the f-number of the lens, which is given by

(2.12) [image: image]

The f-number can typically be adjusted with a ring on the lens barrel. The f-numbers are usually specified using the standard series of f-number markings as powers of [image: image] namely: f/1, f/1.4, f/2, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22, etc. (ISO 517:2008). A ratio of [image: image] is chosen because the energy E that falls onto the sensor is proportional to the exposure time t and proportional to the area A of the entrance pupil, i.e., inversely proportional to the square of the f-number:

(2.13) [image: image]

Hence, increasing the f-number by one step, e.g., from f/4 to f/5.6, halves the image brightness.

From Eq. (2.10), it follows that the depth of field Δa is given by

(2.14) [image: image]

If we assume that a is large compared to f′/βp, we can substitute a + f′/βp by a. If we additionally assume that f′4 is large with respect to the rest of the denominator, we obtain

(2.15) [image: image]

Hence, we can see that the depth of field Δa is proportional to 1/f′2. Consequently, a reduction of f′ by a factor of 2 will increase Δa by a factor of 4. On the other hand, increasing the f-number by a factor of 2 will lead to an increase of Δa by a factor of 2. Note that this means that the exposure time will need to be increased by a factor of 4 to obtain the same image brightness.

From Eq. (2.11), the depth of field is given by

(2.16) [image: image]

[image: image]
Figure 2.25 Two images of a depth-of-field target taken with (a) F = 2 and (b) F = 16 with a lens with f′ = 12.5 mm. Note the small depth of field in (a) and the large depth of field in (b). Also note the perspective distortion in the images.

If we assume that β is much larger than F2d′2/f′2 and introduce the effective f-number Fe = F (1 −β/βp), we obtain

(2.17) [image: image]

Thus, the depth of field Δa is proportional to 1/β2, i.e., it becomes much smaller as the magnification of the lens increases.

Figure 2.25 displays two images of a depth-of-field target taken with F = 2 and F = 16 with a lens with f′ = 12.5 mm. The depth-of-field target is a set of scales and lines mounted at an angle of 45° on a metal block. As predicted from (2.15), the image with F = 2 has a much smaller depth of field than the image with F = 16.

It should be noted that it is generally impossible to increase the depth of field arbitrarily. If the aperture stop becomes very small, the wave nature of light will cause the light to be diffracted at the aperture stop. Because of diffraction, the image of a point in the focusing plane will be a smeared-out point in the image plane. This will limit the sharpness of the image. Born and Wolf (1999) and Lenhardt (2017) show that, for a circular aperture stop with an effective f-number of Fe, the image of a point will be given by the Airy disk

(2.18) [image: image]

where J1(x) is the Bessel function of the first kind and [image: image]. Figure 2.26 shows the two-dimensional (2D) image of the Airy disk as well as a one-dimensional (1D) cross-section. The radius of the first minimum of Eq. (2.18) is given by r′ = 1.219 67 λFe. This is usually taken as the radius of the diffraction disk. Note that r′ increases as the effective f-number increases, i.e., as the aperture stop becomes smaller, and that r′ increases as the wavelength λ increases. For λ = 500 nm (green light) and Fe = 8, r′ will already be approximately 5 µm, i.e., the diameter of the diffraction disk will be in the order of 1–8 pixels. We should keep in mind that the Airy disk will occur for a perfectly focused system. Points lying in front of or behind the focusing plane will create even more complicated brightness distributions that have a radius larger than r′ (Born and Wolf, 1999; Lenhardt, 2017).

[image: image]
Figure 2.26 Diffraction will cause a point to be imaged as an Airy disk. (a) 2D image of the Airy disk. To make the outer rings visible, an LUT with a gamma function with γ = 0.4 has been used. (b) 1D profile through the Airy disk.



2.2.4 Telecentric Lenses

The lens systems we have considered so far all perform a perspective projection of the world. The projection is perspective both in object and in image space. These lenses are called entocentric lenses. Because of the perspective projection, objects that are closer to the lens produce a larger image, which is obvious from Eqs. (2.2) and (2.9). Consequently, the image of objects not lying in a plane parallel to the image plane will exhibit perspective distortions. In many measurement applications, however, it is highly desirable to have an imaging system that performs a parallel projection in object space because this eliminates the perspective distortions and removes occlusions of objects that occur because of the perspective distortions.


2.2.4.1 Object-Side Telecentric Lenses

From a conceptual point of view, a parallel projection in object space can be achieved by placing an infinitely small pinhole aperture stop at the image-side focal point F′ of a lens system. From the laws of imaging with a thick lens in Section 2.2.2.2, we can deduce that the aperture stop only lets light rays parallel to the optical axis on the object side pass, as shown in Figure 2.27. Consequently, the lens must be at least as large as the object we would like to image.

Like the pinhole camera, this construction is impracticable because too little light would reach the sensor. Therefore, the aperture stop must have a finite extent, as shown in Figure 2.28. Here, for simplicity the principal planes have been drawn at the same position (P = P′). As can be seen from the principal ray, objects at different object distances are imaged at the same position. As for regular lenses, objects not in the focusing plane will create a circle of confusion.

[image: image]
Figure 2.27 The principle of telecentric lenses. A pinhole aperture stop is placed at the image-side focal point F′, letting only light rays parallel to the optical axis on the object side pass.

[image: image]
Figure 2.28 An object-side telecentric lens. From the principal ray, drawn as a thick line, it can be seen that objects at different object distances are imaged at the same position. As for regular lenses, objects not in the focusing plane will create a circle of confusion.

If we recall that the entrance pupil is the virtual image of the aperture stop in the optics that come before it, and that the aperture stop is located at the image-side focal point F′, we can see that the entrance pupil is located at −∞ and has infinite extent. Since the center of the entrance pupil acts as the projection center, the projection center is infinitely far away, giving rise to the name telecentric perspective for this parallel projection. In particular, since the projection center is at infinity on the object side, such a lens system is called an object-side telecentric lens. Note that the exit pupil of the lens in Figure 2.28 is the aperture stop because no optical elements are behind it. This is a simplified model for object-side telecentric lenses. In real lenses, there typically are optical elements behind the aperture stop. Nevertheless, the exit pupil will still be at a finite location. Furthermore, note that an object-side telecentric lens still performs a perspective projection in image space. This is immaterial if the image plane is perpendicular to the optical axis.

In contrast to the simple pinhole telecentric lens discussed above, an object-side telecentric lens must be larger than the object by an amount that takes the size of the aperture stop into account, as shown by the rays that touch the edge of the aperture stop in Figure 2.28.

The depth of field of an object-side telecentric lens is given by (see Lenhardt, 2017)

(2.19) [image: image]

As before, d′ is the permissible diameter of the circle of confusion (see Section 2.2.3), β is the magnification of the lens, given by β = − sin α/sin α′, and A = sin α is the numerical aperture of the lens. It is related to the f-number by F = 1/(2A). Likewise, sin α′ is the image-side numerical aperture.



2.2.4.2 Bilateral Telecentric Lenses

Another kind of telecentric lens can be constructed by positioning a second lens system behind the aperture stop of an object-side telecentric lens in such a way that the image-side focal point [image: img] of the first lens system coincides with the object-side focal point F2 of the second lens system (see Figure 2.29). From the laws of imaging with a thick lens in Section 2.2.2.2, we can deduce that now the light rays on the image side of the second lens system also will be parallel to the optical axis. This construction will move the exit pupil to ∞. Therefore, these lenses are called bilateral telecentric lenses.

The magnification of a bilateral telecentric lens is given by [image: img] (Lenhardt, 2017). Therefore, the magnification is independent of the object position and of the position of the image plane, in contrast to object-side telecentric lenses, where the magnification is only constant for a fixed image plane.

[image: image]
Figure 2.29 A bilateral telecentric lens. The lens behind the aperture stop is positioned in such a way that [image: img]. From the principal ray, drawn as a thick line, it can be seen that objects at different object distances are imaged at the same position. As for regular lenses, objects not in the focusing plane will create a circle of confusion.

[image: image]
Figure 2.30 An image of a depth-of-field target taken with a telecentric lens with β = 0.17 and F = 5.6. Note that there are no perspective distortions in the image.

The depth of field of a bilateral telecentric lens is given by (see Lenhardt, 2017)

(2.20) [image: image]

Figure 2.30 shows an image of a depth-of-field target taken with an object-side telecentric lens with β = 0.17 and F = 5.6. Note that, in contrast to the perspective lens used in Figure 2.25, there are no perspective distortions in the image.



2.2.4.3 Image-Side Telecentric Lenses

There is a further type of telecentric lens. If the aperture stop is placed at the object-side focal point F of a lens system, the laws of imaging with a thick lens in Section 2.2.2.2 imply that the principal ray is parallel to the optical axis in image space, as shown in Figure 2.31. The entrance pupil is located at a finite location, while the exit pupil is at ∞. Therefore, these lenses are called image-side telecentric lenses.

[image: image]
Figure 2.31 An image-side telecentric lens. The principal ray, drawn as a thick line, is parallel to the optical axis in image space.


Table 2.2 The different lens types and their projection characteristics.


	Lens Type	Object-Side Projection	Image-Side Projection

	Entocentric	Perspective	Perspective

	Image-side telecentric	Perspective	Parallel

	Object-side telecentric	Parallel	Perspective

	Bilateral telecentric	Parallel	Parallel




The projection in object space is perspective, as for entocentric lenses. Note that the lens behind the aperture stop in a bilateral telecentric lens essentially constitutes an image-side telecentric lens.

Image-side telecentric lenses have the advantage that the light rays impinge on the sensor perpendicularly. This helps to avoid pixel vignetting, i.e., the effect that solid-state sensors are less sensitive to light the more the angle of the light ray deviates from being perpendicular to the sensor.



2.2.4.4 Projection Characteristics of Lenses

We conclude this section by listing the projection characteristics of the different lens types we have discussed so far in Table 2.2. If the image plane is perpendicular to the optical axis, the projection characteristics in image space become immaterial from a geometric point of view since in this configuration a perspective and a parallel projection in image space have the same effect. Note that, in this case, the parallel projection becomes an orthographic projection. Therefore, if the image plane is perpendicular to the optical axis, we will simply speak of a perspective or a telecentric lens, with the understanding that in this case the terms refer to the object-side projection characteristics.




2.2.5 Tilt Lenses and the Scheimpflug Principle

The discussion of the depth of field in Section 2.2.3 has assumed that the image plane is perpendicular to the optical axis. Equation (2.11) shows that the depth of field in this case is a region in space that is bounded by two planes that are parallel to the image plane. Furthermore, Eq. (2.17) shows that the depth of field is inversely proportional to the square of the magnification of the lens. Consequently, the larger the magnification of the camera, the smaller the depth of field.

The small depth of field at high magnifications becomes problematic whenever it is necessary to image objects in focus that lie in or close to a plane that is not parallel to the image plane. With regular lenses, this is only possible by reducing the size of the aperture stop, i.e., by increasing the f-number of the lens. However, as discussed in Section 2.2.3, there is a limit to this approach for two reasons. First, if the aperture stop is made too small, the image will appear blurred because of diffraction. Second, a small aperture stop causes less light to reach the sensor. Consequently, a high-powered illumination is required to achieve reasonable exposure times, especially when images of moving objects must be acquired.

[image: image]
Figure 2.32 A regular stereo setup with converging cameras. The image planes are visualized by thick solid lines. The depth of field of the two cameras is visualized by dashed lines. The common depth of field is visualized by the gray rhombus. The angles of the two cameras are exaggerated to display the common depth of field more clearly. The surface to be reconstructed is visualized by a thick solid line.

There are several practical applications in which a plane in object space that is not parallel to the image plane must be imaged in focus (Steger, 2017). One example is stereo reconstruction, where typically the cameras are used in a converging setup (see Sections 2.5.1 and 3.10.1). As shown in Figure 2.32, this setup causes the volume in object space for which both cameras produce a sharp image to be a rhomboid-shaped infinite prism. This problem is typically ignored at small magnifications because the common depth of field is large enough. For large magnifications (e.g., larger than 0.1), however, the volume is small enough to cause significant defocus.

Another application where a tilted object plane must be imaged in focus is sheet of light 3D reconstruction (see Sections 2.5.2 and 3.10.2). Here, a laser projects a line onto objects in the world, and a camera acquires images of the laser line. The projection of the laser line forms a plane in space that is not perpendicular to the optical axis of the camera. Different object distances cause different displacements of the laser line in the image, which allow a 3D reconstruction of the scene. To obtain maximum accuracy, it is necessary that the laser line is in focus for all 3D depths that must be reconstructed, i.e., the entire 3D laser plane emitted by the projector should ideally be in focus.

One more application where it is important to image a plane in focus that is tilted with respect to the image plane is structured light 3D reconstruction (see Sections 2.5.3 and 3.10.3). Here, a 2D projector replaces one of the cameras of a stereo camera setup. Consequently, this application is geometrically equivalent to the stereo camera setup described above.

The Scheimpflug principle states that an arbitrary plane in object space can be imaged in focus by tilting the lens with respect to the image plane (Steger, 2017). If we assume a thin lens, i.e., a lens for which the two principal planes coincide in a single plane, the Scheimpflug principle states the following: the focusing plane (the plane in object space that is in focus), the principal plane, and the image plane must all meet in a single line, called the Scheimpflug line. For thick lenses, the condition must be modified as follows: the Scheimpflug line is split into two lines, one in each principal plane of the lens, that are conjugate to each other, i.e., have the same distance and orientation with respect to the principal points of the lens (see Figure 2.33). The angles of the focusing and image planes with respect to the principal planes can be derived from Eq. (2.6) and are given by (see Steger, 2017)

(2.21) [image: image]

[image: image]
Figure 2.33 The Scheimpflug principle. S and S′ are the object-side and image-side Scheimpflug lines.

where τ is the angle of the focusing plane with respect to the object-side principal plane, τ′ is the angle of the image plane with respect to the image-side principal plane, and a is the distance of the intersection point of the optical axis with the focusing plane from the object-side principal point.

If a plane that is parallel to the image plane is drawn through the object-side principal point, and this plane is intersected with the object-side focal plane, a straight line is obtained (see Figure 2.34). This construction can also be performed analogously on the image side of the lens. These lines are called hinge lines (Evens, 2008; Merklinger, 2010; Steger, 2017). The object-side hinge line H has an important geometric significance: if the image is refocused by changing the distance of the image plane with respect to the image-side principal point, the focusing plane will rotate around the object-side hinge line if the tilt of the image plane remains fixed (Evens, 2008; Merklinger, 2010; Steger, 2017). Furthermore, the depth of field is an infinite wedge-shaped region that has the hinge line as its edge (Evens, 2008; Merklinger, 2010; Steger, 2017). This can also be seen from Figure 2.34. If we interpret the image planes IP1 and IP2 as the limits of the depth of focus, the limits of the depth of field are given by FP1 and FP2. Note that positioning the image plane parallel to the principal planes moves the hinge and Scheimpflug lines to infinity, and produces the regular depth-of-field geometry.

[image: image]
Figure 2.34 Refocusing by moving the image plane with respect to the principal plane P′ from IP1 to IP2 rotates the focusing plane from FP1 to FP2 around the hinge line H.

[image: image]
Figure 2.35 A stereo setup with converging cameras and image planes tilted according to the Scheimpflug principle. The image planes are visualized by thick solid lines. The depth of field of the two cameras is visualized by dashed lines, which emanate from the hinge lines. The common depth of field is visualized by the gray rhombus. The angles of the two cameras are exaggerated to display the common depth of field more clearly. The surface to be reconstructed is visualized by a thick solid line.

With the Scheimpflug principle, it is obvious how to solve the focusing problems in the applications discussed earlier (Steger, 2017). For example, for stereo cameras, the image planes must be tilted as shown in Figure 2.35. A similar principle holds for structured light systems. For sheet of light systems, the focusing plane in Figure 2.35 corresponds to the laser plane and there is only one camera.

To construct a camera with a tilted lens, there are several possibilities (Steger, 2017). One popular option is to construct a special camera housing with the desired tilt angle to which the lens can be attached. This is typically done for specialized applications for which the effort of constructing the housing is justified, e.g., specialized sheet of light or structured light sensors. In these applications, the lens is typically tilted around the vertical or horizontal axis of the image, as required by the application. Another option is to use lenses that have been designed specifically to be tilted in an arbitrary direction. In the machine vision industry, these lenses are typically called Scheimpflug lenses or Scheimpflug optics. They are available as perspective or telecentric lenses. In the consumer SLR camera market, these lenses are typically called tilt/shift lenses or perspective correction lenses (although, technically, perspective correction only requires that the lens can be shifted). Since the ability to tilt the lens is its essential feature, we will call these lenses tilt lenses in this book.



2.2.6 Lens Aberrations

Up to now, we have assumed Gaussian optics, where a homocentric pencil will converge to a single point after passing through a lens. For real lenses, this is generally not the case. In this section, we will discuss the primary aberrations that can occur (Born and Wolf, 1999; Mahajan, 1998).


2.2.6.1 Spherical Aberration

Spherical aberration, shown in Figure 2.36(a), occurs because light rays that lie far from the optical axis will not intersect at the same point as light rays that lie close to the optical axis. This happens because of the increased refraction that occurs at the edge of a spherical lens. No matter where we place the image plane, there will always be a circle of confusion. The best we can do is to make the circle of confusion as small as possible. The spherical aberration can be reduced by setting the aperture stop to a larger f-number, i.e., by making the diaphragm smaller because this prevents the light rays far from the optical axis from passing through the lens. However, as described at the end of Section 2.2.3, diffraction will limit how small we can make the aperture stop. An alternative is to employ lenses that use non-spherical surfaces instead of spherical surfaces. Such lenses are called aspherical lenses.



2.2.6.2 Coma

A similar aberration is shown in Figure 2.36(b). Here, rays that pass through the lens at an angle to the optical axis do not intersect at the same point. In this case, the image is not a circle, but a comet-shaped figure. Therefore, this aberration is called coma. Note that, in contrast to spherical aberration, coma is asymmetric. This may cause feature extraction algorithms like edge extraction to return wrong positions. Coma can be reduced by setting the aperture stop to a larger f-number.

[image: image]
Figure 2.36 (a) Spherical aberration: light rays far from the optical axis do not intersect at the same point as light rays close to the optical axis. (b) Coma: light rays that pass through the lens at an angle to the optical axis do not intersect at the same point.

[image: image]
Figure 2.37 Astigmatism: tangential and sagittal light rays do not intersect at the same point, creating a tangential image IT and a sagittal image IS that consist of two orthogonal lines.



2.2.6.3 Astigmatism

Figure 2.37 shows a different kind of aberration. Here, light rays in the tangential plane, defined by the object point and the optical axis, and the sagittal plane, perpendicular to the tangential plane, do not intersect at points, but in lines perpendicular to the respective plane. Because of this property, this aberration is called astigmatism. The two lines are called the tangential image IT and a sagittal image IS. Between them, a circle of least confusion occurs. Astigmatism can be reduced by setting the aperture stop to a larger f-number or by careful design of the lens surfaces.



2.2.6.4 Curvature of Field

A closely related aberration is shown in Figure 2.38(a). Above, we have seen that the tangential and sagittal images do not necessarily lie at the same image distance. In fact, the surfaces in which the tangential and sagittal images lie (the tangential and sagittal focal surfaces) may not even be planar. This aberration is called curvature of field. It leads to the fact that it is impossible to bring the entire image into focus. Figure 2.38(b) shows an image taken with a lens that exhibits significant curvature of field: the center of the image is in focus, while the borders of the image are severely defocused. Like the other aberrations, curvature of field can be reduced by setting the aperture stop to a larger f-number or by carefully designing the lens surfaces.



2.2.6.5 Distortion

In addition to the above aberrations, which, apart from coma, mainly cause problems with focusing the image, lens aberrations may cause the image to be distorted, leading to the fact that straight lines not passing through the optical axis will no longer be imaged as straight lines. This is shown in Figure 2.39. Because of the characteristic shapes of the images of rectangles, two kinds of distortion can be identified: pincushion and barrel distortion. Note that distortion will not affect lines through the optical axis. Furthermore, circles with the optical axis as center will produce larger or smaller circles. Therefore, these distortions are called radial distortions. In addition, if the elements of the lens are not centered properly, decentering distortions may also occur. Note that there is an ISO standard ISO 9039:2008 that defines how distortions are to be measured and reported by lens manufacturers.

[image: image]
Figure 2.38 (a) Curvature of field: the tangential and sagittal images lie in two curved focal planes FT and FS. (b) Image taken with a lens that exhibits significant curvature of field: the center of the image is in focus, while the borders of the image are severely defocused.

[image: image]
Figure 2.39 (a), (d) Images without distortion. (b), (e) Images with pincushion distortion. (c), (f) Images with barrel distortion.

[image: image]
Figure 2.40 Chromatic aberration: light rays with different wavelengths do not intersect at a single point.



2.2.6.6 Chromatic Aberration

All of the above aberrations already occur for monochromatic light. If the object is illuminated with light that contains multiple wavelengths, e.g., white light, chromatic aberrations may occur, which lead to the fact that light rays having different wavelengths do not intersect at a single point, as shown in Figure 2.40. With color cameras, chromatic aberrations cause colored fringes at the edges of objects. With black-and-white cameras, chromatic aberrations lead to blurring. Furthermore, because they are not symmetric, they can cause position errors in feature extraction algorithms like edge extraction. Chromatic aberrations can be reduced by setting the aperture stop to a larger f-number. Furthermore, it is possible to design lenses in such a way that two different wavelengths will be focused at the same point. Such lenses are called achromatic lenses. It is even possible to design lenses in which three specific wavelengths will be focused at the same point. Such lenses are called apochromatic lenses. Nevertheless, the remaining wavelengths still do not intersect at the same point, leading to residual chromatic aberrations. Note that there is an ISO standard ISO 15795:2002 that defines how chromatic aberrations are to be measured and reported by lens manufacturers.



2.2.6.7 Edge-Spread Function

It is generally impossible to design a lens system that is free from all of the above aberrations, as well as higher-order aberrations that we have not discussed (Born and Wolf, 1999). Therefore, the lens designer must always make a trade-off between the different aberrations. While the residual aberrations may be small, they will often be noticeable in highly accurate feature extraction algorithms. This happens because some of the aberrations create asymmetric gray value profiles, which will influence all subpixel algorithms. Aberrations cause ideal step edges to become blurred. This blur is called the edge-spread function. Figure 2.41 shows an example of an edge-spread function of an ideal step edge that would be produced by a perfect diffraction-limited system as well as edge-spread functions that were measured with a real lens for an edge through the optical axis and an off-axis edge lying on a circle located at a distance of 5 mm from the optical axis (i.e., the edge-spread function for the off-axis edge is perpendicular to the circle). Note that the ideal edge-spread function and the on-axis edge-spread function are symmetric, and consequently cause no problems. The off-axis edge-spread function, however, is asymmetric, which causes subpixel-accurate edge detection algorithms to return incorrect positions, as discussed in Section 3.7.4.

[image: image]
Figure 2.41 Edge-spread function for a perfect diffraction-limited system as well as for a real lens for an edge through the optical axis and an off-axis edge in the direction perpendicular to a circle located at a distance of 5 mm from the optical axis. Note that the off-axis edge-spread function profile is not symmetric. (Adapted from Lenhardt (2017).)



2.2.6.8 Vignetting

We conclude this section by discussing an effect that is not considered an aberration per se, but nevertheless influences the image quality. As can be seen from Figure 2.38(b), for some lenses there can be a significant drop in image brightness toward the border of the image. This effect is called vignetting. It can have several causes. First of all, the lens may have been designed in such a way that for a small f-number the diaphragm is no longer the aperture stop for light rays that form a large angle with the optical axis. Instead, as shown in Figure 2.42, one of the lenses or the lens barrel becomes the aperture stop for a part of the light rays. Consequently, the effective entrance pupil for the off-axis rays will be smaller than for rays that lie on the optical axis. Thus, the amount of light that reaches the sensor is smaller for off-axis points. This kind of vignetting can be removed by increasing the f-number so that the diaphragm becomes the aperture stop for all light rays.

[image: image]
Figure 2.42 Vignetting occurs because the diaphragm is no longer the aperture stop for a part of the off-axis light rays.

The second cause of vignetting is the natural light fall-off for off-axis rays. By looking at Figure 2.22, we can see that light rays that leave the exit pupil form an image-side field angle ω′ with the optical axis. This means that for off-axis points with ω′ ≠ 0, the exit pupil will no longer be a circle, but an ellipse that is smaller than the circle by a factor of cos ω′. Consequently, off-axis image points receive less light than axial image points. Furthermore, the length of the light ray to the image plane will be longer than for axial rays by a factor of 1/cos ω′. By the inverse square law of illumination (Born and Wolf, 1999), the energy received at the image plane is inversely proportional to the square of the length of the ray from the light source to the image point. Hence, the light received by off-axis points will be reduced by another factor of (cos ω′)2. Finally, the light rays fall on the image plane at an angle of ω′. This further reduces the amount of light by a factor of cos ω′. In total, we can see that the amount of light for off-axis points is reduced by a factor of (cos ω′)4. A more thorough analysis shows that, for large aperture stops (f-numbers larger than about 5), the light fall-off is slightly less than (cos ω′)4 (Mahajan, 1998). This kind of vignetting cannot be reduced by increasing the f-number.





2.3 Cameras

The camera’s purpose is to create an image from the light focused in the image plane by the lens. The most important component of the camera is a digital sensor. In this section, we will discuss the two main sensor technologies: CCD and CMOS. They differ primarily in their readout architecture, i.e., in the manner in which the image is read out from the chip (El Gamal and Eltoukhy, 2005; Holst and Lomheim, 2011). Furthermore, we will discuss how to characterize the performance of a camera. Finally, since we do not discuss this in this chapter, it should be mentioned that the camera contains the necessary electronics to create a video signal that can be transmitted to a computer as well as electronics that permit the image acquisition to be controlled externally by a trigger.


2.3.1 CCD Sensors


2.3.1.1 Line Sensors

To describe the architecture of CCD sensors, we start by examining the simplest case: a linear sensor, as shown in Figure 2.43. The CCD sensor consists of a line of light-sensitive photodetectors. Typically they are photogates or photodiodes (Holst and Lomheim, 2011). We will not describe the physics involved in photodetection. For our purposes, it suffices to think of a photodetector as a device that converts photons into electrons and corresponding positively charged holes and collects them to form a charge. Each type of photodetector has a maximum charge that can be stored, depending, among other factors, on its size. The charge is accumulated during the exposure of the photodetector to light. To read out the charges, they are moved through transfer gates to serial readout registers (one for each photodetector). The serial readout registers are also light-sensitive, and thus must be covered with a metal shield to prevent the image from receiving additional exposure during the time it takes to perform the readout. The readout is performed by shifting the charges to the charge conversion unit, which converts the charge into a voltage, and by amplifying the resulting voltage (Holst and Lomheim, 2011). The transfer gates and serial readout registers are CCDs. Each CCD consists of several gates that are used to transport the charge in a given direction. Details of the charge transportation process can be found, for example, in Holst and Lomheim (2011). After the charge has been converted into a voltage and has been amplified, it can be converted into an analog or digital video signal. In the latter case, the voltage would be converted into a digital number (DN) through an analog-to-digital converter (ADC).

[image: image]
Figure 2.43 A linear CCD sensor. Light is converted into charge in the photodetectors (which are typically photodiodes for line sensors), transferred to the serial readout registers, and read out sequentially through the charge converter and amplifier.

A line sensor as such would create an image that is one pixel high, which would not be very useful in practice. Therefore, typically many lines are assembled into a 2D image. Of course, for this image to contain any useful content, the sensor must move with respect to the object that is to be imaged. In one scenario, the line sensor is mounted above the moving object, e.g., a conveyor belt. In a second scenario, the object remains stationary while the camera is moved across the object, e.g., to image a PCB. This is the principle that is also used in flatbed scanners. In this respect, a flatbed scanner is a line sensor with integrated illumination.

To acquire images with a line sensor, the line sensor itself must be parallel to the plane in which the objects lie and must be perpendicular to the movement direction to ensure that rectangular pixels are obtained. Furthermore, the frequency with which the lines are acquired must match the speed of relative movement of the camera and the object and the resolution of the sensor to ensure that square pixels result. It must be assumed that the speed is constant to ensure that all the pixels have the same size. If this is not the case, an encoder must be used, which essentially is a device that triggers the acquisition of each image line. It is driven, for example, by the stepper of the motor that causes the relative movement. Since perfect alignment of the sensor to the object and movement direction is relatively difficult to achieve, in some applications the camera must be calibrated using the methods described in Section 3.9 to ensure high measurement accuracy.

The line readout rates of line sensors vary between 10 and 200 kHz. This obviously limits the exposure time of each line. Consequently, line scan applications require very bright illumination. Furthermore, the diaphragm of the lens must typically be set to a relatively small f-number, which can severely limit the depth of field. Therefore, line scan applications often pose significant challenges for obtaining a suitable setup.

[image: image]
Figure 2.44 A full frame CCD sensor. Light is converted into charge in the photodetectors, transferred to the serial readout registers row by row, and read out sequentially through the charge converter and amplifier.



2.3.1.2 Full Frame Array Sensors

We now turn our attention to area sensors. The logical extension of the principle of the line sensor is the full frame sensor, shown in Figure 2.44. Here, the light is converted into charge in the photodetectors and is shifted row by row into the serial readout registers, from where it is converted into a video signal in the same manner as in the line sensor.

During the readout, the photodetectors are still exposed to light, and thus continue to accumulate charge. Because the upper pixels are shifted through all the lower pixels, they accumulate information from the entire scene, and consequently appear smeared. To avoid the smear, a mechanical shutter or a strobe light must be used. This is also the biggest disadvantage of the full frame sensor. Its biggest advantage is that the fill factor (the ratio of the light-sensitive area of a pixel to its total area) can reach 100%, maximizing the sensitivity of the pixels to light and minimizing aliasing.



2.3.1.3 Frame Transfer Sensors

To reduce the smearing problem in the full frame sensor, the frame transfer sensor, shown in Figure 2.45, uses an additional sensor that is covered by a metal light shield, and can thus be used as a storage area. In this sensor type, the image is created in the light-sensitive sensor and then transferred into the shielded storage array, from which it can be read out at leisure. Since the transfer between the two sensors is quick (usually less than 500 µs (Holst and Lomheim, 2011)), smear is significantly reduced.

The biggest advantage of the frame transfer sensor is that it can have fill factors of 100%. Furthermore, no mechanical shutter or strobe light needs to be used. Nevertheless, a residual smear may remain because the image is still exposed during the short time required to transfer the charges to the second sensor. The biggest disadvantage of the frame transfer sensor is its high cost, since it essentially consists of two sensors.

[image: image]
Figure 2.45 A frame transfer CCD sensor. Light is converted into charge in the light-sensitive sensor, quickly transferred to the shielded storage array, and read out row by row from there.

Because of the above characteristics (high sensitivity and smearing), full frame and frame transfer sensors are most often used in scientific applications for which the exposure time is long compared to the readout time, e.g., in astronomical applications.



2.3.1.4 Interline Transfer Sensors

The final type of CCD sensor, shown in Figure 2.46, is the interline transfer sensor. In addition to the photodetectors, which in most cases are photodiodes, there are vertical transfer registers that are covered by an opaque metal shield. After the image has been exposed, the accumulated charges are shifted through transfer gates (not shown in Figure 2.46) to the vertical transfer registers. This can typically be done in less than 1 µs (Holst and Lomheim, 2011). To create the video signal, the charges are then shifted through the vertical transfer registers into the serial readout registers, and read out from there.

Because of the quick transfer from the photodiodes into the shielded vertical transfer registers, there is no smear in the image, and consequently no mechanical shutter or strobe light needs to be used. The biggest disadvantage of the interline transfer sensor is that the transfer registers take up space on the sensor, causing fill factors that may be as low as 20%. Consequently, aliasing effects may increase. To increase the fill factor, microlenses are typically located in front of the sensor to focus the light onto the light-sensitive photodiodes, as shown in Figure 2.47. Nevertheless, fill factors of 100% typically cannot be achieved.

[image: image]
Figure 2.46 An interline transfer CCD sensor. Light is converted into charge in the light-sensitive sensor, quickly transferred to the shielded vertical transfer registers, transferred row by row to the serial readout registers, and read out from there.

[image: image]
Figure 2.47 Microlenses are typically used in interline transfer sensors to increase the fill factor by focusing the light onto the light-sensitive photodiodes.

One problem with CCD sensors is an effect called blooming: when the charge capacity of a photodetector is exhausted, the charge spills over into the adjacent photodetectors. Thus, bright areas in the image are significantly enlarged. To prevent this problem, anti-bloom drains can be built into the sensor (Holst and Lomheim, 2011). The drains form an electrostatic potential barrier that causes extraneous charge from the photodetectors to flow into the drain. The drains can be located either next to the pixels on the surface of the sensor (lateral overflow drains), e.g., on the opposite side of the vertical transport registers, or can be buried in the substrate of the device (vertical overflow drains). Figure 2.46 displays a vertical overflow drain, which must be imagined to lie underneath the transfer registers.

An interesting side-effect of building anti-bloom drains into the sensor is that they can be used to create an electronic shutter for the camera. By setting the drain potential to zero, the photodetectors discharge. Afterwards, the potential can be set to a high value during the exposure time to accumulate the charge until it is read out. The anti-bloom drains also facilitate the construction of sensors that can immediately acquire images after receiving a trigger signal. Here, the entire sensor is reset immediately after receiving the trigger signal. Then, the image is exposed and read out as usual. This operation mode is called asynchronous reset.

[image: image]
Figure 2.48 Comparison of using (a) an interlaced camera and (b) a progressive scan camera for acquiring an image of a moving object. Note that progressive scan is essential for capturing correct images of moving objects.










2.3.1.5 Readout Modes

We conclude this section by describing a readout mode that is often implemented in analog CCD cameras because the image is transmitted with one of the analog video standards described in Section 2.4.1. The analog video standards require an image to be transmitted as two fields, one containing the odd lines of the image and one containing the even lines. This readout mode is called interlaced scan. Because of the readout architecture of CCD sensors, this means that the image will have to be exposed twice. After the first exposure, the odd rows are shifted into the transfer registers, while after the second exposure, the even rows are shifted and read out. If the object moves between the two exposures, its image will appear serrated, as shown in Figure 2.48(a).

The mode of reading out the rows of the CCD sensor sequentially is called progressive scan. From Figure 2.48(b), it is clear that this mode is essential for capturing correct images of moving objects.




2.3.2 CMOS Sensors


2.3.2.1 Sensor Architecture

CMOS sensors, shown in Figure 2.49, typically use photodiodes for photodetection (El Gamal and Eltoukhy, 2005; Yadid-Pecht and Etienne-Cummings, 2004; Holst and Lomheim, 2011). In contrast to CCD sensors, the charge of the photodiodes is not transported sequentially to a readout register. Instead, each row of the CMOS sensor can be selected directly for readout through the row and column select circuits. In this respect, a CMOS sensor acts like a random access memory. Furthermore, as shown in Figure 2.49, each pixel has its own amplifier. Hence, this type of sensor is also called an active pixel sensor (APS). CMOS sensors typically produce a digital video signal. Therefore, the pixels of each image row are converted in parallel to DNs through a set of ADCs.

[image: image]
Figure 2.49 A CMOS sensor. Light is converted into charge in the photodiodes. Each row of the CMOS sensor can be selected directly for readout through the row and column select circuits.

Since the amplifier and row and column select circuits typically use a significant amount of the area of each pixel, CMOS sensors, like interline transfer CCD sensors, have low fill factors and therefore normally use microlenses to increase the fill factor and to reduce aliasing (see Figure 2.47).

The random access behavior of CMOS sensors facilitates an easy readout of rectangular areas of interest (AOIs) from the image. This gives them a significant advantage over CCD sensors in some applications since it enables much higher frame rates for small AOIs. While AOIs can also be implemented for CCDs, their readout architecture requires that all rows above and below the AOI are transferred and then discarded. Since discarding rows is faster than reading them out, this results in a speed increase. However, typically no speed increase can be obtained by making the AOI smaller horizontally since the charges must be transferred through the charge conversion unit. Another big advantage is the parallel analog-to-digital conversion that is possible in CMOS sensors. This can give CMOS sensors a speed advantage even if AOIs are not used. It is even possible to integrate the ADCs into each pixel to further increase the readout speed (El Gamal and Eltoukhy, 2005). Such sensors are also called digital pixel sensors (DPSs).

Although Figure 2.49 shows an area sensor, the same principle can also be applied to construct a line sensor. Here, the main advantage of using a CMOS sensor is also the readout speed.



2.3.2.2 Rolling and Global Shutters

Since each row in a CMOS sensor can be read out individually, the simplest strategy to acquire an image is to expose each line individually and to read it out. Of course, exposure and readout can be overlapped for consecutive image lines. This is called a rolling shutter. Obviously, this readout strategy creates a significant time lag between the acquisition of the first and last image lines. As shown in Figure 2.50(a), this causes sizeable distortion when moving objects are acquired. For these kinds of applications, sensors with a global shutter must be used (Wäny and Israel, 2003; Holst and Lomheim, 2011). This requires a separate storage area for each pixel, and thus further lowers the fill factor. As shown in Figure 2.50(b), the global shutter results in a correct image for moving objects.

[image: image]
Figure 2.50 Comparison of using (a) a rolling shutter and (b) a global shutter for acquiring an image of a moving object. Note that the rolling shutter significantly distorts the object.

Because of their architecture, it is easy to support asynchronous reset for triggered acquisition in CMOS cameras.



2.3.3 Color Cameras


2.3.3.1 Spectral Response of Monochrome Cameras

CCD and CMOS sensors are sensitive to light with wavelengths ranging from near UV (200 nm) through the visible range (380–780 nm) into the near IR (1100 nm). A sensor responds to the incoming light with its spectral response function. The gray value produced by the sensor is obtained by multiplying the spectral distribution of the incoming light by the spectral response of the sensor and then integrating over the range of wavelengths for which the sensor is sensitive.

Figure 2.51 displays the spectral responses of typical CCD and CMOS sensors and the human visual system (HVS) under photopic conditions (daylight viewing). Note that the spectral response of each sensor is much wider than that of the HVS. This can be used advantageously in some applications by illuminating objects with IR strobe lights and using an IR pass filter that suppresses the visible spectrum and only lets IR radiation pass to the sensor. Since the HVS does not perceive the IR radiation, it may be possible to use the strobe without a screen. On the other hand, despite the fact that the sensors are also sensitive to UV radiation, often no special filter is required because lenses are usually made of glass, which blocks UV radiation.

[image: image]
Figure 2.51 Spectral responses of typical CCD and CMOS sensors (S1 and S2) and the HVS under photopic conditions (daylight viewing) as a function of the wavelength in nanometers. The responses have been normalized so that the maximum response is 1.



2.3.3.2 Single-Chip Cameras

Since CCD and CMOS sensors respond to all frequencies in the visible spectrum, they are unable to produce color images. To construct a color camera, a color filter array (CFA) can be placed in front of the sensor, which allows only light of a specific range of wavelengths to pass to each photodetector. Since this kind of camera only uses one chip to obtain the color information, it is called a single-chip camera.

Figure 2.52 displays the most commonly used Bayer CFA (Bayer, 1976). Here, the CFA consists of three kinds of filters, one for each primary color that the HVS can perceive (red, green, and blue). Note that green is sampled at twice the frequency of the other colors because the HVS is most sensitive to colors in the green range of the visible spectrum. Also note that the colors are subsampled by factors of 2 (green) and 4 (red and blue). Since this can lead to severe aliasing problems, often an optical anti-aliasing filter is placed before the sensor (Holst and Lomheim, 2011). Furthermore, to obtain each color with full resolution, the missing samples must be reconstructed through a process called demosaicking. The simplest method to do this is to use methods such as bilinear or bicubic interpolation. This can, however, cause significant color artifacts, such as colored fringes. Methods for demosaicking that cause fewer color artifacts have been proposed, for example, by Alleysson et al. (2005) and Hirakawa and Parks (2005).

[image: image]
Figure 2.52 In a single-chip color camera, a CFA is placed in front of the sensor, which allows only light of a specific range of wavelengths to pass to each photodetector. Here, the Bayer CFA is shown.

[image: image]
Figure 2.53 In a three-chip color camera, the light beam coming from the lens is split into three beams by a beam splitter or prism and sent to three sensors that have different color filters.



2.3.3.3 Three-Chip Cameras

A second method to construct a color camera is shown in Figure 2.53. Here, the light beam coming from the lens is split into three beams by a beam splitter or prism and sent to three sensors that have different color filters placed in front of them (Holst and Lomheim, 2011). Hence, these cameras are called three-chip cameras. This construction obviously prevents the aliasing problems of single-chip cameras. However, since three sensors must be used and carefully aligned, three-chip cameras are much more expensive than single-chip cameras.



2.3.3.4 Spectral Response of Color Cameras

Figure 2.54 shows the spectral response of a typical color sensor. Note that the sensor is still sensitive to near IR radiation. Since this may cause unexpected colors in the image, an IR cut filter should be used.




2.3.4 Sensor Sizes

CCD and CMOS sensors are manufactured in various sizes, typically specified in inches. The most common sensor sizes and their typical widths, heights, and diagonals are shown in Table 2.3. Note that the size classification is a remnant of the days when video camera tubes were used in television. The size defined the outer diameter of the video tube. The usable area of the image plane of the tubes was approximately two-thirds of their diameter. Consequently, the diagonals of the sensors in Table 2.3 are roughly two-thirds of the respective sensor sizes. An easier rule to remember is that the width of the sensors is approximately half the sensor size.

[image: image]
Figure 2.54 Spectral responses of a typical color sensor as a function of the wavelength in nanometers. Note the sensitivity in the near IR range. The responses have been normalized so that the maximum response is 1.


Table 2.3 Typical sensor sizes and the corresponding pixel pitches for an image size of 640 × 480 pixels.

[image: image]
It is imperative to use a lens that has been designed for a sensor size that is at least as large as the sensor that is actually used. If this is not done, the outer parts of the sensor will receive no light. For example, a lens designed for a 1/2 inch chip cannot be used with a 2/3 inch chip.

Table 2.3 also displays typical pixel pitches for an image size of 640 × 480 pixels. If the sensor has a higher resolution, the pixel pitches decrease by the corresponding factor, e.g., by a factor of 2 for an image size of 1280 × 960.

Sensors with a very high resolution fall outside the above classification scheme because they are often larger than a 1 inch sensor (otherwise, the pixels would become too small). For these sensors, a classification scheme from analog photography is sometimes used, e.g., “35 mm” for sensors that have a size of around 36 × 24 mm (the traditional analog camera format) or “medium format” for sensors that are even larger (in analogy to traditional analog medium format cameras). For example, “645” is sometimes used for sensors that have a size of around 6 × 4.5 cm (“645” is one of several film formats for medium format cameras).

CCD and CMOS area sensors are manufactured in different resolutions, from 640 × 480 to 8856 × 5280. The resolution is often specified in megapixels. For line sensors, the resolution ranges from 2048 pixels to 16 384 pixels. As a general rule, the maximum frame and line rates decrease as the sensors get larger.



2.3.5 Camera Performance

When selecting a camera for a particular application, it is essential that we are able to compare the performance characteristics of different cameras. For machine vision applications, the most interesting questions are related to noise and spatial nonuniformities of the camera. Therefore, in this section we take a closer look at these two characteristics. Our presentation follows the EMVA standard 1288 (EMVA, 2016a). There is also an ISO standard ISO 15739:2013 for noise measurement. However, it is tailored to consumer cameras, which generally have nonlinear gray value responses. Therefore, we will not consider this standard here.


2.3.5.1 Noise

We begin by looking at how a gray value in an image is produced. During the exposure time, a number μp of photons fall on the pixel area (including the light-insensitive area) and create a number μe of electrons and holes (for CCD sensors) or discharge the reset charge, i.e., annihilate μe electron–hole pairs (for CMOS sensors). The ratio of electrons created or annihilated per photon is called the total quantum efficiency [image: img]. The total quantum efficiency depends on the wavelength λ of the radiation: [image: img]. To simplify the discussion, we will ignore this dependency in this section. The electron–hole pairs form a charge that is converted into a voltage, which is amplified and digitized by an ADC, resulting in the digital gray value y that is related to the number of electrons by the overall system gain K.

Note that this process assumes that the camera produces digital data directly. For an analog camera, we would consider the system consisting of camera and frame grabber.

Different sources of noise modify the gray value that is obtained. First of all, the photons arrive at the sensor not at regular time intervals, but according to a stochastic process that can be modeled by the Poisson distribution. This random fluctuation of the number of photons is called photon noise. Photon noise is characterized by the variance [image: image] of the number of photons. For the Poisson distribution, [image: image] is identical to the mean number μp of photons arriving at the pixel. Note that this means that light has an inherent signal-to-noise ratio (SNR) [image: image]. Consequently, using more light typically results in a better image quality.

During the exposure, each photon creates an electron with a certain probability [image: img] that depends on the optical fill factor of the sensor (including the increase in fill factor caused by the microlenses), the material of the sensor (its quantum efficiency), and the wavelength of the light. The product of the optical fill factor and the quantum efficiency of the sensor material is called the total quantum efficiency. Hence, the number of electrons μe = ημp is also Poisson distributed with μe = ημp and [image: image]

During the readout of the charge from the pixel, different effects in the electronics create random fluctuations of the resulting voltages (Holst and Lomheim, 2011). Reset noise occurs because a pixel’s charge may not be completely reset during the readout. It can be eliminated through correlated double sampling, i.e., subtracting the voltage before the readout from the voltage after the readout. Dark current noise occurs because thermal excitation also causes electron–hole pairs to be created. This is only a problem for very long exposure times, and can usually be ignored in machine vision applications. If it is an issue, the camera must be cooled. Furthermore, the amplifier creates amplifier noise (Holst and Lomheim, 2011). All these noise sources are typically combined into a single noise value called the noise floor or dark noise, because it is present even if the sensor receives no light. Dark noise can be modeled by a Gaussian distribution with mean μd and variance [image: image] Finally, the voltage is converted to a DN by the ADC. This introduces quantization noise, which is uniformly distributed with mean μq = 0 and variance [image: image].

The process of converting the charge into a DN can be modeled by a conversion factor K called the overall system gain. Its inverse 1/K can be interpreted as the number of electrons required to produce unit change in the gray value. With this, the mean gray value is given by

(2.22) [image: image]

If the noise sources are assumed to be stochastically independent, we also have

(2.23) [image: image]

Note that the above noise sources constitute temporal noise because they can be averaged out over time (for temporal averaging, see Section 3.2.3).



2.3.5.2 Signal-to-Noise Ratio

A very important characteristic that can be derived from the above quantities is the SNR at a particular illumination level μp:

(2.24) [image: image]

For low light levels [image: image] we have

(2.25) [image: image]

while for high light levels [image: image], we have

(2.26) [image: image]

This implies that the slope of all SNR curves changes from a linear increase at low light levels to a square root increase at high light levels. To characterize the performance of a real sensor, its SNR curve can be compared to that of an ideal sensor with perfect quantum efficiency (η = 1), no dark noise (σd = 0), and no quantization noise (σq/K = 0). Consquently, the SNR of an ideal sensor is given by [image: image].

The SNR is often specified in decibels (dB): SNRdB = 20 log SNR, where log x is the base-10 logarithm. It also can be specified as the number of significant bits: SNRbit = lg SNR, where lg x = log2 x is the base-2 logarithm.



2.3.5.3 Dynamic Range

Another interesting performance metric is the dynamic range (DR) of the sensor. In simplified terms, it compares the output of the sensor at an illumination close to the sensor’s capacity to its output at an illumination at which the image content can just be discriminated from the noise. The saturation illumination μp.sat is defined not by the maximum gray level the camera supports, but by a gray level such that the noise in Eq. (2.23) can still be represented without clipping (EMVA, 2016a). From it, the saturation capacity can be computed: μe.sat = ημp.sat. Furthermore, the illumination μp.min for which the SNR (2.24) is 1 is usually taken as the smallest detectable amount of light and is called the absolute sensitivity threshold. It can be approximated by (see EMVA (2016a) for details of the derivation of this formula):

(2.27) [image: image]

From the above quantities, we can derive the DR of the camera (see EMVA, 2016a):

(2.28) [image: image]

Like the SNR, the DR can be specified in dB or in bits.



2.3.5.4 Nonuniformities

The noise sources we have examined so far are assumed to be identical for each pixel. Manufacturing tolerances, however, cause two other effects that produce gray value changes. In contrast to temporal noise, these gray value fluctuations cannot be averaged out over time. Since they look like noise, they are sometimes called spatial noise or pattern noise (Holst and Lomheim, 2011). However, they are actually systematic errors. Consequently, we will call them nonuniformities (EMVA, 2016a).

One effect is that the dark signal may not be identical for each pixel. This is called dark signal nonuniformity (DSNU). The second effect is that the responsivity of the pixels to light may be different for each pixel. This is called photoresponse nonuniformity (PRNU). CMOS sensors often exhibit significantly larger nonuniformities than CCD sensors because each pixel has its own amplifier, which may have a different gain and offset.

To characterize the nonuniformities, two illumination levels are used: one image ydark with no illumination, i.e., with the sensor completely dark, and one image y50 corresponding to 50% of the sensor saturation level, where the image must be illuminated evenly across the entire image. From these images, the mean gray values across the entire image are computed (see Eq. (3.67) in Section 3.5.2.1):

(2.29) [image: image]

(2.30) [image: image]

where w and h denote the width and height of the image, respectively. Then, the spatial variances of the two images are computed (see Eq. (3.68)):

(2.31) [image: image]

(2.32) [image: image]

With these quantities, the DSNU and PRNU are defined in EMVA (2016a) as follows:

(2.33) [image: image]

(2.34) [image: image]

Note that the DSNU is specified in units of the number of electrons. It can be converted to gray levels by multiplying it by the overall system gain K. In contrast, the PRNU is specified as a percentage relative to the mean gray level.

In addition to these performance characteristics, the EMVA standard 1288 describes two other criteria by which the nonuniformities can be characterized. One measure characterizes periodic variations of the nonuniformities, while the other characterizes defect pixels. The interested reader is referred to EMVA (2016a) for details.

The EMVA standard 1288 requires that the sensitivity, linearity, and nonuniformity parameters of the camera are determined using a monochromatic light source. Furthermore, if the quantum efficiency η(λ) is used to characterize the camera (which is not mandated by the standard), it must be measured over the entire range of wavelengths to which the sensor is sensitive. Detailed instructions about how the above perfomance parameters are to be measured are specified in EMVA (2016a).






2.4 Camera–Computer Interfaces

As described in the previous section, the camera acquires an image and produces either an analog or a digital video signal. In this section, we will take a closer look at how the image is transmitted to the computer and how it is reconstructed as a matrix of gray or color values. We start by examining how the image can be transmitted via an analog signal. This requires a special interface card to be present on the computer, which is conventionally called a frame grabber. We then describe the different means by which the image can be transmitted in digital form—digital video signals that require a frame grabber or some kind of standard interface, e.g., IEEE 1394, USB, or Gigabit Ethernet. Finally, we discuss the different acquisition modes with which images are typically acquired.


Table 2.4 Analog video standards.


	Standard	Type	Frame rate (frame s−1)	Lines	Line period μs	Line rate (line s−1)	Pixel period (ns)	Image size (pixels)

	EIA-170	B/W	30.00	525	63.49	15 750	82.2	640 × 480

	CCIR	B/W	25.00	625	64.00	15 625	67.7	768 × 576

	NTSC	Color	29.97	525	63.56	15 734	82.3	640 × 480

	PAL	Color	25.00	625	64.00	15 625	67.7	768 × 576





2.4.1 Analog Video Signals

Analog video standards have been defined since the early 1940s. Because of the long experience with these standards, they were the dominant technology in the machine vision industry for a long time. However, as we will discuss in this section, analog video transmission can cause problems that deteriorate the image quality, which can lower the measurement accuracy or precision. Since digital video transmission prevents these problems, the use of analog video transmission has declined in recent years to the point where it is almost exclusively used to continue to operate existing machine vision systems. Newly developed machine vision systems typically use digital video transmission.


2.4.1.1 Analog Video Standards

While several analog video standards for television are defined in ITU-R BT.470-6 (1998), only four of them are important for machine vision. Table 2.4 displays their characteristics. EIA-170 and CCIR are black-and-white video standards, while NTSC and PAL are color video standards. The primary difference between them is that EIA-170 and NTSC have a frame rate of 30 Hz with 525 lines per image, while CCIR and PAL have a frame rate of 25 Hz with 625 lines per image. In all four standards, it takes roughly the same time to transmit each line. Of the 525 and 625 lines, nominally 40 and 50 lines, respectively, are used for synchronization, e.g., to indicate the start of a new frame. Furthermore, 10.9 µs (EIA-170 and NTSC) and 12 µs (CCIR and PAL) of each line are also used for synchronization. This usually results in an image size of 640 × 480 (EIA-170 and NTSC) and 768 × 576 (CCIR and PAL). From these characteristics, it can be seen that a pixel must be sampled roughly every 82 ns or 68 ns, respectively.

Figure 2.55 displays an overview of the EIA-170 video signal. The CCIR signal is very similar. We will describe the differences below.

As already mentioned in Section 2.3.1.5, an image (a frame) is transmitted interlaced as two fields. The first field consists of the even-numbered lines and the second field of the odd-numbered lines for EIA-170 (for CCIR, the order is odd lines, then even lines). Each line consists of a horizontal blanking interval that contains the horizontal synchronization information and the active line period that contains the actual image signal of the line. The horizontal blanking interval consists of a front porch, where the signal is set to the blanking level (0%), a horizontal synchronization pulse, where the signal is set to the synchronizing level (−40% for EIA-170, −43% for CCIR), and a back porch, where again the signal is set to the blanking level. For CCIR, the length of the front and back porches is 1.5 µs and 5.8 µs, respectively. The purpose of the front porch was to allow voltage levels to stabilize in older television sets, preventing interference between lines. The purpose of the horizontal synchronization pulse is to indicate the start of the valid signal of each line. The purpose of the back porch was to allow the slow electronics in early television sets time to respond to the synchronization pulse and to prepare for the active line period. During the active line period, the signal varies between the white and black levels. For CCIR, the black level is 0%, while for EIA-170 it is 7.5%.

[image: image]
Figure 2.55 The EIA-170 video signal.

Each field starts with a series of vertical synchronization pulses. In Figure 2.55, for simplicity, they are drawn as single pulses. In reality, they consist of a series of three different kinds of pulses, each of which spans multiple lines during the vertical blanking interval. The vertical blanking interval lasts for 20 lines in EIA-170 and for 25 lines in CCIR.

The vertical blanking interval was originally needed to allow the beam to return from bottom to top in cathode-ray-tube television sets because of the inductive inertia of the magnetic coils that deflect the electron beam vertically. The magnetic field, and hence the position of the spot on the screen, cannot change instantly. Likewise, the horizontal blanking interval allowed the beam to return from right to left.

Color can be transmitted in three different ways. First of all, the color information (called chrominance) can be added to the standard video signal, which carries the luminance (brightness) information, using quadrature amplitude modulation. Chrominance is encoded using two signals that are 90° out of phase, known as I (in-phase) and Q (quadrature) signals. To enable the receiver to demodulate the chrominance signals, the back porch contains a reference signal, known as the color burst. This encoding is called composite video. It has the advantage that a color signal can be decoded by a black-and-white receiver simply by ignoring the chrominance signal. Furthermore, the signal can be transmitted over a cable with a single wire. A disadvantage of this encoding is that the luminance signal must be low-pass filtered to prevent crosstalk between high-frequency luminance information and the color information. In S-Video (“separate video”), also called Y/C, the two signals are transmitted separately in two wires. Therefore, low-pass filtering is unnecessary, and the image quality is higher. Finally, color information can also be transmitted directly as an RGB signal in three wires. This results in an even better image quality. In RGB video, the synchronization signals are transmitted either in the green channel or through a separate wire.

While interlaced video can fool the human eye into perceiving a flicker-free image (which is the reason why it is used in television), we have already seen in Section 2.3.1.5 that it causes severe artifacts for moving objects since the image must be exposed twice. For machine vision, images should be acquired in progressive scan mode. The above video standards can be extended easily to handle this transmission mode. Furthermore, the video standards can also be extended for image sizes larger than those specified in the standards.



2.4.1.2 Analog Frame Grabbers

To reconstruct the image in the computer from the video signal, a frame grabber card is required. A frame grabber consists of components that separate the synchronization signals from the video signal in order to create a pixel clock signal (see below) that is used to control an ADC that samples the video signal. Furthermore, analog frame grabbers typically also contain an amplifier for the video signal. It is often possible to multiplex video signals from different cameras, i.e., to switch the acquisition between different cameras, if the frame grabber has multiple connectors but only a single ADC. If the frame grabber has as many ADCs as connectors, it is also possible to acquire images from several cameras simultaneously. This is interesting, for example, for stereo reconstruction or for applications where an object must be inspected from multiple sides at the same time. After sampling the video signal, the frame grabber transfers the image to the computer’s main memory through direct memory access (DMA), i.e., without using up valuable processing cycles of the CPU.

During the image acquisition, the frame grabber must reconstruct the pixel clock with which the camera has stored its pixels in the video signal, since this is not explicitly encoded in the video signal. This is typically performed by phase-locked loop (PLL) circuitry in the frame grabber.

Reconstructing the pixel clock can create two problems. First of all, the frequencies of the pixel clock in the camera and the frame grabber may not match exactly. If this is the case, the pixels will be sampled at different rates. Consequently, the aspect ratio of the pixels will change. For example, square pixels on the camera may no longer be square in the image. Although this is not desirable, it can be corrected by camera calibration (see Section 3.9).

[image: image]
Figure 2.56 Line jitter occurs if the frame grabber’s pixel clock is not perfectly aligned with the active line period. The sampling of each line is offset by a random or systematic time Δt.

The second problem is that the PLL may not be able to reconstruct the start of the active line period with perfect accuracy. As shown in Figure 2.56, this causes the sampling of each line to be offset by a time Δt. This effect is called line jitter or pixel jitter. Depending on the behavior of the PLL, the offset may be random or systematic. From Table 2.4, we can see that Δt = ±7 ns will already cause an error of approximately ±0.1 pixels. In areas of constant or slowly changing gray values, this usually causes no problems. However, for pixels that contain edges, the gray value may change by as much as 10% of the amplitude of the edge. If the line jitter is truly random, i.e., averages out for each line across multiple images of the same scene, the precision with which the edges can be extracted will decrease while the accuracy does not change, as explained in Section 3.7.4. If the line jitter is systematic, i.e., does not average out for each line across multiple images of the same scene, the accuracy of the edge positions will decrease, while the precision is unchanged.

Line jitter can be detected easily by acquiring multiple images of the same object, computing the temporal average of the images (see Section 3.2.3.1), and subtracting the temporal average image from each image. Figures 2.57(a) and (c) display two images from a sequence of 20 images that show horizontal and vertical edges. Figures 2.57(b) and (d) show the result of subtracting the temporal average image of the 20 images from the images in Figures 2.57(a) and (c). Note that, as predicted above, there are substantial gray value differences at the vertical edges, while there are no gray value differences in the homogeneous areas and at the horizontal edges. This clearly shows that the lines are offset by line jitter. At first glance, the effect of line jitter is increased noise at the vertical edges. However, if you look closely you will see that the gray value differences look very much like a sine wave in the vertical direction. Although this is a systematic error in this particular image, it averages out over multiple images (the sine wave will have a different phase). Hence, for this frame grabber the precision of the edges will decrease significantly.
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Figure 2.57 Images of (a) a vertical edge and (c) vertical and horizontal edges. (b) (d) Gray value fluctuations of (a) and (c) caused by line jitter. The gray value fluctuations have been scaled by a factor of 5 for better visibility. Note that the fluctuations only appear for the vertical edges, indicating that in reality each line is offset by line jitter.

To prevent line jitter and non-square pixels, the pixel clock of the camera can be fed into the frame grabber (if the camera outputs its pixel clock and the frame grabber can use this signal). However, in these cases it is typically better to transmit the video signal digitally.




2.4.2 Digital Video Signals

In contrast to analog video signals, in which the synchronization information is embedded into the signal, digital video signals make this information explicit. For Camera Link (see Section 2.4.2.1), which is based on a parallel transmission of the digital video data, the frame valid signal, which replaces the vertical synchronization signal, is asserted for the duration of a frame (see Figure 2.58). Similarly, the line valid signal, which replaces the horizontal synchronization signal, is asserted for the duration of a line. The pixel clock is transmitted explicitly in the packets. All other digital video standards that we will discuss in this section are packet-based and explicitly encode the beginning and end of a transmitted frame. Furthermore, the pixel data is transmitted explicitly. Therefore, digital video transmission prevents all the problems inherent in analog video that were described at the end of the previous section. For digital cameras, the aspect ratio of the pixels of the image is identical to the aspect ratio of the pixels on the camera. Furthermore, there is no line jitter. To create the digital video signal, the camera performs an analog-to-digital conversion of the voltage of the sensor and transmits the resulting DN to the computer.

[image: image]
Figure 2.58 A typical digital video signal. In contrast to analog video, the synchronization information is made explicit through the frame valid, line valid, and pixel clock signals.

Apart from better image quality, digital cameras offer many other advantages. For example, digital video signals offer much higher resolutions and frame rates than analog video signals. Furthermore, analog cameras typically are controlled by setting DIP switches in the camera and configuring the frame grabber appropriately. In contrast, digital cameras can be controlled directly in software. Finally, digital cameras are typically much smaller and require less power than analog cameras.



2.4.2.1 Camera Link

Until 2000, the machine vision industry lacked a standard even for the physical connector between the camera and the frame grabber, not to mention the lack of a standard digital video format. Camera manufacturers used a plethora of different connectors, making cable production for frame grabber manufacturers very burdensome and the cables extremely expensive. In October 2000, the connector problem was addressed through the introduction of the Camera Link specification, which defines a 26-pin MDR connector as the standard connector. Later versions of the standard also define smaller 26-pin SDR and HDR connectors as well as an even smaller 14-pin HDR connector. The current version of the Camera Link specification is 2.0 (AIA, 2012b).

The Camera Link specification defines not only the connector, but also the physical means by which digital video is transmitted. The basic technology is low-voltage differential signaling (LVDS). LVDS transmits two different voltages, which are compared at the receiver. This difference in voltage between the two wires is used to encode the information. Hence, two wires are required to transmit a single signal. One advantage of LVDS is that the transmission is very robust to disturbances since they affect both wires equally and consequently are eliminated by the calculation of the difference at the receiver. Another advantage of LVDS is that very high transmission speeds can be achieved.

Camera Link is based on Channel Link, a solution that was developed for transmitting video signals to flat panel displays and then extended for general-purpose data transmission. Camera Link consists of a driver and receiver pair. The driver is a chip or an FPGA on the camera that accepts 28 single-ended data signals and a single-ended clock signal and serializes the data 7:1, i.e., the 28 data signals are transmitted serially over four wire pairs with LVDS. The clock is transmitted over a fifth wire pair. The receiver is a similar chip or an FPGA on the frame grabber that accepts the four data signals and the clock signal, and reconstructs the original 28 data signals from them. Camera Link specifies that four of the 28 data signals are used for so-called enable signals (frame valid, line valid, and data valid, as well as a signal reserved for future use). Hence, 24 data bits can be transmitted with a single chip. The chips can run at up to 85 MHz, resulting in a maximum data rate of 255 MB s−1 (megabytes per second).

Camera Link also specifies that four additional LVDS pairs are reserved for general-purpose camera control signals, e.g., triggering. How these signals are used is up to the camera manufacturer. Finally, two LVDS pairs are used for serial communication to and from the camera, e.g., to configure the camera. Camera Link also specifies a serial communications application programming interface (API) that describes how to transmit control data to and from the camera, but leaves the protocol for configuring the camera up to the manufacturer. Optionally, i.e., if the frame grabber manufacturer supports it, GenICam (discussed in Section 2.4.3.1) can be used for this purpose through the GenICam CLProtocol (EMVA, 2011). Using GenICam has the advantage that a Camera Link camera can be configured in a generic manner that is independent of the actual serial protocol used by the camera manufacturer.

The above configuration is called the base configuration. Camera Link also defines one additional configuration for a lower data rate and three additional configurations for even higher data rates. The lite configuration uses the smaller 14-pin connector and supports data rates of up to 100 MB s−1. The configurations with higher data rates require two connectors. If a second driver–receiver chip pair is added, 24 additional data bits and four enable signals can be transmitted, resulting in a maximum data rate of 510 MB s−1. This is called the medium configuration. If a third driver–receiver chip pair is added, 16 additional data bits and four enable signals can be transmitted, resulting in a maximum data rate of 680 MB s−1. This is called the full configuration. Finally, by using all available lines and by using some of the lines that are normally used to carry enable signals for data transmission, a configuration that is able to transmit 80 bits of data simultaneously is defined, leading to a data rate of 850 MB s−1. This is called the 80 bit configuration.

The Camera Link standard optionally allows the camera to be powered over the camera link cable. The maximum cable length is 10 m for the lite, base, and medium configurations, 5 m for the full configuration, and 4 m for the 80 bit configuration.



2.4.2.2 Camera Link HS

The Camera Link HS specification was released in 2012 (AIA, 2012a) to support data rates that are even higher than those supported by the Camera Link specification (see Section 2.4.2.1). Despite the similar name, Camera Link HS uses technology that is completely different from that used in Camera Link. Whereas Camera Link uses a parallel transmission format, Camera Link HS uses a packet-based protocol that is based on technology used in network or data storage equipment. Like Camera Link, Camera Link HS requires a frame grabber.

The Camera Link HS specification defines three types of cables (connectors) that can be used to attach cameras to frame grabbers. One type of cable (C2) is a copper cable, while two other types of cable (F1 and F2) are fiber-optic cables. The C2 cable, which can be up to to 15 m long, is based on the InfiniBand networking technology and uses an SFF-8470 connector. It has up to eight data lanes, one of which is used for camera control. Each data lane supports a data rate of 300 MB s−1, leading to a maximum data rate of 2100 MB s−1. The fiber-optic cables F1 and F2 are based on the SFP and SFP+ network transceiver technologies, respectively. Their maximum length is at least 300 m. The maximum data rate of F1 cables is 300 MB s−1, that of F2 cables is 1200 MB s−1. To increase the data rates further, Camera Link HS allows up to eight cables per camera, leading to maximum data rates of 16 800 MB s−1 (C2), 2400 MB s−1 (F1), and 9600 MB s−1 (F2). The data can be transmitted to more than one frame grabber on different computers, which facilitates parallel processing of image data. Neither cable type supports powering the camera over the cable.

To control the camera, each cable type provides a dedicated uplink channel from the frame grabber to the camera at 300 MB s−1 (C2, F1) or 1200 MB s−1 (F2). The downlink channel from the camera to the frame grabber is shared with the image data.

At the physical and data link layers, Camera Link HS defines two different protocols: the so-called M- and X-protocols. The M-protocol is used with C2 and F1 connectors, the X-protocol with F2 connectors. Both protocols provide error correction (either directly in the X-protocol or through error detection and a resend mechanism in the M-protocol). In addition to the connector type and the protocol, a further option is the number of data lanes per cable (for example, the C2 cable supports between 1 and 7 data lanes). Furthermore, the number of connectors can also be chosen. Cameras and frame grabbers with different connectors or different protocols are incompatible. Using a frame grabber with fewer connectors or fewer lanes per connector than the camera is compatible, but will prevent the peak data rate from being achieved. The user who wishes to connect a camera to a frame grabber must ensure that the two devices are compatible. For this purpose, Camera Link HS defines a naming convention that should be used to identify a product’s capabilities. For example, “C2,7M1” designates a camera or frame grabber with a C2 connector that uses the M-protocol with up to 7 data lanes and a single command channel. In contrast, “Quad-F1,1M1” designates a device with four F1 connectors that use the M-protocol with one lane each and a single command channel each.

At the protocol layer, Camera Link HS defines a message-based protocol that uses several different message types with different priorities. Higher priority messages can interrupt lower priority messages to ensure low-latency performance. We will discuss the relevant message types in the order of their priority, highest priority first. Pulse messages are used to trigger and control the acquisition of images. Acknowledge messages are used, for example, to request a resending of image data if a transmission error has been detected. General-purpose input/output (GPIO) messages can be used to control I/O channels on the camera or frame grabber, e.g., to control strobe lights. Camera Link HS supports 16 bidirectional GPIO signals. Video messages are used to transmit video data from the camera to the frame grabber. The control of the camera is through register access (memory reads and writes) using command messages. Camera Link HS uses the GenICam and GenICam GenCP standards for this purpose (see Section 2.4.3.1). This means that the camera must provide an extensible markup language (XML) file that describes the access to the registers. The names of the registers must follow the GenICam standard features naming convention (SFNC) and the XML file must be compatible with GenICam GenApi.

The Camera Link HS specification also defines the image data that can be transmitted. The pixel data includes monochrome, raw, Bayer, BGR (but not RGB), and individual BGR channels. BGR images can be transmitted interleaved or planar (i.e., as separate single-channel images). The supported bit depths for each format are 8, 10, 12, 14, and 16 bits per pixel (channel). Bit depths that are not multiples of 8 are transmitted in a packed fashion to maximize the data throughput. Camera Link HS supports the transmission of rectangular regions of interest of an image.



2.4.2.3 CoaXPress

CoaXPress (often abbreviated as CXP) is another approach to achieve higher data rates than those possible with Camera Link. The first version of the standard was released in 2010. The current version is 1.1.1 (JIIA CXP-001-2015). One of the design goals of CoaXPress was to use standard coaxial (coax) cables, which are also used for analog video transmission, for high-speed digital video transmission. This means that existing cabling can be reused if an analog machine vision system is upgraded to digital video. If a new machine vision system is being built, one advantage is that coax cables are very cheap. CoaXPress specifies that the widely used BNC connectors and the smaller DIN 1.0/2.3 connectors can be used. Multiple DIN connectors can also be combined into a multiway connector. Like Camera Link and Camera Link HS, CoaXPress requires a frame grabber.

CoaXPress can transmit data at rates of 1.25 Gb s−1 (CXP-1), 2.5 Gb s−1 (CXP-2), 3.125 Gb s−1 (CXP-3), 5.0 Gb s−1 (CXP-5), and 6.25 Gb s−1 (CXP-6). Because of the encoding that is used on the physical medium, this translates to data rates of roughly 120–600 MB s−1 on a single cable. To further increase the throughput, more than one coax cable can be used. CoaXPress does not limit the number of cables. For example, if four cables are used at CXP-6 speed, a data rate of 2400 MB s−1 can be achieved. Unlike Camera Link HS, CoaXPress currently does not support sending the data to multiple frame grabbers.

The maximum cable length depends on the speed at which it is operated. With CXP-1, the maximum length is more than 200 m, while for CXP-6 it is about 25 m. The camera can be powered over the coax cable.

To control the camera, CoaXPress uses a dedicated uplink channel from the frame grabber to the camera at 20.8 Mb s−1. This channel uses part of the bandwidth of the coax cable. Optionally, the bandwidth of the uplink channel can be increased to 6.25 Gb s−1 with a dedicated coax cable. Such a high-speed uplink channel might be required, for example, for line scan cameras for which each line is triggered individually. The downlink channel from the camera to the frame grabber is shared with the image data.

To transmit data, CoaXPress defines a packet-based protocol that is designed to be immune to single bit errors. Furthermore, the protocol facilitates error detection. Unlike Camera Link HS, CoaXPress does not define a resend mechanism. Therefore, if a transmission error is detected, an error will be returned to the application.

The protocol defines a set of logical channels that carry specific types of data, such as stream data (e.g., images), I/O (e.g., real time triggers), and device control. For this purpose, specific packet types called trigger, stream, and control are defined. Trigger packets have the highest priority, followed by I/O acknowledgment packets (which are used to acknowledge trigger packets). All other packet types have the lowest priority. Higher priority packets are inserted into lower priority packets (effectively interrupting the lower priority packets). This ensures that triggering the camera has low latency, even over the relatively slow 20.8 Mb s−1 control channel. Unlike Camera Link HS, CoaXPress currently has no packet type for GPIO.

Video is sent through stream data packets. The supported pixel types follow the GenICam pixel format naming convention (PFNC); see Section 2.4.3.1. However, the bit-level encoding of the pixel formats and their packing over the CoaXPress link is CoaXPress-specific, i.e., different from the encoding defined by the GenICam PFNC. Pixel data is packed as tightly as possible to maximize throughput. CoaXPress supports rectangular as well as arbitrarily shaped regions of interest.

The camera is controlled through control data packets (which are sent over the control channel). Control packets are sent by the frame grabber and are acknowledged by the camera. The control of the camera is through register access (memory reads and writes); GenICam is used for this purpose (see Section 2.4.3.1). The camera must provide an XML file that describes the access to the registers. The names of the registers must follow the GenICam SFNC, and the XML file must be compatible with GenICam GenApi. Furthermore, camera control and image acquisition are performed through GenICam GenTL (see Section 2.4.3.2).



2.4.2.4 IEEE 1394

IEEE 1394, also known as FireWire, is a standard for a high-speed serial bus system. The original standard IEEE Std 1394-1995 was released in 1995. It defines data rates of 98.304, 196.608, and 393.216 Mb s−1, i.e., 12.288, 24.576, and 49.152 MB s−1. Annex J of the standard stipulates that these data rates should be referred to as 100, 200, and 400 Mb s−1. A six-pin connector is used. The data is transmitted over a cable with two twisted-pair wires used for signals and one wire each for power and ground. Hence, low-power devices can be used without having to use an external power source. A latched version of the connector is also defined, which is important in industrial applications to prevent accidental unplugging of the cable. IEEE Std 1394a-2000 adds various clarifications to the standard and defines a four-pin connector that does not include power. IEEE Std 1394b-2002 defines data rates of 800 and 1600 Mb s−1 as well as the architecture for 3200 Mb s−1 (these are again really multiples of 98.304 Mb s−1). A nine-pin connector as well as a fiber optic connector and cable are defined. The latest version of the standard is IEEE Std 1394-2008. It consolidates the earlier versions of the standard. The use of IEEE 1394 cameras is declining since USB and Ethernet are currently the dominant technologies for standard digital interfaces.

A standard that describes a protocol to transmit digital video for consumer applications over IEEE 1394 was released as early as 1998 (IEC 61883-1:1998; IEC 61883-1:2008; IEC 61883-2:1998; IEC 61883-2:2004; IEC 61883-3:1998; IEC 61883-3:1998; IEC 61883-4:1998; IEC 61883-4:2004; IEC 61883-5:1998; IEC 61883-5:2004; IEC 61883-8:2008). This led to the widespread adoption of IEEE 1394 in devices such as camcorders. Since this standard did not address the requirements for machine vision, a specification for the use of IEEE 1394 for industrial cameras was developed by the 1394 Trade Association Instrumentation and Industrial Control Working Group, Digital Camera Sub Working Group (1394 Trade Association, 2008). This standard is commonly referred to as IIDC.

IIDC defines various standard video formats, which define the resolution, frame rate, and pixel data that can be transmitted. The standard resolutions range from 160 × 120 up to 1600 × 1200. The frame rates range from 1.875 frames per second up to 240 frames per second. The pixel data includes monochrome (8 and 16 bits per pixel), RGB (8 and 16 bits per channel, i.e., 24 and 48 bits per pixel), YUV in various chrominance compression ratios (4:1:1, 12 bits per pixel; 4:2:2, 16 bits per pixel; 4:4:4, 24 bits per pixel), as well as raw Bayer images (8 and 16 bits per pixel). Not all combinations of resolution, frame rate, and pixel data are supported. In addition to the standard formats, arbitrary resolutions, including rectangular areas of interest, can be used through a special video format called Format 7.

Furthermore, IIDC standardizes the means to configure and control the settings of the camera, e.g., exposure (called shutter in IIDC), diaphragm (called iris), gain, trigger, trigger delay, and even control of pan-tilt cameras. Cameras are controlled through reading and writing of registers in the camera that correspond to the implemented features. The register layout is fixed and defined by the IIDC standard.

IEEE 1394 defines two modes of data transfer: asynchronous and isochronous. Asynchronous transfer uses data acknowledge packets to ensure that a data packet is received correctly. If necessary, the data packet is sent again. Consequently, asynchronous mode cannot guarantee that a certain bandwidth is available for the signal, and hence it is not used for transmitting digital video signals.

Isochronous data transfer, on the other hand, guarantees a desired bandwidth, but does not ensure that the data is received correctly. In isochronous mode, each device requests a certain bandwidth. One of the devices on the bus, typically the computer to which the IEEE 1394 devices are connected, acts as the cycle master. The cycle master sends a cycle start request every 125 µs. During each cycle, it is guaranteed that each device that has requested a certain isochronous bandwidth can transmit a single packet. Approximately 80% of the bandwidth can be used for isochronous data; the rest is used for asynchronous and control data. The maximum isochronous packet payload per cycle is 1024 bytes for 100 Mb s−1, and is proportional to the bus speed (i.e., it is 4096 bytes for 400 Mb s−1). An example of two isochronous devices on the bus is shown in Figure 2.59.

IIDC uses asynchronous mode for transmitting control data to and from the camera. The digital video data is sent in isochronous mode by the camera. Since cameras are forced to send their data within the limits of the maximum isochronous packet payload, the maximum data rate that a camera can use is 31.25 MB s−1 for a bus speed of 400 Mb s−1. Hence, the maximum frame rate supported by a 400 Mb s−1 bus is 106 frames per second for a 640 × 480 image. If images are acquired from multiple cameras at the same time, the maximum frame rate drops accordingly.
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Figure 2.59 One IEEE 1394 data transfer cycle. The cycle starts with the cycle master sending a cycle start request. Each isochronous device is allowed to send a packet of a certain size. The remainder of the cycle is used for asynchronous packets.



2.4.2.5 USB 2.0

The Universal Serial Bus (USB) was originally intended to replace the various serial and parallel ports that were available at the time the USB 1.0 specification was released in 1996. It was designed to support relatively low transfer speeds of 1.5 Mb s−1 and 12 Mb s−1, i.e., 0.1875 MB s−1 and 1.5 MB s−1. While this allowed accessing peripheral devices such as keyboards, mice, and mass storage devices at reasonable speeds, accessing scanners was relatively slow, and acquiring images from video devices such as webcams offered only small image sizes and low frame rates. The USB 2.0 specification (USB Implementers Forum, 2000), which was adopted later as the international standard IEC 62680-2-1:2015, supports transfer speeds of up to 480 Mb s−1 (60 MB s−1). Of the nominal 480 Mb s−1, only 280 Mb s−1 (35 MB s−1) are effectively usable due to bus access constraints. The potential throughput and the fact that instead of a frame grabber a widely available communication technology can be used makes USB 2.0 very attractive for machine vision.

USB 2.0 uses four-pin connectors that use one pair of wires for signal transmission and one wire each for power and ground. Hence, low-power devices can be used without having to use an external power source. There is no standard for a connector that can be latched or otherwise fixed to prevent accidental unplugging of the cable. The maximum USB 2.0 cable length is 5 m. However, this can be extended to 30 m by using up to five USB hubs.

While there is a USB video class specification (USB Implementers Forum, 2012), its intention is to standardize access to webcams, digital camcorders, analog video converters, analog and digital television tuners, and still-image cameras that support video streaming. It does not cover the requirements for machine vision. Consequently, manufacturers of USB 2.0 machine vision cameras typically use proprietary transfer protocols and their own device drivers to transfer images.

USB 2.0 is a polled bus. Each bus has a host controller, typically the USB device in the computer to which the devices are attached, that initiates all data transfers. When a device is attached to the bus, it requests a certain bandwidth from the host controller. The host controller periodically polls all attached devices. The devices can respond with data that they want to send or can indicate that they have no data to transfer. The USB architecture defines four types of data transfers. Control transfers are used to configure devices when they are first attached to the bus. Bulk data transfers typically consist of larger amounts of data, such as data used by printers or scanners. Bulk data transfers use the bandwidth that is left over by the other three transfer types. Interrupt data transfers are limited-latency transfers that typically consist of event notifications, such as characters entered on a keyboard or mouse coordinates. For these three transfer types, data delivery is lossless. Finally, isochronous data transfers can use a pre-negotiated amount of USB bandwidth with a pre-negotiated delivery latency. To achieve the bandwidth requirements, packets can be delivered corrupted or can be lost. No error correction through retries is performed. Video data is typically transferred using isochronous or bulk data transfers.

USB 2.0 divides time into chunks of 125 µs, called microframes. Up to 20% of each microframe is reserved for control transfers. On the other hand, up to 80% of a microframe can be allocated for periodic (isochronous and interrupt) transfers. The remaining bandwidth is used for bulk transfers.

For isochronous data transfers, each end point can request up to three 1024-byte packets of bandwidth per microframe. (An end point is defined by the USB specification as “a uniquely addressable portion of a USB device that is the source or sink of information in a communication flow between the host and device.”) Hence, the maximum data rate for an isochronous end point is 192 Mb s−1 (24 MB s−1). Consequently, the maximum frame rate a 640 × 480 camera could support over a single end point with USB 2.0 is 78 frames per second. To work around this limitation, the camera could define multiple end points. Alternatively, if a guaranteed data rate is not important, the camera could try to send more data or the entire data using bulk transfers. Since bulk transfers are not limited to a certain number of packets per microframe, this can result in a higher data rate if there are no other devices that have requested bandwidth on the bus.



2.4.2.6 USB3 Vision

The USB 3.0 specification was first released in 2008. It adds a new transfer rate, called SuperSpeed, with a nominal data rate of 5 Gb s−1 (625 MB s−1). Due to the encoding in the physical layer (called “Gen 1 encoding”), the data rate effectively available for applications is at most 4 Gb s−1 (500 MB s−1). The maximum data rate that can be achieved in practice is approximately 450 MB s−1. In 2013, the USB 3.1 specification (USB Implementers Forum, 2013) replaced the USB 3.0 specification. It defined a new data rate, called SuperSpeedPlus (often written as SuperSpeed+) with a nominal data rate of 10 Gb s−1 (1250 MB s−1). Due to a more efficient encoding in the physical layer (called “Gen 2 encoding”), the data rate effectively available for applications is at most 9.6 Gb s−1 (1200 MB s−1). The maximum data rate that can be achieved in practice is approximately 1000 MB s−1. In contrast to USB 2.0, which is half duplex, USB 3.1 is full duplex, i.e., it offers its data rates simultaneously from the host to the device and vice versa. Furthermore, USB 3.1 no longer uses a polled protocol: devices can asynchronously request service from the host. USB 3.1 devices can be powered over the cable. USB 3.0 and 3.1 cables are very cheap. The maximum specified cable length is around 5 m. Cables with lengths of up to 3 m are readily available. However, there are extenders available on the market that increase the maximum cable length to 100 m through multi-mode fiber optic cables.

All of the above features and the fact that no frame grabber is required make USB 3.1 very attractive for machine vision. Consequently, many camera manufacturers offer USB 3.1 cameras. In many cases, the cameras use the same principles that are also used in USB 2.0 cameras (see Section 2.4.2.5), i.e., they use proprietary protocols to control the camera and stream image data. For this reason, a specification for machine vision cameras, called USB3 Vision (often abbreviated as U3V), was released in 2013. The current version of the standard is 1.0.1 (AIA, 2015). It defines how the camera can be configured and controlled as well as how video data is transmitted. Furthermore, since the USB 3.1 specification does not define a connector that can be locked, the USB3 Vision specification also defines extensions of standard USB 3.1 connectors with locking screws that prevent the camera from being inadvertently unplugged.

While USB 3.1 is compatible with USB 2.0 at slower speeds through a separate USB 2.0 bus, if data is transmitted at SuperSpeed or SuperSpeedPlus, a completely different physical layer is used. At the protocol layer, however, USB 3.1 is quite similar to USB 2.0. There are still control transfers, bulk data transfers, interrupt data transfers, and isochronous data transfers (see Section 2.4.2.5). The first three types of transfers are guaranteed to be delivered without errors. Since this leads to the fact that higher layer protocols do not need to be concerned about data integrity and, therefore, can be simpler, USB3 Vision exclusively uses bulk data transfers.

On top of the above layers, USB3 Vision defines protocols for identifying cameras on the USB bus, for controlling the device, and for streaming data (video). The protocol for identifying cameras basically specifies how cameras must present themselves in the standard USB device enumeration mechanism. For example, USB3 Vision cameras are assigned to the “miscellaneous” device class with special subclasses that indicate the different protocol endpoints.

To configure and control the camera, the USB3 Vision Control Protocol (U3VCP) is defined. The configuration of the camera is performed through GenICam (see Section 2.4.3.1). The camera must provide an XML file that describes the access to the corresponding camera registers, which must be compatible with GenApi. The names of the registers should follow the GenICam SFNC, and the XML file must be compatible with GenICam GenApi. The control of the camera is performed through GenICam GenCP (see Section 2.4.3.1). The U3VCP defines how to map GenCP control messages to USB bulk transfers.

To transfer images, the USB3 Vision Streaming Protocol (U3VSP) is defined. To transfer an image, a so-called leader is transmitted in a single bulk transfer. The leader contains information about the type of information that is transferred, for example, the pixel format and position of the rectangular region of interest of the image to be transmitted. Then, the image data is transmitted in as many bulk transfers as necessary. Finally, a so-called trailer is transmitted in a single bulk transfer. The trailer can be used, for example, to indicate the actual size of the image that was transmitted, which might be useful for line-scan camera applications in which the number of lines to capture is controlled by triggering and therefore is not known in advance. U3VSP is quite flexible with respect to the type of image data that can be transferred. It supports regular image data as well as so-called chunk data. With chunk data, it is possible to transfer image data as well as additional data, e.g., metadata about the image (such as the exposure time), the region of interest and pixel format of the chunk, or data that was extracted from the image. If chunk data is supported, the chunks should be defined in the XML description file of the camera. The description of the pixel types and their data format must follow the GenICam PFNC (see Section 2.4.3.1).



2.4.2.7 GigE Vision

Ethernet was invented in the 1970s (Metcalfe and Boggs, 1976) as a physical layer for local area networks. The original experimental Ethernet provided a data rate of 2.94 Mb s−1. Ethernet was first standardized in 1985 with a data rate of 10 Mb s−1. The current version of the Ethernet standard, IEEE Std 802.3-2015, defines data rates from 1 Mb s−1 up to 100 Gb s−1. Currently, Ethernet at data rates of 1 Gb s−1 (Gigabit Ethernet) or higher is in widespread use. These high data rates and the fact that no frame grabber is required make Ethernet very attractive for machine vision. Another attractive feature of Ethernet is that it uses widely available, and therefore cheap, cables and connectors. Cable lengths of up to 100 m are supported via standard CAT-5e, CAT-6a, and CAT-7 copper cables. These cables optionally allow power to be supplied to the camera. Using fiber optic cables, cable lengths of up to 5000 m are possible. However, in this case the camera cannot be powered via the cable.

Ethernet comprises the physical and data link layers of the TCP/IP model (or Internet reference model) for communications and computer network protocol design. As such, it is not used to directly transfer application data. On top of these two layers, there is a network layer, which provides the functional and procedural means of transferring variable-length data sequences from a source to a destination via one or more networks. This is implemented using the Internet Protocol (IP). There are two IP versions: version 4 (IPv4; Postel, 1981a) and version 6 (IPv6; Deering and Hinden, 1998). One additional layer, the transport layer, provides transparent transfer of data between applications, e.g., by segmenting and merging packets as required by the lower layers. The Transmission Control Protocol (TCP) (Postel, 1981b) and User Datagram Protocol (UDP) (Postel, 1980) are probably the best-known protocols since they form the basis of almost all Internet networking software. TCP provides connection-oriented, reliable transport, i.e., the data will arrive complete and in the same order in which it was sent. UDP, on the other hand, provides connectionless, unreliable transport, i.e., datagrams may be lost or duplicated, or may arrive in a different order from that in which they were sent. UDP requires less overhead than TCP. The final layer in the TCP/IP model is the application layer. This is the layer from which an application actually sends and receives its data. Probably the best-known application-layer protocol is the Hypertext Transfer Protocol (HTTP) (Fielding et al., 1999), which forms the basis of the World Wide Web (WWW).

An application-layer protocol for machine vision cameras was standardized in 2006 under the name GigE Vision (often abbreviated as GEV). The current version of the standard is 2.0.03 (AIA, 2013). Although its name refers to Gigabit Ethernet, the standard explicitly states that it can be applied to lower or higher Ethernet speeds.

While IEEE 1394 and USB are plug-and-play buses, i.e., devices announce their presence on the bus and have a standardized manner to describe themselves, things are not quite as simple for Ethernet. The first hurdle that a GigE Vision camera must overcome when it is connected to the Ethernet is that it must obtain an IP address (GigE Vision currently only supports IPv4). This can be done through the Dynamic Host Configuration Protocol (DHCP) (Droms, 1997; Alexander and Droms, 1997) or through the dynamic configuration of Link-Local Addresses (LLAs) (Cheshire et al., 2005). DHCP requires that the camera’s Ethernet MAC address is entered into the DHCP server. Another method of assigning a valid IP address to a camera is called ForceIP. It allows changing the IP address of an idle camera from the application by sending a special packet. A final option is to store a fixed IP address in the camera.

A machine vision application can inquire which cameras are connected to the Ethernet through a process called device enumeration. To do so, it must send a special UDP broadcast message and collect the responses by the cameras.

To control the camera, GigE Vision specifies an application-layer protocol called GigE Vision Control Protocol (GVCP). It is based on UDP. Since UDP is unreliable, explicit reliability and error recovery mechanisms are defined in GVCP. For example, the host can request that control messages are explicitly acknowledged by the camera. If no acknowledgment is received, it can retransmit the control message. GVCP establishes a control channel over the connectionless UDP protocol. The control channel is used to control the camera by writing and reading of registers and memory locations in the camera. Each camera must describe its capabilities via an XML file according to the GenICam standard (see Section 2.4.3.1). GigE Vision requires that the register names must adhere to the GenICam SFNC.

GVCP also can be used to create a message channel from the camera to the host. The message channel can be used to transmit events from the camera to the application, e.g., an event when a trigger has been received or when the acquisition of an image has started or finished.

Furthermore, GVCP can be used to create from 1 to 512 stream channels to the camera. The stream channels are used to transfer the actual image data. For this purpose, GigE Vision defines a special application-layer protocol called GigE Vision Streaming Protocol (GVSP). It is based on UDP and by default does not use any reliability and error recovery mechanisms. This is done to maximize the data rate that can be transmitted. However, applications can optionally request the camera to resend lost packets.

Images are transferred by sending a data leader packet, multiple data payload packets, and a data trailer packet. The data leader packet contains information about the type of data being transferred, for example, the pixel format and position of the rectangular region of interest of the image to be transmitted (if the payload constitutes an image). Then, the data is transmitted in as many data payload packages as necessary. Finally, a data trailer packet is transmitted. It can be used, for example, to indicate the actual size of the image that was transmitted, which might be useful for line-scan camera applications in which the number of lines to capture is controlled by triggering and therefore is not known in advance. GVSP is quite flexible with respect to the type of data that can be transferred. It supports regular image data as well as so-called chunk data. With chunk data, it is possible to transfer image data as well as additional data, e.g., metadata about the image (such as the exposure time), the region of interest and pixel format of the chunk, or data that was extracted from the image. If chunk data is supported, the layout of the chunks should be defined in the XML description file of the camera.

GVSP also defines the image data that can be transmitted. The specification is effectively a superset of the GenICam PFNC (see Section 2.4.3.1) that defines a few extra pixel formats for reasons of backward compatibility.

One interesting aspect of the GigE Vision standard is that it provides a mechanism to trigger multiple cameras at the same time through a special GVCP message. This can be convenient because it avoids having to connect each camera to a separate trigger I/O cable. To be able to trigger the cameras simultaneously with low jitter, the clocks of the cameras must be synchronized using the Precision Time Protocol (PTP) (IEEE Std 1588-2008). PTP is an optional feature in GigE Vision, so not all cameras support it.

Another interesting feature is that GVSP packets can be sent to multiple hosts simultaneously through an IP feature called multicasting. This could, for example, be used to facilitate parallel processing on multiple computers.

The data rates that can be achieved with Ethernet vary based on which Ethernet type is used. A data rate of around 920 Mb s−1 (115 MB s−1) can be achieved for Gigabit Ethernet. For 10 Gigabit Ethernet, the data rate increases accordingly to around 1100 MB s−1. Currently, the highest data rate supported by GigE Vision cameras available on the market is 10 Gigabit Ethernet. The GigE Vision standard specifies that a camera may have up to four network interfaces. If the computer to which the camera is attached also has four network interfaces, the data rate can be increased by a factor of up to 4.



2.4.3 Generic Interfaces


2.4.3.1 GenICam

From Sections 2.4.1 and 2.4.2, it can be seen that there are many different technologies to acquire images from cameras. As discussed above, there are standards for the physical and protocol layers for many of the technologies. Unfortunately, what is missing is a generic software API layer that facilitates accessing arbitrary cameras. In practice, this means that new software to acquire images must be written whenever the acquisition technology is changed, e.g., if a different type of frame grabber is used or sometimes even if different camera models are used. The latter problem occurs, for example, if USB 2.0 cameras from different manufacturers are used. These cameras will invariably have different software APIs. This problem is especially grave for software libraries, like HALCON, that provide a generic image acquisition interface. Because of the plethora of software APIs for different image acquisition technologies, more than 50 separate image acquisition interfaces have been developed for HALCON in the 20 years since it was first released. Each image acquisition interface is a software library that makes the functionality of a particular image acquisition technology available through HALCON’s generic interface.

HALCON has provided a generic image acquisition interface since 1996 with the aim of making it easy for HALCON users to switch from one camera or image acquisition technology to another with little programming effort. However, some problems still remain. For example, without standardization, different camera manufacturers frequently name features with the same semantics differently (for example, the amount of time with which the sensor is exposed to light is sometimes called exposure and sometimes shutter). If the application is switched to a different image acquisition technology, this alone requires a change in the code, even if a generic image acquisition interface is used. Furthermore, features of image acquisition technologies and cameras might evolve over time. If these features are to be used in an application, often completely new code to make use of this feature must be written. For HALCON’s image acquisition interfaces, this meant that a new release of the respective image acquisition interface was necessary whenever a new feature had to be exposed to the user.

These problems were also recognized industry-wide at the time the GigE Vision standard was first developed. A solution was first proposed in 2006 with the GenICam standard. The GenICam standard provides a generic programming interface for configuring and controlling cameras that is independent of the underlying communication technology (called the “transport layer” in GenICam). The GenICam standard has evolved over time. It now consists of the GenICam standard, version 2.1.1 (EMVA, 2016e), the GenICam Standard Features Naming Convention, version 2.3 (GenICam SFNC; EMVA, 2016d), the GenICam Pixel Format Naming Convention, version 2.1 (GenICam PFNC; EMVA, 2016c), the GenICam Generic Control Protocol, version 1.2 (GenICam GenCP; EMVA, 2016b), and a GenICam reference implementation, called GenApi, version 3.0.2 (EMVA, 2017a). As mentioned in Section 2.4.2.1, there is also a specification that describes how the serial communication offered by Camera Link cameras can be integrated into the GenICam framework (GenICam CLProtocol, version 1.1; EMVA, 2011).

GenICam and GenApi only define the means to configure and control the camera. They provide no mechanism to transport data to and from the camera, neither for control data nor for image data. Consequently, GenApi users must implement the transport layer themselves. For this reason, a standard for the transport layer was published in 2008. This standard is called GenICam GenTL. It will be discussed in Section 2.4.3.2.

The first problem the GenICam standard addresses is how an application can find out what features a camera provides and how to configure and control them. For this purpose, the GenICam standard requires that a camera must provide a file that contains a description of every feature the camera provides and how each feature maps to control registers on the camera. This file must be provided as an XML file (Bray et al., 2008). For example, if the camera’s exposure time can be controlled, the camera’s XML file will contain an entry that describes the name of the feature (ExposureTime), which data type this feature has (the exposure time is a floatingpoint value), which control register this feature maps to (e.g., 0xacdc), the length of the register (e.g., 4 bytes), that the access to the register is read/write, and further information that will be discussed below. From this information, the application or software library can infer that to change the exposure time, it must write a floating point value into the register with the address 0xacdc. To obtain the current exposure time, it can read the value of this register.

The advantage of the above mechanism is that there is an abstraction layer between the actual register layout of the camera and the software layer, which uses the name of a feature to control the camera. Consequently, the register layout of two cameras may differ, but the way in which cameras’ features are controlled is generic.

The XML file is typically provided by the camera. It can also be provided in the file system of the host that controls the camera or through an HTTP access. One advantage of this mechanism is that applications that use the GenICam standard no longer need to be reprogrammed if new features are made available in a camera. The camera manufacturer only needs to provide an updated XML file if new features become available, e.g., through an upgrade of the camera’s firmware. The most significant advantage, however, is that an application or software library can configure and control cameras from different manufacturers (and using different transport layer technologies, provided a transport layer implementation is available) through a single software API.

In addition to the basic information discussed above, the XML file also provides information that can be used to construct a generic graphical user interface (GUI) to control the camera. For example, in addition to the name of a feature, a tool tip can be specified. This information can be used to display a tool tip in a GUI to provide the user with a short documentation of the feature. Furthermore, each feature is assigned to a feature category. This can be used to group features in the GUI into feature sets that are thematically related. A feature also has a certain visibility, which can be “beginner,” “expert,” “guru,” and “invisible.” This can be used in the GUI to make certain features available based on the user’s experience level. As mentioned above, each feature also has an interface type. This allows maping of particular data types to certain GUI elements. For example, integers and floating-point values can be mapped to sliders, strings to edit boxes, enumerations to drop-down boxes, Boolean values to check boxes, commands to command buttons, etc. To support GUI elements like sliders, the GenICam standard provides mechanisms to model dependencies between features. For example, the XML file might model that the camera has a feature called Gain, whose range depends on two other features that provide the minimum and maximum of the feature’s range, e.g., GainMin and GainMax. This can be used to adjust a slider’s range. The GenICam standard also allows modeling much more complex dependencies by allowing expressions between different features to be described in an XML file. For example, value ranges may depend on multiple features (e.g., the width of the chosen AOI might depend on the physical width of the sensor and on the column coordinate of the upper left corner of the AOI) or the access mode of certain features can be set to “not available” depending on the values of other features (implying that they can be grayed out in the GUI).

Figure 2.60 shows how GenICam can be used in practice to construct a generic GUI. HALCON’s generic image acquisition interface supports a mechanism for all image acquisition interfaces to describe themselves, in particular, their features, feature types, feature ranges, etc. It maps the GenICam mechanism discussed above to this generic mechanism. This is used in HDevelop, HALCON’s integrated development environment (IDE), for example, to construct a generic image acquisition assistant that can be used to configure arbitrary image acquisition devices. Figure 2.60 shows HDevelop’s image acquisition assistant being used to configure a GigE Vision camera. Internally, the GenICam standard, in particular, GenApi, is used to configure the GUI.

To prevent different camera manufacturers from naming features with identical semantics differently, the GenICam SFNC defines the names of more than 500 standard camera features. Furthermore, it groups the features into more than 20 categories and defines the visibility (the user’s experience level) for each feature. The 20 categories are very comprehensive and include device control, image format control, acquisition control, digital I/O control, event control, transfer control, and 3D scan control, to name just a few. The GenICam standard requires that if a camera implements a feature and the camera is to be GenICam-compliant, the feature must follow the GenICam SFNC.
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Figure 2.60 An image of the HDevelop image acquisition assistant showing a GigE Vision camera whose configuration is accessed using the GenICam standard (using GenApi). As discussed in the text, the camera’s features are mapped to GUI elements like sliders, drop-down boxes, etc. Feature categories can be selected through the Category GUI element, while the user’s level of expertise can be selected through the Visibility GUI element.

In addition to the feature names, the GenICam SFNC defines the semantics of the features. For example, the image format control category contains a precise description of how a rectangular AOI can be defined, what parameters are used to control it, and how they affect the AOI. As a further example, the acquisition control category describes the semantics of different image acquisition modes (e.g., continuous, single-frame, multi-frame, software-triggered, hardware-triggered, etc.). As a final example, the 3D scan control defines in detail how to configure and control 3D image acquisition devices. For more information on 3D image acquisition, refer to Section 2.5.

One remaining issue is the definition of the pixel formats that a camera supports. The GenICam SFNC defines various features that allow specification of the pixel format of an image. For example, there is a feature PixelFormat in the category ImageFormatControl and a feature ChunkPixelFormat in the category ChunkDataControl. The standardization of the pixel formats is addressed by the GenICam PFNC. It specifies a general scheme as to how pixel formats are named and in what bit layout the pixel data is delivered to the host, i.e., the transport layer might use a different low-level bit encoding as long as the data is delivered to the host in the bit encoding specified by the PFNC.

The PFNC covers 2D images as well as 3D image data. The pixel format names are generally constructed from five fields that are merged into one string: component (and, optionally, component location), number of bits, data type (optional), packing (optional), and an interface-specific string (optional). The component string can be, for example, Mono (for monochromatic images), RGB (for RGB color images), Coord3D_ABC (for 3D data), BayerRG (for raw Bayer images with the first two pixels in the top left corner being R and G pixels), etc. The number of bits can be 1, 2, 4, 5, 6, 8, 10, 12, 14, and 16 for integer data types and 32 and 64 for floating-point data types. The data type string can be left empty or can be set to u to indicate unsigned data. It can also be set to s, indicating signed data, and to f, indicating floating point data. For example, Mono8 indicates an unsigned 8-bit monochrome image, Mono8s a signed 8-bit monochrome image, and Coord3D_ABC32f indicates a 3D coordinate image with 32-bit floating-point components. The packing string can be empty, implying that data must be padded with 0 to the next byte boundary, it can be set to p to indicate that the data is packed with no bit left in between components, etc. The packing string can optionally be followed by a number of bits to pack the data into. For example, Mono10p indicates a 10-bit monochrome image with components packed tightly, whereas RGB10p32 indicates that three 10-bit RGB components are packed into 32 bits of data (implying that the remaining 2 bits are padded with 0). With packed data, a different number of bits can be specified for each component. For example, RGB565p indicates an RGB color image with 5 bits for the red and blue channels and 6 bits for the green channel packed into 16 bits. For packed data, it is the responsibility of the host to unpack the data into a representation that is easier to process, if required. The optional interface-specific string can be set to Planar, for example. This indicates that each component of a multi-channel image is transmitted as a single-channel image. For example, RGB10_Planar indicates that an RGB color image is transmitted in three separate images that contain the 10-bit red, green, and blue channels of the image, respectively.

There are two more parts of the GenICam standard that we will discuss briefly. The GenICam GenCP standard defines a generic packet-based control protocol that can be used to exchange messages between the host and the camera. In addition, it defines the corresponding packet layout. It has been developed based on the GigE Vision GVCP (see Section 2.4.2.7) and is very similar to it. Unfortunately, there are subtle differences that make the GVCP and GenICam GenCP control packets incompatible. For example, register addresses are 32 bits wide in GVCP and 64 bits wide in GenICam GenCP. Like GVCP, GenICam GenCP defines a protocol to read and write registers on the camera and a simple command and acknowledge mechanism that can be used to resend packets in the event that they were lost. In addition, a protocol for sending events from the camera to the host over a separate message channel is defined.

Finally, the GenICam CLProtocol module describes how the GenICam standard can be used based on the Camera Link serial communication mechanism. It requires that an interface software library must be provided by the camera manufacturer that provides a virtual register-based access to the camera’s features that is compatible with the GenICam standard (and, consequently, with GenApi). It is the responsibility of this interface library to map the virtual register-based access to the actual commands that are exchanged with the camera over the serial link.

As already mentioned in Section 2.4.2, the GenICam standard has been adopted to different degrees in various image acquisition standards. For Camera Link, the GenICam CLProtocol module is optional. For Camera Link HS, CoaXPress, and USB3 Vision, the GenICam standard (GenApi), the GenICam SFNC, and GenICam GenCP are mandatory. For GigE Vision, the GenICam standard (GenApi) and the GenICam SFNC are mandatory. Note that the GenICam PFNC is mandatory if the GenICam SFNC is mandatory.



2.4.3.2 GenICam GenTL

As discussed in the previous section, the GenICam standard and GenApi only define a mechanism and API to configure and control cameras. They offer no solution for transporting data to and from the camera. Users of the GenICam standard and GenApi must implement the transport layer themselves.

This problem was addressed in 2008 with the release of the GenICam GenTL standard. The current version of the standard is 1.5 (EMVA, 2015). Like GenICam, the GenICam GenTL standard has a companion standard, the GenICam GenTL SFNC, currently at version 1.1.1 (EMVA, 2017b), that standardizes the names and semantics of features that are used to control the GenICam GenTL interface itself (i.e., not the camera).

The GenICam GenTL standard defines a software API that offers a transport layer abstraction that is independent of the actual underlying transport layer (such as Camera Link, Camera Link HS, CoaXPress, USB3 Vision, GigE Vision, or even a transport layer that is not based on any standard). Therefore, cameras can be accessed and images can be acquired in a manner that is independent of the actual underlying transport layer technology. This has the advantage that applications that use GenICam GenTL can easily switch from one camera model to another, no matter which transport layer technology the cameras use.

To implement GenICam GenTL, a so-called GenTL producer must be provided, either by the camera manufacturer or by an independent software vendor. The GenTL producer is a software library that implements the GenICam GenTL specification. It is implemented on top of the actual transport layer. The GenTL producer enables an application or software library (collectively called GenTL consumer in the GenICam GenTL standard) to enumerate cameras, access camera registers, stream image data from a camera to the host, and deliver asynchronous events from the camera to the host. GenICam GenTL is mandatory for CoaXPress (see Section 2.4.2.3).

GenICam GenTL uses a layered architecture of modules to provide its functionality. The system module provides an abstraction for different transport layer interfaces that are present in a host. For example, the host could have a Camera Link HS interface and a GigE vision interface. The system module can be used, for example, to enumerate all available interfaces and to instantiate a particular interface.

The interface module provides an abstraction of a particular physical interface that is available on the host. For example, for a Camera Link HS interface, this would be a particular frame grabber, while for a GigE Vision interface, this would be a particular network interface. The GenICam GenTL standard requires that an interface represents a single transport layer technology. The interface module can be used, for example, to enumerate all devices that are available on an interface (i.e., all cameras that are connected to a particular interface) and to instantiate a particular device.

The device module provides a proxy for a remote device. This is an abstraction of a particular device, typically a camera. It enables the control and configuration of device-specific parameters that cannot be performed on the remote device (an example is discussed below). It also can be used to enable communication with the device, to enumerate all available data streams, and to instantiate a particular data stream. (As discussed in the previous sections, many transport layer standards allow a camera to provide multiple, logically independent data streams from the camera to the host.)

The data stream module provides an abstraction for a particular data stream from the camera to the host. It provides the actual acquisition engine and maintains the internal buffer pool.

Finally, the buffer module provides an abstraction for a particular buffer into which the data from the data stream is delivered. To enable streaming of data, at least one buffer must be registered with a data stream module instance.

GenICam GenTL provides signaling from the camera to the GenTL consumer, i.e., camera events are transported from the camera and are forwarded to the GenTL consumer. Furthermore, all of the GenICam GenTL modules provide their own signaling capabilities to the GenTL consumer. For example, the GenTL consumer can be configured to receive an event whenever a buffer has been filled with data, e.g., when an image has been acquired.

Additionally, all modules provide means for the GenTL consumer to configure the module. Note that the modules are different from the devices. The configuration of a module is an operation that is performed on the host, while the configuration of a device is an operation that requires communication with the device through the transport layer. For example, the data stream module provides a feature StreamBufferHandlingMode that allows configuring in what order the buffers are filled and returned to the GenTL consumer. As another example, the device module has a parameter LinkCommandTimeout that specifies a timeout for the control channel communication. As a final example, the buffer module offers a parameter BufferPixelFormat that defines the pixel format of the image buffer on the host. Note that BufferPixelFormat may differ from PixelFormat on the camera, which means that the device driver or device (e.g., the frame grabber) will have to convert the data in this case.

The configuration of the GenTL producer is performed through a similar mechanism to the configuration of a device. The GenTL producer provides a set of virtual registers that are described through an XML file that conforms to the GenICam standard. The virtual registers must follow the GenICam GenTL SFNC. The XML file can be parsed, e.g., with the GenApi library. Access to the GenTL producer’s configuration is provided through a virtual port for each module, which allows performing of read and write operations on the virtual registers. To configure the device (camera) itself, the device module provides a port to the camera through which the actual registers of the camera can be read or written via a communication through the actual transport layer. The available register names and addresses on the camera can be obtained through the GenICam standard, typically through the GenApi library.

With GenICam GenTL, an application would typically perform the following steps to acquire images from a camera:


	Initialize the GenTL producer.

	Optionally, enumerate all available transport layers.

	Obtain a handle to the desired transport layer (e.g., GigE Vision).

	Optionally, enumerate all available interfaces.

	Obtain a handle to a specific interface (e.g., a particular network interface).

	Optionally, enumerate all cameras that are available through the interface.

	Obtain a handle to a specific camera.

	Open a port to the device for configuration and control.

	Read out the camera’s XML file through the port and configure the camera.

	Optionally, enumerate all available data streams of the camera.

	Open a specific data stream from the camera.

	Allocate and queue buffers for the image acquisition.

	Start the acquisition.

	Repeat:

	– Wait for events that signal that a buffer has been acquired.

	– De-queue and process the buffer.

	– Re-queue the buffer that has been processed.



	Stop the acquisition.

	Close all open handles.

	Deinitialize the GenTL producer.




2.4.4 Image Acquisition Modes

We conclude this section by looking at the different timing modes with which images can be acquired. We start with probably the simplest mode of all, shown in Figure 2.61. Here, the camera is free-running, i.e., it delivers its images with a fixed frame rate that is not influenced by any external events. To acquire an image, the application issues a command to start the acquisition to the device driver. Since the camera is free-running, the transport layer must wait for the start of the frame. The transport layer can then start to reconstruct the image i that is transmitted by the camera. The camera has exposed the image during the previous frame cycle. After the image has been created in memory by the driver, the application can process the image. After the processing of image i has finished, the acquisition cycle starts again. Since the acquisition and processing must wait for the image to be transferred, we call this acquisition mode synchronous acquisition.

[image: image]
Figure 2.61 Synchronous image acquisition from a free-running camera.

As we can see from Figure 2.61, synchronous acquisition has the big disadvantage that the application spends most of its time waiting for the image acquisition and image transfer to complete. In the best case, when processing the image takes less than the frame period, only every second image can be processed.

Note that synchronous acquisition could also be used with asynchronous reset cameras. This would allow the driver and application to omit the waiting for the frame start. Nevertheless, this would not gain much of an advantage since the application would still have to wait for the frame to be transferred and the image to be created in memory.

All device drivers are capable of delivering the data to memory asynchronously, either through DMA or by using a separate thread. We can make use of this capability by processing the previous image during the acquisition of the current image, as shown in Figure 2.62 for a free-running camera. Here, image i is processed while image i + 1 is acquired and transferred to memory. This mode has the big advantage that every frame can be processed if the processing time is less than the frame period.

Asynchronous grabbing can also be used with asynchronous reset cameras. However, this would be of little use as such since asynchronous grabbing enables the application to process every frame anyway (at least if the processing is fast enough). Asynchronous reset cameras and asynchronous grabbing are typically used if the image acquisition must be synchronized with some external event. Here, a trigger device, e.g., a proximity sensor or a photoelectric sensor, creates a trigger signal if the object of which the image should be acquired is in the correct location. This acquisition mode is shown in Figure 2.63. The process starts when the application instructs the transport layer to start the acquisition. The transport layer instructs the camera or frame grabber to wait for the trigger. At the same time, the image of the previous acquisition command is returned to the application. If necessary, the transport layer waits for the image to be created completely in memory. After receiving the trigger, the camera resets, exposes the image, and transfers it to the device driver, which reconstructs the image in memory. As in standard asynchronous acquisition mode, the application can process image i while image i + 1 is being acquired.
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Figure 2.62 Asynchronous image acquisition from a free-running camera.
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Figure 2.63 Triggered asynchronous image acquisition from an asynchronous reset camera.

It should be noted that all of the above modes also apply to acquisition from line scan cameras since, as discussed in Section 2.3.1.1, line scan cameras typically are configured to return a 2D image. Nevertheless, here it is often essential that the acquisition does not miss a single line. Since the command to start the acquisition takes a finite amount of time, it is essential to pre-queue the acquisition commands with the driver. This mode is also sometimes necessary for area scan cameras in order to ensure that no trigger signal or frame is missed. This acquisition mode is often called queued acquisition. An alternative is to configure the camera and/or driver into a continuous acquisition mode. Here, the application no longer needs to issue the commands to start the acquisition. Instead, the camera and/or driver automatically prepare for the next acquisition, e.g., through a trigger signal, as soon as the current image has been transferred.





2.5 3D Image Acquisition Devices

The acquisition of the 3D shape of objects has become increasingly important in machine vision applications. In this section, we will discuss the most common technologies that are used in the 3D image acquisition devices that are currently available in the machine vision industry. We will also briefly describe the principles by which the 3D reconstruction is performed in the different technologies. The underlying algorithms will be discussed in detail in Section 3.10.

There are two basic principles that are used for 3D reconstruction: triangulation and time-of-flight (TOF) measurement. Triangulation uses the basic mathematical theorem that the coordinates of the third point of a triangle can be computed once the coordinates of the first two points and the two angles from the side connecting the first two points to the rays to the third point are known. In contrast, TOF cameras emit radiation and measure the time until the reflection of the radiation returns to the sensor.

None of the sensors described in this section returns a full 3D reconstruction of an object. Instead, they return a distance to the object for every point in a 2D plane. Consequently, they can reconstruct at most half of an object’s surface. Therefore, these sensors sometimes are called 2½D sensors to distinguish them from sensors that can reconstruct the full 3D surface of an object. This typically is done by using multiple sensors, or rotating and moving the object in front of a sensor and merging the resulting 2½D reconstructions. Despite this, we will follow the standard industry practice and call these sensors 3D sensors.


2.5.1 Stereo Sensors

Stereo sensors use the same principle as the HVS: the scene is observed with two cameras from different positions (see Figure 2.64). To be able to reconstruct moving objects correctly, it is essential that the cameras are synchronized, i.e., acquire the images at the same time, and, if CMOS cameras are used, that the cameras have a global shutter. As discussed in Section 2.2.5, it might be necessary to use a Scheimpflug configuration, i.e., to tilt the image planes, if the magnification of the lenses is large.

The different viewpoints of the cameras lead to the fact that a point at a certain distance from the cameras is imaged at different positions in the two images, creating a parallax. Parallax is the essential information that enables the 3D reconstruction of a point in the scene.

As discussed in Section 3.10.1.1, the cameras must be calibrated and their relative orientation must be determined to be able to perform the 3D reconstruction. The calibration is typically performed by the sensor manufacturer. The calibration data enables a stereo sensor to triangulate a 3D point. The known side of the triangle is the base of the stereo system, i.e., the line segment that connects the two projection centers (the entrance pupils) of the two cameras. Furthermore, once the interior orientation of the two cameras is known, the cameras are essentially angle measurement devices. Therefore, if a point in each of the two images is identified that corresponds to the same point in the scene, the angles of the rays to the point in the world can be computed. Thus, the 3D point can be triangulated. An equivalent way to describe the 3D reconstruction is the following: once the corresponding points have been identified in the images, their optical rays in space can be computed. The reconstructed 3D point is given by the intersection of the two optical rays.
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Figure 2.64 A stereo sensor consists of two cameras that observe the scene. The orientation of the sensors within the cameras is indicated by the two rectangles. A point is reconstructed in 3D by finding corresponding points in the two images, constructing their optical rays, and intersecting them in space. Note that the angle between the cameras has been exaggerated to show the stereo sensor geometry more clearly. Also note that the two cameras are typically contained in a single housing.

Note that some points in a scene may be occluded from the point of view of one or both cameras. For example, in Figure 2.64, all points around the bottom edges of the rectangular cuboid are occluded in at least one camera. Obviously, the 3D position of these points cannot be reconstructed. This problem occurs for all triangulation-based sensors.

As described in Section 3.10.1.6, corresponding points are typically determined by matching small rectangular windows in one image with the other image. From the discussion in that section, it can be seen that it is essential that the object contains a sufficient amount of structure or texture. Otherwise, the corresponding points cannot be determined uniquely. Since many industrial objects are texture-less, it is advantageous to project a random texture onto the scene (Besl, 1988). The projector is typically mounted between the cameras. It is sufficient to project a single static pattern onto the scene. An alternative is to project multiple random patterns onto the scene (Zhang et al., 2003; Davis et al., 2005; Wiegmann et al., 2006; Schaffer et al., 2010); this enables a more accurate 3D reconstruction at depth discontinuities since the window size of the stereo correlation algorithms can be reduced. This helps to alleviate the problem that larger window sizes can lead to incorrect reconstructions at depth discontinuities (cf. Section 3.10.1.6). With a sufficiently large number of images, the window size can be reduced to 1 × 1, which can result in very accurate 3D reconstructions at depth discontinuities (Davis et al., 2005). One disadvantage of using multiple patterns is that the objects must not move. If the algorithm is unable to compensate for the object’s motion, the 3D reconstruction will be incorrect (Davis et al., 2005). If the algorithm is able to compensate for the motion, the time to reconstruct the scene will typically be prohibitively long (Zhang et al., 2003).

The stereo sensors that we have described in this section are based on area scan cameras. It is also possible to perform stereo reconstruction using line scan cameras (Calow et al., 2010; Ilchev et al., 2012). Stereo line sensors can achieve a very high resolution 3D reconstruction. However, the object must be moved with respect to the sensor to perform the 3D reconstruction.



2.5.2 Sheet of Light Sensors

Like stereo sensors, sheet of light sensors rely on triangulation to reconstruct the scene in 3D. Compared to stereo sensors, one camera is replaced by a laser projector that projects a laser plane (the sheet of light) onto the objects in the scene (Besl, 1988; Blais, 2004). A typical sheet of light setup is shown in Figure 2.65. This technology often is also called laser triangulation.

The laser projector is constructed by sending a collimated laser beam through a cylindrical lens (Besl, 1988), a Powell lens (Powell, 1989), or a raster lens (Connolly, 2010) to fan out the laser beam. Powell and raster lenses have the advantage that they produce a more even brightness across the entire sheet of light than cylindrical lenses. Raster lenses, however, cannot be used for large working distances (Connolly, 2010).

The laser light is scattered at the points where the laser plane intersects the objects in the scene, forming characteristic lines in the scene. A camera captures the lines from a different viewpoint. As shown in Figure 2.65, to maximize the lateral resolution of the sheet of light sensor, the camera’s sensor is typically mounted such that its longer side is parallel to the light plane. As discussed in Section 2.2.5, it is advantageous to use a tilt lens, i.e., to tilt the image plane of the camera, to ensure that the laser plane is in focus for the entire measurement range (Besl, 1988; Blais, 2004).
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Figure 2.65 A sheet of light sensor consists of a laser that projects a laser plane (the sheet of light, shown in light gray) onto the objects in the scene. The laser light is scattered at the points where the plane intersects the objects in the scene, forming characteristic lines (shown in dark gray). A camera captures the lines from a different viewpoint. The orientation of the sensor within the camera is indicated by the rectangle. The different distances of the objects to the laser projector produce parallaxes in the camera image that are used to reconstruct the 3D coordinates of the objects within the sheet of light. This is done by computing the optical ray of a point on the laser line in the image and intersecting it with the laser plane in 3D. The object must be moved relative to the sheet of light to reconstruct its shape. Note that the angle between the camera and the laser projector has been exaggerated to show the sheet of light sensor geometry more clearly. Also note that the camera and laser projector are typically contained in a single housing.

The different distances of the objects to the laser projector produce parallaxes in the camera image. If the camera sensor is aligned as described above, these cause vertical offsets of the laser line in the image. These vertical offsets are used to reconstruct the 3D coordinates of the objects within the sheet of light. This is done by computing the optical ray of a point on the laser line in the image and intersecting it with the laser plane in 3D. As described in Section 3.10.2, this requires that the camera is calibrated, i.e., that its interior orientation is known. Furthermore, the pose of the laser plane with respect to the camera must be calibrated. The calibration is typically performed by the sensor manufacturer.

In the setup in Figure 2.65, the object must be moved relative to the sheet of light to reconstruct its shape. Therefore, the relative motion of the camera and object must be known. Typically, a linear motion is used. To ensure a constant relative motion between subsequent frames, encoders are typically used to trigger the image acquisition. As an alternative setup, the orientation of the sheet of light can be altered continuously to scan an object. This is typically done by projecting the sheet of light onto a rotating planar mirror.

Typically, not all points in the scene can be reconstructed because of shadows and occlusions. As shown in Figure 2.65, the top part of the rectangular cuboid shadows the laser plane to some extent. This leads to the fact that no laser line is visible in a small part of the scene to the right of the cuboid. Furthermore, if the laser plane is located slightly behind the cuboid, the laser line will be visible in the scene, but will be occluded by the cuboid from the point of view of the camera and therefore not visible in the camera image. Consequently, these points cannot be reconstructed.

Shadows and occlusions create a tradeoff in the design of sheet of light sensors. On the one hand, the reconstruction accuracy increases as the angle between the optical axis of the camera and the laser plane increases because this increases the resolution of the parallaxes. On the other hand, the areas that are occluded in the scene become larger as this angle increases.

Apart from the angle of triangulation, another factor that influences the reconstruction accuracy is speckle noise (Dorsch et al., 1994). Speckle noise is created by the mutual interference of different wavefronts of the coherent laser radiation that are reflected by the objects in the scene. Speckle noise can be reduced by using projectors that use radiation of low coherence (i.e., radiation that is made up of different wavelengths), e.g., LED line projectors.



2.5.3 Structured Light Sensors

Structured light sensors are the third category of sensors that rely on triangulation to reconstruct the scene in 3D. The setup is similar to a stereo sensor. However, one camera is replaced by a projector that projects structured patterns onto the scene, as shown in Figure 2.66. As discussed in Section 2.2.5, it might be necessary to use a Scheimpflug configuration, i.e., to tilt the image plane and the projector device, if the magnification of the lenses is large.

Many types of structured light patterns have been proposed over the years. See Besl (1988); Blais (2004); Gorthi and Rastog (2010); Salvi et al. (2010); Geng (2011); Bell et al. (2016) for reviews of some of the different possibilities. The technology that is dominant in currently available machine vision sensors is to project multiple striped patterns of different frequencies onto the scene. The stripes are designed in such a way that it is possible to identify the column coordinate of the projector that has illuminated a particular scene point easily and accurately (see Section 3.10.3.1 for details of the decoding). The interior and relative orientation of the camera and projector must be calibrated (see Section 3.10.3.2). The calibration is typically performed by the sensor manufacturer. Based on the interior orientation of the camera, the optical ray corresponding to a point in the image can be computed. Furthermore, based on the column coordinate of the projector, the interior orientation of the projector, and the relative orientation of the camera and projector, the 3D plane corresponding to the projector column can be computed. The 3D reconstruction of a point is obtained by the intersection of the optical ray and the plane.

Note that, as for stereo and sheet-of-light sensors, shadows and occlusions are typically present and prevent the reconstruction of some points in the scene. For example, in Figure 2.66, all points around the bottom edges of the rectangular cuboid are either occluded or shadowed and therefore cannot be reconstructed.
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Figure 2.66 A structured light sensor consists of a projector that projects multiple striped patterns of different frequencies onto the scene and a camera that observes the scene. The orientations of the sensor within the camera and of the projector device within the projector are indicated by the respective rectangles. A point is reconstructed in 3D by computing the projector column of a point in the camera image and the optical ray of this point. The projector column defines a plane in 3D. The 3D coordinates of the point are computed by intersecting the optical ray with this plane. Note that the angle between the camera and the projector has been exaggerated to show the structured light sensor geometry more clearly. Also note that the camera and projector are typically contained in a single housing.


2.5.3.1 Pattern Projection

To project the patterns, the technology that is used in video projectors can be used: liquid-crystal display (LCD), liquid crystal on silicon (LCOS), and digital light processing (DLP) projectors (Proll et al., 2003; Gorthi and Rastog, 2010; Bell et al., 2016; Van der Jeught and Dirckx, 2016). Since DLP projectors are the dominant technology for structured light sensors, we will describe this technology in more detail (Huang et al., 2003; Bell et al., 2016). At the heart of a DLP projector is a digital micromirror device (DMD). A DMD consists of an array of micromirrors whose orientation can be switched between two states electronically. In one orientation, the light from a light source is reflected through the lens onto the scene (the “on” state). In the other orientation, the light is reflected into a heat sink (the “off” state). Thus, it seems that a DMD only can project binary patterns. However, the micromirrors can be switched very rapidly. Therefore, gray values can be created by switching the mirrors on and off multiple times during a certain period. The relevant period is the exposure time of the camera. The ratio of time that the micromirrors are on during the exposure to the exposure time determines the apparent gray value. Current DMD devices are able to project binary patterns at frequencies of up to 32 000 Hz and 8-bit gray scale patterns at frequencies up to 1900 Hz.
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Figure 2.67 The different DMD layouts. (a) Regular pixel array layout. (b) Diamond pixel array layout. The axes around which the micromirrors rotate are indicated by the dashed lines. For the diamond pixel layout, the light source must be mounted to the left of the DMD. For the regular pixel layout, it must be mounted in the direction of the upper left corner of the DMD.

DMDs are manufactured in two configurations, as shown in Figure 2.67: a regular pixel layout in which the micromirrors are aligned with the edges of the DMD and a diamond pixel layout in which the micromirrors are rotated by 45° and every second row is shifted by half a pixel. In each case, the micromirrors rotate around their diagonal. This implies that the light source can be mounted to the left of a diamond pixel array DMD, whereas it must be mounted in the direction of the upper left corner of a regular pixel array DMD. Therefore, the diamond pixel array layout can lead to smaller projectors. On the other hand, the rotated pixel layout must be taken into account when projecting the patterns, as discussed below.



2.5.3.2 Gray Codes

One possible set of patterns that permit a very simple decoding is to project binary stripes of different frequencies onto the scene. For example, a pattern with two stripes can be projected (one dark stripe and one bright stripe, each covering one half of the projector). Then, four, eight, … stripes are projected. If n binary patterns are projected, 2n different columns in the projector can be identified uniquely. Each pixel in the camera image can be decoded separately. For each of the n images, we only need to determine whether the pixel is bright (on) or dark (off). The decoding returns an n-bit binary code for each pixel, which directly corresponds to a certain column in the projector. One problem with using this n-bit binary code is that adjacent stripes may differ by up to n − 1 bits. Therefore, if a decoding error of only 1 bit is made, the decoded column may differ by up to half the projector’s width. For example, if the most significant bit of the binary code 0111 (7 in decimal notation) is decoded erroneously as 1, the decoded code is 1111 (15 in decimal notation).
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Figure 2.68 Patterns corresponding to a projection of a 5-bit Gray code as well as four sinusoidal fringes with phase shifts of multiples of 90°. The 32 Gray code words correspond to the columns indicated by the arrows. The patterns are typically projected in the order from most significant bit to least significant bit, i.e., coarsest pattern to finest pattern. After this, the phase-shifted fringes are projected. The Gray code has the property that exactly one bit changes between adjacent code words. This leads to the fact that the stripes at the finest resolution are two Gray code words wide. The fringe frequency is one cycle per two Gray code words, i.e., one cycle for each stripe in the finest resolution Gray code pattern.

For this reason, Gray codes are typically used to encode the projector columns (Blais, 2004; Geng, 2011). The ith code word of a Gray code is computed as i [image: images] [image: images], where [image: images] denotes the binary XOR operation. Gray codes have the advantage that adjacent code words differ in exactly one bit, i.e., their Hamming distance is 1. Therefore, a wrong decoding, which typically occurs at the edges of the projection of a code word, has a very limited effect (Brenner et al., 1998). Another effect of the Gray code is that the stripes at the finest resolution are twice as wide as in a binary code. This facilitates a correct decoding of parts of the object whose surface normal makes a large angle with the optical ray, where the projected stripes are much denser (Brenner et al., 1998). A 5-bit Gray code is displayed in the upper part of Figure 2.68.

For binary patterns, it is essential that the pattern is aligned with the pixels of the projector. If this is not the case, the patterns will appear jagged or will have to be interpolated to transform them to the array layout, in which case they will no longer be binary. Therefore, if a DMD with a diamond pixel layout is used, the stripes should be oriented at a 45° angle.

The following extension of Gray codes is often used in practice: in addition to the pure Gray code, two more images are acquired—one with the projector completely on and one with the projector completely off (Sansoni et al., 1997). As described in Section 3.10.3.1, this makes the decoding of the stripes much easier. Furthermore, the fully illuminated image allows the surface texture, i.e., the brightness of each point in the scene, to be determined.



2.5.3.3 Fringe Projection

While Gray codes are conceptually simple, there are certain limitations in practice. On the one hand, a relatively large number of patterns is required to achieve a high spatial resolution of the projector column (Geng, 2011). On the other hand, the finer the resolution of the stripes becomes, the harder it is to decode them correctly because the optics of the projector and camera will introduce blurring. A type of pattern that is invariant to blurring is a sinusoidal pattern (Zhang, 2010): the blurring simply reduces the amplitude of the sinusoids, but leaves their frequency unchanged. Obviously, the gray value of the projection of a sinusoid is related to the projector column. However, it is relatively difficult to infer the projector column directly from a single projected sinusoid because the reflectance of the object may not be constant and therefore may modulate the sinusoid. For this reason, m sinusoids with a phase shift of 2π/m are typically used (Gorthi and Rastog, 2010; Geng, 2011). The 1D profile of these patterns is given by

(2.35) [image: image]

3D reconstruction systems that use sinusoidal patterns are called fringe projection systems (Gorthi and Rastog, 2010; Geng, 2011). Three phase shifts are sufficient to recover the phase ϕ from the camera images (Huang et al., 2003; Zhang, 2010; Geng, 2011; Bell et al., 2016). However, in practice, more than three phase shifts are frequently used. This leads to a decoding that is less sensitive to surface reflectance variations, has better immunity to ambient light, and results in increased accuracy of the 3D reconstruction (Bell et al., 2016). Often, four phase shifts of π/2 are used (Brenner et al., 1998; Sansoni et al., 1999). Four sinusoidal patterns with phase shifts of π/2 are displayed in the lower part of Figure 2.68. Let Ik(r, c), k = 0, … , 3 denote the camera images obtained from projecting four patterns of Eq. (2.35) with phase shifts of kπ/2. Then the phase ϕ can be decoded in a very simple manner by

(2.36) [image: image]

where atan2 denotes the two-argument arctangent function that returns its result in the full 2π range, and we assume that the result has been normalized to [0, 2π).

The advantage of fringe projection methods over Gray codes is that the phase can be computed very precisely. Brenner et al. (1998) show that the precision of the phase is given by

(2.37) [image: image]

where 2C is the contrast of the sinusoid, and σg is the standard deviation of the noise in the image. Note that 2C/σg is the SNR of the stripes. Equation (2.37) shows that the the higher the SNR, the more precisely phase can be determined. For example, for C = 25 and σg = 2, we have σϕ = 0.05657, i.e., 1/111 of a sinusoid cycle. To compare this to Gray codes, let us assume that two Gray code words correspond to one sinusoid cycle (since this is the highest frequency that would be supported by any binary pattern). Then, the phase of the sinusoid can be determined with a precision of 1/55.5 of the width of one Gray code word, even for this relatively low SNR.

While Eq. (2.36) is very elegant and simple, it does not allow recovery of a unique projector column since the arctangent function wraps around at 2π. Therefore, if there are multiple sinusoidal stripes, a phase unwrapping algorithm must be used to remove the discontinuities in the recovered phase (Gorthi and Rastog, 2010; Bell et al., 2016). Phase unwrapping algorithms are relatively complex and slow. Furthermore, they do not allow the system to recover the absolute phase of a scene point, which would be necessary to decode the projector column. To recover the absolute phase, there are multiple strategies. One class of algorithms makes use of the fact that the absolute phase can be recovered once the absolute phase of a single point (Zhang, 2010) or a single fringe (Wang et al., 2010) is known and therefore projects a special marker into the scene (Zhang, 2010). Another class of algorithms projects fringes at multiple frequencies that are relatively prime to each other into the scene (Gorthi and Rastog, 2010; Zhang, 2010; Bell et al., 2016). At least three frequencies are typically used. The absolute phase can be recovered if one of the frequencies corresponds to one cycle per width of the projector (Wang et al., 2010). The second strategy increases the number of images that must be projected considerably.

Fringe projection relies on the fact that the sinusoids actually appear as sinusoids in the image. This implies that the camera and projector of the structured light sensor must be linear. If this is not the case, the phase cannot be recovered correctly, which results in 3D reconstruction errors (Huang et al., 2003; Gorthi and Rastog, 2010; Wang et al., 2010; Zhang, 2010). Section 3.10.3.2 discusses how a structured light sensor can be calibrated radiometrically.



2.5.3.4 Hybrid Systems

Because of the advantages and disadvantages that were discussed above, hybrid approaches are frequently used. The ease of decoding of Gray codes is combined with the high precision of fringe projection (Sansoni et al., 1997; Brenner et al., 1998; Sansoni et al., 1999; Chen et al., 2009; Geng, 2011). First, an n-bit Gray code is projected. Optionally, a completely dark and a completely bright pattern are projected. Finally, four phase-shifted sinusoids are projected. An example of this hybrid approach is displayed in Figure 2.68. One cycle of the sinusoidal patterns corresponds to two Gray code words. As discussed above, in this setup the projector column can be determined with a precision of much better than 1/10 of a Gray code word, even with very low SNRs. This is the technology that we will discuss in Section 3.10.3.




2.5.4 Time-of-Flight Cameras

As already mentioned, time-of-flight (TOF) cameras emit radiation and measure the time until the reflection of the radiation returns to the sensor. There are two basic technologies to achieve this. Pulse-modulated (PM) TOF cameras emit a radiation pulse and directly or indirectly measure the time it takes for the radiation pulse to travel to the objects in the scene and back to the camera. Continuous-wave-modulated (CWM) TOF cameras, on the other hand, emit amplitude-modulated radiation and measure the phase difference between the emitted and received radiation (Horaud et al., 2016). We will briefly discuss these two technologies below without going into details of the physics and electronics that are used in these sensors. The interested reader is referred to Remondino and Stoppa (2013) for details.

In the past few years, the dominant design was CWM TOF cameras (Foix et al., 2011; Fürsattel et al., 2016). Note, however, that many of the cameras that are discussed in Foix et al. (2011); Fürsattel et al. (2016) are no longer commercially available. This indicates that there seems to be a trend towards PM TOF cameras (Horaud et al., 2016).


2.5.4.1 Continuous-Wave-Modulated Time-of-Flight Cameras

CWM TOF cameras emit radiation, typically in the near IR range, that is amplitude-modulated as a sine wave of a certain frequency fm, typically, between 15 and 30 MHz (Fürsattel et al., 2016). The radiation is reflected by the objects in the scene and received by the camera, which measures the amount of reflected radiation four times during a cycle of the modulated radiation (e.g., at 120 MHz for fm = 30 MHz). This creates measurements mi, i = 0, … , 3, that are spaced at intervals of π/2 of the received wave. The phase shift ϕ between the emitted and received wave can be demodulated as follows (Foix et al., 2011; Horaud et al., 2016)

(2.38) [image: image]

where atan2 denotes the two-argument arctangent function that returns its result in the full 2π range, and we assume that the result has been normalized to [0, 2π). Furthermore, the four measurements can be used to calculate the scene intensity

(2.39) [image: image]

and an amplitude

(2.40) [image: image]

that can be used to predict the quality of the measurements. The above measurements are performed multiple times during the integration time (exposure time) of the sensor to increase the SNR.

The phase ϕ is only unique within the so-called ambiguity-free distance range, which is given by (see Foix et al., 2011)

(2.41) [image: image]

where c is the speed of light. For example, for fm = 30 MHz, we have dmax = 4.997 m. If objects with a distance larger than dmax are present in the scene, the phase will wrap around. Therefore, a phase unwrapping algorithm would have to be used, which is time-consuming and therefore almost never used. Therefore, for objects at distances greater than dmax, a wrong object distance will be returned.

If the object distance d lies within the ambiguity-free range, it can be computed as (see Foix et al., 2011)

(2.42) [image: image]

CWM TOF cameras exhibit several systematic and random errors (Foix et al., 2011; Fürsattel et al., 2016). For example, they exhibit a relatively large temporal noise (in the range of up to a few centimeters), their distance measurements may depend on the integration time, which can cause errors between 1 and 10 centimeters, radiation scattering within the camera can cause relatively large distance errors, the distance measurements may depend on the reflectance of the objects in the scene, and there may be a systematic depth distortion (wiggling) because the emitted radiation is not exactly a sine wave.

CWM TOF cameras are capable of high frame rates of up to 30 Hz. However, one of their drawbacks is their comparatively small resolution: most of the commercially available sensors have a resolution of less than 320 × 240 pixels.



2.5.4.2 Pulse-Modulated Time-of-Flight Cameras

PM TOF cameras emit a radiation pulse, typically in the near IR range, and directly or indirectly measure the time of flight of the radiation pulse from the radiation source to the object and back to the sensor. Let this round-trip time be called td. Then, the distance from the camera to the object is given by (see Remondino and Stoppa, 2013)

(2.43) [image: image]

While direct measurement of td is possible in principle, in PM TOF cameras the round-trip time is inferred indirectly through measurement of the radiation intensity received by the sensor (Remondino and Stoppa, 2013).

A PM TOF camera based on indirect measurement of td works by emitting a radiation pulse of a certain duration tp, e.g., tp = 30 ns (Spickermann et al., 2011). The pulse duration determines the maximum object distance (distance range) that can be measured (see Spickermann et al., 2011)

(2.44) [image: image]

For example, for tp = 30 ns, the maximum distance is 4.497 m. The radiation returned to the sensor is measured during three integration periods of duration tp. The first integration period is simultaneous with the emission of the radiation pulse. The second integration period immediately follows the first integration period. These two integration periods measure the intensity of the radiation emitted by the camera that is reflected by the objects in the scene. As described below, these two measurements are the main pieces of data that are used to infer the distance of the objects in the scene. The third integration period happens a sufficient time before the radiation pulse is emitted or sufficiently long after it has been emitted. Its purpose is to correct the distance measurement for effects of ambient radiation reflected by the objects in the scene.

Let us examine the first two integration periods and assume for the moment that there is no ambient radiation reflected by the scene. During the first integration period, the radiation reflected by objects that are close to the camera will make a strong contribution to the charge on the sensor. The closer the object is to the sensor, the higher the charge on the camera will be. On the other hand, during the second integration period, the radiation reflected by objects that are farther from the camera make a strong contribution to the charge on the sensor. The farther the object is to the sensor, the higher the charge on the camera will be. For example, an object at d = 0 will produce a charge exclusively during the first integration period and no charge during the second integration period since the entire radiation pulse returns to the sensor during the first integration period. On the other hand, an object at d = dmax will produce a charge exclusively during the second integration period since the pulse cannot return to the sensor during the first integration period. As a final example, an object at d = dmax/2 will produce equal charges during the first and second integration period. This shows that the time of flight td can be inferred from the charges on the sensor. Let the charges of the first two integration periods be denoted by q1 and q2. Then, it can be shown that

(2.45) [image: image]

Note that for objects at distances greater than dmax, Eq. (2.45) reduces to td = tp since q1 = 0 in this case. This is the reason why objects at distances greater than dmax cannot be measured correctly.

Equation (2.45) assumes that there is no ambient radiation. This is rarely true in practice. The third integration period can be used to correct the depth measurement for the effects of ambient radiation. Let the charge created during the third integration period be denoted by q3. Then, q3 can be subtracted from q1 and q2 to cancel the ambient radiation, resulting in (see Spickermann et al., 2011)

(2.46) [image: image]

Therefore, the distance of a point in the scene is given by

(2.47) [image: image]

The above measurements are performed multiple times during the exposure time of the sensor to increase the SNR.

A thorough analysis of systematic and random errors that affect PM TOF cameras currently is nonexistent. It can be assumed that some of the effects that are known to exist for CWM TOF cameras (see Foix et al., 2011; Fürsattel et al., 2016) also affect PM TOF cameras. For example, it is known that PM TOF cameras can be affected by a depth bias that depends on the reflectance of the objects in the scene (Driewer et al., 2016). The temporal noise of PM TOF cameras can be of the order of a few centimeters.

PM TOF cameras support high frame rates (up to 30 Hz). Furthermore, they offer higher resolutions than CWM TOF cameras. The resolutions of PM TOF cameras that are currently commercially available range from 320 × 240 up to 1280 × 1024 pixels.









3
Machine Vision Algorithms


In the previous chapter, we examined the different hardware components that are involved in delivering an image to the computer. Each of the components plays an essential role in the machine vision process. For example, illumination is often crucial to bring out the objects we are interested in. Triggered frame grabbers and cameras are essential if the image is to be captured at the right time with the right exposure. Lenses are important for acquiring a sharp and aberration-free image. Nevertheless, none of these components can “see,” i.e., extract the information we are interested in from the image. This is analogous to human vision. Without our eyes, we cannot see. Yet, even with eyes we cannot see anything without our brain. The eye is merely a sensor that delivers data to the brain for interpretation. To extend this analogy a little further, even if we are myopic we can still see—only worse. Hence, it is clear that the processing of the images delivered to the computer by the sensors is truly the core of machine vision. Consequently, in this chapter, we will discuss the most important machine vision algorithms.


3.1 Fundamental Data Structures

Before we can delve into the study of machine vision algorithms, we need to examine the fundamental data structures that are involved in machine vision applications. Therefore, in this section we will take a look at the data structures for images, regions, and subpixel-precise contours.


3.1.1 Images

An image is the basic data structure in machine vision, since this is the data that an image acquisition device typically delivers to the computer’s memory. As we saw in Section 2.3, a pixel can be regarded as a sample of the energy that falls on the sensor element during the exposure, integrated over the spectral distribution of the light and the spectral response of the sensor. Depending on the camera type, the spectral response of the sensor typically will comprise the entire visible spectrum and optionally a part of the near IR spectrum. In this case, the camera will return one sample of the energy per pixel, i.e., a single-channel gray value image. RGB cameras, on the other hand, will return three samples per pixel, i.e., a three-channel image. These are the two basic types of sensors that are encountered in machine vision applications. However, cameras capable of acquiring images with tens to hundreds of spectral samples per pixel are possible (Hagen and Kudenov, 2013; Lapray et al., 2014; Eckhard, 2015). Therefore, to handle all possible applications, an image can be considered as a set of an arbitrary number of channels.

Intuitively, an image channel can simply be regarded as a two-dimensional (2D) array of numbers. This is also the data structure that is used to represent images in a programming language. Hence, the gray value at the pixel (r, c)┬ can be interpreted as an entry in a matrix: g = fr,c. In a more formalized manner, we can regard an image channel f of width w and height h as a function from a rectangular subset R = {0, … , h − 1} × {0, … , w − 1} of the discrete 2D plane [image: image] to a real number, i.e., [image: image] with the gray value g at the pixel position (r, c)┬ [image: image] defined by g = f (r, c). Likewise, a multichannel image can be regarded as a function where n is the number of channels.

In the above discussion, we have assumed that the gray values are given by real numbers. In almost all cases, the image acquisition device will discretize not only the image spatially but also the gray values to a fixed number of gray levels. In most cases, the gray values will be discretized to 8 bits (1 byte), i.e., the set of possible gray values will be [image: images]8 = {0, … , 255}. In some cases, a higher bit depth will be used, e.g., 10, 12, or even 16 bits. Consequently, to be perfectly accurate, a single-channel image should be regarded as a function [image: image], where [image: image] is the set of discrete gray values with b bits. However, in many cases this distinction is unimportant, so we will regard an image as a function to the set of real numbers.

Up to now, we have regarded an image as a function that is sampled spatially, because this is the manner in which we receive the image from an image acquisition device. For theoretical considerations, it is sometimes convenient to regard the image as a function in an infinite continuous domain, i.e., [image: image] We will use this convention occasionally in this chapter. It will be obvious from the context which of the two conventions is being used.



3.1.2 Regions

One of the tasks in machine vision is to identify regions in the image that have certain properties, e.g., by performing a threshold operation (see Section 3.4). Therefore, at the minimum we need a representation for an arbitrary subset of the pixels in an image. Furthermore, for morphological operations, we will see in Section 3.6.1 that it will be essential that regions can also extend beyond the image borders to avoid artifacts. Therefore, we define a region as an arbitrary subset of the discrete plane: [image: image].

The choice of the letter R is intentionally identical to the R that is used in the previous section to denote the rectangle of the image. In many cases, it is extremely useful to restrict processing to a certain part of the image that is specified as a region of interest (ROI). In this context, we can regard an image as a function from the ROI to a set of numbers, i.e., [image: image]. The ROI is sometimes also called the domain of the image because it is the domain of the image function f. We can even unify the two views: we can associate a rectangular ROI with every image that uses the full number of pixels. Therefore, from now on, we will silently assume that every image has an associated ROI, which will be denoted by R.

In Section 3.4.2, we will also see that often we will need to represent multiple objects in an image. Conceptually, this can simply be achieved by considering sets of regions.

From an abstract point of view, it is therefore simple to talk about regions in the image. It is not immediately clear, however, how best to represent regions. Mathematically, we can describe regions as sets, as in the above definition. An equivalent definition is to use the characteristic function of the region:

(3.1) [image: image]

This definition immediately suggests the use of binary images to represent regions. A binary image has a gray value of 0 for points that are not included in the region and 1 (or any other number different from 0) for points that are included in the region. As an extension to this, we could represent multiple objects in the image as label images, i.e., as images in which the gray value encodes the region to which the point belongs. Typically, a label of 0 would be used to represent points that are not included in any region, while numbers > 0 would be used to represent the different regions.

The representation of regions as binary images has one obvious drawback: it needs to store (sometimes very many) points that are not included in the region. Furthermore, the representation is not particularly efficient: we need to store at least 1 bit for every point in the image. Often, the representation actually uses 1 byte per point because it is much easier to access bytes than bits. This representation is also not particularly efficient for run time purposes: to determine which points are included in the region, we need to perform a test for every point in the binary image. In addition, it is a little awkward to store regions that extend to negative coordinates as binary images, which also leads to cumbersome algorithms. Finally, the representation of multiple regions as label images leads to the fact that overlapping regions cannot be represented, which will cause problems if morphological operations are performed on the regions. Therefore, a representation that only stores the points included in a region in an efficient manner would be very useful.

Figure 3.1 shows a small example region. We first note that, either horizontally or vertically, there are extended runs in which adjacent pixels belong to the region. This is typically the case for most regions. We can use this property and store only the necessary data for each run. Since images are typically stored line by line in memory, it is better to use horizontal runs. Therefore, the minimum amount of data for each run is the row coordinate of the run and the start and end columns of the run. This method of storing a region is called a run-length representation or run-length encoding. With this representation, the example region can be stored with just 4 runs, as shown in Figure 3.1. Consequently, the region can also be regarded as the union of all of its runs:

(3.2) [image: image]

[image: image]
Figure 3.1 Run-length representation of a region.


Here, ri denotes a single run, which can also be regarded as a region. Note that the runs are sorted in lexicographic order according to their row and start column coordinates. This means that there is an order of the runs ri = (ri, csi, cei) in R defined by: [image: images]. This order is crucial for the execution speed of algorithms that use run-length encoded regions.

In the above example, the binary image can be stored with 35 bytes if 1 byte per pixel is used or with 5 bytes if 1 bit per pixel is used. If the coordinates of the region are stored as 2-byte integers, the region can be represented with 24 bytes in the run-length representation. This is already a saving, albeit a small one, compared to binary images stored with 1 byte per pixel, but no saving if the binary image is stored as compactly as possible with 1 bit per pixel. To get an impression of how much this representation really saves, we can note that we are roughly storing the boundary of the region in the run-length representation. On average, the number of points on the boundary of the region will be proportional to the square root of the area of the region. Therefore, we can typically expect a very significant saving from the run-length representation compared to binary images, which must at least store every pixel in the surrounding rectangle of the region. For example, a full rectangular ROI of a w × h image can be stored with h runs instead of w × h pixels in a binary image (i.e., wh or [w/8]h bytes, depending on whether 1 byte or 1 bit per pixel is used). Similarly, a circle with diameter d can be stored with d runs as opposed to at least d × d pixels. Thus, the run-length representation often leads to an enormous reduction in memory consumption. Furthermore, since this representation only stores the points actually contained in the region, we do not need to perform a test to see whether a point lies in the region or not. These two features can save a significant amount of execution time. Also, with this representation, it is straightforward to have regions with negative coordinates. Finally, to represent multiple regions, lists or arrays of run-length encoded regions can be used. Since in this case each region is treated separately, overlapping regions do not pose any problems.

[image: image]
Figure 3.2 Different subpixel-precise contours. Contour 1 is a closed contour, while contours 2–5 are open contours. Contours 3–5 meet at a junction point.




3.1.3 Subpixel-Precise Contours

The data structures we have considered so far are pixel-precise. Often, it is important to extract subpixel-precise data from an image because the application requires an accuracy that is higher than the pixel resolution of the image. The subpixel data can, for example, be extracted with subpixel thresholding (see Section 3.4.3) or subpixel edge extraction (see Section 3.7.3). The results of these operations can be described with subpixel-precise contours. Figure 3.2 displays several example contours. As we can see, the contours can basically be represented as a polygon, i.e., an ordered set of control points (ri, ci)┬, where the ordering defines which control points are connected to each other. Since the extraction typically is based on the pixel grid, the distance between the control points of the contour is approximately 1 pixel on average. In the computer, the contours are simply represented as arrays of floating-point row and column coordinates. From Figure 3.2, we can also see that there is a rich topology associated with the contours. For example, contours can be closed (contour 1) or open (contours 2–5). Closed contours are usually represented by having the first contour point identical to the last contour point or by a special attribute that is stored with the contour. Furthermore, we can see that several contours can meet at a junction point, e.g., contours 3–5. It is sometimes useful to explicitly store this topological information with the contours.




3.2 Image Enhancement

In Chapter 2, we have seen that we have various means at our disposal to obtain a good image quality. The illumination, lenses, cameras, and image acquisition devices all play a crucial role here. However, although we try very hard to select the best possible hardware setup, sometimes the image quality is not sufficient. Therefore, in this section we will take a look at several common techniques for image enhancement.


3.2.1 Gray Value Transformations

Despite our best efforts in controlling the illumination, in some cases it is necessary to modify the gray values of the image. One of the reasons for this may be weak contrast. With controlled illumination, this problem usually only occurs locally. Therefore, we may only need to increase the contrast locally. Another possible reason for adjusting the gray values may be that the contrast or brightness of the image has changed from the settings that were in effect when we set up our application. For example, illuminations typically age and produce a weaker contrast after some time.

A gray value transformation can be regarded as a point operation. This means that the transformed gray value tr,c depends only on the gray value gr,c in the input image at the same position: tr,c = f (gr,c). Here, f (g) is a function that defines the gray value transformation to apply. Note that the domain and range of f (g) typically are [image: images]b, i.e., they are discrete. Therefore, to increase the transformation speed, gray value transformations can be implemented as a lookup table (LUT) by storing the output gray value for each possible input gray value in a table. If we denote the LUT as fg, we have tr,c = fg[gr,c], where the [ ] operator denotes table look-up.


3.2.1.1 Contrast Enhancement

The most important gray value transformation is a linear gray value scaling: f (g) = ag + b. If g [image: image] [image: images]b, we need to ensure that the output value is also in [image: images]b. Hence, we must clip and round the output gray value as follows:

(3.3) [image: image]

For |a| > 1, the contrast is increased, while for |a| < 1, the contrast is decreased. If a < 0, the gray values are inverted. For b > 0, the brightness is increased, while for b < 0, the brightness is decreased.

Figure 3.3(a) shows a small part of an image of a PCB. The entire image was acquired such that the full range of gray values is used. Three components are visible in the image. As we can see, the contrast of the components is not as good as it could be. Figures 3.3(b)–(e) show the effect of applying a linear gray value transformation with different values for a and b. As we can see from Figure 3.3(e), the component can be seen more clearly for a = 2.



3.2.1.2 Contrast Normalization

The parameters of the linear gray value transformation must be selected appropriately for each application and adapted to changed illumination conditions. Since this can be quite cumbersome, ideally we would like to have a method that selects a and b automatically based on the conditions in the image. One obvious method to do this is to select the parameters such that the maximum range of the gray value space [image: images]b is used. This can be done as follows: let gmin and gmax be the minimum and maximum gray value in the ROI under consideration. Then, the maximum range of gray values will be used if a = (2b − 1)/(gmax − gmin) and b = −agmin. This transformation can be thought of as a normalization of the contrast. Figure 3.3(f) shows the effect of the contrast normalization of the image in Figure 3.3(a). As we can see, the contrast is not much better than in the original image. This happens because there are specular reflections on the solder, which have the maximum gray value, and because there are very dark parts in the image with a gray value of almost 0. Hence, there is not much room to improve the contrast.

[image: image]
Figure 3.3 Examples of linear gray value transformations. (a) Original image. (b) Decreased brightness (b = −50). (c) Increased brightness (b = 50). (d) Decreased contrast (a = 0.5). (e) Increased contrast (a = 2). (f) Contrast normalization. (g) Robust contrast normalization (pl = 0, pu = 0.8).




3.2.1.3 Robust Contrast Normalization

The problem with contrast normalization is that a single pixel with a very bright or dark gray value can prevent us from using the desired gray value range. To get a better understanding of this point, we can take a look at the gray value histogram of the image. The gray value histogram is defined as the frequency with which a particular gray value occurs. Let n be the number of points in the ROI under consideration and ni be the number of pixels that have the gray value i. Then, the gray value histogram is a discrete function with domain [image: images]b that has the values

(3.4) [image: image]

In probabilistic terms, the gray value histogram can be regarded as the probability density of the occurrence of gray value i. We can also compute the cumulative histogram of the image as follows:

[image: image]
Figure 3.4 (a) Histogram of the image in Figure 3.3(a). (b) Corresponding cumulative histogram with probability thresholds pu and pl superimposed.


(3.5) [image: image]

This corresponds to the probability distribution of the gray values.

Figure 3.4 shows the histogram and cumulative histogram of the image in Figure 3.3(a). The specular reflections on the solder create a peak in the histogram at gray value 255. Furthermore, the smallest gray value in the image is 16. This explains why the contrast normalization did not increase the contrast significantly. Note that the dark part of the gray value range contains the most information about the components, while the bright part contains the information corresponding to the specular reflections as well as the printed rectangles on the board. Therefore, to get a more robust contrast normalization, we can simply ignore a part of the histogram that includes a fraction pl of the darkest gray values and a fraction 1 − pu of the brightest gray values. This can be done based on the cumulative histogram by selecting the smallest gray value for which ci ≥ pl and the largest gray value for which ci ≤ pu. This corresponds to intersecting the cumulative histogram with the lines p = pl and p = pu. Figure 3.4(b) shows two example probability thresholds superimposed on the cumulative histogram. For the example image in Figure 3.3(a), it is best to ignore only the bright gray values that correspond to the reflections and print on the board to get a robust contrast normalization. Figure 3.3(g) shows the result that is obtained with pl = 0 and pu = 0.8. This improves the contrast of the components significantly.

Robust contrast normalization is an extremely powerful method that is used, for example, as a feature extraction method for optical character recognition (OCR), where it is used to make the OCR features invariant to illumination changes (see Section 3.14). However, it requires transforming the gray values in the image, which is computationally expensive. If we want to make an algorithm robust to illumination changes, it is often possible to adapt the parameters to the changes in the illumination. For example, if one of the thresholding approches in Section 3.4.1 is used, we simply need to adapt the thresholds.




3.2.2 Radiometric Calibration

Many image processing algorithms rely on the fact that there is a linear correspondence between the energy that the sensor collects and the gray value in the image, namely G = aE + b, where E is the energy that falls on the sensor and G is the gray value in the image. Ideally, b = 0, which means that twice as much energy on the sensor leads to twice the gray value in the image. However, b = 0 is not necessary for measurement accuracy. The only requirement is that the correspondence is linear. If the correspondence is nonlinear, the accuracy of the results returned by these algorithms typically will degrade. Examples of this are the subpixel-precise threshold (see Section 3.4.3), the gray value features (see Section 3.5.2), and, most notably, subpixel-precise edge extraction (see Section 3.7, in particular Section 3.7.4). Unfortunately, sometimes the gray value correspondence is nonlinear, i.e., either the camera or the frame grabber produces a nonlinear response to the energy. If this is the case and we want to perform accurate measurements, we must determine the nonlinear response and invert it. If we apply the inverse response to the images, the resulting images will have a linear response. The process of determining the inverse response function is known as radiometric calibration.


3.2.2.1 Chart-Based Radiometric Calibration

In laboratory settings, traditionally calibrated targets are used to perform the radiometric calibration. Figure 3.5 displays examples of target types that are commonly used. Consequently, the corresponding algorithms are called chart-based. The procedure is to measure the gray values in the different patches and to compare them to the known reflectance of the patches (ISO 14524:2009). This yields a small number of measurements (e.g., 15 independent measurements in the target in Figure 3.5(a) and 12 in the target in Figure 3.5(b)), through which a function is fitted, e.g., a gamma response function that includes gain and offset, given by

(3.6) [image: image]
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Figure 3.5 Examples of calibrated density targets that are traditionally used for radiometric calibration in laboratory settings. (a) Density step target (image acquired with a camera with linear response). (b) Twelve-patch ISO 14524:2009 target (image simulated as if acquired with a camera with linear response).


There are several problems with this approach. First of all, it requires a very even illumination throughout the entire field of view in order to be able to determine the gray values of the patches correctly. For example, ISO 14524:2009 requires less than 2% variation of the illuminance incident on the calibration target across the entire target. While this may be achievable in laboratory settings, it is much harder to achieve in a production environment, where the calibration often must be performed. Furthermore, effects like vignetting may lead to an apparent light drop-off toward the border, which also prevents the extraction of the correct gray values. This problem is always present, independent of the environment. Another problem is that there is a great variety of target layouts, and hence it is difficult to implement a general algorithm for finding the patches on the targets and to determine their correspondence to the true reflectances. In addition, the reflectances on the targets are often specified as a linear progression in density, which is related exponentially to the reflectance. For example, the targets in Figure 3.5 both have a linear density progression, i.e., an exponential gray value progression. This means that the samples for the curve fitting are not evenly distributed, which can cause the fitted response to be less accurate in the parts of the curve that contain the samples with the larger spacing. Finally, the range of functions that can be modeled for the camera response is limited to the single function that is fitted through the data.



3.2.2.2 Chartless Radiometric Calibration

Because of the above problems, a radiometric calibration algorithm that does not require any calibration target is highly desirable. These algorithms are called chartless radiometric calibration. They are based on taking several images of the same scene with different exposures. The exposure can be varied by changing the aperture stop of the lens or by varying the exposure time of the camera. Since the aperture stop can be set less accurately than the exposure time, and since the exposure time of most industrial cameras can be controlled very accurately in software, varying the exposure time is the preferred method of acquiring images with different exposures. The advantages of this approach are that no calibration targets are required and that the images do not require an even illumination. Furthermore, the range of possible gray values can be covered with multiple images instead of a single image as required by the algorithms that use calibration targets. The only requirement on the image content is that there should be no gaps in the histograms of the different images within the gray value range that each image covers. Furthermore, with a little extra effort, even overexposed (i.e., saturated) images can be handled.

To derive an algorithm for chartless calibration, let us examine what two images with different exposures tell us about the response function. We know that the gray value G in the image is a nonlinear function r of the energy E that falls onto the sensor during the exposure e (Mann and Mann, 2001):

(3.7) [image: image]

Note that e is proportional to the exposure time and proportional to the area of the entrance pupil of the lens, i.e., proportional to 1/F 2, where F is the f -number of the lens. As described above, in industrial applications we typically leave the aperture stop constant and vary the exposure time. Therefore, we can think of e as the exposure time.

The goal of the radiometric calibration is to determine the inverse response q = r−1. The inverse response can be applied to an image via an LUT to achieve a linear response.

Now, let us assume that we have acquired two images with different exposures e1 and e2. Hence, we know that G1 = r(e1E) and G2 = r(e2E). By applying the inverse response q to both equations, we obtain q(G1) = e1E and q(G2) = e2E. We can now divide the two equations to eliminate the unknown energy E, and obtain

(3.8) [image: image]

As we can see, q depends only on the gray values in the images and on the ratio e1,2 of the exposures, but not on the exposures e1 and e2 themselves. Equation (3.8) is the defining equation for all chartless radiometric calibration algorithms.

One way to determine q based on Eq. (3.8) is to discretize q in an LUT. Thus, qi = q(Gi). To derive a linear algorithm to determine q, we can take logarithms on both sides of Eq. (3.8) to obtain log(q1/q2) = log e1,2, i.e., log(q1/q2) = log e1,2 (Mann and Mann, 2001). If we set Qi = log(qi) and E1,2 = log e1,2, each pixel in the image pair yields one linear equation for the inverse response function Q:

(3.9) [image: image]

Hence, we obtain a linear equation system AQ = E, where Q is a vector of the LUT for the logarithmic inverse response function, while A is a matrix with 256 columns for byte images. The matrix A and the vector E have as many rows as ther are pixels in the image, e.g., 307 200 for a 640 × 480 image. Therefore, this equation system is much too large to be solved in an acceptable time. To derive an algorithm that solves the equation system in an acceptable time, we can note that each row of the equation system has the following form:

(3.10) [image: image]

The indices of the 1 and −1 entries in the above equation are determined by the gray values in the first and second image. Note that each pair of gray values that occurs multiple times leads to several identical rows in A. Also note that AQ = E is an overdetermined equation system, which can be solved through the normal equations A┬AQ = A┬E. This means that each row that occurs k times in A will have weight k in the normal equations. The same behavior is obtained by multiplying the row (3.10) that corresponds to the gray value pair by [image: image] and to include that row only once in A. This typically reduces the number of rows in A from several hundred thousand to a few thousand, and thus makes the solution of the equation system feasible.

The simplest method to determine k is to compute the 2D histogram of the image pair. The 2D histogram determines how often gray value i occurs in the first image while gray value j occurs in the second image at the same position. Hence, for byte images, the 2D histogram is a 256 × 256 image in which the column coordinate indicates the gray value in the first image, while the row coordinate indicates the gray value in the second image. It is obvious that the 2D histogram contains the required values of k. We will see examples of 2D histograms below.

Note that the discussion so far has assumed that the calibration is performed from a single image pair. It is, however, very simple to include multiple images in the calibration since additional images provide the same type of equations as in (3.10), and can thus simply be added to A. This makes it much easier to cover the entire range of gray values. Thus, we can start with a fully exposed image and successively reduce the exposure time until we reach an image in which the smallest possible gray values are assumed. We could even start with a slightly overexposed image to ensure that the highest gray values are assumed. However, in this case we must take care that the overexposed (saturated) pixels are excluded from A because they violate the defining Equation (3.8). This is a very tricky problem to solve in general since some cameras exhibit a bizarre saturation behavior. Suffice it to say that for many cameras it is sufficient to exclude pixels with the maximum gray value from A.

Despite the fact that A has many more rows than columns, the solution Q is not uniquely determined because we cannot determine the absolute value of the energy E that falls onto the sensor. Hence, the rank of A is at most 255 for byte images. To solve this problem, we could arbitrarily require q(255) = 255, i.e., scale the inverse response function such that the maximum gray value range is used. Since the equations are solved in a logarithmic space, it is slightly more convenient to require q(255) = 1 and to scale the inverse response to the full gray value range later. With this, we obtain one additional equation of the form

(3.11) [image: image]

To enforce the constraint q(255) = 1, the constant k must be chosen such that Eq. (3.11) has the same weight as the sum of all other equations (3.10), i.e., k = [image: image] where w and h are the width and height of the image.

Even with this normalization, we still face some practical problems. One problem is that, if the images contain very little noise, the equations in (3.10) can become decoupled, and hence do not provide a unique solution for Q. Another problem is that, if the possible range of gray values is not completely covered by the images, there are no equations for the range of gray values that are not covered. Hence, the equation system will become singular. Both problems can be solved by introducing smoothness constraints for Q, which couple the equations and enable an extrapolation of Q into the range of gray values that is not covered by the images. The smoothness constraints require that the second derivative of Q should be small. Hence, for byte images, they lead to 254 equations of the form

(3.12) [image: image]

The parameter s determines the amount of smoothness that is required. As for Eq. (3.11), s must be chosen such that Eq. (3.12) has the same weight as the sum of all the other equations, i.e., [image: image] where c is a small number. Empirically, c = 4 works well for a wide range of cameras.

The approach of tabulating the inverse response q has two slight drawbacks. First, if the camera has a resolution of more than 8 bits, the equation system and 2D histograms become very large. Second, the smoothness constraints lead to straight lines in the logarithmic representation of q, i.e., exponential curves in the normal representation of q in the range of gray values that is not covered by the images. Therefore, it sometimes may be preferable to model the inverse response as a polynomial (Mitsunaga and Nayar, 1999). This model also leads to linear equations for the coefficients of the polynomial. Since polynomials are not very robust in extrapolation into areas in which no constraints exist, we also must add smoothness constraints in this case by requiring that the second derivative of the polynomial is small. Because this is done in the original representation of q, the smoothness constraints will extrapolate straight lines into the gray value range that is not covered.

Let us now consider two cameras: one with a linear response and one with a strong gamma response, i.e., with a small γ in Eq. (3.6), and hence with a large γ in the inverse response q. Figure 3.6 displays the 2D histograms of two images taken with each camera with an exposure ratio of 0.5. Note that in both cases, the values in the 2D histogram correspond to a line. The only difference is the slope of the line. A different slope, however, could also be caused by a different exposure ratio. Hence, we can see that it is quite important to know the exposure ratios precisely if we want to perform radiometric calibration.

To conclude this section, we give two examples of radiometric calibration. The first camera is a linear camera. Here, five images were acquired with exposure times of 32, 16, 8, 4, and 2 ms, as shown in Figure 3.7(a). The calibrated inverse response curve is shown in Figure 3.7(b). Note that the response is linear, but the camera has set a slight offset in the amplifier, which prevents very small gray values from being assumed. The second camera is a camera with a gamma response. In this case, six images were taken with exposure times of 30, 20, 10, 5, 2.5, and 1.25 ms, as shown in Figure 3.7(c). The calibrated inverse response curve is shown in Figure 3.7(d). Note the strong gamma response of the camera. The 2D histograms in Figure 3.6 were computed from the second and third brightest images in both sequences.

[image: image]
Figure 3.6 (a) A 2D histogram of two images taken with an exposure ratio of 0.5 with a linear camera. (b) A 2D histogram of two images taken with an exposure ratio of 0.5 with a camera with a strong gamma response curve. For better visualization, the 2D histograms are displayed with a square root LUT. Note that in both cases the values in the 2D histogram correspond to a line. Hence, linear responses cannot be distinguished from gamma responses without knowing the exact exposure ratio.


[image: image]
Figure 3.7 (a) Five images taken with a linear camera with exposure times of 32, 16, 8, 4, and 2 ms. (b) Calibrated inverse response curve. Note that the response is linear, but the camera has set a slight offset in the amplifier, which prevents very small gray values from being assumed. (c) Six images taken with a camera with a gamma response with exposure times of 30, 20, 10, 5, 2.5, and 1.25 ms. (d) Calibrated inverse response curve. Note the strong gamma response of the camera.





3.2.3 Image Smoothing

Every image contains some degree of noise. For the purposes of this chapter, noise can be regarded as random changes in the gray values, which occur for various reasons, e.g., because of the randomness of the photon flux. In most cases, the noise in the image will need to be suppressed by using image smoothing operators.

[image: image]
Figure 3.8 (a) An image of an edge. (b) Horizontal gray value profile through the center of the image. (c) The noise in (a) scaled by a factor of 5. (d) Horizontal gray value profile of the noise.


In a more formalized manner, noise can be regarded as a stationary stochastic process (Papoulis and Pillai, 2002). This means that the true gray value gr,c is disturbed by noise nr,c to get the observed gray value: [image: image]r,c = gr,c + nr,c. We can regard the noise nr,c as a random variable with mean 0 and variance σ2 for every pixel. We can assume a mean of 0 for the noise because any mean different from 0 would constitute a systematic bias of the observed gray values, which we could not detect anyway. “Stationary” means that the noise does not depend on the position in the image, i.e., it is identically distributed for each pixel. In particular, σ2 is assumed constant throughout the image. The last assumption is a convenient abstraction that does not necessarily hold because the variance of the noise sometimes depends on the gray values in the image. However, we will assume that the noise is always stationary.

Figure 3.8 shows an image of an edge from a real application. The noise is clearly visible in the bright patch in Figure 3.8(a) and in the horizontal gray value profile in Figure 3.8(b). Figures 3.8(c) and (d) show the actual noise in the image. How the noise has been calculated is explained below. It can be seen that there is slightly more noise in the dark patch of the image.


3.2.3.1 Temporal Averaging

With the above discussion in mind, noise suppression can be regarded as a stochastic estimation problem, i.e., given the observed noisy gray values [image: image]r,c, we want to estimate the true gray values gr,c. An obvious method to reduce the noise is to acquire multiple images of the same scene and to simply average these images. Since the images are taken at different times, we will refer to this method as temporal averaging or the temporal mean. If we acquire n images, the temporal average is given by

(3.13) [image: image]
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Figure 3.9 (a) An image of an edge obtained by averaging 20 images of the edge. (b) Horizontal gray value profile through the center of the image.


where [image: image]r,c;i denotes the noisy gray value at position (r, c)┬ in image i. This approach is frequently used in X-ray inspection systems, which inherently produce quite noisy images. From probability theory (Papoulis and Pillai, 2002), we know that the variance of the noise is reduced by a factor of n by this estimation: [image: image] Consequently, the standard deviation of the noise is reduced by a factor of [image: image] Figure 3.9 shows the result of acquiring 20 images of an edge and computing the temporal average. Compared to Figure 3.8(a), which shows one of the 20 images, the noise has been reduced by a factor of [image: image], as can be seen from Figure 3.9(b). Since this temporally averaged image is a very good estimate for the true gray values, we can subtract it from any of the images that were used in the averaging to obtain the noise in that image. This is how the image in Figure 3.8(c) was computed.



3.2.3.2 Mean Filter

One of the drawbacks of the temporal averaging is that we have to acquire multiple images to reduce the noise. This is not very attractive if the speed of the application is important. Therefore, other means for reducing the noise are required in most cases. Ideally, we would like to use only one image to estimate the true gray value. If we turn to the theory of stochastic processes again, we see that the temporal averaging can be replaced with a spatial averaging if the stochastic process, i.e., the image, is ergodic (Papoulis and Pillai, 2002). This is precisely the definition of ergodicity, and we will assume for the moment that it holds for our images. Then, the spatial average or spatial mean can be computed over a window (also called a mask) of (2n + 1) × (2m + 1) pixels as follows:

[image: image]
Figure 3.10 (a) An image of an edge obtained by smoothing the image of Figure 3.8(a) with a 5 × 5 mean filter. (b) Horizontal gray value profile through the center of the image.


(3.14) [image: image]

This spatial averaging operation is also called a mean filter. As in the case of temporal averaging, the noise variance is reduced by a factor that corresponds to the number of measurements that are used to calculate the average, i.e., by (2n + 1)(2m + 1). Figure 3.10 shows the result of smoothing the image of Figure 3.8 with a 5 × 5 mean filter. The standard deviation of the noise is reduced by a factor of 5, which is approximately the same as the temporal averaging in Figure 3.9. However, we can see that the edge is no longer as sharp as with temporal averaging. This happens, of course, because the images are not ergodic in general, but are only in areas of constant intensity. Therefore, in contrast to the temporal mean, the spatial mean filter blurs edges.



3.2.3.3 Border Treatment of Filters

In Eq. (3.14), we have ignored the fact that the image has a finite extent. Therefore, if the mask is close to the image border, it will partially stick out of the image and consequently will access undefined gray values. To solve this problem, several approaches are possible. A very simple approach is to calculate the filter only for pixels for which the mask lies completely within the image. This means that the output image is smaller than the input image, which is not very helpful if multiple filtering operations are applied in sequence. We could also define that the gray values outside the image are 0. For the mean filter, this would mean that the result of the filter would become progressively darker as the pixels get closer to the image border. This is also not desirable. Another approach would be to use the closest gray value on the image border for pixels outside the image. This approach would still create unwanted edges at the image border. Therefore, typically the gray values are mirrored at the image border. This creates the least amount of artifacts in the result.



3.2.3.4 Runtime Complexity of Filters

As was mentioned above, noise reduction from a single image is preferable for reasons of speed. Therefore, let us take a look at the number of operations involved in the calculation of the mean filter. If the mean filter is implemented based on Eq. (3.14), the number of operations will be (2n + 1)(2m + 1) for each pixel in the image, i.e., the calculation will have the complexity O(whmn), where w and h are the width and height of the image, respectively. For w = 640, h = 480, and m = n = 5 (i.e., an 11 × 11 filter), the algorithm will perform 37 171 200 additions and 307 200 divisions. This is quite a substantial number of operations, so we should try to reduce the operation count as much as possible. One way to do this is to use the associative law of the addition of real numbers as follows:

(3.15) [image: image]

This may seem like a trivial observation, but if we look closer we can see that the term in parentheses only needs to be computed once and can be stored, e.g., in a temporary image. Effectively, this means that we are first computing the sums in the column direction of the input image, saving them in a temporary image, and then computing the sums in the row direction of the temporary image. Hence, the double sum in Eq. (3.14) of complexity O(nm) is replaced by two sums of total complexity O(n+m). Consequently, the complexity drops from O(whmn) to O(wh(m+n)). With the above numbers, now only 6 758 400 additions are required. The above transformation is so important that it has its own name: whenever a filter calculation allows a decomposition into separate row and column sums, the filter is called separable. It is obviously of great advantage if a filter is separable, and it is often the best speed improvement that can be achieved. In this case, however, it is not the best we can do. Let us take a look at the column sum, i.e., the part in parentheses in Eq. (3.15), and let the result of the column sum be denoted by tr,c. Then, we have

(3.16) [image: image]

i.e., the sum at position (r, c)┬ can be computed based on the already computed sum at position (r, c − 1)┬ with just two additions. The same also holds, of course, for the row sums. The result of this is that we need to compute the complete sum only once for the first column or row, and can then update it very efficiently. With this, the total complexity is O(wh). Note that the mask size does not influence the run time in this implementation. Again, since this kind of transformation is so important, it has a special name. Whenever a filter can be implemented with this kind of updating scheme based on previously computed values, it is called a recursive filter. For the above example, the mean filter requires just 1 238 880 additions for the entire image. This is more than a factor of 30 faster for this example than the naive implementation based on Eq. (3.14). Of course, the advantage becomes even greater for larger mask sizes.



3.2.3.5 Linear Filters

In the above discussion, we have called the process of spatial averaging a mean filter without defining what is meant by the word “filter.” We can define a filter as an operation that takes a function as input and produces a function as output. Since images can be regarded as functions (see Section 3.1.1), for our purposes a filter transforms an image into another image.

The mean filter is an instance of a linear filter. Linear filters are characterized by the following property: applying a filter to a linear combination of two input images yields the same result as applying the filter to the two images and then computing the linear combination. If we denote the linear filter by h, and the two images by f and g, we have

(3.17) [image: image]

where p = (r, c)┬ denotes a point in the image and the { } operator denotes the application of the filter. Linear filters can be computed by a convolution. For a one-dimensional (1D) function on a continuous domain, the convolution is given by

(3.18) [image: image]

Here, f is the image function and the filter h is specified by another function called the convolution kernel or the filter mask. Similarly, for 2D functions we have

(3.19) [image: image]

For functions with discrete domains, the integrals are replaced by sums:

(3.20) [image: image]

The integrals and sums are formally taken over an infinite domain. Of course, to be able to compute the convolution in a finite amount of time, the filter hr,c must be 0 for sufficiently large r and c. For example, the mean filter is given by

(3.21) [image: image]

The notion of separability can be extended for arbitrary linear filters. If h(r, c) can be decomposed as h(r, c) = s(r)t(c) (or as hr,c = srtc), then h is called separable. As for the mean filter, we can factor out s in this case to get a more efficient implementation:

(3.22) [image: image]

Obviously, separable filters have the same speed advantage as the separable implementation of the mean filter. Therefore, separable filters are preferred over nonseparable filters. There is also a definition for recursive linear filters, which we cannot cover in detail. The interested reader is referred to Deriche (1990). Recursive linear filters have the same speed advantage as the recursive implementation of the mean filter, i.e., the run time does not depend on the filter size. Unfortunately, many interesting filters cannot be implemented as recursive filters; usually they can only be approximated by a recursive filter.



3.2.3.6 Frequency Response of the Mean Filter

Although the mean filter produces good results, it is not the optimum smoothing filter. To see this, we can note that noise primarily manifests itself as high-frequency fluctuations of the gray values in the image. Ideally, we would like a smoothing filter to remove these high-frequency fluctuations. To see how well the mean filter performs this task, we can examine how the mean filter responds to certain frequencies in the image. The theory of how to do this is provided by the Fourier transform (see Section 3.2.4). Figure 3.11(a) shows the frequency response of a 3 × 3 mean filter. In this plot, the row and column coordinates represent the frequencies as cycles per pixel. If both coordinates are 0, this corresponds to a frequency of 0 cycles per pixel, which represents the average gray value in the image. At the other extreme, row and column coordinates of ±0.5 represent the highest possible frequencies in the image (one cycle per two pixels). For example, the frequencies with column coordinate 0 and row coordinate ±0.5 correspond to a grid with alternating one-pixel-wide vertical bright and dark lines. From Figure 3.11(a), we can see that the 3 × 3 mean filter removes certain frequencies completely. These are the points for which the response has a value of 0. They occur for relatively high frequencies. However, we can also see that the highest frequencies are not removed completely. To illustrate this, Figure 3.11(b) shows an image with one-pixel-wide lines spaced three pixels apart. From Figure 3.11(c), we can see that this frequency is completely removed by the 3 × 3 mean filter: the output image has a constant gray value. If we change the spacing of the lines to two pixels, as in Figure 3.11(d), we can see from Figure 3.11(e) that this higher frequency is not removed completely. This is an undesirable behavior since it means that noise is not removed completely by the mean filter. Note also that the polarity of the lines has been reversed by the mean filter, which is also undesirable. This is caused by the negative parts of the frequency response. Furthermore, from Figure 3.11(a) we can see that the frequency response of the mean filter is not rotationally symmetric, i.e., it is anisotropic. This means that diagonal structures are smoothed differently than horizontal or vertical structures.

[image: image]
Figure 3.11 (a) Frequency response of the 3 × 3 mean filter. (b) Image with one-pixel-wide lines spaced three pixels apart. (c) Result of applying the 3 × 3 mean filter to the image in (b). Note that all the lines have been smoothed out. (d) Image with one-pixel-wide lines spaced two pixels apart. (e) Result of applying the 3 × 3 mean filter to the image in (d). Note that the lines have not been completely smoothed out, although they have a higher frequency than the lines in (b). Note also that the polarity of the lines has been reversed.




3.2.3.7 Gaussian Filter

Because the mean filter has the above drawbacks, the question of which smoothing filter is optimal arises. One way to approach this problem is to define certain natural criteria that the smoothing filter should fulfill, and then to search for the filters that fulfill the desired criteria. The first natural criterion is that the filter should be linear. This is natural because we can imagine an image being composed of multiple objects in an additive manner. Hence, the filter output should be a linear combination of the input. Furthermore, the filter should be position-invariant, i.e., it should produce the same results no matter where an object is in the image. This is automatically fulfilled for linear filters. Also, we would like the filter to be rotation-invariant, i.e., isotropic, so that it produces the same result independent of the orientation of the objects in the image. As we saw above, the mean filter does not fulfill this criterion. We would also like to control the amount of smoothing (noise reduction) that is being performed. Therefore, the filter should have a parameter t that can be used to control the smoothing, where higher values of t indicate more smoothing. For the mean filter, this corresponds to the mask sizes m and n. We have already seen that the mean filter does not suppress all high frequencies, i.e., noise, in the image. Therefore, a criterion that describes the noise suppression of the filter in the image should be added. One such criterion is that, the larger t gets, the more local maxima in the image should be eliminated. This is a very intuitive criterion, as can be seen in Figure 3.8(a), where many local maxima due to noise can be detected. Note that, because of linearity, we only need to require maxima to be eliminated. This automatically implies that local minima are eliminated as well. Finally, sometimes we would like to execute the smoothing filter several times in succession. If we do this, we would also like to have a simple means to predict the result of the combined filtering. Therefore, first filtering with t and then with s should be identical to a single filter operation with t+s. It can be shown that, among all smoothing filters, the Gaussian filter is the only filter that fulfills all of the above criteria (Lindeberg, 1994). Other natural criteria for a smoothing filter have been proposed (Witkin, 1983; Babaud et al., 1986; Florack et al., 1992), which also single out the Gaussian filter as the optimal smoothing filter.

[image: image]
Figure 3.12 (a) 1D Gaussian filter with σ = 1. (b) 2D Gaussian filter with σ = 1.


In one dimension, the Gaussian filter is given by

(3.23) [image: image]

This is the function that also defines the probability density of a normally distributed random variable. In two dimensions, the Gaussian filter is given by

(3.24) [image: image]

Hence, the Gaussian filter is separable. Therefore, it can be computed very efficiently. In fact, it is the only isotropic, separable smoothing filter. Unfortunately, it cannot be implemented recursively. However, some recursive approximations have been proposed (Deriche, 1993; Young and van Vliet, 1995). Figure 3.12 shows plots of 1D and 2D Gaussian filters with σ = 1. The frequency response of a Gaussian filter is also a Gaussian function, albeit with σ inverted (see Eq. (3.32)). Therefore, Figure 3.12(b) also gives a qualitative impression of the frequency response of the Gaussian filter. It can be seen that the Gaussian filter suppresses high frequencies much better than the mean filter.



3.2.3.8 Noise Suppression by Linear Filters

Like the mean filter, any linear filter will change the variance of the noise in the image. It can be shown that, for a linear filter h(r, c) or hr,c, the noise variance is multiplied by the following factor (see Papoulis and Pillai, 2002):

(3.25) [image: image]

[image: image]
Figure 3.13 Images of an edge obtained by smoothing the image of Figure 3.8(a). Results of (a) a Gaussian filter with σ = 1.41 and (b) a mean filter of size 5 × 5; and (c) the corresponding gray value profiles. Note that the two filters return very similar results in this example. Results of (d) a Gaussian filter with σ = 3.67 and (e) a 13 × 13 mean filter; and (f) the corresponding profiles. Note that the mean filter turns the edge into a ramp, leading to a badly defined edge, whereas the Gaussian filter produces a much sharper edge.


For a Gaussian filter, this factor is 1/(4πσ2). If we compare this to a mean filter with a square mask with parameter n, we see that, to get the same noise reduction with the Gaussian filter, we need to set [image: image]. For example, a 5 × 5 mean filter has the same noise reduction effect as a Gaussian filter with σ ≈ 1.41.

Figure 3.13 compares the results of the Gaussian filter with those of the mean filter of an equivalent size. For small filter sizes (σ = 1.41 and 5 × 5), there is hardly any noticeable difference between the results. However, if larger filter sizes are used, it becomes clear that the mean filter turns the edge into a ramp, leading to a badly defined edge that is also visually quite hard to locate, whereas the Gaussian filter produces a much sharper edge. Hence, we can see that the Gaussian filter produces better results, and consequently it is usually the preferred smoothing filter if the quality of the results is the primary concern. If speed is the primary concern, then the mean filter is preferable.



3.2.3.9 Median and Rank Filters

We close this section with a nonlinear filter that can also be used for noise suppression. The mean filter is a particular estimator for the mean value of a sample of random values. From probability theory, we know that other estimators are also possible, most notably the median of the samples. The median is defined as the value for which 50% of the values in the probability distribution of the samples are smaller and 50% are larger. From a practical point of view, if the sample set contains n values gi, i = 0, … , n − 1, we sort the values gi in ascending order to get si, and then select the value median(gi) = sn/2. Hence, we can obtain a median filter by calculating the median instead of the mean inside a window around the current pixel. Let W denote the window, e.g., a (2n + 1) × (2m + 1) rectangle as for the mean filter. Then the median filter is given by

(3.26) [image: image]

With sophisticated algorithms, it is possible to obtain a run time complexity (even for arbitrary mask shapes) that is comparable to that of a separable linear filter: O(whm), where m is the number of horizontal boundary pixels of the mask, i.e., the pixels that are at the left or right border of a run of pixels in the mask (Huang et al., 1979; Van Droogenbroeck and Talbot, 1996). For rectangular masks, it is possible to construct an algorithm with constant run time per pixel (analogous to a recursive implementation of a linear filter) (Perreault and Hébert, 2007).

The properties of the median filter are quite difficult to analyze. We can note, however, that it performs no averaging of the input gray values, but simply selects one of them. This can lead to surprising results. For example, the result of applying a 3×3 median filter to the image in Figure 3.11(b) would be a completely black image—the median filter would remove the bright lines because they cover less than 50% of the window. This property can sometimes be used to remove objects completely from an image. On the other hand, applying a 3 × 3 median filter to the image in Figure 3.11(d) would swap the bright and dark lines. This result is as undesirable as the result of the mean filter on the same image.

On the edge image of Figure 3.8(a), the median filter produces quite good results, as can be seen from Figure 3.14. In particular, it should be noted that the median filter preserves the sharpness of the edge even for large filter sizes. However, it cannot be predicted if and by how much the position of the edge is changed by the median filter, which is possible for the linear filters. Furthermore, we cannot estimate how much noise is removed by the median filter, in contrast to the linear filters. Therefore, for high-accuracy measurements, the Gaussian filter should be used.

Finally, it should be mentioned that the median filter is a special case of the more general class of rank filters. Instead of selecting the median sn/2 of the sorted gray values, the rank filter would select the sorted gray value at a particular rank r, i.e., sr. We will see other cases of rank operators in Section 3.6.2.




3.2.4 Fourier Transform


3.2.4.1 Continuous Fourier Transform

In the previous section, we considered the frequency responses of the mean and Gaussian filters. In this section, we will take a look at the theory that is used to derive the frequency response: the Fourier transform (Brigham, 1988; Press et al., 2007). The Fourier transform of a 1D function h(x) is given by

(3.27) [image: image]

[image: image]
Figure 3.14 Images of an edge obtained by smoothing the image of Figure 3.8(a). (a) Result with a median filter of size 5 × 5, and (b) the corresponding gray value profile. (c) Result of a 13 × 13 median filter, and (d) the corresponding profile. Note that the median filter preserves the sharpness of the edge to a great extent.


It transforms the function h(x) from the spatial domain into the frequency domain, i.e., h(x), a function of the position x, is transformed into H(f ), a function of the frequency f. Note that H(f) is in general a complex number. Because of Eq. (3.27) and the identity eix = cos x + i sin x, we can think of h(x) as being composed of sine and cosine waves of different frequencies and different amplitudes. Then H(f) describes precisely which frequency occurs with which amplitude and with which phase (overlaying sine and cosine terms of the same frequency simply leads to a phase-shifted sine wave). The inverse Fourier transform from the frequency domain to the spatial domain is given by

(3.28) [image: image]

Because the Fourier transform is invertible, it is best to think of h(x) and H(f) as being two different representations of the same function.

In 2D, the Fourier transform and its inverse are given by

(3.29) [image: image]

(3.30) [image: image]

In image processing, h(r, c) is an image, for which the position (r, c)┬ is given in pixels. Consequently, the frequencies (u, v)┬ are given in cycles per pixel.

Among the many interesting properties of the Fourier transform, probably the most interesting one is that a convolution in the spatial domain is transformed into a simple multiplication in the frequency domain: (g * h)(r, c) [image: images] G(u, v)H(u, v), where the convolution is given by Eq. (3.19). Hence, a convolution can be performed by transforming the image and the filter into the frequency domain, multiplying the two results, and transforming the result back into the spatial domain.

Note that the convolution attenuates the frequency content G(u, v) of the image g(r, c) by the frequency response H(u, v) of the filter. This justifies the analysis of the smoothing behavior of the mean and Gaussian filters that we have performed in Sections 3.2.3.6 and 3.2.3.7. To make this analysis more precise, we can compute the Fourier transform of the mean filter in Eq. (3.21). It is given by

(3.31) [image: image]

where sinc x = (sin πx)_(πx). See Figure 3.11 for a plot of the response of the 3 × 3 mean filter. Similarly, the Fourier transform of the Gaussian filter in Eq. (3.24) is given by

(3.32) [image: image]

Hence, the Fourier transform of the Gaussian filter is again a Gaussian function, albeit with σ inverted. Note that, in both cases, the frequency response becomes narrower if the filter size is increased. This is a relation that holds in general: h(x/a) [image: images] |a|H(af ).

Another interesting property of the Fourier transform is that it can be used to compute the correlation

(3.33) [image: image]

Note that the correlation is very similar to the convolution in Eq. (3.19). The correlation is given in the frequency domain by (g ★ h)(r, c) [image: images] G(u, v)H(−u, −v). If h(r, c) contains real numbers, which is the case for image processing, then H(−u, −v) = [image: image] where the bar denotes complex conjugation. Hence, (g ? h)(r, c) [image: images][image: image]

[image: image]
Figure 3.15 Example of aliasing. (a) Two cosine waves, one with a frequency of 0.25 and the other with a frequency of 0.75. (b) Two cosine waves, one with a frequency of 0.4 and the other with a frequency of 0.6. Note that if both functions are sampled at integer positions, denoted by the crosses, the discrete samples will be identical.




3.2.4.2 Discrete Fourier Transform

Up to now, we have assumed that the images are continuous. Real images are, of course, discrete. This trivial observation has profound implications for the result of the Fourier transform. As noted above, the frequency variables u and v are given in cycles per pixel. If a discrete image h(r, c) is transformed, the highest possible frequency for any sine or cosine wave is 1/2, i.e., one cycle per two pixels. The frequency 1/2 is called the Nyquist critical frequency. Sine or cosine waves with higher frequencies look like sine or cosine waves with correspondingly lower frequencies. For example, a discrete cosine wave with frequency 0.75 looks exactly like a cosine wave with frequency 0.25, as shown in Figure 3.15. Effectively, values of H(u, v) outside the square [−0.5, 0.5] × [−0.5, 0.5] are mapped to this square by repeated mirroring at the borders of the square. This effect is known as aliasing. To avoid aliasing, we must ensure that frequencies higher than the Nyquist critical frequency are removed before the image is sampled. During image acquisition, this can be achieved by optical low-pass filters in the camera. Aliasing, however, may also occur when an image is scaled down (see Section 3.3.2.4). Here, it is important to apply smoothing filters before the image is sampled at the lower resolution to ensure that frequencies above the Nyquist critical frequency are removed.

Real images are not only discrete, they are also only defined within a rectangle of dimension w × h, where w is the image width and h is the image height. This means that the Fourier transform is no longer continuous, but can be sampled at discrete frequencies uk = k/h and vl = l/w. As discussed above, sampling the Fourier transform is useful only in the Nyquist interval −1/2 f uk, vl < 1/2. With this, the discrete Fourier transform (DFT) is given by

(3.34) [image: image]

Analogously, the inverse DFT is given by

(3.35) [image: image]

As noted above, conceptually, the frequencies uk and vl should be sampled from the interval (−1/2, 1/2], i.e., k = −h/2 + 1, … , h/2 and l = −w/2 + 1, … , w/2. Since we want to represent Hk,l as an image, the negative coordinates are a little cumbersome. It is easy to see that Eqs. (3.34) and (3.35) are periodic with period h and w. Therefore, we can map the negative frequencies to their positive counterparts, i.e., k = −h/2 + 1, … , −1 is mapped to k = h/2 + 1, … , h − 1; and likewise for l.

We noted above that for real images [image: image] This property still holds for the DFT, with the appropriate change of coordinates as defined above, i.e., [image: image] In practice, this means that we do not need to compute and store the complete Fourier transform Hk,l because it contains redundant information. It is sufficient to compute and store one half of Hk,l, e.g., the left half. This saves a considerable amount of processing time and memory. This type of Fourier transform is called the real-valued Fourier transform.

To compute the Fourier transform from Eqs. (3.34) and (3.35), it might seem that O((wh)2) operations are required. This would prevent the Fourier transform from being useful in image processing applications. Fortunately, the Fourier transform can be computed in O(wh log(wh)) operations for w = 2n and h = 2m (Press et al., 2007) as well as for arbitrary w and h (Frigo and Johnson, 2005). This fast computation algorithm for the Fourier transform is aptly called the fast Fourier transform (FFT). With self-tuning algorithms (Frigo and Johnson, 2005), the FFT can be computed in real time on standard processors.

As discussed above, the Fourier transform can be used to compute the convolution with any linear filter in the frequency domain. While this can be used to perform filtering with standard filter masks, e.g., the mean or Gaussian filter, typically there is a speed advantage only for relatively large filter masks. The real advantage of using the Fourier transform for filtering lies in the fact that filters can be customized to remove specific frequencies from the image, which occur, for example, for repetitive textures.

Figure 3.16(a) shows an image of a map. The map is drawn on a highly structured paper that exhibits significant texture. The texture makes the extraction of the data in the map difficult. Figure 3.16(b) displays the Fourier transform Hu,v. Note that the Fourier transform is cyclically shifted so that the zero frequency is in the center of the image to show the structure of the data more clearly. Hence, Figure 3.16(b) displays the frequencies uk and vl for k = −h/2 + 1, … , h/2 and l = −w/2 + 1, … , w/2. Because of the high dynamic range of the result, [image: image] is displayed. It can be seen that Hu,v contains several highly significant peaks that correspond to the characteristic frequencies of the texture. Furthermore, there are two significant orthogonal lines that correspond to the lines in the map. A filter Gu,v that removes the characteristic frequencies of the texture is shown in Figure 3.16(c), while the result of the convolution Hu,vGu,v in the frequency domain is shown in Figure 3.16(d). The result of the inverse Fourier transform, i.e., the convolution in the spatial domain, is shown in Figure 3.16(e). Figures 3.16(f) and (g) show details of the input and result images, which show that the texture of the paper has been removed. Thus, it is now very easy to extract the map data from the image.

[image: image]
Figure 3.16 (a) Image of a map showing the texture of the paper. (b) Fourier transform of (a). Because of the high dynamic range of the result, H1/16u,v is displayed. Note the distinct peaks in Hu,v, which correspond to the texture of the paper. (c) Filter Gu,v used to remove the frequencies that correspond to the texture. (d) Convolution Hu,vGu,v. (e) Inverse Fourier transform of (d). (f), (g) Detail of (a) and (e), respectively. Note that the texture has been removed.






3.3 Geometric Transformations

In many applications, one cannot ensure that the objects to be inspected are always in the same position and orientation in the image. Therefore, the inspection algorithm must be able to cope with these position changes. Hence, one of the problems is to detect the position and orientation, also called the pose, of the objects to be examined. This will be the subject of later sections of this chapter. For the purposes of this section, we assume that we know the pose already. In this case, the simplest procedure to adapt the inspection to a particular pose is to align the ROIs appropriately. For example, if we know that an object is rotated by 45°, we could simply rotate the ROI by 45° before performing the inspection. In some cases, however, the image must be transformed (aligned) to a standard pose before the inspection can be performed. For example, the segmentation in OCR is much easier if the text is either horizontal or vertical. Another example is the inspection of objects for defects based on a reference image. Here, we also need to align the image of the object to the pose in the reference image, or vice versa. Therefore, in this section we will examine different geometric image transformations that are useful in practice.


3.3.1 Affine Transformations

If the position and rotation of the objects cannot be kept constant with the mechanical setup, we need to correct the rotation and translation of the object. Sometimes the distance of the object to the camera changes, leading to an apparent change in size of the object. These transformations are part of a very useful class of transformations called affine transformations, which are transformations that can be described by the following equation:

(3.36) [image: image]

Hence, an affine transformation consists of a linear part given by a 2 × 2 matrix and a translation. The above notation is a little cumbersome, however, since we always have to list the translation separately. To circumvent this, we can use a representation where we extend the coordinates with a third coordinate of 1, which enables us to write the transformation as a simple matrix multiplication:

(3.37) [image: image]

Note that the translation is represented by the elements a13 and a23 of the matrix A. This representation with an added redundant third coordinate is called homogeneous coordinates. Similarly, the representation with two coordinates in Eq. (3.36) is called inhomogeneous coordinates. We will see the true power of the homogeneous representation below. Any affine transformation can be constructed from the following basic transformations, where the last row of the matrix has been omitted:

(3.38) [image: image]

(3.39) [image: image]

(3.40) [image: image]

(3.41) [image: image]

The first three basic transformations need no further explanation. The skew (or slant) is a rotation of only one axis, in this case the row axis. It is quite useful for rectifying slanted characters in OCR.


3.3.1.1 Projective Transformations

An affine transformation enables us to correct almost all relevant pose variations that an object may undergo. However, sometimes affine transformations are not general enough. If the object in question is able to rotate in 3D, it will undergo a general perspective transformation, which is quite hard to correct because of the occlusions that may occur. However, if the object is planar, we can model the transformation of the object by a 2D perspective transformation, which is a special 2D projective transformation (Hartley and Zisserman, 2003; Faugeras and Luong, 2001). Projective transformations are given by

(3.42) [image: image]

Note the similarity to the affine transformation in Eq. (3.37). The only changes that were made are that the transformation is now described by a full 3×3 matrix and that we have replaced the 1 in the third coordinate with a variable w. This representation is actually the true representation in homogeneous coordinates. It can also be used for affine transformations, which are special projective transformations. With this third coordinate, it is not obvious how we are able to obtain a transformed 2D coordinate, i.e., how to compute the corresponding inhomogeneous point. First of all, it must be noted that in homogeneous coordinates, all points p = (r, c, w)┬ are only defined up to a scale factor, i.e., the vectors p and λp (λ ≠ 0) represent the same 2D point (Hartley and Zisserman, 2003; Faugeras and Luong, 2001). Consequently, the projective transformation given by the matrix H is also defined only up to a scale factor, and hence has only eight independent parameters. To obtain an inhomogeneous 2D point from the homogeneous representation, we must divide the homogeneous vector by w. This requires w ≠ 0. Such points are called finite points. Conversely, points with w = 0 are called points at infinity because they can be regarded as lying infinitely far away in a certain direction (Hartley and Zisserman, 2003; Faugeras and Luong, 2001).

Since a projective transformation has eight independent parameters, it can be uniquely determined from four corresponding points (Hartley and Zisserman, 2003; Faugeras and Luong, 2001). This is how projective transformations will usually be determined in machine vision applications. We will extract four points in an image, which typically represent a rectangle, and will rectify the image so that the four extracted points will be transformed to the four corners of the rectangle, i.e., to their corresponding points. Unfortunately, because of space limitations, we cannot give the details of how the transformation is computed from the point correspondences. The interested reader is referred to Hartley and Zisserman (2003) or Faugeras and Luong (2001).




3.3.2 Image Transformations

After having taken a look at how coordinates can be transformed with affine and projective transformations, we can consider how an image should be transformed. Our first idea might be to go through all the pixels in the input image, to transform their coordinates, and to set the gray value of the transformed point in the output image. Unfortunately, this simple strategy does not work. This can be seen by checking what happens if an image is scaled by a factor of 2: only one quarter of the pixels in the output image would be set. The correct way to transform an image is to loop through all the pixels in the output image and to calculate the position of the corresponding point in the input image. This is the simplest way to ensure that all relevant pixels in the output image are set. Fortunately, calculating the positions in the original image is simple: we only need to invert the matrix that describes the affine or projective transformation, which results again in an affine or projective transformation.

When the image coordinates are transformed from the output image to the input image, typically not all pixels in the output image transform back to coordinates that lie in the input image. This can be taken into account by computing a suitable ROI for the output image. Furthermore, we see that the resulting coordinates in the input image will typically not be integer coordinates. An example of this is given in Figure 3.17 , where the input image is transformed by an affine transformation consisting of a translation, rotation, and scaling. Therefore, the gray values in the output image must be interpolated.


3.3.2.1 Nearest-Neighbor Interpolation

The interpolation can be done in several ways. Figure 3.18(a) displays a pixel in the output image that has been transformed back to the input image. Note that the transformed pixel center lies on a non-integer position between four adjacent pixel centers. The simplest and fastest interpolation method is to calculate the closest of the four adjacent pixel centers, which only involves rounding the floating-point coordinates of the transformed pixel center, and to use the gray value of the closest pixel in the input image as the gray value of the pixel in the output image, as shown in Figure 3.18(b). This interpolation method is called nearest-neighbor interpolation. To see the effect of this interpolation, Figure 3.19(a) displays an image of a serial number of a bank note, where the characters are not horizontal. Figures 3.19(c) and (d) display the result of rotating the image such that the serial number is horizontal using this interpolation. Note that because the gray value is taken from the closest pixel center in the input image, the edges of the characters have a jagged appearance, which is undesirable.

[image: image]
Figure 3.17 An affine transformation of an image. Note that integer coordinates in the output image transform to non-integer coordinates in the original image, and hence must be interpolated.


[image: image]
Figure 3.18 (a) A pixel in the output image is transformed back to the input image. Note that the transformed pixel center lies at a non-integer position between four adjacent pixel centers. (b) Nearest-neighbor interpolation determines the closest pixel center in the input image and uses its gray value in the output image. (c) Bilinear interpolation determines the distances to the four adjacent pixel centers and weights their gray values using the distances.




3.3.2.2 Bilinear Interpolation

The reason for the jagged appearance in the result of the nearest-neighbor interpolation is that essentially we are regarding the image as a piecewise constant function: every coordinate that falls within a rectangle of extent ±0.5 in each direction is assigned the same gray value. This leads to discontinuities in the result, which cause the jagged edges. This behavior is especially noticeable if the image is scaled by a factor > 1. To get a better interpolation, we can use more information than the gray value of the closest pixel. From Figure 3.18(a), we can see that the transformed pixel center lies in a square of four adjacent pixel centers. Therefore, we can use the four corresponding gray values and weight them appropriately. One way to do this is to use bilinear interpolation, as shown in Figure 3.18(c). First, we compute the horizontal and vertical distances of the transformed coordinate to the adjacent pixel centers. Note that these are numbers between 0 and 1. Then, we weight the gray values according to their distances to get the bilinear interpolation:

[image: image]
Figure 3.19 (a) Image showing a serial number of a bank note. (b) Detail of (a). (c) Image rotated such that the serial number is horizontal using nearest-neighbor interpolation. (d) Detail of (c). Note the jagged edges of the characters. (e) Image rotated using bilinear interpolation. (f) Detail of (e). Note the smooth edges of the characters.


(3.43) [image: image]

Figures 3.19(e) and (f) display the result of rotating the image of Figure 3.19(a) using bilinear interpolation. Note that the edges of the characters now have a very smooth appearance. This much better result more than justifies the longer computation time (typically a factor of around 2).



3.3.2.3 Bicubic Interpolation

Bilinear interpolation works very well as long as the image is not zoomed by a large amount. However, if the image is scaled by factors of more than approximately 4, interpolation artifacts may become visible, as shown in Figure 3.20(a). These artifacts are caused by two effects. First, bilinear interpolation is continuous but not smooth. There can be sharp bends along the horizontal and vertical lines through the pixel centers of the original image, which are especially noticeable at edges. Furthermore, bilinear interpolation leads to apparent blurring in the vicinity of edges.

[image: image]
Figure 3.20 (a) A part of the image in Figure 3.19(a) rotated and scaled by a factor of 16 using bilinear interpolation. (b) The same image part transformed by bicubic interpolation.


To prevent these problems, higher-order interpolation can be used. The next natural interpolation order after bilinear interpolation is bicubic interpolation (Keys, 1981). To derive a bicubic interpolation algorithm, we can first note that linear interpolation can be described as a convolution at a subpixel position with the following kernel:

(3.44) [image: image]

Here, the subpixel position x corresponds to the coordinates a and b in Figure 3.18(c). The interpolation kernel is shown in Figure 3.21(a). To obtain bilinear interpolation, we perform two linear interpolations horizontally at the row coordinates 0 and 1 using the column coordinate b and then perform a linear interpolation of the gray values thus obtained at the vertical coordinate a.

For cubic interpolation, we can use the following interpolation kernel (see Keys, 1981):

(3.45) [image: image]

This kernel is shown in Figure 3.21(b). To obtain bicubic interpolation, we perform four cubic interpolations horizontally at the row coordinates −1, 0, 1, and 2 using the column coordinate b followed by a cubic interpolation of the gray values thus obtained at the vertical coordinate a. From Eqs. (3.44) and (3.45), it is obvious that bicubic interpolation is computationally much more expensive than bilinear interpolation. Instead of 2 × 2 points, 4 × 4 points are used and the kernel requires many more arithmetic operations. Therefore, it should only be used if an image is zoomed by scale factors that are significantly larger than 1 and if the quality requirements justify the additional run time.

[image: image]
Figure 3.21 (a) Linear interpolation kernel. (b) Cubic interpolation kernel.


Figure 3.20 compares bilinear and bicubic interpolation. A part of the image in Figure 3.19(a) is rotated and scaled by a factor of 16. Bilinear interpolation leads to some visible artifacts, as shown in Figure 3.20(a). The non-smoothness of the bilinear interpolation and the blurred appearance of the edges are clearly visible. In contrast, as shown in Figure 3.20(b), bicubic interpolation is smooth and produces much sharper edges.



3.3.2.4 Smoothing to Avoid Aliasing

To conclude the discussion on interpolation, we discuss the effects of scaling an image down. In bilinear interpolation, we would interpolate from the closest four pixel centers. However, if the image is scaled down, adjacent pixel centers in the output image will not necessarily be close in the input image. Imagine a larger version of the image of Figure 3.11(b) (one-pixel-wide vertical lines spaced three pixels apart) being scaled down by a factor of 4 using nearest-neighbor interpolation: we would get an image with one-pixel-wide lines that are four pixels apart. This is certainly not what we would expect. For bilinear interpolation, we would get similar unexpected results. If we scale down an image, we are subsampling it. As a consequence, we may obtain aliasing effects (see Section 3.2.4.2). An example of aliasing can be seen in Figure 3.22. The image in Figure 3.22(a) is scaled down by a factor of 3 in Figure 3.22(c) using bilinear interpolation. Note that the stroke widths of the vertical strokes of the letter H, which are equally wide in Figure 3.22(a), now appear to be quite different. This is undesirable. To improve the image transformation, the image must be smoothed before it is scaled down, e.g., using a mean or a Gaussian filter. Alternatively, the smoothing can be integrated into the gray value interpolation. Figure 3.22(e) shows the result of integrating a mean filter into the image transformation. Because of the smoothing, the strokes of the H now have the same width.

[image: image]
Figure 3.22 (a) Image showing a serial number of a bank note. (b) Detail of (a). (c) The image of (a) scaled down by a factor of 3 using bilinear interpolation. (d) Detail of (c). Note the different stroke widths of the vertical strokes of the letter H. This is caused by aliasing. (e) Result of scaling the image down by integrating a smoothing filter (in this case a mean filter) into the image transformation. (f) Detail of (e).





3.3.3 Projective Image Transformations

In the previous sections, we have seen the usefulness of affine transformations for rectifying text. Sometimes, however, an affine transformation is not sufficient for this purpose. Figures 3.23(a) and (b) show two images of license plates on cars. Because the position of the camera with respect to the car could not be controlled, the images of the license plates show perspective distortions. Figures 3.23(c) and (d) show the result of applying projective transformations to the images that cut out the license plates and rectify them. Hence, the images in Figures 3.23(c) and (d) would result if we had looked at the license plates perpendicularly from in front of the car. It is now much easier to segment and read the characters on the license plates.



3.3.4 Polar Transformations

Another useful geometric transformation is the polar transformation. This transformation is typically used to rectify parts of images that show objects that are circular or that are contained in circular rings in the image. An example is shown in Figure 3.24(a): the inner part of a CD contains a ring with a bar code and some text. To read the bar code, the part of the image that contains the bar code can be rectified with the polar transformation. It converts the image into polar coordinates (d, ϕ)┬, i.e., into the distance d to the center of the transformation and the angle ϕ of the vector to the center of the transformation. Let the center of the transformation be given by (mr, mc)┬. Then, the polar coordinates of a point (r, c)┬ are given by

(3.46) [image: image]

[image: image]
Figure 3.23 (a), (b) Images of license plates. (c), (d) Result of a projective transformation that rectifies the perspective distortion of the license plates.


where atan2 denotes the two-argument arctangent function that returns its result in the range [−π, π). Note that the transformation of a point into polar coordinates is quite expensive to compute because of the square root and the arctangent. Fortunately, to transform an image, as for affine and projective transformations, the inverse of the polar transformation is used, which is given by

(3.47) [image: image]

Here, the sines and cosines can be tabulated because they only occur for a finite number of discrete values, and hence only need to be computed once. Therefore, the polar transformation of an image can be computed efficiently. Note that by restricting the ranges of d and ϕ, we can transform arbitrary circular sectors.

Figure 3.24(b) shows the result of transforming a circular ring that contains the bar code in Figure 3.24(a). Note that because of the polar transformation the bar code is straight and horizontal, and consequently can be read easily.

[image: image]
Figure 3.24 (a) Image of the center of a CD showing a circular bar code. (b) Polar transformation of the ring that contains the bar code. Note that the bar code is now straight and horizontal.





3.4 Image Segmentation

In the preceding sections, we have looked at operations that transform an image into another image. These operations do not give us information about the objects in the image. For this purpose, we need to segment the image, i.e., extract regions from the image that correspond to the objects we are interested in. More formally, segmentation is an operation that takes an image as input and returns one or more regions or subpixel-precise contours as output.


3.4.1 Thresholding


3.4.1.1 Global Thresholding

The simplest segmentation algorithm is to threshold the image. The threshold operation is defined by

(3.48) [image: image]

[image: image]
Figure 3.25 (a), (b) Images of prints on ICs with a rectangular ROI overlaid in light gray. (c), (d) Result of thresholding the images in (a), (b) with gmin = 90 and gmax = 255.


Hence, the threshold operation selects all points in the ROI R of the image that lie within a specified range of gray values into the output region S. Since the thresholds are identical for all points within in the ROI, this operation is also called global thresholding. For reasons of brevity, we will simply call this operation thresholding.

Often, gmin = 0 or gmax = 2b − 1 is used. If the illumination can be kept constant, the thresholds gmin and gmax are selected when the system is set up and are never modified. Since the threshold operation is based on the gray values themselves, it can be used whenever the object to be segmented and the background have significantly different gray values.

Figures 3.25(a) and (b) show two images of integrated circuits (ICs) on a PCB with a rectangular ROI overlaid in light gray. The result of thresholding the two images with gmin = 90 and gmax = 255 is shown in Figures 3.25(c) and (d). Since the illumination is kept constant, the same threshold works for both images. Note also that there are some noisy pixels in the segmented regions. They can be removed, e.g., based on their area (see Section 3.5) or based on morphological operations (see Section 3.6.1).



3.4.1.2 Automatic Threshold Selection

The constant threshold works well only as long as the gray values of the object and the background do not change. Unfortunately, this occurs less frequently than one would wish, e.g., because of changing illumination. Even if the illumination is kept constant, different gray value distributions on similar objects may prevent us from using a constant threshold. Figure 3.26 shows an example of this. In Figures 3.26(a) and (b), two different ICs on the same PCB are shown. Despite the identical illumination, the prints have a substantially different gray value distribution, which will not allow us to use the same threshold for both images. Nevertheless, the print and the background can be separated easily in both cases. Therefore, ideally, we would like to have a method that is able to determine the thresholds automatically.

[image: image]
Figure 3.26 (a), (b) Images of prints on ICs with a rectangular ROI overlaid in light gray. (c), (d) Gray value histogram of the images in (a) and (b) within the respective ROI. (e), (f) Result of thresholding the images in (a) and (b) with a threshold selected automatically based on the gray value histogram.


The threshold can be determined based on the gray value histogram of the image. Figures 3.26(c) and (d) show the histograms of the images in Figures 3.26(a) and (b). It is obvious that there are two relevant peaks (maxima) in the histograms in both images. The one with the smaller gray value corresponds to the background, while the one with the higher gray value corresponds to the print. Intuitively, a good threshold corresponds to the minimum between the two peaks in the histogram. Unfortunately, neither the two maxima nor the minimum is well defined because of random fluctuations in the gray value histogram. Therefore, to robustly select the threshold that corresponds to the minimum, the histogram must be smoothed, e.g., by convolving it with a 1D Gaussian filter. Since it is not clear which σ to use, a good strategy is to smooth the histogram with progressively larger values of σ until two unique maxima with a unique minimum in between are obtained. The result of using this approach of selecting the threshold automatically is shown in Figures 3.26(e) and (f). As can be seen, suitable thresholds have been selected for both images.

The above approach of selecting the thresholds is not the only approach. Further approaches are described, for example, in (Haralick and Shapiro, 1992; Jain et al., 1995). All these approaches have in common that they are based on the gray value histogram of the image. One example of such an approach is to assume that the gray values in the foreground and background each have a normal (Gaussian) probability distribution, and to jointly fit two Gaussian densities to the histogram. The threshold is then defined as the gray value for which the two Gaussian densities have equal probabilities.

Another approach is to select the threshold by maximizing a measure of separability of the gray values of the region and the background. Otsu (1979) uses the between-class variance of these two classes as the measure of separability. It is given as a function of the threshold t by

(3.49) [image: image]

Here, gb = 2b − 1 is the maximum gray value that an image with b bits can represent and μj(k) denotes the moment of order j of the gray value histogram of all the gray values from 0 to k:

(3.50) [image: image]

where hi is the probability of the occurrence of gray value i, given by Eq. (3.4). The optimal threshold t is determined by maximizing Eq. (3.49).



3.4.1.3 Dynamic Thresholding

While calculating the thresholds from the histogram often works extremely well, it fails whenever the assumption that there are two peaks in the histogram is violated. One such example is shown in Figure 3.27. Here, the print is so noisy that the gray values of the print are extremely spread out, and consequently there is no discernible peak for the print in the histogram. Another reason for the failure of the desired peak to appear is inhomogeneous illumination. This typically destroys the relevant peaks or moves them so that they are in the wrong location. Uneven illumination often even prevents us from using a threshold operation altogether because there are no fixed thresholds that work throughout the entire image. Fortunately, the objects of interest often can be characterized by being locally brighter or darker than their local background. The prints on the ICs we have examined so far are a good example of this. Therefore, instead of specifying global thresholds, we would like to specify by how much a pixel must be brighter or darker than its local background. The only problem we have is how to determine the gray value of the local background. Since a smoothing operation, e.g., the mean, Gaussian, or median filter (see Section 3.2.3), calculates an average gray value in a window around the current pixel, we can simply use the filter output as an estimate of the gray value of the local background. The operation of comparing the image to its local background is called dynamic thresholding. Let the image be denoted by fr,c and the smoothed image be denoted by gr,c. Then, the dynamic thresholding operation for bright objects is given by

(3.51) [image: image]

[image: image]
Figure 3.27 (a) Image of a print on an IC with a rectangular ROI overlaid in light gray. (b) Gray value histogram of the image in (a) within the ROI. Note that there are no significant minima and only one significant maximum in the histogram.


while the dynamic thresholding operation for dark objects is given by

(3.52) [image: image]

Figure 3.28 gives an example of how dynamic thresholding works. In Figure 3.28(a), a small part of a print on an IC with a one-pixel-wide horizontal ROI is shown. Figure 3.28(b) displays the gray value profiles of the image and the image smoothed with a 9 × 9 mean filter. It can be seen that the text is substantially brighter than the local background estimated by the mean filter. Therefore, the characters can be segmented easily with a dynamic thresholding operation.

In the dynamic thresholding operation, the size of the smoothing filter determines the size of the objects that can be segmented. If the filter size is too small, the local background will not be estimated well in the center of the objects. As a rule of thumb, the diameter of the mean filter must be larger than the diameter of the objects to be recognized. The same holds for the median filter, and an analogous relation exists for the Gaussian filter. Furthermore, in general, if larger filter sizes are chosen for the mean and Gaussian filters, the filter output will be more representative of the local background. For example, for light objects the filter output will become darker within the light objects. For the median filter, this is not true since it will completely eliminate the objects if the filter mask is larger than the diameter of the objects. Hence, the gray values will be representative of the local background if the filter is sufficiently large. If the gray values in the smoothed image are more representative of the local background, we can typically select a larger threshold gdiff, and hence can suppress noise in the segmentation better. However, the filter mask cannot be chosen arbitrarily large because neighboring objects might adversely influence the filter output. Finally, it should be noted that the dynamic thresholding operation returns a segmentation result not only for objects that are brighter or darker than their local background but also at the bright or dark region around edges.

[image: image]
Figure 3.28 (a) Image showing a small part of a print on an IC with a one-pixel-wide horizontal ROI. (b) Gray value profiles of the image and the image smoothed with a 9 × 9 mean filter. Note that the text is substantially brighter than the local background estimated by the mean filter.


Figure 3.29(a) again shows the image of Figure 3.27(a), which could not be segmented with an automatic threshold. In Figure 3.29(b), the result of segmenting the image with a dynamic thresholding operation with gdiff = 5 is shown. The local background was obtained with a 31 × 31 mean filter. Note that the difficult print is segmented very well with dynamic thresholding.

As described so far, the dynamic thresholding operation can be used to compare an image with its local background, which is obtained by smoothing the image. With a slight modification, the dynamic thresholding operation can also be used to detect errors in an object, e.g., for print inspection. Here, the image gr,c is an image of the ideal object, i.e., the object without errors; gr,c is called the reference image. To detect deviations from the ideal object, we can simply look for too bright or too dark pixels in the image fr,c by using Eq. (3.51) or Eq. (3.52). Often, we are not interested in whether the pixels are too bright or too dark, but simply in whether they deviate too much from the reference image, i.e., the union of Eqs. (3.51) and (3.52), which is given by

(3.53) [image: image]

[image: image]
Figure 3.29 (a) Image of a print on an IC with a rectangular ROI overlaid in light gray. (b) Result of segmenting the image in (a) with a dynamic thresholding operation with gdiff = 5 and a 31 × 31 mean filter.


Note that this pixel-by-pixel comparison requires that the image fr,c of the object to check and the reference image gr,c are aligned very accurately to avoid spurious gray value differences that would be interpreted as errors. This can be ensured either by the mechanical setup or by finding the pose of the object in the current image, e.g., using template matching (see Section 3.11), and then transforming the image to the pose of the object in the ideal image (see Section 3.3).



3.4.1.4 Variation Model

This kind of dynamic thresholding operation is very strict on the shape of the objects. For example, if the size of the object increases by half a pixel and the gray value difference between the object and the background is 200, the gray value difference between the current image and the model image will be 100 at the object’s edges. This is a significant gray value difference, which would surely be larger than any reasonable gabs. In real applications, however, small variations of the object’s shape typically should be tolerated. On the other hand, small gray value changes in areas where the object’s shape does not change should still be recognized as an error. To achieve this behavior, we can introduce a thresholding operation that takes the expected gray value variations in the image into account. Let us denote the permissible variations in the image by vr,c. Ideally, we would like to segment the pixels that differ from the reference image by more than the permissible variations:

(3.54) [image: image]

The permissible variations can be determined by learning them from a set of training images. For example, if we use n training images of objects with permissible variations, the standard deviation of the gray values of each pixel can be used to derive vr,c. If we use n images to define the variations of the ideal object, we might as well use the mean of each pixel to define the reference image gr,c to reduce noise. Of course, the n training images must be aligned with sufficient accuracy. The mean and standard deviation of the n training images are given by

(3.55) [image: image]

(3.56) [image: image]

The images mr,c and sr,c model the reference image and the allowed variations of the reference image. Hence, we can call this approach a variation model. Note that mr,c is identical to the temporal average of Eq. (3.13). To define vr,c, ideally we could simply set vr,c to a small multiple c of the standard deviation, i.e., vr,c = csr,c, where, for example, c = 3. Unfortunately, this approach does not work well if the variations in the training images are extremely small, e.g., because the noise in the training images is significantly smaller than in the test images, or because parts of the object are near the saturation limit of the camera. In these cases, it is useful to introduce an absolute threshold a for the variation images, which is used whenever the variations in the training images are very small: vr,c = max(a, csr,c). As a further generalization, it is sometimes useful to have different thresholds for too bright and too dark pixels. With this, the variation threshold is no longer symmetric with respect to mr,c, and we need to introduce two threshold images for the too bright and too dark pixels, respectively. If we denote the threshold images by ur,c and lr,c, the absolute thresholds by a and b, and the factors for the standard deviations by c and d, the variation model segmentation is given by

(3.57) [image: image]

where

(3.58) [image: image]

Figures 3.30(a) and (b) display two images of a sequence of 15 showing a print on the clip of a pen. All images are aligned such that the MVTec logo is in the center of the image. Note that the letter V in the MVTec logo moves with respect to the rest of the logo and that the corners of the letters may change their shape slightly. This happens because of the pad printing technology used to print the logo. The two colors of the logo are printed with two different pads, which can move with respect to each other. Furthermore, the size of the letters may vary because of slightly different pressures with which the pads are pressed onto the clip. To ensure that the logo has been printed correctly, the variation model can be used to determine the mean and variation images shown in Figures 3.30(c) and (d), and from them the threshold images shown in Figures 3.30(e) and (f). Note that the variation is large at the letter V of the logo because this letter may move with respect to the rest of the logo. Also note the large variation at the edges of the clip, which occurs because the logo’s position varies on the clip.

[image: image]
Figure 3.30 (a), (b) Two images of a sequence of 15 showing a print on the clip of a pen. Note that the letter V in the MVTec logo moves slightly with respect to the rest of the logo. (c) Reference image mr,c of the variation model computed from the 15 training images. (d) Standard deviation image sr,c. For better visibility [image: image] is displayed. (e), (f) Minimum and maximum threshold images ur,c and lr,c computed with a = b = 20 and c = d = 3.


Figure 3.31(a) shows a logo with errors in the letters T (small hole) and C (too little ink). From Figure 3.31(b), it can be seen that the two errors can be detected reliably. Figure 3.31(c) shows a different kind of error: the letter V has moved too high and to the right. This kind of error can also be detected easily, as shown in Figure 3.31(d).

As described so far, the variation model requires n training images to construct the reference and variation images. In some applications, however, it is possible to acquire only a single reference image. In these cases, there are two options to create the variation model. The first option is to create artificial variations of the model, e.g., by creating translated versions of the reference image. Another option can be derived by noting that the variations are necessarily large at the edges of the object if we allow small size and position tolerances. This can be clearly seen in Figure 3.30(d). Consequently, in the absence of training images that show the real variations of the object, a reasonable approximation for sr,c is given by computing the edge amplitude image of the reference image using one of the edge filters described in Section 3.7.3.

[image: image]
Figure 3.31 (a) Image showing a logo with errors in the letters T (small hole) and C (too little ink). (b) Errors displayed in white, segmented with the variation model of Figure 3.30. (c) Image showing a logo in which the letter V has moved too high and to the right. (d) Segmented errors.





3.4.2 Extraction of Connected Components

The segmentation algorithms in the previous section return one region as the segmentation result (recall the definitions in Eqs. (3.48)–(3.52)). Typically, the segmented region contains multiple objects that should be returned individually. For example, in the examples in Figures 3.25–3.29, we are interested in obtaining each character as a separate region. Typically, the objects we are interested in are characterized by forming a connected set of pixels. Hence, to obtain the individual regions we must compute the connected components of the segmented region.

[image: image]
Figure 3.32 The two possible definitions of connectivity on rectangular pixel grids: (a) 4-connectivity, and (b) 8-connectivity.


To be able to compute the connected components, we must define when two pixels should be considered connected. On a rectangular pixel grid, there are only two natural options to define the connectivity. The first possibility is to define two pixels as being connected if they have an edge in common, i.e., if the pixel is directly above, below, left, or right of the current pixel, as shown in Figure 3.32(a). Since each pixel has four connected pixels, this definition is called 4-connectivity or 4-neighborhood. Alternatively, the definition can be extended to also include the diagonally adjacent pixels, as shown in Figure 3.32(b). This definition is called 8-connectivity or 8-neighborhood.

While these definitions are easy to understand, they cause problematic behavior if the same definition is used on both the foreground and background. Figure 3.33 shows some of the problems that occur if 8-connectivity is used for the foreground and background. In Figure 3.33(a), there is clearly a single line in the foreground, which divides the background into two connected components. This is what we would intuitively expect. However, as Figure 3.33(b) shows, if the line is slightly rotated we still obtain a single connected component in the foreground. However, now the background is also a single component. This is quite counterintuitive. Figure 3.33(c) shows another peculiarity. Again, the foreground region consists of a single connected component. Intuitively, we would say that the region contains a hole. However, the background is also a single connected component, indicating that the region contains no hole. The only remedy for this problem is to use opposite connectivities on the foreground and background. If, for example, 4-connectivity is used for the background in the examples in Figure 3.33, all of the above problems are solved. Likewise, if 4-connectivity is used for the foreground and 8-connectivity for the background, the inconsistencies are avoided.

To compute the connected components on the run-length representation of a region, a classical depth-first search can be performed (Sedgewick, 1990). We can repeatedly search for the first unprocessed run, and then search for overlapping runs in the adjacent rows of the image. The used connectivity determines whether two runs overlap. For 4-connectivity, the runs must at least have one pixel in the same column, while for 8-connectivity, the runs must at least touch diagonally. An example of this procedure is shown in Figure 3.34. The run-length representation of the input region is shown in Figure 3.34(a), the search tree for the depth-first search using 8-connectivity is shown in Figure 3.34(b), and the resulting connected components are shown in Figure 3.34(c). For 8-connectivity, three connected components result. If 4-connectivity had been used, four connected components would have resulted.

[image: image]
Figure 3.33 Some peculiarities occur when the same connectivity, in this case 8-connectivity, is used for the foreground and background. (a) The single line in the foreground clearly divides the background into two connected components. (b) If the line is very slightly rotated, there is still a single line, but now the background is a single component, which is counterintuitive. (c) The single region in the foreground intuitively contains one hole. However, the background is also a single connected component, indicating that the region has no hole, which is also counterintuitive.


[image: image]
Figure 3.34 (a) Run-length representation of a region containing seven runs. (b) Search tree when performing a depth-first search for the connected components of the region in (a) using 8-connectivity. The numbers indicate the runs. (c) Resulting connected components.


It should be noted that the connected components can also be computed from the representation of a region as a binary image. The output of this operation is a label image. Therefore, this operation is also called labeling or component labeling. For a description of algorithms that compute the connected components from a binary image, see (Haralick and Shapiro, 1992; Jain et al., 1995).

Figures 3.35(a) and (b) show the result of computing the connected components of the regions in Figures 3.26(e) and (f). Each character is a connected component. Furthermore, the noisy segmentation results are also returned as separate components. Thus, it is easy to remove them from the segmentation, e.g., based on their area.

[image: image]
Figure 3.35 (a), (b) Result of computing the connected components of the regions in Figures 3.26(e) and (f). The connected components are visualized by using eight different gray values cyclically.




3.4.3 Subpixel-Precise Thresholding

All the thresholding operations we have discussed so far have been pixel-precise. In most cases, this precision is sufficient. However, some applications require a higher accuracy than the pixel grid. Therefore, an algorithm that returns a result with subpixel precision is sometimes required. Obviously, the result of this subpixel-precise thresholding operation cannot be a region, which is only pixel-precise. The appropriate data structure for this purpose therefore is a subpixel-precise contour (see Section 3.1.3). This contour will represent the boundary between regions in the image that have gray values above the gray value threshold gsub and regions that have gray values below gsub. To obtain this boundary, we must convert the discrete representation of the image into a continuous function. This can be done, for example, with bilinear interpolation (see Eq. (3.43) in Section 3.3.2.2). Once we have obtained a continuous representation of the image, the subpixel-precise thresholding operation conceptually consists of intersecting the image function f (r, c) with the constant function g(r, c) = gsub. Figure 3.36 shows the bilinearly interpolated image f (r, c) in a 2 × 2 block of the four closest pixel centers. The closest pixel centers lie at the corners of the graph. The bottom of the graph shows the intersection curve of the image f (r, c) in this 2 × 2 block with the constant gray value gsub = 100. Note that this curve is part of a hyperbola. Since this hyperbolic curve would be quite cumbersome to represent, we can simply substitute it with a straight line segment between the two points where the hyperbola leaves the 2 × 2 block. This line segment constitutes one segment of the subpixel contour we are interested in. Each 2 × 2 block in the image typically contains between zero and two of these line segments. If the 2 × 2 block contains an intersection of two contours, four line segments may occur. To obtain meaningful contours, these segments need to be linked. This can be done by repeatedly selecting the first unprocessed line segment in the image as the first segment of the contour and then tracing the adjacent line segments until the contour closes, reaches the image border, or reaches an intersection point. The result of this linking step is typically closed contours that enclose a region in the image in which the gray values are either larger or smaller than the threshold. Note that, if such a region contains holes, one contour will be created for the outer boundary of the region and one for each hole.

[image: image]
Figure 3.36 The graph shows gray values that are interpolated bilinearly between four pixel centers, lying at the corners of the graph, and the intersection curve with the gray value gsub = 100 at the bottom of the graph. This curve (part of a hyperbola) is the boundary between the region with gray values > 100 and gray values < 100.


Figure 3.37(a) shows an image of a PCB that contains a ball grid array (BGA) of solder pads. To ensure good electrical contact, it must be ensured that the pads have the correct shape and position. This requires high accuracy, and, since in this application typically the resolution of the image is small compared to the size of the balls and pads, the segmentation must be performed with subpixel accuracy. Figure 3.37(b) shows the result of performing a subpixel-precise thresholding operation on the image in Figure 3.37(a). To see enough details of the results, the part that corresponds to the white rectangle in Figure 3.37(a) is displayed. The boundary of the pads is extracted with very good accuracy. Figure 3.37(c) shows even more detail: the left pad in the center row of Figure 3.37(b), which contains an error that must be detected. As can be seen, the subpixel-precise contour correctly captures the erroneous region of the pad. We can also easily see the individual line segments in the subpixel-precise contour and how they are contained in the 2 × 2 pixel blocks. Note that each block lies between four pixel centers. Therefore, the contour’s line segments end at the lines that connect the pixel centers. Note also that in this part of the image there is only one block in which two line segments are contained: at the position where the contour enters the error on the pad. All the other blocks contain one or no line segments.

[image: image]
Figure 3.37 (a) Image of a PCB with BGA solder pads. (b) Result of applying a subpixel-precise threshold to the image in (a). The part that is being displayed corresponds to the white rectangle in (a). (c) Detail of the left pad in the center row of (b).





3.5 Feature Extraction

In the previous sections, we have seen how to extract regions or subpixel-precise contours from an image. While the regions and contours are very useful, they may not be sufficient because they contain the raw description of the segmented data. Often, we must select certain regions or contours from the segmentation result, e.g., to remove unwanted parts of the segmentation. Furthermore, often we are interested in gauging the objects. In other applications, we might want to classify the objects, e.g., in OCR, to determine the type of the object. All these applications require that we determine one or more characteristic quantities from the regions or contours. The quantities we determine are called features. Typically they are real numbers. The process of determining the features is called feature extraction. There are different kinds of features. Region features are features that can be extracted from the regions themselves. In contrast, gray value features also use the gray values in the image within the region. Finally, contour features are based on the coordinates of the contour.


3.5.1 Region Features


3.5.1.1 Area

By far the simplest region feature is the area of the region:

(3.59) [image: image]

Hence, the area a of the region is simply the number of points |R| in the region. If the region is represented as a binary image, the first sum must be used to compute the area; whereas if a run-length representation is used, the second sum can be used. Recall from Eq. (3.2) that a region can be regarded as the union of its runs, and the area of a run is extremely simple to compute. Note that the second sum contains many fewer terms than the first sum, as discussed in Section 3.1.2. Hence, the run-length representation of a region will lead to a much faster computation of the area.

[image: image]
Figure 3.38 (a), (b) Result of selecting regions with an area ≥ 20 from the regions in Figures 3.35(a) and (b). The connected components are visualized by using eight different gray values cyclically.


This is true for almost all region features.

Figure 3.38 shows the result of selecting all regions with an area ≥ 20 from the regions in Figures 3.35(a) and (b). Note that all the characters have been selected, while all noisy segmentation results have been removed. These regions could now be used as input for OCR.



3.5.1.2 Moments

The area is a special case of a more general class of features called the moments of the region. The moment of order (p, q), with p ≥ 0 and q ≥ 0, is defined as

(3.60) [image: image]

Note that m0,0 is the area of the region. As for the area, simple formulas to compute the moments solely based on the runs can be derived. Hence, the moments can be computed very efficiently in the run-length representation.

The moments in Eq. (3.60) depend on the size of the region. Often, it is desirable to have features that are invariant to the size of the objects. To obtain such features, we can simply divide the moments by the area of the region if p + q ≥ 1 to get normalized moments:

(3.61) [image: image]

The most interesting feature that can be derived from the normalized moments is the center of gravity of the region, which is given by (n1,0, n0,1)┬. It can be used to describe the position of the region. Note that the center of gravity is a subpixel-precise feature, even though it is computed from pixel-precise data.

The normalized moments depend on the position in the image. Often, it is useful to make the features invariant to the position of the region in the image. This can be done by calculating the moments relative to the center of gravity of the region.

[image: image]
Figure 3.39 The geometric parameters of an ellipse.


These central moments are given by (p + q ≥ 2):

(3.62) [image: image]

Note that they are also normalized.



3.5.1.3 Ellipse Parameters

The second central moments (p + q = 2) are particularly interesting. They enable us to define an orientation and an extent for the region. This is done by assuming that the moments of order 1 and 2 of the region were obtained from an ellipse. Then, from these five moments, the five geometric parameters of the ellipse can be derived. Figure 3.39 displays the ellipse parameters graphically. The center of the ellipse is identical to the center of gravity of the region. The major and minor axes r1 and r2 and the angle of the ellipse with respect to the column axis are given by

(3.63) [image: image]

(3.64) [image: image]

(3.65) [image: image]

For a derivation of these results, see (Haralick and Shapiro, 1992) (note that, there, the diameters are used instead of the radii). From the ellipse parameters, we can derive another very useful feature: the anisometry r1/r2. This is scale-invariant and describes how elongated a region is.

The ellipse parameters are extremely useful in determining the orientations and sizes of regions. For example, the angle θ can be used to rectify rotated text. Figure 3.40(a) shows the result of thresholding the image in Figure 3.19(a). The segmentation result is treated as a single region, i.e., the connected components have not been computed. Figure 3.40(a) also displays the ellipse parameters by overlaying the major and minor axes of the equivalent ellipse. Note that the major axis is slightly longer than the region because the equivalent ellipse does not need to have the same area as the region. It only needs to have the same moments of orders 1 and 2. The angle of the major axis is a very good estimate for the rotation of the text. In fact, it has been used to rectify the images in Figures 3.19(b) and (c). Figure 3.40(b) shows the axes of the characters after the connected components have been computed. Note how well the orientation of the regions corresponds with our intuition.

[image: image]
Figure 3.40 Result of thresholding the image in Figure 3.19(a) overlaid with a visualization of the ellipse parameters. The light gray lines represent the major and minor axes of the regions. Their intersection is the center of gravity of the regions. (a) The segmentation is treated as a single region. (b) The connected components of the region are used. The angle of the major axis in (a) has been used to rotate the images in Figures 3.19(b) and (c).


While the ellipse parameters are extremely useful, they have two minor shortcomings. First of all, the orientation can be determined only if r1 ≠ r2. Our first thought might be that this applies only to circles, which have no meaningful orientation anyway. Unfortunately, this is not true. There is a much larger class of objects for which r1 = r2. All objects that have a fourfold rotational symmetry, such as squares, have r1 = r2. Hence, their orientation cannot be determined with the ellipse parameters. The second slight problem is that, since the underlying model is an ellipse, the orientation θ can only be determined modulo π (180°). This problem can be solved by determining the point in the region that has the largest distance from the center of gravity and use it to select θ or θ + π as the correct orientation.

In the above discussion, we have used various transformations to make the moment-based features invariant to certain transformations, e.g., translation and scaling. Several approaches have been proposed to create moment-based features that are invariant to a larger class of transformations, e.g., translation, rotation, and scaling (Hu, 1962) or even general affine transformations (Flusser and Suk, 1993; Mamistvalov, 1998). They are primarily used to classify objects.

[image: image]
Figure 3.41 (a) The smallest axis-parallel enclosing rectangle of a region. (b) The smallest enclosing rectangle of arbitrary orientation. (c) The smallest enclosing circle.




3.5.1.4 Enclosing Rectangles and Circles

Apart from the moment-based features, there are several other useful features that are based on the idea of finding an enclosing geometric primitive for the region. Figure 3.41(a) displays the smallest axis-parallel enclosing rectangle of a region. This rectangle is often also called the bounding box of the region. It can be calculated very easily based on the minimum and maximum row and column coordinates of the region. Based on the parameters of the rectangle, other useful quantities like the width and height of the region and their ratio can be calculated. The parameters of the bounding box are particularly useful if we want to find out quickly whether two regions can intersect. Since the smallest axis-parallel enclosing rectangle sometimes is not very tight, we can also define a smallest enclosing rectangle of arbitrary orientation, as shown in Figure 3.41(b). Its computation is much more complicated than the computation of the bounding box, however, so we cannot give details here. An efficient implementation can be found in Toussaint (1983). Note that an arbitrarily oriented rectangle has the same parameters as an ellipse. Hence, it also enables us to define the position, size, and orientation of a region. Note that, in contrast to the ellipse parameters, a useful orientation for squares is returned. The final useful enclosing primitive is an enclosing circle, as shown in Figure 3.41(c). Its computation is also quite complex (Welzl, 1991). It also enables us to define the position and size of a region.

The computations of the smallest enclosing rectangle of arbitrary orientation and the smallest enclosing circle are based on first computing the convex hull of the region. The convex hull of a set of points, and in particular a region, is the smallest convex set that contains all the points. A set is convex if, for any two points in the set, the straight line between them is completely contained in the set. The convex hull of a set of points can be computed efficiently (de Berg et al., 2010; O’Rourke, 1998). The convex hull of a region is often useful to construct ROIs from regions that have been extracted from the image. Based on the convex hull of the region, another useful feature can be defined: the convexity, which is defined as the ratio of the area of the region to the area of its convex hull. It is a feature between 0 and 1 that measures how compact the region is. A convex region has a convexity of 1. The convexity can, for example, be used to remove unwanted segmentation results, which are often highly non-convex.



3.5.1.5 Contour Length

Another useful feature of a region is its contour length. To compute it, we need to trace the boundary of the region to get a linked contour of the boundary pixels (Haralick and Shapiro, 1992). Once the contour has been computed, we simply need to sum the Euclidean distances of the contour segments, which are 1 for horizontal and vertical segments and [image: image] for diagonal segments. Based on the contour length l and the area a of the region, we can define another measure for the compactness of a region: c = l2/(4πa). For circular regions, this feature is 1, while all other regions have larger values. The compactness has similar uses as the convexity.




3.5.2 Gray Value Features


3.5.2.1 Statistical Features

We have already seen some gray value features in Section 3.2.1.2, namely the minimum and maximum gray values within the region:

(3.66) [image: image]

They are used for the contrast normalization in Section 3.2.1.2. Another obvious feature is the mean gray value within the region:

(3.67) [image: image]

Here, a is the area of the region, given by Eq. (3.59). The mean gray value is a measure of the brightness of the region. A single measurement within a reference region can be used to measure additive or multiplicative brightness changes with respect to the conditions when the system was set up. Two measurements within different reference regions can be used to measure linear brightness changes and thereby to compute a linear gray value transformation (see Section 3.2.1.1) that compensates for the brightness change, or to adapt segmentation thresholds.

The minimum, maximum, and mean gray values are statistical features. Another statistical feature is the variance of the gray values:

(3.68) [image: image]

and the standard deviation [image: image] Measuring the mean and standard deviation within a reference region can also be used to construct a linear gray value transformation that compensates for brightness changes. The standard deviation can be used to adapt segmentation thresholds. Furthermore, the standard deviation is a measure of the amount of texture that is present within the region.

The gray value histogram (3.4) and the cumulative histogram (3.5), which we have already encountered in Section 3.2.1.3, are also gray value features. We have already used a feature that is based on the histogram for robust contrast normalization: the α-quantile

(3.69) [image: image]

where cg is defined in Eq. (3.5). It was used to obtain the robust minimum and maximum gray values in Section 3.2.1.3. The quantiles were called pl and pu there. Note that for α = 0.5 we obtain the median gray value. It has similar uses to the mean gray value.



3.5.2.2 Moments

In the previous section, we have seen that the region’s moments are extremely useful features. They can be extended to gray value features in a natural manner. The gray value moment of order (p, q), with p ≥ 0 and q ≥ 0, is defined as

(3.70) [image: image]

This is the natural generalization of the region moments because we obtain the region moments from the gray value moments by using the characteristic function χR (3.1) of the region as the gray values. As for the region moments, the moment a = m0,0 can be regarded as the gray value area of the region. It is actually the “volume” of the gray value function gr,c within the region. As for the region moments, normalized moments can be defined by

(3.71) [image: image]

The moments (n1,0, n0,1)┬ define the gray value center of gravity of the region. With this, central gray value moments can be defined by

(3.72) [image: image]



3.5.2.3 Ellipse Parameters

As for the region moments, based on the second central moments, we can define the ellipse parameters, the major and minor axes, and the orientation. The formulas are identical to Eqs. (3.63)–(3.65). Furthermore, the anisometry can also be defined identically as for the regions.



3.5.2.4 Comparison of Region and Gray Value Moments

All the moment-based gray value features are very similar to their region-based counterparts. Therefore, it is interesting to look at their differences. As we saw, the gray value moments reduce to the region moments if the characteristic function of the region is used as the gray values. The characteristic function can be interpreted as the membership of a pixel to the region. A membership of 1 means that the pixel belongs to the region, while 0 means that the pixel does not belong to the region. This notion of belonging to the region is crisp, i.e., for every pixel a hard decision must be made. Suppose now that, instead of making a hard decision for every pixel, we could make a “soft” or “fuzzy” decision about whether a pixel belongs to the region, and that we encode the degree of belonging to the region by a number [image: image] [0, 1]. We can interpret the degree of belonging as a fuzzy membership value, as opposed to the crisp binary membership value. With this, the gray value image can be regarded as a fuzzy set (Mendel, 1995).

[image: image]
Figure 3.42 Subpixel-precise circle position and area using the gray value and region moments. The image represents a fuzzy membership, scaled to values between 0 and 200. The solid line is the result of segmenting with a membership of 100. The dotted line is a circle that has the same center of gravity and area as the segmented region. The dashed line is a circle that has the same gray value center of gravity and gray value area as the image. (a) Shift: 0; error in the area for the region moments: 13.2%; for the gray value moments: −0.05%. (b) Shift: 5/32 pixel; error in the row coordinate for the region moments: −0.129; for the gray value moments: 0.003. (c) Shift: 1/2 pixel; error in the area for the region moments: −8.0%; for the gray value moments: −0.015%. Note that the gray value moments yield a significantly better accuracy for this small object.


The advantage of regarding the image as a fuzzy set is that we do not have to make a hard decision about whether a pixel belongs to the object or not. Instead, the fuzzy membership value determines what percentage of the pixel belongs to the object. This enables us to measure the position and size of the objects much more accurately, especially for small objects, because in the transition zone between the foreground and background there will be some mixed pixels that allow us to capture the geometry of the object more accurately. An example of this is shown in Figure 3.42. Here, a synthetically generated subpixel-precise ideal circle of radius 3 is shifted in subpixel increments. The gray values represent a fuzzy membership, scaled to values between 0 and 200 for display purposes. The figure displays a pixel-precise region, thresholded with a value of 100, which corresponds to a membership above 0.5, as well as two circles that have a center of gravity and area that were obtained from the region and gray value moments. The gray value moments were computed in the entire image. It can be seen that the area and center of gravity are computed much more accurately by the gray value moments because the decision about whether a pixel belongs to the foreground or not has been avoided. In this example, the gray value moments result in an area error that is always smaller than 0.25% and a position error smaller than 1/200 of a pixel. In contrast, the area error for the region moments can be up to 13.2% and the position error can be up to 1/6 of a pixel. Note that both types of moments yield subpixel-accurate measurements. We can see that on ideal data it is possible to obtain an extremely high accuracy with the gray value moments, even for very small objects. On real data the accuracy will necessarily be somewhat lower. It should also be noted that the accuracy advantage of the gray value moments primarily occurs for small objects. Because the gray value moments must access every pixel within the region, whereas the region moments can be computed solely based on the run-length representation of the region, the region moments can be computed much more quickly. Hence, the gray moments are typically used only for relatively small regions.

The outstanding question we need to answer is how to define the fuzzy membership value of a pixel. If we assume that the camera has a fill factor of 100% and the gray value response of the image acquisition device and camera are linear, the gray value difference of a pixel from the background is proportional to the portion of the object that is covered by the pixel. Consequently, we can define a fuzzy membership relation as follows: every pixel that has a gray value below the background gray value gmin has a membership value of 0. Conversely, every pixel that has a gray value above the foreground gray value gmax has a membership value of 1. In between, the membership values are interpolated linearly. Since this procedure would require floating-point images, the membership is scaled to an integer image with b bits, typically 8 bits. Consequently, the fuzzy membership relation is a simple linear gray value scaling, as defined in Section 3.2.1.1. If we scale the fuzzy membership image in this manner, the gray value area needs to be divided by the maximum gray value, e.g., 255, to obtain the true area. The normalized and central gray value moments do not need to be modified in this manner since they are, by definition, invariant to a scaling of the gray values.

Figure 3.43 displays a real application where the above principles are used. In Figure 3.43(a) a BGA device with solder balls is displayed, along with two rectangles that indicate the image parts shown in Figures 3.43(b) and (c). The image in Figure 3.43(a) is first transformed into a fuzzy membership image using gmin = 40 and gmax = 120 with 8 bit resolution. The individual balls are segmented and then inspected for correct size and shape by using the gray value area and the gray value anisometry. The erroneous balls are displayed with dashed lines. To aid visual interpretation, the ellipses representing the segmented balls are scaled such that they have the same area as the gray value area. This is done because the gray value ellipse parameters typically return an ellipse with a different area than the gray value area, analogous to the region ellipse parameters (see the discussion in Section 3.5.1.3). As can be seen, all the balls that have an erroneous size or shape, indicating partially missing solder, have been correctly detected.

[image: image]
Figure 3.43 (a) Image of a BGA device. The two rectangles correspond to the image parts shown in (b) and (c). The results of inspecting the balls for correct size (gray value area ≥ 20) and correct gray value anisometry (≤ 1.25) are visualized in (b) and (c). Correct balls are displayed as solid ellipses, while defective balls are displayed as dashed ellipses.










3.5.3 Contour Features


3.5.3.1 Contour Length, Enclosing Rectangles and Circles

Many of the region features we have discussed in Section 3.5.1 can be transferred to subpixel-precise contour features in a straightforward manner. For example, the length of the subpixel-precise contour is even easier to compute because the contour is already represented explicitly by its control points (ri, ci)┬, for i = 1, … , n. It is also simple to compute the smallest enclosing axis-parallel rectangle (the bounding box) of the contour. Furthermore, the convex hull of the contour can be computed as for regions (de Berg et al., 2010; O’Rourke, 1998). From the convex hull, we can also derive the smallest enclosing circles (Welzl, 1991) and the smallest enclosing rectangles of arbitrary orientation (Toussaint, 1983).



3.5.3.2 Moments

In the previous two sections, we have seen that the moments are extremely useful features. An interesting question, therefore, is whether they can be defined for contours. In particular, it is interesting to see whether a contour has an area. Obviously, for this to be true, the contour must enclose a region, i.e., it must be closed and must not intersect itself. To simplify the formulas, let us assume that a closed contour is specified by (r1, c1)┬ = (rn, cn)┬. Let the subpixel-precise region that the contour encloses be denoted by R. Then, the moment of order (p, q) is defined as

(3.73) [image: image]

As for regions, we can define normalized and central moments. The formulas are identical to Eqs. (3.61) and (3.62) with the sums being replaced by integrals. It can be shown that these moments can be computed solely based on the control points of the contour (Steger, 1996). For example, the area and center of gravity of the contour are given by

(3.74) [image: image]

(3.75) [image: image]

(3.76) [image: image]

Analogous formulas can be derived for the second-order moments. Based on these, we can again compute the ellipse parameters, major axis, minor axis, and orientation. The formulas are identical to Eqs. (3.63)–(3.65). The moment-based contour features can be used for the same purposes as the corresponding region and gray value features. By performing an evaluation similar to that in Figure 3.42, it can be seen that the contour center of gravity and the ellipse parameters are equally as accurate as the gray value center of gravity. The accuracy of the contour area is slightly worse than that of the gray value area because we have approximated the hyperbolic segments with line segments. Since the true contour is a circle, the line segments always lie inside the true circle. Nevertheless, subpixel-thresholding and the contour moments could also have been used to detect the erroneous balls in Figure 3.43.





3.6 Morphology

In Section 3.4, we discussed how to segment regions. We have already seen that segmentation results often contain unwanted noisy parts. Furthermore, sometimes the segmentation will contain parts in which the shape of the object we are interested in has been disturbed, e.g., because of reflections. Therefore, we often need to modify the shape of the segmented regions to obtain the desired results. This is the subject of the field of mathematical morphology, which can be defined as a theory for the analysis of spatial structures (Serra, 1982; Soille, 2003). For our purposes, mathematical morphology provides a set of extremely useful operations that enable us to modify or describe the shape of objects. Morphological operations can be defined on regions and gray value images. We will discuss both types of operations in this section.


3.6.1 Region Morphology


3.6.1.1 Set Operations

All region morphology operations can be defined in terms of six very simple operations: union, intersection, difference, complement, translation, and transposition. We will take a brief look at these operations first.

The union of two regions R and S is the set of points that lie in R or in S:

(3.77) [image: image]

One important property of the union is that it is commutative: R [image: image] S = S [image: image] R. Furthermore, it is associative: (R [image: image] S) [image: image] T = R [image: image] (S [image: image] T ). While this may seem like a trivial observation, it will enable us to derive very efficient implementations for the morphological operations below. The algorithm to compute the union of two binary images is obvious: we simply need to compute the logical OR of the two images. The run time complexity of this algorithm obviously is O(wh), where w and h are the width and height of the binary image. In the run-length representation, the union can be computed with a lower complexity: O(n + m), where n and m are the number of runs in R and S. The principle of the algorithm is to merge the runs of the two regions while observing the order of the runs (see Section 3.1.2) and then to pack overlapping runs into single runs.

The intersection of two regions R and S is the set of points that lie in R and in S:

(3.78) [image: image]

Like the union, the intersection is commutative and associative. Again, the algorithm on binary images is obvious: we compute the logical AND of the two images. For the run-length representation, again an algorithm that has complexity O(n + m) can be found.

The difference of two regions R and S is the set of points that lie in R but not in S:

(3.79) [image: image]

The difference is neither commutative nor associative. Again, the algorithm on binary images is obvious: we compute the logical AND NOT of the two images. For the run-length representation, again an algorithm that has complexity O(n + m) exists.

Note that the difference can be defined in terms of the intersection and the complement of a region R, which is defined as all the points that do not lie in R:

(3.80) [image: image]

Since the complement of a finite region is infinite, it is impossible to represent it as a binary image. Therefore, for the representation of regions as binary images, it is important to define the operations without the complement. It is, however, possible to represent it as a run-length-encoded region by adding a flag that indicates whether the region or its complement is being stored. This can be used to define a more general set of morphological operations.

There is an interesting relation between the number of connected components of the background [image: image] and the number of holes of the foreground |H(R)|: we have [image: image] As discussed in Section 3.4.2, complementary connectivities must be used for the foreground and the background for this relation to hold.

Apart from the set operations, two basic geometric transformations are used in morphological operations. The translation of a region by a vector t is defined as

(3.81) [image: image]

Finally, the transposition of a region is defined as a mirroring about the origin:

(3.82) [image: image]

Note that this is the only operation where a special point (the origin) is singled out. All the other operations do not depend on the origin of the coordinate system, i.e., they are translation-invariant.



3.6.1.2 Minkowski Addition and Dilation

With these building blocks, we can now take a look at the morphological operations. They typically involve two regions. One of these is the region we want to process, which will be denoted by R below. The other region has a special meaning. It is called the structuring element, and will be denoted by S. The structuring element is the means by which we can describe the shapes we are interested in.

The first morphological operation we consider is Minkowski addition, which is defined by (see Serra, 1982; Soille, 2003)

(3.83) [image: image]

It is interesting to interpret the formulas. The first formula says that, to get the Minkowski addition of R with S, we take every point in R and every point in S and compute the vector sum of the points. The result of the Minkowski addition is the set of all points thus obtained. If we single out S, this can also be interpreted as taking all points in S, translating the region R by the vector corresponding to the point s from S, and computing the union of all the translated regions. Thus, we obtain the second formula. By symmetry, we can also translate S by all points in R to obtain the third formula. Another way to look at Minkowski addition is the fourth formula. It tells us that we move the transposed structuring element around in the plane. Whenever the translated transposed structuring element and the region have at least one point in common, we copy the translated reference point into the output. Figure 3.44 shows an example of Minkowski addition.

If the structuring element S contains the origin (0, 0)┬, the Minkowski addition is extensive, i.e., [image: image]. If S contains more than one point, we have [image: image] If S does not contain the origin, there is a vector t for which [image: image] Therefore, Minkowski addition increases the size of the region R. Furthermore, Minkowski addition is increasing, i.e., if [image: image]. Therefore, Minkowski addition preserves the inclusion relation of regions.

While Minkowski addition has a simple formula, it has one small drawback. Its geometric criterion is that the transposed structuring element has at least one point in common with the region. Ideally, we would like to have an operation that returns all translated reference points for which the structuring element itself has at least one point in common with the region. To achieve this, we only need to use the transposed structuring element in the Minkowski addition. This operation is called a dilation, and is defined by (see Serra, 1982; Soille, 2003)

(3.84) [image: image]

[image: image]
Figure 3.44 Example of the Minkowski addition R [image: images] S.


[image: image]
Figure 3.45 Example of the dilation [image: image]


Figure 3.45 shows an example of dilation. Note that the results of Minkowski addition and dilation are different. This is true whenever the structuring element is not symmetric with respect to the origin. If the structuring element is symmetric, the results of Minkowski addition and dilation are identical.

Like Minkowski addition, dilation is extensive if the structuring element S contains the origin. The other extensive properties of Minkowski addition also hold for dilation. Furthermore, dilation is increasing.

The implementation of Minkowski addition for binary images is straightforward. As suggested by the second formula in Eq. (3.83), it can be implemented as a nonlinear filter with logical OR operations. The run time complexity is proportional to the size of the image times the number of pixels in the structuring element. The second factor can be reduced to roughly the number of boundary pixels in the structuring element (Van Droogenbroeck and Talbot, 1996). Also, for binary images represented with 1 bit per pixel, very efficient algorithms can be developed for special structuring elements (Bloomberg, 2002). Nevertheless, in both cases the run time complexity is proportional to the number of pixels in the image. To derive an implementation for the run-length representation of the regions, we first need to examine some algebraic properties of Minkowski addition. It is commutative: [image: image] Furthermore, it is distributive with respect to the union: [image: image] Since a region can be regarded as the union of its runs, we can use the commutativity and distributivity to transform the Minkowski addition formula as follows:

(3.85) [image: image]

Thus, Minkowski addition can be implemented as the union of nm dilations of single runs, which are trivial to compute. Since the union of the runs can be computed easily, the run time complexity is O(mn), which is better than for binary images.

[image: image]
Figure 3.46 (a) Image of a print of several characters. (b) Result of thresholding (a). (c) Connected components of (b) displayed with six different gray values. Note that the characters and their dots are separate connected components, which is undesirable. (d) Result of dilating the region in (b) with a circle of diameter 5. (e) Connected components of (d). Note that each character is now a single connected component. (f) Result of intersecting the connected components in (e) with the original segmentation in (b). This transforms the connected components into the correct shape.


As we have seen, dilation and Minkowski addition enlarge the input region. This can be used, for example, to merge separate parts of a region into a single part, and thus to obtain the correct connected components of objects. One example of this is shown in Figure 3.46. Here, we want to segment each character as a separate connected component. If we compute the connected components of the thresholded region in Figure 3.46(b), we can see that the characters and their dots are separate components (Figure 3.46(c)). To solve this problem, we first need to connect the dots with their characters. This can be achieved using a dilation with a circle of diameter 5 (Figure 3.46(d)). With this, the correct connected components are obtained (Figure 3.46(e)). Unfortunately, they have the wrong shape because of the dilation. This can be corrected by intersecting the components with the originally segmented region. Figure 3.46(f) shows that with these simple steps we have obtained one component with the correct shape for each character.

Dilation is also very useful for constructing ROIs based on regions that were extracted from the image. We will see an example of this in Section 3.7.3.5.



3.6.1.3 Minkowski Subtraction and Erosion

The second type of morphological operation is Minkowski subtraction. It is defined by (see Serra, 1982; Soille, 2003)

(3.86) [image: image]

The first formula is similar to the second formula in Eq. (3.83) with the union having been replaced by an intersection. Hence, we can still think about moving the region R by all vectors s from S. However, now the points must be contained in all translated regions (instead of at least one translated region). This is what the second formula in Eq. (3.86) expresses. Finally, if we look at the third formula, we see that we can also move the transposed structuring element around in the plane. If it is completely contained in the region R, we add its reference point to the output. Again, note the similarity to Minkowski addition, where the structuring element had to have at least one point in common with the region. For Minkowski subtraction, it must lie completely within the region. Figure 3.47 shows an example of Minkowski subtraction.

[image: image]
Figure 3.47 Example of the Minkowski subtraction R Ɵ S.


If the structuring element S contains the origin, Minkowski subtraction is anti-extensive, i.e., [image: image] If S contains more than one point, we have [image: image] If S does not contain the origin, there is a vector t for which [image: image]. Therefore, Minkowski subtraction decreases the size of the region R. Furthermore, Minkowski subtraction is increasing, i.e., if [image: image]

Minkowski subtraction has the same small drawback as Minkowski addition: its geometric criterion is that the transposed structuring element must lie completely within the region. As for dilation, we can use the transposed structuring element. This operation is called erosion and is defined by

(3.87) [image: image]

Figure 3.48 shows an example of erosion. Again, note that Minkowski subtraction and erosion produce identical results only if the structuring element is symmetric with respect to the origin.

Like Minkowski subtraction, erosion is anti-extensive if the structuring element S contains the origin. The other anti-extensive properties of Minkowski subtraction also hold for erosion. Furthermore, erosion is increasing.

[image: image]
Figure 3.48 Example of the erosion [image: image].


[image: image]
Figure 3.49 (a) Image of several globular objects. (b) Result of thresholding (a). (c) Connected components of (b) displayed with six different gray values. Note that several objects touch each other and hence are in the same connected component. (d) Result of eroding the region in (b) with a circle of diameter 15. (e) Connected components of (d). Note that each object is now a single connected component. (f) Result of dilating the connected components in (e) with a circle of diameter 15. This transforms the correct connected components into approximately the correct shape.


The fact that Minkowski subtraction and erosion shrink the input region can, for example, be used to separate objects that are attached to each other. Figure 3.49 shows an example. Here, the goal is to segment the individual globular objects. The result of thresholding the image is shown in Figure 3.49(b). If we compute the connected components of this region, an incorrect result is obtained because several objects touch each other (Figure 3.49(c)). The solution is to erode the region with a circle of diameter 15 (Figure 3.49(d)) before computing the connected components (Figure 3.49(e)). Unfortunately, the connected components have the wrong shape. Here, we cannot use the same strategy that we used for the dilation (intersecting the connected components with the original segmentation) because the erosion has shrunk the region. To approximately get the original shape back, we can dilate the connected components with the same structuring element that we used for the erosion (Figure 3.49(f)) (more precisely, the dilation is actually a Minkowski addition; however, since the structuring element is symmetric in this example, both operations return the same result).

We can see another use of erosion if we remember its definition: it returns the translated reference point of the structuring element S for every translation for which St completely fits into the region R. Hence, erosion acts like a template matching operation. An example of this use of erosion is shown in Figure 3.50. In Figure 3.50(a), we can see an image of a print of several letters, with the structuring element used for the erosion overlaid in white. The structuring element corresponds to the center line of the letter “e.” The reference point of the structuring element is its center of gravity. The result of eroding the thresholded letters (Figure 3.50(b)) with the structuring element is shown in Figure 3.50(c). Note that all letters “e” have been correctly identified. In Figures 3.50(d)–(f), the experiment is repeated with another set of letters. The structuring element is the center line of the letter “o.” Note that the erosion correctly finds the letters “o.” However, in addition the circular parts of the letters “p” and “q” are found, since the structuring element completely fits into them.

[image: image]
Figure 3.50 (a) Image of a print of several characters with the structuring element used for the erosion overlaid in white. (b) Result of thresholding (a). (c) Result of the erosion of (b) with the structuring element in (a). Note that the reference point of all letters “e” has been found. (d) A different set of characters with the structuring element used for the erosion overlaid in white. (e) Result of thresholding (d). (f) Result of the erosion of (e) with the structuring element in (d). Note that the reference point of the letter “o” has been identified correctly. In addition, the circular parts of the letters “p” and “q” have been extracted.


An interesting property of Minkowski addition and subtraction as well as dilation and erosion is that they are dual to each other with respect to the complement operation. For Minkowski addition and subtraction, we have

(3.88) [image: image]

The same identities hold for dilation and erosion. Hence, a dilation of the foreground is identical to an erosion of the background, and vice versa. We can make use of the duality whenever we want to avoid computing the complement explicitly, and hence to speed up some operations. Note that the duality holds only if the complement can be infinite. Hence, it does not hold for binary images, where the complemented region needs to be clipped to a certain image size.



3.6.1.4 Region Boundaries

One extremely useful application of erosion and dilation is the calculation of the boundary of a region. The algorithm to compute the true boundary as a linked list of contour points is quite complicated (Haralick and Shapiro, 1992). However, an approximation to the boundary can be computed very easily. If we want to compute the inner boundary, we simply need to erode the region appropriately and to subtract the eroded region from the original region:

(3.89) [image: image]

[image: image]
Figure 3.51 The structuring elements for computing the boundary of a region with 8-connectivity (S8) and 4-connectivity (S4).


[image: image]
Figure 3.52 (a) Detail of a larger region. (b) The 8-connected boundary of (a) computed by Eq. (3.89). (c) The 4-connected boundary of (a). (d) Linked contour of the boundary of (a).


By duality, the outer boundary (the inner boundary of the background) can be computed with a dilation:

(3.90) [image: image]

To get a suitable boundary, the structuring element S must be chosen appropriately. If we want to obtain an 8-connected boundary, we must use the structuring element S8 in Figure 3.51. If we want a 4-connected boundary, we must use S4.

Figure 3.52 shows an example of the computation of the inner boundary of a region. A small part of the input region is shown in Figure 3.52(a). The boundary of the region computed by Eq. (3.89) with S8 is shown in Figure 3.52(b), while the result with S4 is shown in Figure 3.52(c). Note that the boundary is only approximately 8- or 4-connected. For example, in the 8-connected boundary there are occasional 4-connected pixels. Finally, the boundary of the region as computed by an algorithm that traces around the boundary of the region and links the boundary points into contours is shown in Figure 3.52(d). Note that this is the true boundary of the region. Also note that, since only part of the region is displayed, there is no boundary at the bottom of the displayed part.



3.6.1.5 Hit-or-Miss Transform

As we have seen, erosion can be used as a template matching operation. However, sometimes it is not selective enough and returns too many matches. The reason for this is that erosion does not take the background into account. For this reason, an operation that explicitly models the background is needed. This operation is called the hit-or-miss transform. Since the foreground and background should be taken into account, it uses a structuring element that consists of two parts: S = (Sf , Sb) with [image: image] With this, the hit-or-miss transform is defined as (see Serra, 1982; Soille, 2003)

(3.91) [image: image]

[image: image]
Figure 3.53 (a) Image of a print of several characters. (b) The structuring element used for the hit-or-miss transform; the black part is the foreground structuring element and the light gray part is the background structuring element. (c) Result of the hit-or-miss transform of the thresholded image (see Figure 3.50(e)) with the structuring element in (b). Note that only the reference point of the letter “o” has been identified, in contrast to the erosion (see Figure 3.50(f)).


Hence, the hit-or-miss transform returns those translated reference points for which the foreground structuring element Sf completely lies within the foreground and the background structuring element Sb completely lies within the background. The second equation is especially useful from an implementation point of view since it avoids having to compute the complement. The hit-or-miss transform is dual to itself if the foreground and background structuring elements are exchanged: [image: image][image: image]

Figure 3.53 shows the same image as Figure 3.50(d). The goal here is to match only the letters “o” in the image. To do so, we can define a structuring element that crosses the vertical strokes of the letters “p” and “q” (and also “b” and “d”). One possible structuring element for this purpose is shown in Figure 3.53(b). With the hit-or-miss transform, we are able to remove the found matches for the letters “p” and “q” from the result, as can be seen from Figure 3.53(c).



3.6.1.6 Opening and Closing

We now turn our attention to operations in which the basic operations we have discussed so far are executed in succession. The first such operation is opening (Serra, 1982; Soille, 2003):

(3.92) [image: image]

Hence, opening is an erosion followed by a Minkowski addition with the same structuring element. The second equation tells us that we can visualize opening by moving the structuring element around the plane. Whenever the structuring element completely lies within the region, we add the entire translated structuring element to the output region (and not just the translated reference point as in erosion).

[image: image]
Figure 3.54 (a) Result of applying an opening with the structuring element in Figure 3.50(a) to the segmented region in Figure 3.50(b). (b) Result of applying an opening with the structuring element in Figure 3.50(d) to the segmented region in Figure 3.50(e). The result of the opening is overlaid in light gray onto the input region, displayed in black. Note that opening finds the same instances of the structuring elements as erosion but preserves the shape of the matched structuring elements.


The opening’s definition causes the location of the reference point to cancel out, which can be seen from the second equation. Therefore, opening is translation-invariant with respect to the structuring element, i.e., R◦St = R◦S. In contrast to erosion and dilation, opening is idempotent, i.e., applying it multiple times has the same effect as applying it once: (R◦S)◦S = R◦S.

Like erosion, opening is anti-extensive. Since opening is translation-invariant, we do not have to require that the structuring element S contains the origin. Furthermore, opening is increasing.

Like erosion, opening can be used as a template matching operation. In contrast to erosion and the hit-or-miss transform, it returns all points of the input region into which the structuring element fits. Hence it preserves the shape of the object to find. An example of this is shown in Figure 3.54 , where the same input images and structuring elements as in Figure 3.50 are used. Note that opening has found the same instances of the structuring elements as erosion but has preserved the shape of the matched structuring elements. Hence, in this example it also finds the letters “p” and “q.” To find only the letters “o,” we could combine the hit-or-miss transformation with a Minkowski addition to obtain a hit-or-miss opening: [image: image].

Another very useful property of opening results if structuring elements like circles or rectangles are used. If an opening with these structuring elements is performed, parts of the region that are smaller than the structuring element are removed from the region. This can be used to remove unwanted appendages from the region and to smooth the boundary of the region by removing small protrusions. Furthermore, small bridges between object parts can be removed, which can be used to separate objects. Finally, the opening can be used to suppress small objects. Figure 3.55 shows an example of using opening to remove unwanted appendages and small objects from the segmentation. In Figure 3.55(a), an image of a ball-bonded die is shown. The goal is to segment the balls on the pads. If the image is thresholded (Figure 3.55(b)), the wires that are attached to the balls are also extracted. Furthermore, there are extraneous small objects in the segmentation. By performing an opening with a circle of diameter 31, the wires and small objects are removed, and only smooth region parts that correspond to the balls are retained.

[image: image]
Figure 3.55 (a) Image of a ball-bonded die. The goal is to segment the balls. (b) Result of thresholding (a). The segmentation includes the wires that are bonded to the pads. (c) Result of performing an opening with a circle of diameter 31. The wires and the other extraneous segmentation results have been removed by the opening, and only the balls remain.


The second interesting operation in which the basic morphological operations are executed in succession is closing (Serra, 1982; Soille, 2003):

(3.93) [image: image]

Closing is a dilation followed by a Minkowski subtraction with the same structuring element. There is, unfortunately, no simple formula that tells us how closing can be visualized. The second formula is actually defined by the duality of opening and closing, namely a closing on the foreground is identical to an opening on the background, and vice versa:

(3.94) [image: image]

Like opening, closing is translation-invariant with respect to the structuring element, i.e., R • St = R • S, and idempotent, i.e., (R • S) • S = R • S.

Like dilation, closing is extensive. Since closing is translation-invariant, we do not have to require that the structuring element S contains the origin. Furthermore, closing is increasing.

Since closing is dual to opening, it can be used to merge objects separated by gaps that are smaller than the structuring element. If structuring elements like circles or rectangles are used, closing can be used to close holes and to remove indentations that are smaller than the structuring element. The second property enables us to smooth the boundary of the region.

Figure 3.56 shows how closing can be used to remove indentations in a region. In Figure 3.56(a), a molded plastic part with a protrusion is shown. The goal is to detect the protrusion because it is a production error. Since the actual object is circular, if the entire part were visible, the protrusion could be detected by performing an opening with a circle that is almost as large as the object and then subtracting the opened region from the original segmentation. However, only a part of the object is visible, so the erosion in the opening would create artifacts or remove the object entirely. Therefore, by duality we can pursue the opposite approach: we can segment the background and perform a closing on it. Figure 3.56(b) shows the result of thresholding the background. The protrusion is now an indentation in the background. The result of performing a closing with a circle of diameter 801 is shown in Figure 3.56(c). The diameter of the circle was set to 801 because it is large enough to completely fill the indentation and to recover the circular shape of the object. If much smaller circles were used, e.g., with a diameter of 401, the indentation would not be filled completely. To detect the error itself, we can compute the difference between the closing and the original segmentation. To remove some noisy pixels that result because the boundary of the original segmentation is not as smooth as the closed region, the difference can be postprocessed with an opening, e.g., with a 5 × 5 rectangle, to remove the noisy pixels. The resulting error region is shown in Figure 3.56(d).

[image: image]
Figure 3.56 (a) Image of size 768 × 576 showing a molded plastic part with a protrusion. (b) Result of thresholding the background of (a). (c) Result of a closing on (b) with a circle of diameter 801. Note that the protrusion (the indentation in the background) has been filled in and the circular shape of the plastic part has been recovered. (d) Result of computing the difference between (c) and (b) and performing an opening with a 5 × 5 rectangle on the difference to remove small parts. The result is the erroneous protrusion of the mold.




3.6.1.7 Skeleton

The operations we have discussed so far have been mostly concerned with the region as a 2D object. The only exception has been the calculation of the boundary of a region, which reduces a region to its 1D outline, and hence gives a more condensed description of the region. If the objects are mostly linear, i.e., are regions that have a much greater length than width, a more salient description of the object would be obtained if we could somehow capture its one-pixel-wide center line. This center line is called the skeleton or medial axis of the region. Several definitions of a skeleton can be given (Soille, 2003). One intuitive definition can be obtained if we imagine that we try to fit circles that are as large as possible into the region. More precisely, a circle C is maximal in the region R if there is no other circle in R that is a superset of C. The skeleton then is defined as the set of the centers of the maximal circles. Consequently, a point on the skeleton has at least two different points on the boundary of the region to which it has the same shortest distance. Algorithms to compute the skeleton are given in Soille (2003); Lam et al. (1992). They basically can be regarded as sequential hit-or-miss transforms that find points on the boundary of the region that cannot belong to the skeleton and delete them. The goal of skeletonization is to preserve the homotopy of the region, i.e., the number of connected components and holes. One set of structuring elements for computing an 8-connected skeleton is shown in Figure 3.57 (Soille, 2003). These structuring elements are used sequentially in all four possible orientations to find pixels with the hit-or-miss transform that can be deleted from the region. The iteration is continued until no changes occur. It should be noted that skeletonization is an example of an algorithm that can be implemented more efficiently on binary images than on the run-length representation.

Figure 3.58(a) shows a part of an image of a PCB with several tracks. The image is thresholded (Figure 3.58(b)), and the skeleton of the thresholded region is computed with the above algorithm (Figure 3.58(c)). Note that the skeleton contains several undesirable branches on the upper two tracks. For this reason, many different skeletonization algorithms have been proposed. An algorithm that produces relatively few unwanted branches is described by Eckhardt and Maderlechner (1993). The result of this algorithm is shown in Figure 3.58(d). Note that there are no undesirable branches in this case.

[image: image]
Figure 3.57 The structuring elements for computing an 8-connected skeleton of a region. These structuring elements are used sequentially in all four possible orientations to find pixels that can be deleted.


[image: image]
Figure 3.58 (a) Image showing a part of a PCB with several tracks. (b) Result of thresholding (a). (c) The 8-connected skeleton computed with an algorithm that uses the structuring elements in Figure 3.57 (Soille, 2003). (d) Result of computing the skeleton with an algorithm that produces fewer skeleton branches (Eckhardt and Maderlechner, 1993).




3.6.1.8 Distance Transform

The final region morphology operation that we will discuss is the distance transform, which returns an image instead of a region. This image contains, for each point in the region R, the shortest distance to a point outside the region (i.e., to [image: image] Consequently, all points on the inner boundary of the region have a distance of 1. Typically, the distance of the other points is obtained by considering paths that must be contained in the pixel grid. Thus, the chosen connectivity defines which paths are allowed. If 4-connectivity is used, the corresponding distance is called the city-block distance. Let (r1, c1)┬ and (r2, c2)┬ be two points. Then the city-block distance is given by

(3.95) [image: image]

Figure 3.59(a) shows the city-block distance between two points. In the example, the city-block distance is 5. On the other hand, if 8-connectivity is used, the corresponding distance is called the chessboard distance. It is given by

(3.96) [image: image]

In the example in Figure 3.59(b), the chessboard distance between the two points is 3. Both these distances are approximations to the Euclidean distance, given by

(3.97) [image: image]

For the example in Figure 3.59(c), the Euclidean distance is [image: image]

[image: image]
Figure 3.59 (a) City-block distance between two points. (b) Chessboard distance. (c) Euclidean distance.


[image: image]
Figure 3.60 Masks used in the two sequential scans to compute the distance transform. The left mask is used in the left-to-right, top-to-bottom scan. The right mask is used in the scan in the opposite direction.


Algorithms to compute the distance transform are described in Borgefors (1984). They work by initializing the distance image outside the region with 0 and within the region with a suitably chosen maximum distance, i.e., 2b − 1, where b is the number of bits in the distance image, e.g., 216 − 1. Then, two sequential line-by-line scans through the image are performed, one from the top left to the bottom right corner, and the second in the opposite direction. In each case, a small mask is placed at the current pixel, and the minimum over the elements in the mask of the already computed distances plus the elements in the mask is computed. The two masks are shown in Figure 3.60. If d1 = 1 and d2 = ∞ are used (i.e., d2 is ignored), the city-block distance is computed. For d1 = 1 and d2 = 1, the chessboard distance results. Interestingly, if d1 = 3 and d2 = 4 are used and the distance image is divided by 3, a very good approximation to the Euclidean distance results, which can be computed solely with integer operations. This distance is called the chamfer-3-4 distance (Borgefors, 1984). With slight modifications, the true Euclidean distance can be computed (Danielsson, 1980). The principle is to compute the number of horizontal and vertical steps to reach the boundary using masks similar to the ones in Figure 3.60, and then to compute the Euclidean distance from the number of steps.

The skeleton and the distance transform can be combined to compute the width of linear objects efficiently. In Figure 3.61(a), a PCB with tracks that have several errors is shown. The protrusions on the tracks are called spurs, while the indentations are called mouse bites (Moganti et al., 1996). They are deviations from the correct track width. Figure 3.61(b) shows the result of computing the distance transform with the chamfer-3-4 distance on the segmented tracks. The errors are clearly visible in the distance transform. To extract the width of the tracks, we need to calculate the skeleton of the segmented tracks (Figure 3.61(c)). If the skeleton is used as the ROI for the distance image, each point on the skeleton will have the corresponding distance to the border of the track. Since the skeleton is the center line of the track, this distance is the width of the track. Hence, to detect errors, we simply need to threshold the distance image within the skeleton. Note that in this example it is extremely useful that we have defined that images can have an arbitrary ROI. Figure 3.61(d) shows the result of drawing circles at the centers of gravity of the connected components of the error region. All major errors have been detected correctly.

[image: image]
Figure 3.61 (a) Image showing a part of a PCB with several tracks that have spurs and mouse bites. (b) Distance transform of the result of thresholding (a). The distance image is visualized inverted (dark gray values correspond to large distances). (c) Skeleton of the segmented region. (d) Result of extracting too narrow or too wide parts of the tracks by using (c) as the ROI for (b) and thresholding the distances. The errors are visualized by drawing circles at the centers of gravity of the connected components of the error region.





3.6.2 Gray Value Morphology


3.6.2.1 Minkowski Addition and Dilation

Because morphological operations are very versatile and useful, the question of whether they can be extended to gray value images arises quite naturally. This can indeed be done. In analogy to the region morphology, let g(r, c) denote the image that should be processed, and let s(r, c) be an image with ROI S. As in region morphology, the image s is called the structuring element. Gray value Minkowski addition is then defined as (see Soille, 2003)

(3.98) [image: image]

This is a natural generalization because Minkowski addition for regions is obtained as a special case if the characteristic function of the region is used as the gray value image. If, additionally, an image with gray value 0 within the ROI S is used as the structuring element, Minkowski addition becomes

(3.99) [image: image]

For characteristic functions, the maximum operation corresponds to the union. Furthermore, gr−i,c−j corresponds to the translation of the image by the vector (i, j)┬. Hence, Eq. (3.99) is equivalent to the second formula in Eq. (3.83).

As in region morphology, dilation can be obtained by transposing the structuring element. This results in the following definition (Soille, 2003):

(3.100) [image: image]

The typical choice for the structuring element in gray value morphology is the flat structuring element that was already used above: s(r, c) = 0 for (r, c)┬ [image: image] S. With this, gray value Minkowski addition and dilation have the same properties as their corresponding region operations (see Section 3.6.1.2). If the structuring element S contains the origin, they are extensive, i.e., [image: image] (for simplicity, we will only list the formulas for dilation). Furthermore, they are increasing, i.e., if g ≤ h then [image: image]

Therefore, gray value dilation has a similar effect to region dilation: it enlarges the foreground, i.e., parts in the image that are brighter than their surroundings, and shrinks the background, i.e., parts in the image that are darker than their surroundings. Hence, it can be used to connect disjoint parts of a bright object in the image. This is sometimes useful if the object cannot be segmented easily using region operations alone. Conversely, dilation can be used to split dark objects.



3.6.2.2 Minkowski Subtraction and Erosion

Minkowski subtraction for gray value images is given by (see Soille, 2003)

(3.101) [image: image]

As above, by transposing the structuring element we obtain the gray value erosion (Soille, 2003):

(3.102) [image: image]

Again, the typical choice for the structuring element is a flat structuring element. With this, gray value Minkowski subtraction and erosion have the same properties as their corresponding region operations (see Section 3.6.1.3). If the structuring element S contains the origin, they are anti-extensive, i.e., [image: image] Furthermore, they are increasing, i.e., if g ≤ h then [image: image]

Therefore, gray value erosion shrinks the foreground and enlarges the background. Hence, erosion can be used to split touching bright objects and to connect disjoint dark objects. In fact, dilation and erosion, as well as Minkowski addition and subtraction, are dual to each other, as for regions. For the duality, we need to define what the complement of an image should be. If the images are stored with b bits, the natural definition for the complement operation is (see Soille, 2003)

(3.103) [image: image]

With this, it can be easily shown that erosion and dilation are dual (Soille, 2003):

(3.104) [image: image]

Therefore, all the properties that hold for one operation for bright objects hold for the other operation for dark objects, and vice versa.

Note that dilation and erosion can also be regarded as two special rank filters (see Section 3.2.3.9) if flat structuring elements are used. They select the minimum and maximum gray values within the domain of the structuring element, which can be regarded as the filter mask. Therefore, dilation and erosion are sometimes referred to as maximum and minimum filters (or max and min filters).

Efficient algorithms to compute dilation and erosion have been proposed by Van Droogenbroeck and Talbot (1996). Their run time complexity is O(whn), where w and h are the dimensions of the image while n is roughly the number of points on the boundary of the domain of the structuring element for flat structuring elements. For rectangular structuring elements, algorithms with a run time complexity of O(wh), i.e., with a constant number of operations per pixel, can be found (Gil and Kimmel, 2002). This is similar to the recursive implementation of a linear filter.



3.6.2.3 Opening and Closing

With these building blocks, we can define a gray value opening, as for regions, as an erosion followed by a Minkowski addition (Soille, 2003)

(3.105) [image: image]

and a closing as a dilation followed by a Minkowski subtraction (Soille, 2003)

(3.106) [image: image]

If flat structuring elements are used, they have the same properties as the corresponding region operations (see Section 3.6.1.6). Opening is anti-extensive while closing is extensive. Furthermore, both operations are increasing and idempotent. In addition, with the definition of the complement in Eq. (3.103), they are dual to each other (Soille, 2003):

(3.107) [image: image]

[image: image]
Figure 3.62 (a) Image showing a part of a PCB with several tracks that have spurs, mouse bites, pinholes, spurious copper, and open and short circuits. (b) Result of performing a gray value opening with an octagon of diameter 11 on (a). (c) Result of performing a gray value closing with an octagon of diameter 11 on (a). (d) Result of segmenting the errors in (a) by using a dynamic threshold operation with the images of (b) and (c).


Therefore, like the region operations, they can be used to fill in small holes or, by duality, to remove small objects. Furthermore, they can be used to join or separate objects and to smooth the inner and outer boundaries of objects in the image.

Figure 3.62 shows how gray value opening and closing can be used to detect errors in the tracks on a PCB. We have already seen in Figure 3.61 that some of these errors can be detected by looking at the width of the tracks with the distance transform and skeletonization. This technique is very useful because it enables us to detect relatively large areas with errors. However, small errors are harder to detect with this technique because the distance transform and skeleton are only pixel-precise, and consequently the width of the track only can be determined reliably with a precision of two pixels. Smaller errors can be detected more reliably with gray value morphology. Figure 3.62(a) shows part of a PCB with several tracks that have spurs, mouse bites, pinholes, spurious copper, and open and short circuits (Moganti et al., 1996). The results of performing a gray value opening and closing with an octagon of diameter 11 are shown in Figures 3.62(b) and (c). Because of the horizontal, vertical, and diagonal layout of the tracks, using an octagon as the structuring element is preferable. It can be seen that the opening smooths out the spurs, while the closing smooths out the mouse bites. Furthermore, the short circuit and spurious copper are removed by the opening, while the pinhole and open circuit are removed by the closing. To detect these errors, we can require that the opened and closed images should not differ too much. If there were no errors, the differences would solely be caused by the texture on the tracks. Since the gray values of the opened image are always smaller than those of the closed image, we can use the dynamic threshold operation for bright objects (Eq. (3.51)) to perform the required segmentation. Every pixel that has a gray value difference greater than gdiff can be considered as an error. Figure 3.62(d) shows the result of segmenting the errors using a dynamic threshold gdiff = 60. This detects all the errors on the board.



3.6.2.4 Morphological Gradient

We conclude this section with an operator that computes the range of gray values that occur within the structuring element. This can be obtained easily by calculating the difference between a dilation and an erosion (Soille, 2003):

(3.108) [image: image]

Since this operator produces results similar to those of a gradient filter (see Section 3.7.3), it is sometimes called the morphological gradient.

Figure 3.63 shows how the gray range operator can be used to segment punched serial numbers. Because of the scratches, texture, and illumination, it is difficult to segment the characters in Figure 3.63(a) directly. In particular, the scratch next to the upper left part of the “2” cannot be separated from the “2” without splitting several of the other numbers. The result of computing the gray range within a 9 × 9 rectangle is shown in Figure 3.63(b). With this, it is easy to segment the numbers (Figure 3.63(c)) and to separate them from other segmentation results (Figure 3.63(d)).

[image: image]
Figure 3.63 (a) Image showing a punched serial number. Because of the scratches, texture, and illumination, it is difficult to segment the characters directly. (b) Result of computing the gray range within a 9 × 9 rectangle. (c) Result of thresholding (b). (d) Result of computing the connected components of (c) and selecting the characters based on their size.






3.7 Edge Extraction

In Section 3.4, we discussed several segmentation algorithms. They have in common that they are based on thresholding the image, with either pixel or subpixel accuracy. It is possible to achieve very good accuracies with these approaches, as we saw in Section 3.5. However, in most cases the accuracy of the measurements that we can derive from the segmentation result critically depends on choosing the correct threshold for the segmentation. If the threshold is chosen incorrectly, the extracted objects typically become larger or smaller because of the smooth transition from the foreground to the background gray value. This problem is especially grave if the illumination can change, since in this case the adaptation of the thresholds to the changed illumination must be very accurate. Therefore, a segmentation algorithm that is robust with respect to illumination changes is extremely desirable. From the above discussion, we see that the boundary of the segmented region or subpixel-precise contour moves if the illumination changes or the thresholds are chosen inappropriately. Therefore, the goal of a robust segmentation algorithm must be to find the boundary of the objects as robustly and accurately as possible. The best way to describe the boundaries of the objects robustly is by regarding them as edges in the image. Therefore, in this section we will examine methods to extract edges.


3.7.1 Definition of Edges


3.7.1.1 Definition of Edges in 1D

To derive an edge extraction algorithm, we need to define what edges actually are. For the moment, let us make the simplifying assumption that the gray values in the object and in the background are constant. In particular, we assume that the image contains no noise. Furthermore, let us assume that the image is not discretized, i.e., it is continuous. To illustrate this, Figure 3.64(b) shows an idealized gray value profile across the part of a workpiece that is indicated in Figure 3.64(a).

From the above example, we can see that edges are areas in the image in which the gray values change significantly. To formalize this, let us regard the image for the moment as a 1D function f (x). From elementary calculus we know that the gray values change significantly if the first derivative of f (x) differs significantly from 0, i.e., |f ′(x)| [image: image] 0. Unfortunately, this alone is insufficient to define a unique edge location because there are typically many connected points for which this condition is true since the transition between the background and foreground gray values is smooth. This can be seen in Figure 3.65(a), where the first derivative f ′(x) of the ideal gray value profile in Figure 3.64(b) is displayed. Note, for example, that there is an extended range of points for which |f ′(x)| ≥ 20. Therefore, to obtain a unique edge position, we must additionally require that the absolute value of the first derivative |f ′(x)| is locally maximal. This is called non-maximum suppression.

From elementary calculus we know that, at the points where |f ′(x)| is locally maximal, the second derivative vanishes: f ″(x) = 0. Hence, edges are given by the locations of inflection points of f (x). To remove flat inflection points, we would additionally have to require that f ′(x)f ‴(x) < 0. However, this restriction is seldom observed. Therefore, in 1D, an alternative and equivalent definition to the maxima of the absolute value of the first derivative is to define edges as the locations of the zero-crossings of the second derivative. Figure 3.65(b) displays the second derivative f ″(x) of the ideal gray value profile in Figure 3.64(b). Clearly, the zero-crossings are in the same positions as the maxima of the absolute value of the first derivative in Figure 3.65(a).

[image: image]
Figure 3.64 (a) An image of a back-lit workpiece with a horizontal line that indicates the location of the idealized gray value profile in (b).


[image: image]
Figure 3.65 (a) First derivative f ′(x) of the ideal gray value profile in Figure 3.64(b). (b) Second derivative f ″(x).


From Figure 3.65(a), we can also see that in 1D we can easily associate a polarity with an edge based on the sign of f ′(x). We speak of a positive edge if f ′(x) > 0 and of a negative edge if f ′(x) < 0.



3.7.1.2 Definition of Edges in 2D

We now turn to edges in continuous 2D images. Here, the edge itself is a curve s(t) = (r(t), c(t))┬, which is parameterized by a parameter t, e.g., its arc length. At each point of the edge curve, the gray value profile perpendicular to the curve is a 1D edge profile. With this, we can adapt the first 1D edge definition above for the 2D case: we define an edge as the points in the image where the directional derivative in the direction perpendicular to the edge is locally maximal. From differential geometry we know that the direction n(t) perpendicular to the edge curve s(t) is given by n(t) = [image: image] Unfortunately, the edge definition seemingly requires us to know the edge position s(t) already to obtain the direction perpendicular to the edge, and hence looks like a circular definition. Fortunately, the direction n(t) perpendicular to the edge can be determined easily from the image itself. It is given by the gradient vector of the image, which points in the direction of steepest ascent of the image function f (r, c). The gradient of the image is given by the vector of its first partial derivatives:

(3.109) [image: image]

In the last equation, we have used a subscript to denote the partial derivative with respect to the subscripted variable. We will use this convention throughout this section. The Euclidean length

(3.110) [image: image]

of the gradient vector is the equivalent of the absolute value of the first derivative |f ′(x)| in 1D. We will also call the length of the gradient vector its magnitude. It is also often called the amplitude. The gradient direction is, of course, directly given by the gradient vector. We can also convert it to an angle by calculating ϕ = − atan2(fr, fc), where atan2 denotes the two-argument arctangent function that returns its result in the range [−π, π). Note that ϕ increases in the mathematically positive direction (counterclockwise) starting at the column axis. This is the usual convention. With the above definitions, we can define edges in 2D as the points in the image where the gradient magnitude is locally maximal in the direction of the gradient. To illustrate this definition, Figure 3.66(a) shows a plot of the gray values of an idealized corner. The corresponding gradient magnitude is shown in Figure 3.66(b). The edges are the points at the top of the ridge in the gradient magnitude.

In 1D, we have seen that the second edge definition (the zero-crossings of the second derivative) is equivalent to the first definition. Therefore, it is natural to ask whether this definition can be adapted for the 2D case. Unfortunately, there is no direct equivalent for the second derivative in 2D, since there are three partial derivatives of order two. A suitable definition for the second derivative in 2D is the Laplacian operator (Laplacian for short), defined by

(3.111) [image: image]

2D equivalents of the additional 1D condition f ′(x)f ‴(x) < 0 have been proposed (Clark, 1989). However, they are very rarely used in practice. Therefore, edges also can be defined as the zero-crossings of the Laplacian: ∆f (r, c) = 0. Figure 3.66(c) shows the Laplacian of the idealized corner in Figure 3.66(a). The results of the two edge definitions are shown in Figure 3.66(d). It can be seen that, unlike for the 1D edges, the two definitions do not result in the same edge positions. The edge positions are identical only for straight edges. Whenever the edge is significantly curved, the two definitions return different results. It can be seen that the definition via the maxima of the gradient magnitude always lies inside the ideal corner, whereas the definition via the zero-crossings of the Laplacian always lies outside the corner and passes directly through the ideal corner (Berzins, 1984). The Laplacian edge is also in a different position from the true edge for a larger part of the edge. Therefore, in 2D the definition via the maxima of the gradient magnitude is usually preferred. However, in some applications the fact that the Laplacian edge passes through the corner can be used to measure objects with sharp corners more accurately (see Section 3.7.3.5).

[image: image]
Figure 3.66 (a) Image of an idealized corner, e.g., one of the corners at the bottom of the workpiece in Figure 3.64(a). (b) Gradient magnitude of (a). (c) Laplacian of (a). (d) Comparison of the edges that result from the two definitions in 2D (edges via the maxima of the gradient magnitude in the gradient direction versus edges via the zero-crossings of the Laplacian).





3.7.2 1D Edge Extraction

We now turn our attention to edges in real images, which are discrete and contain noise. In this section, we will discuss how to extract edges from 1D gray value profiles. This is a very useful operation that is used frequently in machine vision applications because it is extremely fast. It is typically used to determine the position or diameter of an object.


3.7.2.1 Discrete Derivatives

The first problem we have to address is how to compute the derivatives of the discrete 1D gray value profile. Our first idea might be to use the differences of consecutive gray values on the profile: [image: image] Unfortunately, this definition is not symmetric. It would compute the derivative at the “half-pixel” positions [image: image] A symmetric way to compute the first derivative is given by

(3.112) [image: image]

This formula is obtained by fitting a parabola through three consecutive points of the profile and computing the derivative of the parabola at the center point. The parabola is uniquely defined by the three points. With the same mechanism, we can also derive a formula for the second derivative:

(3.113) [image: image]

Note that the above methods to compute the first and second derivatives are linear filters, and hence can be regarded as the following two convolution masks:

(3.114) [image: image]

Note that the −1 is the last element in the first derivative mask because the elements of the mask are mirrored in the convolution (see Eq. (3.18)).

Figure 3.67(a) displays the true gray value profile taken from the horizontal line in the image in Figure 3.64(a). Its first derivative, computed with Eq. (3.112), is shown in Figure 3.67(b). The noise in the image causes a very large number of local maxima in the absolute value of the first derivative, and consequently also a large number of zero-crossings in the second derivative. The salient edges can easily be selected by thresholding the absolute value of the first derivative: [image: image] For the second derivative, the edges cannot be selected as easily. In fact, we must resort to calculating the first derivative as well to be able to select the relevant edges. Hence, the edge definition via the first derivative is preferable because it can be done with one filter operation instead of two, and consequently the edges can be extracted much faster.

[image: image]
Figure 3.67 (a) Gray value profile taken from the horizontal line in the image in Figure 3.64(a). (b) First derivative [image: images] of the gray value profile.




3.7.2.2 Smoothing Perpendicular to a Profile

The gray value profile in Figure 3.67(a) already contains relatively little noise. Nevertheless, in most cases it is desirable to suppress the noise even further. If the object we are measuring has straight edges in the part in which we are performing the measurement, we can use the gray values perpendicular to the line along which we are extracting the gray value profile and average them in a suitable manner. The simplest way to do this is to compute the mean of the gray values perpendicular to the line. If, for example, the line along which we are extracting the gray value profile is horizontal, we can calculate the mean in the vertical direction as follows:

(3.115) [image: image]

This acts like a mean filter in one direction. Hence, the noise variance is reduced by a factor of 2m + 1. Of course, we could also use a 1D Gaussian filter to average the gray values. However, since this would require larger filter masks for the same noise reduction, and consequently would lead to longer execution times, in this case the mean filter is preferable.

If the line along which we want to extract the gray value profile is horizontal or vertical, the calculation of the profile is simple. If we want to extract the profile from inclined lines or from circles or ellipses, the computation is slightly more difficult. To enable meaningful measurements for distances, we must sample the line with a fixed distance, typically one pixel. Then, we need to generate lines perpendicular to the curve along which we want to extract the profile. This procedure is shown for an inclined line in Figure 3.68. Because of this, the points from which we must extract the gray values typically do not lie on pixel centers. Therefore, we will have to interpolate them. This can be done with the techniques discussed in Sections 3.3.2.1 and 3.3.2.2, i.e., with nearest-neighbor or bilinear interpolation.

[image: image]
Figure 3.68 Creation of the gray value profile from an inclined line. The line is shown by the heavy solid line. The circles indicate the points that are used to compute the profile. Note that they do not lie on pixel centers. The direction in which the 1D mean is computed is shown by the dashed lines.


[image: image]
Figure 3.69 (a) Gray value profile taken from the horizontal line in the image in Figure 3.64(a) and averaged vertically over 21 pixels. (b) First derivative [image: images] of the gray value profile.


Figure 3.69 shows a gray value profile and its first derivative obtained by vertically averaging the gray values along the line shown in Figure 3.64(a). The size of the 1D mean filter was 21 pixels in this case. If we compare this with Figure 3.67, which shows the profile obtained from the same line without averaging, we can see that the noise in the profile has been reduced significantly. Because of this, the salient edges are even easier to select than without the averaging.



3.7.2.3 Optimal Edge Filters

Unfortunately, averaging perpendicular to the curve along which the gray value profile is extracted is sometimes insufficient to smooth the profiles enough to enable us to extract the relevant edges easily. One example is shown in Figure 3.70. Here, the object to be measured has a significant amount of texture, which is not as random as noise and consequently does not average out completely. Note that, on the right side of the profile, there is a negative edge with an amplitude almost as large as the edges we want to extract. Another reason for the noise not to cancel out completely may be that we cannot choose the size of the averaging large enough, e.g., because the object’s boundary is curved.

[image: image]
Figure 3.70 (a) An image of a relay with a horizontal line that indicates the location of the gray value profile. (b) First derivative of the gray value profile without averaging. (c) First derivative of the gray value profile with vertical averaging over 21 pixels.


To solve these problems, we must smooth the gray value profile itself to suppress the noise even further. This is done by convolving the profile with a smoothing filter: fs = f * h. We can then extract the edges from the smoothed profile via its first derivative. This would involve two convolutions: one for the smoothing filter and the other for the derivative filter. Fortunately, the convolution has a very interesting property that we can use to save one convolution. The derivative of the smoothed function is identical to the convolution of the function with the derivative of the smoothing filter: (f * h)′ = f * h′. We can regard h′ as an edge filter.

As for the smoothing filters, the natural question to ask is which edge filter is optimal. This problem was addressed by Canny (1986). He proposed three criteria that an edge detector should fulfill. First of all, it should have a good detection quality, i.e., it should have a low probability of falsely detecting an edge point and also a low probability of erroneously missing an edge point. This criterion can be formalized as maximizing the SNR of the output of the edge filter. Second, the edge detector should have good localization quality, i.e., the extracted edges should be as close as possible to the true edges. This can be formalized by minimizing the variance of the extracted edge positions. Finally, the edge detector should return only a single edge for each true edge, i.e., it should avoid multiple responses. This criterion can be formalized by maximizing the distance between edge positions that are extracted from pure noise. Canny then combined these three criteria into one optimization criterion and solved it using the calculus of variations. To do so, he assumed that the edge filter has a finite extent (mask size). Since adapting the filter to a particular mask size involves solving a relatively complex optimization problem, Canny looked for a simple filter that could be written in closed form. He found that the optimal edge filter can be approximated very well with the first derivative of the Gaussian filter:

(3.116) [image: image]

One drawback of using the true derivative of the Gaussian filter is that the edge amplitudes become progressively smaller as σ is increased. Ideally, the edge filter should return the true edge amplitude independent of the smoothing. To achieve this for an idealized step edge, the output of the filter must be multiplied with [image: image].

Note that the optimal smoothing filter would be the integral of the optimal edge filter, i.e., the Gaussian smoothing filter. It is interesting to note that, like the criteria in Section 3.2.3.7, Canny’s formulation indicates that the Gaussian filter is the optimal smoothing filter.

Since the Gaussian filter and its derivatives cannot be implemented recursively (see Section 3.2.3.7), Deriche (1987) used Canny’s approach to find optimal edge filters that can be implemented recursively. He derived the following two filters:

(3.117) [image: image]

(3.118) [image: image]

The corresponding smoothing filters are:

(3.119) [image: image]

[image: image]
Figure 3.71 Comparison of the Canny and Deriche filters. (a) Smoothing filters. (b) Edge filters.


[image: image]
Figure 3.72 Result of applying the Canny edge filter with σ = 1.5 to the gray value profile in Figure 3.70(a) with vertical averaging over 21 pixels.


(3.120) [image: image]

In contrast to the Gaussian filter, where larger values for σ indicate more smoothing, in the Deriche filters smaller values for α indicate more smoothing. The Gaussian filter has the same SNR as the first Deriche filter for [image: image]. For the second Deriche filter, the relation is [image: image]. Note that the Deriche filters are significantly different from the Canny filter. Figure 3.71 compares the Canny and Deriche smoothing and edge filters with equivalent filter parameters.

Figure 3.72 shows the result of using the Canny edge detector with σ = 1.5 to compute the smoothed first derivative of the gray value profile in Figure 3.70(a). As in Figure 3.70(c), the profile was obtained by averaging over 21 pixels vertically. Note that the amplitude of the unwanted edge on the right side of the profile has been reduced significantly. This enables us to select the salient edges more easily.



3.7.2.4 Pixel-Accurate Edge Extraction

To extract the edge position, we need to perform the non-maximum suppression. If we are only interested in the edge positions with pixel accuracy, we can proceed as follows. Let the output of the edge filter be denoted by ei = |f * h′|i, where h′ denotes one of the above edge filters. Then, the local maxima of the edge amplitude are given by the points for which ei > ei−1 [image: images] ei > ei+1 [image: images] ei ≥ t, where t is the threshold to select the relevant edges.

[image: image]
Figure 3.73 Principle of extracting edge points with subpixel accuracy. The local maximum of the edge amplitude is detected. Then, a parabola is fitted through the three points around the maximum. The maximum of the parabola is the subpixel-accurate edge location. The edge amplitude was taken from the right edge in Figure 3.72.




3.7.2.5 Subpixel-Accurate Edge Extraction

Unfortunately, extracting the edges with pixel accuracy is often not accurate enough. To extract edges with subpixel accuracy, we can note that around the maximum, the edge amplitude can be approximated well with a parabola. Figure 3.73 illustrates this by showing a zoomed part of the edge amplitude around the right edge in Figure 3.72. If we fit a parabola through three points around the maximum edge amplitude and calculate the maximum of the parabola, we can obtain the edge position with subpixel accuracy. If an ideal camera system is assumed, this algorithm is as accurate as the precision with which the floating-point numbers are stored in the computer (Steger, 1998b).

We conclude the discussion of 1D edge extraction by showing the results of edge extraction on the two examples we have used so far. Figure 3.74(a) shows the edges that have been extracted along the line shown in Figure 3.64(a) with the Canny filter with σ = 1.0. From the two zoomed parts around the extracted edge positions, we can see that, by coincidence, both edges lie very close to the pixel centers. Figure 3.74(b) displays the result of extracting edges along the line shown in Figure 3.70(a) with the Canny filter with σ = 1.5. In this case, the left edge is almost exactly in the middle of two pixel centers. Hence, we can see that the algorithm is successful in extracting the edges with subpixel precision.




3.7.3 2D Edge Extraction

As discussed in Section 3.7.1.2, there are two possible definitions for edges in 2D, which are not equivalent. As in the 1D case, the selection of salient edges will require us to perform a thresholding based on the gradient magnitude. Therefore, the definition via the zero-crossings of the Laplacian requires us to compute more partial derivatives than the definition via the maxima of the gradient magnitude. Consequently, we will concentrate on the maxima of the gradient magnitude for the 2D case. We will add some comments on the zero-crossings of the Laplacian at the end of this section.

[image: image]
Figure 3.74 (a) Result of extracting 1D edges along the line shown in Figure 3.64(a). The two small images show a zoomed part around the edge positions. In this case, they both lie very close to the pixel centers. The distance between the two edges is 60.95 pixels. (b) Result of extracting 1D edges along the line shown in Figure 3.70(a). Note that the left edge, shown in detail in the upper right image, is almost exactly in the middle between two pixel centers. The distance between the two edges is 125.37 pixels.



3.7.3.1 Discrete Derivatives

As in the 1D case, the first question we need to answer is how to compute the partial derivatives of the image that are required to calculate the gradient. Similar to Eq. (3.112), we could use finite differences to calculate the partial derivatives. In 2D, they would be

(3.121) [image: image]

However, as we have seen above, typically the image must be smoothed to obtain good results. For time-critical applications, the filter masks should be as small as possible, i.e., 3 × 3. All 3 × 3 edge filters can be brought into the following form by scaling the coefficients appropriately (note that the filter masks are mirrored in the convolution):

(3.122) [image: image]

If we use a = 1, we obtain the Prewitt filter. Note that it performs a mean filter perpendicular to the derivative direction. For [image: image], the Frei filter is obtained, and for a = 2 we obtain the Sobel filter, which performs an approximation to a Gaussian smoothing perpendicular to the derivative direction. Of the above three filters, the Sobel filter returns the best results because it uses the best smoothing filter.

Ando (2000) has proposed a 3 × 3 an edge filter that tries to minimize the artifacts that invariably are obtained with small filter masks. In our notation, his filter would correspond to a = 2.435 101. Unfortunately, like the Frei filter, it requires floatingpoint calculations, which makes it unattractive for time-critical applications.

[image: image]
Figure 3.75 (a) Edge amplitude around the leftmost hole of the workpiece in Figure 3.64(a) computed with the Sobel filter and the 1-norm. (b) Thresholded edge region. (c) Skeleton of (b).


The 3 × 3 edge filters are primarily used to quickly find edges with moderate accuracy in images of relatively good quality. Since speed is important and the calculation of the gradient magnitude via the Euclidean length (the 2-norm) of the gradient vector [image: image] requires an expensive square root calculation, the gradient magnitude is typically computed by one of the following norms: the 1-norm [image: images] or the maximum norm [image: images]. Note that the first norm corresponds to the city-block distance in the distance transform, while the second norm corresponds to the chessboard distance (see Section 3.6.1.8). Furthermore, the non-maximum suppression also is relatively expensive and is often omitted. Instead, the gradient magnitude is simply thresholded. Because this results in edges that are wider than one pixel, the thresholded edge regions are skeletonized. Note that this implicitly assumes that the edges are symmetric.

Figure 3.75 shows an example where this approach works well because the image is of good quality. Figure 3.75(a) displays the edge amplitude around the leftmost hole of the workpiece in Figure 3.64(a) computed with the Sobel filter and the 1-norm. The edge amplitude is thresholded (Figure 3.75(b)) and the skeleton of the resulting region is computed (Figure 3.75(c)). Since the assumption that the edges are symmetric is fulfilled in this example, the resulting edges are in the correct location.

This approach fails to produce good results on the more difficult image of the relay in Figure 3.70(a). As can be seen from Figure 3.76(a), the texture on the relay causes many areas with high gradient magnitude, which are also present in the segmentation (Figure 3.76(b)) and the skeleton (Figure 3.76(c)). Another interesting thing to note is that the vertical edge at the right corner of the top edge of the relay is quite blurred and asymmetric. This produces holes in the segmented edge region, which are exacerbated by the skeletonization.



3.7.3.2 Optimal Edge Filters

Because the 3 × 3 filters are not robust against noise and other disturbances, e.g., textures, we need to adapt the approach to optimal 1D edge extraction described in the previous section to the 2D case. In 2D, we can derive the optimal edge filters by calculating the partial derivatives of the optimal smoothing filters, since the properties of the convolution again allow us to move the derivative calculation into the filter.

[image: image]
Figure 3.76 (a) Edge amplitude around the top part of the relay in Figure 3.70(a) computed with the Sobel filter and the 1-norm. (b) Thresholded edge region. (c) Skeleton of (b).


Consequently, Canny’s optimal edge filters in 2D are given by the partial derivatives of the Gaussian filter. Because the Gaussian filter is separable, so are its derivatives:

(3.123) [image: image]

(see the discussion following Eq. (3.116) for the factors of [image: image]. To adapt the Deriche filters to the 2D case, the separability of the filters is postulated. Hence, the optimal 2D Deriche filters are given by [image: image] and [image: image] for the first Deriche filter, and by [image: image] and [image: image] for the second Deriche filter (see Eq. (3.118)).

The advantage of the Canny filter is that it is isotropic, i.e., rotation-invariant (see Section 3.2.3.7). Its disadvantage is that it cannot be implemented recursively. Therefore, the execution time depends on the amount of smoothing specified by σ. The Deriche filters, on the other hand, can be implemented recursively, and hence their run time is independent of the smoothing parameter. However, they are anisotropic, i.e., the edge amplitude they calculate depends on the angle of the edge in the image. This is undesirable because it makes the selection of the relevant edges harder. Lanser has shown that the anisotropy of the Deriche filters can be corrected (Lanser and Eckstein, 1992). We will refer to the isotropic versions of the Deriche filters as the Lanser filters.

Figure 3.77 displays the result of computing the edge amplitude with the second Lanser filter with α = 0.5. Compared to the the Sobel filter, the Lanser filter was able to suppress the noise and texture significantly better. This can be seen from the edge amplitude image (Figure 3.77(a)) as well as the thresholded edge region (Figure 3.77(b)). Note, however, that the edge region still contains a hole for the vertical edge that starts at the right corner of the topmost edge of the relay. This happens because the edge amplitude only has been thresholded and the important step of non-maximum suppression has been omitted in order to compare the results of the Sobel and Lanser filters.



3.7.3.3 Non-Maximum Suppression

As we saw in the above examples, thresholding the edge amplitude and then skeletonizing the region sometimes does not yield the desired results. To obtain the correct edge locations, we must perform a non-maximum suppression (see Section 3.7.1.2). In the 2D case, this can be done by examining the two neighboring pixels that lie closest to the gradient direction. Conceptually, we can think of transforming the gradient vector into an angle. Then, we divide the angle range into eight sectors. Figure 3.78 shows two examples of this. Unfortunately, with this approach, diagonal edges are often still two pixels wide. Consequently, the output of the non-maximum suppression must still be skeletonized.

[image: image]
Figure 3.77 (a) Edge amplitude around the top part of the relay in Figure 3.70(a) computed with the second Lanser filter with α = 0.5. (b) Thresholded edge region. (c) Skeleton of (b).


[image: image]
Figure 3.78 Examples of the pixels that are examined in the non-maximum suppression for different gradient directions.


[image: image]
Figure 3.79 (a) Result of applying the non-maximum suppression to the edge amplitude image in Figure 3.77(a). (b) Thresholded edge region. (c) Skeleton of (b).


Figure 3.79 shows the result of applying non-maximum suppression to the edge amplitude image in Figure 3.77(a). From the thresholded edge region in Figure 3.79(b), it can be seen that the edges are now in the correct locations. In particular, the incorrect hole in Figure 3.77 is no longer present. We can also see that the few diagonal edges are sometimes two pixels wide. Therefore, their skeleton is computed and displayed in Figure 3.79(c).


[image: image]
Figure 3.80 (a) Result of thresholding the edge amplitude for the entire relay image in Figure 3.70(a) with a threshold of 60. This causes many irrelevant texture edges to be selected. (b) Result of thresholding the edge amplitude with a threshold of 140. This selects only the relevant edges. However, they are severely fragmented and incomplete. (c) Result of hysteresis thresholding with a low threshold of 60 and a high threshold of 140. Only the relevant edges are selected, and they are complete.




3.7.3.4 Hysteresis Thresholding

Up to now, we have been using simple thresholding to select the salient edges. This works well as long as the edges we are interested in have roughly the same contrast or have a contrast that is significantly different from the contrast of noise, texture, or other irrelevant objects in the image. In many applications, however, we face the problem that, if we select the threshold so high that only the relevant edges are selected, they are often fragmented. If, on the other hand, we set the threshold so low that the edges we are interested in are not fragmented, we end up with many irrelevant edges. These two situations are illustrated in Figures 3.80(a) and (b). A solution to this problem was proposed by Canny (1986). He devised a special thresholding algorithm for segmenting edges: hysteresis thresholding. Instead of a single threshold, it uses two thresholds. Points with an edge amplitude greater than the higher threshold are immediately accepted as safe edge points. Points with an edge amplitude smaller than the lower threshold are immediately rejected. Points with an edge amplitude between the two thresholds are accepted only if they are connected to safe edge points via a path in which all points have an edge amplitude above the lower threshold. We can also think of this operation as first selecting the edge points with an amplitude above the upper threshold, and then extending the edges as far as possible while remaining above the lower threshold. Figure 3.80(c) shows that hysteresis thresholding enables us to select only the relevant edges without fragmenting them or missing edge points.



3.7.3.5 Subpixel-Accurate Edge Extraction

As in the 1D case, the pixel-accurate edges we have extracted so far are often not accurate enough. We can use a similar approach as for 1D edges to extract edges with subpixel accuracy: we can fit a 2D polynomial to the edge amplitude and extract its maximum in the direction of the gradient vector (Steger, 1998b, 2000). The fitting of the polynomial can be done with convolutions with special filter masks (the so-called facet model masks; Haralick and Shapiro, 1992; Haralick et al., 1983). To illustrate this, Figure 3.81(a) shows a 7 × 7 part of an edge amplitude image. The fitted 2D polynomial obtained from the central 3 × 3 amplitudes is shown in Figure 3.81(b), along with an arrow that indicates the gradient direction. Furthermore, contour lines of the polynomial are shown. They indicate that the edge point is offset by approximately a quarter of a pixel in the direction of the arrow.

[image: image]
Figure 3.81 (a) A 7 × 7 part of an edge amplitude image. (b) Fitted 2D polynomial obtained from the central 3 × 3 amplitudes in (a). The arrow indicates the gradient direction. The contour lines in the plot indicate that the edge point is offset by approximately a quarter of a pixel in the direction of the arrow.


The above procedure gives us one subpixel-accurate edge point per non-maximum suppressed pixel. These individual edge points must be linked into subpixel-precise contours. This can be done by repeatedly selecting the first unprocessed edge point to start the contour and then successively finding adjacent edge points until the contour closes, reaches the image border, or reaches an intersection point.

Figure 3.82 illustrates subpixel edge extraction along with a very useful strategy to increase the processing speed. The image in Figure 3.82(a) is the same workpiece as in Figure 3.64(a). Because subpixel edge extraction is relatively costly, we want to reduce the search space as much as possible. Since the workpiece is back-lit, we can threshold it easily (Figure 3.82(b)). If we calculate the inner boundary of the region with Eq. (3.89), the resulting points are close to the edge points we want to extract. We only need to dilate the boundary slightly, e.g., with a circle of diameter 5 (Figure 3.82(c)), to obtain an ROI for the edge extraction. Note that the ROI is only a small fraction of the entire image. Consequently, the edge extraction can be done an order of magnitude faster than on the entire image, without any loss of information. The resulting subpixel-accurate edges are shown in Figure 3.82(d) for the part of the image indicated by the rectangle in Figure 3.82(a). Note how well they capture the shape of the hole.

We conclude this section with a look at the second edge definition via the zero-crossings of the Laplacian. Since the zero-crossings are just a special threshold, we can use the subpixel-precise thresholding operation, defined in Section 3.4.3, to extract edges with subpixel accuracy. To make this as efficient as possible, we must first compute the edge amplitude in the entire ROI of the image. Then, we threshold the edge amplitude and use the resulting region as the ROI for the computation of the Laplacian and for the subpixel-precise thresholding. The resulting edges for two parts of the workpiece image are compared to the gradient magnitude edge in Figure 3.83. Note that, since the Laplacian edges must follow the corners, they are much more curved than the gradient magnitude edges, and hence are more difficult to process further. This is another reason why the edge definition via the gradient magnitude is usually preferred.

[image: image]
Figure 3.82 (a) Image of the workpiece in Figure 3.64(a) with a rectangle that indicates the image part shown in (d). (b) Thresholded workpiece. (c) Dilation of the boundary of (b) with a circle of diameter 5. This is used as the ROI for the subpixel edge extraction. (d) Subpixel-accurate edges of the workpiece extracted with the Canny filter with σ = 1.


Despite the above arguments, the property that the Laplacian edge exactly passes through corners in the image can be used advantageously in some applications. Figure 3.84(a) shows an image of a bolt for which the depth of the thread must be measured. Figures 3.84(b)–(d) display the results of extracting the border of the bolt with subpixel-precise thresholding, the gradient magnitude edges with a Canny filter with σ = 0.7, and the Laplacian edges with a Gaussian filter with σ = 0.7. Note that in this case the most suitable results are obtained with the Laplacian edges.




3.7.4 Accuracy and Precision of Edges

In the previous two sections, we have seen that edges can be extracted with subpixel resolution. We have used the terms “subpixel-accurate” and “subpixel-precise” to describe these extraction mechanisms without actually justifying the use of the words “accurate” and “precise.” Therefore, in this section we will examine whether the edges we can extract are actually subpixel-accurate and subpixel-precise.

[image: image]
Figure 3.83 Comparison of the subpixel-accurate edges extracted via the maxima of the gradient magnitude in the gradient direction (dashed lines) and the edges extracted via the subpixel-accurate zero-crossings of the Laplacian. In both cases, a Gaussian filter with σ = 1 was used. Note that, since the Laplacian edges must follow the corners, they are much more curved than the gradient magnitude edges.


[image: image]
Figure 3.84 (a) Image of a bolt for which the depth of the thread must be measured. (b) Result of performing a subpixel-precise thresholding operation. (c) Result of extracting the gradient magnitude edges with a Canny filter with σ = 0.7. (d) Result of extracting the Laplacian edges with a Gaussian filter with σ = 0.7. Note that for this application the Laplacian edges return the most suitable result.



3.7.4.1 Definition of Accuracy and Precision

Since the words “accuracy” and “precision” are often confused or used interchangeably, let us first define what we mean by them. By precision, we denote how close on average an extracted value is to its mean value (Haralick and Shapiro, 1993; JCGM 200:2012). Hence, precision measures how repeatably we can extract the value. By accuracy, on the other hand, we denote how close on average the extracted value is to its true value (Haralick and Shapiro, 1993; JCGM 200:2012). Note that the precision does not tell us anything about the accuracy of the extracted value. The measurements could, for example, be offset by a systematic bias, but still be very precise. Conversely, the accuracy does not necessarily tell us how precise the extracted value is. The measurement could be quite accurate, but not very precise. Figure 3.85 shows the different situations that can occur. Also note that accuracy and precision are statements about the average distribution of the extracted values. From a single value, we cannot tell whether the measurements are accurate or precise.

[image: image]
Figure 3.85 Comparison of accuracy and precision. The center of the circles indicates the true value of the feature. The dots indicate the outcome of the measurements of the feature. (a) Accurate and precise. (b) Accurate but not precise. (c) Not accurate but precise. (d) Neither accurate nor precise.


If we adopt a statistical point of view, the extracted values can be regarded as random variables. With this, the precision of the values is given by the variance of the values: [image: image]. If the extracted values are precise, they have a small variance. On the other hand, the accuracy can be described by the difference of the expected value E[x] from the true value T: E[x] – T. Since we typically do not know anything about the true probability distribution of the extracted values, and consequently cannot determine E[x] and V[x], we must estimate them with the empirical mean and variance of the extracted values.



3.7.4.2 Analytical Edge Accuracy and Precision

The accuracy and precision of edges is analyzed extensively in Steger (1998b,a). The precision of ideal step edges extracted with the Canny filter can be derived analytically. If we denote the true edge amplitude by a and the noise variance in the image by [image: image], it can be shown that the variance of the edge positions [image: image] is given by

(3.124) [image: image]

Even though this result was derived analytically for continuous images, it also holds in the discrete case. This result has also been verified empirically in Steger (1998b,a). Note that it is quite intuitive: the larger the noise in the image, the less precisely the edges can be located; furthermore, the larger the edge amplitude, the higher is the precision of the edges. Note also that increasing the smoothing does not increase the precision. This happens because the noise reduction achieved by the larger smoothing cancels out exactly with the weaker edge amplitude that results from the smoothing. From Eq. (3.124), we can see that the Canny filter is subpixel-precise [image: images] if the SNR [image: image]. This can be achieved easily in practice. Consequently, we were justified in calling the Canny filter subpixel-precise.

The same derivation can also be performed for the Deriche and Lanser filters. For continuous images, the following variances result:

(3.125) [image: image]

Note that the Deriche and Lanser filters are more precise than the Canny filter. As for the Canny filter, the smoothing parameter α has no influence on the precision. In the discrete case, this is, unfortunately, no longer true because of the discretization of the filter. Here, less smoothing (larger values of α) leads to slightly worse precision than predicted by Eq. (3.125). However, for practical purposes, we can assume that the smoothing for all the edge filters that we have discussed has no influence on the precision of the edges. Consequently, if we want to control the precision of the edges, we must maximize the SNR by using suitable lighting and cameras. In particular, digital cameras should be used. If, for some reason, analog cameras must be used, the frame grabber should have a line jitter that is as small as possible.

For ideal step edges, it is also easy to convince oneself that the expected position of the edge under noise corresponds to its true position. This happens because both the ideal step edge and the above filters are symmetric with respect to the true edge positions. Therefore, the edges that are extracted from noisy ideal step edges must be distributed symmetrically around the true edge position. Consequently, their mean value is the true edge position. This is also verified empirically for the Canny filter in Steger (1998b,a). It can also be verified for the Deriche and Lanser filters.



3.7.4.3 Edge Accuracy and Precision on Real Images

While it is easy to show that edges are very accurate for ideal step edges, we must also perform experiments on real images to test the accuracy on real data. This is important because some of the assumptions that are used in the edge extraction algorithms may not hold in practice. Because these assumptions are seldom stated explicitly, we should examine them carefully here. Let us focus on straight edges because, as we have seen from the discussion in Section 3.7.1.2, especially Figure 3.66, sharply curved edges will necessarily lie in incorrect positions. See also Berzins (1984) for a thorough discussion on the positional errors of the Laplacian edge detector for ideal corners of two straight edges with varying angles. Because we are concentrating on straight edges, we can reduce the edge detection to the 1D case, which is simpler to analyze. From Section 3.7.1.1 we know that 1D edges are given by the inflection points of the gray value profiles. This implicitly assumes that the gray value profile, and consequently its derivatives, are symmetric with respect to the true edge. Furthermore, to obtain subpixel positions, the edge detection implicitly assumes that the gray values at the edge change smoothly and continuously as the edge moves in subpixel increments through a pixel. For example, if an edge covers 25% of a pixel, we would assume that the gray value in the pixel is a mixture of 25% of the foreground gray value and 75% of the background gray value. We will see whether these assumptions hold in real images below.

To test the accuracy of the edge extraction on real images, it is instructive to repeat the experiments in Steger (1998b,a) with a different camera. In Steger (1998b,a), a print of an edge is mounted on an xy-stage and shifted in 50 µm increments, which corresponds to approximately 1/10 of a pixel, for a total of 1 mm. The goals are to determine whether the shifts of 1/10 of a pixel can be detected reliably and to obtain information about the absolute accuracy of the edges. Figure 3.86(a) shows an image used in this experiment. We are not going to repeat the test to see whether the subpixel shifts can be detected reliably here. The 1/10 pixel shifts can be detected with a very high confidence (more than 99.999 99%). What is more interesting is to look at the absolute accuracy. Since we do not know the true edge position, we must get an estimate for it. Because the edge was shifted in linear increments in the test images, such an estimate can be obtained by fitting a straight line through the extracted edge positions and subtracting the line from the measured edge positions.

[image: image]
Figure 3.86 (a) Edge image used in the accuracy experiment. (b) Edge position extracted along a horizontal line in the image with the Canny filter. The edge position is given in pixels as a function of the true shift in millimeters. (c) Error of the edge positions obtained by fitting a line through the edge positions in (b) and subtracting the line from (b). (d) Comparison of the errors obtained with the Canny and second Deriche filters.


Figure 3.86(b) displays the result of extracting the edge in Figure 3.86(a) along a horizontal line with a Canny filter with σ = 1. The edge position error is shown in Figure 3.86(c). We can see that there are errors of up to ≈ 1/22 pixel. What causes these errors? As we discussed above, for ideal cameras, no error occurs, so one of the assumptions must be violated. In this case, the assumption that is violated is that the gray value is a mixture of the foreground and background gray values that is proportional to the area of the pixel covered by the object. This happens because the camera did not have a fill factor of 100%, i.e., the light-sensitive area of a pixel on the sensor was much smaller than the total area of the pixel. Consider what happens when the edge moves across the pixel and the image is perfectly focused. In the light-sensitive area of the pixel, the gray value changes as expected when the edge moves across the pixel because the sensor integrates the incoming light. However, when the edge enters the light-insensitive area, the gray value no longer changes (Lenz and Fritsch, 1990). Consequently, the edge does not move in the image. In the real image, the focus is not perfect. Hence, the light is spread slightly over adjacent sensor elements. Therefore, the edges do not jump as they would in a perfectly focused image, but shift continuously. Nevertheless, the poor fill factor causes errors in the edge positions. This can be seen very clearly from Figure 3.86(c). Recall that a shift of 50 µm corresponds to 1/10 of a pixel. Consequently, the entire shift of 1 mm corresponds to two pixels. This is why we see a sine wave with two periods in Figure 3.86(c). Each period corresponds exactly to one pixel. That these effects are caused by the fill factor can also be seen if the lens is defocused. In this case, the light is spread over more sensor elements. This helps to create an artificially increased fill factor, which causes smaller errors.

From the above discussion, it would appear that the edge position can be extracted with an accuracy of 1/22 of a pixel. To check whether this is true, let us repeat the experiment with the second Deriche filter. Figure 3.86(d) shows the result of extracting the edges with α = 1 and computing the errors with the line fitted through the Canny edge positions. The last part is done to make the errors comparable. We can see, surprisingly, that the Deriche edge positions are systematically shifted in one direction. Does this mean that the Deriche filter is less accurate than the Canny filter? Of course, it does not, since on ideal data both filters return the same result. It shows that another assumption must be violated. In this case, it is the assumption that the edge profile is symmetric with respect to the true edge position. This is the only reason why the two filters, which are symmetric themselves, can return different results.

There are many reasons why edge profiles may become asymmetric. One reason is that the gray value responses of the camera and image acquisition device are nonlinear. Figure 3.87 illustrates that an originally symmetric edge profile becomes asymmetric by a nonlinear gray value response function. It can be seen that the edge position accuracy is severely degraded by the nonlinear response. To correct the nonlinear response of the camera, it must be calibrated radiometrically using the methods described in Section 3.2.2.

Unfortunately, even if the camera has a linear response or is calibrated radiometrically, other factors may cause the edge profiles to become asymmetric. In particular, lens aberrations like coma, astigmatism, and chromatic aberrations may cause asymmetric profiles (see Section 2.2.6). Since lens aberrations cannot be corrected easily with image processing algorithms, they should be as small as possible.

While all the error sources discussed above influence the edge accuracy, we have so far neglected the largest source of errors. If the camera is not calibrated geometrically, extracting edges with subpixel accuracy is pointless because the lens distortions alone are sufficient to render any subpixel position meaningless. Let us, for example, assume that the lens has a distortion that is smaller than 1% in the entire field of view. At the corners of the image, this means that the edges are offset by 4 pixels for a 640 × 480 image. We can see that extracting edges with subpixel accuracy is an exercise in futility if the lens distortions are not corrected, even for this relatively small distortion. This is illustrated in Figure 3.88, where the result of correcting the lens distortions after calibrating the camera as described in Section 3.9 is shown. Note that, despite the fact that the application used a very high-quality lens, the lens distortions cause an error of approximately 2 pixels.

[image: image]
Figure 3.87 Result of applying a nonlinear gray value response curve to an ideal symmetric edge profile. The ideal edge profile is shown in the upper left graph and the nonlinear response in the bottom graph. The upper right graph shows the modified gray value profile along with the edge positions on the profiles. Note that the edge position is affected substantially by the nonlinear response.


[image: image]
Figure 3.88 (a) Image of a calibration target. (b) Extracted subpixel-accurate edges (solid lines) and edges after the correction of lens distortions (dashed lines). Note that the lens distortions cause an error of approximately 2 pixels.


Another detrimental influence on the accuracy of the extracted edges is caused by the perspective distortions in the image. They happen whenever we cannot mount the camera perpendicular to the objects we want to measure. Figure 3.89(a) shows the result of extracting the 1D edges along the ruler markings on a caliper. Because of the severe perspective distortions, the distances between the ruler markings vary greatly throughout the image. If the camera is calibrated, i.e., its interior orientation and the exterior orientation of the plane in which the objects to be measured lie have been determined with the approach described in Section 3.9, the measurements in the image can be converted into measurements in world coordinates in the plane determined by the calibration. This is done by intersecting the optical ray that corresponds to each edge point in the image with the plane in the world. Figure 3.89(b) displays the results of converting the measurements in Figure 3.89(a) into millimeters with this approach—note that the measurements are extremely accurate even in the presence of severe perspective distortions.

[image: image]
Figure 3.89 Result of extracting 1D edges along the ruler markings on a caliper. (a) Pixel distances between the markings. (b) Distances converted to world units using camera calibration.


From the above discussion, we can see that extracting edges with subpixel accuracy relies on careful selection of the hardware components. First of all, the gray value responses of the camera and image acquisition device should be linear. To ensure this, the camera should be calibrated radiometrically. Furthermore, lenses with very small aberrations (such as coma and astigmatism) should be chosen. Also, monochromatic light should be used to avoid the effects of chromatic aberrations. In addition, the fill factor of the camera should be as large as possible to avoid the effects of “blind spots.” Finally, the camera should be calibrated geometrically to obtain meaningful results. All these requirements for the hardware components are, of course, also valid for other subpixel algorithms, e.g., subpixel-precise thresholding (see Section 3.4.3), gray value moments (see Sections 3.5.2.2–3.5.2.4), and contour features (see Section 3.5.3).





3.8 Segmentation and Fitting of Geometric Primitives

In Sections 3.4 and 3.7.3, we have seen how to segment images by thresholding and edge extraction. In both cases, the boundary of objects either is returned explicitly or can be derived by some postprocessing (see Section 3.6.1.4). Therefore, for the purposes of this section, we can assume that the result of the segmentation is a contour containing the points of the boundary, which may be subpixel-accurate. This approach often creates an enormous amount of data. For example, the subpixel-accurate edge of the hole in the workpiece in Figure 3.82(d) contains 172 contour points. However, we are typically not interested in such a large amount of information. For example, in the application in Figure 3.82(d), we would probably be content with knowing the position and radius of the hole, which can be described with just three parameters. Therefore, in this section we will discuss methods to fit geometric primitives to contour data. We will only examine the most relevant geometric primitives: lines, circles, and ellipses. Furthermore, we will examine how contours can be segmented automatically into parts that correspond to the geometric primitives. This will enable us to substantially reduce the amount of data that needs to be processed, while also providing us with a symbolic description of the data. Furthermore, the fitting of the geometric primitives will enable us to reduce the influence of incorrectly or inaccurately extracted points (so-called outliers). We will start by examining the fitting of the geometric primitives in Sections 3.8.1–3.8.3. In each case, we will assume that the contour or part of the contour we are examining corresponds to the primitive we are trying to fit, i.e., we are assuming that the segmentation into the different primitives has already been performed. The segmentation itself will be discussed in Section 3.8.4.


3.8.1 Fitting Lines

If we want to fit lines, we first need to think about the representation of lines. In images, lines can occur in any orientation. Therefore, we must use a representation that enables us to represent all lines. For example, the common representation y = mx + b does not allow us to do this since vertical lines cannot be represented. One representation that can be used is the Hessian normal form of the line, given by

(3.126) [image: image]

This is actually an over-parameterization, since the parameters (α, β, γ) are homogeneous (Hartley and Zisserman, 2003; Faugeras and Luong, 2001). Therefore, they are defined only up to a scale factor. The scale factor in the Hessian normal form is fixed by requiring that α2 + β2 = 1. This has the advantage that the distance of a point to the line can simply be obtained by substituting its coordinates into Eq. (3.126).


3.8.1.1 Least-Squares Line Fitting

To fit a line through a set of points (ri, ci)┬, i = 1, … , n, we can minimize the sum of the squared distances of the points to the line:

(3.127) [image: image]

While this is correct in principle, it does not work in practice, because we can achieve a zero error if we select α = β = γ = 0. This is caused by the over-parameterization of the line. Therefore, we must add the constraint α2 + β2 = 1 as a Lagrange multiplier, and hence must minimize the following error:

(3.128) [image: image]

The solution to this optimization problem is derived in Haralick and Shapiro (1992). It can be shown that (α, β)┬ is the eigenvector corresponding to the smaller eigenvalue of the following matrix:

(3.129) [image: image]

With this, γ is given by γ = −(αn1,0 +βn0,1). Here, μ2,0, μ1,1, and μ0,2 are the second-order central moments of the point set (ri, ci)┬, while n1,0 and n0,1 are the normalized first-order moments (the center of gravity) of the point set. If we replace the area a of a region with the number n of points and sum over the points in the point set instead of the points in the region, the formulas to compute these moments are identical to the region moments of Eqs. (3.61) and (3.62) in Section 3.5.1.2. It is interesting to note that the vector (α, β)┬ thus obtained, which is the normal vector of the line, is the minor axis that would be obtained from the ellipse parameters of the point set. Consequently, the major axis of the ellipse is the direction of the line. This is a very interesting connection between the ellipse parameters and the line fitting, because the results were derived using different approaches and models.

Figure 3.90(b) illustrates the line fitting procedure for an oblique edge of the work-piece shown in Figure 3.90(a). Note that, by fitting the line, we were able to reduce the effects of the small protrusion on the workpiece. As mentioned above, by inserting the coordinates of the edge points into the line equation (3.126), we can easily calculate the distances from the edge points to the line. Therefore, by thresholding the distances, the protrusion easily can be detected.

As can be seen from the above example, the line fit is robust to small deviations from the assumed model (small outliers). However, Figure 3.91 shows that large outliers severely affect the quality of the fitted line. In this example, the line is fitted through the straight edge as well as the large arc caused by the relay contact. Since the line fit must minimize the sum of the squared distances of the contour points, the fitted line has a direction that deviates from that of the straight edge.



3.8.1.2 Robust Line Fitting

The least-squares line fit is not robust to large outliers since points that lie far from the line have a very large weight in the optimization because of the squared distances. To reduce the influence of distant points, we can introduce a weight wi for each point. The weight should be [image: image] 1 for distant points. Let us assume for the moment that we have a way to compute these weights. Then, the minimization becomes

(3.130) [image: image]

[image: image]
Figure 3.90 (a) Image of a workpiece with the part shown in (b) indicated by the white rectangle. (b) Extracted edge within a region around the inclined edge of the workpiece (dashed line) and straight line fitted to the edge (solid line).


[image: image]
Figure 3.91 (a) Image of a relay with the part shown in (b) indicated by the light gray rectangle. (b) Extracted edge within a region around the vertical edge of the relay (dashed line) and straight line fitted to the edge (solid line). To provide a better visibility of the edge and line, the contrast of the image has been reduced in (b).


The solution of this optimization problem is again given by the eigenvector corresponding to the smaller eigenvalue of a moment matrix like in Eq. (3.129) (Lanser, 1997). The only difference is that the moments are computed by taking the weights wi into account. If we interpret the weights as gray values, the moments are identical to the gray value center of gravity and the second-order central gray value moments (see Eqs. (3.71) and (3.72) in Section 3.5.2.2). As above, the fitted line corresponds to the major axis of the ellipse obtained from the weighted moments of the point set. Hence, there is an interesting connection to the gray value moments.

The only remaining problem is how to define the weights wi. Since we want to give smaller weights to points with large distances, the weights must be based on the distances δi = |αri + βci + γ| of the points to the line. Unfortunately, we do not know the distances without fitting the line, so this seems an impossible requirement. The solution is to fit the line in several iterations. In the first iteration, wi = 1 is used, i.e., a normal line fit is performed to calculate the distances δi. They are used to define weights for the following iterations by using a weight function w(δ). This method is called iteratively reweighted least-squares (IRLS) (Holland and Welsch, 1977; Stewart, 1999). In practice, often one of the following two weight functions is used. They both work very well. The first weight function was proposed by Huber (Lanser, 1997; Huber, 1981). It is given by

(3.131) [image: image]

The parameter τ is the clipping factor. It defines which points should be regarded as outliers. We will see how it is computed below. For now, note that all points with a distance ≤ τ receive a weight of 1. This means that, for small distances, the squared distance is used in the minimization. Points with a distance > τ, on the other hand, receive a progressively smaller weight. In fact, the weight function is chosen such that points with large distances use the distance itself and not the squared distance in the optimization. Sometimes, these weights are not small enough to suppress outliers completely. In this case, the Tukey weight function can be used (Lanser, 1997; Mosteller and Tukey, 1977). It is given by

(3.132) [image: image]

Again, τ is the clipping factor. Note that this weight function completely disregards points that have a distance > τ. For distances ≤ τ, the weight changes smoothly from 1 to 0.

In the above two weight functions, the clipping factor specifies which points should be regarded as outliers. Since the clipping factor is a distance, it could simply be set manually. However, this would ignore the distribution of the noise and the outliers in the data, and consequently would have to be adapted for each application. It is more convenient to derive the clipping factor from the data itself. This is typically done based on the standard deviation of the distances to the line. Since we expect outliers in the data, we cannot use the normal standard deviation, but must use a standard deviation that is robust to outliers. Typically, the following formula is used to compute the robust standard deviation:

(3.133) [image: image]

The constant in the denominator is chosen such that, for normally distributed distances, the standard deviation of the normal distribution is computed. The clipping factor is then set to a small multiple of σδ, e.g., τ = 2σδ.

In addition to the Huber and Tukey weight functions, other weight functions can be defined. Several other possibilities are discussed in Hartley and Zisserman (2003).

Figure 3.92 displays the result of fitting a line robustly to the edge of the relay using the Tukey weight function with a clipping factor of τ = 2σδ and five iterations. If we compare this with the standard least-squares line fit in Figure 3.91(b), we see that with the robust fit, the line is now fitted to the straight-line part of the edge, and the outliers caused by the relay contact have been suppressed.

[image: image]
Figure 3.92 Straight line (solid line) fitted robustly to the vertical edge (dashed line). In this case, the Tukey weight function with a clipping factor of τ = 2σδ with five iterations was used. Compared to Figure 3.91(b), the line is now fitted to the straight-line part of the edge.


It should also be noted that the above approach to outlier suppression by weighting down the influence of points with large distances can sometimes fail because the initial fit, which is a standard least-squares fit, can produce a solution that is dominated by the outliers. Consequently, the weight function will drop inliers. In this case, other robust methods must be used. The most important approach is the random sample consensus (RANSAC) algorithm, proposed by Fischler and Bolles (1981). Instead of dropping outliers successively, it constructs a solution (e.g., a line fit) from the minimum number of points (e.g., two for lines), which are selected randomly, and then checks how many points are consistent with the solution. The process of randomly selecting points, constructing the solution, and checking the number of consistent points is continued until a certain probability of having found the correct solution, e.g., 99%, is achieved. At the end, the solution with the largest number of consistent points is selected.




3.8.2 Fitting Circles


3.8.2.1 Least-Squares Circle Fitting

Fitting circles or circular arcs to a contour uses the same idea as fitting lines: we want to minimize the sum of the squared distances of the contour points to the circle:

(3.134) [image: image]

Here, (α, β)┬ is the center of the circle and ρ is its radius. Unlike line fitting, this leads to a nonlinear optimization problem, which can only be solved iteratively using nonlinear optimization techniques. Details can be found in Haralick and Shapiro (1992); Joseph (1994); Ahn et al. (2001).

[image: image]
Figure 3.93 (a) Image of a workpiece with circles fitted to the edges of the holes in the workpiece. (b) Details of the upper right hole with the extracted edge (dashed line) and the fitted circle (solid line).


Figure 3.93(a) shows the result of fitting circles to the edges of the holes of a workpiece, along with the extracted radii in pixels. In Figure 3.93(b), details of the upper right hole are shown. Note how well the circle fits the extracted edges.



3.8.2.2 Robust Circle Fitting

Like the least-squares line fit, the least-squares circle fit is not robust to outliers. To make the circle fit robust, we can use the same approach that we used for line fitting: we can introduce a weight that is used to reduce the influence of the outliers. Again, this requires that we perform a normal least-squares fit first and then use the distances that result from it to calculate the weights in later iterations. Since it is possible that large outliers can prevent this algorithm from converging to the correct solution, a RANSAC approach might be necessary in extreme cases.

Figure 3.94 compares standard circle fitting with robust circle fitting using the BGA example of Figure 3.37. With standard fitting (Figure 3.94(b)), the circle is affected by the error in the pad, which acts like an outlier. This is corrected with the robust fitting (Figure 3.94(c)).

[image: image]
Figure 3.94 (a) Image of a BGA with pads extracted by subpixel-precise thresholding (see also Figure 3.37). (b) Circle fitted to the left pad in the center row of (a). The fitted circle is shown as a solid line, while the extracted contour is shown as a dashed line. The fitted circle is affected by the error in the pad, which acts like an outlier. (c) Result of robustly fitting a circle. The fitted circle corresponds to the true boundary of the pad.


To conclude this section, we should give some thought to what happens when a circle is fitted to a contour that only represents a part of a circle (a circular arc). In this case, the accuracy of the parameters becomes progressively worse as the angle of the circular arc becomes smaller. An excellent analysis of this effect is given by Joseph (1994). This effect is obvious from the geometry of the problem. Simply think about a contour that only represents a 5° arc. If the contour points are disturbed by noise, we have a very large range of radii and centers that lead to almost the same fitting error. On the other hand, if we fit to a complete circle, the geometry of the circle is much more constrained.




3.8.3 Fitting Ellipses


3.8.3.1 Least-Squares Ellipse Fitting

To fit an ellipse to a contour, we would like to use the same principles as for lines and circles: i.e., minimize the distance of the contour points to the ellipse. This requires us to determine the closest point to each contour point on the ellipse. While this can be determined easily for lines and circles, for ellipses it requires finding the roots of a fourth-degree polynomial. Since this is quite complicated and expensive, ellipses are often fitted by minimizing a different kind of distance. The principle is similar to the line fitting approach: we write down an implicit equation for ellipses (for lines, the implicit equation is given by Eq. (3.126)), and then substitute the point coordinates into the implicit equation to get a distance measure for the points to the ellipse. For the line fitting problem, this procedure returns the true distance to the line. For ellipse fitting, it only returns a value that has the same properties as a distance, but is not the true distance. Therefore, this distance is called the algebraic distance. Ellipses are described by the following implicit equation:

(3.135) [image: image]

As for lines, the set of parameters is a homogeneous quantity, i.e., only defined up to scale. Furthermore, Eq. (3.135) also describes hyperbolas and parabolas. Ellipses require β2 – 4αγ < 0. We can solve both problems by requiring β2 – 4αγ = −1. An elegant solution to fitting ellipses by minimizing the algebraic error with a linear method was proposed by Fitzgibbon. The interested reader is referred to Fitzgibbon et al. (1999) for details. Unfortunately, minimizing the algebraic error can result in biased ellipse parameters. Therefore, if the ellipse parameters are to be determined with maximum accuracy, the geometric error should be used. A nonlinear approach for fitting ellipses based on the geometric error is proposed by Ahn et al. (2001). It is significantly more complicated than the linear approach by Fitzgibbon et al. (1999).



3.8.3.2 Robust Ellipse Fitting

Like the least-squares line and circle fits, fitting ellipses via the algebraic or geometric distance is not robust to outliers. We can again introduce weights to create a robust fitting procedure. If the ellipses are fitted with the algebraic distance, this again results in a linear algorithm in each iteration of the robust fit (Lanser, 1997). In applications with a very large number of outliers or with very large outliers, a RANSAC approach might be necessary.

[image: image]
Figure 3.95 (a) Part of an image of a calibration target. (b) Ellipses fitted to the extracted edges of the circular marks of the calibration target. (c) Detail of a mark of the calibration target with the fitted ellipse.


Ellipse fitting is very useful in camera calibration, where circular marks often are used on the calibration targets (see Section 3.9 and Lenz and Fritsch (1990); Lanser et al. (1995); Heikkilä (2000); Steger (2017)). Since circles project to ellipses, fitting ellipses to the edges in the image is the natural first step in the calibration process. Figure 3.95(a) displays a part of an image of a calibration target. The ellipses fitted to the extracted edges of the calibration marks are shown in Figure 3.95(b). In Figure 3.95(c), a detailed view of the center mark with the fitted ellipse is shown. Since the subpixel edge extraction is very accurate, there is hardly any visible difference between the edge and the ellipse, and therefore the edge is not shown in the figure.

To conclude this section, we should note that, if ellipses are fitted to contours that only represent a part of an ellipse, the same comments that were made for circular arcs at the end of the last section apply: the accuracy of the parameters will become worse as the angle that the arc subtends becomes smaller.




3.8.4 Segmentation of Contours

So far, we have assumed that the contours to which we are fitting the geometric primitives correspond to a single primitive of the correct type, e.g., a line segment. Of course, a single contour may correspond to multiple primitives of different types. Therefore, in this section we will discuss how contours can be segmented into the different primitives.


3.8.4.1 Segmentation of Contours into Lines

We will start by examining how a contour can be segmented into lines. To do so, we would like to find a polygon that approximates the contour sufficiently well. Let us call the contour points pi = (ri, ci)┬, for i = 1, … , n. Approximating the contour by a polygon means that we want to find a subset pij, for j = 1, … , m with m ≤ n, of the control points of the contour that describes the contour reasonably well. Once we have found the approximating polygon, each line segment (pij, pij+1) of the polygon is a part of the contour that can be approximated well with a line. Hence, we can fit lines to each line segment afterward to obtain a very accurate geometric representation of the line segments.

[image: image]
Figure 3.96 Example of the recursive subdivision that is performed in the Ramer algorithm. The contour is displayed as a thin line, while the approximating polygon is displayed as a thick line.


The question we need to answer is this: How do we define whether a polygon approximates the contour sufficiently well? A large number of different definitions have been proposed over the years. A very good evaluation of many polygonal approximation methods has been carried out by Rosin (1997, 2003). In both cases, it was established that the algorithm proposed by Ramer (1972), which curiously enough is one of the oldest algorithms, is the best overall method.

The Ramer algorithm performs a recursive subdivision of the contour until the resulting line segments have a maximum distance to the respective contour segments that is lower than a user-specified threshold dmax. Figure 3.96 illustrates how the Ramer algorithm works. We start out by constructing a single line segment between the first and last contour points. If the contour is closed, we construct two segments: one from the first point to the point with index n/2, and the second one from n/2 to n. We then compute the distances of all the contour points to the line segment and find the point with the maximum distance to the line segment. If its distance is larger than the threshold we have specified, we subdivide the line segment into two segments at the point with the maximum distance. Then, this procedure is applied recursively to the new segments until no more subdivisions occur, i.e., until all segments fulfill the maximum distance criterion.

Figure 3.97 illustrates the use of the polygonal approximation in a real application. In Figure 3.97(a), a back-lit cutting tool is shown. In the application, the dimensions and angles of the cutting tool must be inspected. Since the tool consists of straight edges, the obvious approach is to extract edges with subpixel accuracy (Figure 3.97(b)) and to approximate them with a polygon using the Ramer algorithm. From Figure 3.97(c) we can see that the Ramer algorithm splits the edges correctly. We can also see the only slight drawback of the Ramer algorithm: it sometimes places the polygon control points into positions that are slightly offset from the true corners. In this application, this poses no problem, since to achieve maximum accuracy we must fit lines to the contour segments robustly anyway (Figure 3.97(d)). This enables us to obtain a concise and very accurate geometric description of the cutting tool. With the resulting geometric parameters, it can easily be checked whether the tool has the required dimensions.

[image: image]
Figure 3.97 (a) Image of a back-lit cutting tool with the part that is shown in (b)–(d) overlaid as a white rectangle. To provide better visibility of the results, the contrast of the image has been reduced in (b)–(d). (b) Subpixel-accurate edges extracted with a Lanser filter with α = 0.7. (c) Polygons extracted with the Ramer algorithm with dmax = 2. (d) Lines fitted robustly to the polygon segments using the Tukey weight function.




3.8.4.2 Segmentation of Contours into Lines, Circles, and Ellipses

While lines are often the only geometric primitive that occurs for the objects that should be inspected, in several cases the contour must be split into several types of primitives. For example, machined tools often consist of lines and circular arcs or lines and elliptical arcs. Therefore, we will now discuss how such a contour segmentation can be performed.

The approaches to segmenting contours into lines and circles can be classified into two broad categories. The first type of algorithm tries to identify breakpoints on the contour that correspond to semantically meaningful entities. For example, if two straight lines with different angles are next to each other, the tangent direction of the curve will contain a discontinuity. On the other hand, if two circular arcs with different radii meet smoothly, there will be a discontinuity in the curvature of the contour. Therefore, the breakpoints typically are defined as discontinuities in the contour angle, which are equivalent to maxima of curvature, and as discontinuities in the curvature itself. The first definition covers straight lines or circular arcs that meet at a sharp angle. The second definition covers smoothly joining circles or lines and circles (Wuescher and Boyer, 1991; Sheu and Hu, 1999). Since the curvature depends on the second derivative of the contour, it is an unstable feature that is very prone to even small errors in the contour coordinates. Therefore, to enable these algorithms to function properly, the contour must be smoothed substantially. This, in turn, can cause the breakpoints to shift from their desired positions. Furthermore, some breakpoints may be missed. Therefore, these approaches are often followed by an additional splitting and merging stage and a refinement of the breakpoint positions (Sheu and Hu, 1999; Chen et al., 1996).

While the above algorithms work well for splitting contours into lines and circles, they are quite difficult to extend to lines and ellipses because ellipses do not have constant curvature like circles. In fact, the two points on an ellipse on the major axis have locally maximal curvature and consequently would be classified as breakpoints by the above algorithms. Therefore, if we want to have a unified approach to segmenting contours into lines and circles or ellipses, the second type of algorithm is more appropriate. This type of algorithm is characterized by initially performing a segmentation of the contour into lines only. This produces an over-segmentation in the areas of the contour that correspond to circles and ellipses since here many line segments are required to approximate the contour. Therefore, the line segments are examined in a second phase as to whether they can be merged into circles or ellipses (Lanser, 1997; Rosin and West, 1995). For example, the algorithm by Lanser (1997) initially performs a polygonal approximation with the Ramer algorithm. Then, it checks each pair of adjacent line segments to see whether it can be better approximated by an ellipse (or, alternatively, a circle). This is done by fitting an ellipse to the part of the contour that corresponds to the two line segments. If the fitting error of the ellipse is smaller than the maximum error of the two lines, the two line segments are marked as candidates for merging. After examining all pairs of line segments, the pair with the smallest fitting error is merged. In the following iterations, the algorithm also considers pairs of line and ellipse segments. The iterative merging is continued until there are no more segments that can be merged.

Figure 3.98 illustrates the segmentation into lines and circles. As in the previous example, the application is the inspection of cutting tools. Figure 3.98(a) displays a cutting tool that consists of two linear parts and a circular part. The result of the initial segmentation into lines with the Ramer algorithm is shown in Figure 3.98(b). Note that the circular arc is represented by four contour parts. The iterative merging stage of the algorithm successfully merges these four contour parts into a circular arc, as shown in Figure 3.98(c). Finally, the angle between the linear parts of the tool is measured by fitting lines to the corresponding contour parts, while the radius of the circular arc is determined by fitting a circle to the circular arc part. Since the camera is calibrated in this application, the fitting is actually performed in world coordinates. Hence, the radius of the arc is calculated in millimeters.

[image: image]
Figure 3.98 (a) Image of a back-lit cutting tool. (b) Contour parts corresponding to the initial segmentation into lines with the Ramer algorithm. The contour parts are displayed in three different gray values. (c) Result of the merging stage of the line and circle segmentation algorithm. In this case, two lines and one circular arc are returned. (d) Geometric measurements obtained by fitting lines to the linear parts of the contour and a circle to the circular part. Because the camera was calibrated, the radius is calculated in millimeters.






3.9 Camera Calibration

At the end of Section 3.7.4.3, we already discussed briefly that camera calibration is essential to obtain accurate measurements of objects. When the camera is calibrated, it is possible to correct lens distortions, which occur with different magnitudes for every lens, and to obtain the object’s coordinates in metric units, e.g., in meters or millimeters. Since the previous sections have described the methods required for geometric camera calibration, we can now discuss how the calibration is performed.

To calibrate a camera, a model for the mapping of the three-dimensional (3D) points of the world to the 2D image generated by the camera, lens, and frame grabber (if used) is necessary.

Several different types of lenses are relevant for machine vision tasks. If the image plane is perpendicular to the optical axis, we will call this configuration a camera with a regular lens. As described in Section 2.2.4.4, we can ignore the image-side projection characteristics of the lens in this case. Consequently, we must differentiate between perspective and telecentric lenses, with the understanding that in this case the terms refer to the object-side projection characteristics. Perspective lenses perform a perspective projection of the world into the image. We will call a camera with a perspective lens a perspective camera. Telecentric lenses perform a parallel projection of the world into the image. We will call a camera with a telecentric lens a telecentric camera.

If the lens is tilted, the image-side projection characteristics of the lens become essential. We must distinguish all four lens types in this case: entocentric, image-side telecentric, object-side telecentric, and bilateral telecentric lenses. We will call cameras with a tilt lens of type t a “t tilt camera.” For example, a camera with an entocentric tilt lens will be called an entocentric tilt camera.

In addition to the different lens types, two types of sensors need to be considered: area sensors and line sensors (see Section 2.3.1). For area sensors, all six of the lens types discussed above are in common use. For line sensors, only perspective lenses are commonly used. Therefore, we will not introduce additional labels for the perspective, telecentric, and tilt cameras. Instead, it will be silently assumed that these types of cameras use area sensors. For line sensors with perspective lenses, we will simply use the term line scan camera.

For all camera models, the mapping from 3D to 2D performed by the camera can be described by a certain number of parameters:

(3.136) [image: image]

Here, p is the 2D image coordinate of the 3D point Pw produced by the projection π. Camera calibration is the process of determining the camera parameters θ1, … θn.


3.9.1 Camera Models for Area Scan Cameras with Regular Lenses

Figure 3.99 displays the perspective projection performed by a perspective camera. The world point Pw is projected through the projection center of the lens to the point p in the image plane. As discussed in Section 2.2.2.4, the projection center corresponds to the center of the entrance pupil of the lens. Furthermore, for the purposes of the perspective camera model, we have applied the construction that is described in Section 2.2.2.4: the exit pupil has been shifted virtually to the projection center, and the image plane has been moved to the principal distance to cause the ray angles in object and image space to be identical. Consequently, we obtain the geometry of the pinhole camera. Therefore, if there were no lens distortions, p would lie on a straight line from Pw through the projection center, indicated by the dotted line. Lens distortions cause the point p to lie at a different position.

The image plane is located at a distance of f behind the projection center. As explained in Section 2.2.2.4, f is the camera constant or principal distance (which is called c in Section 2.2.2.4) and not the focal length of the lens. Nevertheless, we use f to denote the principal distance since we use c to denote column coordinates in the image.

[image: image]
Figure 3.99 Camera model for a perspective camera.


Although the image plane in reality lies behind the projection center of the lens, it is easier to pretend that it lies at a distance of f in front of the projection center, as shown in Figure 3.100. This causes the image coordinate system to be aligned with the pixel coordinate system (row coordinates increase downward and column coordinates to the right) and simplifies many calculations.


3.9.1.1 Exterior Orientation

We are now ready to describe the mapping of objects in 3D world coordinates to the 2D image plane and the corresponding camera parameters. First, we should note that the world points Pw are given in a world coordinate system (WCS). To make the projection into the image plane possible, they need to be transformed into the camera coordinate system (CCS). The CCS is defined such that its origin lies at the projection center. Its x and y axes are parallel to the column and row axes of the image, respectively, and the z axis is perpendicular to the image plane and is oriented such that points in front of the camera have positive z coordinates. The transformation from the WCS to the CCS is a rigid transformation, i.e., a rotation followed by a translation. Therefore, the point Pw = (xw, yw, zw)┬ in the WCS is given by the point Pc = (xc, yc, zc)┬ in the CCS, where

(3.137) [image: image]

Here, T = (tx, ty, tz)┬ is a translation vector and R = R(α, β, γ) is a rotation matrix, which is determined by the three rotation angles γ (around the z axis of the CCS), β (around the y axis), and α (around the x axis):

(3.138) [image: image]

[image: image]
Figure 3.100 Image plane and virtual image plane.


The six parameters (α, β, γ, tx, ty, tz) of R and T are called the exterior camera parameters, exterior orientation, or camera pose, because they determine the position of the camera with respect to the world. As for 2D transformations, it is possible to represent rigid 3D transformations, and hence poses, as homogenous transformation matrices. In homogeneous form, Eq. (3.137) becomes

(3.139) [image: image]

with the 4 × 4 matrix

(3.140) [image: image]

and the homogenous 4-vectors [image: image].



3.9.1.2 Projection From 3D to 2D

The next step of the mapping is the projection of the 3D point Pc into the image plane coordinate system (IPCS). For the perspective camera model, the projection is a perspective projection, which is given by

(3.141) [image: image]

For the telecentric camera model, the projection is a parallel projection, which is given by

(3.142) [image: image]

where m is the magnification of the lens (which was called β in Section 2.2.4). Because of the parallel projection, the distance zc of the object to the camera has no influence on the image coordinates.



3.9.1.3 Lens Distortions

After the projection to the image plane, lens distortions cause the coordinates (u, v)┬ to be modified. Lens distortions are a transformation that can be modeled in the image plane alone, i.e., 3D information is unnecessary. For many lenses, the distortion can be approximated sufficiently well by a radial distortion using the division model (Lenz, 1988; Lenz and Fritsch, 1990; Lanser, 1997; Lanser et al., 1995; Steger, 2017), which is given by

(3.143) [image: image]

where r2 = u2 + v2. The parameter k models the magnitude of the radial distortions. If k is negative, the distortion is barrel-shaped; while for positive k it is pincushion-shaped.

Figure 3.101 shows the effect of k for an image of a calibration target that was used in previous versions of HALCON. The calibration target that is currently used by HALCON will be described in Section 3.9.4.1. The calibration target shown in Figure 3.101 has a straight border, which has the advantage that it clearly shows the effects of the distortions. Compare Figure 3.101 to Figure 2.39, which shows the effect of lens distortions for circular and rectangular grids.

The division model has the great advantage that the rectification of the distortion can be calculated analytically by

(3.144) [image: image]

where [image: image]. This will be important when we compute world coordinates from image coordinates.

[image: image]
Figure 3.101 Effects of the distortion coefficient κ in the division model. (a) Pincushion distortion: κ > 0. (b) No distortion: κ = 0. (c) Barrel distortion: κ < 0.


If the division model is not sufficiently accurate for a particular lens, a polynomial distortion model that is able to model radial as well as decentering distortions can be used (Brown, 1966, 1971; Gruen and Huang, 2001; Heikkilä, 2000; Steger, 2017). Here, the rectification of the distortion is modeled by

(3.145) [image: image]

The terms Ki describe a radial distortion, while the terms Pi describe a decentering distortion, which may occur if the optical axes of the individual lenses are not aligned perfectly with each other. In practice, the terms K1, K2, K3, P1, and P2 are typically used, while higher order terms are neglected.

Note that (3.145) models the rectification of the distortion, i.e., the analog of (3.144). In the polynomial model, the distortion (the analog of (3.143)) cannot be computed analytically. Instead, it must be computed numerically by a root-finding algorithm. This is not a drawback since in applications we are typically interested in transforming image coordinates to measurements in the world (see Sections 3.9.5 and 3.10.1). Therefore, it is advantageous if the rectification can be computed analytically.

Figure 3.102 shows the effect of the parameters of the polynomial model on the distortion. In contrast to the division model, where κ > 0 leads to pincushion distortion and κ < 0 to barrel distortion, in the polynomial model, Ki > 0 leads to barrel distortion and Ki < 0 to pincushion distortion. Furthermore, higher order terms lead to very strong distortions at the edges of the image, while they have a progressively smaller effect in the center of the image (if the distortions at the corners of the image are approximately the same). Decentering distortions cause an effect that is somewhat similar to perspective distortion. However, they additionally bend the image in the horizontal or vertical direction.

There is a deeper connection between the radial distortion coefficients in the division and polynomial models, which can be seen by expanding the rectification factor [image: image] in Eq. (3.144) into a geometric series:

(3.146) [image: image]

[image: image]
Figure 3.102 Effects of the distortion coefficients in the polynomial model. Coefficients that are not explicitly mentioned are 0. (a) K1 > 0. (b) K1 < 0. (c) K2 > 0. (d) K2 < 0. (e) K3 > 0. (f) K3 < 0. (g) P1 > 0. (h) P1 < 0. (i) P2 > 0. (j) P2 < 0.


Therefore, the division model corresponds to the polynomial model without decentering distortions and with infinitely many radial distortion terms Ki that all depend functionally on the single distortion coefficient k: Ki = (−κ)i.

Because of the complexity of the polynomial model, we will only use the division model in the discussion below. However, everything that will be discussed also holds if the division model is replaced by the polynomial model.



3.9.1.4 Image Coordinates

The final step in the mapping is to transform the point (u, v)┬ is transformed from the IPCS into the image coordinate system (ICS):

(3.147) [image: image]

Here, sx and sy are scaling factors. They represent the horizontal and vertical pixel pitch on the sensor (see Section 2.3.4). The point (cx, cy)┬ is the principal point of the image. For perspective cameras, this is the perpendicular projection of the projection center onto the image plane, i.e., the point in the image from which a ray through the projection center is perpendicular to the image plane. It also defines the center of the distortions. For telecentric cameras, the projection center is at infinity. This causes all rays to be perpendicular to the image plane. Consequently, the principal point is solely defined by the distortions.

The six parameters (f, κ, sx, sy, cx, cy) of the perspective camera and the six parameters (m, κ, sx, sy, cx, cy) of the telecentric camera are called the interior camera parameters or interior orientation, because they determine the projection from 3D to 2D performed by the camera.









3.9.2 Camera Models for Area Scan Cameras with Tilt Lenses

We will now extend the camera models of Section 3.9.1 to handle tilt lenses correctly. To do so, we must model the transformation that occurs when the image plane is tilted for lenses that are telecentric in image space (image-side telecentric and bilateral telecentric lenses) and for lenses that are perspective in image space (entocentric and object-side telecentric lenses).



3.9.2.1 Lens Distortions

The camera models in Section 3.9.1 have proven their ability to model standard cameras correctly for many years. Therefore, the tilt camera models should reduce to the standard models if the image plane is not tilted. From the discussion in Section 2.2.2.4, we can see that the principal distance f models the ray angles in object space correctly for perspective lenses. This is also obviously the case for telecentric lenses, where the magnification m determines the spacing of the rays in object space instead of their angles. Furthermore, as discussed by Sturm et al. (2010), the distortion models discussed above essentially model distortions of ray angles with respect to the optical axis. The rays in image space are represented by their intersections with a plane that is perpendicular to the optical axis. This is convenient for untilted image planes, since this plane is already available: it is the image plane. Since the optical axis of the lens is unaffected by a tilt of the image plane, we can still use the above mechanism to represent the distortions, which models the distortions of ray angles with respect to the optical axis by way of their intersections with a plane that is perpendicular to the optical axis. Since the actual image plane is now tilted, the untilted image plane becomes a virtual image plane that is used solely for the purpose of representing ray angles with respect to the optical axis and thus to compute the distortions. Consequently, these two parts of the model, i.e., the modeling of the ray angles or spacing in object space by f or m and the modeling of the distortions in a plane that is perpendicular to the optical axis, can remain unchanged.



3.9.2.2 Modeling the Pose of the Tilted Image Plane

Both tilt models therefore work by projecting a point from a virtual image plane that is perpendicular to the optical axis to the tilted image plane. Therefore, we first describe how we can model the pose of the tilted image plane in a manner that is easy to understand. Almost all tilt lenses work by first selecting the direction in which to tilt the lens and then tilting the lens (Steger, 2017). The selection of the direction in which to tilt essentially determines a rotation axis n in a plane orthogonal to the optical axis, i.e., in the untilted image plane, and then rotating the image plane around that axis. Let the image coordinate system of the untilted image plane be given by the axes [image: image] and [image: image]. We can extend this image coordinate system to a 3D coordinate system by the axis [image: image], which points back to the scene along the optical axis. Figures 3.103 and 3.105 display the untilted image plane and this coordinate system in medium gray. The rotation axis n around which the image plane is tilted can be parameterized by the angle ρ (0 ≤ ρ < 2π) as follows:

(3.148) [image: image]

[image: image]
Figure 3.103 The projection of a point [image: image] from the untilted image plane to a point [image: image] in the tilted image plane for a camera that is telecentric in image space.


If we rotate the coordinate system [image: image] by the tilt angle τ (0 ≤ τ < π/2) around n, the coordinate axes [image: image] of the tilted image plane are given in the coordinate system of the untilted image plane by (see Steger, 2017):

(3.149) [image: image]

where cθ and sθ are abbreviations for cos θ and sin θ, respectively, and is either ρ or τ.

Note that the semantics of the tilt parameters are quite easy to understand. A rotation angle ρ = 0° means that the lens (i.e., the optical axis) is tilted downwards by τ with respect to the camera housing; for ρ = 90°, it is tilted leftwards; for ρ = 180° upwards; and for ρ = 270° rightwards.



3.9.2.3 Image-Space Telecentric Lenses

The transformation from untilted image coordinates [image: image] to tilted image coordinates [image: image] for cameras that are telecentric in image space (image-side telecentric and bilateral telecentric lenses) is given by (see Steger, 2017):

(3.150) [image: image]

[image: image]
Figure 3.104 The ray geometry of the perspective tilt camera model.


We insert this tilt transformation into the camera model between the distortion in Eqs. (3.143)–(3.145) and the transformation to the image coordinate system in Eq. (3.147), i.e., we use [image: image] in Eq. (3.147) instead of [image: image]. Hence, the world points are projected to the untilted image plane, distorted within that plane, transformed to the tilted image plane, and transformed to the image coordinate system.



3.9.2.4 Image-Space Perspective Lenses

We now turn to cameras with lenses that are perspective in image space (entocentric and object-side telecentric lenses). Here, we must be able to model the different ray angles in object and image space correctly. From the discussion in Section 2.2.2.4, it is evident what must be done to model the different ray angles correctly: we must locate the untilted image plane at the true distance from the center of the exit pupil. This distance was called a′ in Figure 2.23. For simplicity, we will call it d from now on and will refer to d as the image plane distance. We require that 0 < d < ∞. Figure 3.104 displays this geometry. Points in object space are first projected into a virtual image plane that is orthogonal to the optical axis and lies at a distance f from the projection center O. This causes the object and image space ray angles to be identical (ω″ = ω) and therefore causes the object space ray angles ω to be modeled correctly. To model the image space ray angles correctly, the virtual image plane is shifted to a distance d (which corresponds to a′ in Figure 2.23), resulting in the correct image space ray angles ω′ ≠ ω. This shift does not change the virtual image in any way. Next, the points are distorted in the virtual image plane. With the virtual image at its correct distance d, the plane can now be tilted by the correct tilt angle τ.

Consequently, as shown in Figure 3.105, the major difference to the telecentric model is that the image-side projection center (the center of the exit pupil) lies at a finite distance d in front of the image plane.

The transformation from untilted image coordinates [image: image] to tilted image coordinates [image: image] is given by the following perspective transformation (see Steger, 2017):

(3.151) [image: image]

[image: image]
Figure 3.105 The projection of a point [image: images] from the untilted image plane to a point [image: images] in the tilted image plane for a camera that is perspective in image space.


Note that in this equation, [image: image] refers to the homogeneous coordinate of [image: image]. As described in Section 3.3.1.1, we must divide [image: images] and [image: images] by [image: images] to obtain the coordinates of the perspectively transformed point.

As above, we insert this tilt transformation into the camera model between the distortion in Eqs. (3.143)–(3.145) and the transformation to the image coordinate system in Eq. (3.147), i.e., we use [image: images] in Eq. (3.147) instead of [image: image].

We conclude this section by noting that f and d are related to the pupil magnification factor in Eqs. (2.7) and (2.8) by (see Steger, 2017):

(3.152) [image: image]



3.9.3 Camera Model for Line Scan Cameras


3.9.3.1 Camera Motion

As described in Section 2.3.1.1, line scan cameras must move with respect to the object to acquire a useful image. The relative motion between the camera and the object is part of the interior orientation. By far the most frequent motion is a linear motion of the camera, i.e., the camera moves with constant velocity along a straight line relative to the object, the orientation of the camera is constant with respect to the object, and the motion is equal for all images (Gupta and Hartley, 1997). In this case, the motion can be described by the motion vector V = (vx, vy, vz)┬, as shown in Figure 3.106. The vector V is best described in units of meters per scan line in the camera coordinate system. As shown in Figure 3.106, the definition of V assumes a moving camera and a fixed object. If the camera is stationary and the object is moving, e.g., on a conveyor belt, we can simply use −V as the motion vector.

[image: image]
Figure 3.106 Principle of line scan image acquisition.


The camera model for line scan cameras is shown in Figure 3.107. The origin of the CCS is the projection center. The z axis is identical to the optical axis and is oriented such that points in front of the camera have positive z coordinates. The y axis is perpendicular to the sensor line and to the z axis. It is oriented such that the motion vector has a positive y component, i.e., if a fixed object is assumed, the y axis points in the direction in which the camera is moving. The x axis is perpendicular to the y and z axes such that the x, y, and z axes form a right-handed coordinate system.



3.9.3.2 Exterior Orientation

Similar to area scan cameras, the projection of a point given in world coordinates into the image is modeled in two steps: first, the point is transformed from the WCS into the CCS; then, it is projected into the image.

As the camera moves over the object during the image acquisition, the CCS moves with respect to the object, i.e., each image is imaged from a different position. This means that each line has a different pose. To make things easier, we can use the fact that the motion of the camera is linear. Hence, it suffices to know the transformation from the WCS to the CCS for the first line of the image. The poses of the remaining lines can be computed from the motion vector, i.e., the motion vector V is taken into account during the projection of Pc into the image. With this, the transformation from the WCS to the CCS is identical to Eq. (3.137). As for area scan cameras, the six parameters (α, β, γ, tx, ty, tz) are called the exterior camera parameters or exterior orientation, because they determine the position of the camera with respect to the world.

[image: image]
Figure 3.107 Camera model for a line scan camera.




3.9.3.3 Interior Orientation

To obtain a model for the interior geometry of a line scan camera, we can regard a line sensor as one particular line of an area sensor. Therefore, as in area scan cameras, there is an IPCS that lies at a distance of f (the principal distance) behind the projection center. Again, the computations can be simplified if we pretend that the image plane lies in front of the projection center, as shown in Figure 3.107. We will defer the description of the projection performed by the line scan camera until later, since it is more complicated than for area scan cameras.

Let us assume that the point Pc has been projected to the point (u, v)┬ in the IPCS. As for area scan cameras, the point is now distorted by the radial distortion (3.143), which results in a distorted point ([image: image], [image: image])┬.

Finally, as for area scan cameras, ([image: image], [image: image])┬ is transformed into the ICS, resulting in the coordinates (r, c)┬. Since we want to model the fact that the line sensor may not be mounted exactly behind the projection center, which often occurs in practice, we again have to introduce a principal point (cx, cy)┬ that models how the line sensor is shifted with respect to the projection center, i.e., it describes the relative position of the principal point with respect to the line sensor. Since ([image: image], [image: image])┬ is given in metric units, e.g., meters, we need to introduce two scale factors sx and sy that determine how the IPCS units are converted to ICS units (i.e., pixels). As for area scan cameras, sx represents the horizontal pixel pitch on the sensor. As we will see below, sy only serves as a scaling factor that enables us to specify the principal point in pixel coordinates. The values of sx and sy cannot be calibrated and must be set to the pixel size of the line sensor in the horizontal and vertical directions, respectively.

To determine the projection of the point Pc = (xc, yc, zc)┬ (specified in the CCS), we first consider the case where there are no radial distortions (κ = 0), the line sensor is mounted precisely behind the projection center (cy = 0), and the motion is purely in the y direction of the CCS (V = (0, vy, 0)┬). In this case, the row coordinate of the projected point p is proportional to the time it takes for the point Pc to appear directly under the sensor, i.e., to appear in the xz plane of the CCS. To determine this, we must solve xc – tvy = 0 for the “time” t (since V is specified in meters per scan line, the units of t are actually scan lines, i.e., pixels). Hence, r = t = xc/vy. Since vx = 0, we also have u = f xc/zc and c = u/sx + cx. Therefore, the projection is a perspective projection in the direction of the line sensor and a parallel projection perpendicular to the line sensor (i.e., in the special motion direction (0, vy, 0)┬).

For general motion vectors (i.e., vx ≠ 0 or vz ≠ 0), non-perfectly aligned line sensors (cy ≠ 0), and radial distortions (κ ≠ 0), the equations become significantly more complicated. As above, we need to determine the “time” t when the point Pc appears in the “plane” spanned by the projection center and the line sensor. We put “plane” in quotes since the radial distortion will cause the back-projection of the line sensor to be a curved surface in space whenever cy ≠ 0 and κ ≠ 0. To solve this problem, we construct the optical ray through the projection center and the projected point p = (r, c)┬. Let us assume that we have transformed (r, c)┬ into the distorted IPCS, where we have coordinates [image: image]. Here, [image: image] = sycy is the coordinate of the principal point in metric units. Then, we rectify [image: image] by Eq. (3.144), i.e., (u, v)┬ = [image: image], where [image: images] is the rectification factor from Eq. (3.144). The optical ray is now given by the line equation [image: image]. The point Pc moves along the line given by (xc, yc, zc)┬ – t(vx, vy, vz)┬ during the acquisition of the image. If p is the projection of Pc, both lines must intersect. Therefore, to determine the projection of Pc, we must solve the following nonlinear set of equations

(3.153) [image: image]

for λ, [image: image], and t, where d and [image: images] are defined above. From [image: image] and t, the pixel coordinates can be computed by

(3.154) [image: image]

The nine parameters (f, κ, sx, sy, cx, cy, vx, vy, vz) of the line scan camera are called the interior orientation because they determine the projection from 3D to 2D performed by the camera.



3.9.3.4 Nonlinearities of the Line Scan Camera Model

Although the line scan camera geometry is conceptually simply a mixture of a perspective and a telecentric lens, precisely this mixture makes the camera geometry much more complex than the area scan geometries. Figure 3.108 displays some of the effects that can occur. In Figure 3.108(a), the pixels are non-square because the motion is not tuned to the line frequency of the camera. In this example, either the line frequency would need to be increased or the motion speed would need to be decreased in order to obtain square pixels. Figure 3.108(b) shows the effect of a motion vector of the form V = (vx, vy, 0)┬ with vx = vy/10. We obtain skew pixels. In this case, the camera would need to be better aligned with the motion vector. Figures 3.108(c) and (d) show that straight lines can be projected to hyperbolic arcs, even if the lens has no distortions (κ = 0) (Gupta and Hartley, 1997). This effect occurs even if V = (0, vy, 0)┬, i.e., if the line sensor is perfectly aligned perpendicular to the motion vector. The hyperbolic arcs are more pronounced if the motion vector has nonzero vz. Figures 3.108(e)–(h) show the effect of a lens with distortions (κ ≠ 0) for the case where the sensor is located perfectly behind the projection center (cy = 0) and for the case where the sensor is not perfectly aligned (here cy > 0). For cy = 0, the pincushion and barrel distortions only cause distortions within each row of the image. For cy ≠ 0, the rows are also bent.

[image: image]
Figure 3.108 Some effects that occur for the line scan camera geometry. (a) Non-square pixels because the motion is not tuned to the line frequency of the camera. (b) Skewed pixels because the motion is not parallel to the y axis of the CCS. (c) Straight lines can project to hyperbolic arcs, even if the line sensor is perpendicular to the motion. (d) This effect is more pronounced if the motion has a nonzero z component. Note that hyperbolic arcs occur even if the lens has no distortions (κ = 0). (e) Pincushion distortion (κ > 0) for cy = 0. (f) Barrel distortion for cy = 0. (g) Pincushion distortion (κ > 0) for cy > 0. (h) Barrel distortion for cy > 0.





3.9.4 Calibration Process


3.9.4.1 Calibration Target

From the above discussion, we can see that camera calibration is the process of determining the interior and exterior camera parameters. To perform the calibration, it is necessary to know the location of a sufficiently large number of 3D points in world coordinates, and to be able to determine the correspondence between the world points and their projections in the image. To meet the first requirement, usually objects or marks that are easy to extract, e.g., circles or linear grids, must be placed at known locations. If the location of a camera is to be known with respect to a given coordinate system, e.g., with respect to the building plan of, say, a factory building, then each mark location must be measured very carefully within this coordinate system. Fortunately, it is often sufficient to know the position of a reference object with respect to the camera to be able to measure the object precisely, since the absolute position of the object in world coordinates is unimportant. Therefore, a movable calibration target that has been measured accurately can be used to calibrate the camera. This has the advantage that the calibration can be performed with the camera in place, e.g., already mounted in the machine. Furthermore, the position of the camera with respect to the objects can be recalibrated if required, e.g., if the object type to be inspected changes.

To make it easier for the user to handle the calibration target, to provide more possibilities for 3D movement of the calibration target in tight spaces, and to make it as simple as possible to determine a plane in the world in which measurements are performed (see Section 3.9.5), it is advantageous to use planar calibration targets. Furthermore, they can be manufactured very accurately and easily can be used for back light applications if a transparent medium is used as the carrier for the marks.

The second requirement, i.e., the necessity to determine the correspondence of the known world points and their projections in the image, is in general a hard problem. Therefore, calibration targets are usually constructed in such a way that this correspondence can be determined easily. Often, a planar calibration target with a rectangular layout of circular marks is used (Lenz, 1988; Lenz and Fritsch, 1990; Lanser et al., 1995; Lanser, 1997). Circular marks are used because their center point can be determined with high accuracy. This design was also used in previous HALCON versions. We have already seen examples of this kind of calibration target in Figures 3.101, 3.102, and 3.108. The old design has a rectangular border around the calibration marks that includes a triangular orientation mark in one of its corners to make the orientation of the calibration target unique. Due to the regular matrix layout, the correspondence between the marks and their image points can be determined easily.

The old calibration target design has worked well for many years. However, experience has shown that it has some drawbacks. The border and the orientation mark on it imply that the entire calibration target must be visible in the image. Furthermore, the calibration target only has 7 × 7 calibration marks, which is adequate for sensors with a smaller resolution, e.g., 640 × 480, but is less suitable for high-resolution sensors. Both properties led to the fact that several images were required to cover the entire field of view and especially the corners of the images, where the distortions typically have the largest effect. As a consequence, a large number of calibration images had to be captured to achieve a certain accuracy. We will look at how the number of calibration images influences the accuracy in more detail in Section 3.9.6.1.

[image: image]
Figure 3.109 Image of a HALCON calibration target.


The improved calibration target design that is currently used by HALCON is shown in Figure 3.109. It uses a hexagonal layout of circular marks, which provides the highest possible density of marks. There are 27 rows with 31 marks each for a total of 837 control points. Five finder patterns, indicated by the white circles that contain smaller black circles, provide the means to compute the correspondence of the marks and their projections uniquely as long as at least one finder pattern is completely visible in the image. Consequently, the calibration target does not need to be contained completely in the image. Therefore, the entire field of view can be covered with a single image of the calibration target, and the number of calibration images can be reduced with respect to the old design. The center fiducial defines the WCS of the calibration target. The x axis points from the center mark, which is the origin of the WCS, to the mark without the black circle (the mark to the right of the center mark in Figure 3.109). The y axis is turned by 90° clockwise with respect to the x axis (i.e., straight down in Figure 3.109). The z axis forms a right-handed 3D coordinate system with the x and y axes, i.e., it points away from the camera (through the calibration target).

The borders of the calibration marks can be extracted with subpixel-accurate edge extraction (see Section 3.7.3.5). Since the projections of the circular marks are ellipses, ellipses can then be fitted to the extracted edges with the algorithms described in Section 3.8.3.2 to obtain robustness against outliers in the edge points and to increase the accuracy. An example of the extraction of the calibration marks was already shown in Figure 3.95.



3.9.4.2 Single-Image Camera Calibration

Based on the correspondence between the marks and their projections, the camera can be calibrated. Let us denote the 3D positions of the centers of the marks by Mj. Since the calibration target is planar, we can place the calibration target in the plane z = 0. However, what we describe in the following is completely general and can be used for arbitrary calibration targets. Furthermore, let us denote the projections of the centers of the marks in the image by mj. Here, we must take into account that the projection of the center of the circle is not the center of the ellipse (Steger, 2017; Heikkilä, 2000; Ahn et al., 1999). Finally, let us denote the camera parameters by a vector θ that consists of the interior and exterior orientation parameters of the respective camera model (cf. Sections 3.9.1–3.9.3). For example θ = (f, κ, sx, sy, cx, cy α, β, γ, tx, ty, tz) for perspective cameras. As described above, the exterior orientation is determined by attaching the WCS to the calibration target. Then, the camera parameters can be determined by minimizing the distance of the extracted mark centers mj and their projections π(Mj, θ):

(3.155) [image: image]

Here, nm is the number of calibration marks and vj is a variable that is 1 if the calibration mark Mj is visible in the image and 0 otherwise.

While Eq. (3.155) is conceptually simple, it has the problem that it only works for the division model since we are only able to compute the distortions analytically for this model. Since we only support the division model for line scan cameras, Eq. (3.155) is what is used for this camera type. For area scan cameras, we must use a different approach since, as described in Section 3.9.1.3, for the polynomial distortion model, we are only able to compute the rectification of the distortion analytically. Therefore, the error that is actually minimized is the error in the IPCS. Conceptually, we compute the projection πi(Mj, θi) from world coordinates to image plane coordinates using (3.137) and (3.141) or (3.142). Here, θi denotes the subset of the camera parameters that influence this projection. On the other hand, we compute the rectification πr(mj, θr) of the image points to the IPCS using the inverse of (3.147), the inverse of (3.150) or (3.151) if tilt lenses are used, and (3.144) or (3.145). Here, θr denotes the subset of the camera parameters that influence this rectification. Then, the following error is minimized:

(3.156) [image: image]

This is a difficult nonlinear optimization problem. Therefore, good starting values are required for the parameters. The interior orientation parameters can be determined from the specifications of the image sensor and the lens. The starting values for the exterior orientation are in general harder to obtain. For the planar calibration target described above, good starting values can be obtained based on the geometry and size of the projected circles (Lanser, 1997; Lanser et al., 1995).

[image: image]
Figure 3.110 For perspective cameras, f, sx, and sy cannot be determined uniquely.




3.9.4.3 Degeneracies When Calibrating With a Single Image

The optimization in Eq. (3.156) cannot determine all camera parameters because the physically motivated camera models we have chosen are over-parameterized (Steger, 2017). For the perspective camera, f, sx, and sy cannot be determined uniquely since they contain a common scale factor, as shown in Figure 3.110. For example, making the pixels twice as large and increasing the principal distance by a factor of 2 results in the same image. The same problem occurs for telecentric cameras: m, sx, and sy cannot be determined uniquely because they contain a common scale factor. The solution to this problem is to keep sy fixed in the optimization since the image is transmitted row-by-row in the video signal (see Section 2.4). This fixes the common scale factor. On the other hand, sx cannot be kept fixed in general since for analog frame grabbers the video signal may not be sampled pixel-synchronously (see Section 2.4.1). A similar effect happens for line scan cameras. Here, sx and f cannot be determined uniquely. Consequently, sx must be kept fixed in the calibration. Furthermore, as described in Section 3.9.3.3, sy cannot be determined for line scan cameras and therefore also must be kept fixed.

Even if the above problem is solved, some degeneracies remain because we are using a planar calibration target. For example, as shown in Figure 3.111, if the calibration target is parallel to the image plane, f and tz cannot be determined uniquely since they contain a common scale factor. This problem also occurs if the calibration target is rotated around the x or y axes of the camera coordinate system (Sturm and Maybank, 1999; Steger, 2017). Here, f and a combination of parameters from the exterior orientation can be determined only up to a one-parameter ambiguity. For example, if the calibration target is rotated around the x axis, f, tz, and α cannot be determined at the same time. For telecentric cameras, it is generally impossible to determine sx, sy, and the rotation angles from a single image. For example, a rotation of the calibration target around the x axis can be compensated by a corresponding change in sx. For line scan cameras, there are similar degeneracies as the ones described above plus degeneracies that include the motion vector.

[image: image]
Figure 3.111 For perspective cameras, f and tz cannot be determined uniquely.




3.9.4.4 Multi-Image Camera Calibration

To prevent the above degeneracies, the camera must be calibrated from multiple images in which the calibration target is positioned to avoid the degeneracies. For example, for perspective cameras, the calibration targets must not be parallel to each other in all images; while for telecentric cameras, the calibration target must be rotated around all of its axes to avoid the above degeneracies. Suppose we use no images for the calibration. Then, we also have no sets of exterior orientation parameters (αk, βk, γk, tx,k, ty,k, tz,k), k = 1, … , no, that must be determined. As above, we collect the interior orientation parameters and the no sets of exterior orientation parameters into the camera parameter vector θ. Then, to calibrate the camera, we must solve the following optimization problem:

(3.157) [image: image]

Here, mj,k denotes the projection of the jth calibration mark in the kth image and vj,k is a variable that is 1 if the calibration mark Mj is visible in image k and 0 otherwise. If the calibration targets are placed and oriented suitably in the images, this will determine all the camera parameters uniquely. To ensure high accuracy of the camera parameters so determined, the calibration target should be placed such that the entire field of view is covered (by the union of all calibration images). Since the distortion is largest in the image corners, this will facilitate the determination of the distortion coefficient(s) with the highest possible accuracy.



3.9.4.5 Degeneracies Occurring With Tilt Lenses

Even when calibrating with multiple images, the transformations that model tilted image planes that were described in Section 3.9.2 have a few degeneracies that we need to be aware of (Steger, 2017). For all tilt lens types, the tilt parameters can be determined robustly only if there are enough distortions. If there are no or only small distortions, the tilt can be modeled by a shift of the principal point. For lenses that are perspective in image space, if τ = 0°, the value of d cannot be determined. This, combined with the fact that the model for tilt lenses that are perspective in image space converges to the model for tilt lenses that are telecentric in image space for d → ∞, is also the reason why we don’t need to distinguish between the image-side projection characteristics for regular lenses. The fact that d cannot be determined if τ = 0° also implies that the smaller τ is, the less precisely d can be determined. Furthermore, if a lens that is perspective in image space is tilted around the horizontal or vertical axis, i.e., if ρ [image: image] {0°, 90°, 180°, 270°}, the values of τ, d, sx, and sy cannot be determined uniquely, even if sy is fixed. In this case, sx also must be kept fixed. For lenses that are telecentric in image space, the values of f or m, ρ, τ, sx, and sy cannot be determined uniquely, even if sy is fixed. In this case, sx must also be kept fixed.



3.9.4.6 Excluding Parameters From the Optimization

A flexible calibration algorithm will enable one to specify a subset of the parameters that should be determined. For example, from the mechanical setup, some of the parameters of the exterior orientation may be known. One frequently encountered example is that the mechanical setup ensures with high accuracy that the calibration target is parallel to the image plane. In this case, we should set α = β = 0, and the camera calibration should leave these parameters fixed. Another example is a camera with square pixels that transmits the video signal digitally. Here, sx = sy, and cameras both parameters should be kept fixed.

We will see in the next section that the calibration target determines the world plane in which measurements from a single image can be performed. In some applications, there is not enough space for the calibration target to be turned in 3D if the camera is mounted in its final position. Here, a two-step approach can be used. First, the interior orientation of the camera is determined with the camera not mounted in its final position. This ensures that the calibration target can be moved freely. (Note that this also determines the exterior orientation of the calibration target; however, this information is discarded.) Then, the camera is mounted in its final position. Here, it must be ensured that the focus and diaphragm settings of the lens are not changed, since this will change the interior orientation. In the final position, a single image of the calibration target is taken, and only the exterior orientation is optimized to determine the pose of the camera with respect to the measurement plane.




3.9.5 World Coordinates from Single Images

As mentioned above and at the end of Section 3.7.4.3, if the camera is calibrated, it is possible in principle to obtain undistorted measurements in world coordinates. In general, this can be done only if two or more images of the same object are taken at the same time with cameras at different spatial positions. This is called stereo reconstruction. With this approach, discussed in Section 3.10.1, the reconstruction of 3D positions for corresponding points in the two images is possible because the two optical rays defined by the two optical centers of the cameras and the points in the image plane defined by the two image points can be intersected in 3D space to give the 3D position of that point. In some applications, however, it is impossible to use two cameras, e.g., because there is not enough space to mount two cameras. Nevertheless, it is possible to obtain measurements in world coordinates for objects acquired through telecentric lenses and for objects that lie in a known plane, e.g., on a conveyor belt, for perspective and line scan cameras. Both of these problems can be solved by intersecting an optical ray (also called the line of sight) with a plane. With this, it is possible to measure objects that lie in a plane, even if the plane is tilted with respect to the optical axis.


3.9.5.1 Telecentric Cameras

Let us first look at the problem of determining world coordinates for telecentric cameras. In this case, the parallel projection in Eq. (3.142) discards any depth information completely. Therefore, we cannot hope to discover the distance of the object from the camera, i.e., its z coordinate in the CCS. What we can recover, however, are the x and y coordinates of the object in the CCS (xc and yc in Eq. (3.142)), i.e., the dimensions of the object in world units. Since the z coordinate of Pc cannot be recovered, in most cases it is unnecessary to transform Pc into world coordinates by inverting Eq. (3.137). Instead, the point Pc is regarded as a point in world coordinates. To recover Pc, we can start by inverting Eq. (3.147) to transform the coordinates from the ICS into the IPCS:

(3.158) [image: image]

Then, we can rectify the lens distortions by applying Eqs. (3.144) or (3.145) to obtain the rectified coordinates (u, v)┬ in the image plane. Finally, the coordinates of Pc are given by

(3.159) [image: image]

Note that the above procedure is equivalent to intersecting the optical ray given by the point (u, v, 0)┬ and the direction perpendicular to the image plane, i.e., (0, 0, 1)┬, with the plane z = 0.



3.9.5.2 Perspective Cameras

The determination of world coordinates for perspective cameras is slightly more complicated, but uses the same principle of intersecting an optical ray with a known plane. Let us look at this problem by using the application where this procedure is most useful. In many applications, the objects to be measured lie in a plane in front of the camera, e.g., a conveyor belt. Let us assume for the moment that the location and orientation of this plane (its pose) are known. We will describe below how to obtain this pose. The plane can be described by its origin and a local coordinate system, i.e., three orthogonal vectors, one of which is perpendicular to the plane. To transform the coordinates in the coordinate system of the plane (the WCS) into the CCS, a rigid transformation given by Eq. (3.137) must be used. Its six parameters (α, β, γ, tx, ty, tz) describe the pose of the plane. If we want to measure objects in this plane, we need to determine the object coordinates in the WCS defined by the plane. Conceptually, we need to intersect the optical ray corresponding to an image point with the plane. To do so, we need to know two points that define the optical ray. Recalling Figures 3.99 and 3.100, obviously the first point is given by the projection center, which has the coordinates (0, 0, 0)┬ in the CCS. To obtain the second point, we need to transform the point (r, c)┬ from the ICS into the IPCS. This transformation is given by Eqs. (3.158) and (3.144) or (3.145). To obtain the 3D point that corresponds to this point in the image plane, we need to take into account that the image plane lies at a distance of f in front of the optical center. Hence, the coordinates of the second point on the optical ray are given by (u, v, f)┬. Therefore, we can describe the optical ray in the CCS by

(3.160) [image: image]

To intersect this line with the plane, it is best to express the line Lc in the WCS of the plane, since in the WCS the plane is given by the equation z = 0. Therefore, we need to transform the two points (0, 0, 0)┬ and (u, v, f)┬ into the WCS. This can be done by inverting Eq. (3.137) to obtain

(3.161) [image: image]

Here, R−1 = R┬ is the inverse of the rotation matrix R in Eq. (3.137). Let us call the transformed optical center Ow, i.e., Ow = R┬((0, 0, 0)┬ – T) = −R┬T, and the transformed point in the image plane Iw, i.e., Iw = R┬((u, v, f)┬ – T). With this, the optical ray is given by

(3.162) [image: image]

in the WCS. Here, Dw denotes the direction vector of the optical ray. With this, it is a simple matter to determine the intersection of the optical ray in Eq. (3.162) with the plane z = 0. The intersection point is given by

(3.163) [image: image]

where Ow = (ox, oy, oz)┬ and Dw = (dx, dy, dz)┬.

Up to now, we have assumed that the pose of the plane in which we want to measure objects is known. Fortunately, the camera calibration gives us this pose almost immediately since a planar calibration target is used. If the calibration target is placed on the plane, e.g., the conveyor belt, in one of the images used for calibration, the exterior orientation of the calibration target in that image almost defines the pose of the plane we need in the above derivation. The pose would be the true pose of the plane if the calibration target were infinitely thin. To take the thickness of the calibration target into account, the WCS defined by the exterior orientation must be moved by the thickness of the calibration target in the positive z direction. This modifies the transformation from the WCS to the CCS in Eq. (3.137) as follows: the translation T simply becomes RD +T, where D = d(0, 0, 1)┬, and d is the thickness of the calibration target. This is the pose that must be used in Eq. (3.161) to transform the optical ray into the WCS. An example of computing edge positions in world coordinates for perspective cameras is given at the end of Section 3.7.4.3 (see Figure 3.89).

[image: image]
Figure 3.112 (a) Image of a caliper with a calibration target. (b) Unrectified image of the caliper. (c) Rectified image of the caliper.




3.9.5.3 Line-Scan Cameras

For line scan cameras, the procedure to obtain world coordinates in a given plane is conceptually similar to the approaches described above. First, the optical ray is constructed from Eqs. (3.154) and (3.153). Then, it is transformed into the WCS and intersected with the plane z = 0.



3.9.5.4 Image Rectification

In addition to transforming image points, e.g., 1D edge positions or subpixel-precise contours, into world coordinates, sometimes it is also useful to transform the image itself into world coordinates. This creates an image that would have resulted if the camera had looked perfectly perpendicularly without distortions onto the world plane. This image rectification is useful for applications that must work on the image data itself, e.g., region processing, template matching, or OCR. It can be used whenever the camera cannot be mounted perpendicular to the measurement plane. To rectify the image, we conceptually cut out a rectangular region of the world plane z = 0 and sample it with a specified distance, e.g., 200 µm. We then project each sample point into the image with the equations of the relevant camera model, and obtain the gray value through interpolation, e.g., bilinear interpolation. Figure 3.112 shows an example of this process. In Figure 3.112(a), the image of a caliper together with the calibration target that defines the world plane is shown. An old calibration target was used to show that the calibration target is placed onto the object to define the world plane (the new calibration target typically fills the entire field of view). The unrectified and rectified images of the caliper are shown in Figures 3.112(b) and (c), respectively. Note that the rectification has removed the perspective and radial distortions from the image.




3.9.6 Accuracy of the Camera Parameters

We conclude the discussion of camera calibration by discussing two different aspects: the accuracy of the camera parameters, and the changes in the camera parameters that result from adjusting the focus and diaphragm settings on the lens.

[image: image]
Figure 3.113 Standard deviations of (a) the principal distance f, (b) the radial distortion coefficient κ, and (c) the principal point (cx, cy)┬ as functions of the number of images that are used for calibration.



3.9.6.1 Influence of the Number of Calibration Images on the Accuracy

As was already noted in Section 3.9.4.2, there are some cases where an inappropriate placement of the calibration target can result in degenerate configurations where one of the camera parameters or a combination of some of the parameters cannot be determined. These configurations must obviously be avoided if the camera parameters are to be determined with high accuracy. Apart from this, the main influencing factor for the accuracy of the camera parameters is the number of images that are used to calibrate the camera. This is illustrated in Figure 3.113, where the standard deviations of the principal distance f, the radial distortion coefficient κ, and the principal point (cx, cy)┬ are plotted as functions of the number of images that are used for calibration. To obtain this data, 20 images of a calibration target were taken. Then, every possible subset of l images (l = 2, …, 19) from the 20 images was used to calibrate the camera. The standard deviations were calculated from the resulting camera parameters when l of the 20 images were used for the calibration. From Figure 3.113 it is obvious that the accuracy of the camera parameters increases significantly as the number of images l increases. This is not surprising when we consider that each image serves to constrain the parameters. If the images were independent measurements, we could expect the standard deviation to decrease proportionally to l−0.5. In this particular example, the standard deviation of f decreases roughly proportionally to l−2 initially and to l−1.3 for larger l, that of κ decreases roughly proportionally to l−0.7 initially and faster for larger l, and that of cx and cy decreases roughly proportionally to l−1.2. Thus, all standard deviations decrease much faster than l−0.5.

From Figure 3.113, it can also be seen that a comparatively large number of calibration images is required to determine the camera parameters accurately. This happens because there are non-negligible correlations between the camera parameters, which can only be resolved through multiple independent measurements. To obtain accurate camera parameters, it is important that the calibration target covers the entire field of view and that it covers the range of exterior orientations as well as possible (over all calibration images). In particular, all parameters can be determined more accurately if the calibration target covers a large depth range. This can be achieved by turning the calibration target around its x and y axes, and by placing it at different depths relative to the camera. Furthermore, to determine the principal point accurately, it is necessary that the calibration target is rotated around its z axis. Finally, as was already noted, to determine κ as accurately as possible, it is necessary that the calibration target covers as much of the field of view of each single image as possible (ideally, the entire field of view).

[image: image]
Figure 3.114 (a) Principal distances and radial distortion coefficients and (b) principal points for a lens with two different focus settings.




3.9.6.2 Influence of the Focus Setting on the Camera Parameters

We now turn to a discussion of whether changes in the lens settings change the camera parameters. Figure 3.114 displays the effect of changing the focus setting of the lens. Here, a 12.5 mm lens with a 1 mm extension tube was used. The lens was set to the nearest and farthest focal settings. In the near focus setting, the camera was calibrated with a calibration target of size 4 cm × 3 cm, while for the far focus setting a calibration target of size 8 cm × 6 cm was used. This resulted in the same size of the calibration target in the focusing plane for both settings. Care was taken to use images of calibration targets with approximately the same range of depths and positions in the images. For each setting, 20 images of the calibration target were taken. To be able to evaluate statistically whether the camera parameters are different, all 20 subsets of 19 of the 20 images were used to calibrate the camera. As can be expected from the discussion in Section 2.2.2, changing the focus will change the principal distance. From Figure 3.114(a), we can see that this clearly is the case. Furthermore, the radial distortion coefficient κ also changes significantly. From Figure 3.114(b), it is also obvious that the principal point changes.



3.9.6.3 Influence of the Diaphragm Setting on the Camera Parameters

Finally, we examine what can happen when the diaphragm on the lens is changed. To test this, a similar setup as above was used. The camera was set to f -numbers f/4 and f/11. For each setting, 20 images of a 4 cm×3 cm calibration target were taken. Care was taken to position the calibration targets in similar positions for the two settings. The lens is an 8.5 mm lens with a 1 mm extension tube. Again, all 20 subsets of 19 of the 20 images were used to calibrate the camera. Figure 3.115(a) displays the principal distance and radial distortion coefficient. Clearly, the two parameters change in a statistically significant way. Figure 3.115(b) also shows that the principal point changes significantly. The changes in the parameters mean that there is an overall difference in the point coordinates across the image diagonal of approximately 1.5 pixels. Therefore, we can see that changing the f -number on the lens requires a recalibration, at least for some lenses.

[image: image]
Figure 3.115 (a) Principal distances and radial distortion coefficients and (b) principal points for a lens with two different diaphragm settings (f-numbers: f/4 and f/11).






3.10 3D Reconstruction

As discussed in Section 2.5, there are several technologies that can be used to acquire a 3D reconstruction of a scene. In this section, we will discuss the algorithms that are used for stereo, sheet of light, and structured light reconstruction.


3.10.1 Stereo Reconstruction

In Sections 3.9 and 3.7.4.3, we have seen that we can perform very accurate measurements from a single image by calibrating the camera and by determining its exterior orientation with respect to a plane in the world. We could then convert the image measurements to world coordinates within the plane by intersecting optical rays with the plane. Note, however, that these measurements are still 2D measurements within the world plane. In fact, from a single image we cannot reconstruct the 3D geometry of the scene because we can only determine the optical ray for each point in the image. We do not know at which distance on the optical ray the point lies in the world. In the approach in Section 3.9.5, we had to assume a special geometry in the world to be able to determine the distance of a point along the optical ray. Note that this is not a true 3D reconstruction. To perform a 3D reconstruction, we must use at least two images of the same scene taken from different positions. Typically, this is done by simultaneously taking the images with two cameras (see Section 2.5.1). This process is called stereo reconstruction. In this section, we will examine the case of binocular stereo, i.e., the two-camera case. Throughout this section, we will assume that the cameras have been calibrated, i.e, their interior orientations and relative orientation are known. Note that uncalibrated stereo (Hartley and Zisserman, 2003; Faugeras and Luong, 2001) and multi-view stereo (Seitz et al., 2006; Szeliski, 2011; Seitz et al., 2017) are also possible. However, these methods are beyond the scope of this book.


3.10.1.1 Stereo Geometry

Before we can discuss stereo reconstruction, we must examine the geometry of the two cameras, as shown in Figure 3.116. Since the cameras are assumed to be calibrated, we know their interior orientations, i.e., their principal points, principal distances, pixel size, distortion coefficient(s), and, if applicable, tilt parameters. In Figure 3.116, the principal points are shown by the points C1 and C2 in the first and second image, respectively. Furthermore, the projection centers (i.e, the centers of the entrance pupils) are shown by the points O1 and O2. The dashed lines between the projection centers and principal points show the principal distances. Note that, since the image planes physically lie behind the projection centers, the image is turned upside down. Consequently, the origin of the ICS lies in the lower right corner, with the row axis pointing upward and the column axis pointing leftward. The CCS axes are defined such that the x axis points to the right, the y axis points downwards, and the z axis points forward from the image plane, i.e., along the viewing direction.

The position and orientation of the two cameras with respect to each other are given by the relative orientation, which is a rigid 3D transformation specified by the rotation matrix Rr and the translation vector Tr. The relative orientation transforms point coordinates in the CCS of the first camera into point coordinates of the CCS of the second camera: Pc2 = RrPc1 +Tr. This is visualized by the arrow in Figure 3.116. The relative orientation can also be interpreted as the transformation of the camera coordinate system of the second camera into the camera coordinate system of the first camera. The translation vector Tr, which specifies the translation between the two projection centers, is also called the base.

With this, we can see that a point Pw in the world is mapped to a point P1 in the first image and to a point P2 in the second image. If there are no lens distortions (which we will assume for the moment), the points Pw, O1, O2, P1, and P2 all lie in a single plane.

[image: image]
Figure 3.116 Stereo geometry of two cameras.




3.10.1.2 Stereo Calibration

To calibrate the stereo system, we can extend the method of Section 3.9.4.4 as follows. Let Mj denote the positions of the calibration marks. We extract their projections in both images with the methods described in Section 3.9.4.1. Let us denote the projection of the centers of the marks in the first set of calibration images by mj,k,1 and in the second set by mj,k,2. Furthermore, let us denote the camera parameters by a vector θ. The camera parameters θ include the interior orientations of the first and second cameras, the exterior orientations of the no calibration targets in the second image, and the relative orientation of the two cameras. From the above discussion of the relative orientation, it follows that these parameters determine the mappings into the first and second images completely. Hence, to calibrate the stereo system, the following optimization problem must be solved:

(3.164) [image: image]

As in Section 3.9.4.4, πi denotes the projection of a calibration mark into the image plane coordinate system, θi,l are the subset of camera parameters that influence this projection for camera l, πr denotes the rectification of an image point into the image plane coordinate system, θr,l are the subset of camera parameters that influence this rectification for camera l, and vj,k,l is a variable that is 1 if the calibration mark Mj is visible in calibration image k of camera l.

To illustrate the relative orientation and the stereo calibration, Figure 3.117 shows an image pair taken from a sequence of 15 image pairs that were used to calibrate a binocular stereo system. Since we wanted to display the relative orientation in an easy-to-understand manner, and since perspective distortions are visible more clearly based on the rectangular border of the old calibration target, we used this kind of target to calibrate the cameras for the purposes of this example. In a real application, we would use the new calibration target, of course. The calibration returns a translation vector of (0.1534 m, −0.0037 m, 0.0449 m)┬ between the cameras, i.e., the second camera is 15.34 cm to the right, 0.37 cm above, and 4.49 cm in front of the first camera, expressed in the camera coordinates of the first camera. Furthermore, the calibration returns a rotation angle of 40.1139° around the axis (−0.0035, 1.0000, 0.0008)┬, i.e., almost around the vertical y axis of the CCS. Hence, the cameras are rotated inward, as in Figure 3.116.

[image: image]
Figure 3.117 One image pair taken from a sequence of 15 image pairs used to calibrate a binocular stereo system. The calibration returns a translation vector (base) of (0.1534 m, −0.0037 m, 0.0449 m)┬ between the cameras and a rotation angle of 40.1139° around the axis (−0.0035, 1.0000, 0.0008)┬, i.e., almost around the y axis of the camera coordinate system. Hence, the cameras are rotated inward.




3.10.1.3 Epipolar Geometry

To reconstruct 3D points, we must find corresponding points in the two images. “Corresponding” means that the two points P1 and P2 in the images belong to the same point Pw in the world. At first, it might seem that, given a point P1 in the first image, we would have to search in the entire second image for the corresponding point P2. Fortunately, this is not the case. In Figure 3.116 we already noted that the points Pw, O1, O2, P1, and P2 all lie in a single plane. The situation of trying to find a corresponding point for P1 is shown in Figure 3.118. We can note that we know P1, O1, and O2. We do not know at what distance the point Pw lies on the optical ray defined by P1 and O1. However, we know that Pw is coplanar with the plane spanned by P1, O1, and O2 (the epipolar plane). Hence, we can see that the point P2 can only lie on the projection of the epipolar plane onto the second image. Since O2 lies on the epipolar plane, the projection of the epipolar plane is a line called the epipolar line.

It is obvious that the above construction is symmetric for both images, as shown in Figure 3.119. Hence, given a point P2 in the second image, the corresponding point can only lie on the epipolar line in the first image. Furthermore, from Figure 3.119, we can see that different points typically define different epipolar lines. We can also see that all epipolar lines of one image intersect at a single point called the epipole. The epipoles are the projections of the opposite projective centers onto the respective image. Note that, since all epipolar planes contain O1 and O2, the epipoles lie on the line defined by the two projection centers (the base line).

[image: image]
Figure 3.118 Epipolar geometry of two cameras. Given the point P1 in the first image, the point P2 in the second image can only lie on the epipolar line of P1, which is the projection of the epipolar plane spanned by P1, O1, and O2 onto the second image.


[image: image]
Figure 3.119 The epipolar geometry is symmetric between the two images. Furthermore, different points typically define different epipolar lines. All epipolar lines intersect at the epipoles E1 and E2, which are the projections of the opposite projective centers onto the respective image.


Figure 3.120 shows an example of the epipolar lines. The stereo geometry is identical to Figure 3.117. The images show a PCB. In Figure 3.120(a), four points are marked—they have been selected manually to lie at the tips of the triangles on the four small ICs, as shown in the detailed view in Figure 3.120(c). The corresponding epipolar lines in the second image are shown in Figures 3.120(b) and (d). Note that the epipolar lines pass through the tips of the triangles in the second image.

As noted above, we have so far assumed that the lenses have no distortions. In reality, this is very rarely true. In fact, by looking closely at Figure 3.120(b), we can already perceive a curvature in the epipolar lines because the camera calibration has determined the radial distortion coefficient for us. If we set the displayed image part as in Figure 3.121, we can clearly see the curvature of the epipolar lines in real images. Furthermore, we can see the epipole of the image clearly.

From the above discussion, we can see that the epipolar lines are different for different points. Furthermore, because of lens distortions, typically they are not even straight. This means that, when we try to find corresponding points, we must compute a new, complicated epipolar line for each point that we are trying to match, typically for all points in the first image. The construction of the curved epipolar lines would be much too time consuming for real-time applications. Hence, we can ask ourselves whether the construction of the epipolar lines can be simplified for particular stereo geometries. This is indeed the case for the stereo geometry shown in Figure 3.122. Here, both image planes lie in the same plane. The common plane of both images must be parallel to the base. Additionally, the two images must be vertically aligned. Furthermore, it is assumed that there are no lens distortions. Note that this implies that the two principal distances are identical, that the principal points have the same row coordinate, that the images are rotated such that the column axis is parallel to the base, and that the relative orientation contains only a translation in the x direction and no rotation. Since the image planes are parallel to each other, the epipoles lie infinitely far away on the base line. It is easy to see that this stereo geometry implies that the epipolar line for a point is simply the line that has the same row coordinate as the point, i.e., the epipolar lines are horizontal and vertically aligned. Hence, they can be computed without any overhead at all. Since almost all stereo matching algorithms assume this particular geometry, we can call it the epipolar standard geometry.

[image: image]
Figure 3.120 Stereo image pair of a PCB. (a) Four points marked in the first image. (b) Corresponding epipolar lines in the second image. (c) Detail of (a). (d) Detail of (b). The four points in (a) have been selected manually at the tips of the triangles on the four small ICs. Note that the epipolar lines pass through the tips of the triangles in the second image.


[image: image]
Figure 3.121 Because of lens distortions, the epipolar lines are generally not straight. The image shows the same image as Figure 3.120(b). The zoom has been set so that the epipole is shown in addition to the image. The aspect ratio has been chosen so that the curvature of the epipolar lines is clearly visible.


[image: image]
Figure 3.122 The epipolar standard geometry is obtained if both image planes lie in the same plane. The common plane of both images must be parallel to the base. Additionally, the two images must be vertically aligned. Furthermore, it is assumed that there are no lens distortions. In this geometry, the epipolar line for a point is simply the line that has the same row coordinate as the point, i.e., the epipolar lines are horizontal and vertically aligned.




3.10.1.4 Image Rectification

While the epipolar standard geometry results in very simple epipolar lines, it is extremely difficult to align real cameras into this configuration. Furthermore, it is quite difficult and expensive to obtain distortion-free lenses. Fortunately, almost any stereo configuration can be transformed into the epipolar standard geometry, as indicated in Figure 3.123 (Faugeras, 1993). The only exceptions are if an epipole happens to lie within one of the images. This typically does not occur in practical stereo configurations. The process of transforming the images to the epipolar standard geometry is called image rectification. To rectify the images, we need to construct two new image planes that lie in the same plane. To keep the 3D geometry identical, the projective centers must remain at the same positions in space, i.e., Or1 = O1 and Or2 = O2. Note, however, that we need to rotate the CCSs such that their x axes become identical to the base line. Furthermore, we need to construct two new principal points Cr1 and Cr2. Their connecting vector must be parallel to the base. Furthermore, the vectors from the principal points to the projection centers must be perpendicular to the base. This leaves us two degrees of freedom. First of all, we must choose a common principal distance. Second, we can rotate the common plane in which the image planes lie around the base. These parameters can be chosen by requiring that the image distortion should be minimized (Faugeras, 1993). The image dimensions are then typically chosen such that the original images are completely contained within the rectified images. Of course, we must also remove the lens distortions in the rectification.

[image: image]
Figure 3.123 Transformation of a stereo configuration into the epipolar standard geometry.


To obtain the gray value for a pixel in the rectified image, we construct the optical ray for this pixel and intersect it with the original image plane. This is shown, for example, for the points Pr1 and P1 in Figure 3.123. Since this typically results in subpixel coordinates, the gray values must be interpolated with the techniques described in Section 3.3.2.2.

While it may seem that image rectification is a very time-consuming process, the entire transformation can be computed once offline and stored in a table. Hence, images can be rectified very efficiently online.

Figure 3.124 shows an example of image rectification. The input image pair is shown in Figures 3.124(a) and (b). The images have the same relative orientation as the images in Figure 3.117. The principal distances of the cameras are 13.05 mm and 13.16 mm, respectively. Both images have dimensions 320 × 240. Their principal points are (155.91, 126.72)┬ and (163.67, 119.20)┬, i.e, they are very close to the image center. Finally, the images have a slight barrel-shaped distortion. The rectified images are shown in Figures 3.124(c) and (d). Their relative orientation is given by the translation vector (0.1599 m, 0 m, 0 m)┬. As expected, the translation is solely along the x axis. Of course, the length of the translation vector is identical to that in Figure 3.117, since the position of the projective centers has not changed. The new principal distance of both images is 12.27 mm. The new principal points are given by (−88.26, 121.36)┬ and (567.38, 121.36)┬. As can be expected from Figure 3.123, they lie well outside the rectified images. Also, as expected, the row coordinates of the principal points are identical. The rectified images have dimensions 336×242 and 367×242, respectively. Note that they exhibit a trapezoidal shape that is characteristic of the verging camera configuration. The barrel-shaped distortion has been removed from the images. Clearly, the epipolar lines are horizontal in both images.

[image: image]
Figure 3.124 Example of the rectification of a stereo image pair. The images in (a) and (b) have the same relative orientation as those in Figure 3.117. The rectified images are shown in (c) and (d). Note the trapezoidal shape of the rectified images, which is caused by the rotated cameras. Also note that the rectified images are slightly wider than the original images.




3.10.1.5 Disparity

Apart from the fact that rectifying the images results in a particularly simple structure for the epipolar lines, it also results in a very simple reconstruction of the depth, as shown in Figure 3.125. In this figure, the stereo configuration is displayed as viewed along the direction of the row axis of the images, i.e., the y axis of the camera coordinate system. Hence, the image planes are shown as the lines at the bottom of the figure. The depth of a point is quite naturally defined as its z coordinate in the camera coordinate system. By examining the similar triangles O1O2Pw and P1P2Pw, we can see that the depth of Pw depends only on the difference of the column coordinates of the points P1 and P2 as follows. From the similarity of the triangles, we have z/b = (z+f)/(dw+b). Hence, the depth is given by z = bf/dw. Here, b is the length of the base, f is the principal distance, and dw is the sum of the signed distances of the points P1 and P2 to the principal points C1 and C2. Since the coordinates of the principal points are given in pixels, but dw is given in world units, e.g., meters, we have to convert dw to pixel coordinates by scaling it with the size of the pixels in the x direction: dp = dw/sx. Now, we can easily see that dp = (cx1 – c1) + (c2 – cx2), where c1 and c2 denote the column coordinates of the points P1 and P2, while cx1 and cx2 denote the column coordinates of the principal points. Rearranging the terms, we find

(3.165) [image: image]
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Figure 3.125 Reconstruction of the depth z of a point depends only on the disparity d = c2 – c1 of the points, i.e., the difference of the column coordinates in the rectified images.


Since cx1 – cx2 is constant for all points and known from the calibration and rectification, we can see that the depth z depends only on the difference of the column coordinates d = c2 – c1. This difference is called the disparity. Hence, we can see that, to reconstruct the depth of a point, we must determine its disparity.



3.10.1.6 Stereo Matching

As we have seen in the previous section, the main step in stereo reconstruction is the determination of the disparity of each point in one of the images, typically the first image. Since one calculates, or at least attempts to calculate, a disparity for each point, these algorithms are called dense reconstruction algorithms. It should be noted that there is another class of algorithms that only tries to reconstruct the depth for selected features, e.g., straight lines or points. Since these algorithms require a typically expensive feature extraction, they are seldom used in industrial applications. Therefore, we will concentrate on dense reconstruction algorithms.

Reviews of dense stereo reconstruction algorithms are given in Scharstein and Szeliski (2002); Brown et al. (2003); Szeliski (2011). Many new stereo algorithms are regularly published. Evaluations of newly proposed algorithms are constantly updated on various stereo vision benchmark web sites (see, e.g., Scharstein et al., 2017; Geiger et al., 2017). While many of these algorithms offer stereo reconstructions of somewhat better quality than the algorithms we will discuss below, they are also often much too slow or have too demanding memory requirements for industrial applications.

Since the goal of dense reconstruction is to find the disparity for each point in the image, the determination of the disparity can be regarded as a template matching problem. Given a rectangular window of size (2n + 1) × (2n + 1) around the current point in the first image, we must find the most similar window along the epipolar line in the second image. Hence, we can use the techniques that will be described in greater detail in Section 3.11 to match a point. The gray value matching methods described in Section 3.11.1 are of particular interest because they do not require a costly model generation step, which would have to be performed for each point in the first image. Therefore, gray value matching methods are typically the fastest methods for stereo reconstruction. The simplest similarity measures are the sum of absolute gray value differences (SAD) and sum of squared gray value differences (SSD) measures described later (see Eqs. (3.174) and (3.175)). For the stereo matching problem, they are given by

(3.166) [image: image]

and

(3.167) [image: image]

As will be discussed in Section 3.11.1, these two similarity measures can be computed very quickly. Fast implementations for stereo matching using the SAD are given in Hirschmüller et al. (2002); Mühlmann et al. (2002). Unfortunately, these similarity measures have the disadvantage that they are not robust against illumination changes, which frequently happen in stereo reconstruction because of the different viewing angles along the optical rays. One way to deal with this problem is to perform a suitable preprocessing of the stereo images to remove illumination variations (Hirschmüller and Scharstein, 2009). The preprocessing, however, is rarely invariant to arbitrary illumination changes. Consequently, in some applications it may be necessary to use the normalized cross-correlation (NCC) described later (see Eq. (3.176)) as the similarity measure, which has been shown to be robust to a very large range of illumination changes that can occur in stereo reconstruction (Hirschmüller and Scharstein, 2009). For the stereo matching problem, it is given by

(3.168) [image: image]

Here, mi and si (i = 1, 2) denote the mean and standard deviation of the window in the first and second images. They are calculated analogously to their template matching counterparts in Eqs. (3.177)–(3.180). The advantage of the NCC is that it is invariant to linear illumination changes. However, it is more expensive to compute.

From the above discussion, it might appear that, to match a point, we would have to compute the similarity measure along the entire epipolar line in the second image. Fortunately, this is not the case. Since the disparity is inversely related to the depth of a point, and we typically know in which range of distances the objects we are interested in occur, we can restrict the disparity search space to a much smaller interval than the entire epipolar line. Hence, we have d [image: image] [dmin, dmax], where dmin and dmax can be computed from the minimum and maximum expected distance in the images. Therefore, the length of the disparity search space is given by l = dmax – dmin + 1.

After we have computed the similarity measure for the disparity search space for a point to be matched, we might be tempted to simply use the disparity with the minimum (SAD and SSD) or maximum (NCC) similarity measure as the match for the current point. However, typically this will lead to many false matches, since some windows may not have a good match in the second image. In particular, this happens if the current point is occluded because of perspective effects in the second image. Therefore, it is necessary to threshold the similarity measure, i.e., to accept matches only if their similarity measure is below (SAD and SSD) or above (NCC) a threshold. Obviously, if we perform this thresholding, some points will not have a reconstruction, and consequently the reconstruction will not be completely dense.

With the above search strategy, the matching process has a run-time complexity of O(whln2). This is much too expensive for real-time performance. Fortunately, it can be shown that with a clever implementation, the above similarity measures can be computed recursively. With this, the complexity can be made independent of the window size n, and becomes O(whl). Thus, real-time performance becomes possible. The interested reader is referred to Faugeras et al. (1993) for details.

Once we have computed the match with an accuracy of one disparity step from the extremum (minimum or maximum) of the similarity measure, the accuracy can be refined with an approach similar to the subpixel extraction of matches that will be described in Section 3.11.3. Since the search space is 1D in the stereo matching, a parabola can be fitted through the three points around the extremum, and the extremum of the parabola can be extracted analytically. Obviously, this will also result in a more accurate reconstruction of the depth of the points.



3.10.1.7 Effect of Window Size

To perform stereo matching, we need to set one parameter: the size of the gray value windows n. This has a major influence on the result of the matching, as shown by the reconstructed depths in Figure 3.126. Here, window sizes of 3 × 3, 17 × 17, and 31 × 31 have been used with the NCC as the similarity measure. We can see that, if the window size is too small, many erroneous results will be found, despite the fact that a threshold of 0.4 has been used to select good matches. This happens because the matching requires a sufficiently distinctive texture within the window. If the window is too small, the texture is not distinctive enough, leading to erroneous matches. From Figure 3.126(b), we see that the erroneous matches are mostly removed by the 17 × 17 window. However, because there is no texture in some parts of the image, especially in the lower left corners of the two large ICs, some parts of the image cannot be reconstructed. Note also that the areas of the leads around the large ICs are broader than in Figure 3.126(a). This happens because the windows now straddle height discontinuities in a larger part of the image. Since the texture of the leads is more significant than the texture on the ICs, the matching finds the best matches at the depth of the leads. To fill the gaps in the reconstruction, we could try to increase the window size further, since this leads to more positions in which the windows have a significant texture. The result of setting the window size to 31 × 31 is shown in Figure 3.126(c). Note that now most of the image can be reconstructed. Unfortunately, the lead area has broadened even more, which is undesirable.

[image: image]
Figure 3.126 Distance reconstructed for the rectified image pair in Figures 3.124(c) and (d) with the NCC. (a) Window size 3 × 3. (b) Window size 17 × 17. (c) Window size 31 × 31. White areas correspond to the points that could not be matched because the similarity was too small.


From the above example, we can see that too small window sizes lead to many erroneous matches. In contrast, larger window sizes generally lead to fewer erroneous matches and a more complete reconstruction in areas with little texture. Furthermore, larger window sizes lead to a smoothing of the result, which may sometimes be desirable. However, larger window sizes lead to worse results at height discontinuities, which effectively limits the window sizes that can be used in practice.



3.10.1.8 Robust Stereo Matching

Despite the fact that larger window sizes generally lead to fewer erroneous matches, they typically cannot be excluded completely based on the window size alone. Therefore, additional techniques are sometimes desirable to reduce the number of erroneous matches even further. An overview of methods to detect unreliable and erroneous matches is given by Hu and Mordohai (2012).

Erroneous matches occur mainly for two reasons: weak texture and occlusions. Erroneous matches caused by weak texture can sometimes be eliminated based on the matching score. However, in general it is best to exclude windows with weak texture a priori from the matching. Whether a window contains a weak texture can be decided on the basis of the output of a texture filter. Typically, the standard deviation of the gray values within the window is used as the texture filter. This has the advantage that it is computed in the NCC anyway, while it can be computed with just a few extra operations in the SAD and SSD. Therefore, to exclude windows with weak textures, we require that the standard deviation of the gray values within the window should be large.

The second reason why erroneous matches can occur are perspective occlusions, which, for example, occur at height discontinuities. To remove these errors, we can perform a consistency check that works as follows. First, we find the match from the first to the second image as usual. We then check whether matching the window around the match in the second image results in the same disparity, i.e., finds the original point in the first image. If this is implemented naively, the run time increases by a factor of 2. Fortunately, with a little extra bookkeeping the disparity consistency check can be performed with very few extra operations, since most of the required data have already been computed during the matching from the first to the second image.

Figure 3.127 shows the results of the different methods to increase robustness. For comparison, Figure 3.127(a) displays the result of the standard matching from the first to the second image with a window size of 17 × 17 using the NCC. The result of applying a texture threshold of 5 is shown in Figure 3.127(b). It mainly removes untextured areas on the two large ICs. Figure 3.127(c) shows the result of applying the disparity consistency check. Note that it mainly removes matches in the areas where occlusions occur.
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Figure 3.127 Increasing levels of robustness of stereo matching. (a) Standard matching from the first to the second image with a window size of 17 × 17 using the NCC. (b) Result of requiring that the standard deviations of the windows is ≥ 5. (c) Result of performing the check where matching from the second to the first image results in the same disparity.




3.10.1.9 Spacetime Stereo Matching

As can be seen from the above discussion, stereo matching using rectangular windows has to deal with two main problems: weak texture and height discontinuities. As mentioned in Section 2.5.1, the first problem can be solved by projecting a random texture onto the scene. This provides matchable windows in all parts of the scene that are visible from the projector and both cameras. To solve the second problem, the window size must be decreased. As described in Section 2.5.1, this can be achieved by projecting a larger number of random patterns onto the scene. This approach is called spacetime stereo (Davis et al., 2005). The greater the number of patterns, the smaller the windows can be made. If a sufficiently large number of patterns is projected, a window size of 1 × 1 can be used (Davis et al., 2005). This provides a more accurate 3D reconstruction at depth discontinuities.

All of the similarity measures that were described above can be extended to handle multiple images by adding a further sum over the m images. Let the stereo images resulting from projecting m random textures be denoted by g1(r, c; t) and g2(r, c; t), t = 1, … , m. Then, the spacetime SAD is given by

(3.169) [image: image]

The SSD and NCC can be extended in an identical manner.




3.10.2 Sheet of Light Reconstruction

As described in Section 2.5.2, sheet of light sensors project a laser plane onto the objects in the scene. This creates a bright laser line in the camera image. The 3D shape of the object is related to the vertical displacement (parallax) of the laser line in the image. Figures 3.128(a)–(j) display 10 images out of a sequence of 290 images of a connecting rod acquired with a sheet of light sensor. The displacement of the laser line can be seen clearly in these images.

[image: image]
Figure 3.128 (a)–(j) 10 images out of a sequence of 290 images of a connecting rod acquired with a sheet of light sensor. The images have been cropped to show only the laser line. (k) 3D reconstruction of the connecting rod.



3.10.2.1 Extraction of the Laser Line

To perform the 3D reconstruction, the laser line must be extracted from the images. Since the only relevant information is the vertical position of the laser line, a simple method to extract the laser line is to threshold the image column-by-column using a global threshold with a minimum gray value gmin (see Section 3.4.1.1). Next, the connected components of the segmentation result are computed for each column (see Section 3.4.2). In most cases, there only will be a single connected component that corresponds to the laser line or no connected component if the laser line is occluded. However, it might happen that there are multiple connected components if the laser line is partly reflected by the object and partly scattered. In this case, the correct connected component must be selected to resolve the ambiguity. One simple strategy is to select the topmost or bottommost connected component. A more sophisticated strategy is to select the brightest connected component. To determine the brightness of each component, its mean gray value is used (see Section 3.5.2.1). Once the correct connected component has been determined, the position of the laser line can be computed with subpixel accuracy as the gray value center of gravity of the connected component (see Section 3.5.2.2).



3.10.2.2 Sensor Calibration and 3D Reconstruction

The task of reconstructing the 3D position of a point on the laser line within the laser plane is identical to the problem of computing the position of an image point within a world plane from a single image and can be solved with the approach described in Section 3.9.5: the optical ray of a point on the laser line is computed and intersected with the laser plane in 3D. To be able to do this, the interior orientation of the camera must be calibrated as described in Section 3.9.4.4. The calibration also is used to determine the exterior orientation of the camera with respect to the WCS.

The only difference to the approach in Section 3.9.5 is that the exterior orientation of the laser plane must be determined by a different method. This is done by measuring the 3D position of points on the laser plane at different places within the laser plane and fitting a plane through the measurements (using a trivial extension of the approach described in Section 3.8.1). The individual measurements of points within the laser plane can be obtained as follows with the approach of Section 3.9.5. The calibration target is placed into the scene such that the laser plane is projected onto the calibration target. An image with the laser projector switched off is acquired. Then, the laser projector is switched on. Since the laser line is typically much brighter than the rest of the scene, when acquiring the second image it might be necessary to reduce the brightness of this image to avoid overexposure. As discussed in Section 3.9.6.3, this must be done by changing the exposure time and not the diaphragm. The first image is used to extract the exterior orientation of the calibration target. The second image is used to extract the laser line. Then, the points on the laser line are extracted and the algorithm of Section 3.9.5 is used to determine the 3D coordinates of the points as the intersection of the optical rays corresponding to the laser line points and the plane of the calibration object. Effectively, this calculates the intersection of the laser plane and the plane of the calibration target. Using multiple image pairs of this type in which the calibration target is moved or rotated to different poses results in a set of 3D measurements from which the exterior orientation of the laser plane can be determined by fitting a plane through the 3D points.

It only remains to calibrate the relative motion of the sensor and the scene. This can be done by acquiring two images of the calibration target with the laser projector switched off. For increased accuracy, the two images should not correspond to subsequent frames, but to frames with a larger number n of motion steps. The exterior orientation of the calibration target is computed from both images. This gives the relative motion for n motion steps, which can be converted easily to the relative motion for a single motion step. The relative motion can then be used to transform the 3D points that were computed from a single sheet of light image into the WCS.

Figure 3.128(k) displays the result of reconstructing a connecting rod in 3D with the algorithm described above.




3.10.3 Structured Light Reconstruction

As discussed in Section 2.5.3, a structured light sensor consists of a camera and a projector in a geometric configuration that is equivalent to a stereo configuration (see Section 3.10.1.1). The projector projects striped patterns onto the scene, which are used to determine the projector column that corresponds to a point in the scene. This defines a plane in space, which can be intersected with the optical ray of the corresponding point in the camera image to perform the 3D reconstruction. In this section, we will describe how the stripes can be decoded, i.e., how the projector column can be determined, and how the structured light system can be calibrated geometrically as well as radiometrically.


3.10.3.1 Decoding the Stripes

As mentioned in Section 2.5.3.4, we will assume a hybrid system that projects Gray codes as well as phase-shifted fringes. Furthermore, we assume that a completely dark and a completely bright pattern are projected.

The first task that must be solved is the decoding of the Gray code images. For this purpose, we must decide whether a pixel in the camera image is illuminated by the projector. This decision reduces to a thresholding operation. Since the decoding algorithm must be able to handle objects with varying reflectance, the threshold must obviously vary locally, depending on the reflectance of the objects in the scene. Since we assume that images of a completely dark and a completely bright pattern have been acquired, the threshold can simply be determined as the mean of the dark and bright images (Sansoni et al., 1997):

(3.170) [image: image]

where dr,c and br,c denote the dark and bright images, respectively, and tr,c denotes the threshold image. All pixels whose gray value is ≥ tr,c are classified as bright (a Gray code bit of 1), all others as dark (a Gray code bit of 0). Note that this is equivalent to the dynamic threshold operation in Eq. (3.51) with gdiff = 0. Thresholding the n Gray code images in the above manner allows the Gray code for each pixel to be determined. The Gray code can then be easily decoded into the associated code word number, i.e., the integer column of the code word.

We mention that another strategy to project Gray codes that makes the decoding invariant to the scene reflectance is to project each Gray code pattern as well as its inverse (Sansoni et al., 1997). A Gray code bit of 1 is decoded whenever the regular image is brighter than the inverse image. However, this requires more patterns to be projected than the above approach.

In structured light systems, it may happen that some points in the scene are not illuminated by the projector because of occlusions. Obviously, these points cannot be reconstructed. Furthermore, parts of the scene that have a very low reflectance also cannot be reconstructed reliably. Therefore, the reliability of the reconstruction can be increased by excluding all pixels for which the difference between the bright and dark images is too small, i.e., only those pixels for which [image: image] are actually decoded and reconstructed.

The only step that remains to be done is to decode the phase-shifted fringes. As already described in Section 2.5.3.3, the phase ϕ of the fringes can be detemined by (see, e.g., Sansoni et al., 1999)

(3.171) [image: image]

where atan2 denotes the two-argument arctangent function that returns its result in the full 2π range, and we assume that the result has been normalized to [0, 2π).

Suppose the pixel-precise integer column of the code word decoded from the Gray code is given by p(r, c). Since the fringe frequency is one cycle per two Gray code words (see Section 2.5.3.4), the subpixel-precise column s(r, c) can be computed as

(3.172) [image: image]

We conclude this section with an example for stripe decoding. Figure 3.129 shows four Gray code images of an M1 screw that has been sprinkled with titanium dioxide powder to reduce specular reflections. The image in Figure 3.129(a) was acquired with a completely bright pattern. Figures 3.129(b)–(d) show the finest three resolutions of the Gray code patterns. Figure 3.130 displays four images of the screw with fringes that are phase-shifted by 90° each. The system uses a DMD projector with a diamond pixel array layout. As discussed in Section 2.5.3.1, it is advantageous to align the stripes with the pixel grid. Therefore, the stripes are rotated by 45°.

The images in Figures 3.129 and 3.130 show a field of view of approximately 1 mm2. The camera is equipped with a telecentric lens with a magnification of 3. Because of the large magnification of the system, the projector uses a Scheimpflug configuration in which the DMD is tilted by 39.5°. The projector is mounted at an angle of 30° with respect to the camera.

Figure 3.131(a) displays the integer projector column decoded from the Gray code images in Figure 3.129. The phase decoded from the phase-shifted fringes in Figure 3.130 using Eq. (3.171) is shown in Figure 3.131(b). The result of computing the subpixel-precise projector column by Eq. (3.172) from Figure 3.131(a) and (b) can be seen in Figure 3.131(c). Finally, Figure 3.131(d) displays the 3D reconstruction of the screw. Note that the reconstruction is so accurate that even the titanium dioxide powder is visible in the reconstruction.



3.10.3.2 Sensor Calibration and 3D Reconstruction

As already mentioned, the geometry of a structured light system is equivalent to that of a stereo system. The only slight difference is that the light direction of the projector is inverse to that of the second camera in a stereo system. Therefore, technically, the projection center of the projector is the center of the exit pupil of the projector’s lens and not its entrance pupil, as in a stereo system. This is, however, only a notational difference. Geometrically, the exit pupil of the projector is the same as the entrance pupil of the second camera of a stereo system.

[image: image]
Figure 3.129 Four Gray code images of an M1 screw that has been sprinkled with titanium dioxide powder to reduce specular reflections. (a) Image with a completely bright pattern. (b)–(d) The three finest resolutions of the Gray code patterns.


Ideally, we would like to use the stereo calibration algorithm of Section 3.10.1.1 to calibrate the structured light system. In the following, we will present an algorithm based on the approach by Chen et al. (2009) that facilitates this.

The basic problem that we must solve is that there is no projection from a calibration target into the projector. Therefore, we must find a way to determine the projector coordinates of the center of a calibration mark. To obtain these coordinates, we can proceed as follows. We acquire multiple images of the calibration target in different poses, as in the stereo calibration approach. For each pose of the calibration target, we project Gray codes and phase-shifted fringes in orthogonal directions, e.g., horizontally and vertically (or at 45° and 135° if a DMD with a diamond pixel array layout is used). It is essential that the calibration marks are bright since we must be able to measure their coordinates accurately in the stripe images.

As discussed above, the projected codes will contain an image with a completely bright pattern. These images can be used to extract the calibration mark coordinates and to calibrate the interior orientation of the camera and the exterior orientation of the calibration targets, as described in Section 3.9.4.4. The orientation parameters can then be used to project the mark center points into the camera images to obtain unbiased subpixel-accurate image coordinates of the mark centers.

[image: image]
Figure 3.130 Four images of the screw in Figure 3.129 with fringes that are phase-shifted by 90° each.


The only thing that remains to be done is to determine the coordinates of the mark centers in the projector. This can be done using the orthogonal stripes. For simplicity, we assume that the stripes are horizontal and vertical. The projector column coordinate of each mark center in the camera image can be decoded based on the vertical stripes. The same algorithm can be used to decode the row coordinate based on the horizontal stripes. Since the mark centers in the camera image are subpixel-accurate, we can increase the accuracy of the projector coordinates by bilinear interpolation (cf. Section 3.3.2.2) of the decoded row and column coordinates from 2 × 2 pixels around each mark coordinate in the camera image. This gives us all the data that we need to use the stereo calibration algorithm of Section 3.10.1.1 to calibrate the structured light system. The relevant data that is obtained from the calibration is the interior orientation of the camera and projector and their relative orientation.

Once the camera and projector have been calibrated, the optical rays of the camera image can in principle be intersected with the corresponding planes of the projector. However, there is one slight difficulty that must be solved: if the projector exhibits lens distortions, the back-projection of a column in the projector is actually no longer a plane, but a curved surface. In this case, the 3D reconstruction is slightly more complicated. An algorithm that solves the reconstruction problem for the polynomial distortion model by a numeric root finding algorithm is described by Chen et al. (2009). For the division model, the same approach leads to a quadratic equation that can be solved analytically.

[image: image]
Figure 3.131 (a) Integer projector column decoded from the Gray code images in Figure 3.129. (b) Phase decoded from the phase-shift images in Figure 3.130. (c) Subpixel-precise projector column derived from (a) and (b). (d) 3D reconstruction of the M1 screw. Note that the reconstruction is so accurate that even the titanium dioxide powder is visible in the reconstruction.


It is well known that a structured light sensor that uses fringe projection must have a linear gray value response in the projector and the camera (Huang et al., 2003; Gorthi and Rastog, 2010; Wang et al., 2010; Zhang, 2010). If any of these components exhibits a nonlinear behavior, the pure sinusoidal waves will be transformed into waves that contain higher-order harmonic frequencies. These lead to errors in the phase decoding, which manifest themselves as high-frequency reconstruction errors. Therefore, any component that exhibits a nonlinear behavior must be calibrated radiometrically. The camera can be calibrated radiometrically as described in Section 3.2.2. The same algorithm can also be used to calibrate the projector. Alternatively, the projector can be calibrated as described by Huang et al. (2003). The projector projects each possible gray value in turn onto a uniform surface of high reflectance. The gray values are measured and averaged in a small window in the center of the camera image. The inverse projector response can be constructed from these measurements. It can then be used to correct the fringe images before sending them to the projector (Wang et al., 2010).





3.11 Template Matching

In the previous sections, we have discussed various techniques that can be combined to write algorithms to find objects in an image. While these techniques can in principle be used to find any kind of object, writing a robust recognition algorithm for a particular type of object can be quite cumbersome. Furthermore, if the objects to be recognized change frequently, a new algorithm must be developed for each type of object. Therefore, a method to find any kind of object that can be configured simply by showing the system a prototype of the class of objects to be found would be extremely useful.

The above goal can be achieved by template matching. Here, we describe the object to be found by a template image. Conceptually, the template is found in the image by computing the similarity between the template and the image for all relevant poses of the template. If the similarity is high, an instance of the template has been found. Note that the term “similarity” is used here in a very general sense. We will see below that it can be defined in various ways, e.g., based on the gray values of the template and the image, or based on the closeness of template edges to image edges.

Template matching can be used for several purposes. First of all, it can be used to perform completeness checks. Here, the goal is to detect the presence or absence of the object. Furthermore, template matching can be used for object discrimination, i.e., to distinguish between different types of objects. In most cases, however, we already know which type of object is present in the image. In these cases, template matching is used to determine the pose of the object in the image. If the orientation of the objects can be fixed mechanically, the pose is described by a translation. In most applications, however, the orientation cannot be fixed completely, if at all. Therefore, often the orientation of the object, described by rotation, must also be determined. Hence, the complete pose of the object is described by a translation and a rotation. This type of transformation is called a rigid transformation. In some applications, additionally, the size of the objects in the image can change. This can happen if the distance of the objects to the camera cannot be kept fixed, or if the real size of the objects can change. Hence, a uniform scaling must be added to the pose in these applications. This type of pose (translation, rotation, and uniform scaling) is called a similarity transformation. If even the 3D orientation of the camera with respect to the objects can change and the objects to be recognized are planar, the pose is described by a projective transformation (see Section 3.3.1.1). Consequently, for the purposes of this chapter, we can regard the pose of the objects as a specialization of an affine or projective transformation.

In most applications, a single object is present in the search image and the goal of template matching is to find this single instance. In some applications, more than one object is present in the image. If we know a priori how many objects are present, we want to find exactly this number of objects. If we do not have this knowledge, we typically must find all instances of the template in the image. In this mode, one of the goals is also to determine how many objects are present in the image.


3.11.1 Gray-Value-Based Template Matching

In this section, we will examine the simplest kind of template matching algorithms, which are based on the raw gray values in the template and the image. As mentioned above, template matching is based on computing a similarity between the template and the image. Let us formalize this notion. For the moment, we will assume that the object’s pose is described by a translation. The template is specified by an image t(r, c) and its corresponding ROI T. To perform the template matching, the template is moved over all positions in the image and a similarity measure s is computed at each position. Hence, the similarity measure s is a function that takes the gray values in the template t(r, c) and the gray values in the shifted ROI of the template at the current position in the image f (r + u, c + v) and calculates a scalar value that measures the similarity based on the gray values within the respective ROI. With this approach, a similarity measure is returned for each point in the transformation space, which for translations can be regarded as an image. Hence, formally, we have
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To make this abstract notation concrete, we will discuss several possible gray-value-based similarity measures (Brown, 1992).


3.11.1.1 Similarity Measures Based on Gray Value Differences

The simplest similarity measures are to sum the absolute or squared gray value differences between the template and the image (SAD and SSD). They are given by

(3.174) [image: image]

and

(3.175) [image: image]

In both cases, n is the number of points in the template ROI, i.e., n = |T |. Note that both similarity measures can be computed very efficiently with just two operations per pixel. These similarity measures have similar properties: if the template and the image are identical, they return a similarity measure of 0. If the image and template are not identical, a value greater than 0 is returned. As the dissimilarity increases, the value of the similarity measure increases. Hence, in this case the similarity measure should probably be better called a dissimilarity measure. To find instances of the template in the search image, we can threshold the similarity image SAD(r, c) with a certain upper threshold. This typically gives us a region that contains several adjacent pixels. To obtain a unique location for the template, we must select the local minima of the similarity image within each connected component of the thresholded region.

[image: image]
Figure 3.132 (a) Image of a PCB with a fiducial mark, which is used as the template (indicated by the white rectangle). (b) SAD computed with the template in (a) and the image in (a). (c) Result of thresholding (b) with a threshold of 20. Only a region around the fiducial is selected.


Figure 3.132 shows a typical application for template matching. Here, the goal is to locate the position of a fiducial mark on a PCB. The ROI used for the template is displayed in Figure 3.132(a). The similarity computed with the SAD, given by Eq. (3.174), is shown in Figure 3.132(b). For this example, the SAD was computed with the same image from which the template was generated. If the similarity is thresholded with a threshold of 20, only a region around the position of the fiducial mark is returned (Figure 3.132(c)). Within this region, the local minimum of the SAD must be computed (not shown) to obtain the position of the fiducial mark.

The SAD and SSD similarity measures work very well as long as the illumination can be kept constant. However, if the illumination can change, they both return larger values, even if the same object is contained in the image, because the gray values are no longer identical. This effect is illustrated in Figure 3.133. Here, a darker and brighter image of the fiducial mark are shown. They were obtained by adjusting the illumination intensity. The SAD computed with the template of Figure 3.132(a) is displayed in Figures 3.133(b) and (e). The result of thresholding them with a threshold of 35 is shown in Figures 3.133(c) and (f). The threshold was chosen such that the true fiducial mark is extracted in both cases. Note that, because of the contrast change, many extraneous instances of the template have been found.



3.11.1.2 Normalized Cross-Correlation

As we can see from the above examples, the SAD and SSD similarity measures work well as long as the illumination can be kept constant. In applications where this cannot be ensured, a different kind of similarity measure is required. Ideally, this similarity measure should be invariant to all linear illumination changes (see Section 3.2.1.1). A similarity measure that achieves this is the NCC, given by

[image: image]
Figure 3.133 (a) Image of a PCB with a fiducial mark with a lower contrast. (b) SAD computed with the template in Figure 3.132(a) and the image in (a). (c) Result of thresholding (b) with a threshold of 35. (d) Image of a PCB with a fiducial mark with higher contrast. (e) SAD computed with the template of Figure 3.132(a) and the image in (d). (f) Result of thresholding (e) with a threshold of 35. In both cases, it is impossible to select a threshold that returns only the region of the fiducial mark.
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Here, mt is the mean gray value of the template and [image: images] is the variance of the gray values, i.e.,

(3.177) [image: image]
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Analogously, [image: image] are the mean value and variance in the image at a shifted position of the template ROI:

(3.179) [image: image]
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Figure 3.134 (a) Image of a PCB with a fiducial mark, which is used as the template (indicated by the white rectangle). This is the same image as in Figure 3.132(a). (b) NCC computed with the template in (a) and the image in (a). (c) Result of thresholding (b) with a threshold of 0.75. The results for the darker and brighter images in Figure 3.133 are not shown because they are virtually indistinguishable from the results in (b) and (c).


The NCC has a very intuitive interpretation. It holds that −1 ≤ NCC(r, c) ≤ 1. If NCC(r, c) = ±1, the image is a linearly scaled version of the template:

(3.181) [image: image]

For NCC(r, c) = 1 we have a > 0, i.e., the template and the image have the same polarity; while NCC(r, c) = −1 implies that a < 0, i.e., the polarity of the template and image are reversed. Note that this property of the NCC implies the desired invariance against linear illumination changes. The invariance is achieved by explicitly subtracting the mean gray values, which cancels additive changes, and by dividing by the standard deviation of the gray values, which cancels multiplicative changes.

While the template matches the image perfectly only if NCC(r, c) = ±1, large absolute values of the NCC generally indicate that the template closely corresponds to the image part under examination, while values close to zero indicate that the template and image do not correspond well.

Figure 3.134 displays the results of computing the NCC for the template in Figure 3.132(a) (reproduced in Figure 3.134(a)). The NCC is shown in Figure 3.134(b), while the result of thresholding the NCC with a threshold of 0.75 is shown in Figure 3.134(c). This selects only a region around the fiducial mark. In this region, the local maximum of the NCC must be computed to derive the location of the fiducial mark (not shown). The results for the darker and brighter images in Figure 3.133 are not shown because they are virtually indistinguishable from the results in Figures 3.134(b) and (c).



3.11.1.3 Efficient Evaluation of the Similarity Measures

In the above discussion, we have assumed that the similarity measures must be evaluated completely for every translation. This is, in fact, unnecessary, since the result of calculating the similarity measure will be thresholded with a threshold ts later on. For example, thresholding the SAD in Eq. (3.174) means that we require

(3.182) [image: image]

Here, we have explicitly numbered the points [image: image]. We can multiply both sides by n to obtain

(3.183) [image: image]

Suppose we have already evaluated the first j terms in the sum in Eq. (3.183). Let us call this partial result [image: image] Then, we have

(3.184) [image: image]

Hence, we can stop the evaluation as soon as [image: image] because we are certain that we can no longer achieve the threshold. If we are looking for a maximum number of m instances of the template, we can even adapt the threshold ts based on the instance with the mth best similarity found so far. For example, if we are looking for a single instance with ts = 20 and we have already found a candidate with SAD(r, c) = 10, we can set ts = 10 for the remaining poses that need to be checked. Of course, we need to calculate the local minima of SAD(r, c) and use the corresponding similarity values to ensure that this approach works correctly if more than one instance should be found.

For the NCC, there is no simple criterion to stop the evaluation of the terms. Of course, we can use the fact that the mean mt and standard deviation [image: image] of the template can be computed once offline because they are identical for every translation of the template. The only other optimization we can make, analogous to the SAD, is that we can adapt the threshold ts based on the matches we have found so far (Di Stefano et al., 2003).

The above stopping criteria enable us to stop the evaluation of the similarity measure as soon as we are certain that the threshold can no longer be reached. Hence, they prune unwanted parts of the space of allowed poses. Further improvements for pruning the search space have been proposed. For example, Di Stefano et al. (2003) describe additional optimizations that can be used with NCC. Gharavi-Alkhansari (2001) and Hel-Or and Hel-Or (2003) discuss different strategies for pruning the search space when using SAD or SSD. They rely on transforming the image into a representation in which a large portion of the SAD and SSD can be computed with very few evaluations so that the above stopping criteria can be reached as soon as possible.




3.11.2 Matching Using Image Pyramids

The evaluation of the similarity measures on the entire image is very time consuming, even if the stopping criteria discussed above are used. If they are not used, the run of the time complexity is O(whn), where w and h are the width and height of the image and n is the number of points in the template. The stopping criteria typically result in a constant factor for the speed-up, but do not change the complexity. Therefore, a method to further speed up the search is necessary to be able to find the template in real time.


3.11.2.1 Image Pyramids

To derive a faster search strategy, we note that the run time complexity of the template matching depends on the number of translations, i.e., poses, that need to be checked. This is the O(wh) part of the complexity. Furthermore, it depends on the number of points in the template. This is the O(n) part. Therefore, to gain a speed-up, we can try to reduce the number of poses that need to be checked as well as the number of template points. Since the templates typically are large, one way to do this would be to take into account only every ith point of the image and template in order to obtain an approximate pose of the template, which could later be refined by a search with a finer step size around the approximate pose. This strategy is identical to subsampling the image and template. Since subsampling can cause aliasing effects (see Sections 3.2.4.2 and 3.3.2.4), this is not a very good strategy because we might miss instances of the template because of the aliasing effects. We have seen in Section 3.3.2.4 that we must smooth the image to avoid aliasing effects. Furthermore, typically it is better to scale the image down multiple times by a factor of 2 than only once by a factor of i > 2. Scaling down the image (and template) multiple times by a factor of 2 creates a data structure that is called an image pyramid. Figure 3.135 displays why the name was chosen: we can visualize the smaller versions of the image stacked on top of each other. Since their width and height are halved in each step, they form a pyramid.

When constructing the pyramid, speed is essential. Therefore, the smoothing is performed by applying a 2 × 2 mean filter, i.e., by averaging the gray value of each 2 × 2 block of pixels (Tanimoto, 1981). The smoothing could also be performed by a Gaussian filter (Glazer et al., 1983). Note, however, that, in order to avoid the introduction of unwanted shifts into the image pyramid, the Gaussian filter must have an even mask size. Therefore, the smallest mask size would be 4×4. Hence, using the Gaussian filter would incur a severe speed penalty in the construction of the image pyramid. Furthermore, the 2 × 2 mean filter does not have the frequency response problems that the larger versions of the filter have (see Section 3.2.3.6): it drops off smoothly toward a zero response for the highest frequencies, like the Gaussian filter. Finally, it simulates the effects of a perfect camera with a fill factor of 100%. Therefore, the mean filter is the preferred filter for constructing image pyramids.

[image: image]
Figure 3.135 An image pyramid is constructed by successively halving the resolution of the image and combining 2 × 2 blocks of pixels in a higher resolution into a single pixel at the next lower resolution.


Figure 3.136 displays the image pyramid levels 2–5 of the image in Figure 3.132(a). We can see that on levels 1–4 the fiducial mark can still be discerned from the BGA pads. This is no longer the case on level 5. Therefore, if we want to find an approximate location of the template, we can start the search on level 4.

The above example produces the expected result: the image is progressively smoothed and subsampled. The fiducial mark we are interested in can no longer be recognized as soon as the resolution becomes too low. Sometimes, however, creating an image pyramid can produce results that are unexpected at first glance. One example of this behavior is shown in Figure 3.137. Here, the image pyramid levels 1–4 of an image of a PCB are shown. We can see that on pyramid level 4, all the tracks are suddenly merged into large components with identical gray values. This happens because of the smoothing that is performed when the pyramid is constructed. Here, the neighboring thin lines start to interact with each other once the smoothing is large enough, i.e., once we reach a pyramid level that is large enough. Hence, we can see that sometimes valuable information is destroyed by the construction of an image pyramid. If we were interested in matching, say, the corners of the tracks, we could only go as high as level 3 in the image pyramid.

[image: image]
Figure 3.136 (a)–(d) Image pyramid levels 2–5 of the image in Figure 3.132(a). Note that in level 5, the fiducial mark can no longer be discerned from the BGA pads.


[image: image]
Figure 3.137 (a)–(d) Image pyramid levels 1–4 of an image of a PCB. Note that in level 4, all the tracks are merged into large components with identical gray values because of the smoothing that is performed when the pyramid is constructed.




3.11.2.2 Hierarchical Search

Based on image pyramids, we can define a hierarchical search strategy as follows. First, we calculate an image pyramid on the template and search image with an appropriate number of levels. How many levels can be used is mainly defined by the objects we are trying to find. On the highest pyramid level, the relevant structures of the object must still be discernible. Then, a complete matching is performed on the highest pyramid level. Here, of course, we take the appropriate stopping criterion into account. What gain does this give us? In each pyramid level, we reduce the number of image points and template points by a factor of 4. Hence, each pyramid level results in a speed-up of a factor of 16. Therefore, if we perform the complete matching, for example, on level 4, we reduce the amount of computations by a factor of 4096.

All instances of the template that have been found on the highest pyramid level are then tracked to the lowest pyramid level. This is done by projecting the match to the next lower pyramid level, i.e., by multiplying the coordinates of the found match by 2. Since there is an uncertainty in the location of the match, a search area is constructed around the match in the lower pyramid level, e.g., a 5 × 5 rectangle. Then, the matching is performed within this small ROI, i.e., the similarity measure is computed and thresholded, and the local extrema are extracted. This procedure is continued until the match is lost or tracked to the lowest level. Since the search spaces for the larger templates are very small, tracking the match down to the lowest level is very efficient.

While matching the template on the higher pyramid levels, we need to take the following effect into account: the gray values at the border of the object can change substantially on the highest pyramid level depending on where the object lies on the lowest pyramid level. This happens because a single pixel shift of the object translates to a subpixel shift on higher pyramid levels, which manifests itself as a change in the gray values on the higher pyramid levels. Therefore, on the higher pyramid levels we need to be more lenient with the matching threshold to ensure that all potential matches are being found. Hence, for the SAD and SSD similarity measures we need to use slightly higher thresholds, and for the NCC similarity measure we need to use slightly lower thresholds on the higher pyramid levels.

The hierarchical search is shown in Figure 3.138. The template is the fiducial mark shown in Figure 3.132(a). The template is searched in the same image from which the template was created. As discussed above, four pyramid levels are used in this case. The search starts on level 4. Here, the ROI is the entire image. The NCC and found matches on level 4 are displayed in Figure 3.138(a). As we can see, 12 potential matches are initially found. They are tracked down to level 3 (Figure 3.138(b)). The ROIs created from the matches on level 4 are shown in white. For visualization purposes, the NCC is displayed for the entire image. In reality, it is, of course, only computed within the ROIs, i.e., for a total of 12 · 25 = 300 translations. Note that at this level the true match turns out to be the only viable match. It is tracked down through levels 2 and 1 (Figures 3.138(c) and (d)). In both cases, only 25 translations need to be checked. Therefore, the match is found extremely efficiently. The zoomed part of the NCC in Figures 3.138(b)–(d) also shows that the pose of the match is progressively refined as the match is tracked down the pyramid.




3.11.3 Subpixel-Accurate Gray-Value-Based Matching

So far, we have located the pose of the template with pixel precision. This has been done by extracting the local minima (SAD, SSD) or maxima (NCC) of the similarity measure. To obtain the pose of the template with higher accuracy, the local minima or maxima can be extracted with subpixel precision. This can be done in a manner that is analogous to the method we have used in edge extraction (see Section 3.7.3.5): we simply fit a polynomial to the similarity measure in a 3 × 3 neighborhood around the local minimum or maximum. Then, we extract the local minimum or maximum of the polynomial analytically. Another approach is to perform a least-squares matching of the gray values of the template and the image (Tian and Huhns, 1986). Since least-squares matching of gray values is not invariant to illumination changes, the illumination changes must be modeled explicitly, and their parameters must be determined in the least-squares fitting in order to achieve robustness to illumination changes (Lai and Fang, 1999).

[image: image]
Figure 3.138 Hierarchical template matching using image pyramids. The template is the fiducial mark shown in Figure 3.132(a). To provide a better visualization, the NCC is shown for the entire image on each pyramid level. In reality, however, it is only calculated within the appropriate ROI on each level, shown in white. The matches found are displayed in black. (a) On pyramid level 4, the matching is performed in the entire image. Here, 12 potential matches are found. (b) The matching is continued within the white ROIs on level 3. Only one viable match is found in the 12 ROIs. The similarity measure and ROI around the match are displayed zoomed in the lower right corner. (c), (d) The match is tracked through pyramid levels 2 and 1.




3.11.4 Template Matching with Rotations and Scalings

Up to now, we have implicitly restricted the template matching to the case where the object must have the same orientation and scale in the template and the image, i.e., the space of possible poses was assumed to be the space of translations. The similarity measures we have discussed above only can tolerate small rotations and scalings of the object in the image. Therefore, if the object does not have the same orientation and size as the template, the object will not be found. If we want to be able to handle a larger class of transformations, e.g., rigid or similarity transformations, we must modify the matching approach. For simplicity, we will only discuss rotations, but the method can be extended to scalings and even more general classes of transformations in an analogous manner.

To find a rotated object, we can create the template in multiple orientations, i.e., we discretize the search space of rotations in a manner that is analogous to the discretization of the translations that is imposed by the pixel grid (Anisimov and Gorsky, 1993). Unlike for translations, the discretization of the orientations of the template depends on the size of the template, since the similarity measures are less tolerant to small angle changes for large templates. For example, a typical value is to use an angle step size of 1° for templates with a radius of 100 pixels. Larger templates must use smaller angle steps, while smaller templates can use larger angle steps. To find the template, we simply match all rotations of the template with the image. Of course, this is done only on the highest pyramid level. To make the matching in the pyramid more efficient, we can also use the fact that the templates become smaller by a factor of 2 on each pyramid level. Consequently, the angle step size can be increased by a factor of 2 for each pyramid level. Hence, if an angle step size of 1° is used on the lowest pyramid level, a step size of 8° can be used on the fourth pyramid level.

While tracking potential matches through the pyramid, we also need to construct a small search space for the angles in the next lower pyramid level, analogous to the small search space that we already use for the translations. Once we have tracked the match to the lowest pyramid level, we typically want to refine the pose to an accuracy that is higher than the resolution of the search space we have used. In particular, if rotations are used, the pose should consist of a subpixel translation and an angle that is more accurate than the angle step size we have chosen. The techniques for subpixel-precise localization of the template described above can easily be extended for this purpose.



3.11.5 Robust Template Matching

The above template matching algorithms have served for many years as the methods of choice to find objects in machine vision applications. Over time, however, there has been an increasing demand to find objects in images even if they are occluded or disturbed in other ways so that parts of the object are missing. Furthermore, the objects should be found even if there are a large number of disturbances on the object itself. These disturbances are often referred to as clutter. Finally, objects should be found even if there are severe nonlinear illumination changes. The gray-value-based template matching algorithms we have discussed so far cannot handle these kinds of disturbances. Therefore, in the remainder of this section, we will discuss several approaches that have been designed to find objects in the presence of occlusion, clutter, and nonlinear illumination changes.

We have already discussed a feature that is robust to nonlinear illumination changes in Section 3.7: edges are not (or at least very little) affected by illumination changes. Therefore, they are frequently used in robust matching algorithms. The only problem when using edges is the selection of a suitable threshold to segment the edges. If the threshold is chosen too low, there will be many clutter edges in the image. If it is chosen too high, important edges of the object will be missing. This has the same effect as if parts of the object are occluded. Since the threshold can never be chosen perfectly, this is another reason why the matching must be able to handle occlusions and clutter robustly.

[image: image]
Figure 3.139 (a) Image of a model object. (b) Edges of (a). (c) Segmentation of (b) into lines and circles. (d) Salient points derived from the segmentation in (c).


To match objects using edges, several strategies exist. First of all, we can use the raw edge points, possibly augmented with some features per edge point, for the matching (see Figure 3.139(b)). Another strategy is to derive geometric primitives by segmenting the edges with the algorithms discussed in Section 3.8.4, and to match these to segmented geometric primitives in the image (see Figure 3.139(c)). Finally, based on a segmentation of the edges, we can derive salient points and match them to salient points in the image (see Figure 3.139(d)). It should be noted that the salient points can also be extracted directly from the image without extracting edges first (Förstner, 1994; Schmid et al., 2000).


3.11.5.1 Mean Squared Edge Distance

A large class of algorithms for edge matching is based on the distance of the edges in the template to the edges in the image. These algorithms typically use the raw edge points for the matching. One natural similarity measure based on this idea is to minimize the mean squared distance between the template edge points and the closest image edge points (Borgefors, 1988). Hence, it appears that we must determine the closest image edge point for every template edge point, which would be extremely costly. Fortunately, since we are only interested in the distance to the closest edge point and not in which point is the closest point, this can be done in an efficient manner by calculating the distance transform of the complement of the segmented edges in the search image (Borgefors, 1988). See Figures 3.140(b) and (d) for examples of the distance transform. A model is considered as being found if the mean distance of the template edge points to the image edge points is below a threshold. Of course, to obtain a unique location of the template, we must calculate the local minimum of this similarity measure. If we want to formalize this similarity measure, we can denote the edge points in the model by T and the distance transform of the complement of the segmented edge region in the search image by d(r, c). Hence, the mean squared edge distance (SED) for the case of translations is given by

(3.185) [image: image]

Note that this is very similar to the SSD similarity measure in Eq. (3.175) if we set t(u, v) = 0 there and use the distance transform image for f (u, v). Consequently, the SED matching algorithm can be implemented very easily if we already have an implementation of the SSD matching algorithm. Of course, if we use the mean distance instead of the mean squared distance, we could use an existing implementation of the SAD matching, given by Eq. (3.174), for the edge matching.

We can now ask ourselves whether the SED fulfills the above criteria for robust matching. Since it is based on edges, it is robust to arbitrary illumination changes. Furthermore, since clutter, i.e., extra edges in the search image, can only decrease the distance to the closest edge in the search image, it is robust to clutter. However, if edges are missing in the search image, the distance of the missing template edges to the closest image edges may become very large, and consequently the model may not be found. This is illustrated in Figure 3.140. Imagine what happens when the model in Figure 3.140(a) is searched in a search image in which some of the edges are missing (Figures 3.140(c) and (d)). Here, the missing edges will have a very large squared distance, which will increase the SED significantly. This will make it quite difficult to find the correct match.

[image: image]
Figure 3.140 (a) Template edges. (b) Distance transform of the complement of (a). For better visualization, a square root LUT is used. (c) Search image with missing edges. (d) Distance transform of the complement of (c). If the template in (a) is matched to a search image in which the edges are complete and which possibly contains more edges than the template, the template will be found. If the template in (a) is matched to a search image in which template edges are missing, the template may not be found because a missing edge will have a large distance to the closest existing edge.




3.11.5.2 Hausdorff Distance

Because of the above problems of the SED, edge matching algorithms using a different distance have been proposed. They are based on the Hausdorff distance of two point sets. Let us call the edge points in the template T and the edge points in the image E. Then, the Hausdorff distance of the two point sets is given by

(3.186) [image: image]

where

(3.187) [image: image]

and h(E, T) is defined symmetrically. Hence, the Hausdorff distance consists of determining the maximum of two distances: the maximum distance of the template edges to the closest image edges, and the maximum distance of the image edges to the closest template edges (Rucklidge, 1997). It is immediately clear that, to achieve a low overall distance, every template edge point must be close to an image edge point and vice versa. Therefore, the Hausdorff distance is robust to neither occlusion nor clutter. With a slight modification, however, we can achieve the desired robustness. The reason for the bad performance for occlusion and clutter is that in Eq. (3.187) the maximum distance of the template edges to the image edges is calculated. If we want to achieve robustness to occlusion, instead of computing the largest distance, we can compute a distance with a different rank, e.g., the f th largest distance, where f = 0 denotes the largest distance. With this, the Hausdorff distance will be robust to 100 f/n% occlusion, where n is the number of edge points in the template. To make the Hausdorff distance robust to clutter, we can similarly modify h(E, T) to use the rth largest distance. However, normally the model covers only a small part of the search image. Consequently, typically there are many more image edge points than template edge points, and hence r would have to be chosen very large to achieve the desired robustness against clutter. Therefore, h(E, T) must be modified to be calculated only within a small ROI around the template. With this, the Hausdorff distance can be made robust to 100r/m% clutter, where m is the number of edge points in the ROI around the template (Rucklidge, 1997). Like the SED, the Hausdorff distance can be computed based on distance transforms: one for the edge region in the image and one for each pose (excluding translations) of the template edge region. Therefore, we must compute either a very large number of distance transforms offline, which requires an enormous amount of memory, or the distance transforms of the model during the search, which requires a large amount of computation.

As we can see, one of the drawbacks of the Hausdorff distance is the enormous computational load that is required for the matching. In Rucklidge (1997), several possibilities are discussed to reduce the computational load, including pruning regions of the search space that cannot contain the template. Furthermore, a hierarchical subdivision of the search space is proposed. This is similar to the effect that is achieved with image pyramids. However, the method in Rucklidge (1997) only subdivides the search space, but does not scale the template or image. Therefore, it is still very slow. A Hausdorff distance matching method using image pyramids is proposed by Kwon et al. (2001).

The major drawback of the Hausdorff distance, however, is that, even with very moderate amounts of occlusion, many false instances of the template will be detected in the image (Olson and Huttenlocher, 1997). To reduce the false detection rate, Olson and Huttenlocher (1997) propose a modification of the Hausdorff distance that takes the orientation of the edge pixels into account. Conceptually, the edge points are augmented with a third coordinate that represents the edge orientation. Then, the distance of these augmented 3D points and the corresponding augmented 3D image points is calculated as the modified Hausdorff distance. Unfortunately, this requires the calculation of a 3D distance transform, which makes the algorithm too expensive for machine vision applications. A further drawback of all approaches based on the Hausdorff distance is that it is quite difficult to obtain the pose with subpixel accuracy based on the interpolation of the similarity measure.



3.11.5.3 Generalized Hough Transform

Another algorithm to find objects that is based on the edge pixels themselves is the generalized Hough transform (GHT) proposed by Ballard (1981). The original Hough transform is a method that was designed to find straight lines in segmented edges (Hough, 1962; Duda and Hart, 1972). It was later extended to detect other shapes that can be described analytically, e.g., circles or ellipses. The principle of the GHT can be best explained by looking at a simple case. Let us try to find circles with a known radius in an edge image. Since circles are rotationally symmetric, we only need to consider translations in this case. If we want to find the circles as efficiently as possible, we can observe that, for circles that are brighter than the background, the gradient vector of the edge of the circle is perpendicular to the circle. This means that it points in the direction of the center of the circle. If the circle is darker than its background, the negative gradient vector points toward the center of the circle. Therefore, since we know the radius of the circle, we can theoretically determine the center of the circle from a single point on the circle. Unfortunately, we do not know which points lie on the circle (this is actually the task we would like to solve). However, we can detect the circle by observing that all points on the circle will have the property that, based on the gradient vector, we can construct the circle center. Therefore, we can accumulate evidence provided by all edge points in the image to determine the circle. This can be done as follows. Since we want to determine the circle center (i.e., the translation of the circle), we can set up an array that accumulates the evidence that a circle is present as a particular translation. We initialize this array with zeros. Then, we loop through all the edge points in the image and construct the potential circle center based on the edge position, the gradient direction, and the known circle radius. With this information, we increment the accumulator array at the potential circle center by one. After we have processed all the edge points, the accumulator array should contain a large amount of evidence, i.e., a large number of votes, at the locations of the circle centers. We can then threshold the accumulator array and compute the local maxima to determine the circle centers in the image.

An example of this algorithm is shown in Figure 3.141. Suppose we want to locate the circle on top of the capacitor in Figure 3.141(a) and that we know that it has a radius of 39 pixels. The edges extracted with a Canny filter with σ = 2 and hysteresis thresholds of 80 and 20 are shown in Figure 3.141(b). Furthermore, for every eighth edge point, the gradient vector is shown. Note that for the circle they all point toward the circle center. The accumulator array that is obtained with the algorithm described above is displayed in Figure 3.141(c). Note that there is only one significant peak. In fact, most of the cells in the accumulator array have received so few votes that a square root LUT had to be used to visualize whether there are any votes at all in the rest of the accumulator array. If the accumulator array is thresholded and the local maxima are calculated, the circle in Figure 3.141(d) is obtained.

[image: image]
Figure 3.141 Using the Hough transform to detect a circle. (a) Image of a PCB showing a capacitor. (b) Detected edges. For every eighth edge point, the corresponding orientation is visualized by displaying the gradient vector. (c) Hough accumulator array obtained by performing the Hough transform using the edge points and orientations. A square root LUT is used to make the less populated regions of the accumulator space more visible. If a linear LUT were used, only the peak would be visible. (d) Circle detected by thresholding (c) and computing the local maxima.


From the above example, we can see that we can find circles in the image extremely efficiently. If we know the polarity of the circle, i.e., whether it is brighter or darker than the background, we only need to perform a single increment of the accumulator array per edge point in the image. If we do not know the polarity of the edge, we need to perform two increments per edge point. Hence, the run time is proportional to the number of edge points in the image and not to the size of the template, i.e., the size of the circle. Ideally, we would like to find an algorithm that is equally efficient for arbitrary objects.

What can we learn from the above example? First of all, it is clear that, for arbitrary objects, the gradient direction does not necessarily point to a reference point of the object as it did for circles. Nevertheless, the gradient direction of the edge point provides a constraint on where the reference point of the object can be, even for arbitrarily shaped objects. This is shown in Figure 3.142. Suppose we have singled out the reference point o of the object. For the circle, the natural choice would be its center. For an arbitrary object, we can, for example, use the center of gravity of the edge points. Now consider an edge point ei. We can see that the gradient vector ∇fi and the vector ri from ei to o always enclose the same angle, no matter how the object is translated, rotated, and scaled. For simplicity, let us consider only translations for the moment. Then, if we find an edge point in the image with a certain gradient direction or gradient angle ϕi, we could calculate the possible location of the template with the vector ri and increment the accumulator array accordingly. Note that for circles, the gradient vector ∇fi has the same direction as the vector ri. For arbitrary shapes this no longer holds. From Figure 3.142, we can also see that the edge direction does not necessarily uniquely constrain the reference point, since there may be multiple points on the edges of the template that have the same orientation. For circles, this is not the case. For example, in the lower left part of the object in Figure 3.142, there is a second point that has the same gradient direction as the point labeled ei, which has a different offset vector to the reference point. Therefore, in the search we have to increment all accumulator array elements that correspond to the edge points in the template with the same edge direction. Hence, during the search we must be able to quickly determine all the offset vectors that correspond to a given edge direction in the image. This can be achieved in a preprocessing step in the template generation that is performed offline. Basically, we construct a table, called the R-table, that is indexed by the gradient angle ϕ. Each table entry contains all the offset vectors ri of the template edges that have the gradient angle ϕ. Since the table must be discrete to enable efficient indexing, the gradient angles are discretized with a certain step size ∆ϕ. The concept of the R-table is also shown in Figure 3.142. With the R-table, it is very simple to find the offset vectors for incrementing the accumulator array in the search: we simply calculate the gradient angle in the image and use it as an index into the R-table. After the construction of the accumulator array, we threshold the array and calculate the local maxima to find the possible locations of the object. This approach can also be extended easily to deal with rotated and scaled objects (Ballard, 1981). In real images, we also need to consider that there are uncertainties in the location of the edges in the image and in the edge orientations. We have already seen in Eq. (3.124) that the precision of the Canny edges depends on the SNR. Using similar techniques, it can be shown that the precision of the edge angle ϕ for the Canny filter is given by [image: image]. These values must be used in the online phase to determine a range of cells in the accumulator array that must be incremented to ensure that the cell corresponding to the true reference point is incremented.

[image: image]
Figure 3.142 The principle of constructing the R-table in the GHT. The R-table (on the right) is constructed based on the gradient angle ϕi of each edge point of the model object and the vector ri from each edge point to the reference point o of the template.


The GHT described above is already quite efficient. On average, it increments a constant number of accumulator cells. Therefore, its run time depends only on the number of edge points in the image. However, it is still not fast enough for machine vision applications because the accumulator space that must be searched to find the objects can quickly become very large, especially if rotations and scalings of the object are allowed. Furthermore, the accumulator uses an enormous amount of memory. Consider, for example, an object that should be found in a 640 × 480 image with an angle range of 360°, discretized in 1° steps. Let us suppose that two bytes are sufficient to store the accumulator array entries without overflow. Then, the accumulator array requires 640 × 480 × 360 × 2 = 221 184 000 bytes of memory, i.e., 211 MB. While this amount of memory is no problem for PCs, it is unacceptably large for many embedded computers. Furthermore, this means that initializing this array alone will require a significant amount of processing time. For this reason, a hierarchical GHT is proposed by Ulrich et al. (2003). It uses image pyramids to speed up the search and to reduce the size of the accumulator array by using matches found on higher pyramid levels to constrain the search on lower pyramid levels. The interested reader is referred to Ulrich et al. (2003) for details of the implementation. With this hierarchical GHT, objects can be found in real time even under severe occlusions, clutter, and almost arbitrary illumination changes.










3.11.5.4 Geometric Hashing

The algorithms we have discussed so far were based on matching edge points directly. Another class of algorithms is based on matching geometric primitives, e.g., points, lines, and circles. These algorithms typically follow the hypothesize-and-test paradigm, i.e., they hypothesize a match, typically from a small number of primitives, and then test whether the hypothetical match has enough evidence in the image.

The biggest challenge that this type of algorithm must solve is the exponential complexity of the correspondence problem. Let us, for the moment, suppose that we are only using one type of geometric primitive, e.g., lines. Furthermore, let us suppose that all template primitives are visible in the image, so that potentially there is a subset of the primitives in the image that corresponds exactly to the primitives in the template. If the template consists of m primitives and there are n primitives in the image, there are [image: image], i.e., O(nm), potential correspondences between the template and image primitives. If the objects in the search image can be occluded, the number of potential matches is even larger, since we must allow that multiple primitives in the image can match a single primitive in the template, because a single primitive in the template may break up into several pieces, and that some primitives in the template are not present in the search image. It is clear that, even for moderately large values of m and n, the cost of exhaustively checking all possible correspondences is prohibitive. Therefore, geometric constraints and strong heuristics must be used to perform the matching in an acceptable time.

One approach to perform the matching efficiently is called geometric hashing (Lamdan et al., 1990). It was originally described for points as primitives, but can equally well be used with lines. Furthermore, the original description uses affine transformations as the set of allowable transformations. We will follow the original presentation and will note where modifications are necessary for other classes of transformations and lines as primitives. Geometric hashing is based on the observation that three points define an affine basis of the 2D plane. Thus, once we select three points e00, e10, and e01 in general position, i.e., not collinear, we can represent every other point as a linear combination of these three points:

(3.188) [image: image]

The interesting property of this representation is that it is invariant to affine transformations, i.e., (α, β) depend only on the three basis points (the basis triplet), but not on the affine transformation, i.e., they are affine invariants. With this, the values (α, β) can be regarded as the affine coordinates of the point q. This property holds equally well for lines: three non-parallel lines that do not intersect in a single point can be used to define an affine basis. If we use a more restricted class of transformations, fewer points are sufficient to define a basis. For example, if we restrict the transformations to similarity transformations, two points are sufficient to define a basis. Note, however, that two lines are sufficient to determine only a rigid transformation.

The aim of geometric hashing is to reduce the amount of work that has to be performed to establish the correspondences between the template and image points. To do this, it constructs a hash table that enables the algorithm to determine quickly the potential matches for the template. This hash table is constructed as follows. For every combination of three non-collinear points in the template, the affine coordinates (α, β) of the remaining m − 3 points of the template are calculated. The affine coordinates (α, β) serve as the index into the hash table. For every point, the index of the current basis triplet is stored in the hash table. Should more than one template be found, the template index also is stored; however, we will not consider this case further, so for our purposes only the index of the basis triplet is stored.

To find the template in the image, we randomly select three points in the image and construct the affine coordinates (α, β) of the remaining n − 3 points. We then use (α, β) as an index into the hash table. This returns us the index of the basis triplet. With this, we obtain a vote for the presence of a particular basis triplet in the image. If the randomly selected points do not correspond to a basis triplet of the template, the votes of all the points will not agree. However, if they correspond to a basis triplet of the template, many of the votes will agree and will indicate the index of the basis triplet. Therefore, if enough votes agree, we have a strong indication for the presence of the model. The presence of the model is then verified as described below. Since there is a certain probability that we have selected an inappropriate basis triplet in the image, the algorithm iterates until it has reached a certain probability of having found the correct match. Here, we can make use of the fact that we only need to find one correct basis triplet to find the model. Therefore, if k of the m template points are present in the image, the probability of having selected at least one correct basis triplet in t trials is approximately

(3.189) [image: image]

If similarity transforms are used, only two points are necessary to determine the affine basis. Therefore, the inner exponent will change from 3 to 2 in this case. For example, if the ratio of visible template points to image points k/n is 0.2 and we want to find the template with a probability of 99% (i.e., p = 0.99), 574 trials are sufficient if affine transformations are used. For similarity transformations, 113 trials would suffice. Hence, geometric hashing can be quite efficient in finding the correct correspondences, depending on how many extra features are present in the image.

After a potential match has been obtained with the algorithm described above, it must be verified in the image. In Lamdan et al. (1990), this is done by establishing point correspondences for the remaining template points based on the affine transformation given by the selected basis triplet. Based on these correspondences, an improved affine transformation is computed by a least-squares minimization over all corresponding points. This, in turn, is used to map all the edge points of the template, i.e., not only the characteristic points that were used for the geometric hashing, to the pose of the template in the image. The transformed edges are compared to the image edges. If there is sufficient overlap between the template and image edges, the match is accepted and the corresponding points and edges are removed from the segmentation. If more than one instance of the template is to be found, the entire process is repeated.

The algorithm described so far works well as long as the geometric primitives can be extracted with sufficient accuracy. If there are errors in the point coordinates, an erroneous affine transformation will result from the basis triplet. Therefore, all the affine coordinates (α, β) will contain errors, and hence the hashing in the online phase will access the wrong entry in the hash table. This is probably the largest drawback of the geometric hashing algorithm in practice. To circumvent this problem, the template points must be stored in multiple adjacent entries of the hash table. Which hash table entries should be used can in theory be derived through error propagation (Lamdan et al., 1990). However, in practice, the accuracy of the geometric primitives is seldom known. Therefore, estimates have to be used, which must be very conservative in order for the algorithm not to miss any matches in the online phase. This, in turn, makes the algorithm slightly less efficient because more votes will have to be evaluated during the search.



3.11.5.5 Matching Geometric Primitives

The final class of algorithms we will discuss tries to match geometric primitives themselves to the image. Most of these algorithms use only line segments as the primitives (Ayache and Faugeras, 1986; Grimson and Lozano-Pérez, 1987; Koch and Kashyap, 1987). One of the few exceptions to this rule is the approach by Ventura and Wan (1997), which uses line segments and circular arcs. Furthermore, in 3D object recognition, sometimes line segments and elliptical arcs are used (Costa and Shapiro, 2000). As already discussed, exhaustively enumerating all potential correspondences between the template and image primitives is prohibitively slow. Therefore, it is interesting to look at examples of different strategies that are employed to make the correspondence search tractable.

The approach by Ayache and Faugeras (1986) segments the contours of the model object and the search image into line segments. Depending on the lighting conditions, the contours are obtained by thresholding or by edge detection. The 10 longest line segments in the template are singled out as privileged. Furthermore, the line segments in the model are ordered by adjacency as they trace the boundary of the model object. To generate a hypothesis, a privileged template line segment is matched to a line segment in the image. Since the approach is designed to handle similarity transforms, the angle to the preceding line segment in the image, which is invariant under these transforms, is compared with the angle to the preceding line segment in the template. If they are not close enough, the potential match is rejected. Furthermore, the length ratio of these two segments, which also is invariant, is used to check the validity of the hypothesis. The algorithm generates a certain number of hypotheses in this manner. These hypotheses are then verified by trying to match additional segments. The quality of the hypotheses, including the additionally matched segments, is then evaluated based on the ratio of the lengths of the matched segments to the length of the segments in the template. The matching is stopped once a high-quality match has been found or if enough hypotheses have been evaluated. Hence, we can see that the complexity is kept manageable by using privileged segments in conjunction with their neighboring segments.

In Koch and Kashyap (1987), a similar method is proposed. In contrast to Ayache and Faugeras (1986), corners (combinations of two adjacent line segments of the boundary of the template that enclose a significant angle) are matched first. To generate a matching hypothesis, two corners must be matched to the image. Geometric constraints between the corners are used to reject false matches. The algorithm then attempts to extend the hypotheses with other segments in the image. The hypotheses are evaluated based on a dissimilarity criterion; if the dissimilarity is below a threshold, the match is accepted. Hence, the complexity of this approach is reduced by matching features that have distinctive geometric characteristics first.

The approach by Grimson and Lozano-Pérez (1987) also generates matching hypotheses and tries to verify them in the image. Here, a tree of possible correspondences is generated and evaluated in a depth-first search. This search tree is called the interpretation tree. A node in the interpretation tree encodes a correspondence between a model line segment and an image line segment. Hence, the interpretation tree would exhaustively enumerate all correspondences, which would be prohibitively expensive. Therefore, the interpretation tree must be pruned as much as possible. To do this, the algorithm uses geometric constraints between the template line segments and the image line segments. Specifically, the distances and angles between pairs of line segments in the image and in the template must be consistent. This angle is checked by using normal vectors of the line segments that take the polarity of the edges into account. This consistency check prunes a large number of branches of the interpretation tree. However, since a large number of possible matchings still remain, a heuristic is used to explore the most promising hypotheses first. This is useful because the search is terminated once an acceptable match has been found. This early search termination is criticized by Joseph (1999), and various strategies to speed up the search for all instances of the template in the image are discussed. The interested reader is referred to Joseph (1999) for details.

To make the principles of the geometric matching algorithms clearer, let us examine a prototypical matching procedure on an example. The template to be found is shown in Figure 3.143(a). It consists of five line segments and five circular arcs. They were segmented automatically from the image in Figure 3.139(a) using a subpixel-precise Canny filter with σ = 1 and by splitting the edge contours into line segments and circular arcs using the method described in Section 3.8.4.2. The template consists of the geometric parameters of these primitives as well as the segmented contours themselves. The image in which the template should be found is shown in Figure 3.143(b). It contains four partially occluded instances of the model along with four clutter objects. The matching starts by extracting edges in the search image and by segmenting them into line segments and circular arcs (Figure 3.143(c)). As for the template, the geometric parameters of the image primitives are calculated. The matching now determines possible matches for all of the primitives in the template. Of these, the largest circular arc is examined first because of a heuristic that rates moderately long circular arcs as more distinctive even than long line segments. The resulting matching hypotheses are shown in Figure 3.143(d). Of course, the line segments could also have been examined first. Because in this case only rigid transformations are allowed, the matching of the circular arcs uses the radii of the circles as a matching constraint.
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Figure 3.143 Example of matching an object in the image using geometric primitives. (a) The template consists of five line segments and five circular arcs. The model has been generated from the image in Figure 3.139(a). (b) The search image contains four partially occluded instances of the template along with four clutter objects. (c) Edges extracted in (b) with a Canny filter with σ = 1 and split into line segments and circular arcs. (d) The matching in this case first tries to match the largest circular arc of the model and finds four hypotheses. (e) The hypotheses are extended with the lower of the long line segments in (a). These two primitives are sufficient to estimate a rigid transform that aligns the template with the features in the image. (f) The remaining primitives of the template are matched to the image. The resulting matched primitives are displayed.


Since the matching should be robust to occlusions, the opening angle of the circular arcs is not used as a constraint. Because of this, the matched circles are not sufficient to determine a rigid transformation between the template and the image. Therefore, the algorithm tries to match an adjacent line segment (the long lower line segment in Figure 3.143(a)) to the image primitives while using the angle of intersection between the circle and the line as a geometric constraint. The resulting matches are shown in Figure 3.143(e). With these hypotheses, it is possible to compute a rigid transformation that transforms the template to the image. Based on this, the remaining primitives can be matched to the image based on the distances of the image primitives and the transformed template primitives. The resulting matches are shown in Figure 3.143(f). Note that, because of specular reflections, sometimes multiple parallel line segments are matched to a single line segment in the template. This could be fixed by taking the polarity of the edges into account. To obtain the rigid transformation between the template and the matches in the image as accurately as possible, a least-squares optimization of the distances between the edges in the template and the edges in the image can be used. An alternative is the minimal tolerance error zone optimization described by Ventura and Wan (1997). Note that the matching has already found the four correct instances of the template. For the algorithm, the search is not finished, however, since there might be more instances of the template in the image, especially instances for which the large circular arc is occluded more than in the leftmost instance in the image. Hence, the search is continued with other primitives as the first primitives to try. In this case, however, the search does not discover new viable matches.



3.11.5.6 Shape-Based Matching

After having discussed some of the approaches for robustly finding templates in an image, the question as to which of these algorithms should be used in practice naturally arises. We will say more on this topic below. From the above discussion, however, we can see that the effectiveness of a particular approach greatly depends on the shape of the template itself. Generally, geometric matching algorithms have an advantage if the template and image contain only a few salient geometric primitives, like in the example in Figure 3.143. Here, the combinatorics of the geometric matching algorithms can work to their advantage. On the other hand, they work to their disadvantage if the template or search image contains a large number of geometric primitives.

A difficult model image is shown in Figure 3.144. The template contains fine structures that result in 350 geometric primitives, which are not particularly salient. Consequently, the search would have to examine an extremely large number of hypotheses that could be dismissed only after examining a large number of additional primitives. Note that the model contains 35 times as many primitives as the model in Figure 3.143, but only approximately 3 times as many edge points. Consequently, it could easily be found with pixel-based approaches like the GHT.

A difficult search image is shown in Figure 3.145. Here, the goal is to find the circular fiducial mark. Since the contrast of the fiducial mark is very low, a small segmentation threshold must be used in the edge detection to find the relevant edges of the circle. This causes a very large number of edges and broken fragments that must be examined. Again, pixel-based algorithms will have little trouble with this image.
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Figure 3.144 (a) Image of a template object that is not suitable for geometric matching algorithms. Although the segmentation of the template into line segments and circular arcs in (b) only contains approximately 3 times as many edge points as the template in Figure 3.143, it contains 35 times as many geometric primitives, i.e., 350.


[image: image]
Figure 3.145 (a) A search image that is difficult for the geometric matching algorithms. Here, because of the poor contrast of the circular fiducial mark, the segmentation threshold must be chosen very low so that the relevant edges of the fiducial mark are selected. Because of this, the segmentation in (b) contains a very large number of primitives that must be examined in the search.


From the above examples, we can see that pixel-based algorithms have the advantage that they can represent arbitrarily shaped templates without problems. Geometric matching algorithms, on the other hand, are restricted to relatively simple shapes that can be represented with a very small number of primitives. Therefore, in the remainder of this section, we will discuss a pixel-based robust template matching algorithm called shape-based matching (Steger, 2001, 2002, 2005, 2006a,b) that works very well in practice (Ulrich and Steger, 2001, 2002).

One of the drawbacks of all the algorithms that we have discussed so far is that they segment the edge image. This makes the object recognition algorithm invariant only to a narrow range of illumination changes. If the image contrast is lowered, progressively fewer edge points will be segmented, which has the same effect as progressively larger occlusion. Consequently, the object may not be found for low-contrast images. To overcome this problem, a similarity measure that is robust against occlusion, clutter, and nonlinear illumination changes must be used. This similarity measure can then be used in the pyramid-based recognition strategy described in Sections 3.11.2 and 3.11.4.

To define the similarity measure, we first define the model of an object as a set of points pi = (ri, ci)┬ and associated direction vectors di = (ti, ui)┬, with i = 1, …, n. The direction vectors can be generated by a number of different image processing operations. However, typically edge extraction (see Section 3.7.3) is used. The model is generated from an image of the object, where an arbitrary ROI specifies the part of the image in which the object is located. It is advantageous to specify the coordinates pi relative to the center of gravity of the ROI of the model or to the center of gravity of the points of the model.

The image in which the model should be found can be transformed into a representation in which a direction vector er,c = (vr,c, wr,c)┬ is obtained for each image point (r, c)┬. In the matching process, a transformed model must be compared with the image at a particular location. In the most general case considered here, the transformation is an arbitrary affine transformation (see Section 3.3.1). It is useful to separate the translation part of the affine transformation from the linear part. Therefore, a linearly transformed model is given by the points [image: image] and the accordingly transformed direction vectors [image: image], where

(3.190) [image: image]

As discussed above, the similarity measure by which the transformed model is compared with the image must be robust to occlusions, clutter, and illumination changes. One such measure is to sum the (unnormalized) dot product of the direction vectors of the transformed model and the image over all points of the model to compute a matching score at a particular point q = (r, c)┬ of the image. That is, the similarity measure of the transformed model at the point q, which corresponds to the translation part of the affine transformation, is computed as follows:

(3.191) [image: image]

If the model is generated by edge filtering and the image is preprocessed in the same manner, this similarity measure fulfills the requirements of robustness to occlusion and clutter. If parts of the object are missing in the image, there will be no edges at the corresponding positions of the model in the image, i.e., the direction vectors will have a small length and hence contribute little to the sum. Likewise, if there are clutter edges in the image, there will either be no point in the model at the clutter position or it will have a small length, which means it will contribute little to the sum.

The similarity measure in Eq. (3.191) is not truly invariant to illumination changes, however, because the length of the direction vectors depends on the brightness of the image if edge detection is used to extract the direction vectors. However, if a user specifies a threshold on the similarity measure to determine whether the model is present in the image, a similarity measure with a well-defined range of values is desirable. The following similarity measure achieves this goal:

(3.192) [image: image]

Because of the normalization of the direction vectors, this similarity measure is additionally invariant to arbitrary illumination changes, since all vectors are scaled to a length of 1. What makes this measure robust against occlusion and clutter is the fact that, if a feature is missing, either in the model or in the image, noise will lead to random direction vectors, which, on average, will contribute nothing to the sum.

The similarity measure in Eq. (3.192) will return a high score if all the direction vectors of the model and the image align, i.e., point in the same direction. If edges are used to generate the model and image vectors, this means that the model and image must have the same contrast direction for each edge. Sometimes it is desirable to be able to detect the object even if its contrast is reversed. This is achieved by:

(3.193) [image: image]

In rare circumstances, it might be necessary to ignore even local contrast changes. In this case, the similarity measure can be modified as follows:

(3.194) [image: image]

The normalized similarity measures in Eqs. (3.192)–(3.194) have the property that they return a number smaller than 1 as the score of a potential match. In all cases, a score of 1 indicates a perfect match between the model and the image. Furthermore, the score roughly corresponds to the portion of the model that is visible in the image. For example, if the object is 50% occluded, the score (on average) cannot exceed 0.5. This is a highly desirable property, because it gives the user the means to select an intuitive threshold for when an object should be considered as recognized.

A desirable feature of the above similarity measures in Eqs. (3.192)–(3.194) is that they do not need to be evaluated completely when object recognition is based on a user-defined threshold smin for the similarity measure that a potential match must achieve. Let sj denote the partial sum of the dot products up to the jth element of the model. For the match metric that uses the sum of the normalized dot products, this is

(3.195) [image: image]

Obviously, all the remaining terms of the sum are all ≤ 1. Therefore, the partial score can never achieve the required score smin if sj < smin − 1 + j/n, and hence the evaluation of the sum can be discontinued after the jth element whenever this condition is fulfilled. This criterion speeds up the recognition process considerably.

As mentioned above, to recognize the model, an image pyramid is constructed for the image in which the model is to be found (see Section 3.11.2.1). For each level of the pyramid, the same filtering operation that was used to generate the model, e.g., edge filtering, is applied to the image. This returns a direction vector for each image point. Note that the image is not segmented, i.e., thresholding or other operations are not performed. This results in true robustness to illumination changes.

As discussed in Sections 3.11.2.2 and 3.11.4, to identify potential matches, an exhaustive search is performed for the top level of the pyramid, i.e., all possible poses of the model are used on the top level of the image pyramid to compute the similarity measure via Eqs. (3.192), (3.193), or (3.194). A potential match must have a score larger than smin, and the corresponding score must be a local maximum with respect to neighboring scores. The threshold smin is used to speed up the search by terminating the evaluation of the similarity measure as early as possible. Therefore, this seemingly brute-force strategy actually becomes extremely efficient.

After the potential matches have been identified, they are tracked through the resolution hierarchy until they are found at the lowest level of the image pyramid. Once the object has been recognized on the lowest level of the image pyramid, its pose is extracted with a resolution better than the discretization of the search space with the approach described in Section 3.11.3.

While the pose obtained by the extrapolation algorithm is accurate enough for most applications, in some applications an even higher accuracy is desirable. This can be achieved through a least-squares adjustment of the pose parameters. To achieve a better accuracy than the extrapolation, it is necessary to extract the model points as well as the feature points in the image with subpixel accuracy. Then, the algorithm finds the closest image point for each model point, and then minimizes the sum of the squared distances of the image points to a line defined by their corresponding model point and the corresponding tangent to the model point, i.e., the directions of the model points are taken to be correct and are assumed to describe the direction of the object’s border. If an edge detector is used, the direction vectors of the model are perpendicular to the object boundary, and hence the equation of a line through a model point tangent to the object boundary is given by

(3.196) [image: image]

Let [image: image] denote the matched image points corresponding to the model points pi. Then, the following function is minimized to refine the pose a:

(3.197) [image: image]

The potential corresponding image points in the search image are obtained without thresholding by a non-maximum suppression and are extrapolated to subpixel accuracy. By this, a segmentation of the search image is avoided, which is important to preserve the invariance against arbitrary illumination changes. For each model point, the corresponding image point in the search image is chosen as the potential image point with the smallest Euclidian distance using the pose obtained by the extrapolation to transform the model to the search image. Since the point correspondences may change through the pose refinement, an even higher accuracy can be gained by iterating the correspondence search and pose refinement. Typically, after three iterations the accuracy of the pose no longer improves.

[image: image]
Figure 3.146 Six examples in which the shape-based matching algorithm finds an object (the print on the IC shown in Figure 3.144) despite severe occlusions and clutter.


Figure 3.146 shows six examples in which the shape-based matching algorithm finds the print on the IC shown in Figure 3.144. Note that the object is found despite severe occlusions and clutter.

Extensive tests with shape-based matching have been carried out by Ulrich and Steger (2001, 2002). The results show that shape-based matching provides extremely high recognition rates in the presence of severe occlusion and clutter as well as in the presence of nonlinear illumination changes. Furthermore, accuracies better than 1/30 of a pixel and better than 1/50 degree can be achieved.

The basic principle of the shape-based matching algorithm can be extended in various ways to handle larger classes of deformations and objects. A method to recognize objects that consist of multiple parts that can move with respect to each other by rigid 2D transformations is described in Ulrich et al. (2002); Ulrich (2003); Ulrich et al. (2004); Ulrich and Steger (2007, 2009, 2011, 2013a,b). Further extensions of shape-based matching for 3D object recognition will be introduced in Section 3.12.

From the above discussion, we can see that the basic algorithms for implementing robust template matching are already fairly complex. In reality, however, the complexity additionally resides in the time and effort that needs to be spent in making the algorithms very robust and fast. Additional complexity comes from the fact that, on the one hand, templates with arbitrary ROIs should be possible to exclude undesired parts from the template, while on the other hand, for speed reasons, it should also be possible to specify arbitrarily shaped ROIs for the search space in the search images. Consequently, these algorithms cannot be implemented easily. Therefore, wise machine vision users rely on standard software packages to provide this functionality rather than attempting to implement it themselves.





3.12 3D Object Recognition

In the previous section, we discussed various template matching approaches that can recognize planar (two-dimensional) objects in images. Most of the proposed methods assume that the objects to be recognized appear (approximately) parallel to a known plane in object space. Hence, the 2D object pose in the image often can be described by a similarity transformation. While this assumption is valid for many applications, there are some applications where the object might occur with an unknown tilt. This results in perspective distortions of the object in the image. Typical applications are the grasping of objects by a robot, where the 3D pose of the object must be determined, or the rectification of a perspectively distorted object before performing subsequent inspections. Unfortunately, a straightforward extension of one of the methods described in Section 3.11 to handle perspective distortions would be far too slow for practical applications.

Real objects are always three-dimensional. However, many objects or object parts exhibit only a small depth. For example, the print on a planar side of an object, shallow metal parts, or printed circuit boards can often be assumed to be two-dimensional or planar. One important characteristic of planar objects is that their mapping into the image plane of the camera can be modeled as a 2D transformation. Perspective effects like self-occlusions do not occur. Therefore, from an algorithmic point of view, recognizing planar objects in images is much easier than recognizing general 3D objects. This justifies the use of the highly efficient template matching approaches that were described in Section 3.11. For objects with more distinct 3D structures, however, template matching approaches cannot be used.

The methods described in Section 3.11 expect an image as input data. For 3D object recognition, the benefit of using depth or 3D data is evident. 3D data can be obtained by various well-known 3D reconstruction methods (see Section 3.10) or from 3D image acquisition devices (see Section 2.5).

In this section, we describe methods for 3D object recognition. First, in Section 3.12.1, we will look at methods that recognize planar objects that might be tilted in 3D space, and hence show perspective deformations. Because the basic principle of the proposed methods is general with respect to the deformation type, they can also be extended to handle smooth local object deformations. Therefore, we will summarize these methods under the term deformable matching.

In Section 3.12.2, the basic principle of shape-based matching is used as the foundation for shape-based 3D matching, a sophisticated algorithm that is able to recognize the pose of 3D objects from single images. Compared to the recognition of planar objects, we must deal with additional challenges like view-dependent object appearance, self-occlusions, degenerate views, and a 6D pose space along with high computational costs.
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Figure 3.147 Recognizing planar objects under perspective distortions. The model points are visualized in white. (a) The inner part of a brake disk. (b) The planar top area of an engine part.


Finally, in Section 3.12.3, we will introduce surface-based 3D matching, which exploits the benefits of using 3D data to recognized the 3D pose of an object.


3.12.1 Deformable Matching

We will first discuss an approach for recognizing planar objects under perspective distortions. As mentioned above, a straightforward extension of one of the methods described in the previous sections to handle perspective distortions by simply increasing the dimensionality of the search space would result in impractically long run times. Therefore, we will discuss an efficient extension of shape-based matching (see Section 3.11.5.6). The approach is described in more detail in Hofhauser et al. (2008); Hofhauser and Steger (2010, 2011, 2012, 2013).

Figure 3.147 shows two examples where perspectively distorted planar objects must be recognized. In the following, we will distinguish an uncalibrated and a calibrated case. In the uncalibrated case, the result of the matching is the parameters of a projective 2D transformation (see Section 3.3.1.1). They can be used to rectify the image and subsequently perform actions such as a completeness check or print inspection of the tilted surfaces. In the calibrated case, the 3D pose of the object can be calculated, which can be used in applications such as bin picking.


3.12.1.1 Principle of Deformable Matching

The idea of deformable matching is based on the fact that large deformations become smaller on higher pyramid levels with respect to the pixel size. This effect is illustrated in Figure 3.148 by comparing an image (top row) with its perspectively distorted version (bottom row). The perspective distortions were created by applying a projective transformation to the image. While the differences, measured in pixels, are large in the original image resolution (left column of Figure 3.148), they become smaller on pyramid level 4 (center column), and are hardly observable on pyramid level 6 (right column). This observation allows us to perform an exhaustive search on the top pyramid level with the shape-based matching approach as described in Section 3.11.5.6. Let us assume, for example, that a model of the IC was generated for shape-based matching from the image of Figure 3.148(a) and should be searched in the image of Figure 3.148(d). If the search is started on pyramid level 6, the matching on this level should yield a high score for the correct match despite the perspective distortions.
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Figure 3.148 Effect of perspective distortions in the image pyramid. (a) Original image. (b) and (c) Image pyramid levels 4 and 6 of (a). (d) Image after applying a perspective distortion to (a). (e) and (f) Image pyramid levels 4 and 6 of (d). Note that the effect of the perspective distortion becomes smaller on higher pyramid levels with respect to the pixel size.


After the potential matches have been identified on the top pyramid level, they are tracked through the resolution hierarchy. During the tracking, the deformations of the model become larger on lower pyramid levels, and hence must be determined and taken into account. The idea is to compensate for the deformations by deforming the model accordingly. Stronger deformations are compensated on higher pyramid levels, whilesmaller deformations are compensated on lower pyramid levels.

To robustly determine the deformations on a pyramid level, the model on this level is split into smaller parts. Each part is searched independently in a local neighborhood of the initial pose of the part. The initial pose is obtained from the object pose and the model deformations, both of which were determined on the next higher pyramid level. The reference points of each found part in the image and in the model yield one correspondence. From the set of correspondences, the deformation of the model on the current pyramid level is refined and propagated to the next lower level until the lowest level is reached.

[image: image]
Figure 3.149 Splitting the model into parts. (a) Finding the corresponding image point for a single model point is often ambiguous. Here, for the indicated model point, four points in the image have a matching gradient direction, and hence are potential correspondences. The gradient directions are indicated by black and the correspondences by gray arrows. (b) For model parts (bold gray lines), it is more likely to find a unique correspondence. The gray arrow and the gray frame indicate the image points that correspond to one of the model parts.




3.12.1.2 Model Generation

The splitting of the model into small parts is performed during model generation. It is motivated by the observation that a small model part, on the one hand, is more descriptive than a single model point, and, on the other hand, its shape is hardly affected by model deformations. This enables a robust establishment of corresponding features between the model and the search image, especially in the presence of deformations (see Figure 3.149).

The model parts are determined by spatially clustering the model points on each pyramid level with the k-means clustering algorithm (Shapiro and Stockman, 2001). The resulting assignment of each model point to a cluster is represented by the indicator matrix C. If the model point pi (i = 1, …, n) is contained in cluster j (j = 1, …, k), the corresponding matrix element cij is set to 1, and to 0 otherwise. Typically, k is chosen such that a cluster contains 5 to 10 model points on average. In addition, each cluster, or model part, is assigned a label λ that indicates whether the contained model points form a circular or a linear structure. While circular structures yield position information in two dimensions, linear structures yield information only perpendicular to the line direction. This information is later used to increase the robustness of the matching. The measure

(3.198) [image: image]

indicates whether the model points with associated direction vectors di in cluster j have a dominant gradient direction. For a cluster with a perfect linear structure, λj = 1; for a cluster with a perfect circular structure, λj = 0.



3.12.1.3 Similarity Measure

The similarity measure that is calculated in shape-based matching (see Section 3.11.5.6) is also the basis for deformable matching. The key idea is to assume a global model transformation with few degrees of freedom and to additionally allow model parts to locally deviate from the global transformation. The global transformation might be, for example, a similarity transformation. This ensures that the recognition is still fast enough for practical applications. The local deviations of the model parts from the global similarity transformation cover the remaining degrees of freedom of, for example, a projective 2D transformation in the case of perspective distortions of planar objects. Because of the clustering, the individual model parts only have a small spatial extent. Therefore, it is sufficient to model the deviations by a local translation. Following this idea, the similarity measure s is the sum of contributions sj of all model parts

(3.199) [image: image]

with

(3.200) [image: image]

where e are the direction vectors in the image (see Eq. (3.192)) and T is the set of local translations that are examined. For model parts that, according to Eq. (3.198), have a circular structure, T covers translations within a local neighborhood of 5 × 5 pixels. For model parts with a linear structure, T covers translations within ±2 pixels in the direction of λj. For each model part, the translation that yields the highest score is selected. Tests where T additionally covers small local rotations showed no significant improvements. Therefore, for speed reasons we only examine translations.

The similarity measure in Eq. (3.200) assumes that the edges in the model and in the image have the same contrast direction. As for shape-based matching, the similarity measure easily can be extended to cases where the contrast might be reversed globally or locally. This is achieved by adapting the similarity measure in a manner analogous to Eqs. (3.193) and (3.194). Therefore, deformable matching inherits the properties of shape-based matching, i.e., robustness to occlusions, clutter, and illumination changes. In contrast to shape-based matching, however, the existence of model parts allows us to introduce another similarity measure: it permits a global contrast reversal of each model part by replacing Eq. (3.200) with

(3.201) [image: image]

On the one hand, this measure is more distinctive, and hence less sensitive to noise, than the measure that is invariant to local contrast reversals because it requires that nearby model points have a consistent contrast direction. On the other hand, it is more tolerant than the measure that is invariant to a global contrast reversal because it allows contrast reversals between different model parts. Therefore, it should be preferred when metallic or plastic parts with specular reflections must be recognized, for example.



3.12.1.4 Hierarchical Search

A coarse-to-fine search within an image pyramid is applied, similar to that of shape-based matching described in Section 3.11.2.2. First, at the top pyramid level, the score is evaluated for all global model transformations of the chosen transformation class, e.g., the class of similarity transformations. Because of potential model deformations, the threshold that is applied to the score on the top pyramid level to identify match candidates should be slightly lowered in comparison to the recognition of non-deformable objects. Although this results in more candidates to be tracked through the pyramid, it also increases the robustness.

On lower pyramid levels, the deformations that were determined on the next higher level are used to initialize a deformed model on the current pyramid level. For this, the model points on the current level are transformed according to the deformation before the refinement is performed: From the deformation of the candidate on the next higher level we know the relative local translation of each model part that yielded the maximum score (e.g., in Eq. (3.200)). The original and the translated cluster centers are used as point correspondences to estimate the eight parameters of a projective 2D transformation (see Section 3.3.1.1). Then, the projective transformation is applied to the model points on the current level. It is assumed that the transformed model represents the true appearance of the object better. Hence, it is used for refining the candidate on the current pyramid level. This process assumes that the magnitudes of any still existing inaccuracies of the projective deformation lie in the range of the local neighborhood in which the local search is performed, i.e., in the range of 5 pixels in our case. Therefore, strong deformations of the object are already compensated on higher pyramid levels while on lower pyramid levels, only small adaptations of the model geometry are possible.



3.12.1.5 Least-Squares Pose Refinement

After the candidates have been tracked to the lowest level, a least-squares pose refinement is applied to obtain an even higher accuracy, similar to the approach described in Section 3.11.5.6. However, instead of an affine transformation, a projective transformation must be estimated in the case of perspective distortions. There are two important differences to the estimation of the projective transformation during tracking that is described in the previous section. First, to obtain the highest possible accuracy, correspondences are not simply determined for the cluster centers but for all model points. Second, to be independent of the point sampling, the distances between the points in the image and the tangents of the model points are minimized (see Eq. (3.197)) instead of minimizing point-to-point distances that are used during the tracking.



3.12.1.6 3D Pose Estimation

Up to now, we have discussed the uncalibrated case of deformable matching. In many machine vision applications, it is sufficient to know the projective transformation that maps the model to the search image. However, in some applications, e.g., bin picking, the 3D pose of the object with respect to the camera is required. To compute the 3D pose, the interior orientation of the camera must be known, i.e., the camera must be calibrated as described in Section 3.9.4. Furthermore, the model must be known in world coordinates. A detailed description of the approach can be found in Hofhauser et al. (2009b); Hofhauser and Steger (2010, 2011, 2012, 2013).

[image: image]
Figure 3.150 Transforming a model, which is defined by the model ROI in the model image, to world coordinates. To compute the world coordinates Pi of a model point pi, which was extracted in the model image, the pose of the model plane with respect to the CCS (oc, xc, yc, zc) must be known. The plane is defined by placing a planar calibration target, which defines the WCS (ow, xw, yw, zw), next to the model. The world coordinates are obtained by intersecting the optical ray through pi with the model plane. The coordinates are typically represented relative to a model reference point P0, which is defined in the model image as p0 and also projected to the model plane. It defines the origin of the MCS (om, xm, ym, zm)┬. The xy-plane of the MCS is coplanar with the xy-plane of the WCS. The orientation of the WCS within that plane can be chosen arbitrarily. Thus, all model points have a z component of 0, i.e., Pi = (xi, yi, 0)┬. Finally, the 3D object pose is defined as the rigid 3D transformation from the MCS to the CCS.


In some cases, the model is created based on a computer-aided design (CAD) file that directly provides the metric information of the object. Otherwise, the metric properties of the model can be determined by acquiring an image of the object next to a scale or a calibration target. Figure 3.150 illustrates the transformation of a model of a planar object to world coordinates. The process is based on the computation of world coordinates from a single image, which was described in Section 3.9.5. The final model coordinates are given in the model coordinate system (MCS). The 3D object pose that is returned by the matching describes the rigid 3D transformation from the MCS to the CCS.

There are two analytic methods to determine the 3D object pose. The first is to decompose the projective transformation that was obtained from the least-squares pose refinement of Section 3.12.1.5 into its 3D translation and 3D rotation components (Faugeras, 1993; Zhang, 2000). The second is to directly estimate the 3D pose from point correspondences with a non-iterative algorithm (Moreno-Noguer et al., 2007). However, practical evaluations have shown that the highest accuracy is obtained by minimizing the geometric distances between the points in the image and the tangents of the projected model points within an iterative nonlinear optimization. Essentially, the optimization is comparable to camera calibration, which was described in Section 3.9.4.2. However, instead of the centers of the calibration marks, the model points are used as correspondences. The optimization can be initialized with the result of one of the two analytic methods, for example.

Figure 3.151 shows an example application where the 3D pose of a car door is determined by using the described approach. Note that the model is created only from a small planar part of the car door because the entire door has a distinct 3D structure, and hence would violate the planarity assumption.

[image: image]
Figure 3.151 Determining the 3D pose of a car door. (a) Model image. The model is created only from the image region that contains a planar part of the door (white outline). (b) Calibration target defining the model plane. (c) Model points (white), which were transformed to world coordinates, and the MCS (white vectors), both projected into the model image. (d) Found instance of the model visualized by the projected model points and the MCS.




3.12.1.7 Recognition of Locally Deformed Objects

In some applications, arbitrarily deformed objects must be recognized, like the print on a T-shirt or on a foil package. Therefore, in contrast to the previous sections, where the distortions were modeled by a projective 2D transformation or a 3D pose, for deformed objects we must cope with arbitrary local object deformations. The approach is described in detail in Hofhauser et al. (2009a); Hofhauser and Steger (2010, 2011, 2012, 2013).

When recognizing deformable objects, one essential question is how to model the object deformations. The chosen deformation model must be general with regard to the object and deformation type because in most applications, the physical deformation properties of the objects are unknown. Furthermore, the determination of the deformations must be robust to ambiguous matches of model parts. In particular, the position of linear model parts only can be determined perpendicular to their linear extent. Also, the effect of false correspondences, i.e., outliers, should be dampened by the deformation model. Finally, the deformation model should be able to allow the interpolation and extrapolation of deformation information. This is important during the tracking of the candidates through the pyramid. To refine a candidate on the current pyramid level, the model of the current level must be deformed in accordance with the deformation determined on the next higher level (see Section 3.12.1.4). Because of the properties of image pyramids (see Section 3.11.2.1), the model on the current pyramid level might contain points in areas where its lower-resolution version on the next higher level did not contain any points. Therefore, in these areas, no deformation information is explicitly available. Instead, it must be calculated from neighboring deformation information by interpolation or extrapolation. Furthermore, as in the case of perspective distortions, it is often desirable to rectify the image after the matching in order to eliminate the deformations. For the rectification, deformation information for each pixel is necessary, which requires interpolation as well as extrapolation.

The method of recognizing locally deformed objects is summarized in Figure 3.152. The local translation of each cluster that yielded the maximum score is obtained from Eq. (3.199). Each model point within the cluster adopts the local translation of the cluster. Thus, the local translation represents the local deformation in the row and column directions at each model point. The deformation values are visualized in Figures 3.152(c) and (d), respectively. In the next step, a dense deformation field is computed, i.e., two images that contain the deformations in the row and column directions at each pixel. For this, the row and column deformations at the model points are propagated to all image pixels by applying a harmonic interpolation (Aubert and Kornprobst, 2006). The harmonic interpolation assumes that the interpolated values satisfy the Laplacian equation ∆f = 0 (see Eq. (3.111)), with f being the deformations in row and column directions, respectively. This ensures a smooth interpolation result.

Because of local mismatches, the deformations at the model points might contain outliers. Outliers might result in locally contradicting deformations, which in turn could introduce undesirable discontinuities or even crossings in the interpolated deformations. Fortunately, the use of the harmonic interpolation model prevents such discontinuities and crossings. The effect of outliers is further reduced by applying a median filter to the deformation images. Finally, by applying a smoothing filter to the deformation images, noise and high-frequency deformations are eliminated. The final deformation images are shown in Figure 3.152(e) and (f).

[image: image]
Figure 3.152 Recognizing locally deformed objects. (a) Model points. (b) Search image. (c) and (d) Local deformations at the model points in the search image in the row and column directions (a medium gray value indicates no deformations, dark values negative, and bright values positive deformations). (e) and (f) Full deformation images in the row and column directions after applying harmonic interpolation to (c) and (d). (g)–(i) Recognition results. (g) Search image with deformed model points overlaid. (h) Deformation field visualized as a deformed regular grid. (i) Rectified search image.


The harmonic deformation model fulfills the requirements stated above and can be computed efficiently. More complex deformation models like the thin-plate splines model of Bookstein (1989), for example, are often too slow or do not fulfill all the requirements.

Hierarchical search is performed as described in Section 3.12.1.4. The only difference is that instead of computing a projective transformation for each candidate on the lower pyramid levels, the two deformation images are computed. The model points on the current pyramid level are deformed according to the deformation images. Then, the deformed model points are used to refine the pose and the deformation of the candidate on the current level.

Figure 3.152(g) shows the model points of the deformed model found. For visualization purposes, Figure 3.152(h) additionally shows the model deformations as a deformed regular grid. Finally, the search image can be rectified by applying the inverse deformation with the techniques described in Section 3.3.2.2.

In Figure 3.153, an example application is shown where a deformed gasket must be inspected for defects. The defect detection is performed by comparing the gray values of the gasket with the gray values of a perfect reference image (see Section 3.4.1.3). Because of the local deformations of the gasket, the search image must be rectified onto the reference image to eliminate the deformations before performing the comparison.

[image: image]
Figure 3.153 Recognition of a locally deformable gasket. (a) Model points. (b) Search image, recognition result and deformation field. (c) Detected defects (marked by a white ellipse).


[image: image]
Figure 3.154 Recognition of locally deformable foil packages. (a) Model image and model points. (b) Search image. (c) Recognition results and deformation fields.


In the example shown in Figure 3.154, locally deformable foil packages must be recognized. Possible applications are print inspection or OCR in the rectified image or order picking in a warehouse.




3.12.2 Shape-Based 3D Matching

After having discussed several approaches to finding planar objects robustly in Sections 3.11.5 and 3.12.1, in this section we will discuss how to recognize 3D objects in a single image. The approach we will describe is an extension of shape-based matching, which was introduced in Section 3.11.5.6 and is described in more detail in Wiedemann et al. (2008); Ulrich et al. (2009, 2012); Wiedemann et al. (2009, 2011, 2013a,b).

Determining the pose of 3D objects is important in many industrial applications like bin picking or 3D inspection tasks. In particular, the increasing demand for autonomous robots in general and for vision-guided robots in particular calls for versatile and robust 3D object recognition methods. In many applications, only a single (monocular) image is available for the recognition because a setup of two or more cameras is either too expensive, too cumbersome to calibrate, or simply too bulky. And even though 3D image acquisition devices are becoming increasingly important (see Section 2.5), conventional cameras are still much more widespread in industrial applications. Furthermore, the objects that must be recognized in industrial applications often have an untextured metallic or plastic surface like the two metallic clamps shown in Figure 3.155(a). Consequently, the only significant information that is available for recognition are the geometry edges of the object in the image. For a geometry edge, its two adjacent faces have a different normal vector. For many objects in industrial applications, a CAD model that contains the object’s geometry edges is available. Figure 3.155(b) shows a CAD model of the metallic clamps of Figure 3.155(a). Note that in addition to the geometry edges, the model also contains edges that result from the triangulation of the surface. Therefore, it is natural to match the geometry edges of the CAD model with the image edges for object recognition. With shape-based matching, there is already a robust edge-based template matching approach available that is able to determine the 2D pose of a planar object in an image. In the following sections, we will discuss how to extend shape-based matching to the recognition of 3D objects in monocular images and to determining the 3D object pose.

[image: image]
Figure 3.155 (a) Image of two metallic clamps. Object instances that are found by shape-based 3D matching are displayed as white contours. (b) CAD model from which a model for the shape-based 3D matching is created. In (a), model edges between coplanar surfaces are suppressed for visualization purposes.



3.12.2.1 View-Based Approach

Shape-based 3D matching uses a view-based recognition approach: 2D views of the object are precomputed and searched in the image using template matching. To compute the 3D object pose, the interior orientation of the camera must be known, i.e., the camera must be calibrated as described in Section 3.9.4. For the highest accuracy it is assumed that lens distortions have been eliminated from the images in advance (see Sections 3.9.1.3).

[image: image]
Figure 3.156 (a) View sphere. Virtual cameras, which are visualized by small black pyramids, look at the object in the center of the sphere. (c) One example view of the object. It is obtained by projecting the object into the image plane of the virtual camera that is marked by the circle in (a).


One major problem of these approaches is the six degrees of freedom of the object pose, which lead to an enormous number of 2D views that would have to be compared to the image. Therefore, most view-based approaches reduce the run time complexity by using a virtual view sphere (see Figure 3.156). The object is assumed to lie at the center of the sphere, and virtual cameras looking at the center are placed on the sphere’s surface. To obtain the views, the object is projected into the image plane of each virtual camera. Thus, for each virtual camera, a template image is obtained, which is used to search the view in the search image using a template matching approach.

For the perspective projection of the object into the image plane of a virtual camera, the object parts that are visible from the current virtual camera must be determined. All parts that are invisible due to self occlusions must be excluded from the projection. This visibility calculation is computationally expensive. One advantage of the view-based approach is that the projection of the CAD model into the image plane, and hence the visibility calculation, can be performed offline during model generation, which speeds up object recognition.

If the application requires that the distance between camera and object is allowed to vary, typically several view spheres with different radii are generated. Hence, virtual cameras are created within a spherical shell in this case.

As a first result of the view-based approach, the 3D pose (α, β, γ, tx, ty, tz) (see Section 3.9.1.1) of the virtual camera whose view yielded the highest similarity with the search image is obtained. As a second result, the 2D matching pose of this view in the search image is obtained, which is returned by shape-based matching. The matching pose is represented by the parameters of a similarity transformation (see Section 3.11), i.e., (r, c, ϕ, s), where r and c are the row and column position of the object in the image, ϕ is its rotation in the image plane, and s is its uniform scaling. Instead of returning only the result with the highest similarity, the 3D and 2D poses of all matches that yield a similarity measure above a user-given threshold are obtained. As we will see below, the 3D object pose can be reconstructed from the 3D pose of the virtual camera and the 2D matching pose.

When applying the described view-based approach, the 3D object pose is decomposed into a 3D pose of the virtual camera and the 2D matching pose. What is the advantage of this decomposition? The six degrees of freedom of the 3D object pose are split into two degrees of freedom of the position of the virtual camera on the surface of the sphere, three degrees of freedom of the 2D matching parameters r, c, and ϕ, and one degree of freedom for the distance between the camera and the object. The latter is jointly modeled by the radius of the view sphere and the 2D matching parameter s. Splitting the object–camera distance is justified by the observation that a larger distance change results in a changed perspective, which must be represented by an additional virtual camera. Note that the changed perspective also requires performing the expensive visibility calculation. In contrast, a smaller distance change can be approximated by a uniform scaling of the projected object in the image plane. Consequently, a computationally expensive perspective projection only needs to be performed for each of the resulting virtual cameras, i.e., only for two and a half degrees of freedom, in order to obtain the views. Furthermore, the features for the shape-based matching only need to be extracted for each of these views. The remaining three and a half degrees of freedom are efficiently covered by the shape-based matching, where the extracted features of each view are translated, rotated, and scaled in 2D only.

After the matching, the 3D object pose must be reconstructed from the 3D pose of the virtual camera and the 2D matching pose. Let Hv be the homogenous transformation matrix that represents the 3D pose of the virtual camera. Hence, Hv transforms points from the MCS (see Figure 3.157) into the CCS. Now, Hv must be adapted in accordance with the 2D matching parameters r, c, φ, and s. First, the 2D scaling s is taken into account by assuming that the scaling approximately corresponds to an inverse scaling of the object–camera distance. Therefore, an isotropic scaling matrix S with a scaling factor of 1/s is applied. Then, the 2D rotation is applied, which corresponds to a 3D rotation Rz of the camera about its z axis. Finally, the position (r, c)┬ is interpreted as a 3D rotation of the camera about its x and y axis by the angle α and β, respectively (see (Ulrich et al., 2012) for the calculation of α and β). Then, the homogeneous matrix Ho that represents the 3D object pose finally is given by

(3.202) [image: image]

There are some drawbacks of view-based approaches that limit their application in practice. Despite the use of the view sphere, typically several thousands of views are still necessary to ensure robust recognition. Searching several thousands of templates is much too slow for practical applications. Furthermore, the achievable accuracy depends on the density of the views. Unfortunately, the views cannot be chosen to be arbitrarily dense for run time reasons. Finally, the use of a view sphere assumes that the object lies at the center of the sphere. Hence, it requires that the object lies in the center of the image, too. Objects that occur in the image corners are perspectively distorted in comparison to the centered view, which might result in reduced robustness of the recognition. In the following sections, we will describe how shape-based 3D matching overcomes the above drawbacks.

[image: image]
Figure 3.157 Restricting the range of poses by using spherical coordinates. The object, which defines the model coordinate system (om, xm, ym, zm)┬, lies in the center of the view sphere, which defines the spherical coordinate system. The position of the camera (oc, xc, yc, zc)┬ can be described by the spherical coordinates longitude λ, latitude φ, and distance d. The pose range, which is visualized by bold lines, is determined by specifying minimum and maximum values for, λ, φ, and d.




3.12.2.2 Restricting the Pose Range

In most industrial applications, the objects to be recognized appear only within a limited range in front of the camera. In some applications, for example, the camera is mounted above a conveyer belt and the objects are always upright on the belt. Obviously, the run time of the recognition, which depends linearly on the number of views, could be reduced by restricting the pose range for which the object is searched. The view sphere allows an intuitive determination of this pose range. In Figure 3.157, an example pose range is visualized. The object in the center of the sphere defines the Cartesian MCS. It is also the origin of a spherical coordinate system with the xz-plane being the equatorial plane and the y axis pointing to the south pole. In the spherical coordinate system, the position of a virtual camera, which is represented by the CCS, is described by the spherical coordinates longitude λ, latitude φ, and distance d. Then, the pose range, in which virtual cameras are generated, can be easily defined by specifying intervals for the three parameters. Figure 3.157 shows the resulting pose range as a section of a spherical shell.



3.12.2.3 Hierarchical Model

In addition to restricting the pose range, the number of virtual cameras can be reduced further by using a hierarchical model. After the pose range is specified, it must be decided how many virtual cameras should be generated within this range to obtain the best tradeoff between speed and robustness. In general, the speed of the recognition can be increased by creating the model on multiple levels of an image pyramid (see Section 3.11.2.1).

In the first step, an over-sampling is applied, i.e., virtual cameras are generated within the pose range very densely. The virtual cameras are placed such that after projecting the model edges into the image planes of two neighboring cameras, the projected edges differ by at most one pixel. This ensures that shape-based matching will be able to find the object even if it is viewed from a camera that lies in the center between two sampled virtual cameras.

In the second step, the similarity between the views of all pairs of neighboring virtual cameras is computed. For this, the same similarity measure is applied to the pair of views that is used during object recognition, i.e., one of the similarity measures of shape-based matching of Eqs. (3.192), (3.193), (3.194), or (3.199). When applying the similarity measure of Eq. (3.199), the model is split into model parts of small connected groups of model points. Because of the 3D geometry of the object and the often unknown illumination, it cannot be predicted whether the direction vectors in the model and in the search image point in the same or in opposite directions. Therefore, the similarity measure that is invariant to local contrast reversals (Eq. (3.194)) or to global contrast reversals of model parts (Eq. (3.199)) should be preferred for the shape-based 3D matching. Neighboring virtual cameras with a similarity that exceeds a certain threshold, e.g., 0.9, are successively merged into a single virtual camera. Only the virtual cameras that remain after the merging process are included in the matching model and used to create views for template matching.

Like shape-based matching (see Section 3.11.2.2), shape-based 3D matching uses image pyramids to speed up the search. Consequently, the model must be generated on multiple pyramid levels. On higher pyramid levels, a change in perspective has a smaller effect in the image (measured in pixels). This is similar to the effect illustrated in Figure 3.148 of Section 3.12.1.1. Therefore, the virtual cameras can be thinned out further on higher pyramid levels. Starting with the virtual cameras from the next lower pyramid level, the similarity computation between the views of neighboring cameras is continued on the current level. Note that the views in which the similarity is computed now have a lower resolution in accordance with the resolution of the current pyramid level. Again, the virtual cameras are merged if their similarity exceeds the threshold. Figure 3.158 shows the resulting virtual cameras of the final hierarchical model, which contains four pyramid levels in this example.

The resulting hierarchy of virtual cameras can be represented as a set of trees, i.e., a forest (see Figure 3.159). For each virtual camera, a view is available that is used for matching. Therefore, the terms “virtual camera” and “view” are used interchangeably in the following. Root views are searched exhaustively using shape-based matching, i.e., they are searched in the full unrestricted 2D matching pose range: The parameters r and c vary over the pixels of the domain of the search image, ϕ varies over the full range of orientations, i.e., [0, 2π), and s varies over the scale range of the respective view. Matches with a similarity that exceeds a user-specified threshold are refined on the next lower pyramid level. For the refinement, the child views are selected from the tree and searched within a small restricted pose range, where the restriction applies to all four matching parameters r, c, ϕ, and s. The use of the hierarchical model combines a high accuracy with a fast computation because not all views on the lowest pyramid level need to be searched. Typical run times of shape-based 3D matching are in the range of a few 100 milliseconds.

[image: image]
Figure 3.158 Hierarchical model. The virtual cameras on the four pyramid levels are visualized by small gray pyramids within the pose range, which is indicated by bold black lines. The gray areas indicate the set of virtual cameras that were merged to obtain a single virtual camera on the top pyramid level. On the top level, only four virtual cameras remain in this example.


[image: image]
Figure 3.159 Object recognition using the hierarchical model, which is represented as a set of trees. The nodes in the trees, which are visualized by triangles, represent the views on the four pyramid levels. The edges in the trees indicate which views on a lower pyramid level were merged during the model generation to a single view on the current level. Triangles that are filled in black indicate views that had to be searched in the full 2D matching pose range. Triangles that are filled in gray indicate views that only needed to be searched within a small restricted 2D matching pose range to refine the pose. Squares indicate views for which the similarity measure exceeded a user-specified threshold. Squares on the lowest pyramid level indicate found matches.




3.12.2.4 2D Model Generation

Up to now, we have not answered the question of how the shape-based matching features are derived from the views of the 3D CAD model. A possible way would be to project the edges of the CAD model into the image plane of the virtual camera and sample them according to the pixel grid.

One drawback of this method is that features that are not visible in the image would be included in the model. For example, the edges between coplanar surfaces in the CAD model of Figure 3.155(b) are not visible in the image of Figure 3.155(a). Furthermore, very fine structures in the CAD model might not be visible in the image because their size is too small with respect to the image resolution. The invisible structures would decrease the similarity measure because they would have the same effect as partial object occlusions. Consequently, the robustness of the matching would decrease.

Another drawback of this method is that it ignores the smoothing effects that are introduced when using an image pyramid. Some of the effects are illustrated in Section 3.11.2.1. For example, objects might change their shape, or neighboring objects might merge into a single object on higher pyramid levels. Therefore, features that were derived directly from the CAD model might not match the image features on higher pyramid levels well. This would further decrease the robustness of the matching.

Both problems can be solved by projecting the CAD model for each view into a three-channel model image. The three channels of the model image contain the three elements of the unit normal vector of the faces of the projected CAD model. Then, an image pyramid can be computed from the model image and features can be extracted from the respective pyramid level, similar to the approach described in Section 3.11.5.6. Figures 3.160(a)–(c) show the three channels of the model image of a selected view.

Ulrich et al. (2012) showed that the multi-channel edge amplitude in the three-channel image is related to the angle in 3D space between the normal vectors of the two neighboring faces of the CAD model. The edge amplitude in a multi-channel image is obtained by computing the eigenvalues of the multi-channel edge tensor C (Di Zenzo, 1986; Steger, 2000):

[image: image]
Figure 3.160 (a)–(c) The three channels of the model image representing the x (a), y (b), and z (c) component of the unit normal vector of the model surface. (b)–(d) Edges extracted by applying a threshold to the multi-channel edge amplitude of the model image, which corresponds to a minimum face angle of 5° (d), 30° (e), and 50° (f).


(3.203) [image: image]

For the three-channel image, the matrix elements contain the derivatives of the x, y, and z components of the normal vector in the row and column directions:
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(3.205) [image: image]
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The edge amplitude A is the square root of the largest eigenvalue of C. It is related to the angle δ between the two neighboring faces by the following simple equation (see Ulrich et al. (2012)):

(3.207) [image: image]

By extracting the features for the shape-based matching from the image pyramid of the three-channel model image, similar smoothing effects are introduced in the model as in the pyramid of the search image. Consequently, the similarity measure also will return high values for correct matches on higher pyramid levels. Furthermore, by restricting the feature extraction to points with an edge amplitude that exceeds a certain threshold, invisible edges with a small face angle easily can be suppressed in the model. Figures 3.160(d)–(f) show the resulting model points when requiring a minimum face angle of 5° (edges between coplanar faces are suppressed), 30° (edges that approximate the cylinders are suppressed), and 50° (the two 45° edges are suppressed). The corresponding three threshold values for the edge amplitude were computed via Eq. (3.207). For most applications, a minimum face angle of 30° works well. Excluding invisible features from the model also increases the similarity measure, and hence the robustness of the recognition.



3.12.2.5 Perspective Correction

View-based approaches that support cameras with a perspective lens assume that the objects appear in the image center. This is because the appearance of the object changes depending on the object position in the image. The effect is illustrated in Figure 3.161. As described above, the 2D models are created by using virtual cameras that look at the center of the object (black projection in the image center of Figure 3.161). In the search image, the object may appear at arbitrary positions (gray projections in the image corners of Figure 3.161, for example). Note that all projections represent the same view of the object, i.e., the position of the camera with respect to the object is the same. Nevertheless, the appearance of the object changes considerably. This effect is larger for lenses with a smaller focal length.

[image: image]
Figure 3.161 The appearance of an imaged 3D object depends on its image location. The projection of the object at the centered location (black) and that at the two off-center locations (gray) are related by a 2D projective transformation. Note that all projections represent the same view.


Changing the object position in the image can be accomplished by rotating the camera about its optical center, or, to be more specific, by rotating the camera about its x and y axes. Consequently, all projections of the same view are related by a 2D projective transformation (Hartley and Zisserman, 2003). Therefore, a projective transformation is applied to the features of the 2D model of the respective view before matching them with the image feature. The transformation parameters of the projective transformation are computed from the approximate position of the match candidate on the next higher pyramid level (Ulrich et al., 2012). This ensures a higher value of the similarity measure for correct matches, and hence also increases the robustness of the recognition.

On the top pyramid level, knowledge from a previous level for computing the projective transformation is unavailable. Furthermore, computing an individual projective transformation at each image position would be too expensive. Fortunately, on the top pyramid level the projective distortion of the imaged object with respect to the model is small. This is also similar to the effect illustrated in Figure 3.148 of Section 3.12.1.1. Nevertheless, the distortion can be further reduced by applying a spherical projection of the top pyramid level of both the model and the search image and performing the matching in the spherical projection. The idea is that when rotating the camera about its optical center, the projection of a 3D object onto the surface of a sphere does not result in a projective transformation but in a translation only. For details, the interested reader is referred to Ulrich et al. (2012).



3.12.2.6 Least-Squares Pose Refinement

The accuracy of the resulting 3D object pose Ho, which is obtained from Eq. (3.202), is limited by the density of the sampled views and the approximation of the object–camera distance by the 2D matching parameter s (see Section 3.12.2.1). In practical applications, a higher accuracy is often desirable. Therefore, Ho is used to provide initial values for a nonlinear least-squares optimization. For each projected model edge point li, a corresponding edge point pi in the image is searched. The optimized object pose Hopt is obtained by minimizing the squared distances d of the n image edge points to their corresponding projected model edges:

(3.208) [image: image]
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Figure 3.162 Iterative least-squares pose refinement. (a) Search image. (b)–(e) Object poses visualized by the projected model edges (black). For better visualization, the two square image parts indicated in (a) are displayed zoomed. (b) Initial pose. (c) Pose after one iteration. (d) Pose after three iterations. (e) Final pose after convergence.


The function π(l, H) represents the transformation of the model edge l from the MCS to the CCS, which is represented by the pose H, and its subsequent projection into the image. New correspondences may arise from the optimized pose. Therefore, the search for correspondences and the optimization are iterated until the optimized pose no longer changes. Figure 3.162 visualizes the object poses that are obtained after different numbers of iterations.

The accuracy of the object pose depends on several factors, e.g., the sharpness of the object edges (round edges yield worse accuracy), the complexity of the object (the risk of falsely recognizing very simple objects in cluttered scenes is higher), and the accuracy of the CAD model. Practical evaluations have shown that the accuracy of the object position is in the order of 0.3% of the object–camera distance, and the accuracy of the object rotation is in the order of 0.5° (Ulrich et al., 2012).



3.12.2.7 Examples

Figure 3.163 shows some example applications in which shape-based 3D matching is used to recognize objects in an image. In Figure 3.163(a), two instances of the metallic clamp of Figure 3.155(b) are recognized. Note the robustness of the recognition to different surface finishes of the object (polished and brushed). Figure 3.163(b) shows another metallic object with a highly reflective surface. Because shape-based 3D matching is based on shape-based matching, it is also robust to challenging lighting conditions (see Figure 3.163(c)) as well as clutter and partial object occlusions (see Figure 3.163(d)). Furthermore, it is suited to bin picking applications as shown in Figure 3.163(e) and (f).

[image: image]
Figure 3.163 Examples for recognizing 3D objects in an image by using shape-based 3D matching. Found object instances are visualized by the projected model edges (white). (a) Metallic clamps. (b) Metallic clamp with a highly reflective surface. (c) Plastic fuse. (d) Metallic bracket. (e) Metallic cylinders. (f) Plastic tile spacers.





3.12.3 Surface-Based 3D Matching

In this section, we introduce methods for recognizing 3D objects in 3D data and for determining their 3D pose. The methods exploit the benefits of the additional dimension of 3D data compared to image data. The 3D data either can be obtained from 3D reconstruction methods (see Section 3.10) or from 3D image acquisition devices (see Section 2.5). Because of the multitude of possible sources for 3D data, there is a broad range of data characteristics of 3D data. In general, the differences in the characteristics of 3D data are much more pronounced than those of image data, and hence pose a greater challenge for robust generic algorithms. Some examples are different noise characteristics, different numbers of measurement outliers, different data representations (e.g., depth images, xyz-images, point clouds), different behaviors at depth discontinuities, different coverages of the scene (depending, for example, on the texture, the illumination, or the reflection properties of the objects), and different resolutions.

In the following, we will describe surface-based 3D matching, an algorithm that is able to recognize rigid 3D objects in 3D data and determine their 3D pose (Drost et al., 2010; Drost and Ulrich, 2012, 2014, 2015a,b). It is robust to object occlusions and to clutter and noise in the 3D data. Subsequently, we will briefly describe two extensions of surface-based 3D matching: a method to find deformable 3D objects in 3D data (Drost and Ilic, 2015) and an extension to find rigid 3D objects in multimodal data, i.e., combining 3D and image data for recognition (Drost and Ilic, 2012; Drost and Ulrich, 2015c,d). For more details about surface-based 3D matching and its extensions, the interested reader is referred to Drost (2017).

[image: image]
Figure 3.164 Recognizing pipe joints in 3D scene data by using surface-based 3D matching. The 3D scene data is obtained by using stereo reconstruction. (a) Image of the first camera of the stereo setup. (b) CAD model of the pipe joint from which a model for the surface-based 3D matching is created. (c) Reconstructed 3D data of the search scene. (d) Object instances that are found by the surface-based 3D matching are visualized by projecting the edges of the CAD model into the image of the first camera of the stereo setup.


Figure 3.164 shows an example application in which pipe joints must be recognized in 3D data. The 3D data is obtained by using stereo reconstruction (see Section 3.10.1). Figure 3.164(a) shows an image from the first camera of the stereo setup. For the matching, a model of the object must be provided. In this case, a CAD model of the pipe joint is available (see Figure 3.164(b)). Alternatively, the reconstructed 3D data of the object can be provided. The result of the stereo reconstruction of the search scene in which the objects must be recognized is shown in Figure 3.164(c). The found object instances are visualized in Figure 3.164(d).


3.12.3.1 Global Model Description

For surface-based 3D matching, the object is modeled as a set of point pairs. A point pair consists of two points on the surface of the object and their two corresponding surface normal vectors. Figure 3.165 shows one example point pair m1 and m2 and their normal vectors n1 and n2. Let d be the vector m2 − m1. The geometry of the point pair is described by the point pair feature F(m1, m2) = (F1, F2, F3, F4) with


	• the distance F1 = ║d║2 between the points m1 and m2,

	• the two angles F2 and F3 of each normal vector n1 and n2 with the vector d, and

	• the angle F4 between both normal vectors.



[image: image]
Figure 3.165 (a) Point pair feature F = (F1, F2, F3, F4) of two points m1 and m2 on the object surface. The tangent planes (visualized by gray circles) at the points define the corresponding normal vectors n1 and n2. F1 is the distance between the two points. F2 and F3 are the angles of each normal vector with the vector d. F4 is the angle between both normal vectors. (b) Sampled model. For each point pair, the point pair feature of (a) is computed.


To create a global model description, the point pair feature is computed for each point pair on the object surface. A high robustness to noise and errors in the 3D data is obtained by grouping similar point pair features. This is achieved by discretizing the four elements of F, resulting in [image: image]. Practical evaluations have shown that suitable values are δ1 = D/20 and δa = 360°/30 = 12°, where D is the diameter of the model.

The global model description can either be created from a CAD model of the object, from 3D data obtained from a 3D image acquisition device (see Section 2.5), or from a 3D reconstruction of the object (see Section 3.10). To be able to create a global model description from a CAD model and to be independent of the resolution of the 3D data, the surface of the object is uniformly sampled to obtain a fixed number of points. The number of sampled points is an important parameter of the approach because it balances, on the one hand, memory consumption of the model and computation time of the recognition and, on the other hand, the robustness of the recognition. Values that are typically chosen in practice lie in the range between 500 and 3000 points. Figure 3.165(b) shows the sampled model points of the CAD model of Figure 3.164(b).

For triangulated input data, the normal vectors can be directly obtained from the triangulation. If no triangulation is available, the normal vectors must be derived from the 3D points. One way to compute the normal vector of a 3D point is to fit a plane to the points in its local neighborhood. The normal vector of the fitted plane is used as the normal vector of the point. Additionally, the orientation of the normal (inward or outward) must be determined, for example, by orienting the normal vectors towards the sensor. Finally, for all pairs of sampled points, a point pair feature is computed as described above.

[image: image]
Figure 3.166 Point pair features are stored in a hash table. (a) Three example model point pairs with similar point pair features, i.e., Fd(m1, m2) = Fd(m3, m4) = Fd(m5, m6) = F. (b) Hash table. Because F is used as the key to the hash table, the three point pairs shown in (a) are stored in the same slot A in the hash table.


During the recognition phase, it is necessary to determine, for a pair of points in the search scene, all similar point pairs on the model, i.e., point pairs on the model that have the same point pair feature as the point pair in the search scene. To allow an efficient search, the point pairs of the model are stored in a hash table (see Figure 3.166). The discretized feature of the point pair serves as the key to the hash table. Consequently, model point pairs with similar point pair features are stored in the same slot in the hash table. The hash table represents the global model description.

This model description has some important advantages: During the recognition, all model features Fm that are similar to a given scene feature Fs can be searched in constant time by using Fs as the key to access the hash table. Furthermore, by using the proposed point pair features, the global model description is invariant to rigid 3D transformations. Finally, two corresponding point pairs of the search scene and the model are sufficient to estimate the 3D pose of the object. Note that the size of the global model description increases quadratically with the number of sampled model points. However, this is not an issue if the number of sampled model points is kept at a constant value of reasonable size as proposed above.



3.12.3.2 Local Parameters

As already pointed out in Section 3.12.2.1, one major challenge of 3D object recognition approaches are the six degrees of freedom of the object pose, i.e., three translation and three rotation parameters. Instead of determining the six pose parameters of the object, in surface-based 3D matching, so-called local parameters are used. A point in the search scene is selected that we will denote as the reference point. It is assumed that the reference point lies on the surface of the object. If this assumption holds, the pose of the object can be determined by


	identifying the model point that corresponds to the reference point (see Figure 3.167(a)) and

	fixing the rotation about the normal vector of the reference point point (see Figure 3.167(b)).


[image: image]
Figure 3.167 Local parameters. The reference point in the scene (gray) is assumed to lie on the surface of the object (black). (a) The first local parameter is the point index of the corresponding model point. (b) When the corresponding model point is identified, the reference point is aligned with the corresponding model point (including their normal vectors). Then, the second local parameter is the rotation angle about the normal vector.


[image: image]
Figure 3.168 Multiple reference points (circles) are selected in the scene of Figure 3.164(c) to ensure that at least one reference point lies on the surface of each object instance in the scene. In this example, 10% of the scene points are randomly selected as reference points.


The index of the corresponding model point and the rotation angle are the local parameters with respect to the selected reference point. They can be determined by applying a voting scheme that will be described in Section 3.12.3.3.

If the scene contains clutter objects or if the background is included in the scene, randomly selecting a reference point does not ensure that the reference point lies on the surface of the object. Therefore, multiple scene points are successively selected as the reference point. To robustly recognize an object, it is sufficient that at least one point on the object is selected as the reference point. Figure 3.168 shows the selected reference points in the scene of Figure 3.164(c).



3.12.3.3 Voting

For a selected reference point, the optimum local parameters must be determined. The optimum local parameters are the parameters that maximize the number of points in the scene that lie on the model. To determine the parameters, a voting scheme that is similar to the generalized Hough transform (see Section 3.11.5.3) is applied. The parameters of the Hough transform are the local parameters, i.e., the index of the model point and the rotation angle. As for the generalized Hough transform, the two-dimensional parameter space must be sampled. Therefore, the rotation angle is uniformly sampled within the interval [0°, 360°), for example in steps of 12°. Then, an accumulator array of size n × m is initialized with zeros, where n is the number of sampled model points and m is the number of sampled rotations. The accumulator array represents the discrete space of local paramters for a given reference point.

The voting is performed by pairing the reference point sr with every other point si in the scene. The process is illustrated in Figure 3.169. In the first step, for each such point pair, the point pair feature F (sr, si) is computed as described in Section 3.12.3.1. Similar point pairs in the model are queried by using the hash table. For each entry in the hash table, the resulting local parameters can be computed, i.e., the index of the model point and the rotation angle that aligns the model point pair with the scene point pair. Note that the rotation angle can be computed very efficiently from the two corresponding point pairs as described by Drost et al. (2010). The local parameters obtained are discretized according to the sampling of the accumulator array, and the corresponding accumulator cell is incremented. After all scene points have been paired with the reference point, the number of votes in a cell corresponds to the number of scene points that coincide with the model when aligning the model in accordance with the local parameters that the cell represents. The highest peak in the accumulator array corresponds to the optimum local parameters for the current reference point. From the optimum local parameters, the 3D pose of the object can be easily calculated. To obtain a higher robustness, all peaks that have a certain amount of votes relative to the highest peak can be selected and further processed as described below.

[image: image]
Figure 3.169 Voting process. (1.) The selected scene reference point sr is paired with all other scene points si and the point pair feature F(sr, si) is computed for each pair. (2.) F (sr, si), is used as the key to the hash table. (3.) From the hash table, we obtain all model point pairs that are similar to the scene point pair. (4.) For each similar model point pair, the local parameters are computed and the corresponding cell in the accumulator array is incremented.


After the voting process, for each selected reference point in the scene, at least one pose candidate along with a score value, i.e., the number of votes, is available. To remove duplicate pose candidates, a non-maximum suppression is performed: for each selected candidate, all similar pose candidates are removed. Two pose candidates are similar if their rotation and translation parts differ by at most two predefined thresholds.



3.12.3.4 Least-Squares Pose Refinement

The accuracy of the object poses that are obtained from the voting process is limited by the sampling of the parameter space and by the sampling of the feature space. The sampling of the parameter space is determined by the sampling of the accumulator array, i.e., the sampling of the rotation and of the model points. The sampling of the feature space is determined by the sampling of the point pair features in the hash table. When choosing the sampling as suggested in Sections 3.12.3.1 and 3.12.3.3, the accuracy is about 5% of the object diameter in translation and 12° in rotation. In most applications, higher accuracies are required. For example, if the surface of an object is to be inspected by comparing it to a reference model, small inaccuracies in the object pose might result in deviations from the reference model that might wrongly be interpreted as a defect. Therefore, the object poses are refined by using a least-squares optimization. For the optimization, the poses that are obtained from the non-maximum suppression are used as initial values.

To perform a least-squares optimization, the correspondences between the model points and the scene points must be determined. The determination of the correspondences and the least-squares optimization are both performed within the framework of the iterative closest point (ICP) algorithm (Besl and McKay, 1992). The ICP algorithm is able to align two point clouds (e.g., model and scene) if a sufficiently accurate initial pose is provided. As the name suggests, ICP is an iterative algorithm. It iteratively repeats the following two steps:


	Correspondence search: for each point in the first point cloud, the closest point in the second point cloud is determined.

	Pose estimation: the pose that minimizes the sum of the squared distances between the correspondences is computed.



Let si be the points in the scene and mj the points in the model. Furthermore, let the object pose at iteration k be represented by the rigid 3D transformation matrix Tk. The matrix T0 is computed from the initial pose values that result from the non-maximum suppression. Note that Tk transforms points from the scene to the model in our notation. Then, the correspondence search in step k determines for each scene point si the closest model point mc(i):

(3.209) [image: image]

In the subsequent pose estimation step, the squared distances between the corresponding points are minimized:

[image: image]
Figure 3.170 Object pose after different iterations of the ICP algorithm. The pose of the model (black) and the pose of the back-transformed scene (gray) are visualized. (a) Initial pose. (b)–(d) Pose after 1, 2, and 5 ICP iterations.


(3.210) [image: image]

The iteration is stopped as soon as the desired accuracy or a maximum number of iterations is reached. Figure 3.170 illustrates the improvement of the pose accuracy after different numbers of iterations.

The run time of the ICP algorithm is dominated by the run time of the correspondence search. Therefore, an efficient data structure for the determination of the nearest point neighbor is crucial for practical applications. Well-known efficient methods are based on k-d-trees (Bentley, 1975) or voxel grids (Yan and Bowyer, 2007), for example. Drost and Ilic (2013) combine the advantages of tree-based and voxel-based approaches to propose a method that is faster than traditional k-d-tree approaches.

There are several extensions of the ICP algorithm that speed up the computation or improve its accuracy. For example, instead of minimizing point distances as in Eq. (3.210), distances of points to the tangent planes at the corresponding points can be minimized (Chen and Medioni, 1992). This allows a lower sampling density of the two point clouds. Furthermore, the robustness of the ICP algorithm to outliers can be improved by applying the IRLS (Stewart, 1999) algorithm, as described in Section 3.8.1.2.

Figure 3.164(d) shows the final poses that are obtained after the pose refinement step for the illustrated example.



3.12.3.5 Extension for Recognizing Deformed Objects

Drost and Ilic (2015) introduce an extension of surface-based 3D matching that is able to recognize deformable objects. Deformable in this context either means that one object instance itself is deformable, like objects made of rubber or silicone, or that objects vary their shape over different instances, like vegetables or fruits.

The range of possible deformations is learned from training examples. Each example instance, which shows one particular deformation of the object, is registered to a reference pose. This registration can be performed by using surface-based 3D matching, as described in the previous sections. Then, for each point pair in the model, the range of possible deformations over the example instances are determined. For all point pairs and for all deformations, the point pair features are computed and stored in the hash table, as described in Section 3.12.3.1. Thus, in contrast to the recognition of rigid objects, each point pair is contained in the hash table multiple times.

In contrast to the voting for rigid objects as described in Section 3.12.3.3, the voting for deformable objects is performed iteratively using a graph structure. Each vertex represents a correspondence between a scene point and a model point. An edge between two vertices in the graph indicates that there exists a consistent non-rigid transformation between scene and model that aligns the two scene points with their corresponding model points. Which edges must be created can be efficiently queried from the hash table.

If a perfect instance of the model was present in the scene, all vertices representing correspondences between model points and their corresponding scene points would be connected with edges, thus forming a dense subgraph. The extraction of this subgraph is performed in two steps: In the first step, weights are assigned to the vertices and initialized with 1. Iterative voting is performed to amplify the dense subgraph: over several voting rounds, each vertex votes for its connected vertices, using its weighting vote obtained in the previous round. The iterative voting leads to high voting counts for the subgraph that represents the correspondences between the object instance in the scene and the model. In the second step, the most dominant consistent subgraph is extracted, yielding a consistent set of point correspondences.

From the set of correspondences, an approximate rigid 3D transformation can be computed. Furthermore, the rigid 3D transformation can be used to initialize a deformable ICP (Myronenko and Song, 2010) to obtain a model that is deformed in accordance with the scene points. Figure 3.171 shows an example application where deformable silicone baking molds are recognized and grasped by a robot.



3.12.3.6 Extension for Multimodal Data

Some 3D image acquisition devices return both 3D data and 2D image data. Furthermore, some 3D reconstruction methods like stereo reconstruction are based on 2D image data. In these cases, multimodal data, i.e., 3D data and gray value or color information, of the reconstructed scene are available. Drost and Ilic (2012) and Drost and Ulrich (2015c,d) introduce an extension of surface-based 3D matching that exploits the benefits of using such multimodal data, which increases the robustness of the recognition in many applications.

[image: image]
Figure 3.171 Recognition of deformable silicone baking molds in 3D data. (a) 3D CAD model with six possible grasping points (circles) for a robot. (b) 3D scene points (gray) and found deformed model (black) with the grasping points deformed in accordance with the model deformations.


The use of edge information for object recognition in image data has proven to be a powerful feature (see Sections 3.11.5.6 and 3.12.2). However, image edges cannot distinguish between texture and geometric edges. In contrast, edges or depth discontinuities in 3D data only occur at geometric edges, and hence provide additional information. Unfortunately, edges in 3D data are often error-prone. 3D image acquisition devices often have problems accurately reconstructing points that are close to 3D edges. Stereo reconstruction or structured light methods suffer from occlusion problems around edges. Furthermore, sharp edges are often smoothed in the reconstruction because of the spatial filter that is applied in stereo reconstruction methods based on gray value matching (see Section 3.10.1.7). TOF cameras also tend to smooth over edges and introduce interpolation points that do not correspond to real points in the scene. Therefore, Drost and Ulrich (2015c,d) present a method that combines the accuracy of image edges with the higher information content of 3D data. In the following, we will briefly summarize the basic idea.

To create the global model description (see Section 3.12.3.1), a multimodal point pair feature is computed. The feature uses geometric edges in the intensity image and depth information from the 3D data, and hence combines the stable information of both modalities. First, for one viewpoint of the object, geometric edges are extracted. For this, edges are extracted in the intensity image of the viewpoint. An edge point is accepted as a geometric edge only if the 3D data contains a depth discontinuity at the corresponding position. Then, features are computed from the point pairs similar to the method described in Section 3.12.3.1. Here, however, a 3D reference point on the object surface is paired with a 2D geometric edge point. For each point pair, a four-dimensional feature vector is computed. It contains the distance between the two points in the image transformed to metric units, the angle in the image plane between the difference vector of the two points and the edge gradient direction, the angle in the image plane between the difference vector of the two points and the normal vector of the reference point, and the angle in 3D between the normal vector of the reference point and the direction towards the camera.

The model is created by rendering or acquiring the object from various viewpoints yielding a set of template images (about 300 are sufficient in most applications). For each viewpoint, the geometric edges are extracted in the template image. A set of 3D model reference points is paired with each 2D edge point in the template image and the above described multimodal feature is computed for each pair and stored in a hash table as described in Section 3.12.3.1. The model created is used to recognize the instances of the object in a search scene by applying the voting scheme of Section 3.12.3.3 and the least-squares pose refinement of Section 3.12.3.4.

One major advantage of the method described over conventional surface-based 3D matching is that by the use of the geometric edges, even planar objects in front of a planar background can be robustly detected.





3.13 Hand–Eye Calibration

One important application area of the 3D object recognition approaches discussed in Section 3.12 is grasping of the recognized objects by a robot, e.g., to assemble objects or to place the objects at a predefined pose. Object recognition allows us to determine the object pose in the camera coordinate system. To be able to grasp the object, the object pose must first be transformed into the coordinate system of the robot. For this, the pose of the camera relative to the robot must be known. The process of determining this pose is called hand–eye calibration.







3.13.1 Introduction

A robot consists of multiple links that are connected by joints (ISO 8373:2012; ISO 9787:2013). A joint allows the two adjacent links to perform a motion relative to each other: for example, a prismatic joint allows a linear motion, a rotary joint allows a rotary motion about a fixed axis, and a spherical joint allows a rotary motion about a fixed point in three degrees of freedom. Figure 3.172 shows a model of an articulated six-axis robot with three rotary joints and one spherical joint. The spherical joint is constructed as a combination of three rotary joints with their rotation axes intersecting in a single point. The base of an industrial robot is the structure to which the origin of the first link is attached. The robot base is mounted on the base mounting surface. The last link of the robot provides the mechanical interface, to which the end effector (tool) is attached. The tool enables the robot to perform its actual task and might be a mechanical or a vacuum gripper, for example. The pose of the mechanical interface can be calculated from the joint positions and the geometry of the links and joints. This mathematical relationship is called forward kinematics. Furthermore, if the pose of the tool relative to the mechanical interface is provided to the robot controller, the pose of the tool also can be calculated by using the forward kinematics.

[image: image]
Figure 3.172 Model of an articulated six-axis robot. The rotation axes are indicated by bold lines.


[image: image]
Figure 3.173 Two possible configurations of a vision-guided robot. (a) Moving camera. (b) Stationary camera. The relevant coordinate systems are indicated by their origin o and their coordinate axes x, y, and z: WCS (index w), BCS (index b), TCS (index t), and CCS (index c).


In general, there are two different configurations of a vision-guided robot: the camera can be mounted either at the robot’s tool and is moved to different positions by the robot (moving camera scenario, see Figure 3.173(a)) or outside the robot without moving with respect to the robot base while observing its workspace (stationary camera scenario, see Figure 3.173(b)).

In the hand–eye calibration process, the following four coordinate systems are involved (see Figures 3.173(a) and (b)): The world coordinate system (WCS) (ow, xw, yw, zw) is independent of the robot movement. The base coordinate system (BCS) (ob, xb, yb, zb) is typically located at the robot base with its xy-plane parallel to the base mounting surface and its z-axis pointing upwards (ISO 9787:2013). The tool coordinate system (TCS) (ot, xt, yt, zt) is defined by the tool that is attached to the mechanical interface. The origin of the TCS is often denoted as the tool center point. Finally, the camera coordinate system (CCS) (oc, xc, yc, zc) is defined as described in Section 3.9.1.

For the case of a moving camera, hand–eye calibration basically determines the pose of the CCS relative to the TCS. For the case of a stationary camera, the pose of the CCS relative to the BCS is determined. This allows us to grasp objects with the robot by transforming the object pose, which is determined in the CCS, into the robot BCS. Note that there exist further camera configurations and systems that can be calibrated by using a hand–eye calibration method, e.g., pan-tilt cameras, endoscopes (Schmidt et al., 2003; Schmidt and Niemann, 2008), X-ray systems (Mitschke and Navab, 2000), and augmented reality systems (Baillot et al., 2003).



3.13.2 Problem Definition

Like conventional camera calibration (see Section 3.9.4), hand–eye calibration is typically performed by using a calibration object. For this, the tool of the robot is moved to n different robot poses. At each robot pose, the camera acquires an image of the calibration object. For moving cameras, the calibration object is placed at a fixed position within the workspace of the robot (see Figure 3.174(a)). For stationary cameras, the calibration object is rigidly attached to the tool, and hence moves with the robot (see Figure 3.174(b)). If the interior orientation parameters of the camera are unknown, the calibration images are used to fully calibrate the camera, i.e., to determine the interior camera orientation as well as the exterior orientation of each calibration image. If the interior orientation is already known, the calibration images are used to determine the exterior orientation of each calibration image. The camera calibration is performed as described in Section 3.9.4.4.

Note that it is also possible to perform hand–eye calibration by using an arbitrary object instead of a calibration object. In this case, the 3D pose of the object relative to the sensor is determined by using a 3D object recognition approach. For example, if a camera is used as the sensor, one of the approaches described in Sections 3.12.1 or 3.12.2 can be applied. If a 3D image acquisition device is used instead of a camera, one of the approaches described in Section 3.12.3 can be applied.

[image: image]
Figure 3.174 Transformations between the four coordinate systems (camera, base, tool, and calibration object) that are involved in hand–eye calibration for the case of (a) a moving camera and (b) a stationary camera. Known transformations that are the input to the hand–eye calibration are visualized by solid lines. Unknown transformations that are determined by the hand–eye calibration are visualized by dashed lines. Note that the four transformations form a closed chain in both cases.


After this step, the pose cHo of the calibration object relative to the camera is known for all n calibration images. Here, c2Hc1 denotes a rigid 3D transformation or pose, represented by a 4×4 homogeneous transformation matrix, that transforms 3D points from the coordinate system c1 into c2 (see Section 3.9.1.1). Furthermore, the pose bHt of the tool relative to the robot base (or its inverse tHb) can be queried from the robot controller, and hence is known for all n images as well. If the robot controller only returns the pose of the mechanical interface, the pose of the tool with respect to the mechanical interface must be added manually. For moving cameras, the fixed and unknown transformations are cHt, i.e., the pose of the camera relative to the tool, and oHb, i.e., the pose of the calibration object relative to the base (see Figure 3.174(a)). For stationary cameras, the fixed and unknown transformations are cHb, i.e., the pose of the camera relative to the base, and tHo, i.e., the pose of the tool relative to the calibration object (see Figure 3.174(b)). The transformations can be concatenated to form a closed chain:

(3.211) [image: image]

for moving cameras and

(3.212) [image: image]

for stationary cameras. Note that both equations have the same structure

(3.213) [image: image]

where Ai is the pose of the tool relative to the base (or vice versa) and Bi is the pose of the camera relative to the calibration object for robot pose i, with i = 1, …, n. In the equations, the essential unknown is X, which represents the pose of the camera relative to the tool for moving cameras and the pose of the camera relative to the base for stationary cameras.

For a pair of different robot poses i and j, we obtain the two equations Y = AiXBi and Y = AjXBj. This allows us to eliminate the unknown pose Y:

(3.214) [image: image]

By rearranging, we obtain

(3.215) [image: image]

After substituting [image: image] by A and [image: image] by B, the equation to be solved finally becomes

(3.216) [image: image]

Here, A represents the movement of the tool and B represents the movement of the camera or the calibration object, respectively, when moving the robot from pose i to j.

There are linear algorithms that solve Eq. (3.216) by handling the rotation and translation parts of the three matrices separately (Tsai and Lenz, 1989; Chou and Kamel, 1991). As a consequence, rotation errors propagate and increase translation errors. More advanced linear methods avoid this drawback. They are typically based on screw theory (see Section 3.13.3 for an introduction to screw theory) and solve for rotation and translation simultaneously (Chen, 1991; Horaud and Dornaika, 1995; Daniilidis, 1999). In general, linear approaches have the advantage that they provide a direct solution in a single step, i.e., no initial values for the unknowns need to be provided and there is no risk of getting stuck in local minima of the error function. Furthermore, because no iterations are involved, linear approaches are typically faster than nonlinear methods. However, linear approaches often minimize an algebraic error that lacks any geometric meaning, which sometimes leads to reduced accuracy. Therefore, to obtain a higher accuracy, the result of the linear methods is often used to initialize a subsequent nonlinear optimization (Horaud and Dornaika, 1995; Daniilidis, 1999; Kaiser et al., 2008).

Because of the advantages described above, we will focus for the linear approach on methods that simultaneously solve for rotation and translation, and especially on the approach of Daniilidis (1999). Because this approach is based on screw theory and uses dual quaternions, we will give a brief introduction to dual quaternions and screw theory in the following section.



3.13.3 Dual Quaternions and Screw Theory


3.13.3.1 Quaternions

Quaternions are 4D vectors q = (q0, q1, q2, q3) = (q0, q) with scalar part q0 and vector part q. The multiplication of two quaternions p and q is defined as

(3.217) [image: image]

It should be noted that the multiplication is not commutative, i.e., pq ≠ qp in general. The conjugation of a quaternion is obtained by reversing the sign of its vector part:

(3.218) [image: image]

Unit quaternions are quaternions with norm one, i.e, they satisfy [image: image]. Quaternions can be considered as a generalization of complex numbers. The basis elements of the quaternion vector space are

(3.219) [image: image]

When applying the definition of quaternion multiplication (3.217) to the basis elements, we obtain

(3.220) [image: image]

A quaternion with a scalar part q0 = 0 is called a pure quaternion. The quaternion inversion is given by

(3.221) [image: image]

It is clear from the above definitions that for a unit quaternion [image: image].

Every unit quaternion can be written as q = (cos(θ/2), n sin(θ/2)) with 0 ≤ θ < 4π and a unit 3D vector n. Let p = (0, p) be a pure quaternion. Then, it can be shown that the quaternion product

(3.222) [image: image]

can be interpreted geometrically as a rotation of the point p about the axis n by the angle θ and

(3.223) [image: image]

as a rotation of the coordinate system about the same axis and by the same angle (Rooney, 1977; Kuipers, 1999). Hence, the product [image: image] is a linear operator with respect to p, which can be converted into a rotation matrix:

(3.224) [image: image]

The consecutive execution of two rotations can be represented by multiplying the two corresponding unit quaternions by analogy to multiplying the two corresponding rotation matrices.

Like complex numbers, quaternions can also be represented in exponential form:

(3.225) [image: image]

with I = (i, j, k). A rotation matrix R can be converted into a quaternion by

(3.226) [image: image]

for a rotation matrix with a positive trace (tr(R) > 0). The case tr(R) ≤ 0 must be handled more carefully and is described in Hanson (2006). Note that the representation of rotations as quaternions is ambiguous, i.e., q and −q represent the same rotation Rq = R−q.

What is the advantage of representing rotations as quaternions? Compared to rotation matrices (nine elements), unit quaternions (four elements) allow a more compact representation of rotations. Nevertheless, the four elements of a quaternion still overparameterize 3D rotations, which only have three degrees of freedom. The fourth degree of freedom is eliminated by taking the unity constraint [image: image] into account. Furthermore, rotations that are represented as quaternions directly encode the rotation axis and angle (see Eq. (3.225)), and hence can be interpreted more easily than rotation matrices or Euler angles. Another advantage of representing rotations as quaternions is that quaternions allow a meaningful interpolation between rotations (Hanson, 2006).



3.13.3.2 Screws

Unfortunately, rigid 3D transformations (or poses) such as in Eq. (3.216), which in addition to a 3D rotation also include a 3D translation, cannot be represented as quaternions in a comparably compact and elegant way. The question is whether there exists an alternative equivalent representation. The first step towards answering this question is the insight that a rigid 3D transformation can be represented as a screw, which is known as Chasles’ theorem (Rooney, 1978). A screw is a rotation about a screw axis by an angle θ followed by a translation by d along this axis (see Figure 3.175(a)). The direction of the screw axis is defined by its direction vector l. The position of the screw axis is defined by its moment vector m with respect to the origin. The moment m is perpendicular to l and to a vector from the origin to an arbitrary point p on the screw axis (see Figure 3.175(b)).

The vectors l and m are called the Plücker coordinates of the straight line that represents the screw axis. A line in 3D that passes through the two different points p and q can be transformed to Plücker coordinates by l = q − p and m = p × l = p × q with l┬m = 0 and ║l║ = 1.

Furthermore, a rigid 3D transformation that is represented as a rotation matrix R and a translation vector t can be converted to a screw and vice versa. From the rotation matrix, the vector l and the screw angle θ can be computed as described in (Hanson, 2006). The screw translation d is the projection of t onto l, i.e., d = t┬l. Finally, the screw moment is calculated as [image: image] (Daniilidis, 1999). Conversely, the screw parameters l and θ can be converted to a rotation matrix as described in (Hanson, 2006). The translation vector is obtained as t = (I − R)(l × m) + dl (Daniilidis, 1999).

[image: image]
Figure 3.175 (a) A rigid 3D transformation can be represented as a screw. The screw axis is visualized in light gray. (b) The position of the screw axis is defined by its moment with respect to the origin.




3.13.3.3 Dual Numbers

For the second step towards an efficient representation of rigid 3D transformations, we must introduce the concept of dual numbers. By analogy to complex numbers, a dual number [image: image] is defined as [image: image] with the real part a, the dual part b, and the dual unit ε2 = 0. In the same way, it is possible to define dual vectors, where a and b represent vectors instead of scalar values. With this, we can express a straight line that is represented in Plücker coordinates as a dual vector [image: image] with l and m being the direction and the moment of the line, respectively.



3.13.3.4 Dual Quaternions

To obtain the desired compact representation of rigid 3D transformations, we finally combine the concept of dual numbers with the concept of quaternions to obtain dual quaternions. For a general introduction to dual quaternions, the interested reader is referred to Rooney (1978). A brief outline can be found in Daniilidis (1999).

A dual quaternion [image: image] consists of the quaternions q (real part) and q′ (dual part). The rules for multiplication, conjugation, and inversion of quaternions also apply to dual quaternions, i.e., Eqs. (3.217), (3.218), and (3.221) also hold after replacing all quantities by their dual variants. Analogously, unit dual quaternions are dual quaternions that satisfy [image: image]. Consequently, a dual quaternion [image: image] is a unit dual quaternion if the following two conditions hold:

(3.227) [image: image]

This means that for a unit dual quaternion, its real part is a unit quaternion that is orthogonal to its dual part. Also, the inverse of a unit dual quaternion is its conjugate [image: image].

A dual quaternion with its real and dual part being pure quaternions, i.e., q0 = 0 and [image: image], is called a pure dual quaternion. Like dual vectors, pure dual quaternions can be used to represent straight lines in Plücker coordinates:

(3.228) [image: image]

A screw, and hence a rigid 3D transformation, can be represented by a unit dual quaternion

(3.229) [image: image]

with the dual number [image: image] representing the angle and the translation of the screw and the dual vector [image: image] representing the direction vector n and the moment vector o of the screw axis (with ║n║ = 1 and n · o = 0). Then, a straight line [image: image] can be transformed by a rigid 3D transformation [image: image] as (Rooney, 1978; Daniilidis, 1999):

(3.230) [image: image]

A unit dual quaternion can be transformed into a homogeneous transformation matrix that represents a rigid 3D transformation, and vice versa (Daniilidis, 1999). For the transformation of lines, the dual quaternion representation is more efficient, and hence should be preferred over the representation with homogenous transformation matrices (Rooney, 1978). In the same way as the quaternions q and −q represent the same rotation, the dual quaternions [image: image] and [image: image] represent the same rigid 3D transformation. Compared to homogenous transformation matrices (twelve elements), unit dual quaternions (eight elements) allow a more compact representation of rigid 3D transformations. Note that the eight parameters of a unit dual quaternion still over-parameterize rigid 3D transformations, which have six degrees of freedom. The two remaining degrees of freedom are fixed by the unity constraint (3.227).

The consecutive execution of two rigid 3D transformations can be represented by multiplying the two corresponding unit dual quaternions, by analogy to multiplying the two corresponding homogeneous transformation matrices.

Summing up, unit dual quaternions can be used to represent rigid 3D transformations in a similar compact way as unit quaternions can be used to represent 3D rotations. Therefore, unit dual quaternions are used in the linear hand–eye calibration approach that is introduced in the following section.




3.13.4 Linear Hand–Eye Calibration

In this section, we describe a linear approach for hand–eye calibration that is based on Daniilidis (1999). Because of the advantages mentioned above, it simultaneously solves for rotation and translation. This is accomplished by representing the poses as unit dual quaternions.

Equation (3.216) can be rewritten by using dual quaternions as [image: image] or

(3.231) [image: image]

As we have seen before, the scalar part of the dual quaternion contains the angle and the translation of the corresponding screw. Because of Eq. (3.218), the scalar part Sc of a dual quaternion can be extracted by

(3.232) [image: image]

By extracting the scalar part of Eq. (3.231), we obtain

[image: image]

(3.233) [image: image]

This is the fundamental result on which the linear approach to hand–eye calibration is based. It is also known as the screw congruence theorem (Chen, 1991), which says that the angle and the translation of the screw of the camera (for a moving camera) or of the calibration object (for a stationary camera) is identical to the angle and the translation of the screw of the tool between two robot poses. Consequently, only the vector part of Eq. (3.231) contributes to the determination of the unknown [image: image]:

(3.234) [image: image]

where the dual vectors [image: image] and [image: image] represent the screw axes and the dual numbers [image: image] and [image: image] represent the angle and translation of the screws. Because of the screw congruence theorem, [image: image]. If the screw angles are not 0° or 360°, we obtain

(3.235) [image: image]

Together with Eq. (3.230), this equation tells us that the hand–eye calibration is equivalent to finding the rigid 3D transformation [image: image] that aligns the straight lines that represent the screw axes of the camera (for a moving camera) or of the calibration object (for a stationary camera) with the straight lines that represent the screw axes of the tool. Note that for each pair of robot poses, one pair of corresponding straight lines is obtained. To robustly solve the problem, the following requirements must be taken into account (Chen, 1991):


	At least two non-parallel screw axes are necessary to uniquely solve the hand–eye calibration.

	For only a single screw axis (i.e., two robot poses), the angle and the translation of the unknown screw [image: image] cannot be determined.

	If all screw axes are parallel, the translation of the unknown screw [image: image] cannot be determined.

	Further degenerate cases occur if the screw angles [image: image], or if the screw angles are [image: image] = 180° and the screw translations are [image: image].



To determine the unknown [image: image], let us write a dual quaternion as [image: image] with the real part q and the dual part q′. Then, we can rewrite Eq. (3.231) by separating the real and the dual part:

(3.236) [image: image]

(3.237) [image: image]

Let a = (0, a), a′ = (0, a′), b = (0, b), and b′ = (0, b′). It can be shown that the two equations (3.236) and (3.237) can be written in matrix form as (Daniilidis, 1999):

(3.238) [image: image]

where [a]× denotes the antisymmetric 3×3 matrix of the vector a, which corresponds to the cross product with a, i.e., [a]×c = a × c. Thus, for each pair of robot poses, i.e., for each robot movement i, we obtain a 6×8 matrix, which we will denote by Si. For m robot movements, we obtain a 6m × 8 matrix T by stacking the matrices Si:

(3.239) [image: image]

This corresponds to a homogeneous linear equation system with 6m equations and 8 unknowns. Although with at least two robot movements the number of equations would already exceed the number of unknowns, there would still be no unique solution. The reason is that the rank of T is only 6 (in the noise-free case). This so-called datum deficiency or gauge freedom results in a 2D manifold of solutions. The manifold can be calculated by computing the singular value decomposition (SVD) of T = UDV┬ (Press et al., 2007). The diagonal elements in D contain the singular values σi, with i = 1, …, 8, in descending order. Because of the datum deficiency, the last two singular values σ7 and σ8 are zero in the ideal noise-free case and close to zero in practical applications with noisy input data. The manifold of solutions is spanned by the last two columns v7 and v8 of the matrix V, which correspond to the vanishing singular values:

(3.240) [image: image]

To reduce the set of solutions to a single solution, we must apply two additional constraints. Since we know that the resulting dual quaternion [image: image] represents a rigid 3D transformation, and hence must be a unit dual quaternion, we apply the two unity constraints of Eq. (3.227) to Eq. (3.240):

(3.241) [image: image]

(3.242) [image: image]

The two quadratic polynomials in the two unknowns λ1 and λ2 yield two solutions, from which the correct solution can be easily selected (Daniilidis, 1999). Note that because of Eqs. (3.241) and (3.242), the approach is actually not completely linear. Nevertheless, it provides a direct unique solution. Therefore, we call it linear in order to distinguish it from the nonlinear optimization that we will describe in Section 3.13.5.

To obtain the highest robustness and accuracy of the linear approach, the following should be considered (Tsai and Lenz, 1989):


	The robot’s kinematics should be calibrated, i.e., the pose of the tool relative to the robot base should be known with high accuracy.

	The angle between the screw axes of different robot movements should be as large as possible.

	The rotation angle of the screw of a single robot movement should be as large as possible or should differ from 0° and 180° as much as possible for screws with a small translation.

	The distance between the projection center of the camera and the calibration object should be as small as possible.

	The distance between the tool center points of two robot poses should be as small as possible.

	Increasing the number of robot poses increases the accuracy.



Some of these criteria are difficult to consider for a non-expert user. Therefore, from the set of robot poses, the pose pairs (movements) that best fulfill the criteria can be automatically selected (Schmidt et al., 2003; Schmidt and Niemann, 2008). Nevertheless, the user must ensure that enough valid pose pairs are available that can be selected. In most practical applications, 10 to 15 valid robot poses are enough to obtain a sufficiently high accuracy.

Furthermore, providing incorrect input poses for hand–eye calibration is a frequent source of errors. Often, the robot controller returns the robot poses in a different format or in different units compared to the calibration object poses that are returned by the camera calibration. Also, providing the correct pairs of corresponding robot and calibration object poses is sometimes difficult. To support the user in this regard, the consistency of the input poses can be checked automatically. For this, the user must provide the approximate accuracy of the input poses, i.e., the approximate standard deviation of the rotation and the translation part. Then, for each pair of robot poses, the two dual quaternions that represent the movement of the robot tool and of the calibration object (for a stationary camera) or of the camera (for a moving camera) is computed. Because of the screw congruence theorem of Eq. (3.233), the scalar parts of both dual quaternions must be equal. Based on the provided standard deviations of the input poses, the standard deviation of the scalar parts can be derived through error propagation. From this, a confidence interval is computed by multiplying the standard deviation by an appropriate factor, e.g., 3.0. If the scalar parts differ by more than this value, a warning is issued.



3.13.5 Nonlinear Hand–Eye Calibration

To further increase the accuracy, the resulting poses of the linear approach can be used as initial values in a nonlinear optimization framework. For this, we solve the fundamental equation (3.213) for Bi and compute the following error matrix

(3.243) [image: image]

For the optimal solution, the norm of the elements in Ei must be minimized. Therefore, we minimize

(3.244) [image: image]

over the 2×6 unknown pose parameters of the transformations X and Y for all n robot poses. The matrix W = diag(1, 1, 1, 9) balances the different number of entries in E for rotation (9 entries) and translation (3 entries). (The operator diag constructs a diagonal matrix with the specified entries.) Additionally, the translation part of all input matrices is scaled by 1/d, where d is the maximum extent of the workspace defined by the robot poses. This causes the results to be scale-invariant and the errors in translation and rotation to be weighted appropriately with respect to each other. A similar approach is proposed by Dornaika and Horaud (1998), who also apply different weights to the rotation and translation part of the error function.

Both approaches, the linear approach of Section 3.13.4 and the nonlinear approach minimize an algebraic error, which does not have a direct geometric meaning. An alternative approach is proposed by Strobl and Hirzinger (2006), which minimizes the weighted sum of the rotation and translation error. They close the chain of transformations of Eq. (3.213), yielding AiXBiY−1 = I. Based on this equation, they compute a scalar value for the rotation and the translation error. The appealing advantage of the approach is that the weights that balance both error types are statistically computed. However, in our experience, this approach does not return more accurate results than the approach described above.



3.13.6 Hand–Eye Calibration of SCARA Robots

In many industrial applications, SCARA (Selective Compliant Arm for Robot Assembly) robots (ISO 8373:2012; ISO 9787:2013) are used instead of articulated robots. SCARA robots have at least two parallel rotary joints and one parallel prismatic joint. Figure 3.176 shows a model of a SCARA robot with three rotary joints. In contrast to articulated robots, which cover six degrees of freedom (three translations and three rotations), SCARA robots only cover four degrees of freedom (three translations and one rotation). Compared to articulated robots, they offer faster and more precise performance and typically have a more compact design. Therefore, they are best suited for pick-and-place, assembly, and packaging applications, and are preferred if only limited space is available.

Tsai and Lenz (1989) showed that the error in hand–eye calibration is inversely proportional to the sine of the angle between the screw axes of the robot movement. For SCARA robots, all screw axes are parallel because all rotation axes are parallel, and hence the error would be infinitely large. Furthermore, Chen (1991) showed that one parameter cannot be determined by hand–eye calibration if all screw axes are parallel. Therefore, the linear approach of Section 3.13.4 for calibrating articulated robots does not work for SCARA robots. However, it can be extended for the calibration of SCARA robots as described in Ulrich and Steger (2016).

[image: image]
Figure 3.176 Model of a SCARA robot with three parallel rotary joints and one parallel prismatic joint. The rotation axes are indicated by bold lines.


Because for SCARA robots all screw axes are parallel, the rank of the matrix T in Eq. (3.239) is further reduced by one, and hence is only five in the noise-free case. This results in three vanishing singular values. The three corresponding singular values v6, v7, and v8, span the set of solutions:

(3.245) [image: image]

Without loss of generality, we assume that all joint axes of the SCARA robot are parallel to the z-axis of the robot’s BCS and TCS. From Zhuang (1998) we know that the translation component tz of the unknown transformation [image: image] cannot be determined uniquely, and hence there exists a 1D manifold of equivalent solutions. From this manifold, we arbitrarily select one solution by temporarily requiring tz = 0. Then, we can compute the unknown [image: image] and finally determine the real tz in an additional post-processing step. In the following, this approach is described in more detail.

By inserting Eq. (3.245) into the two unity constraints of Eq. (3.227), we obtain two quadratic equations in the three unknowns λ1, λ2, and λ3 (Ulrich and Steger, 2016). The translation vector t of [image: image] can be extracted as [image: image] Then, the third constraint tz = 0 is formulated as

(3.246) [image: image]

where x1, …, x4 and [image: image] denote the elements of x and x′, respectively. By inserting Eq. (3.245) into Eq. (3.246), we obtain a third quadratic equation in the three unknowns λ1, λ2, and λ3 (Ulrich and Steger, 2016). One of the three equations represents an ellipsoid; the other two represent elliptic cones. The up to eight solutions correspond to the intersection points of the three quadrics. Because the exact computation of the solutions would be cumbersome and computationally expensive, Ulrich and Steger (2016) present a method that efficiently computes an approximation of the solution that is shown to be adequate for practical applications.

Also, the criteria for selecting suitable pose pairs, which were listed at the end of Section 3.13.4, must be slightly modified for SCARA robots. Because all screw axes are parallel, we cannot require that the angle between the screw axes should be as large as possible. Instead, we require that the difference of the scalar parts of the dual quaternions that represent two corresponding screws [image: image] and [image: image] should be as small as possible (Ulrich and Steger, 2016). Remember that the scalar parts of [image: image] and [image: image] represent the angle and the translation of the screws, and hence must be identical in the case of perfect noise-free data (see Eq. 3.233).

For further practical implementation issues like the handling of the sign ambiguity of screws and the treatment of antiparallel screw axes, the interested reader is referred to Ulrich and Steger (2016).

We can refine the solution that is obtained by the linear approach by a subsequent nonlinear optimization, similar to the approach for articulated robots that was described in Section 3.13.5. However, because tz cannot be determined, the minimization only optimizes the remaining 11 pose parameters of the two unknown poses, while keeping tz fixed.

In the last step, the real value of tz must be determined. Let us first consider a scenario with a stationary camera. From the calibration process, tHo and bHc of Eq. (3.211) are known up to tz of tHo. To determine tz, we detach the calibration object from the robot and place it at a position from which it is observable by the camera. Then, the pose [image: images] of the calibration object in the CCS is automatically determined. From this, we compute zcalib, which is the z component of the translation of [image: images]. Next, we manually move the tool of the robot to the origin of the calibration object and query the robot pose to obtain [image: images]. The z component of the translation of [image: images] represents the true translation, which we denote ztrue. The values of ztrue and zcalib must be identical because they represent the same physical distance. We can achieve this by modifying the z component of tHo by ztrue – zcalib. Finally, the desired matrix bHc is computed with Eq. (3.211).

The scenario of a moving camera can be treated similarly. However, for some setups, it is impossible for the camera to observe the calibration object if the tool is moved to the origin of the calibration object. Let us assume that bHo and cHt are known from the calibration up to the z component of the translation part of bHo. In this case, the robot is manually moved to two poses. First, the tool is moved such that the camera can observe the calibration object. Now, an image of the calibration object is acquired and the tool pose is queried, which gives us [image: images] and [image: images]. Second, the tool of the robot is moved to the origin of the calibration object, yielding [image: images]. The z component of the translation of [image: images] is given by ztrue, while zcalib is the z component of the translation of [image: images]. Again, ztrue – zcalib can be used to correct the z component of bHo.

Actually, to determine tz, the tool does not need to be moved to the origin of the calibration object. Instead, it is sufficient to move the tool to a point that has the same z coordinate as the origin of the calibration object, where the z coordinate is measured in the robot BCS. Sometimes, however, the origin or even a point with the same z coordinate cannot be reached by the tool. In this case, the tool should be moved to a point with known height, i.e., vertical distance in the z direction of the BCS, above or below the origin. The z component of the transformation must additionally be corrected by this height.




3.14 Optical Character Recognition

In quite a few applications, we face the challenge of having to read characters on the object we are inspecting. For example, traceability requirements often lead to the fact that the objects to be inspected are labeled with a serial number and that we must read this serial number (see, for example, Figures 3.25–3.27). In other applications, reading a serial number might be necessary to control production flow.

OCR is the process of reading characters in images. It consists of two tasks: segmentation of the individual characters and classification of the segmented characters, i.e., the assignment of a symbolic label to the segmented regions. We will examine the segmentation and feature extraction of the characters in this section. The classification will be described in Section 3.15.


3.14.1 Character Segmentation

The classification of the characters requires that we have segmented the text into individual characters, i.e., each character must correspond to exactly one region.

To segment the characters, we can use all the methods that we have discussed in Section 3.4: thresholding with fixed and automatically selected thresholds, dynamic thresholding, and the extraction of connected components.

Furthermore, we might have to use the morphological operations of Section 3.6 to connect separate parts of the same character, e.g., the dot of the character “i” to its main part (see Section 3.6.1.2) or parts of the same character that are disconnected, e.g., because of bad print quality. For characters on difficult surfaces, e.g., punched characters on a metal surface, gray value morphology may be necessary to segment the characters (see Section 3.6.2.4).

Additionally, in some applications it may be necessary to perform a geometric transformation of the image to transform the characters into a standard position, typically such that the text is horizontal. This process is called image rectification. For example, the text may have to be rotated (see Figure 3.19), perspectively rectified (see Figure 3.23), or rectified with a polar transformation (see Figure 3.24).

Even though we have many segmentation strategies at our disposal, in some applications it may be difficult to segment the individual characters because the characters actually touch each other, either in reality or at the resolution at which we are looking at them in the image. Therefore, special methods to segment touching characters are sometimes required.

The simplest such strategy is to define a separate ROI for each character we are expecting in the image. This strategy sometimes can be used in industrial applications because the fonts typically have a fixed pitch (width) and we know a priori how many characters are present in the image, e.g., if we are trying to read serial numbers with a fixed length. The main problem with this approach is that the character ROIs must enclose the individual characters we are trying to separate. This is difficult if the position of the text can vary in the image. If this is the case, we first need to determine the pose of the text in the image based on another strategy, e.g., template matching, to find a distinct feature in the vicinity of the text we are trying to read, and to use the pose of the text either to rectify the text to a standard position or to move the character ROIs to the appropriate position.

While defining separate ROIs for each character works well in some applications, it is not very flexible. A better method can be derived by realizing that the characters typically touch only with a small number of pixels. An example of this is shown in Figures 3.177(a) and (b). To separate these characters, we can simply count the number of pixels per column in the segmented region. This is shown in Figure 3.177(c). Since the touching part is only a narrow bridge between the characters, the number of pixels in the region of the touching part only has a very small number of pixels per column. In fact, we can simply segment the characters by splitting them vertically at the position of the minimum in Figure 3.177(c). The result is shown in Figure 3.177(d). Note that in Figure 3.177(c) the optimal splitting point is the global minimum of the number of pixels per column. However, in general, this may not be the case. For example, if the strokes between the vertical bars of the letter “m” were slightly thinner, the letter “m” might be split erroneously. Therefore, to make this algorithm more robust, it is typically necessary to define a search space for the splitting of the characters based on the expected width of the characters. For example, in this application the characters are approximately 20 pixels wide. Therefore, we could restrict the search space for the optimal splitting point to a range of ±4 pixels (20% of the expected width) around the expected width of the characters. This simple splitting method works very well in practice. Further approaches for segmenting characters are discussed by Casey and Lecolinet (1996).

[image: image]
Figure 3.177 (a) An image of two touching characters. (b) Segmented region. Note that the characters are not separated. (c) Plot of the number of pixels in each column of (b). (d) The characters have been split at the minimum of (c) at position 21.




3.14.2 Feature Extraction

As discussed in Section 3.15, classification can be regarded as a mapping f that maps a feature vector [image: image] to a class ωi [image: image] Ω. The vector x thus must have a fixed length n. In the following, we will discuss how x can be extracted from the segmented regions. This process is called feature extraction. Note that it is also possible to learn feature extraction (see Section 3.15.3.4).

[image: image]
Figure 3.178 (a) Image with lowercase letters. (b)–(e) The features anisometry and compactness plotted for the letters “c” and “o” (b), “i” and “j” (c), “p” and “q” (d), and “h” and “k” (e). Note that the letters in (b) and (c) can be easily distinguished based on the selected features, while the letters in (d) and (e) cannot be distinguished.


For OCR, the features that are used for the classification are features that we extract from the segmented characters. Any of the region features described in Section 3.5.1 and the gray value features described in Section 3.5.2 can be used as features. The main requirement is that the features enable us to discern the different character classes. Figure 3.178 illustrates this point. The input image is shown in Figure 3.178(a). It contains examples of lowercase letters. Suppose that we want to classify the letters based on the region features anisometry and compactness. Figures 3.178(b) and (c) show that the letters “c” and “o,” and “i” and “j,” can be distinguished easily based on these two features. In fact, they can be distinguished solely based on their compactness. As Figures 3.178(d) and (e) show, however, these two features are not sufficient to distinguish between the classes “p” and “q,” and “h” and “k.”

From the above example, we can see that the features we use for the classification must be sufficiently powerful to enable us to classify all relevant classes correctly. The region and gray value features described in Sections 3.5.1 and 3.5.2, unfortunately, are often not powerful enough to achieve this. A set of features that is sufficiently powerful to distinguish all classes of characters is the gray values of the image themselves. Using the gray values directly, however, is not possible because the classifier requires a constant number of input features. To achieve this, we can use the smallest enclosing rectangle around the segmented character, enlarge it slightly to include a suitable amount of background of the character in the features (e.g., by one pixel in each direction), and then zoom the gray values within this rectangle to a standard size, e.g., 8 × 10 pixels. While transforming the image, we must take care to use the interpolation and smoothing techniques discussed in Section 3.3.2. Note, however, that by zooming the image to a standard size based on the surrounding rectangle of the segmented character, we lose the ability to distinguish characters like “−” (minus sign) and “I” (upper case I in fonts without serifs). The distinction can, however, easily be made based on a single additional feature: the ratio of the width to the height of the smallest surrounding rectangle of the segmented character.

Unfortunately, the gray value features defined above are not invariant to illumination changes in the image. This makes the classification very difficult. To achieve invariance to illumination changes, two options exist. The first option is to perform a robust contrast normalization of the character, as described in Section 3.2.1.3, before the character is zoomed to the standard size. The second option is to convert the segmented character into a binary image before the character is zoomed to the standard size. Since the gray values generally contain more information, the first strategy is preferable in most cases. The second strategy can be used whenever there is significant texture in the background of the segmented characters, which would make the classification more difficult.

Figure 3.179 displays two examples of the gray value feature extraction for OCR. Figures 3.179(a) and (d) display two instances of the letter “5,” taken from images with different contrast (Figures 3.26(a) and (b)). Note that the characters have different sizes (14 × 21 and 13 × 20 pixels, respectively). The result of the robust contrast normalization is shown in Figures 3.179(b) and (e). Note that both characters now have full contrast. Finally, the result of zooming the characters to a size of 8 × 10 pixels is shown in Figures 3.179(c) and (f). Note that this feature extraction automatically makes the OCR scale-invariant because of the zooming to a standard size.

The preceding discussion has used a standard size of 8 × 10 for the normalized character. A large set of tests has shown that this size is appropriate for most industrial applications. If there are only a small number of classes to distinguish, e.g., only numbers, it may be possible to use slightly smaller sizes. For some applications involving a larger number of classes, e.g., numbers and uppercase and lowercase characters, a slightly larger size may be necessary (e.g., 10 × 12). On the other hand, using much larger sizes typically does not lead to better classification results because the features become progressively less robust against small segmentation errors if a large standard size is chosen. This happens because larger standard sizes imply that a segmentation error will lead to progressively larger position inaccuracies in the zoomed character as the standard size becomes larger. Therefore, it is best not to use a standard size that is much larger than the above recommendations. One exception to this rule is the recognition of an extremely large set of classes, e.g., logographic characters like the Japanese kanji characters. Here, much larger standard sizes are necessary to distinguish the large number of different characters.

[image: image]
Figure 3.179 Gray value feature extraction for OCR. (a) Image of the letter “5” taken from the second row of characters in the image in Figure 3.26(a). (b) Robust contrast normalization of (a). (c) Result of zooming (b) to a size of 8 × 10 pixels. (d) Image of the letter “5” taken from the second row of characters in the image in Figure 3.26(b). (e) Robust contrast normalization of (d). (f) Result of zooming (e) to a size of 8 × 10 pixels.


As we have seen in Section 3.11.5.6, gradient orientations provide a feature that has high discriminatory power and is invariant to illumination changes. Therefore, gradient orientations can also be used for feature extraction. The idea is to measure the distribution of gradient orientations in different regions within the smallest enclosing rectangle of the character (Liu et al., 2004). To do so, the gray values of the character are scaled to a standard size, e.g., 35×35. This image is subdivided into 5×5 blocks, each of size 7 × 7. The gradient directions are computed within the 35 × 35 image using a Sobel filter (see Section 3.7.3.1). The normalized gradient direction vectors are then projected onto the eight canonical directions (kπ/4, k = 0, …, 7). This discretizes each gradient direction into its contribution to at most two of the eight direction channels that correspond to the canonical directions. Within each 7×7 block, the contents of each direction channel are weighted by a Gaussian that is centered within the block and are summed. This results in one feature per direction channel, i.e., in eight features per 7 × 7 block. Each of the eight features can be regarded as a weighted count of how many pixels in the block have a certain gradient direction. Since there are 5 × 5 blocks with eight features each, the gradient direction feature vector has 200 elements.




3.15 Classification

Classification is the task of assigning a class ωi to a feature vector x. For example, for OCR, x can be computed as described in Section 3.14.2. Furthermore, for OCR, the classes ωi can be thought of as the interpretation of the character, i.e., the string that represents the character. If an application must read serial numbers, the classes {ω1, …, ω10} are simply the strings {0, …, 9}. If numbers and uppercase letters must be read, the classes are {ω1, …, ω36} = {0, …, 9, A, …, Z}. Hence, classification can be thought of as a function f that maps a feature vector x of fixed length n to the set of classes [image: image]. In this section, we will take a closer look at how the mapping can be constructed.


3.15.1 Decision Theory


3.15.1.1 Bayes Decision Rule

First of all, we can note that the feature vector x that serves as the input to the mapping can be regarded as a random variable because of the variations that objects, e.g., the characters, exhibit. In the application, we are observing this random feature vector for each object we are trying to classify. It can be shown that, to minimize the probability of erroneously classifying the feature vector, we must maximize the probability that the class ωi occurs under the condition that we observe the feature vector x, i.e., we should maximize P (ωi|x) over all classes ωi, for i = 1, …, m (Theodoridis and Koutroumbas, 2009; Webb and Copsey, 2004). The probability P (ωi|x) is also called the a posteriori probability because of the above property that it describes the probability of class ωi given that we have observed the feature vector x. This decision rule is called the Bayes decision rule. It yields the best classifier if all errors have the same weight, which is a reasonable assumption for most classification problems (e.g., OCR).

We now face the problem of how to determine the a posteriori probability. Using Bayes’ theorem, P (ωi|x) can be computed as follows:

(3.247) [image: image]

where

(3.248) [image: image]

Hence, we can compute the a posteriori probability based on the a priori probability P (x|ωi) that the feature vector x occurs given that the class of the feature vector is ωi, the probability P (ωi) that the class ωi occurs, and the probability P (x) that the feature vector x occurs. To simplify the calculations, we can note that the Bayes decision rule only needs to maximize P (ωi|x) and that P (x) is a constant if x is given. Therefore, the Bayes decision rule can be written as

(3.249) [image: image]

What do we gain by this transformation? As we will see below, the probabilities P (x|ωi) and P (ωi) can, in principle, be determined from training samples. This enables us to evaluate P (ωi|x), and hence to classify the feature vector x. Before we examine this point in detail, however, let us assume that the probabilities in Eq. (3.249) are known. For example, let us assume that the feature space is 1D (n = 1) and that there are two classes (m = 2). Furthermore, let us assume that P (ω1) = 0.3, P (ω2) = 0.7, and that the features of the two classes have a normal distribution N(μ, σ) such that P (x|ω1) ~ N(−3, 1.5) and P (x|ω2) ~ N(3, 2). The corresponding likelihoods P (x|ωi)P (ωi) are shown in Figure 3.180. Note that features to the left of x ≈ −0.7122 are classified as belonging to ω1, while features to the right are classified as belonging to ω2. Hence, there is a dividing point x ≈ −0.7122 that separates the classes from each other.

[image: image]
Figure 3.180 Example of a two-class classification problem in a 1D feature space in which P (ω1) = 0.3, P (ω2) = 0.7, P (x|ω1) ~ N(−3, 1.5), and P (x|ω2) ~ N(3, 2). Note that features to the left of x ≈ −0.7122 are classified as belonging to ω1, while features to the right are classified as belonging to ω2.


[image: image]
Figure 3.181 Example of a three-class classification problem in a 2D feature space in which the three classes have normal distributions with different means and covariances. (a) The a posteriori probabilities of the occurrence of the three classes. (b) Regions in the 2D feature space in which the respective class has the highest probability.


As a further example, consider a 2D feature space with three classes that have normal distributions with different means and covariances, as shown in Figure 3.181(a). Again, there are three regions in the 2D feature space in which the respective class has the highest probability, as shown in Figure 3.181(b). Note that now there are 1D curves that separate the regions in the feature space from each other.

As the above examples suggest, the Bayes decision rule partitions the feature space into mutually disjoint regions. This is obvious from the definition in Eq. (3.249): each region corresponds to the part of the feature space in which the class ωi has the highest a posteriori probability. As also suggested by the above examples, the regions are separated by (n − 1)-dimensional hypersurfaces (points for n = 1 and curves for n = 2, as in Figures 3.180 and 3.181). The hypersurfaces that separate the regions from each other are given by the points at which two classes are equally probable, i.e., by [image: image].



3.15.1.2 Classifier Types

According to the above discussion, we can identify two different types of classifiers. The first type of classifier tries to estimate the a posteriori probabilities, typically via Bayes’ theorem, from the a priori probabilities of the different classes. In contrast, the second type of classifier tries to construct the separating hypersurfaces between the classes. In Sections 3.15.2 and 3.15.3, we will discuss representatives for both types of classifier.



3.15.1.3 Training, Test, and Validation Sets

All classifiers require a method with which the probabilities or separating hypersurfaces are determined. To do this, a training set is required. The training set is a set of sample feature vectors xk with corresponding class labels ωk. For example, for OCR, the training set is a set of character samples from which the corresponding feature vectors can be calculated, along with the interpretation of the respective character. The training set should be representative of the data that can be expected in the application. For example, for OCR, the characters in the training set should contain the variations that will occur later, e.g., different character sets, stroke widths, noise, etc. Since it is often difficult to obtain a training set with all variations, the image processing system must provide means to extend the training set over time with samples that are collected in the field, and should optionally also provide means to artificially add variations to the training set.

Furthermore, to evaluate the classifier, in particular how well it has generalized the decision rule from the training samples, it is indispensable to have a test set that is independent of the training set. This test set is essential to determine the error rate that the classifier is likely to have in the application. Without an independent test set, no meaningful statement about the quality of the classifier can be made.

Finally, it is frequently necessary to adjust some hyper-parameters of a classifier to achieve optimal performance (e.g., the number of hidden units in the classifier of Section 3.15.3.2). For this purpose, a third data set, the validation set, must be used. It must be independent of the training and test sets. To determine the optimal hyper-parameters, the error rate on the validation set is optimized.



3.15.1.4 Novelty Detection

The Bayes decision rule in Eq. (3.249) assigns every feature vector x to exactly one class ωi. It therefore makes a closed-world assumption: the training data is representative of all the classes that exist. Unfortunately, reality is often more complex in that we might encounter feature vectors that do not belong to any of the trained classes. For example, in an OCR application we might have trained a classifier to recognize only digits. Suppose the algorithm has segmented a character that actually is an “M” or a speck of dirt that actually is not a character at all. The Bayes decision rule will assign the character to one of the ten digits since these ten classes are all that it knows about. What is even worse, the probability P (ωi|x) for the selected class will typically be very close to 1 in such cases (since, by Eq. (3.247), P (ωi|x) will be close to 1 whenever P (x|ωi)P (ωi) is significantly larger than all the other P (x|ωj)P (ωj), no matter how small P (x|ωi)P (ωi) actually is).

In industrial applications, it is frequently essential that the classifier is able to recognize that a feature vector does not belong to any of the trained classes, i.e., that it does not sufficiently resemble any of the training data. In these cases, the feature vector should be rejected as not belonging to any class. This problem is called novelty detection. In the above example, the segmented “M” or the speck of dirt should be rejected as not being a digit.

The capability for novelty detection is an important characteristic of a classifier. We will note below whether a particular classifier is capable of novelty detection or how it can be modified to have this capability.




3.15.2 Classifiers Based on Estimating Class Probabilities

The classifiers that are based on estimating probabilities, more precisely probability densities, are called Bayes classifiers because they try to implement the Bayes decision rule via the probability densities. The first problem they have to solve is how to obtain the probabilities P (ωi) of the occurrence of the class ωi. There are two basic strategies for this. The first strategy is to estimate P (ωi) from the training set. For this, the training set must be representative not only in terms of the variations of the feature vectors but also in terms of the frequencies of the classes. Since this second requirement is often difficult to ensure, an alternative strategy for the estimation of P (ωi) is to assume that each class is equally likely to occur, and hence to use P (ωi) = 1/m. In this case, the Bayes decision rule reduces to classification according to the a priori probabilities since P (ωi|x) ~ P (x|ωi) should now be maximized.

The remaining problem is how to estimate P (x|ωi). In principle, this could be done by determining the histogram of the feature vectors of the training set in the feature space. To do so, we could subdivide each dimension of the feature space into b bins. Hence, the feature space would be divided into bn bins in total. Each bin would count the number of occurrences of the feature vectors in the training set that lie within this bin. If the training set and b are large enough, the histogram would be a good approximation to the probability density P (x|ωi). Unfortunately, this approach cannot be used in practice because of the so-called curse of dimensionality: the number of bins in the histogram is bn, i.e., its size grows exponentially with the dimension of the feature space. For example, if we use the 81 features described in Section 3.14.2 and subdivide each dimension into a modest number of bins, e.g., b = 10, the histogram would have 1081 bins, which is much too large to fit into any computer memory.


3.15.2.1 k Nearest-Neighbor Classifiers

To obtain a classifier that can be used in practice, we can note that in the histogram approach, the size of the bin is kept constant while the number of samples in the bin varies. To get a different estimate for the probability of a feature vector, we can keep the number k of samples of class ωi constant while varying the volume v(x, ωi) of the region in space around the feature vector x that contains the k samples. Then, if there are t feature vectors in the training set, the probability of occurrence of the class ωi is approximately given by

(3.250) [image: image]

Since the volume v(x, ωi) depends on the k nearest neighbors of class ωi, this type of density estimation is called k nearest-neighbor density estimation.

In practice, this approach is often modified as follows. Instead of determining the k nearest neighbors of a particular class and computing the volume v(x, ωi), the k nearest neighbors in the training set of any class are determined. The feature vector x is then assigned to the class that has the largest number of samples among the k nearest neighbors. This classifier is called the k nearest-neighbor (kNN) classifier. For k = 1, we obtain the nearest-neighbor (NN) classifier. It can be shown that the NN classifier has an error probability that is at most twice as large as the error probability of the optimal Bayes classifier that uses the correct probability densities (Theodoridis and Koutroumbas, 2009), i.e., PB ≤ PNN ≤ 2PB. Furthermore, if PB is small, we have PNN ≈ 2PB and [image: image]. Hence, the 3NN classifier is almost as good as the optimal Bayes classifier. Nevertheless, kNN classifiers are difficult to use in practice because they require that the entire training set (which can easily contain several hundred thousand samples) is stored with the classifier. Furthermore, the search for the k nearest neighbors is time consuming, even if optimized data structures are used to find exact (Friedman et al., 1977) or approximate (Arya et al., 1998; Muja and Lowe, 2014) nearest neighbors.

To provide the kNN classifier with the capability for novelty detection, one can, for example, use the distance of the feature vector x to the closest training sample. If this distance is too large, x is rejected. The distance threshold constitutes a hyper-parameter. Therefore, it should be determined using a validation set (see Section 3.15.1.3). For this to work, it is essential that the validation set includes representative samples of non-classes. This is often difficult to achieve in practice. A further problem occurs if the feature vector contains elements in different units. In this case, the Euclidean distance is not semantically meaningful. For these reasons, the distance threshold is often set in an ad-hoc fashion or novelty detection is not used.



3.15.2.2 Gaussian Mixture Model Classifiers

As we have seen from the above discussion, direct estimation of the probability density function is not practicable, either because of the curse of dimensionality for histograms or because of efficiency considerations for the kNN classifier. To obtain an algorithm that can be used in practice, we can assume that P (x|ωi) follows a certain distribution, e.g., an n-dimensional normal distribution:

(3.251) [image: image]

With this, estimating the probability density function reduces to the estimation of the parameters of the probability density function. For the normal distribution, the parameters are the mean vector μi and the covariance matrix Σi of each class. Since the covariance matrix is symmetric, the normal distribution has (n2 + 3n)/2 parameters in total. They can, for example, be estimated via the standard maximum likelihood estimators

(3.252) [image: image]

Here, ni is the number of samples for class ωi, while xi,j denotes the samples for class ωi.

While the Bayes classifier based on the normal distribution can be quite powerful, often the assumption that the classes have a normal distribution does not hold in practice. In OCR applications, this happens frequently if characters in different fonts are to be recognized with the same classifier. One striking example of this is the shapes of the letters “a” and “g” in different fonts. For these letters, two basic shapes exist: a vs. [image: images] and g vs. [image: images]. It is clear that a single normal distribution is insufficient to capture these variations. In these cases, each font will typically lead to a different distribution. Hence, each class consists of a mixture of li different densities P (x|ωi, j), each of which occurs with probability Pi,j:

(3.253) [image: image]

Typically, the mixture densities P (x|ωi, j) are assumed to be normally distributed. In this case, Eq. (3.253) is called a Gaussian mixture model (GMM). If we knew to which mixture density each sample belonged, we could easily estimate the parameters of the normal distribution with the above maximum likelihood estimators. Unfortunately, in real applications we typically do not have this knowledge, i.e., we do not know j in Eq. (3.253). Hence, determining the parameters of the mixture model requires the estimation of not only the parameters of the mixture densities but also the mixture density labels j. This is a much harder problem, which can be solved by the expectation maximization (EM) algorithm. The interested reader is referred to Nabney (2002); Theodoridis and Koutroumbas (2009) for details.

Another problem in the mixture model approach is that we need to specify how many mixture densities there are in the mixture model, i.e., we need to specify li in Eq. (3.253). This is quite cumbersome to do manually. To solve this problem, algorithms that compute li automatically have been proposed. The interested reader is referred to (Figueiredo and Jain, 2002; Wang et al., 2004) for details.

The GMM classifier is, in principle, inherently capable of novelty detection by using the value of P (x) in Eq. (3.248) to reject feature vectors x that are too unlikely. The problem with this approach is that P (x) is a probability density. Consequently, the range of P (x) is basically unrestricted and depends on the scaling of the feature space. Thus, it is difficult to select the threshold for rejecting feature vectors in practice.

A method for novelty detection that is easier to use can be obtained as follows. A kσ error ellipsoid is defined as a locus of points for which

(3.254) [image: image]

In the one dimensional case, this is the interval [μ − kσ, μ + kσ]. For a 1D Gaussian distribution, ≈ 65% of the occurrences of the random variable are within this range for k = 1, ≈ 95% for k = 2, ≈ 99% for k = 3, etc. Hence, the probability that a Gaussian distribution will generate a random variable outside this range is ≈ 35%, ≈ 5%, and ≈ 1%, respectively. This probability is called the kσ probability and is denoted by P (k). For Gaussian distributions, the value of P (k) can be computed numerically. For GMMs, the kσ probability of a single class ωi is computed as

(3.255) [image: image]

where [image: image] With this, the kσ probability over all classes can be computed as

(3.256) [image: image]

The advantage of Pkσ(x) over P (x) is that Pkσ(x) has a well-defined range that can be interpreted easily: [0, 1]. Consequently, the rejection threshold can be selected in an intuitive manner.

Figure 3.182 displays an example GMM with one Gaussian per class. The feature space is 2D. Training samples were generated by uniformly sampling points from three ellipses, as shown in Figure 3.182(a). The likelihoods P (x|ωi)P (ωi), the probability density P (x), and the a posteriori probabilities P (ωi|x) are displayed in Figures 3.182(f)–(h). The range of P (x) is [0, 9.9 × 10−5]. Note that for higher-dimensional feature spaces, it is impossible to perform an exhaustive plot like the one in Figure 3.182(e). Therefore, in practice it is difficult to determine the range of P (x) and hence a suitable threshold for novelty detection based on P (x). The range of P (ωi|x) is [0, 1]. Note that P (ωi|x) has a value close to 1 for an entire sector of the feature space, even for feature values that are very far from the training samples. The classification result without rejection (i.e., without novelty detection) is shown in Figure 3.182(i). Every point in the feature space is assigned to a class, even if it lies arbitrarily far from the training samples. The value of Pkσ(x) (range: [0, 1]) is shown in Figure 3.182(j), while the classification result with a rejection threshold of P = 0.01 is shown in Figure 3.182(k). By using the kσ probability, the selection of the rejection threshold is relatively straightforward.

[image: image]
Figure 3.182 Visualization of the different probabilities and classification results for an example GMM with one Gaussian per class. (a) Samples in a 2D feature space for the three classes, which are visualized by three gray levels. (b) P (x|ω1)P (ω1). (c) P (x|ω2)P (ω2). (d) P (x|ω3)P (ω3). (e) P (x). The range of P (x) is [0, 9.9 × 10−5]. (f) P (ω1|x). (g) P (ω2|x). (h) P (ω3|x). The range of P (ωi|x) is [0, 1]. (i) Classification of the feature space into the three classes without rejection (i.e., without novelty detection). (j) Pkσ(x). The range of P (x) is [0, 1]. (k) Classification of the feature space into the three classes with rejection with a threshold of P = 0.01.





3.15.3 Classifiers Based on Constructing Separating Hypersurfaces


3.15.3.1 Single-Layer Perceptrons

Let us now turn our attention to classifiers that construct separating hypersurfaces between the classes. Of all possible surfaces, the simplest ones are planes. Therefore, it is instructive to consider this special case first. Planes in the n-dimensional feature space are given by

(3.257) [image: image]

Here, x is an n-dimensional vector that describes a point, while w is an n-dimensional vector that describes the normal vector to the plane. This equation is linear. Because of this, classifiers based on separating hyperplanes are called linear classifiers.

Let us first consider the problem of classifying two classes with the plane. We can assign a feature vector to the first class ω1 if x lies on one side of the plane, while we can assign it to the second class ω2 if it lies on the other side of the plane. Mathematically, the test on which side of the plane a point lies is performed by looking at the sign of w┬x + b. Without loss of generality, we can assign x to ω1 if w┬x + b > 0, while we assign x to ω2 if w┬x + b < 0.

For classification problems with more than two classes, we construct m separating planes (wi, bi) and use the following classification rule (see Theodoridis and Koutroumbas, 2009):

(3.258) [image: image]

Note that, in this case, the separating planes do not have the same meaning as in the two-class case, where the plane actually separates the data. The interpretation of Eq. (3.258) is that the plane is chosen such that the feature vectors of the correct class have the largest positive distance from the plane of all feature vectors.

Linear classifiers can also be regarded as neural networks, as shown in Figure 3.183 for the two-class and n-class cases. The neural network has processing units (neurons) that are visualized by circles. They first compute the linear combination of the feature vector x and the weights w: w┬x + b. Then, a nonlinear activation function f is applied. For the two-class case, the activation function is simply sgn(w┬x + b), i.e., the side of the hyperplane on which the feature vector lies. Hence, the output is mapped to its essence: −1 or +1. This type of activation function essentially thresholds the input value. For the n-class case, the activation function f is typically chosen such that input values < 0 are mapped to 0, while input values ≤ 0 are mapped to 1. The goal in this approach is that a single processing unit returns the value 1, while all other units return the value 0. The index of the unit that returns 1 indicates the class of the feature vector. Note that the plane in Eq. (3.258) needs to be modified for this activation function to work since the plane is chosen such that the feature vectors have the largest distance from the plane. Therefore, [image: image] is not necessarily < 0 for all values that do not belong to the class. Nevertheless, the two definitions are equivalent. Because the neural network has one layer of processing units, this type of neural network is also called a single-layer perceptron.

[image: image]
Figure 3.183 The architecture of a linear classifier expressed as a neural network (single-layer perceptron). (a) A two-class neural network. (b) An n-class neural network. In both cases, the neural network has a single layer of processing units that are visualized by circles. They first compute the linear combination of the feature vector and the weights. After this, a nonlinear activation function is computed, which maps the output to −1 or +1 (two-class neural network) or 0 or 1 (n-class neural network).


[image: image]
Figure 3.184 A linear classifier is not able to represent the XOR function because the two classes, corresponding to the two outputs of the XOR function, cannot be separated by a single line.


While linear classifiers are simple and easy to understand, they have very limited classification capabilities. By construction, the classes must be linearly separable, i.e., separable by a hyperplane, for the classifier to produce the correct output. Unfortunately, this is rarely the case in practice. In fact, linear classifiers are unable to represent a simple function like the XOR function, as illustrated in Figure 3.184, because there is no line that can separate the two classes. Furthermore, for n-class linear classifiers, there is often no separating hyperplane for each class against all the other classes, although each pair of classes can be separated by a hyperplane. This happens, for example, if the samples of one class lie completely within the convex hull of all the other classes.



3.15.3.2 Multilayer Perceptrons

To obtain a classifier that is able to construct more general separating hypersurfaces, one approach is simply to add more layers to the neural network, as shown in Figure 3.185. This architecture is called a multilayer perceptron (MLP). Each layer first computes the linear combination of the feature vector or the results from the previous layer:

(3.259) [image: image]

Here, [image: image] is the feature vector, while [image: image] with l ≥ 1, is the result vector of layer l. The coefficients [image: images] and [image: images] are the weights of layer l. Then, the results are passed through a nonlinear activation function

(3.260) [image: image]

Let us assume for the moment that the activation function in each processing unit is the threshold function that is also used in the single-layer perceptron, i.e., the function that maps input values < 0 to 0 while mapping input values ≥ 0 to 1. Then, it can be seen that the first layer of processing units maps the feature space to the corners of the hypercube {0, 1}p, where p is the number of processing units in the first layer. Hence, the feature space is subdivided by hyperplanes into half-spaces (Theodoridis and Koutroumbas, 2009). The second layer of processing units separates the points on the hypercube by hyperplanes. This corresponds to intersections of half-spaces, i.e., convex polyhedra. Hence, the second layer is capable of constructing the boundaries of convex polyhedra as the separating hypersurfaces (Theodoridis and Koutroumbas, 2009). This is still not general enough, however, since the separating hypersurfaces might need to be more complex than this. If a third layer is added, the network can compute unions of the convex polyhedra (Theodoridis and Koutroumbas, 2009). Hence, three layers are sufficient to approximate any separating hypersurface arbitrarily closely if the threshold function is used as the activation function.

[image: image]
Figure 3.185 The architecture of a multilayer perceptron. The neural network has multiple layers of processing units that are visualized by circles. They compute the linear combination of the results of the previous layer and the network weights, and then pass the results through a nonlinear activation function.


In practice, the above threshold function is rarely used because it has a discontinuity at x = 0, which is detrimental for the determination of the network weights by numerical optimization. Instead, often a sigmoid activation function is used, e.g., the logistic function (see Figure 3.186(a))

(3.261) [image: image]

Similar to the hard threshold function, it maps its input to a value between 0 and 1. However, it is continuous and differentiable, which is a requirement for most numerical optimization algorithms. Another choice for the activation functions is to use the hyperbolic tangent function (see Figure 3.186(b))

(3.262) [image: image]

in all layers except the output layer (Bishop, 1995). In the output layer, the softmax activation function is used (see Figure 3.186(c))

(3.263) [image: image]

The hyperbolic tangent function behaves similarly to the logistic function. The major difference is that it maps its input to values between −1 and +1. There is experimental evidence that the hyperbolic tangent function leads to faster training of the network than the logistic function (Bishop, 1995). In the output layer, the softmax function maps the input to the range [0, 1], as desired. Furthermore, it ensures that the output values sum to 1, and hence have the same properties as a probability distribution (Bishop, 1995). With any of these choices of the activation function, it can be shown that two layers are sufficient to approximate any separating hypersurface and, in fact, any output function with values in [0, 1], arbitrarily closely (Bishop, 1995). The only requirement for this is that there is a sufficient number of processing units in the first layer (the “hidden layer”).

[image: image]
Figure 3.186 (a) Logistic activation function (3.261). (b) Hyperbolic tangent activation function (3.262). (c) Softmax activation function (3.263) for two classes.


After having discussed the architecture of the MLP, we can now examine how the network is trained. Training the network means that the weights [image: images] and [image: images] (l [image: image] {1, 2}) of the network must be determined. Let us denote the number of input features by ni, the number of hidden units (first layer units) by nh, and the number of output units (second layer units) by no. Note that ni is the dimensionality of the feature vector, while no is the number of classes in the classifier. Hence, the only free hyper-parameter is the number nh of units in the hidden layer. There are

(3.264) [image: image]

weights in total. For example, if ni = 81, nh = 40, and no = 10, there are 3690 weights that must be determined. It is clear that this is a very complex problem and that we can hope to determine the weights uniquely only if the number of training samples is of the same order of magnitude as the number of weights.

As described above, the training of the network is performed based on a training set, which consists of sample feature vectors xk with corresponding class labels ωk, for k = 1, …, l. The sample feature vectors can be used as they are. The class labels, however, must be transformed into a representation that can be used in an optimization procedure. As described above, ideally we would like to have the MLP return a 1 in the output unit that corresponds to the class of the sample. Hence, a suitable representation of the classes is a target vector yk [image: image] {0, 1}no, chosen such that there is a 1 at the index that corresponds to the class of the sample and a 0 in all other positions. With this, we can train the network by minimizing the cross-entropy error of the outputs of the network on all the training samples (Bishop, 1995). In the notation of Eq. (3.260), the training minimizes

(3.265) [image: image]

Here [image: image] and yk,j denote the jth element of the output vector [image: image] and target vector yk, respectively. Note that [image: image] implicitly depends on all the weights [image: image] and [image: image] of the MLP. Hence, minimization of Eq. (3.265) determines the optimum weights. Numerical minimization algorithms, such as the conjugate gradient algorithm (Press et al., 2007; Bishop, 1995) or the scaled conjugate gradient algorithm (Bishop, 1995), can be used to minimize Eq. (3.265).

Figures 3.187(a)–(e) show an example MLP with ni = 2, nh = 5, and no = 3 applied to the same problem as in Figure 3.182 (see Section 3.15.2.2). Training samples were generated by uniformly sampling points from three ellipses, as shown in Figure 3.187(a). The resulting output activations for classes 1–3 are displayed in Figures 3.187(b)–(d). Note that the output activations show a qualitatively similar behavior as the a posteriori probabilities P (ωi|x) of the GMM classifier (see Figures 3.182(f)–(h)): they have a value close to 1 for an entire sector of the feature space, even for feature values that are very far from the training samples. In fact, the only places where they do not have a value of 0 or 1 are the regions of the feature space where the training samples overlap. Consequently, the value of the output activations cannot be used for rejecting feature vectors. The classification result is shown in Figure 3.187(e). Every point in the feature space is assigned to a class, even if it lies arbitrarily far from the training samples. This shows that MLPs, as described so far, are incapable of novelty detection.

Another property that is striking about Figures 3.187(b)–(d) is that the output activations change their values abruptly, in distinct contrast to the outputs of the GMM classifier (see Figure 3.182). This can result in unintuitive behavior. Let us illustrate the problem by way of an OCR example. The letter “B” and the number “8” can look relatively similar in some fonts. Now suppose the MLP must classify a slightly distorted “B” that lies somewhere between the training samples for the classes “B” and “8” in the feature space, i.e., in the range of the feature space that was not covered by any training samples. (You might want to imagine that class 1 in Figure 3.187(b) corresponds to “B,” class 2 in Figure 3.187(c) corresponds to “8,” and the “B” in question lies somewhere above the two respective ellipses in Figure 3.187(a) in the vicinity of the class boundary.) Because of the abrupt transitions between the classes, moving the feature vector slightly might change the “B” (with an output activation of 1) to an “8” (also with an output activation of 1). Since the feature space at the “B” in question was not covered in the training, the class boundary might not be correct. This, in itself is not a problem. What is a problem, however, is that the output activations will indicate that the MLP is highly confident of its classification results in both cases. If the MLP returns an “8” with a confidence of 1, this is very unintuitive. Given that the “B” in question is a slightly distorted version of a “B,” we would expect that the MLP returns a “B” with a lower confidence (e.g., 0.7) and, an “8” with a confidence different from 0 (e.g., 0.3).

[image: image]
Figure 3.187 Visualization of the different output activations and classification results for an example MLP. (a) Samples in a 2D feature space for three classes, which are visualized by three gray levels. (b)–(d) Output activations for classes 1–3. (e) Classification of the feature space into the three classes without rejection (i.e., without novelty detection). (f)–(h) Output activations for classes 1–3 when regularization and rejection class sampling is used to train the MLP. The latter step allows the MLP to perform novelty detection. (i) Classification of the feature space into the three classes with rejection.


The problem of the abrupt transitions between the classes is caused by the fact that the MLP weights are unrestricted in magnitude. The larger the weights are, the steeper the transitions between the classes become. To create smoother class transitions, the training of the MLP can be regularized by adding a weight decay penalty to the error function (see Nabney, 2002):

(3.266) [image: image]

where ε is given by Eq. (3.265) and the vector w denotes the union of all MLP weights [image: images] and [image: images] (l [image: image] {1, 2}). As described in Section 3.15.1.3, constitutes α hyper-parameter that can, for example, be determined based on a validation set. We will describe α different method to determine below.

One problem with a single weight decay parameter is that the resulting MLP will not be invariant to a linear rescaling of the training data (Bishop, 1995; Nabney, 2002). To achieve invariance, each logical subset of weights must be weighted with a separate weight decay penalty, resulting in the following error function (see Nabney, 2002):

(3.267) [image: image]

where w(l) and b(l) denote the union of all the weights [image: images] and [image: images] for the respective layer (l [image: image] {1, 2}). This leaves us with four hyper-parameters that must be determined. Doing a 4D optimization manually using a validation set is infeasible. Fortunately, the hyper-parameters can be determined automatically using a Bayesian framework called the evidence procedure. The details of the evidence procedure are beyond the scope of this book. The interested reader is referred to MacKay (1992a,c,b); Nabney (2002) for details.

As a practical matter, the evidence procedure must compute and invert the Hessian matrix (the second derivatives) of Eqs. (3.266) or (3.267). Storing the Hessian requires [image: image] of memory and inverting it requires [image: image] of computation time, where nw is given by Eq. (3.264). Therefore, the evidence procedure can only be used for MLPs with a moderate number of weights (up to about ten thousand) to keep the memory consumption and run time within reasonable bounds. Furthermore, it requires an outer iteration around the optimization of Eqs. (3.266) or (3.267) that adjusts the hyper-parameters. Therefore, the evidence procedure is significantly more time consuming than simply optimizing Eqs. (3.266) or (3.267) with fixed hyper-parameters (which has memory and runtime complexity O(nw)). Hence, for the single hyper-parameter in Eq. (3.266), it might be faster to determine α manually based on a validation set.

We now turn to the problem of novelty detection. As mentioned above, the architecture of the MLPs that we have discussed so far is incapable of novelty detection. The reason for this is the softmax function: if one of the xi has a value that is somewhat larger than the remaining components of the input vector to the softmax function, the component i will dominate the sum in the denominator of Eq. (3.263) and the output of the softmax function will be (close to) 1. This leads to the fact that at least one component of the output vector has a value of 1 in an entire region of the feature space that extends to infinity. For novelty detection, ideally we would like the output vector to behave in a fashion similar to P (x) or Pkσ(x) for GMMs (see Section 3.15.2.2). Hence, the output vector of an MLP should consist of all zeros for feature vectors that are too far from the training data. Then, we could simply threshold the output activations and reject feature vectors for which the maximum activation is too small. However, the above property of the softmax function prevents this strategy. Instead, we must add an additional class to the MLP for the sole purpose of novelty detection. We will call this class the “rejection class.” If the activation of the rejection class is larger than the largest activation of all the regular classes, the feature vector is novel and is rejected.

To train the rejection class, a strategy similar to the one proposed by Singh and Markou (2004) can be used. During the training of the MLP, random training vectors for the rejection class are generated. First, the bounding hyper-boxes around the training samples of each class are computed. This defines an inner shell, in which no training samples for the rejection class are generated. The hyper-boxes are then enlarged by a suitable amount in each direction. This defines an outer shell beyond which no training samples are generated. The region of the feature space between the inner and outer shell constitutes the region in which training samples for the rejection class are potentially generated. In 2D, this region looks like a rectangular “ring.” Therefore, we will refer to these regions as hyper-box rings. Each class possesses a hyper-box ring. Figure 3.187(a) makes clear that we cannot simply generate training samples for all hyper-box rings since the ring of one class may overlap with the samples of another class. Therefore, training samples are created only within the region of each hyper-box ring that does not overlap with the inner shell (the bounding hyper-box) of any other class.

The above strategy is required for low-dimensional feature spaces. For highdimensional feature spaces, an even simpler strategy can be used: the training samples for the rejection class are simply computed within the outer shell of each class. This works in practice since the data for a class is typically distributed relatively compactly within each class. For simplicity, we may assume that the data is distributed roughly spherically. In an n-dimensional space, the volume of a hyper-sphere of radius r is given by (rnπn/2)/Γ(n/2 + 1), whereas the hyper-cube around the hyper-sphere has a volume of (2r)n (here, Γ(x) denotes the gamma function). For large n, the ratio of the volume of the hyper-sphere to the volume of the hyper-cube is very small. For example, for n = 81, the ratio is approximately 10−53. Therefore, it is extremely unlikely that a random training sample for the rejection class falls within any of the regions of the regular classes.

Figures 3.187(f)–(h) show the output activations of an MLP with ni = 2, nh = 5, and no = 4 that was trained on the training data of Figure 3.187(a) with regularization (α = 10) and with a rejection class (class 4, output activations not shown) with random samples drawn from hyper-box rings around each class, as described above. Figure 3.187(i) shows the classification result of this MLP on the entire feature space. As desired, feature vectors that lie far from the training samples are rejected as novel. One noteworthy aspect is that the activations and classes roughly follow the data distribution of the regular training samples even though the rejection samples were generated in rectangular rings around each class.



3.15.3.3 Support Vector Machines

Another approach to obtaining a classifier that is able to construct arbitrary separating hypersurfaces is to transform the feature vector into a space of higher dimension, in which the features are linearly separable, and to use a linear classifier in the higher dimensional space. Classifiers of this type have been known for a long time as generalized linear classifiers (Theodoridis and Koutroumbas, 2009). One instance of this approach is the polynomial classifier, which transforms the feature vector by a polynomial of degree ≤ d. For example, for d = 2 the transformation is

(3.268) [image: image]

To show the potential impact of a nonlinear transformation, Figure 3.188(a) displays a 2D feature space with samples from two classes that are not linearly separable. The samples can be transformed into a 3D space with a quadratic transformation [image: image]. As shown in Figure 3.188(b), the classes can be separated in the transformed feature space by a hyperplane, i.e., they have become linearly separable.

[image: image]
Figure 3.188 (a) A 2D feature space with samples from two classes that are not linearly separable. (b) A transformation into a 3D feature space with a quadratic transformation makes the classes linearly separable.


The problem with this approach is again the curse of dimensionality: the dimension of the feature space grows exponentially with the degree d of the polynomial. In fact, there are [image: image] monomials of degree = d alone. Hence, the dimension of the transformed feature space is

(3.269) [image: image]

For example, if n = 81 and d = 5, the dimension is 34 826 301. Even for d = 2 the dimension already is 3402. Hence, transforming the features into the larger feature space seems to be infeasible, at least from an efficiency point of view. Fortunately, however, there is an elegant way to perform the classification with generalized linear classifiers that avoids the curse of dimensionality. This is achieved by support vector machine (SVM) classifiers (Schölkopf and Smola, 2002; Christianini and Shawe-Taylor, 2000).

Before we can examine how SVMs avoid the curse of dimensionality, we must take a closer look at how the optimal separating hyperplane can be constructed. Let us consider the two-class case. As described in Eq. (3.257) for linear classifiers, the separating hyperplane is given by w┬x + b = 0. As noted in Section 3.15.3.1, the classification is performed based on the sign of w┬x + b. Hence, the classification function is

(3.270) [image: image]

[image: image]
Figure 3.189 The optimal separating hyperplane between two classes. The samples of the two classes are represented by the filled and unfilled circles. The hyperplane is shown by the solid line. The margin is shown by the dotted line between the two dashed lines that show the hyperplanes in which samples are on the margin, i.e., attain the minimum distance between the classes. The samples on the margin define the separating hyperplane. Since they “support” the margin hyperplanes, they are called support vectors.


Let the training samples be denoted by xi and their corresponding class labels by yi = ±1. Then, a feature is classified correctly if yi(w┬xi + b) > 0. However, this restriction is not sufficient to determine the hyperplane uniquely. This can be achieved by requiring that the margin between the two classes be as large as possible. The margin is defined as the closest distance of any training sample to the separating hyperplane.

Let us look at a small example of the optimal separating hyperplane, shown in Figure 3.189. If we want to maximize the margin (shown as a dotted line), there will be samples from both classes that attain the minimum distance to the separating hyperplane defined by the margin. These samples “support” the two hyperplanes that have the margin as the distance to the separating hyperplane (shown as the dashed lines). Hence, the samples are called the support vectors. In fact, the optimal separating hyperplane is defined entirely by the support vectors, i.e., a subset of the training samples:

(3.271) [image: image]

where αi > 0 if and only if the training sample is a support vector (Schölkopf and Smola, 2002). With this, the classification function can be written as

(3.272) [image: image]

Hence, to determine the optimal hyperplane, the coefficients αi of the support vectors must be determined. This can be achieved by solving the following quadratic programming problem (Schölkopf and Smola, 2002): maximize

(3.273) [image: image]

subject to

(3.274) [image: image]

(3.275) [image: image]

An efficient algorithm for solving this optimization problem was proposed by Platt (1999). Further speed improvements were described by Fan et al. (2005).

Note that in both the classification function (3.272) and the optimization function (3.273), the feature vectors x, xi, and xj only are present in the dot product.

We now turn our attention back to the case in which the feature vector x is first transformed into a higher dimensional space by a function Φ(x), e.g., by the polynomial function in Eq. (3.268). Then, the only change in the above discussion is that we substitute the feature vectors x, xi, and xj by their transformations Φ(x), Φ(xi), and Φ(xj). Hence, the dot products are simply computed in the higher dimensional space. The dot products become functions of two input feature vectors: Φ(x)┬Φ(x′). These dot products of transformed feature vectors are called kernels in the SVM literature and are denoted by k(x, x′) = Φ(x)┬Φ(x′). Hence, the decision function becomes a function of the kernel k(x, x′):

(3.276) [image: image]

The same happens with the optimization function Eq. (3.273).

So far, it seems that we do not gain anything from the kernel because we still must transform the data into a feature space of a prohibitively large dimension. The ingenious trick of SVM classification is that, for a large class of kernels, the kernel can be evaluated efficiently without explicitly transforming the features into the higher dimensional space, thus making the evaluation of the classification function (3.276) feasible. For example, if we transform the features by a polynomial of degree d, it easily can be shown that

(3.277) [image: image]

Hence, the kernel can be evaluated solely based on the input features without going to the higher dimensional space. This kernel is called a homogeneous polynomial kernel. As another example, the transformation by a polynomial of degree ≤ d can simply be evaluated as

(3.278) [image: image]

This kernel is called an inhomogeneous polynomial kernel. Further examples of possible kernels include the Gaussian radial basis function kernel

(3.279) [image: image]

and the sigmoid kernel

(3.280) [image: image]

This is the same function that is also used in the hidden layer of the MLP. With any of the above four kernels, SVMs can approximate any separating hypersurface arbitrarily closely.

The above training algorithm that determines the support vectors still assumes that the classes can be separated by a hyperplane in the higher dimensional transformed feature space. This may not always be achievable. For these cases, the training algorithm can be extended to handle a certain number of training samples that are classified incorrectly or lie between the margins (so-called margin errors). Thus, a margin error does not necessarily imply that a training sample is classified incorrectly. It may still lie on the correct side of the separating hyperplane. To handle margin errors, a parameter ν is introduced (ν is the Greek letter nu). The value of ν is an upper bound on the fraction of margin errors. It is also a lower bound on the fraction of support vectors in the training data. This extension of SVMs is called a ν-SVM (Schölkopf and Smola, 2002). To train a ν-SVM, the following quadratic programming problem must be solved: maximize

(3.281) [image: image]

subject to

(3.282) [image: image]

(3.283) [image: image]

(3.284) [image: image]

The decision function for ν-SVMs is still given by Eq. (3.276).

By its nature, SVM classification only can handle two-class problems. To extend SVMs to multiclass problems, two basic approaches are possible. The first strategy is to perform a pairwise classification of the feature vector against all pairs of classes and to use the class that obtains the most votes, i.e., is selected most often as the result of the pairwise classification. Note that this implies that m(m − 1)/2 classifications must be performed if there are m classes. This strategy is called “one-versus-one.” The second strategy is to perform m classifications of one class against the union of the rest of the classes. This strategy is called “one-versus-all.” From an efficiency point of view, the one-versus-all strategy may seem to be preferable since it depends linearly on the number of classes. However, in the one-versus-all strategy, typically there will be a larger number of support vectors than in the one-versus-one strategy. Since the run time depends linearly on the number of support vectors, this number must grow less than quadratically for the one-versus-all strategy to be faster.

[image: image]
Figure 3.190 Visualization of the classification results for two example SVMs. (a) Samples in a 2D feature space for three classes, which are visualized by three gray levels. (b) Classification of the feature space by a ν-SVM into the three classes without rejection (i.e., without novelty detection). (c) Classification result of an SVM that was configured for novelty detection. The feature vectors that have been classified as not novel are shown in dark gray. (d) Combination of the results of the SVMs in (b) and (c).


Figures 3.190(a) and (b) show an example ν-SVM with a Gaussian radial basis function kernel applied to the same problem as in Figures 3.182 and 3.187 (see Sections 3.15.2.2 and 3.15.3.2). The training samples are shown in Figure 3.190(a). Because of the large overlap of the training samples, ν was set to 0.25. To classify the three classes, the one-versus-one strategy was used. The resulting classes are displayed in Figure 3.190(b). Every point in the feature space is assigned to a class, even if it lies arbitrarily far from the training samples. This shows that SVMs, as discussed so far, are incapable of novelty detection.

To construct an SVM that is capable of novelty detection, the architecture of the SVM must be modified since in novelty detection there are no class labels yi. The basic idea is to construct a separating hypersurface around the training data that separates the training samples from the rest of the feature space. This effectively is a single-class classification problem: separate the known class from everything that is novel.

As for regular SVMs, the feature vectors are conceptually transformed into a higher-dimensional space. To determine the class boundary, a hyperplane is constructed in the higher-dimensional space that maximally separates the training samples from the origin. Not every kernel function can be used for this purpose. Gaussian radial basis functions can be used since they always return values > 0. Therefore, all transformed feature vectors lie in the same “octant” in the higher-dimensional space and are separated from the origin.

The above ideas are shown in Figure 3.191. The hyperplane is parameterized by its normal vector w and offset ρ. It is chosen such that the margin (the distance ρ/║w║ of the hyperplane to the origin) is maximal. As for the other SVMs, the decision function is specified solely in terms of the support vectors via the kernel:
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Figure 3.191 Novelty detection in SVMs is performed by transforming the feature vectors into a higher-dimensional space and separating the training samples from the origin by a hyperplane. The hyperplane is parameterized by its normal vector w and offset ρ. The separating hyperplane is chosen such that the margin (the distance ρ/║w║ of the hyperplane to the origin) is maximal.


A feature vector x is classified as novel if f (x) = −1.

As for ν-SVMs, it is useful to add a provision to the SVM that allows for some margin errors on the training data, e.g., to account for training data that may contain some outliers. For this purpose, the parameter ν is used. It is an upper bound for the fraction of outliers in the training data and a lower bound for the fraction of support vectors (Schölkopf and Smola, 2002). To train the SVM for novelty detection, the following quadratic programming problem must be solved: maximize
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subject to
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Figure 3.190(c) shows the results of novelty detection with an SVM that was trained on the union of the training samples in Figure 3.190(a) with ν = 0.001. The known class is displayed in dark gray, while all novel feature vectors are displayed in white. The class region tightly encloses the training samples. The results of combining novelty detection with the regular classification in Figure 3.190(b) is shown in Figure 3.190(d). Note that, in contrast to GMMs and MLPs, two separate SVMs are required for this purpose.



3.15.3.4 Convolutional Neural Networks

The classifiers we have discussed so far rely on the availability of features that are able to separate the classes. How these features are computed must be specified by a person who has knowledge of the application domain for which the classifier is used. For example, for OCR applications, features that were designed by domain experts are described in Section 3.14.2. Features that work well in one application domain do not necessarily work well in a different domain. Designing special features for each new application domain manually is very time-consuming and requires expert knowledge. Thus, it would be convenient if the classifier would not only learn, i.e., optimize, the actual classification but also the feature extraction. Ideally, it should be possible to train the classifier by merely using a set of images (without any feature extraction and preprocessing except for, potentially, zooming the images to a standard size and contrast-normalizing them) and the corresponding class labels.

As described in Section 3.15.3.2, MLPs with one hidden layer are universal approximators, i.e., they can, in theory, solve any classification problem. Therefore, we could simply try to train an MLP with a sufficient number of hidden units on the training images. This should result in an implicit feature representation being built up within the MLP. Unfortunately, the number of hidden units that are necessary for this kind of approach is typically too large to be used in practice (Goodfellow et al., 2016). To solve this problem, more hidden layers can be added to the MLP. With more layers, the MLP may achieve the same ability to solve a problem (the same capacity) with fewer parameters. Since MLPs can be regarded as becoming deeper the more layers are added, these networks are called “deep neural networks” and training them is called “deep learning” (Goodfellow et al., 2016).

While adding more layers helps to increase the capacity of an MLP and to learn the feature extraction, the architecture is not optimal in practice. Suppose we scale the input images of the classifier to 200 × 200 pixels. Thus, the input layer of the MLP has 40 000 features. As shown in Figure 3.185, all of the layers in an MLP are fully connected with each other. In particular, by Eq. (3.259), the first layer of the MLP has 40 000 × n1 weights and must compute a multiplication of this weight matrix with the input feature vector. The memory required to store the weight matrix and the time required to compute the matrix–vector product are too large for practical purposes. Therefore, it is essential to have a layer architecture that results in a more economical representation. One method to achieve this is to replace the matrix multiplication with a convolution operation (see Eq. (3.20)). Often, the operation that is actually used is a correlation (see Eq. (3.33); Goodfellow et al., 2016). However, this distinction is immaterial for the purposes of this section. Therefore, as is common practice, we will refer to these operations as convolutions throughout this section.

Equations (3.20) and (3.33) are only defined for single-channel images. Often, multichannel images are used as input. It is straightforward to extend Eqs. (3.20) and (3.33) for multichannel images by adding a sum over the channels. A filter of size s × s for an image with c channels therefore has cs2 filter parameters. Furthermore, as in MLPs, a bias parameter b is added after the convolution, resulting in a total number of cs2 + 1 weights.

To obtain a useful feature representation, a single convolution filter is insufficient. For this purpose, more filters, say nf, are required. Training a layer that performs convolutions therefore consists of optimizing the nf (cs2 + 1) filter coefficients.

When a single filter is applied to an image, the filter output is called a feature map in the context of deep learning. Applying the nf filters therefore results in nf feature maps. These feature maps collectively can be regarded as an nf-channel image. The feature maps can serve as the input of a subsequent layer of convolutions. Therefore, it is natural to replace the first few layers of a deep neural network by layers of convolutions. Such a network is called a convolutional neural network (CNN).

As described in Section 3.2.3.3, border treatment is an important aspect of any filter. In CNNs, one popular strategy is to compute the feature map only for the points for which the filter lies completely within the input feature map. This effectively reduces the size of the output feature map by s − 1 pixels horizontally and vertically. If this is not desired, a popular strategy is to use zero-padding (Goodfellow et al., 2016). For simplicity, we will assume in the following that the first strategy is used.

So far, we have assumed that the filters are applied to each position in the input feature map. To reduce the computational burden, it is also possible to apply the filter only at every rth position horizontally and vertically. The parameter r is called the stride of the filter. Using a filter stride r > 1 has the same effect as subsampling the output feature maps by a factor of r × r. For simplicity, we will assume r = 1 in the following.

As for MLPs (cf. Section 3.15.3.2), it is important that a nonlinear activation function is applied to the convolutions (which are linear). Instead of using the logistic or hyperbolic tangent activation functions, CNNs typically use the following simpler function (see Goodfellow et al., 2016)

(3.289) [image: image]

This function is nonlinear since negative inputs are clipped to 0. Units with this activation function are called rectified linear units (ReLUs). Like MLPs, the output layer of a CNN uses the softmax activation function. Neural networks with ReLUs are universal approximators (Goodfellow et al., 2016).

CNNs with multiple convolution layers aggregate information. To see this, let us assume a CNN with two convolution layers with filters of size s × s and t × t. We can see that the output feature map of the second convolution layer effectively computes a nonlinear filter of size (s + t − 1) × (s + t − 1) on the input image. The area of the input image over which a unit in a CNN effectively computes its output is called the receptive field of the unit. Each convolution layer in a CNN increases the receptive field and therefore aggregates information over a larger area of the input image.

To increase the aggregation capabilities of a CNN, it is often useful to add an explicit aggregation step to the architecture of the CNN. In the aggregation, the information of p × p pixels of a feature map is reduced to a single value. This step is called pooling. The most commonly used pooling function is to compute the maximum value of the p × p pixels. This is called max pooling (Goodfellow et al., 2016). Since the goal is to aggregate information, max pooling is typically performed with a filter stride of p. This is what we will assume in the following.

[image: image]
Figure 3.192 Example architecture of a CNN for OCR. A character is scaled to a 28 × 28 input image (I). The image is convolved using 20 filters of size 5 × 5, resulting in 20 feature maps (FM) of size 24 × 24. After this, ReLUs are applied and the feature maps are subsampled using 2 × 2 max pooling, resulting in 20 feature maps of size 12 × 12. These feature maps are convolved with 50 filters of size 5 × 5 × 20, followed by ReLUs and max pooling, resulting in 50 feature maps of size 4 × 4. These 800 features serve as the input of an MLP that consists of two fully connected (FC) layers: a hidden layer with 500 units and an output layer (O) with 82 units.


The architecture of CNNs typically consists of fixed building blocks that consist of a convolution stage, a nonlinear activation stage, and a pooling stage. There are two sets of terminology that are commonly used (Goodfellow et al., 2016). In one terminology, the combination of convolution, nonlinear activation, and pooling is called a “convolutional layer.” An alternative terminology is to call each of the above stages a layer of the CNN.

We now have the building blocks to construct an example CNN for OCR, shown in Figure 3.192. The architecture of this CNN is similar to that of the CNN proposed by LeCun et al. (1998). The input for the CNN is an image of the character that has been contrast normalized robustly and scaled to 28 × 28 pixels (see Section 3.14.2). In the first convolutional layer, 20 convolutions of size 5 × 5 are used, resulting in 20 feature maps of size 24 × 24. After this, ReLUs and 2 × 2 max pooling are applied, resulting in 20 feature maps of size 12 × 12. In the second convolutional layer, 50 convolutions of size 5 × 5 × 20, ReLUs, and 2 × 2 max pooling are used, resulting in 50 feature maps of size 4 × 4. These 800 features serve as the input of an MLP that consists of two fully connected layers: a hidden layer with 500 units and an output layer with 82 units, which enables the CNN to read digits, uppercase and lowercase characters, and several special characters like parentheses, commas, colons, etc.

CNNs have a very large number of parameters. Even the simple CNN in Figure 3.192 already has 467 152 parameters (520 for the first convolutional layer, 25 050 for the second convolutional layer, and 441 582 for the two fully connected layers). The ability of a CNN to solve complex problems increases with the depth of the CNN (Goodfellow et al., 2016). There are CNNs with tens or even hundreds of layers. These CNNs can have tens of millions of parameters. It is obvious that hundreds of thousands or even millions of training images are necessary to train a CNN from scratch. This creates a problem in practice since collecting and labeling data sets of this size can be very costly and therefore sometimes economically infeasible.

Experience has shown that, relatively independent of the application domain, training CNNs on large training sets results in the fact that the first few convolutional layers learn low-level feature extractors for edges, lines, points, etc. Therefore, to train a CNN with fewer training samples (albeit still tens of thousands), the following strategy can be used. First, the CNN is trained with a large training set, which must be available from a different application. This initializes the parameters of the convolutional layers. Then, the CNN is fine-tuned using the training set from the actual application. Optionally, the first few convolutional layers can be excluded from the training to preserve the low-level filters that were learned on the large training set.

To train CNNs, as for MLPs, the cross-entropy error in Eq. (3.265) is minimized. However, the fact that a large training set must be used to train CNNs leads to different training algorithms being used than for MLPs. For MLPs, typically the entire training set is used to compute the gradient of the cross-entropy error, which is then used in numerical minimization algorithms like the conjugate gradient or the scaled conjugate gradient algorithms (cf. Section 3.15.3.2). For CNNs, computing the gradient on the entire training set of millions of images is computationally too demanding. Furthermore, it is also wasteful since the precision with which the gradient can be determined is inversely proportional to the square root of the number of training images. Hence, using more training images offers an increasingly small benefit. Therefore, to train CNNs, an algorithm called stochastic gradient descent (SGD) is typically used (Goodfellow et al., 2016). This is a variant of the gradient descent algorithm that computes the gradient on a random subset of the training data at each iteration (optimization step). Each random subset of the training data is called a “minibatch.” In practice, the minibatch is sometimes not chosen randomly at each iteration. Instead, the training data is shuffled randomly and the gradient descent algorithm simply uses consecutive minibatches of the randomly shuffled training data, cycling back to the beginning of the data once it reaches the end of the data.

To minimize the error function, SGD takes a step of fixed size in the negtive gradient direction at each iteration. The step size is called the “learning rate” in the context of CNNs. It is an important hyper-parameter that must be set correctly for the training to be successful and fast. In practice, the learning rate must be decreased as the optimization progresses (Goodfellow et al., 2016).

Even if the learning rate is set appropriately, the training may still be too slow in practice because SGD has a tendency to take small zigzag steps towards the minimum of the error function. To prevent zigzagging, the method of momentum can be used. It modifies the current gradient by a weighted average of previous gradients to tweak the current descent direction into the direction of the previous descent directions. Effectively, this results in an adaptive learning rate and causes the minimum of the error function to be found faster (Goodfellow et al., 2016). There are a few other algorithms that determine the learning rate adaptively, e.g., AdaGrad or Adam. The interested reader is referred to Goodfellow et al. (2016) for details.

Because of the large number of parameters, there is a danger that CNNs overfit the training data, even if a large amount of training data is used. Therefore, as for MLPs (cf. Section 3.15.3.2), it is essential that CNNs are regularized during training. One popular approach is to use weight decay with a single hyper-parameter, as in Eq. (3.266). Furthermore, stopping the SGD algorithm early, i.e., before it has converged to the minimum, also can have a regularizing effect (Goodfellow et al., 2016). Another important strategy is to extend the training data set with systematic variations of the training samples. This is called “dataset augmentation.” For example, additional training samples can be generated by adding random noise to the existing training samples. Furthermore, the existing training samples can be altered by random or systematic geometric distortions. For example, for OCR, the training samples can be subjected to small random rotations. In addition, gray value dilations and erosions can be used to alter the stroke width of the characters. Further regularization strategies are described in Goodfellow et al. (2016).

Computing the output of a CNN on an image (either a training image or an image to be classified) is called “inference” or “forward pass.” Computing the gradient of the error function is called “backpropagation” or “backward pass.” Both operations are computationally very demanding, especially if a large number of convolutional layers is used. This leads to the fact that CNNs are often too slow for practical applications when used on CPUs. To achieve run times that are adequate for practical applications, currently graphics processing units (GPUs) are commonly used because they offer a significantly greater computing power than CPUs for this kind of algorithm. Having to use GPUs in machines creates its own set of problems, however. GPUs have a high power consumption and therefore must be cooled actively using fans. This makes it difficult to use them in harsh factory environments. Furthermore, the availability of a certain GPU model is typically very short, often only a few months to a few years. This is problematic for machine builders, who must ensure the availability and maintenance of their machines for many years, sometimes for decades. The few GPU models that are available over a long period are very expensive and therefore can raise machine costs substantially.

Like MLPs, CNNs are inherently incapable of novelty detection. Automatic novelty detection for CNNs is essentially an open research problem. The approach that was described in Section 3.15.3.2 cannot be used for CNNs since the input features (the images) are typically not distributed compactly in the feature space. Therefore, the bounding boxes around the features would be too loose to be useful. Furthermore, due to the high dimension of the feature space, the number of rejection samples would have to be extremely large, which would slow down the training too much. To equip CNNs with the capability of novelty detection, the most popular option is to train an explicit rejection class with manually or automatically collected training samples. The automatic collection is typically performed by cropping random sub-images from images that do not show any of the classes of interest. Alternatively, sub-images of images that show the classes of interest can be randomly cropped, while ensuring that the objects of interest are not contained in the sub-images.




3.15.4 Example of Using Classifiers for OCR

We conclude this section with an example that uses the ICs that we have already used in Section 3.4. In this application, the goal is to read the characters in the last two lines of the print in the ICs. Figures 3.193(a) and (b) show images of two sample ICs. The segmentation is performed with a threshold that is selected automatically based on the gray value histogram (see Figure 3.26). After this, the last two lines of characters are selected based on the smallest surrounding rectangle of the characters. For this, the character with the largest row coordinate is determined, and characters lying within an interval above this character are selected. Furthermore, irrelevant characters like the “–” are suppressed based on the height of the characters. The characters are classified with an MLP that has been trained with several tens of thousands of samples of characters on electronic components, which do not include the characters on the ICs in Figure 3.193. The result of the segmentation and classification is shown in Figures 3.193(c) and (d). Note that all characters have been read correctly.

[image: image]
Figure 3.193 (a), (b) Images of prints on ICs. (c), (d) Result of the segmentation of the characters (light gray) and the OCR (black). The images are segmented with a threshold that is selected automatically based on the gray value histogram (see Figure 3.26). Furthermore, only the last two lines of characters are selected. Additionally, irrelevant characters like the “–” are suppressed based on the height of the characters.









4
Machine Vision Applications


To emphasize the engineering aspects of machine vision, this chapter contains a wealth of examples and exercises that show how the machine vision algorithms discussed in Chapter 3 can be combined in non-trivial ways to solve typical machine vision problems. The examples are based on the machine vision software HALCON. As described in the preface, you can download all the applications presented in this chapter to get a hands-on experience with machine vision. Throughout this chapter, we will mention the location where you can find the example programs. We use “…” to indicate the directory into which you have installed the downloaded applications.


4.1 Wafer Dicing

Semiconductor wafers generally contain multiple dies that are arranged in a rectangular grid. To obtain single dies, the wafer must be diced at the gaps between the dies. Because these gaps are typically very narrow (< 100 µm), they must be located with a very high accuracy in order not to damage the dies during the cutting process.

In this application, we locate the center lines of the gaps on a wafer (see Figure 4.1). In the first step, we determine the width and height of the rectangular dies. The exact position of the dies, and hence the position of the gaps, can then be extracted in the second step.

The algorithms used in this application are:


	Fast Fourier transform (Section 3.2.4.2)

	Correlation (Section 3.2.4.1)

	Shape-based matching (Section 3.11.5.6)


The corresponding example program is:

…/machine_vision_book/wafer_dicing/wafer_dicing.hdev.

We assume that all dies have a rectangular shape and have the same size in the image, i.e., the camera must be perpendicular to the wafer. If this camera setup cannot be realized or if the lens produces heavy distortions, the camera must be calibrated and the images must be rectified (see Section 3.9). Furthermore, in wafer dicing applications, in general the wafer is horizontally aligned in the image. Consequently, we do not need to worry about the orientation of the dies in the image, which reduces the complexity of the solution.

[image: image]
Figure 4.1 Image of a wafer. Note that the dies are arranged in a rectangular grid, which is horizontally aligned.


4.1.1 Determining the Width and Height of the Dies

In the first step, the width and the height of the rectangular dies is determined by using autocorrelation. The autocorrelation of an image g is the correlation of the image with itself (g [image: image] g), and hence can be used to find repeating patterns in the image, which in our case is the rectangular structure of the die. As described in Section 3.2.4.1, the correlation can be computed in the frequency domain by a simple multiplication. This can be performed by the following operations:






rft_generic (WaferDies, ImageFFT, ’to_freq’, ’none’, ’complex’, Width)

correlation_fft (ImageFFT, ImageFFT, CorrelationFFT)

rft_generic (CorrelationFFT, Correlation, ’from_freq’, ’n’,

             ’real’, Width)






First, the input image is transformed into the frequency domain with the fast Fourier transform. Because we know that the image is real-valued, we do not need to compute the complete Fourier transform, but only one half, by using the real-valued Fourier transform (see Section 3.2.4.2). Then, the correlation is computed by multiplying the Fourier-transformed image with its complex conjugate. Finally, the resulting correlation, which is represented in the frequency domain, is transformed back into the spatial domain by using the inverse Fourier transform.

Figure 4.2(a) shows the result of the autocorrelation. The gray value of the pixel (r, c)┬ in the autocorrelation image corresponds to the correlation value that is obtained when shifting the image by (r, c)┬ and correlating it with the unshifted original image. Consequently, the pixel in the upper left corner (origin) of the image has a high gray value because it represents the correlation of the (unshifted) image with itself. Furthermore, if periodic rectangular structures of width and height (w, h) are present in the image, we also can expect a high correlation value at the position (w, h) in the autocorrelation image. Thus, by extracting the local maximum in the correlation image that is closest to the upper left corner, we directly obtain the size of the periodic structure from the position of the maximum. The local maxima can be extracted with subpixel precision by using the following lines of code:

[image: image]
Figure 4.2 (a) Autocorrelation of the wafer image. Higher gray values indicate higher correlation values. The ROI for the maximum extraction is visualized by the white rectangle. The local maxima are displayed as white crosses. The white circle indicates the local maximum that represents the die size. (b) Rectangle representing the extracted die size. Note that for visualization purposes, the rectangle is arbitrarily positioned in the center of the image.






gen_rectangle1 (Rectangle, 1, 1, Height/2, Width/2)

reduce_domain (Correlation, Rectangle, CorrelationReduced)

local_max_sub_pix (CorrelationReduced, ’gauss’, 2, 5000000, Row, Col)






Note that, with the first two operators, the ROI is restricted to the inner part of the correlation image, excluding a one-pixel-wide border. This prevents local maxima from being extracted at the image border. On the one hand, local maxima at the image border can only be extracted with a limited subpixel precision because not all gray values in the neighborhood can be used for subpixel interpolation. On the other hand, we would have to identify the two corresponding local maxima at the image border to determine the width and the height of the dies instead of identifying only one maximum in the diagonal direction. Additionally, the ROI can be restricted to the upper left quarter of the autocorrelation image. This is possible because the autocorrelation is an even function with respect to both coordinate axes when assuming that the wafer is horizontally aligned in the image. The ROI is visualized in Figure 4.2(a) by the white rectangle.

The resulting maxima are shown in Figure 4.2(a) as white crosses. From these maxima, the one that is closest to the origin can easily be selected by computing the distances of all maxima to the origin. It is indicated by the white circle in Figure 4.2(a). In our example, the size of the dies is (w, h) = (159.55, 83.86) pixels. For visualization purposes, a rectangle of the corresponding size is displayed in Figure 4.2(b).



4.1.2 Determining the Position of the Dies

The position of the dies can be determined by using HALCON’s shape-based matching (see Section 3.11.5.6). Since we have calculated the width and height of the dies, we can create an artificial template image that contains a representation of four adjacent dies:






LineWidth := 7

RefRow := round(0.5*Height)

RefCol := round(0.5*Width)

for Row := -0.5 to 0.5 by 1

    for Col := -0.5 to 0.5 by 1

        gen_rectangle2_contour_xld (Rectangle,

                                    RefRow+Row*DieHeight,

                                    RefCol+Col*DieWidth, 0,

                                    0.5*DieWidth-0.5*LineWidth,

                                    0.5*DieHeight-0.5*LineWidth)

        paint_xld (Rectangle, Template, Template, 0)

   endfor

endfor






To obtain a correct representation, we additionally have to know the line width LineWidth between the dies. The line width is assumed to be constant for our application because the distance between the camera and the wafer does not change. Otherwise, we would have to introduce a scaling factor that can be used to compute the line width based on the determined die size. First, four black rectangles of the appropriate size are painted into an image that previously has been initialized with a gray value of 128. The center of the four rectangles is arbitrarily set to the image center.






LineWidthFraction := 0.6

gen_rectangle2_contour_xld (Rectangle, RefRow, RefCol, 0,

                            0.5*LineWidthFraction*LineWidth, DieHeight)

paint_xld (Rectangle, Template, Template, 0)

gen_rectangle2_contour_xld (Rectangle, RefRow, RefCol, 0, DieWidth,

                            0.5*LineWidthFraction*LineWidth)

paint_xld (Rectangle, Template, Template, 0)

gen_rectangle2 (ROI, RefRow, RefCol, 0, DieWidth+5, DieHeight+5)

reduce_domain (Template, ROI, TemplateReduced)






After this, two additional black rectangles that reflect the non-uniform gray value of the lines are added, each of which covers 60% of the line width. Note that paint_xld paints the contour onto the background using anti-aliasing. Consequently, the gray value of a pixel depends on the fraction by which the pixel is covered by the rectangle. For example, if only half of the pixel is covered, the gray value is set to the mean gray value of the background and the rectangle. The last rectangle ROI represents the ROI that is used to create the shape model that can be used for the matching. The resulting template image together with its ROI is shown in Figure 4.3(a). Finally, the shape model is created by using the following operation:

[image: image]
Figure 4.3 (a) Template used for matching. The ROI from which the shape model is created is displayed in white. (b) Best match found by shape-based matching.






create_shape_model (TemplateReduced, ’auto’, 0, 0, ’auto’, ’auto’,

                    ’ignore_local_polarity’, ’auto’, 5, ModelID)






The model can be used to find the position of the best match of the four adjacent dies in the original image that was shown in Figure 4.1:






NumMatches := 1

find_shape_model (WaferDies, ModelID, 0, 0, MinScore, NumMatches,

                  0.5, ’least_squares’, 0, Greediness, MatchRow,

                  MatchColumn, MatchAngle, MatchScore)






The match obtained is visualized in Figure 4.3(b). Note that, although more than one instance of our model is present in the image, we are only interested in the bestfitting match, and hence the parameter NumMatches is set to 1. Also note that the coordinates MatchRow and MatchColumn are obtained with subpixel accuracy.

In the last step, the cutting lines can be computed based on the position of the found match, e.g., by using the following lines of code:






NumRowMax := ceil(Height/DieHeight)

NumColMax := ceil(Width/DieWidth)

for RowIndex := -NumRowMax to NumRowMax by 1

    RowCurrent := MatchRow+RowIndex*DieHeight

    gen_contour_polygon_xld (CuttingLine, [RowCurrent,RowCurrent],

                             [0,Width-1])

    dev_display (CuttingLine)

endfor

for ColIndex := -NumColMax to NumColMax by 1

    ColCurrent := MatchColumn+ColIndex*DieWidth

    gen_contour_polygon_xld (CuttingLine, [0,Height-1],

                             [ColCurrent,ColCurrent])

    dev_display (CuttingLine)

endfor






[image: image]
Figure 4.4 Cutting lines that can be used to slice the wafer.

First, the maximum number of cutting lines that might be present in the image in the horizontal and vertical directions is estimated based on the size of the image and of the dies. Then, starting from the obtained match coordinates MatchRow and MatchCol, parallel horizontal and vertical lines are computed using a step width of DieHeight and DieWidth, respectively. The result is shown in Figure 4.4.

To conclude this example, it should be noted that the proposed algorithm can also be used for wafers for which the dies have a different size or even a completely different appearance compared to the dies shown in this example. However, the algorithm requires that the size and the appearance of the gaps between the dies are known and constant. Therefore, for wafers with gaps that differ from the gaps in this example, a new appropriate template image would have to be created.



4.1.3 Exercises


	1) In the above application, we used the matching to find only the best-fitting match. Alternatively, the matching could be used to find all instances of the model in the image. Modify the program such that the cutting lines are computed based on all found matches.

	2) The above program assumes that the wafer is horizontally aligned in the image. However, for some applications this assumption is not valid. Modify the program so that it can also be used for images in which the wafer appears slightly rotated, e.g., by up to ±20°. Tip 1: By extracting two maxima in the correlation image, the size as well as the orientation of the dies can be computed. For this, it is easiest to rearrange the correlation image such that the origin is in the center of the image before extracting the maxima (for example, by using the operators crop_part and tile_images_offset). Tip 2: The model that is used for the matching must be generated in the corresponding orientation.






4.2 Reading of Serial Numbers

In this application, we read the serial number that is printed on a CD by using OCR. The serial number is printed along a circle that is concentric with the CD’s center. First, we rectify the image using a polar transformation to transform the characters into a standard position. Then, we segment the individual characters in the rectified image. In the last step, the characters are read by using a neural network classifier.

The algorithms used in this application are:


	Mean filter (Section 3.2.3.2)

	Dynamic thresholding (Section 3.4.1.3)

	Robust circle fitting (Section 3.8.2.2)

	Polar transformation (Section 3.3.4)

	Extraction of connected components (Section 3.4.2)

	Region features (Section 3.5.1)

	OCR (Section 3.14)

	Classification (Section 3.15)


The corresponding example program is:

…/machine_vision_book/reading_of_serial_numbers/reading_of_serial_numbers.hdev.

Figure 4.5 shows the image of the center part of the CD. The image was acquired using diffuse bright-field front light illumination (see Section 2.1.5.1). The characters of the serial number, which is printed in the outermost annulus, appear dark on a bright background.


4.2.1 Rectifying the Image Using a Polar Transformation

The first task is to determine the center of the CD and to compute the radius of the outer border of the outermost annulus. Based on this information, we will later rectify the image using a polar transformation. Because the outer border is darker than its local neighborhood, it can be segmented with a dynamic thresholding operation. To estimate the gray value of the local background, a 51 × 51 mean filter is applied. The filter size is chosen relatively large in order to suppress noise in the segmentation better. Because no neighboring objects can occur outside the annulus, we do not need to worry about the maximum filter size (see Section 3.4.1.3).

[image: image]
Figure 4.5 Image of the center part of a CD. The serial number is printed in the outermost annulus. For visualization purposes, it is highlighted with a white border.






mean_image (Image, ImageMean, 51, 51)

dyn_threshold (Image, ImageMean, RegionDynThresh, 15, ’dark’)

fill_up (RegionDynThresh, RegionFillUp)

gen_contour_region_xld (RegionFillUp, ContourBorder, ’border’)

fit_circle_contour_xld (ContourBorder, ’ahuber’, -1, 0, 0, 3, 2,

                        CenterRow, CenterColumn, Radius,

                        StartPhi, EndPhi, PointOrder)






All image structures that are darker than the estimated background by 15 gray values are segmented. The result of the mean filter and the segmented region are shown in Figure 4.6(a). Note that the border of the outer annulus is completely contained in the result. To find the outer border, we fill up the holes in the segmentation result. Then, the center of the CD and the radius of the outer border can be obtained by fitting a circle to the outer border of the border pixels, which can be obtained with gen_contour_region_xld. The circle that best fits the resulting contour points is shown in Figure 4.6(b).

Based on the circle center and the radius of the outer border, we can compute the parameters of the polar transformation that rectifies the annulus containing the characters:






AnnulusInner := 0.90

AnnulusOuter := 0.99






The inner and outer radii of the annulus to be rectified are assumed to be constant fractions (0.90 and 0.99, respectively) of the radius of the outer border. With this, we can achieve scale invariance in our application. In Figure 4.7, a zoomed part of the original image is shown. The fitted circle (solid line) and the inner and outer borders of the annulus (dashed lines) are overlaid in white. Note that the outer border of the annulus is chosen in such a way that the black line is excluded from the polar transformation, which simplifies the subsequent segmentation of the serial number.

[image: image]
Figure 4.6 (a) Mean image with the segmentation result of the dynamic thresholding operation overlaid in white. (b) Original image with the circle fitted to the border of the segmentation result overlaid in white. Holes in the segmentation result have previously been filled before the circle is fitted.

[image: image]
Figure 4.7 Zoomed part of the original image. The fitted circle (solid line) and the inner and outer borders of the annulus (dashed lines) that restrict the polar transformation are overlaid in white.

The width and height of the transformed image are chosen such that no information is lost, i.e., the image resolution is kept constant:

[image: image]
Figure 4.8 Annulus that contains the serial number transformed to polar coordinates. Note that for visualization purposes the transformed image is split into three parts, which from top to bottom correspond to the angle intervals [0, 2π/3) , [2π/3, 4π/3) , and [4π/3, 2π).






WidthPolar := 2*Pi*Radius*AnnulusOuter

HeightPolar := Radius*(AnnulusOuter-AnnulusInner)






Finally, the annulus arc that is to be transformed can be specified by its radius and angle interval:






RadiusStart := Radius*AnnulusOuter

RadiusEnd := Radius*AnnulusInner

AngleStart := 2*Pi-2*Pi/WidthPolar

AngleEnd := 0






Note that the start radius corresponds to the outer border of the annulus, while the end radius corresponds to its inner border. This ensures that the characters appear upright in the transformed image. Also note that the end angle is smaller than the start angle. This ensures that the characters can be read from left to right, since the polar transformation is performed in the mathematically positive orientation (counterclockwise). Finally, to avoid the first column of the transformed image being identical to the last column, we exclude the last discrete angle from the transformation. Now, we are ready to perform the polar transformation:






polar_trans_image_ext (Image, PolarTransImage,

                       CenterRow, CenterColumn,

                       AngleStart, AngleEnd,

                       RadiusStart, RadiusEnd,

                       WidthPolar, HeightPolar, ’bilinear’)






The center point of the polar transformation is set to the center of the CD. The transformed image is shown in Figure 4.8. Note that the characters of the serial number have been rectified successfully.



4.2.2 Segmenting the Characters

In the next step, OCR can be applied. As described in Section 3.14, OCR consists of two tasks: segmentation and classification. Consequently, we first segment the single characters in the transformed image. For a robust segmentation, we must compute the approximate size of the characters in the image:

[image: image]
Figure 4.9 Result of the dynamic thresholding operation for the three image parts of Figure 4.8. Note that the three parts are framed for a better visualization.






CharWidthFraction := 0.01

CharWidth := WidthPolar*CharWidthFraction

CharHeight := CharWidth






To maintain scale invariance, we compute the width of the characters as a constant fraction of the full circle, i.e., the width of the polar transformation. In this application, the width is approximately 1% of the full circle. Furthermore, the height of the characters is approximately the same as their width.

Because the characters are darker than their local neighborhood, we can use the dynamic thresholding again for the segmentation. In this case, the background is estimated with a mean filter that is twice the size of the characters:






mean_image (PolarTransImage, ImageMean, 2*CharWidth, 2*CharHeight)

dyn_threshold (PolarTransImage, ImageMean, RegionThreshold, 10, ’dark’)






The result of the thresholding operation is shown in Figure 4.9. Note that, in addition to the characters, several unwanted image regions are segmented. The latter can be eliminated by checking the values of appropriate region features of the connected components:






connection (RegionThreshold, ConnectedRegions)

select_shape (ConnectedRegions, RegionChar,

              [’height’,’width’,’row’], ’and’,

              [CharHeight*0.1, CharWidth*0.3, HeightPolar*0.25],

              [CharHeight*1.1, CharWidth*1.1, HeightPolar*0.75])

sort_region (RegionChar, RegionCharSort, ’character’, ’true’, ’row’)






In this application, three region features are sufficient to single out the characters: the region height, the region width, and the row coordinate of the center of gravity of the region. The minimum value for the height must be set to a relatively small value because we want to segment the hyphen in the serial number. Furthermore, the minimum width must be set to a small value to include characters like “I” or “1” in the segmentation. The respective maximum values can be set to the character size enlarged by a small tolerance factor. Finally, the center of gravity must be around the center row of the transformed image. Note that the latter restriction would not be reasonable if punctuation marks like “ . ” or “ , ” had to be read. To obtain the characters in the correct order, the connected components are sorted from left to right. The resulting character regions are displayed in Figure 4.10.

[image: image]
Figure 4.10 Segmented characters for the three image parts of Figure 4.8. The characters are displayed in three different gray values. Note that the three parts are framed for a better visualization.



4.2.3 Reading the Characters

In the last step, the segmented characters are classified, i.e., a symbolic label is assigned to each segmented region. HALCON provides several pretrained fonts that can be used for OCR. In this application, we use the pretrained font Industrial, which is similar to the font of the serial number:






read_ocr_class_mlp (’Industrial_Rej.omc’, OCRHandle)

do_ocr_multi_class_mlp (RegionCharSort, PolarTransImage, OCRHandle,

                        Class, Confidence)

SNString := sum(Class)






First, the pretrained OCR classifier is read from file. The classifier is based on an MLP (see Section 3.15.3.2). In addition to gray value and gradient direction features (see Section 3.14.2), a few region features were used to train the classifier (see Section 3.5.1). The result of the classification is a tuple of class labels that are returned in Class, one for each input region. For convenience reasons, the class labels are converted into a single string.

For visualization purposes, the character regions can be transformed back from polar coordinates into the original image:






polar_trans_region_inv (RegionCharSort, XYTransRegion,

                        CenterRow, CenterColumn,

                        AngleStart, AngleEnd,

                        RadiusStart, RadiusEnd,

                        WidthPolar, HeightPolar,

                        Width, Height, ’nearest_neighbor’)






In Figure 4.11, the original image, the transformed character region, and the result of the OCR are shown.



4.2.4 Exercises


	1) The described program assumes that the serial number does not cross the 0° border in the polar transformation. Extend the program so that this restriction can be discarded. Tip: One possibility is to determine the orientation of the CD in the image. Another possibility is to generate an image that holds two copies of the polar transformation in a row.


[image: image]
Figure 4.11 Result of the OCR overlaid as white text in the upper left image corner. The segmented character regions, which have been transformed back into the original image, are overlaid in white.


	2) In many applications, the segmentation of the characters is more difficult than in the described example. Some of the problems that might occur are discussed in Section 3.14. For such cases, HALCON provides the operator find_text, which eases the segmentation considerably. Modify the above program by replacing the segmentation and reading of the characters with this operator.





4.3 Inspection of Saw Blades

During the production process of saw blades, it is important to inspect the individual saw teeth to ensure that the shape of each tooth is within predefined limits. In such applications, high inspection speed with high inspection accuracy are the primary concerns.

Because in this application the essential information can be derived from the contour of the saw blades and the depth of the saw blade is small, we can take the images by using diffuse back lighting (see Section 2.1.5.4). Figure 4.12 shows an image of a saw blade that was taken with this kind of illumination. This simplifies the segmentation process significantly. First, the contour of the saw blade is extracted in the image. Then, the individual teeth are obtained by splitting the contour appropriately. Finally, for each tooth, the included angle between its two sides, i.e., the tooth face and the tooth back, is computed. This angle can then easily be compared to a reference value.

[image: image]
Figure 4.12 Image of a back-lit saw blade that is used for teeth inspection.

The algorithms used in this application are:


	Subpixel-precise thresholding (Section 3.4.3)

	Segmentation of contours into lines and circles (Section 3.8.4.2)

	Contour length (Section 3.5.3.1)

	Robust line fitting (Section 3.8.1.2)


The corresponding example program is:

…/machine_vision_book/saw_blade_inspection/saw_blade_inspection.hdev.


4.3.1 Extracting the Saw Blade Contour

Because we want to extract the included angles of the tooth sides with high accuracy, it is advisable to use subpixel-precise algorithms in this application. First, we want to obtain the subpixel-precise contour of the saw blade in the image. In Chapter 3 we have seen that two possible ways to extract subpixel-precise contours are subpixel thresholding (see Section 3.4.3) and subpixel edge extraction (see Section 3.7.3.5). Unfortunately, the threshold that must be specified when using subpixel-precise thresholding influences the position of the contour. Nevertheless, in our case applying subpixel-precise thresholding is preferable because it is considerably faster than the computationally expensive edge extraction. Because of the back-lit saw blades, the background appears white while the saw blade appears black in the image. Therefore, it is not difficult to find an appropriate threshold, for example by simply using a mean gray value, e.g., 128. Moreover, the dependence of the contour position on the threshold value can be neglected in this application, as we will see later. Hence, the contour, which is visualized in Figure 4.13, is obtained by the following operator:

[image: image]
Figure 4.13 (a) Contours that result from subpixel-precise thresholding. To provide better visibility of the extracted contours, the contrast of the image has been reduced. (b) Detail of (a) (original contrast).






threshold_sub_pix (Image, Border, 128)








4.3.2 Extracting the Teeth of the Saw Blade

In the next step, we get rid of all contour parts that are not part of the tooth sides:






segment_contours_xld (Border, ContoursSplit, ’lines_circles’, 5, 6, 4)

select_shape_xld (ContoursSplit, SelectedContours,

                  ’contlength’, ’and’ 30, 200)






First, the contour is split into line segments and circular arcs by using the algorithm described in Section 3.8.4.2. On the one hand, this enables us to separate the linear contour parts of the tooth sides from the circularly shaped gullets between adjacent teeth. On the other hand, because polygons in the Ramer algorithm are approximated by line segments, we can also separate the face and the back of each tooth from each other. The resulting contour parts are shown in Figure 4.14(a). In the second step, the length of each contour part so obtained is calculated as described in Section 3.5.3.1. Because we know the approximate size of the tooth sides, we can discard all contour parts that are shorter than 30 and longer than 200 pixels by using select_contours_xld.

[image: image]
Figure 4.14 (a) Contour parts that are obtained by splitting the original contour into circular arcs and line segments. The contour parts are displayed in three different gray values. (b) Remaining tooth sides obtained after eliminating contour parts that are too short or too long and after eliminating circular arcs.

Finally, we can exclude all circular arcs, which represent the gullets, from further processing because we are only interested in the line segments, which represent the tooth sides:






count_obj (SelectedContours, Number)

gen_empty_obj (ToothSides)

for Index2 := 1 to Number by 1

    select_obj (SelectedContours, SelectedContour, Index2)

    get_contour_global_attrib_xld (SelectedContour, ’cont_approx’, Attrib)

    if (Attrib == -1)

        concat_obj (ToothSides, SelectedContour, ToothSides)

    endif

endfor

sort_contours_xld (ToothSides, ToothSidesSorted, ’upper_left’,

                   ’true’, ’column’)






This can be achieved by querying the attribute ’cont_approx’ for each contour part, which was set in segment_contours_xld. For line segments, the attribute returned in Attrib is -1, while for circular arcs it is 1. The line segments correspond to the remaining tooth sides and are collected in the array ToothSides. They are shown in Figure 4.14(b). Finally, the tooth sides are sorted with respect to the column coordinate of the upper left corner of their surrounding rectangles. The sorting is performed in ascending order. Consequently, the resulting ToothSidesSorted are sorted from left to right in the image, which later enables us to easily group the tooth sides into pairs, and hence to obtain the face and the back of each saw tooth.



4.3.3 Measuring the Angles of the Teeth of the Saw Blade

In the next step, the orientation of the teeth’s sides is computed. The straightforward way to do this would be to take the first and the last contour point of the contour part, which represents a line segment, and compute the orientation of the line running through both points. Unfortunately, this method would not be robust against outliers. As can be seen from Figure 4.15(a), which shows a zoomed part of a saw tooth, the tooth tip is not necessarily a perfect peak. Obviously, the last point of the tooth side lies far from the ideal tooth back, which would falsify the computation of the orientation. Figure 4.15(b) shows a line that has the same start and end points as the contour of the tooth back shown in Figure 4.15(a). A better way to compute the orientation is to use all contour points of the line segment instead of only the end points and to identify outliers. This can be achieved by robustly fitting a line through the contour points as described in Section 3.8.1.2. We use the Tukey weight function with a clipping factor of 2σδ and five iterations:

[image: image]
Figure 4.15 (a) Zoomed part of a saw tooth. The contour part that represents the tooth back is displayed in white. (b) Line with the same start and end points as the contour part in (a). (c) Line robustly fitted to the contour part in (a).







fit_line_contour_xld (ToothSidesSorted, ’tukey’, -1, 0, 5, 2,

                      Rows1, Columns1, Rows2, Columns2, Nr, Nc, Dist)






The orientation of each fitted line can be computed with the following operation:






line_orientation (Rows1, Columns1, Rows2, Columns2, Orientations)






At this point we can see why the threshold dependence of the contour position, which is introduced by the subpixel-precise thresholding, can be neglected. If the threshold were changed, the contour points of the tooth side would be shifted in a direction perpendicular to the tooth side. Because this shift would be approximately constant for all contour points, the direction of the fitted line would not change.

In the last step, for each tooth, the included angle between its face and its back can be computed with the following operations:






for Index2 := Start to |Orientations|-1 by 2

    Angle := abs(Orientations[Index2-1]-Orientations[Index2])

    if (Angle > PI_2)

        Angle := PI-Angle

    endif

endfor






[image: image]
Figure 4.16 Three example teeth with the fitted lines from which the included angle is computed: (a) 41.35°; (b) 38.08°; (c) 41.64°. Note that the contrast of the images has been reduced for visualization purposes.

Because we have sorted the tooth sides from left to right, we can simply step through the sorted array by using a step size of 2 and select two consecutive tooth sides each time. This ensures that both tooth sides belong to the same tooth, of which the absolute angle difference can be computed. Finally, the obtained Angle is reduced to the interval [0, π/2]. In Figure 4.16, three examples of the computed tooth angles are displayed by showing the fitted lines from which the angle is computed. For visualization purposes, the two lines are extended up to their intersection point.



4.3.4 Exercise


	1) In the above program, only the angles of the tooth sides are computed. Often, it is also important to ensure that the teeth are of a perfect triangular shape, i.e., they do not show any indentations that exceed a certain size tolerance. Extend the program so that these irregularities of the tooth shape can be identified as well.






4.4 Print Inspection

Print inspection is used to guarantee the quality of prints on arbitrary objects. Depending on the type of material and the printing technology, different image acquisition setups are used. For transparent objects, diffuse bright-field back light illumination may be used, while for other objects, e.g., for embossed characters or braille print, a directed dark-field front light illumination is necessary.

In this application, we inspect the textual information as well as the wiring diagram on the surface of a relay. We check for smears and splashes as well as for missing or misaligned parts of the print.

The algorithms used in this application are:

[image: image]
Figure 4.17 (a) Image of a relay taken with diffuse front light bright-field illumination. (b) Reference image for which only the ROI is shown.


	2D edge extraction (Section 3.7.3)

	Gray value morphology (Section 3.6.2)

	Shape-based matching (Section 3.11.5.6)

	Image transformation (Section 3.3.2)

	Variation model (Section 3.4.1.4)



The corresponding example program is:

…/machine_vision_book/print_inspection/print_inspection.hdev.


4.4.1 Creating the Model of the Correct Print on the Relay

The image of a relay shown in Figure 4.17(a) was acquired with diffuse bright-field front light illumination (see Section 2.1.5.1). The printed textual information and the wiring diagram appear dark on the bright surface of the relay. Because we only want to check the print and not the boundary of the relay or the position of the print on the relay, a predefined, manually generated, ROI is used to reduce the domain of the image.






reduce_domain (Image, ROI, ImageReduced)






The reduced image (see Figure 4.17(b)) is used as the reference image. Because only small size and position tolerances are allowed, the comparison of images of correctly printed relays with the reference image will result in larger differences only near gray value edges of the reference image. For this reason, the allowed variations can be approximated by computing the edge amplitude from the reference image:






Sigma := 0.5

edges_image (ImageReduced, ImaAmp, ImaDir, ’canny’, Sigma, ’none’, 20, 40)

gray_dilation_rect (ImaAmp, VariationImage, 3, 3)






[image: image]
Figure 4.18 (a) Variation image derived from the reference image shown in Figure 4.17(b). (b) Detail of the variation image.

The reference image contains edges that lie close to each other. To minimize the influence of neighboring edges on the calculated edge amplitude, a small filter mask is used. For the Canny edge filter, σ = 0.5 corresponds to a mask size of 3 × 3 pixels. To broaden the area of allowed differences between the test image and the reference image, a gray value dilation is applied to the amplitude image. The resulting variation image is shown in Figure 4.18.

With the reference image and the variation image, we can create the variation model directly:






AbsThreshold := 15

VarThreshold := 1

create_variation_model (Width, Height, ’byte’, ’direct’, VarModelID)

prepare_direct_variation_model (ImageReduced, VariationImage,

                                VarModelID, AbsThreshold, VarThreshold)








4.4.2 Creating the Model to Align the Relays

For the comparison of the test image with the reference image, it is essential that the two images are perfectly aligned. To determine the transformation between the two images, robust template matching is used:






reduce_domain (Image, MatchingROI, Template)

create_shape_model (Template, 5, -rad(5), rad(10),

                    ’auto’, ’auto’, ’use_polarity’,

                    ’auto’, ’auto’, ShapeModelID)

area_center (MatchingROI, ModelArea, ModelRow, ModelColumn)






To speed up the matching, we use only selected parts of the print as template. These parts surround the area to be inspected to ensure that test images can be aligned with high accuracy. The shape model is created such that the test images may be rotated by ±5 degrees with respect to the reference image.



4.4.3 Performing the Print Inspection

With the above preparations, we are ready to check the test images. For each test image, we must determine the transformation parameters that align it with the reference image:






find_shape_model (Image, ShapeModelID, -rad(5), rad(10),

                  0.5, 1, 0.5, ’least_squares’, 0, 0.9,

                  Row, Column, Angle, Score)

vector_angle_to_rigid (Row, Column, Angle,

                       ModelRow, ModelColumn, 0, HomMat2D)

affine_trans_image (Image, ImageAligned, HomMat2D,

                    ’constant’, ’false’)






First, we determine the position and orientation of the template in the test image. Using these values, we can calculate the transformation parameters of a rigid transformation that aligns the test image with the reference image. Then, we transform the test image using the determined transformation parameters. Now, we compare the transformed test image with the reference image:






reduce_domain (ImageAligned, ROI, ImageAlignedReduced)

compare_variation_model (ImageAlignedReduced, RegionDiff, VarModelID)






The resulting region may contain some clutter, and the parts of the regions that indicate defects may be disconnected. To separate the defect regions from the clutter, we assume that the latter is equally distributed while defect regions that belong to the same defect lie close to each other. Therefore, we can close small gaps in the defect regions by performing a dilation:






MinComponentSize := 5

dilation_circle (RegionDiff, RegionDilation, 3.5)

connection (RegionDilation, ConnectedRegions)

intersection (ConnectedRegions, RegionDiff, RegionIntersection)

select_shape (RegionIntersection, SelectedRegions,

              ’area’, ’and’, MinComponentSize, ModelArea)






After the dilation, previously disjoint defect regions are merged. From the merged regions, the connected components are computed. To obtain the original shape of the defects, the connected components are intersected with the original non-dilated region. Note that the connectivity of the components is preserved during the intersection computation. Thus, with the dilation, we can simply extend the neighborhood definition that is used in the computation of the connected components. Finally, we select all components with an area exceeding a predefined minimum size.

The results are shown in Figure 4.19(a) and (b). The detected errors are indicated by black ellipses along with the expected edges from the reference image, which are outlined in white.

[image: image]
Figure 4.19 Results of print inspection. Detected errors are indicated by black ellipses together with the expected edges from the reference image, which are outlined in white. Note that the contrast of the images has been reduced for visualization purposes. (a) Missing parts of the print, smears, and splashes. (b) Misaligned parts of the print.



4.4.4 Exercises


	1) In the above application, the variation image has been created by computing the edge amplitude image of the reference image. Another possibility for the creation of the variation image from one reference image is to create artificial variations of the model. Modify the example program such that the variation image is created from multiple artificially created reference images.

	2) In the example program described above, the application of the variation model approach is only possible if non-varying illumination of the object can be assured. Extend the program such that it works even for illumination conditions that vary over time.






4.5 Inspection of Ball Grid Arrays

A BGA is a chip package having solder balls on the underside for mounting on a PCB. To ensure a proper connection to the PCB, it is important that all individual balls are at the correct position, have the correct size, and are not damaged in any way.

In this application, we inspect BGAs. First, we check the size and shape of the balls. Then, we test the BGA for missing or extraneous balls as well as for wrongly positioned balls.

The algorithms used in this application are:


	Thresholding (Section 3.4.1.1)

	Extraction of connected components (Section 3.4.2)

	Region features (Section 3.5.1)

	Subpixel-precise thresholding (Section 3.4.3)

	Contour moments (Section 3.5.3.2)

	Geometric transformations (Section 3.3)


[image: image]
Figure 4.20 Image of a BGA. The image has been acquired with directed dark-field front light illumination. The balls appear as doughnut-like structures, while the surroundings of the balls appear dark. (a) The whole image. (b) Upper left part of the BGA.

The corresponding example program is:

…/machine_vision_book/bga_inspection/bga_inspection.hdev.

For BGA inspection, the images are typically acquired with directed dark-field front light illumination (see Section 2.1.5.3). With this kind of illumination, the balls appear as doughnut-like structures, while the surroundings of the balls are dark (see Figure 4.20). To ensure that all correct balls appear in the same size and that they form a rectangular grid in the image, the image plane of the camera must be parallel to the BGA. If this camera setup cannot be realized for the image acquisition or if the lenses produce heavy distortions, the camera must be calibrated and the images must be rectified (see Section 3.9).


4.5.1 Finding Balls with Shape Defects

First, we will determine wrongly sized and damaged balls. For this, we have to segment the balls in the image. Then, we calculate features of the segmented regions that describe their size and shape. If the feature values of a region are within a given range, the respective ball is assumed to be correct. Otherwise, it will be marked as wrongly sized or damaged.

There are different ways to perform this check. One possibility is to carry out a pixel-precise segmentation and to derive the features either from the segmented regions (see Section 3.5.1) or from the gray values that lie inside the segmented regions (see Section 3.5.2). Another possibility is to use a subpixel-precise segmentation (see Section 3.4.3) and to derive the features from the contours (see Section 3.5.3). In this application, we use pixel-precise segmentation with region-based features as well as subpixel-precise segmentation.

[image: image]
Figure 4.21 Cutout of an image that contains wrongly sized and shaped balls.

(a) Segmentation result. (b) Wrongly sized balls (indicated by white circles) and wrongly shaped balls (indicated by white squares).

The pixel-precise segmentation of the balls can be performed as follows:






threshold (Image, Region, BrighterThan, 255)

connection (Region, ConnectedRegions)

fill_up (ConnectedRegions, RegionFillUp)

select_shape (RegionFillUp, Balls, [’area’,’circularity’], ’and’,

              [0.8*MinArea,0.75], [1.2*MaxArea,1.0])






First, the region that is brighter than a given threshold is determined. Then, the connected components of this region are calculated and all holes in these connected components are filled. Finally, the components that have an area in a given range and that have a more or less circular shape are selected. To be able to detect wrongly sized balls, we select regions even if they are slightly smaller or larger than expected. A part of a test image that contains wrongly sized and shaped balls along with the extracted balls is displayed in Figure 4.21(a).

Now we select the regions that have an incorrect size or shape:






select_shape (Balls, WrongAreaBalls, [’area’,’area’],

              ’or’, [0,MaxArea], [MinArea,10000])

select_shape (Balls, WrongAnisometryBalls, ’anisometry’,

              ’and’, MaxAnisometry, 100)






The first operator selects all regions that have an area less than MinArea pixels or larger than MaxArea pixels. These regions represent the wrongly sized balls. The second operator selects the regions that have an anisometry larger than a given value, e.g., MaxAnisometry = 1.2. The detected defective balls are shown in Figure 4.21(b). Wrongly sized balls are indicated by white circles around them and wrongly shaped balls by white squares.

The segmentation and feature extraction can also be done with subpixel-precise segmentation methods and contour-based features. First, we use the balls extracted above to define an ROI for the subpixel-precise extraction of the boundaries of the balls. In the image that is reduced to this ROI, we perform the following operations:






threshold_sub_pix (ImageReduced, Boundary, BrighterThan)

select_shape_xld (Boundary, Balls, ’area’, ’or’, 0.8*MinArea, 1.2*MaxArea)






The boundaries of the balls are extracted with subpixel-precise thresholding. To eliminate clutter, only the boundaries that enclose a suitable area are selected.

As above, we can now select the boundaries that have an incorrect size or shape:






select_shape_xld (Balls, WrongAreaBalls, [’area’,’area’],

                  ’or’, [0,MaxArea], [MinArea,10000])

select_shape_xld (Balls, WrongAnisometryBalls, ’anisometry’,

                  ’or’, MaxAnisometry, 100)






The above two methods—pixel-precise and subpixel-precise segmentation and feature extraction—yield similar results if the regions to be extracted are large enough. In this case, the pixel-precise approximation of the regions is sufficient. However, this does not hold for small regions, where the subpixel-precise approach provides better results.



4.5.2 Constructing a Geometric Model of a Correct BGA

Up to now, we have not detected falsely positioned and missing balls. To be able to detect such balls, we need a model of a correct BGA. This model can be stored in matrix representation. In this matrix, a value of −1 indicates that there is no ball at the respective position of the BGA. If there is a ball, the respective entry of the matrix contains its (non-negative) index. The index points to two other arrays that hold the exact reference coordinates of the ball given, for example, in millimeters.

For BGAs with concentric squares of balls, we can define the BGA layout in a tuple that contains a 1 if the respective square contains balls and 0 if not. The first entry of this tuple belongs to the innermost square, the last entry to the outermost square of balls. Furthermore, we need to define the distance between neighboring balls.






BgaLayout := [1,1,1,0,0,0,0,0,0,1,1,1,1]

BallDistRowRef := 0.05*25.4

BallDistColRef := 0.05*25.4






Using this information, we can create the BGA model. We store the matrix in linearized form.






BallsPerRow := 2*|BgaLayout|

BallsPerCol := 2*|BgaLayout|

BallMatrixRef := gen_tuple_const(BallsPerRow*BallsPerCol,-1)

BallsRowsRef := []

BallsColsRef := []

CenterRow := (BallsPerRow-1)*0.5

CenterCol := (BallsPerCol-1)*0.5

I := 0

for R := 0 to BallsPerRow-1 by 1

    for C := 0 to BallsPerCol-1 by 1

        Dist := max(int(fabs([R-CenterRow,C-CenterCol])))

        if (BgaLayout[Dist])

            BallMatrixRef[R*BallsPerCol+C] := I

            BallsRowsRef := [BallsRowsRef,R*BallDistRowRef]

            BallsColsRef := [BallsColsRef,C*BallDistColRef]

            I := I+1

        endif

    endfor

endfor






First, the numbers of balls per row and column are determined from the given BGA layout tuple. Then, the whole BGA model matrix is initialized with −1, and empty fields for the x and y coordinates are created. For any position on the BGA, the index of the respective square in the BGA layout tuple is given by the chessboard distance (see Section 3.6.1.8) between the ball position and the center of the BGA. If a ball exists at the current position, its index I stored in the linearized model matrix and its coordinates are appended to the fields of row and column coordinates.

We can display the BGA matrix with the following lines of code (see Figure 4.22):






Scale := RectangleSize/(0.8*min([BallDistanceRow,BallDistanceCol]))

gen_rectangle2_contour_xld (Matrix,

                            RectangleSize/2.0+BallsRows*Scale,

                            RectangleSize/2.0+BallsCols*Scale,

                            gen_tuple_const(|BallsRows|,0),

                            gen_tuple_const(|BallsRows|,

                                            RectangleSize/2.0),

                            gen_tuple_const(|BallsRows|,

                                            RectangleSize/2.0))

dev_display (Matrix)






[image: image]
Figure 4.22 The model for the BGA shown in Figure 4.20. The rectangles indicate the positions where balls should lie.



4.5.3 Finding Missing and Extraneous Balls

To detect erroneously placed and missing balls, we must create a similar matrix for the image to be investigated. This BGA matrix contains the actual presence and exact position of the balls.

To build this matrix, we must relate the position of the balls in the image to the matrix positions, i.e., we need to know the relative position of the balls in the BGA. For this, we must know the size of the BGA in the current image:






area_center_xld (BallsSubPix, Area, BallsRows, BallsCols, PointOrder)

gen_region_points (RegionBallCenters, BallsRows, BallsCols)

smallest_rectangle2 (RegionBallCenters, RowBGARect, ColumnBGARect,

                     PhiBGARect, Length1BGARect, Length2BGARect)






We create a region that contains all extracted ball positions and determine the smallest surrounding rectangle of this region. With this, we can determine the transformation of the ball positions into indices of the BGA matrix. Note that this only works if no extraneous balls lie outside the BGA.






hom_mat2d_identity (HomMat2DIdentity)

hom_mat2d_rotate (HomMat2DIdentity, -PhiBGARect,

                  RowBGARect, ColumnBGARect, HomMat2DRotate)

hom_mat2d_translate (HomMat2DRotate,

                     -RowBGARect+Length2BGARect,

                     -ColumnBGARect+Length1BGARect,

                     HomMat2DTranslate)

BallDistCol := 2*Length1BGARect/(BallsPerCol-1)

BallDistRow := 2*Length2BGARect/(BallsPerRow-1)

hom_mat2d_scale (HomMat2DTranslate, 1/BallDistRow, 1/BallDistCol,

                 0, 0, HomMat2DScale)






The first part of this transformation is a rotation around the center of the BGA to align the BGA with the rows and columns of the model matrix. Then, we translate the rotated ball positions such that the upper left ball lies at the origin of the BGA model. Finally, the distance between the balls in the image is calculated in the row and column directions. The inverse distances are used to scale the ball coordinates such that the distance between them in the row and column directions will be one.

Now, we transform the ball positions with the transformation matrix derived above and round them to get the index in the BGA model matrix for each extracted ball.






affine_trans_point_2d (HomMat2DScale, BallsRows, BallsCols,

                       RowNormalized, ColNormalized)

BallRowIndex := round(RowNormalized)

BallColIndex := round(ColNormalized)






Finally, we set the indices of the balls in the BGA matrix:

[image: image]
Figure 4.23 (a) Missing balls (indicated by white diamonds) and extraneous balls (indicated by white crosses). (b) Wrongly placed balls (indicated by white plus signs at the expected position).






BallMatrix := gen_tuple_const(BallsPerRow*BallsPerCol,-1)

for I := 0 to NumBalls-1 by 1

    BallMatrix[BallRowIndex[I]*BallsPerCol+BallColIndex[I]] := I

endfor






With this representation of the extracted balls, it is easy to detect missing or additional balls. Missing balls have a non-negative index in the BGA model matrix and a negative index in the BGA matrix of the current image, while extraneous balls have a negative index in the BGA model matrix and a non-negative index in the BGA matrix derived from the image.






for I := 0 to BallsPerRow*BallsPerCol-1 by 1

    if (BallMatrixRef[I] >= 0 and BallMatrix[I] < 0)

        * Missing ball.

    endif

    if (BallMatrixRef[I] < 0 and BallMatrix[I] >= 0)

        * Extraneous ball.

    endif

endfor






The missing and extraneous balls are displayed in Figure 4.23(a). Missing balls are indicated by white diamonds while extraneous balls are indicated by white crosses.



4.5.4 Finding Displaced Balls

Finally, we check the position of the balls. For this, we must transform the pixel coordinates of the extracted balls into the WCS in which the reference coordinates are given.






BallsMatchedRowsImage := []

BallsMatchedColsImage := []

IndexImage := []

BallsMatchedRowsRef := []

BallsMatchedColsRef := []

IndexRef := []

K := 0

for I := 0 to BallsPerRow*BallsPerCol-1 by 1

    if (BallMatrixRef[I] >= 0 and BallMatrix[I] >= 0)

        BallsMatchedRowsImage := [BallsMatchedRowsImage,

                                  BallsRows[BallMatrix[I]]]

        BallsMatchedColsImage := [BallsMatchedColsImage,

                                  BallsCols[BallMatrix[I]]]

        IndexImage := [IndexImage,BallMatrix[I]]

        BallsMatchedRowsRef := [BallsMatchedRowsRef,

                                BallsRowsRef[BallMatrixRef[I]]]

        BallsMatchedColsRef := [BallsMatchedColsRef,

                                BallsColsRef[BallMatrixRef[I]]]

        IndexRef := [IndexRef,BallMatrixRef[I]]

        K := K+1

     endif

endfor






To calculate the transformation from the pixel coordinate system to the WCS, we must establish a set of corresponding points in the two coordinate systems. Because we already know the mapping from the extracted ball positions to the positions of the balls in the BGA model, this can be done by using all points that are defined in both matrices. With this, we can determine the transformation and transform the extracted ball positions into the reference coordinate system.






vector_to_similarity (BallsMatchedRowsImage, BallsMatchedColsImage,

                      BallsMatchedRowsRef, BallsMatchedColsRef, HomMat2D)

affine_trans_point_2d (HomMat2D,

                       BallsMatchedRowsImage, BallsMatchedColsImage,

                       BallsMatchedRowsWorld, BallsMatchedColsWorld)






Note that, if the camera was calibrated, the ball positions could be transformed into the WCS. Then, a rigid transformation could be used instead of the similarity transformation.

The deviation of the ball positions from their reference positions can be determined simply by calculating the distance between the reference coordinates and the transformed pixel coordinates extracted from the image.






distance_pp (BallsMatchedRowsRef, BallsMatchedColsRef,

             BallsMatchedRowsWorld, BallsMatchedColsWorld,

             Distances)

for I := 0 to |Distances|-1 by 1

    if (Distances[I] > MaxDistance)

        * Wrongly placed ball.

    endif

endfor






Each ball for which the distance is larger than a given tolerance can be marked as wrongly placed. Figure 4.23(b) shows the wrongly placed balls indicated by white plus signs at the correct position.



4.5.5 Exercises


	1) In the above application, we calculated the features in two ways: from pixel-precise regions, and from subpixel-precise contours. A third possibility is to derive the features from the gray values that lie inside the segmented regions (see Section 3.5.2). Modify the above program so that the positions of the balls are determined in this way. Compare the results with the results achieved above. What conditions must be fulfilled so that the gray value features can be applied successfully to determine the center of segmented objects?

	2) The creation of the BGA model described above is restricted to BGAs with balls located in concentric squares. To be more flexible, write a procedure that creates the BGA model from an image of a correct BGA and the reference distances between the balls in the row and column directions.






4.6 Surface Inspection

A typical machine vision application is to inspect the surface of an object. Often, it is essential to identify defects like scratches or ridges.

In this application, we inspect the surface of doorknobs. Other industry sectors in which surface inspection is important are, for example, optics, the automobile industry, and the metal-working industry. An example image of a doorknob with a typical scratch is shown in Figure 4.24(a). First, we must select an appropriate illumination to highlight scratches in the surface. Then we can segment the doorknob in the image. After that, we create an ROI that contains the planar surface of the doorknob. In the last step, we search for scratches in the surface within the ROI.

The algorithms used in this application are:


	Mean filter (Section 3.2.3.2)

	Dynamic thresholding (Section 3.4.1.3)

	Region features (Section 3.5.1)

	Region morphology (Section 3.6.1)

	Extraction of connected components (Section 3.4.2)

	Affine transformations (Section 3.3.1)


The corresponding example program is:

…/machine_vision_book/surface_inspection/surface_inspection.hdev.

For surface inspection, the images typically are acquired with directed dark-field front light illumination (see Section 2.1.5.3). Figure 4.24(b) shows an image of the doorknob of Figure 4.24(a) acquired with directed dark-field front light illumination by using an LED ring light. The edges of the doorknobs appear bright, while its planar surface appears dark. This simplifies the segmentation process significantly. Note that the illumination also makes the scratch in the surface clearly visible.

[image: image]
Figure 4.24 (a) Image of a doorknob using directed bright-field front light illumination. (b) Image of the same doorknob using directed dark-field front light illumination using an LED ring light. Note that the scratch in the surface is clearly visible.


4.6.1 Segmenting the Doorknob

Scratches appear bright in the dark regions. Unfortunately, the border of the doorknob and the borders of the four inner squares also appear bright. To distinguish the bright borders from the scratches, we first segment the bright border regions. We then subtract the segmented regions from the doorknob region and reduce the ROI for the scratch detection to the difference region.

Because the edges are locally brighter than the background, we can segment the doorknob in the image with dynamic thresholding (see Section 3.4.1.3):






KnobSizeMin := 100

mean_image (Image, ImageMean, KnobSizeMin, KnobSizeMin)

dyn_threshold (Image, ImageMean, RegionBrightBorder, 50, ’light’)

fill_up (RegionBrightBorder, RegionDoorknob)






To estimate the gray value of the local background, we use a mean filter. We set the size of the mean filter to the minimum size at which the doorknob appears in the image to ensure that all local structures are eliminated by the smoothing, and hence to better suppress noise in the segmentation. Then, all image structures that are brighter than the background by 50 gray values are segmented, yielding the region of the bright border. The result of applying the dynamic thresholding to the image of Figure 4.24(b) is shown in Figure 4.25(a). To obtain the complete region of the doorknob, holes in the border region are filled (see Figure 4.25(b)).

[image: image]
Figure 4.25 (a) Result of the dynamic threshold operation. Note that for visualization purposes, only a zoomed part enclosing the doorknob is shown. (b) Doorknob region that is obtained after filling the holes in (a).



4.6.2 Finding the Surface to Inspect

In the next step, the planar surface that we would like to inspect is determined. For this, we must eliminate the bright outer border of the doorknob as well as the bright borders of the four small inner squares from the segmentation result. To do so, we first must determine the orientation and the size of the doorknob in the image:






erosion_circle (RegionDoorknob, RegionErosion, KnobSizeMin/4)

smallest_rectangle2 (RegionErosion, Row, Column, Phi, KnobLen1, KnobLen2)

KnobSize := KnobLen1+KnobLen2+KnobSizeMin/2






Because the doorknob has a square shape, its orientation corresponds to the orientation of the smallest enclosing rectangle of the segmented region (see Section 3.5.1.4). Since clutter or small protrusions of the segmented region would falsify the computation, they are eliminated in advance by applying an erosion to the doorknob region shown in Figure 4.25(b) (see Section 3.6.1.3). The radius of the circle that is used as the structuring element is set to a quarter of the minimum doorknob size. On the one hand, this allows relatively large protrusions to be eliminated. On the other hand, it ensures that the orientation can still be determined with sufficient accuracy. The size of the doorknob can be computed from the size of the smallest enclosing rectangle by adding the diameter of the circle that was used for the erosion.

Based on the orientation and the size of the doorknob, we segment the four inner squares by again using region morphology (see Section 3.6.1.6). First, small gaps in the previously segmented border of the inner squares are closed by performing two closing operations:






ScratchWidthMax := 11

gen_rectangle2 (StructElement1, 0, 0, Phi, ScratchWidthMax/2, 1)

gen_rectangle2 (StructElement2, 0, 0, Phi+rad(90), ScratchWidthMax/2, 1)






[image: image]
Figure 4.26 (a) Detailed view of the segmented region of Figure 4.25(a). Note the gaps in the border region of the square. (b) Result of the closing visualized for the same part as in (a) with the gaps successfully closed.






closing (Region, StructElement1, RegionClosing)

closing (RegionClosing, StructElement2, RegionClosing)






For this, two perpendicular rectangular structuring elements are generated in the appropriate orientation. The size of the rectangles is chosen such that gaps with a maximum width of ScratchWidthMax can be closed. Figure 4.26(a) shows a detailed view of the segmented region of Figure 4.25(a). Note the small gaps in the border of the inner square that are caused by the crossing scratch. The result of the closing operation is shown in Figure 4.26(b): the gaps have been successfully closed.

Up to now, all scratches in the surface are still contained in our segmentation result of the bright border region. To be able to detect the scratches, we must separate the scratches from the segmentation result. Because we know the appearance of the border region of the inner squares, we can get rid of the scratches by using opening operations with appropriate structuring elements. For this, we generate a structuring element that consists of two axis-parallel rectangles that represent two opposite borders of the inner squares:






InnerSquareSizeFraction = 0.205

InnerSquareSize := KnobSize*InnerSquareSizeFraction

gen_rectangle2 (Rectangle1, -InnerSquareSize/2.0, 0, 0,

                InnerSquareSize/4.0, 0)

gen_rectangle2 (Rectangle2, InnerSquareSize/2.0, 0, 0,

                InnerSquareSize/4.0, 0)

union2 (Rectangle1, Rectangle2, StructElementRef)






The size of the inner squares is computed as a predefined fraction of the size of the doorknob. The distance between the rectangles is set to the size of the inner squares. The structuring element that represents the upper and lower borders of the inner squares is obtained by rotating the generated region according to the determined orientation of the doorknob (see Section 3.3.1 for details about affine transformations). The structuring element that represents the left and right borders of the inner squares is obtained accordingly by adding a rotation angle of 90°:

[image: image]
Figure 4.27 (a) Structuring element that matches the upper and lower borders of the inner squares. (b) Structuring element that matches the left and right borders of the inner squares. (c) Result of the opening with the structuring elements of (a) and (b).






hom_mat2d_rotate (HomMat2DIdentity, Phi, 0, 0, HomMat2DRotate)

affine_trans_region (StructElementRef, StructElement1,

                     HomMat2DRotate, ’false’)

hom_mat2d_rotate (HomMat2DIdentity, Phi + rad(90), 0, 0, HomMat2DRotate)

affine_trans_region (StructElementRef, StructElement2,

                     HomMat2DRotate, ’false’)






Figures 4.27(a) and (b) show the two generated structuring elements. Note that the rotation of the structuring elements could be omitted when creating rectangles that already are in the appropriate orientations. However, this requires the centers of the rectangles to be transformed according to the orientation.

As we have seen in Section 3.6.1.6, the opening operation can be used as a template matching operation returning all points of the input region into which the structuring element fits:






opening (RegionClosing, StructElement1, RegionOpening1)

opening (RegionClosing, StructElement2, RegionOpening2)

union2 (RegionOpening1, RegionOpening2, RegionOpening)






Figure 4.27(c) shows the union of the results of both opening operations. As expected, the result contains the border of the inner squares. However, the result also contains parts of the outer border of the doorknob because the distance from the inner squares to the border of the doorknob is the same as the size of the inner squares. To exclude the part of the outer border, we intersect the result of the opening with an eroded version of the doorknob region:






erosion_circle (RegionDoorknob, RegionInner, InnerSquareSize/2)

intersection (RegionInner, RegionOpening, RegionSquares)






The obtained region RegionSquares now only contains the border of the four inner squares. Finally, the region of the planar surface is the difference of the doorknob region and the border of the inner squares:

[image: image]
Figure 4.28 (a) ROI (black) containing the planar surface of the doorknob. (b) Margin of the ROI overlaid in white onto the original image. Note that neither the white border of the doorknob nor the white borders of the inner squares are contained. The contrast of the image has been reduced for visualization purposes.






BorderWidth := 7

BorderTolerance := 3

erosion_circle (RegionDoorknob, RegionInner, BorderWidth+BorderTolerance)

dilation_circle (RegionSquares, RegionSquaresDilation, BorderTolerance)

difference (RegionInner, RegionSquaresDilation, RegionSurface)






Before computing the difference, the doorknob region is eroded using a circular structuring element to exclude the border from the surface inspection. The radius of the circle is the sum of BorderWidth and BorderTolerance, which are both predefined values. By adding BorderTolerance to the radius, pixels in the close vicinity of the border are also excluded from the inspection because their gray values are still influenced by the border region, and hence would be erroneously interpreted as defects. For the same reason, the region that represents the border of the inner squares is slightly dilated accordingly. The resulting ROI RegionSurface that contains the planar surface of the doorknob is shown in Figure 4.28. Note that neither the white border of the doorknob nor the white borders of the inner squares are contained in the region.



4.6.3 Detecting Defects

Within the ROI, we can now perform the defect detection:






ScratchGrayDiffMin := 15

reduce_domain (Image, RegionSurface, ImageReduced)

median_image (ImageReduced, ImageMedian, ’circle’, ScratchWidthMax,

              ’mirrored’)






[image: image]
Figure 4.29 (a) Region resulting from dynamic thresholding overlaid in white onto the original image (with reduced contrast). Note that noise is contained in the region. (b) Result obtained after eliminating connected components of (a) that are smaller than 4 pixels. Note that not all the noise could be eliminated. (c) Result of the surface inspection with the detected scratch displayed in white.






dyn_threshold (ImageReduced, ImageMedian, RegionDeviation,

               ScratchGrayDiffMin, ’light’)






The defects are detected by dynamic thresholding. However, now we can use the median filter (see Section 3.2.3.9) to estimate the background. Based on the known maximum scratch width ScratchWidthMax, we can eliminate all scratches by passing ScratchWidthMax for the radius of the median filter. Because of the dark-field front light illumination, scratches appear as bright regions, which can easily be segmented by using the predefined threshold ScratchGrayDiffMin. In Figure 4.29(a), the result of the dynamic thresholding is shown. As can be seen, noise is included in the resulting region, which must be eliminated in a post-processing step:






connection (RegionDeviation, ConnectedRegions)

select_shape (ConnectedRegions, RegionDeviationNoNoise, ’area’,

              ’and’, 4, 10000000)






First, connected components (see Section 3.4.2) that are smaller than 4 pixels are assumed to be noise, and hence are eliminated. Unfortunately, this does not completely eliminate the noise from the segmentation, as can be seen from Figure 4.29(b). However, further increasing the threshold would also eliminate parts of interrupted defect regions, which is not desirable. To separate the interrupted defect regions from the noise, we assume that noise is evenly distributed while defect regions that belong to the same scratch lie close to each other. Therefore, we can close small gaps in the defect regions by performing a dilation:






ScratchAreaMin := 20

dilation_circle (RegionDeviationNoNoise, RegionDilation, 2)

connection (RegionDilation, ConnectedRegions)

intersection (ConnectedRegions, RegionDeviationNoNoise,

              RegionIntersection)






[image: image]
Figure 4.30 (a) Zoomed part of a second example image. (b) Result of the surface inspection of the image in (a). The margin of the found defect is overlaid in white onto the original image (with reduced contrast).






select_shape (RegionIntersection, RegionErrors, ’area’,

              ’and’, ScratchAreaMin, 10000000)






After the dilation, previously interrupted defect regions are merged. The connected components are recomputed from the merged regions. To obtain the original shape of the defects, the connected components are intersected with the original non-dilated region. Note that the connectivity of the components is preserved during the intersection computation. Thus, with the dilation, we can simply extend the neighborhood definition that is used in the computation of the connected components. Finally, we select all components with an area exceeding a predefined threshold for the minimum scratch area. The final result is shown in Figure 4.29(c).

In Figure 4.30(a), the zoomed part of a second example image is shown. Note the low contrast of the small scratch at the lower right corner of the doorknob. The surface inspection detects this defect, as shown in Figure 4.30(b).



4.6.4 Exercises


	1) In the above application, defects can only be identified on the planar surface of the doorknob. Modify the program such that it is also possible to detect defects in the bright border region of the doorknob and in the bright border regions of the inner squares.

	2) The program described above uses region morphology to locate the doorknob and to segment its surface. Alternatively, the doorknob could be located by using shape-based matching (see Section 3.11.5.6). Furthermore, the inspection could be performed by using an appropriate variation model (see Section 3.4.1.4). Use these two methods to perform the inspection of the surface and of the bright border regions simultaneously, without using region morphology.





4.7 Measurement of Spark Plugs

In shape and dimensional inspection applications, distances between objects or object parts often must be measured to decide whether they lie within the required tolerances.

In this application, we measure the size of spark plug gaps. The size of the gap between the center electrode and the side or ground electrode must lie within a certain tolerance range to ensure that the spark plug can be used within a specific engine type. We use a camera with a telecentric lens as well as a telecentric back light illumination for image acquisition. First, we calibrate the camera setup. Then, a robust matching algorithm is used to find the spark plug in an image. Based on the matching pose, the ROI in which the measurement is performed is aligned. The actual measuring is performed with 1D edge extraction in a gray value profile across the spark gap.

The algorithms used in this application are:


	Camera calibration (Section 3.9)

	Shape-based matching (Section 3.11.5.6)

	Region features (Section 3.5.1)

	Affine transformations (Section 3.3.1)

	1D edge extraction (Section 3.7.2)


The corresponding example program is:

…/machine_vision_book/spark_plug_measuring/spark_plug_measuring.hdev.

Figures 4.31(a) and (b) show an image of a spark plug with a correct gap size and with a gap size that is too large, respectively. We use a telecentric lens to avoid perspective distortions in the image that would make an exact measurement difficult (see Section 2.2.4). With the telecentric illumination, very sharp edges are obtained in the silhouette of the spark plug (see Section 2.1.5.5). Furthermore, reflections at the spark plug on the camera side are avoided.

[image: image]
Figure 4.31 Two example images of a spark plug. (a) Spark plug with a correct gap size. (b) Spark plug with a gap size that is too large.

[image: image]
Figure 4.32 Two out of a set of 14 images of a transparent calibration target in different poses. The images are used to calibrate the camera.


4.7.1 Calibrating the Camera

In the first step, we calibrate the camera. In this application, camera calibration is essential for two reasons. First, we want to measure the spark gap accurately, and hence must consider possible lens distortions. Second, the size of the gap should be determined in metric units. To calibrate the camera, we acquire multiple images of a transparent calibration target in various poses. For historical reasons (this example was developed for the first edition of this book), we use an old calibration target (cf. Section 3.9.4.1). In new applications, we would use the new calibration target, of course. Figure 4.32 shows two of the 14 images used for the calibration.

First, we specify the calibration target used, define initial values for the interior orientation of the camera, and initialize the handle that will be used to collect the image coordinates of the calibration marks and the initial poses of the calibration targets:






CaltabName := ’caltab_10mm.descr’

gen_cam_par_area_scan_telecentric_division (0.17, 0, 6.6e-06, 6.6e-06,

                                            320, 240, 640, 480,

                                            StartCamParam)

create_calib_data (’calibration_object’, 1, 1, CalibDataID)

set_calib_data_calib_object (CalibDataID, 0, CaltabName)

set_calib_data_cam_param (CalibDataID, 0, [], StartCamParam)






The telecentric lens that was used has a nominal magnification of 0.17. The initial value of the distortion coefficient is set to zero, the pixel size is 6.6 µm, and the principal point is assumed to be in the center of the image. These values are just initial values. They will be improved during the calibration process.

Then, within a loop over all calibration images, the subpixel-accurate positions of the circular calibration marks and initial estimates for the poses of the calibration target with respect to the camera are determined:






find_calib_object (Image, CalibDataID, 0, 0, Index, [], [])






Now, we determine the exact interior orientation of the camera:






calibrate_cameras (CalibDataID, Error)

get_calib_data (CalibDataID, ’camera’, 0, ’params’, CamParam)






The camera is calibrated using the operator calibrate_cameras. After the calibration has been performed, we can read out the interior orientation of the camera. In the online phase, the interior orientation is used to transform the image measurements into world units. Note that, although the exterior orientation of the camera is also determined by calibrate_cameras, it is not used below because we do not need to know the position of the spark plug with respect to a WCS.








4.7.2 Determining the Position of the Spark Plug

The position of the spark plug in the image can be determined by using shape-based matching, which is described in Section 3.11.5.6. For this, we create a model representation of the spark plug from a template image:






gen_rectangle1 (ModelRegion, 120, 230, 220, 445)

reduce_domain (ModelImage, ModelRegion, TemplateImage)

create_shape_model (TemplateImage, ’auto’, rad(-30), rad(60), ’auto’,

                    ’none’, ’use_polarity’, ’auto’, ’auto’, ModelID)

area_center (ModelRegion, Area, RefRow, RefCol)






The template image is shown in Figure 4.33(a). Because the thread rolling may be different for different spark plugs, we must not include it in the model representation. Furthermore, the side electrode may bend as the gap size changes, and hence also must not be used. Therefore, the model is created only from a small part of the spark plug that always appears in the same way, and hence permits robust matching. In Figure 4.33(a), the corresponding image region is indicated by the gray rectangle. It only contains the center electrode, the insulator, and the top part of the thread. The contour representation of the resulting model is shown in Figure 4.33(b). Note that, because the orientation of the spark plugs is similar in all images, the model is created only within an angle range of ±30°. Finally, to be able to correctly align the measurement in the online phase, we must know the reference point of the model, which is the center of gravity of the model region. In Figure 4.33(a), the reference point is displayed as a gray cross. Relative to the reference point of the model, we define a rectangle in which the actual gap measurement is to be performed:






RectRelRow := 80

RectRelCol := -26

RectRelPhi := rad(90)

RectLen1 := 50

RectLen2 := 15






The center of the rectangle is 80 pixels below and 26 pixels to the left of the model reference point. The rectangle’s orientation is chosen such that its major axis points in the direction in which the measurement, i.e., the 1D edge extraction, is performed. Thus, edges that are perpendicular to the major axis can be measured. Here, the major axis is oriented vertically in the model image. During measuring in the online phase, the gray values are averaged perpendicular to the major axis to obtain a 1D edge profile. The range in which the averaging is performed is defined by the width of the rectangle. In Figure 4.33(a), the measurement rectangle and its center point are displayed in white.

[image: image]
Figure 4.33 (a) Template image from which the model representation is created. The model region is indicated by the gray rectangle. The reference point of the model is visualized as a gray cross. The rectangle within which the measurement of the gap size is performed and its center are displayed in white. (b) Contour representation of the model created.



4.7.3 Performing the Measurement

All the steps described so far are performed offline. In the online phase, we use the shape model to find the spark plug in an image:






find_shape_model (Image, ModelID, rad(-30), rad(60), 0.7, 1, 0.5,

                  ’least_squares’, 0, 0.9, Row, Column, Angle, Score)






Based on the pose of the found spark plug, we create the measurement rectangle:






vector_angle_to_rigid (0, 0, 0, Row, Column, Angle, HomMat2D)

affine_trans_pixel (HomMat2D, RectRelRow, RectRelCol,

                    TransRow, TransCol)

gen_measure_rectangle2 (TransRow, TransCol, Angle+RectRelPhi,

                        RectLen1, RectLen2, Width, Height,

                        ’bilinear’, MeasureHandle)






First, we transform the matching pose into a 2D rigid transformation, which aligns the model with the spark plug in the image. Then, with the obtained transformation, the relative position of the center of the measurement rectangle is transformed. Finally, the orientation of the rectangle is adapted according to the orientation of the spark plug. Figure 4.34(a) shows an image of the spark plug to be measured. The contour of the found spark plug is overlaid as a bold white line. The transformed measurement rectangle is displayed as a thin white line. With gen_measure_rectangle2, the gray value profile is computed by using bilinear interpolation. It is shown in Figure 4.34(b). The actual measurement is performed with the following operation:

[image: image]
Figure 4.34 (a) Image of a spark plug to be measured. The transformed model contour at the pose of the found spark plug is overlaid as a bold white line. The transformed measurement rectangle is displayed as a thin white line. (b) Gray value profile of the measurement rectangle. The 1D edges are extracted by computing the local extrema of the first derivative of the gray value profile.






measure_pairs (Image, MeasureHandle, 1, 30, ’positive_strongest’,

               ’all’, Row1, Col1, Amplitude1, Row2, Col2,

               Amplitude2, IntraDistance, InterDistance)






The 1D edges are extracted by computing the local extrema of the first derivative of the gray value profile. Because we are only interested in the edge pair that corresponds to the gap, we use measure_pairs, which automatically groups the edges into pairs. To ensure that the correct edge pair is returned, we demand that the first edge of the pair has a positive transition. With this, we can avoid obtaining the edge pair that corresponds to the lower and upper borders of the side electrode. Finally, the position of the resulting 1D edge pair is transformed back into the image and returned in (Row1, Col1) and (Row2, Col2).

To eliminate the effect of lens distortions and to obtain the result in metric units, we must transform the two edge points into the CCS. This can be done by constructing the two lines of sight that pass through the two edge points in the image:






get_line_of_sight ([Row1,Row2], [Col1,Col2], CamParam, X, Y, Z,

                   XH, YH, ZH)

DX := X[1]-X[0]

DY := Y[1]-Y[0]

GapSize := sqrt(DX*DX+DY*DY)






For both edge points, the line of sight is returned as two points on the line, given in world units. Because of the telecentric camera, all lines of sight are parallel, and hence the two points that define the line have the same X and Y coordinates. The size of the gap corresponds to the distance of the parallel lines that pass through the two edge points. In Figures 4.35(a)–(c), three examples are shown. The measured edge points are visualized by two lines that are perpendicular to the measurement direction. The measured gap size is overlaid as white text. Finally, based on a predefined range of valid gap sizes, we can decide whether the gap size is within the tolerances:

[image: image]
Figure 4.35 Three example results of the spark plug measurement. The measured edge points are visualized by a line perpendicular to the measurement direction. (a) Spark plug with a correct gap size. (b) Spark plug with a gap size that is too small. (c) Spark plug with a gap size that is too large.






GapSizeMin := 0.78e-3

GapSizeMax := 0.88e-3

if (GapSize < GapSizeMin)

    * Gap size is too small.

elseif (GapSize > GapSizeMax)

    * Gap size is too large.

else

    * Gap size is within tolerances.

endif






According to the above decision, an appropriate action can be performed, e.g., by rejecting the current spark plug.



4.7.4 Exercises


	1) As an alternative to shape-based matching, NCC could be used for template matching (see Section 3.11.1.2). Adapt the above program such that the pose of the spark plug is determined using NCC.

	2) Overheating, oil leakage, or bad fuel quality may lead to the accumulation of deposits on the center electrode and on the insulator during the use of the spark plug. Therefore, in the automobile industry, especially in racing applications, used spark plugs are analyzed because they indicate conditions within the running engine. Extend the above program so that irregularities in the shape of the center electrode and of the insulator can be detected. Furthermore, measure the diameter of both components to detect heavy deposits and erosion.





4.8 Molding Flash Detection

Especially in the metal- or plastic-working industry, a frequent task is to detect flashes on castings or molded plastic parts. Flashes often cannot be avoided because the molds do not fit together tightly. Therefore, it is important to detect the flashes and either to remove them in a secondary operation or to reject the object.

In this application, we detect molding flashes on a circular plastic part that has been manufactured by injection molding. After the flashes are detected, their size and position on the circular border are determined. For illustration purposes, this task is solved with two alternative approaches. While the first approach uses region morphology, the second approach is based on the processing of subpixel-precise contours.

The algorithms used in this application are:


	Thresholding (Section 3.4.1.1)

	Region morphology (Section 3.6.1)

	Robust circle fitting (Section 3.8.2.2)

	Contour features (Section 3.5.3)

	Subpixel-precise 2D edge extraction (Section 3.7.3.5)


The corresponding example program is:

…/machine_vision_book/molding_flash_detection/molding_flash_detection.hdev.

Figure 4.36(a) shows an image of the molded plastic part we want to inspect. Note the flash at the upper right part of its border. The image was acquired with diffuse bright-field back light illumination (see Section 2.1.5.4). With this kind of illumination, the object appears dark while the background appears bright, which simplifies the segmentation process significantly.

In the first step, which is identical for both presented approaches, the dark object is segmented by a thresholding operation:






threshold (Image, Object, 0, 180)






The result is shown in Figure 4.36(b).


4.8.1 Molding Flash Detection Using Region Morphology

The first approach, which uses region morphology, is described in the following. It is similar to the approach that is described in Section 3.6.1.6. However, an extended version is presented here.

The flash appears as a protrusion of the object region (see Figure 4.36(b)). Therefore, the flash can be segmented by performing an opening on the object region and subtracting the opened region from the original segmentation:

[image: image]
Figure 4.36 (a) Circular molded plastic part with a flash at the upper right part of its border. (b) Result of thresholding the dark object. For visualization purposes, in the following, only a zoomed part of the image is displayed, which is indicated by the gray rectangle.






opening_circle (Object, OpenedObject, 400.5)

difference (Object, OpenedObject, RegionDifference)






For the opening, a circle is used as the structuring element. The circle is chosen almost as large as the object to ensure that even large flashes can be eliminated and the circular shape of the molded plastic can be recovered. Note that the radius must be smaller than the radius of the molded plastic part. Otherwise, the opening would remove the object entirely. Figures 4.37(a) and (b) show the result of the opening and the difference operation, respectively, for a zoomed image part. Small components of the difference region that are caused by minor irregularities at the border must be eliminated. For this, the difference region is opened with a rectangular structuring element of size 5 × 5:






MinFlashSize := 5

opening_rectangle1 (RegionDifference, FlashRegion, MinFlashSize,

                    MinFlashSize)






The resulting region, which is shown in Figure 4.37(c), represents the molding flash.

An important quality feature in this application is the maximum distance of the flashes from the ideal circular shape of the object, which we will call the reference shape below. Here, the reference shape is represented by the opened object region. To determine the maximum distance, we compute the distance transform of the opened object region:






distance_transform (OpenedObject, DistanceImage, ’euclidean’,

                    ’false’, Width, Height)

min_max_gray (FlashRegion, DistanceImage, 0, DistanceMin,

              DistanceMax, DistanceRange)






The resulting distance image, shown in Figure 4.38, contains the shortest distance to the reference shape for each point in the background region. The latter is the complement of the reference shape. Thus, the maximum distance DistanceMax is obtained by searching for the maximum value in the distance image within the flash region.

[image: image]
Figure 4.37 (a) Opened object region in the zoomed image part displayed in Figure 4.36(b). (b) Difference between original and opened object region. (c) Segmented flash region obtained by opening the difference region with a rectangular structuring element of size 5 × 5.

[image: image]
Figure 4.38 Distance image obtained after applying a distance transform to the opened object region, whose margin is displayed in gray. The margin of the segmented flash region is displayed in white. Bright gray values in the distance image correspond to large distances. For better visualization, the distance image is displayed with a square root LUT.

To compute the angle range of the segmented flashes with respect to the object center, we need to know the start and end point of each flash on the border of the molded plastic part. These points can also be obtained with region morphology:






boundary (OpenedObject, RegionBoundary, ’outer’)

connection (FlashRegion, FlashRegions)

intersection (FlashRegions, RegionBoundary, RegionCircleSeg)

junctions_skeleton (RegionCircleSeg, EndPoints, JuncPoints)






First, the one-pixel-wide boundary of the opened object region is computed (see Figure 4.39(a)). Note that the boundary obtained lies one pixel outside of the original region, and hence inside the flash region. Then, each connected component of the flash region is intersected with the boundary. Thus, for each flash, a one-pixel-wide region at the boundary of the object is obtained. Finally, the region that only contains the end points of the intersected regions can be obtained with the operator junctions_skeleton. The intersected regions and the corresponding end points are visualized in Figure 4.39(b).

[image: image]
Figure 4.39 (a) One-pixel-wide boundary region (black) of the opened object region of Figure 4.37(a) and the flash region (gray). (b) Intersection of the boundary region with the flash region. The computed end points of the intersection region are indicated by small crosses. They can be used to compute the angle range of the molding flash.

From the two end points of each segmented molding flash, the corresponding angle interval can be computed. For this, we must know the center of the circular plastic part. The circle center is the center of gravity of the opened object region:






area_center (OpenedObject, Area, CenterRow, CenterCol)






Now, we are able to compute the angle range of each flash:






count_obj (EndPoints, NumFlash)

for Index := 1 to NumFlash by 1

    select_obj (EndPoints, EndPointsSelected, Index)

    get_region_points (EndPointsSelected, SegRow, SegCol)

    Angle1 := atan2(CenterRow-SegRow[0],SegCol[0]-CenterCol)

    Angle2 := atan2(CenterRow-SegRow[1],SegCol[1]-CenterCol)

    AngleRange := Angle2-Angle1

endfor






Here get_region_points returns the row and column coordinates of the two end points in the two tuples SegRow and SegCol, respectively, each of which contains two elements, one for each end point. Finally, the corresponding angles are computed using the arc tangent function. The result is shown in Figure 4.40.

[image: image]
Figure 4.40 Result of the molding flash detection with region morphology. The maximum distance, the angle of the start and end points of the detected flash, and the corresponding angle range are overlaid as white text in the upper left corner of the image. The associated circle sector (dashed), the enclosed segment of the boundary (solid), and its end points (crosses) are displayed in white. To provide a better visibility, the contrast of the image has been reduced.



4.8.2 Molding Flash Detection with Subpixel-Precise Contours

In the following, the second approach is described, which is based on the processing of subpixel-precise contours. The idea is to compute the distance from the contour that represents the boundary of the plastic part to the circular reference shape. The contour representation can be obtained by using subpixel-precise edge extraction (see Section 3.7.3.5). Because edge extraction is computationally expensive, we determine an ROI first:






boundary (Object, RegionBorder, ’outer’)

dilation_circle (RegionBorder, RegionDilation, 5.5)

reduce_domain (Image, RegionDilation, ImageReduced)






As in the first approach, we start with the segmented object region, which is shown in Figure 4.36(b). First, the one-pixel-wide boundary of the object region is computed. We broaden this border using morphology to get a band-shaped ROI for the subpixel-precise extraction of the edges:






edges_sub_pix (ImageReduced, Edges, ’canny’, 2.0, 20, 40)

union_adjacent_contours_xld (Edges, BorderContour, 20, 1, ’attr_keep’)






Because of small irregularities of the object border, the edges obtained may be interrupted. To obtain one connected contour, adjacent edge segments are merged. The resulting contour is shown in Figure 4.41(a).

In the next step, the reference shape must be extracted. This is done by fitting a circle to the extracted contour. The contour points that lie on the flash would falsify the result of the fitting, and hence should be treated as outliers. Therefore, we use a robust fitting algorithm as described in Section 3.8.1.2. Because we want to completely disregard the outliers from the computation, we use the Tukey weight function:

[image: image]
Figure 4.41 (a) Result of the edge extraction in the zoomed image part displayed in Figure 4.36. Adjacent edge segments have been merged. (b) Circle robustly fitted to the contour of (a). (c) The extracted contour (gray line), the contour of the fitted circle (solid black line), and the contour of a circle with a radius enlarged by MinFlashSize (dashed black line). The intersection points of the extracted contour and the enlarged circle represent the desired start and end points of the flash.






fit_circle_contour_xld (BorderContour, ’geotukey’, -1, 0, 0, 3, 2,

                        CenterRow, CenterCol, Radius,

                        StartPhi, EndPhi, PointOrder)






The contour of the circle obtained is shown in Figure 4.41(b). Now, we can compute the distances of all contours points to the fitted circle:






dist_ellipse_contour_points_xld (BorderContour, ’unsigned’, 0,

                                 CenterRow, CenterCol, 0,

                                 Radius, Radius, Distances)






In this approach, the maximum distance of the flashes from the ideal circular shape is obtained easily:






DistanceMax := max(Distances)






In the next step, we compute the start and end points of each contour interval whose points all have a distance exceeding the predefined threshold MinFlashSize. For this, we define a function whose argument is the index of the contour points. The function values are the distance values corrected by the threshold value. The function is shown in Figure 4.42. Thus, the indices of the start and end points correspond to the zero crossings of this function:






DistancesOffset := Distances-MinFlashSize

create_funct_1d_array (DistancesOffset, Function)

zero_crossings_funct_1d (Function, ZeroCrossings)






[image: image]
Figure 4.42 Function that holds the corrected distance values DistancesOffset for all contour points. Intervals of contour points with positive function values represent the molding flashes.

The principle is illustrated in Figure 4.41(c). Effectively, we enlarge the radius of the fitted circle by the threshold MinFlashSize and compute the intersection points of the contour, with the enlarged circle. The points obtained are the start and end points of the intervals that represent the detected flashes. If the flash crosses the end of the contour, we must take the 360° wrap-around into account. Note that, because of the closed contour, the first and last function values are identical. The flash crosses the end of the contour if the first (or the last) function value is positive. In this case, we move the last zero crossing to the first position in the tuple:






if (DistancesOffset[0] > 0)

    Num := |ZeroCrossings|

    ZeroCrossings := [ZeroCrossings[Num-1],ZeroCrossings[0:Num-2]]

endif






Now, we can group two consecutive zero crossings to one interval. The corresponding angle range can be computed from the circle center and the two contour points at the position of the zero crossings:






get_contour_xld (BorderContour, ContRow, ContCol)

for Index := 0 to |ZeroCrossings|-1 by 2

    Start := round(ZeroCrossings[Index])

    End := round(ZeroCrossings[Index+1])

    Angle1 := atan2(CenterRow-ContRow[Start],ContCol[Start]-CenterCol)

    Angle2 := atan2(CenterRow-ContRow[End],ContCol[End]-CenterCol)

    AngleRange := Angle2-Angle1

endfor






Note that the zero crossings are extracted with subpixel precision. Therefore, we must round them to the nearest integer value before using them as indices to the array of contour points.

The result of the region-based molding flash detection is shown in Figure 4.43.

[image: image]
Figure 4.43 Result of the molding flash detection with subpixel-precise contours. The maximum distance, the angle of the start and end points of the detected flash, and the corresponding angle range, are overlaid as white text in the upper left corner of the image. The associated sector of the fitted circle (dashed), the enclosed circle segment (solid), and the end points of the flash (crosses) are displayed in white. To provide better visibility, the contrast of the image has been reduced.



4.8.3 Exercise


	1) The example program described is able to detect flashes, i.e., protrusions, on the boundary of the molded part. Another molding defect that frequently must be detected are voids, i.e., indentations at the object boundary. Modify the program so that indentations as well as protrusions can be detected.






4.9 Inspection of Punched Sheets

A punched sheet is sheet metal that has been cut by using a punch. The punched sheets must be inspected to guarantee predefined tolerances.

In this application, we check the size of the holes in a punched sheet. First, we extract the boundaries of the holes in the sheet metal. Then the size of the holes is calculated from the extracted contours.

The algorithms used in this application are:


	Thresholding (Section 3.4.1.1)

	Region boundaries (Section 3.6.1.4)

	Subpixel-precise 2D edge extraction (Section 3.7.3.5)

	Segmentation of contours into lines and circles (Section 3.8.4.2)

	Robust circle fitting (Section 3.8.2.2)


[image: image]
Figure 4.44 (a) Image of a punched sheet that contains circular and oval holes. (b) Edges extracted from the image in (a).

The corresponding example program is:

… /machine_vision_book/punching_sheet_inspection/punching_sheet_inspection.hdev.

To inspect the outline of thin planar objects, the images are acquired with diffuse bright-field back light illumination (see Section 2.1.5.4). With this kind of illumination, the object appears dark while the surrounding areas are bright (see Figure 4.44(a)). This simplifies the segmentation process significantly. To avoid perspective distortions, the image plane of the camera must be parallel to the sheet metal. If this camera setup cannot be realized for the image acquisition, or if the lenses produce heavy distortions, the camera must be calibrated and the images must be rectified (see Section 3.9). If the lens distortions can be neglected, the rectification can also be done with a projective transformation (see Section 3.3.1.1).

First, the boundaries of the punched sheet are extracted in the image. The resulting contours are then segmented into lines and circular arcs. Finally, circles are fitted to the circular arcs to obtain the radii of the holes in the sheet metal.


4.9.1 Extracting the Boundaries of the Punched Sheets

We use subpixel-precise edge extraction (see Section 3.7.3.5) for the determination of the boundary. Because edge extraction is computationally expensive, we determine an ROI first:






threshold (Image, Region, 128, 255)

boundary (Region, RegionBorder, ’inner’)

dilation_circle (RegionBorder, RegionBorderDilation, 3.5)

reduce_domain (Image, RegionBorderDilation, ImageReduced)






Because of the diffuse bright-field back light illumination, it is easy to find an appropriate threshold range for the segmentation of the bright background, e.g., 128 to 255. With this, we can be sure that the edges to be extracted lie in the vicinity of the border of the segmented region. We broaden this border using morphology to get a band-shaped ROI for the subpixel-precise extraction of the edges.






edges_sub_pix (ImageReduced, Boundary, ’canny’, 2.0, 20, 40)






The extracted edges are shown in Figure 4.44(b). In the next step, these edges are segmented into lines and circular arcs:






segment_contours_xld (Boundary, ContoursSplit, ’lines_circles’, 5, 10, 5)






Now, we collect all circular arcs. The type of the split contours can be determined by reading out the global contour attribute ’cont_approx’, which has the value 1 for contours that are best approximated by circular arcs. For contours that can be approximated by lines, the attribute has the value -1.






gen_empty_obj (CircularArcs)

Number := |ContoursSplit|

for i := 1 to Number by 1

    select_obj (ContoursSplit, ObjectSelected, i)

    get_contour_global_attrib_xld (ObjectSelected, ’cont_approx’, Attrib)

    if (Attrib == 1)

        concat_obj (CircularArcs, ObjectSelected, CircularArcs)

    endif

endfor






The contours may have been oversegmented during the segmentation into lines and circular arcs. To obtain one contour for each circular border of the punched sheet, we merge cocircular arcs:






union_cocircular_contours_xld (CircularArcs, UnionContours,

                               0.5, 0.5, 0.2, 30, 10, 20, ’true’, 1)






The resulting circular arcs are displayed in Figure 4.45(a). Figure 4.45(b) shows a detail of the image from Figure 4.44(a) along with the circular arc.

[image: image]
Figure 4.45 (a) Circular arcs selected from the edges in Figure 4.44(b). (b) Detail of Figure 4.44(a) along with the selected edges. Note that the contrast of the image has been reduced for visualization purposes.



4.9.2 Performing the Inspection

Now we determine the parameters of the best-fitting circle for each circular arc and select those circles that have a radius smaller than a relatively large value, e.g., 500 pixels, to get rid of the large arc at the lower image border.






fit_circle_contour_xld (UnionContours, ’geotukey’, -1, 0, 0, 3, 1,

                        Row, Column, Radius, StartPhi, EndPhi, PointOrder)

CircleIds := find(sgn(Radius-500),-1)

select_obj (UnionContours, Circles, CircleIds+1)






To determine the indices of the circles that have a radius below 500 pixels, we use the following operations. First, we subtract 500 from the tuple that holds the radii and determine the sign of the resulting values. If a particular radius is smaller than 500, sgn(Radius-500) will be -1. Using the function find, we collect all indices of circles with a radius smaller than 500. The radii of these circles are displayed in Figure 4.46(a). Figure 4.46(b) shows a detail of the image from Figure 4.44(a) along with the fitted circle.

Finally, we determine the distance between the centers of the two circles of the two oval holes at the top of the image. For simplicity, we assume that the oval holes are the uppermost holes in the image. Hence we can select the four respective circle centers simply by sorting them appropriately:






IndicesUppermost := sort_index(Row)[0:3]

RowOval := subset(Row,IndicesUppermost)

ColOval := subset(Column,IndicesUppermost)






First, we sort the row coordinates in ascending order and take the indices of the first four circle centers. By using these indices, we can select the four uppermost circles.

[image: image]
Figure 4.46 (a) The overall inspection result. The fitted circles are displayed in white together with their radii. For the two oval holes, the distance between the centers of the two circles is given. (b) Detail of Figure 4.44(a) along with the fitted circle. Note that the shape of the hole is not perfectly circular. Note also that the contrast of the image has been reduced for visualization purposes.

Now, we sort these circles according to their column position:






Indices := sort_index(ColOval)

RowOvalSorted := subset(RowOval,Indices)

ColOvalSorted := subset(ColOval,Indices)






The sorted indices are used to arrange the centers of the four circles from left to right. With this, it is easy to determine the distance between the two circle centers of each oval hole:






for CircleNo := 0 to |Indices|-1 by 2

    distance_pp (RowOvalSorted[CircleNo], ColOvalSorted[CircleNo],

                 RowOvalSorted[CircleNo+1], ColOvalSorted[CircleNo+1],

                 Distance)

endfor






Because we have sorted the circle centers from left to right, we can simply step through the sorted array by using a step width of 2 and select two consecutive circle centers each time. This ensures that both circle centers belong to the same oval hole. The resulting distances are displayed in Figure 4.46(a).



4.9.3 Exercises


	1) For the detection of the two oval holes, we made the assumption that the punched sheet appears in roughly the same orientation in each image. Write a procedure that determines the pairs of circles that belong to the same oval hole even if the punched sheet is arbitrarily oriented. Tip: You can test whether the connection between two circle centers lies completely within a hole by means of set operations on regions (see Section 3.6.1.1).

	2) As can be seen in Figure 4.46(b), the actual boundary of the hole in the sheet metal deviates from a perfect circle. Extend the above program such that the deviations of the extracted boundary from the fitted circle are determined. Visually highlight the parts of the boundary that deviate from the circle by more than some given threshold.






4.10 3D Plane Reconstruction with Stereo

A binocular stereo system consists of two cameras looking at the same object. If the interior orientations and the relative orientation of the two cameras are known, the 3D surface of the object can be reconstructed from the images of the two cameras.

In this application, we determine the angle between two planes on an intake manifold using a stereo camera setup. First, we calibrate the stereo camera setup. Then,

from a stereo image pair of the intake manifold, a distance map is determined that describes the 3D surface of the object. We determine the two planes that form the indentation in the cylindrical surface. Finally, we calculate the indentation angle between the two planar faces of the indentation.

The algorithms used in this application are:


	Camera calibration (Section 3.9)

	Stereo reconstruction (Section 3.10.1)

	2D edge extraction (Section 3.7.3)

	Region morphology (Section 3.6.1)


The corresponding example program is:

… /machine_vision_book/3d_plane_reconstruction_with_stereo/3d_plane_reconstruction_with_stereo.hdev.


4.10.1 Calibrating the Stereo Setup

To be able to reconstruct the 3D surface of the object, we must calibrate the stereo system. For this, we acquire stereo images of a calibration target. Figure 4.47 shows two stereo image pairs of a calibration target. In Figures 4.47(a) and (c), the images of the first camera are shown, while Figures 4.47(b) and (d) show the respective images of the second camera. For historical reasons (this example was developed for the first edition of this book), we use an old calibration target (cf. Section 3.9.4.1). In new applications, we would of course use the new calibration target.

First, we specify the calibration target used, define initial values for the interior orientation of both cameras, and initialize the handle that will be used to collect the image coordinates of the calibration marks and the initial poses of the calibration targets:






CaltabName := ’caltab_30mm.descr’

gen_cam_par_area_scan_division (0.025, 0, 7.5e-6, 7.5e-6, Width1/2.0,

                                Height1/2.0, Width1, Height1,

                                StartCamParam1)

gen_cam_par_area_scan_division (0.025, 0, 7.5e-6, 7.5e-6, Width2/2.0,

                                Height2/2.0, Width2, Height2,

                                StartCamParam2)

create_calib_data (’calibration_object’, 2, 1, CalibDataID)

set_calib_data_calib_object (CalibDataID, 0, CaltabName)

set_calib_data_cam_param (CalibDataID, 0, [], StartCamParam1)

set_calib_data_cam_param (CalibDataID, 1, [], StartCamParam2)






Both cameras have a focal length of approximately 25 mm and the pixel size is 7.5 µm. The distortion coefficient is set to zero and the principal point is assumed to be in the center of the image. These values are just initial values. They will be improved during the calibration process.

Then, within a loop over all available calibration image pairs, the subpixel-accurate positions of the calibration marks and initial estimates for the poses of the calibration target with respect to the two cameras are determined:

[image: image]
Figure 4.47 Two stereo image pairs of the calibration target. In (a) and (c), the images of the first camera are shown; while (b) and (d) show the respective images of the second camera.






find_calib_object (Image1, CalibDataID, 0, 0, Index, ’alpha’, 0.5)

find_calib_object (Image2, CalibDataID, 1, 0, Index, ’alpha’, 0.5)






Now, we determine the exact interior orientations as well as the relative pose of the two cameras:






calibrate_cameras (CalibDataID, Error)

get_calib_data (CalibDataID, ’camera’, 0, ’params’, CamParam1)

get_calib_data (CalibDataID, ’camera’, 1, ’params’, CamParam2)

get_calib_data (CalibDataID, ’camera’, 1, ’pose’, RelPose)






For the calibrated stereo system, we determine two rectification maps that are used to rectify the stereo image pairs to the epipolar standard geometry:






gen_binocular_rectification_map (Map1, Map2, CamParam1, CamParam2,

                                 RelPose, 1, ’geometric’, ’bilinear’,

                                 CamParamRect1, CamParamRect2,

                                 CamPoseRect1, CamPoseRect2, RelPoseRect)






[image: image]
Figure 4.48 Stereo image pair of an intake manifold acquired with the stereo system. In (a), the image taken by the first camera is shown, while (b) displays the image from the second camera.

The rectification maps define a mapping from the original stereo images to the rectified stereo images in which corresponding points, i.e., points that belong to the same object point, have identical row coordinates.



4.10.2 Performing the 3D Reconstruction and Inspection

All steps described so far are performed offline. In the online phase, we use the calibrated stereo system to reconstruct the 3D surface of the intake manifold. For this, we need a stereo image pair of the object. Figure 4.48 shows one stereo image pair of an intake manifold acquired with a calibrated stereo system.

First, the images are rectified to the epipolar standard geometry with the rectification maps created above:






map_image (Image1, Map1, ImageRect1)

map_image (Image2, Map2, ImageRect2)






The rectified images of the two cameras are shown in Figure 4.49.

Now, we determine the distance of each point on the object surface from the stereo system:






binocular_distance (ImageRect1, ImageRect2, Distance, Score,

                    CamParamRect1, CamParamRect2, RelPoseRect,

                    ’ncc’, 21, 21, 5, MinDisparity, MaxDisparity,

                    5, 0.1, ’left_right_check’, ’interpolation’)






The distance of the object surface from the stereo system is shown in Figure 4.50(a). Figure 4.50(b) shows the quality of the matches between the two rectified images. Bright values indicate good matches.

Now, we determine the two planes that form the indentation. First we determine the direction of the gradients in the distance image. Then, we segment the image into regions that have homogeneous gradient directions. Finally, we test how well these regions represent planes. We select the best two regions and determine the normal vectors of the respective planes.

[image: image]
Figure 4.49 The images of the first (a) and second (b) camera rectified to the epipolar standard geometry.

[image: image]
Figure 4.50 (a) The distance of the object surface from the stereo system. Bright values indicate a larger distance than dark values. For better visibility, [image: image] is displayed. (b) The quality of the match between the two rectified images. Bright values indicate good matches.

We determine the gradient direction of the distance image as follows:






get_domain (Distance, Domain)

min_max_gray (Domain, Distance, 0, Min, Max, Range)

scale_image (Distance, DistanceScaled,

             pow(2,16)/Range, -Min*pow(2,16)/Range)

convert_image_type (DistanceScaled, DistanceUInt2, ’uint2’)

edges_image (DistanceUInt2, ImaAmp, ImaDir, ’canny’, 1.5, ’none’, 20, 40)






Because the distance image is a real-valued image and this data type is not supported by the edge extraction operator, we must convert the image such that the distance values are represented by integer values. To preserve the accuracy of the distance values, the distance image is converted into an image with a gray value depth of 16 bits. The original (real) gray values are scaled such that they fully exploit the gray value range of the 16-bit image. Then, the gradient directions are determined with the operator edges_image. In the resulting direction image, regions that have homogeneous directions are determined.

In the direction image, the gradient directions are stored in 2-degree steps, i.e., a direction of x degrees with respect to the horizontal axis is stored as x/2 in the direction image. Points with edge amplitude 0 are assigned the edge direction 255, which indicates an undefined direction. Hence, only gray values in the range [0, 179] are of interest for the following analysis. Because we are searching for planes, we must find regions in the image that have a homogeneous gradient direction. For this reason, the histogram of the direction image should contain peaks that represent the mean directions of the regions with homogeneous gradient direction. The histogram is obtained with the following operation:






gray_histo (Domain, ImaDir, AbsoluteHisto, RelativeHisto)






Figure 4.51(a) shows the histogram of the direction image. It has four major peaks, one of them at the wrap-around at 360 degrees. Two of the peaks belong to the planes we want to extract. The two other peaks represent areas on the cylindrical surface of the object. To illustrate this, Figure 4.51(b) displays an image of the intake manifold along with the mean gradient directions in the regions that correspond to the four major peaks of the histogram of the direction image.

The appropriate thresholds for the segmentation of the image into regions with homogeneous gradient directions are the minima in the histogram of the direction image. To determine the minima in a stable manner, the histogram must be smoothed. Because of the cyclic nature of the direction image, we must take care to ensure correct smoothing around the position 0 degrees. This is done by creating a function that consists of two consecutive copies of the histogram. We then smooth this function. From the local minima of the smoothed function, we select a sequence that covers a range of 360 degrees; however, we should not use the first or the last minimum because their positions might be disturbed if they lie close to 0 degrees or 360 degrees, respectively.

[image: image]
Figure 4.51 (a) Histogram of the direction image. Note that the gradient directions are stored in 2-degree steps in the direction image. (b) Image of the intake manifold along with four arrows that indicate the mean gradient direction in the regions that correspond to the four major peaks of the histogram displayed in (a).






create_funct_1d_array ([AbsoluteHisto[0:179],AbsoluteHisto[0:179]],

                       HistoFunction)

smooth_funct_1d_gauss (HistoFunction, 4, SmoothedHistoFunction)

local_min_max_funct_1d (SmoothedHistoFunction, ’strict_min_max’, ’true’,

                        Minima, Maxima)

MinThreshShifted := Minima[1:(find(sgn(Minima-(Minima[1]+179)),1))[0]-1]

MinThresh := sort(fmod(MinThreshShifted,180))






We can now segment the distance image using the thresholds determined above. Because of the cyclic nature of the direction image from which the thresholds were determined, we must merge the region that starts at 0 degrees with the one that ends at 360 degrees if there is no minimum in the direction histogram at 0 degrees:






threshold (ImaDir, Region, [0,int(MinThresh)+1], [int(MinThresh),179])

count_obj (Region, Number)

select_obj (Region, FirstRegion, 1)

select_obj (Region, LastRegion, Number)

union2 (FirstRegion, LastRegion, RegionUnion)

copy_obj (Region, ObjectsSelected, 2, Number-2)

concat_obj (RegionUnion, ObjectsSelected, Regions)






The resulting regions all have a homogeneous gradient direction. To eliminate clutter, we select the largest connected component from each region and apply an opening operation to it. Then, we select the two regions that represent planes:






count_obj (Regions, Number)

for Index := 1 to Number by 1

    select_obj (Regions, ObjectSelected, Index)

    connection (ObjectSelected, ConnectedRegions)

    area_center (ConnectedRegions, Area, RowConnected, ColumnConnected)

    select_obj (ConnectedRegions, LargestRegion,

                sort_index(-AreaConnected)[0]+1)

    opening_circle (LargestRegion, PlaneRegion, 3.5)

    area_center (PlaneRegion, AreaPlane, RowPlane, ColumnPlane)

    fit_surface_first_order (PlaneRegion, Distance, ’regression’, 5, 2,

                             Alpha, Beta, Gamma)

    gen_image_surface_first_order (ImageSurface, ’real’, Alpha, Beta,

                                   Gamma, Row, Col, Width, Height)

    reduce_domain (ImageSurface, PlaneRegion, ImageReduced)

    sub_image (Distance, ImageReduced, DeviationFromPlane, 1, 0)

    intensity (PlaneRegion, DeviationFromPlane, Mean, Deviation)

endfor






Similarly to the fitting of lines described in Section 3.8.1, we fit planes into the regions of the distance image that were described above. Then, we determine the deviation of the respective parts of the distance image from these planes. The two regions for which the distance image deviates least from the respective planes are selected.

We determine the normal vectors for these regions from the plane parameters and the pixel size of the rectified image:

[image: image]
Figure 4.52 (a) Rectified image of the intake manifold along with the outlines of the two planes. (b) A 3D plot of the surface of the intake manifold.






Nx := -Sy*Alpha

Ny := -Sx*Beta

Nz := Sx*Sy

Length := sqrt(Nx*Nx+Ny*Ny+Nz*Nz)

Nx := Nx/Length

Ny := Ny/Length

Nz := Nz/Length






From the two normal vectors, the angle between the two planes easily can be determined.

Figure 4.52 shows the final results. In Figure 4.52(a), the rectified image of the intake manifold is shown along with the outlines of the two planes. Figure 4.52(b) shows a 3D plot of the surface of the intake manifold.



4.10.3 Exercise


	1) We have used the operator binocular_distance to perform the 3D reconstruction. Modify the program to use the operator reconstruct_surface_stereo.





4.11 Pose Verification of Resistors

Typically, electronic components are mounted on a PCB by a pick-and-place machine. Before the completed boards are tested, they are visually inspected for missing or misaligned components. Furthermore, in some applications it is necessary to verify whether the correct type of electronic component has been mounted at the intended place.

In this application, we verify the pose and the type of different resistors that have been mounted on a PCB. First, the pose of the resistor on the board is determined and missing resistors are detected. Then, the type of the resistor (if present) is extracted and compared to the known reference type.

[image: image]
Figure 4.53 The two different types of resistors that must be verified: (a) 33 Ω and (b) 1.1 Ω.

The algorithms used in this application are:


	Shape-based matching (Section 3.11.5.6)

	Affine transformations (Section 3.3.1)

	Image transformations (Section 3.3.2)


The corresponding example program is:

… /machine_vision_book/resistor_verification/resistor_verification.hdev.

To prevent specular reflections in the images, we use diffuse bright-field front light illumination (see Section 2.1.5.1). Figures 4.53(a) and (b) show the two types of resistors that we want to verify: 33 Ω and 1.1 Ω, respectively.


4.11.1 Creating Models of the Resistors

The first task is to determine the pose of the resistor in the image. All resistors have a rectangular shape. However, the size of the resistors and the aspect ratio of their sides are not identical. Consequently, determining the pose of the resistor implies determining its position, its orientation, and two scaling factors, which represent the size and the aspect ratio of the resistor’s sides. We determine the pose of the resistor by using shape-based matching (see Section 3.11.5.6). First, we create an artificial template image of a generic resistor with average size and aspect ratio:






MeanModelHeight := 185

MeanModelWidth := 100

gen_image_const (Image, ’byte’, Width, Height)

gen_rectangle2_contour_xld (Rectangle, Height/2, Width/2, 0,

                            MeanModelWidth/2.0, MeanModelHeight/2.0)






[image: image]
Figure 4.54 (a) Artificial template image of a generic resistor. (b) Contour representation of the model that is used for matching.






paint_xld (Rectangle, Image, ModelImageGeneric, 128)






For this, we generate a rectangular contour that represents the boundary of an average resistor. Then, the contour is painted into an empty image. Note that paint_xld paints the contour onto the background using anti-aliasing. Consequently, the gray value of a pixel depends on the fraction by which the pixel is covered by the rectangle. For example, if only half of the pixel is covered, the gray value is set to the mean gray value of the background and the rectangle. The resulting template image is shown in Figure 4.54(a). After this, a shape model is created from the template image by using the following operations:






AngleTol := rad(5)

ScaleTol := 0.1

create_aniso_shape_model (ModelImageGeneric, 3,

                          -AngleTol, 2.0*AngleTol, ’auto’,

                          1.0-ScaleTol, 1.0+ScaleTol, ’auto’,

                          1.0-ScaleTol, 1.0+ScaleTol, ’auto’,

                          ’auto’, ’ignore_local_polarity’, ’auto’,

                          10, ModelIDGeneric)






In this application, it can be assumed that the PCB is aligned horizontally and that the resistors are mounted on the board with an angle tolerance of ±5°. Furthermore, the length of the resistor’s sides may vary by ±10% with respect to the average values MeanModelHeight and MeanModelWidth. The shape model of the generic resistor is created accordingly by passing the corresponding tolerance values. The model can be used to determine the pose of the resistor in the online phase even if it appears rotated and anisotropically scaled.

The second task is to determine the type of the resistor. This task can be solved by means of the printed characters on top of the resistors. For this, we create two additional model representations, one for the print “330” on the 33 Ω resistor and one for the print “1R1” on the 1.1 Ω resistor. In the online phase, the best matching model is assumed to represent the present resistor type. If neither of the two models can be found in the online phase, the resistor type is set to “unknown.” In the following, the model creation is described for the 33 Ω resistor. The model creation for the 1.1 Ω resistor is performed in the same manner.

The model is created from the print on the resistor shown in Figure 4.53(a). To ease the future use of new resistor types, the model generation process is done automatically. First, the pose of the resistor in the model image is determined by using the generic resistor model generated above:






find_aniso_shape_model (Image, ModelIDGeneric,

                        -AngleTol, 2.0*AngleTol,

                        1.0-ScaleTol, 1.0+ScaleTol,

                        1.0-ScaleTol, 1.0+ScaleTol,

                        0.7, 1, 0.5, ’least_squares’, 0, 0.7,

                        Row, Column, Angle, ScaleR, ScaleC, Score)






The resulting pose parameters refer to the reference point of the generic model. The reference point is the center of gravity of the domain of the model image. Since the domain of the model image comprises the whole image, the reference point is simply the center of the model image, and hence the center of the resistor. Consequently, the pose of the generic model can be used to generate a rectangular ROI that contains the print on the resistor. For this, we assume that the print is contained within a rectangle that has the same position and orientation as the resistor but only half of its side lengths:






PrintFraction := 0.5

gen_rectangle2 (Rectangle, Row, Column, Angle,

                PrintFraction*ScaleC*0.5*MeanModelWidth,

                PrintFraction*ScaleR*0.5*MeanModelHeight)

reduce_domain (Image, Rectangle, ModelImage)

create_shape_model (ModelImage, ’auto’, rad(-90), rad(360),

                    ’auto’, ’auto’, ’use_polarity’,

                    [’auto_contrast_hyst’,20], ’auto’, ModelID330)






The domain of the model image is reduced to the generated rectangle. Figure 4.55(a) shows the model image, the border of the found resistor, and the generated rectangle. Because the size and the aspect ratio of the print are constant in all images, this time it is sufficient to create a model that allows only rotated instances of the print to be found. Note, however, that the model is created within the full angle range of 360°. The reason for this is that the resistors might be mounted not only in the reference orientation shown in Figure 4.55 but also rotated by 180°. The contour representation of the resulting shape model is shown in Figure 4.55(b). The model image and the resulting shape model of the print “1R1” are shown in Figures 4.55(c) and (d), respectively. Note that the print on the resistor in both model images should appear at an average orientation. If this cannot be guaranteed, either the model image must be rectified before creating the model, or the angle range that is used to search the print in the online phase must be adapted to the orientation difference of the print with respect to the resistor.

[image: image]
Figure 4.55 (a), (c) Images that are used to create the models of the prints “330” and “1R1.” The found resistor is indicated by the outer white rectangle. The ROI for the model creation is indicated by the inner white rectangle. (b), (d) Contour representation of the created models.



4.11.2 Verifying the Pose and Type of the Resistors

All the steps described so far can be performed offline. In the online phase, we use the generated models to verify the pose and the type of the resistors. To verify the pose, the generic resistor model is used. It is searched in the same pose range in which it was created:






find_aniso_shape_model (ImageOnline, ModelIDGeneric,

                        -AngleTol, 2.0*AngleTol,

                        1.0-ScaleTol, 1.0+ScaleTol,

                        1.0-ScaleTol, 1.0+ScaleTol,

                        0.7, 1, 0.5, ’least_squares’, 0, 0.7,

                        Row, Column, Angle, ScaleR, ScaleC, Score)






If the model cannot be found, we assume that the resistor is missing on the board. Otherwise, we proceed with the type verification by using the two models that represent the prints on the resistors. Since we know the pose of the resistor, we can restrict the search for the print to an appropriate image region. This region must contain the reference point of the model. Because the position of the print does not vary much with respect to the outline of the resistor, a relatively small region is sufficient. In this example, the region is set to a rectangle the side lengths of which are a quarter of the resistor’s side lengths:






PrintRefFraction := 0.25

gen_rectangle2 (Rectangle, Row, Column, Angle,

                PrintRefFraction*ScaleC*0.5*MeanModelWidth,

                PrintRefFraction*ScaleR*0.5*MeanModelHeight)

reduce_domain (ImageOnline, Rectangle, ImageReduced)






Finally, the models of the prints are searched in the reduced image domain:






find_shape_models (ImageReduced,

                   [ModelID330,ModelID330,ModelID1R1,ModelID1R1],

                   [0,rad(180),0,rad(180)]-AngleTol, 2*AngleTol,

                   0.5, 1, 0.5, ’least_squares’, 0, 0.9,

                   PrintRow, PrintColumn, PrintAngle,

                   PrintScore, PrintModel)






As mentioned above, the resistors may be mounted in the two orientations 0° and 180° (plus the tolerances). Consequently, we do not need to search the prints in the full range of 360°. Instead, each model is only searched in the two angle ranges [−AngleTol, AngleTol] and [π−AngleTol, π+AngleTol]. With find_shape_models, multiple models can be searched simultaneously. Therefore, altogether four model handles are passed to find_shape_models: each of the two models is passed twice, once for each angle range. Alternatively, find_shape_model could be called four times, once for each model and each angle range. However, this would be computationally more expensive because some computations must be performed multiple times. Furthermore, the best match would have to be determined in an additional post-processing step. The index of the model that yielded the best match is returned in PrintModel. This index refers to the tuple of shape model handles that was passed as input, and hence is in the range [0 … 3]. If no match was found, we assume that the resistor type is “unknown.” Otherwise, the resistor type can be computed based on the returned index:






ResistorTypes := [’330’,’1R1’]

Model := PrintModel/2

ResistorType := ResistorTypes[Model]






Finally, if the determined resistor type does not correspond to the expected one, an appropriate action can be triggered. In Figures 4.56(a) and (b), for each of the two resistor types, an example of the verification result is shown.

[image: image]
Figure 4.56 Verification result for an example image that shows a 33 Ω (a) and a 1.1 Ω (b) resistor. The border of the found resistor is overlaid as a white rectangle. The pose of the found print is indicated by the overlaid white contours. The pose and type of the resistor are displayed in the upper left corner of the image.



4.11.3 Exercises


	1) In some applications, the resistors additionally appear in an orientation of ±90°. Modify the program appropriately so that resistors with orientations 0°, 90°, 180°, and 270° can be verified.

	2) As an alternative to shape-based matching, NCC could be used for the template matching (see Section 3.11.1.2). Adapt the above program so that the pose and type of the resistor are determined with NCC. Tip: The generic model should be extended to include more details of the resistor. It should contain the dark rectangular center part, the gray border regions at the sides, and the bright regions of the contacts at the upper and lower parts of the resistor. Note that NCC is more robust against small deformations than shape-based matching. Therefore, no (anisotropic) scaling of the resistor model needs to be taken into account.

	3) In the above application, the type of the resistor is determined by using template matching. Alternatively, the print could be segmented by using region morphology (see Section 3.6.1) and read using OCR (see Sections xs3.14 and 3.15). Modify the above program accordingly.






4.12 Classification of Non-Woven Fabrics

Through classification, a sample can be assigned to one of a set of predefined categories. The goal of texture classification is to assign an unknown image to one of a set of known texture classes.

In this application, we classify images of different types of non-woven fabrics using an MLP.

The algorithms used in this application are:


	2D edge extraction (Section 3.7.3)

	Gray value features (Section 3.5.2)

	Classification (Section 3.15)



The corresponding example program is:

… /machine_vision_book/classification_of_nonwoven_fabrics/classification_of_nonwoven_fabrics.hdev.


4.12.1 Training the Classifier

Texture classification involves two phases: the training phase and the recognition phase. In the training phase, a classifier is created for the texture content of each texture class that is present in the training data. The training data consists of images with known class labels. The texture content of the images is captured by a set of texture features. These features characterize the texture properties of the images.

[image: image]
Figure 4.57 Three samples out of a set of 22 different types of non-woven fabrics.

It is advantageous to separate the training data into a set of training images and a set of independent test images. The former is used to train the classifier as well as to carry out a first test of the classifier by reclassifying the training images. The latter is used to test the classifier and to improve it by adding those test images to the set of training images that could not be classified correctly. In real applications, to rate the performance of the final classifier, another set of independent test images must be available.

In the recognition phase, the texture content of the images is described by the same texture features that were used in the training phase. Then, the classifier assigns each image to the best-matching class based on the texture features.

Figure 4.57 shows three samples out of a set of 22 different types of non-woven fabrics. The images are taken with diffuse bright-field front light illumination (see Section 2.1.5.1). In the current application, only six training images and four independent test images are available for each of the 22 classes. For real applications, much more training data must be available to achieve a reliable classifier. It is not unusual that several thousands of training samples are used for each class.

First, we initialize the classifier:






NumHidden := 10

create_class_mlp (NumFeatures, NumHidden, NumClasses, ’softmax’,

                  ’normalization’, -1, 42, MLPHandle)






The number of hidden neurons defines the size of the MLP. Generally, it should be in the range of the number of features and the number of classes. If too few hidden neurons are chosen, the reclassification of the training images will give a large number of misclassified images. If the number of hidden neurons is chosen too large, the MLP may overfit the training data, which typically leads to bad generalization properties, i.e., the MLP learns the training data very well, but does not return very good results on unknown data.

We now add the texture features of the training images to the classifier. We use features that characterize the number and strength of edges in the image as well as features that measure the distribution of the gray values across the image:






Features := []

gen_gauss_pyramid (Image, ImagePyramid, ’constant’, 0.5)

for Index := 1 to 3 by 1

    select_obj (ImagePyramid, ImageRR, Index)

    sobel_amp (ImageRR, EdgeAmplitude, ’sum_abs’, 3)

    gray_histo_abs (EdgeAmplitude, EdgeAmplitude, 8, AbsoluteHisto)

    SobelFeatures := real(AbsoluteHisto)/sum(AbsoluteHisto)

    Features := [Features,SobelFeatures]

endfor






First, edges are extracted from the image. Then, the relative histogram of the edge amplitudes is derived. These features are calculated for the original image as well as for reduced-resolution copies of the image.

The distribution of the gray values across the image is measured by the entropy and the anisotropy, again calculated for the original image as well as for reduced-resolution copies of the image:






for Index := 1 to 3 by 1

    select_obj (ImagePyramid, ImageRR, Index)

    entropy_gray (ImageRR, ImageRR, Entropy, Anisotropy)

    Features := [Features,Entropy,Anisotropy]

endfor






All features are calculated within the procedure gen_features. It is called for each training image, and the resulting features are added to the classifier:






gen_features (Image, Features)

add_sample_class_mlp (MLPHandle, Features, Class)






The internal weights of the classifier are determined based on the training data:






train_class_mlp (MLPHandle, 200, 0.1, 0.001, Error, ErrorLog)






This is an iterative process that terminates when both the internal weights and the error of the MLP on the training samples become stable. To judge the training phase, the progression of the error can be plotted as a function against the number of iterations (see Figure 4.58). The error should drop off steeply at first, leveling out to almost flat at the end.



4.12.2 Performing the Texture Classification

Using the classifier created above, we can reclassify all the training images. If all the images can be classified correctly, we can test the classifier by classifying the independent test images. Typically, some of the test images are classified incorrectly. Figure 4.59 shows two pairs of images. Misclassified test images are displayed in the upper row, while the lower row shows one image of the class to which the image displayed above has been assigned erroneously.

If the number of misclassifications is very large, either the number of training samples must be increased significantly or the number of hidden neurons must be reduced. Furthermore, it should be checked whether the features used are suitable for separating the different classes. If the number of misclassifications is moderate, the classifier is already reasonably good. The wrongly classified images should be added to the training images and the classifier should be trained anew using the extended training data. This creates an improved classifier.

[image: image]
Figure 4.58 The progression of the error during the training of the classifier. Note that initially the error drops off steeply while leveling out to almost flat at the end.

[image: image]
Figure 4.59 Wrongly classified images. The upper row displays the misclassified images; the lower row shows one image of the class to which the image displayed above has been assigned erroneously.

If much training data is available, the classification of independent test images and the adding of the misclassified test images to the training images can be repeated several times. This procedure has two main advantages over feeding all the available training data into the classifier in one step. First, the training is faster because fewer training images are used to train the classifier. Second, the performance of the classifier can be judged already in an early stage of the training phase.

Once the training phase is completed, the classifier can be used to classify images of unknown content:






gen_features (Image, Features)

classify_class_mlp (MLPHandleImproved, Features, 1,

                    ClassifiedClass, Confidence)






Figure 4.60 shows one sample out of each of the 22 classes of non-woven fabrics. The improved classifier is able to classify all images correctly.

[image: image]
Figure 4.60 One sample of each of the 22 classes of non-woven fabrics.



4.12.3 Exercise


	1) Explore the behavior of the classifier for different texture features and different sizes of the MLP.





4.13 Surface Comparison

Surface comparison is used to ensure that the surface of produced objects (test objects) is similar to the surface of a reference object.

In this application, we reconstruct the surface of injection molds with a calibrated sheet-of-light system, which produces metric 3D coordinates. We then check for the presence and correctness of holes in the injection molds.

In the first part of the example program, the reference object model is created, together with a model for surface-based 3D matching. In the second part, the test objects are aligned with the reference object. Then, for each surface point, the distance from the test object to the reference object and the distance from the reference object to the test object are calculated. The results of these two distance measurements are analyzed for indications of


	additional holes,

	missing holes,

	holes with a wrong size, and

	holes at a slightly wrong position.


The result of this analysis is then visualized.

The algorithms used in this application are:


	Sheet of light reconstruction (Section 3.10.2)

	Surface-based 3D matching (Section 3.12.3)

	Region features (Section 3.5.1)


The corresponding example program is:

… /machine_vision_book/surface_comparison/surface_comparison.hdev.


4.13.1 Creating the Reference Model

First we create a sheet of light model. In this example, the calibration information, i.e., the camera parameters, the camera pose, the pose of the laser plane, and the movement pose is already known. We configure the sheet of light model to use this calibration information.

[image: image]
Figure 4.61 The disparity image returned by the sheet of light sensor.






create_sheet_of_light_model (Rectangle, [], [], SheetOfLightModelID)

set_sheet_of_light_param (SheetOfLightModelID, ’calibration’, ’xyz’)

set_sheet_of_light_param (SheetOfLightModelID, ’scale’, ’m’)

set_sheet_of_light_param (SheetOfLightModelID, ’camera_parameter’,

                          CameraParam)

set_sheet_of_light_param (SheetOfLightModelID, ’camera_pose’,

                          CameraPose)

set_sheet_of_light_param (SheetOfLightModelID, ’lightplane_pose’,

                          LightplanePose)

set_sheet_of_light_param (SheetOfLightModelID, ’movement_pose’,

                          MovementPose)






To create the reference model, we reconstruct the surface of the reference object with calibrated sheet of light. Figure 4.61 shows the disparity image returned directly by the sensor.

Using the parameters of the calibrated setup, the disparity measurements are transformed into a 3D object model.






set_profile_sheet_of_light (Disparity, SheetOfLightModelID, [])

get_sheet_of_light_result_object_model_3d (SheetOfLightModelID,

                                           ReferenceOrig)






Figure 4.62(a) shows the reference model as seen from the top. Here, the gray values are proportional to the z value of the respective surface point, i.e., higher parts of the object are displayed brighter.

To align the reconstruction of the test objects with the reconstruction of the reference object, we create a model for surface-based 3D matching. This model should only contain points on the object. In particular, the ground plane, on which the object was placed, must be eliminated. This can be done by selecting only those points that have a z coordinate in a suitable range. In our example, a z range from 0.01 m to 1 m is suitable. This range can easily be determined by inspecting the histogram of the z coordinates of all reconstructed points.






select_points_object_model_3d (ReferenceOrig, ’point_coord_z’,

                               0.01, 1, Reference)






[image: image]
Figure 4.62 The reconstructed 3D model of the reference part. (a) Gray-coded top view, where higher parts are displayed brighter. (b) Perspective view.

Figure 4.62(b) shows a perspective view of the reference object model without the ground plane. This reference object model is used to create the model for surface-based 3D matching.






create_surface_model (Reference, 0.02, [], [], SurfaceModelID)








4.13.2 Reconstructing and Aligning Objects

In the first step of the online phase, the objects to be compared must be reconstructed.






reset_sheet_of_light_model (SheetOfLightModelID)

set_profile_sheet_of_light (Disparity, SheetOfLightModelID, [])

get_sheet_of_light_result_object_model_3d (SheetOfLightModelID,

                                           TestObjectOrig)

select_points_object_model_3d (TestObjectOrig, ’point_coord_z’,

                               0.01, 1, TestObject)






The reconstructed surface of the produced object is typically not aligned with the reference model (see Figure 4.63(a)). To align the produced object with the reference part, we determine the transformation between the two parts with surface-based 3D matching and transform the object using this transformation (see Figure 4.63(b)).






find_surface_model (SurfaceModelID, TestObject, 0.02, 0.5, 0, ’false’,

                    ’pose_ref_sub_sampling’, 1, Pose, Score, NotUsed)

pose_invert (Pose, PosesInvert)

rigid_trans_object_model_3d (TestObject, PosesInvert, TestObjectTrans)








4.13.3 Comparing Objects and Classifying Errors

Surface comparison can be performed by calculating the distance between the surfaces of the reference object and the produced object. If this distance is below a predefined threshold for each surface point, the produced object is correct and passes the test. If there are larger deviations, we must analyze them. As mentioned above, we are looking for the following errors:

[image: image]
Figure 4.63 The reconstructed 3D model of the produced object. (a) The orientation of the produced object does not correspond to the orientation of the reference object. (b) The reconstructed model of the produced object has been aligned with the reference model.


	additional holes,

	missing holes,

	holes with a wrong size, and

	holes at slightly wrong positions.



These errors become apparent through the following effects in the calculated distances:


	Additional holes result in circular blobs of larger distances when calculating the distances from each surface point of the reference object to the surface of the produced object.

	Missing holes result in circular blobs of larger distances when calculating the distances from each surface point of the produced object to the reference object.

	Too small holes result in annular blobs of larger distances when calculating the distance from each surface point of the produced object to the reference object.

	Too large holes result in annular blobs of larger distances when calculating the distances from each surface point of the reference object to the surface of the produced object.

	Holes at slightly wrong positions result in pairs of crescent-shaped blobs of larger distances, where one blob appears in the distances from the reference object to the produced object and the other blob appears in the distances from the produced object to the reference object.


We calculate the distance between the two aligned surfaces and select all surface points that have a distance larger than a predefined threshold value (here, MaxDist has been set to 1 mm). As we have seen above, we must calculate the distances in both directions separately to be able to classify the various defects correctly.

First, we calculate the distances from all points of the reference object to the test object and select the points that have a distance above the predefined threshold, i.e., where the respective part of the surface is missing from the test object (ErrorSource ’missing in test’).






distance_object_model_3d (Reference, TestObjectTrans, [], 0.0, [], [])

select_points_object_model_3d (Reference, ’&distance’, MaxDist, 1,

                               ObjectModel3DThresholded)






If there are such points, we compute the connected components of these points based on the 3D distance to their neighboring points and remove all small components, which typically are caused by noise. Note that the minimum size of the components is given by the minimum number of points and must therefore be chosen according to the sampling distance and the minimum size of the defects.






get_object_model_3d_params (ObjectModel3DThresholded,

                            ’num_points’, NumPoints)

if (NumPoints > 0)

    connection_object_model_3d (ObjectModel3DThresholded, ’distance_3d’,

                                0.001, ObjectModel3DConnected)

    select_object_model_3d (ObjectModel3DConnected, ’num_points’,

                            ’and’, 200, 1000000,

                            SurfacePointsMissingInTestObject)

endif






Similarly, we calculate the distances from all points of the test object to the reference object and determine the surface points of the test object that are missing in the reference object (ErrorSource ’missing in reference’).

The components resulting from the above steps represent potential errors.

In our example, we want to ensure the correctness of the holes. Because the surroundings of the holes are planar, we can perform the classification of the potential errors in 2D. Therefore, we create a region from each of the above components by fitting a plane through the points of the component, projecting the points into this plane, creating a region from these points, and dilating it slightly to fill gaps between the projected points.

For each region, we calculate several features to classify the potential errors.

First, we create two auxiliary regions, one where all holes are filled and one that is the difference between the filled region and the original region, i.e., that represents only the holes in the original region:






fill_up (Region, RegionFillUp)

difference (RegionFillUp, Region, RegionDifference)






We calculate the circularity and the area for each of the three regions:






circularity (Region, CircularityReg)

circularity (RegionFillUp, CircularityRegFillUp)

circularity (RegionDifference, CircularityRegDifference)

area_center (Region, AreaRegDilation, Row1, Column1)

area_center (RegionFillUp, AreaRegFillUp, Row1, Column1)

area_center (RegionDifference, AreaRegDifference, Row1, Column1)






Based on these features, we can classify the potential errors as follows.

Approximately circular regions with only small holes indicate either additional (ErrorType 1) or missing (ErrorType 2) holes. Approximately circular regions with an approximately circular hole indicate too small (ErrorType 3) or too large (ErrorType 4) holes. We assign the error type 0, which means “unknown,” to all potential errors that cannot be classified with the above feature set.






MinCircularity := 0.7

if (CircularityReg > MinCircularity and

    real(AreaRegDifference)/AreaReg < 0.1)

    if (ErrorSource == ’missing in test’)

        ErrorType := 1

    else

        ErrorType := 2

    endif

elseif (CircularityRegFillUp > MinCircularity and

        CircularityRegDifference > MinCircularity and

        real(AreaRegDifference)/AreaReg > 0.1)

    if (ErrorSource == ’missing in test’)

      ErrorType := 3

    else

      ErrorType := 4

    endif

else

    ErrorType := 0

endif






We will now inspect the unknown error types for whether there are clues for holes that have just a slightly wrong position. This kind of error would result in symmetric blobs of larger distances, because some part of the hole would be missing in the test object and some part would be missing in the reference object at the opposite side of the hole.

This analysis can be done very easily in 3D. For each pair of potentially symmetric blobs, we calculate a hypothesis for the symmetry plane based on the centers of gravity of the two blobs. The plane is represented in the Hesse normal form [image: image].






get_object_model_3d_params (OM1, ’point_coord_x’, X1)

get_object_model_3d_params (OM1, ’point_coord_y’, Y1)

get_object_model_3d_params (OM1, ’point_coord_z’, Z1)

get_object_model_3d_params (OM2, ’point_coord_x’, X2)

get_object_model_3d_params (OM2, ’point_coord_y’, Y2)

get_object_model_3d_params (OM2, ’point_coord_z’, Z2)

Center1 := [mean(X1),mean(Y1),mean(Z1)]

Center2 := [mean(X2),mean(Y2),mean(Z2)]

NSymm := Center2-Center1

NSymm := NSymm/sqrt(sum(NSymm*NSymm))

PSymm := Center1+0.5*(Center2-Center1)

CSymm := sum(NSymm*PSymm)

if (CSymm < 0)

    NSymm := -NSymm

    CSymm := -CSymm

endif






Now, we determine a 3D transformation that maps the symmetry plane to the plane z = 0.






hnf_to_hom_mat3d (NSymm[0], NSymm[1], NSymm[2], CSymm, HomMat3D)






Using this 3D transformation, we transform the points of the two blobs. For the transformed points, the symmetry plane is the plane z = 0. This simplifies the subsequent symmetry analysis, because mirroring at the symmetry plane reduces to switching the sign of the z coordinate.






hom_mat3d_invert (HomMat3D, HomMat3DInvert)

affine_trans_point_3d (HomMat3DInvert, X1, Y1, Z1, X1T, Y1T, Z1T)

affine_trans_point_3d (HomMat3DInvert, X2, Y2, Z2, X2T, Y2T, Z2T)






To measure the symmetry of the two point clouds, we can mirror the first point cloud at the symmetry plane and determine the overlap of the mirrored point cloud with the second one. For this, the distances of points to the closest point of the other point cloud must be determined, which can be done, for example, with the help of a kNN classifier (see Section 3.15.2.1).

If we find a pair of symmetric blobs, they indicate a hole at a slightly wrong position (ErrorType 5). We merge these two blobs and remove the two individual blobs from the list of potential errors.

In the corresponding example program, the above procedures are applied to a set of produced objects, some of which show defects. Figures 4.64, 4.65, and 4.66 show some results of the surface comparison for produced objects with defects.

Figure 4.64(a) shows the reconstructed (unaligned) surface of a produced object where the upper left hole is missing. Figure 4.64(b) shows the result of the comparison with the surface of the reference object (see Figure 4.62). The missing hole was detected and is indicated in white.

[image: image]
Figure 4.64 The result of the surface comparison for a produced part where one hole is missing. (a) Reconstructed surface. (b) Result of surface comparison with the missing hole being indicated.

[image: image]
Figure 4.65 The result of the surface comparison for a produced part where all holes are in a slightly wrong position. (a) Reconstructed surface. (b) Result of surface comparison with the wrong positions of the holes being indicated.

[image: image]
Figure 4.66 The result of the surface comparison for a produced part where all holes are too small. (a) Reconstructed surface. (b) Result of surface comparison with the wrong size of the holes being indicated.

Figure 4.65(a) shows the reconstructed surface of a produced object where all holes are in a slightly wrong position. Figure 4.65(b) shows the result of the surface comparison. The wrong position of the holes was detected and is indicated in white.

Figure 4.66(a) shows the reconstructed surface of a produced object where all holes are too small. Figure 4.66(b) shows the result of the surface comparison. The wrong size of the holes was detected and is indicated in white.



4.13.4 Exercise


	1) The example program only classifies errors with respect to holes. Extend the program to be able to find dents and bulges in the surfaces of the produced objects.






4.14 3D Pick-and-Place

Pick-and-place robots are very popular systems for material handling. In the past, vision-based pick-and-place systems were restricted to 2D. Typically, the objects had to lie on a planar workspace or conveyor belt and they had to be separated from each other so that the vision system was able to determine their positions.

3D image acquisition devices (see Section 2.5), 3D object recognition technologies like surface-based 3D matching (see Section 3.12.3), and hand–eye calibration (see Section 3.13) have made 3D pick-and-place systems feasible. Surface-based 3D matching allows determining the 3D pose of arbitrary objects, even if they are not lying on a plane in the workspace or on the conveyor belt but on top of other objects. Hand–eye calibration links the coordinate system of the robot with that of the vision system.

In this application, we show how to implement a 3D pick-and-place application using a stationary 3D image acquisition device. The application consists of three major steps: hand–eye calibration, definition of the grasping point, and picking and placing of objects.

Figure 4.67(a) shows the hardware setup of our pick-and-place application: the articulated six-axis robot, the 3D image acquisition device (a stereo sensor with integrated pattern projector), and a pile of objects to be handled. Figure 4.67(b) shows one of the objects, a screwdriver, that is to be handled by the robot.

The algorithms used in this application are:

[image: image]
Figure 4.67 (a) The setup of the pick-and-place application using a stationary 3D image acquisition device. (b) A screwdriver that is to be handled by the 3D pick-and-place application.


	Hand–eye calibration (Section 3.13)

	Surface-based 3D matching (Section 3.12.3)



The corresponding example programs are:

… /machine_vision_book/3d_pick_and_place/hand_eye_calibration.hdev,

… /machine_vision_book/3d_pick_and_place/grasping_point_definition.hdev,

… /machine_vision_book/3d_pick_and_place/3d_pick_and_place.hdev.


4.14.1 Performing the Hand–Eye Calibration

In the first step, we must establish the relationship between the coordinate systems of the robot and the stationary vision system to allow the robot to move to positions determined by the vision system (see Section 3.13).

In principle, we can use an arbitrary object as calibration object. The only condition is that the 3D object recognition must be able to uniquely determine the pose of the calibration object. In practice, it is often reasonable to use the object to be picked and placed in the final application also as the calibration object for the hand–eye calibration.

Because our application is intended to handle screwdrivers, we also use a screwdriver as calibration object. Note, however, that the pose of the screwdriver cannot be determined uniquely because the screwdriver is rotationally symmetric. To overcome this, we extend our calibration object to also include a part of the robot’s gripper. Figure 4.68(a) shows an image of the screwdriver held by the robot.

In the example program, we assume that we already have a surface model (i.e., a global model description as introduced in Section 3.12.3.1) that can be used to determine the pose of the calibration object with surface-based 3D matching. In practice, such a surface model can be provided easily: acquire a 3D image of the robot gripper holding the object, remove all points that do not belong to the calibration object, and create a surface model from that point cloud. Figure 4.68(b) shows the surface points of the calibration object.

[image: image]
Figure 4.68 The calibration object used for the hand–eye calibration: (a) Screwdriver held by the robot. (b) Surface model of the calibration object. Note that we must include a part of the robot’s gripper into the surface model, i.e., the calibration object consists of the screwdriver and of that part of the robot’s gripper, to allow a unique determination of the calibration object’s pose.

Before we start the calibration, we must provide the input data for the calibration:






create_calib_data (’hand_eye_stationary_cam’, 0, 0, CalibDataID)

set_calib_data (CalibDataID, ’model’, ’general’, ’optimization_method’,

                ’nonlinear’)






To perform the hand–eye calibration, the robot moves the calibration object in front of the 3D image acquisition device. We must then provide the 3D poses of the calibration object in the coordinate system of the 3D image acquisition device together with the respective robot poses, i.e., the poses of the mechanical interface in the robot’s base coordinate system, for multiple positions and orientations of the calibration object.

In the example program, we assume that we have already defined the robot poses to which the robot moves the calibration object and that we can read these poses from files.






NumCalibPoses := 23

for I := 0 to NumCalibPoses-1 by 1

    read_pose (PathPoses+’robot_pose_calib_’+(I+1)$’02d’+’.dat’,

               RobotPose)






Then, the robot moves to the current robot pose






move_robot (RobotPose)






and we acquire the 3D image. Depending on the 3D image acquisition device, it might be necessary to convert the 3D image into meters, which can simply be done by scaling the 3D image by the respective scaling factor.






grab_data (ImageData, Region, Contours, AcqHandle, Data)

scale_image (ImageData, ImageDataM, 0.001, 0)






We can eliminate some outliers from the data by thresholding the image that holds the z coordinates. Here, ThresholdZOutlier was set to [0.2, 1.0], which means that we eliminate all parts of the 3D image for which the measured distance from the 3D sensor is less than 0.2 m or greater then 1.0 m.






decompose3 (ImageDataM, Xm, Ym, Zm)

threshold (Zm, Region, ThresholdZOutlier[0], ThresholdZOutlier[1])

reduce_domain (Xm, Region, ImageX)

reduce_domain (Ym, Region, ImageY)

reduce_domain (Zm, Region, ImageZTmp)






Finally, we perform an edge preserving smoothing to reduce noise in the 3D image.






median_image (ImageZTmp, ImageZ, ’circle’, 3, ’mirrored’)






In the next step, we create two 3D object models from the 3D image data. The first one is only used for visualization and contains the complete 3D information.






xyz_to_object_model_3d (ImageX, ImageY, ImageZ, OM3DSceneVis)






The second 3D object model is used for the 3D object recognition. To speed up the search, we can eliminate the background plane from the 3D data. Since we use a stationary 3D image acquisition device that is mounted such that it looks approximately perpendicularly at the ground plane, we can eliminate this plane very easily from the 3D image by applying a suitable threshold to the z coordinates. Here, ThresholdZWorkingArea was set to [0.2, 0.5], which means that—in addition to the above outlier elimination—we eliminate all parts of the 3D image for which the measured distance from the 3D sensor is greater than 0.5 m. Since the 3D image acquisition device was mounted approximately 0.55 m above the ground plane, this eliminates the complete background plane in the 3D image.






threshold (ImageZ, Roi, ThresholdZWorkingArea[0],

           ThresholdZWorkingArea[1])

reduce_domain (ImageZ, Roi, ImageZWorkingArea)

xyz_to_object_model_3d (ImageX, ImageY, ImageZWorkingArea, OM3DMatch)






Now we can perform the 3D object recognition using surface-based 3D matching:






find_surface_model (SurfaceModelID, OM3DMatch, 0.05, 0.2, 0.2, ’false’,

                    [’dense_pose_refinement’,’pose_ref_sub_sampling’],

                    [’true’,1], Pose, Score, SurfaceMatchingResultID)






Figure 4.69(a) shows the 3D object model that has been created from one 3D calibration image. Figure 4.69(b) shows the recognized calibration object.

[image: image]
Figure 4.69 3D object model created from a 3D calibration image. (a) Gray-coded representation of the 3D image, where higher parts appear darker. (b) Recognized 3D calibration object (overlaid in white).

For each calibration object we find, we collect its pose as determined by the vision system as well as the respective robot pose. Note that, depending on the manufacturer of the robot, the robot pose might be provided in a form that is different from the one used in HALCON. In particular, the order of rotations and the units of the translations might differ. Therefore, typically, the robot pose must first be converted to the HALCON format.






    if (|Pose| and Score > 0.2)

        set_calib_data_observ_pose (CalibDataID, 0, 0, I, Pose)

        * Convert the robot pose into HALCON pose format.

        RobotPoseTmp := RobotPose

        RobotPoseTmp[0:2] := RobotPoseTmp[0:2]*0.001

        create_pose (RobotPoseTmp[0], RobotPoseTmp[1], RobotPoseTmp[2],

                     RobotPoseTmp[3], RobotPoseTmp[4], RobotPoseTmp[5],

                     ’Rp+T’, ’abg’, ’point’, RobotPoseHALCON)

        set_calib_data (CalibDataID, ’tool’, I, ’tool_in_base_pose’,

                        RobotPoseHALCON)

    endif

endfor






Finally, we can perform the hand–eye calibration and access the pose cHb of the robot base in the coordinate system of the 3D image acquisition device.






calibrate_hand_eye (CalibDataID, Errors)

get_calib_data (CalibDataID, ’camera’, 0, base_in_cam_pose’,

                BaseInCamPose)








4.14.2 Defining the Grasping Point

In this step, we interactively define the grasping point by providing the pose of the object relative to the camera and the pose of the robot when it is in the right position and orientation to grasp the object.

First, we place the object to be grasped in an arbitrary position in the working area, i.e., in a position where it can be seen from the 3D image acquisition device and where it can be grasped by the robot. Figure 4.70(a) shows the screwdriver placed on the working area.

Then, we acquire a 3D image with the 3D image acquisition device (see Figure 4.70(b), which shows a part of this 3D image) and determine the pose cHo of the object with 3D surface-based matching.






find_surface_model (SurfaceModelID, OM3DScene, 0.05, 0.2, 0.2,

                    ’false’, ’num_matches’, 1, ObjInCamPose,

                    Score, SurfaceMatchingResultID)






The surface model can be provided similarly to the surface model of the calibration object (see Section 4.14.1). Note, however, that here, only points must be used that lie on the surface of the actual object to be grasped. In the example program, we assume that we already have a surface model of the object.

[image: image]
Figure 4.70 (a) Object to be grasped placed on the working area. (b) 3D image of the object to be grasped.

[image: image]
Figure 4.71 (a) Recognized object to be grasped (overlaid in white). (b) Gripper of the robot moved to the grasping pose.

Figure 4.71(a) shows the recognized object to be grasped overlaid in white on the 3D image.

Now, we manually move the robot to the grasping pose. Once the robot is in the correct position and orientation for grasping the object (see Figure 4.71(b)), we obtain the robot pose bHt from the robot controller.

The pose tHo of the object relative to the tool can now be calculated with Eq. (3.212) (tHo = tHbbHccHo). For this, we must invert bHt to compute the required pose tHb.






pose_invert (ToolInBasePose, BaseInToolPose)






Furthermore, we must invert the pose cHb, which has been determined in the previous step (see Section 4.14.1), to obtain the pose bHc.






pose_invert (BaseInCamPose, CamInBasePose)






Finally, we calculate the pose tHo based on Eq. (3.212).






pose_compose (BaseInToolPose, CamInBasePose, CamInToolPose)

pose_compose (CamInToolPose, ObjInCamPose, ObjInToolPose)






Note that if we determine the pose tHo as described above, i.e., by manually moving the robot to the grasping pose, it is unnecessary to explicitly add the pose of the tool with respect to the mechanical interface because it is already included in tHo.



4.14.3 Picking and Placing Objects

Using the above determined poses tHo and bHc, we are now able to run the pick-and-place application.

We first acquire a 3D image of the pile of objects to be grasped (see Figure 4.72(a) and (b)) and use surface-based matching to find instances of the screwdrivers.






find_surface_model (SurfaceModelID, OM3DScene, 0.05, 0.2, 0.2,

                    ’false’, ’num_matches’, 4, ObjsInCamPose,

                    Score, SurfaceMatchingResultID)






To ensure that the robot can grasp the object, we search for more than one (here, up to 4) instances of the object and select the pose of the top-most instance. In our application, the 3D image acquisition device looks perpendicularly at the ground plane. Therefore, this selection can be done based on the z translation component of the objects’ poses.






ZValuesMatches := ObjsInCamPose[[2:7:|ObjsInCamPose|]]

IdxTopMatch := sort_index(ZValuesMatches)[0]

ObjInCamPose := ObjsInCamPose[IdxTopMatch*7:IdxTopMatch*7+6]






[image: image]
Figure 4.72 The pile of objects to be grasped: (a) picture of the scene with four screwdrivers, (b) Gray-coded representation of the 3D image of the objects, where higher parts appear darker.

[image: image]
Figure 4.73 (a) Picking and (b) moving the top-most object.

Using the pose cHo of the top-most object relative to the camera, we can determine the robot pose bHt by solving Eq. (3.212) for bHt, which yields

(4.1)[image: image]

The equivalent code is:






pose_compose (CamInBasePose, ObjInCamPose, ObjInBasePose)

pose_compose (ObjInBasePose, ToolInObjPose, ToolInBasePose)






Typically, we must transform the pose from the HALCON format to the format of the robot:






convert_pose_type (ToolInBasePose, ’Rp+T’, ’abg’, ’point’, RobotPose)

RobotPose[0:2] := RobotPose[0:2]*1000






With this pose, we move the robot to the position and orientation to grasp the top-most object (see Figure 4.73(a)). Note that, in general, suitable path planning is required to avoid collisions with surrounding objects.

Finally, we can move the object to a predefined position (see Figure 4.73(b)).

We can now repeat the steps described above—3D image acquisition, recognition of the top-most object, calculation of the robot pose, and picking of the object—for all remaining objects (see Figure 4.74).



4.14.4 Exercises

1) In the example, the background was removed from the 3D images by simply thresholding the z coordinate image. This was possible because the 3D image acquisition device was oriented perpendicular to the ground plane. In practice, this cannot always be realized. Describe a possible way to remove the background if the 3D image acquisition device is at an angle to the ground plane.

[image: image]
Figure 4.74 Picking of the remaining objects. From top to bottom: A picture of the remaining objects, the 3D image of the objects, the robot in the grasping pose, and the picked object.


	2) The screwdrivers handled in the example have an imprint. Describe the necessary extensions of the example (hardware and software) to ensure that the screwdrivers are placed with the imprint facing upwards.
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	– images

	– regions

	– subpixel-precise contours



	dataset augmentation

	datum deficiency

	DCS see distributed control system

	decision theory
	– a posteriori probability

	– a priori probability

	– Bayes decision rule

	– Bayes theorem



	deep learning

	deep neural network

	deformable matching see 3D object recognition, deformable matching

	demosaicking

	depth of field

	depth-first search

	Deriche filter
	– edge accuracy

	– edge precision



	derivative
	– directional

	– first

	– gradient

	– Laplacian

	– partial

	– second



	DFT see discrete Fourier transform

	DHCP see Dynamic Host Configuration Protocol

	diaphragm

	difference

	diffraction

	diffuse bright-field back light illumination

	diffuse bright-field front light illumination

	diffuse illumination

	digital input/output

	digital light processing

	digital micromirror device
	– diamond pixel array layout

	– regular pixel array layout



	digital pixel sensor

	digital signal processor

	dilation

	dimensional inspection

	direct memory access

	directed bright-field front light illumination

	directed dark-field front light illumination

	directed illumination

	discrete Fourier transform
	– see also Fourier transform



	disparity

	dispersion

	distance
	– chamfer-3-4

	– chessboard

	– city-block

	– Euclidean



	distance transform

	distortion
	– barrel

	– division model

	– pincushion

	– polynomial model



	distributed control system

	DLP see digital light processing

	DMA see direct memory access

	DMD see digital micromirror device

	DSNU see dark signal nonuniformity

	DSP see digital signal processor

	dual number
	– dual part

	– dual unit

	– Plücker coordinates

	– real part



	dual quaternion
	– advantages

	– ambiguity

	– conjugation

	– dual part

	– inversion

	– line transformation

	– multiplication

	– overparameterization

	– Plücker coordinates

	– pure

	– real part

	– scalar part

	– screw

	– unit

	– vector part



	dual vector

	duality
	– dilation–erosion

	– hit-or-miss transform

	– opening–closing



	Dynamic Host Configuration Protocol

	dynamic range

	dynamic thresholding




e


	edge
	– amplitude

	– definition
	– – 1D

	– – 2D



	– gradient magnitude

	– gradient vector

	– Laplacian

	– non-maximum suppression

	– polarity



	edge extraction
	– 1D
	– – Canny filter

	– – Deriche filter

	– – derivative

	– – gray value profile

	– – non-maximum suppression

	– – subpixel-accurate



	– 2D
	– – Ando filter

	– – Canny filter

	– – Deriche filter

	– – Frei filter

	– – gradient

	– – hysteresis thresholding

	– – Lanser filter

	– – Laplacian

	– – non-maximum suppression

	– – Prewitt filter

	– – Sobel filter

	– – subpixel-accurate





	edge filter
	– Ando

	– Canny
	– – edge accuracy

	– – edge precision



	– Deriche
	– – edge accuracy

	– – edge precision



	– Frei

	– Lanser
	– – edge accuracy

	– – edge precision



	– optimal

	– Prewitt

	– Sobel



	edge-spread function

	EIA-170

	electromagnetic radiation
	– black body

	– infrared

	– spectrum

	– ultraviolet

	– visible



	ellipse fitting
	– algebraic error

	– geometric error

	– outlier suppression

	– robust



	ellipse parameters

	enclosing circle

	enclosing rectangle

	encoder

	entocentric lens

	entrance pupil

	epipolar image rectification

	epipolar line

	epipolar plane

	epipolar standard geometry

	epipole

	erosion

	Ethernet

	Euclidean distance

	evidence procedure

	exit pupil

	exposure time

	extensible markup language see XML

	extensive operation
	– closing

	– dilation

	– Minkowski addition



	exterior orientation
	– world coordinate system






f


	f-number

	facet model

	fast Fourier transform
	– see also Fourier transform



	feature extraction

	features
	– contour
	– – area

	– – center of gravity

	– – central moments

	– – contour length

	– – ellipse parameters

	– – major axis

	– – minor axis

	– – moments

	– – normalized moments

	– – orientation

	– – smallest enclosing circle

	– – smallest enclosing rectangle



	– gray value
	– – α-quantile

	– – anisometry

	– – area

	– – center of gravity

	– – central moments

	– – ellipse parameters

	– – major axis

	– – maximum

	– – mean

	– – median

	– – minimum

	– – minor axis

	– – moments

	– – normalized moments

	– – orientation

	– – standard deviation

	– – variance



	– region
	– – anisometry

	– – area

	– – center of gravity

	– – central moments

	– – compactness

	– – contour length

	– – convexity

	– – ellipse parameters

	– – major axis

	– – minor axis

	– – moments

	– – normalized moments

	– – orientation

	– – smallest enclosing circle

	– – smallest enclosing rectangle





	FFT see fast Fourier transform

	field angle

	field-programmable gate array

	fieldbus

	fill factor

	filter
	– anisotropic

	– border treatment

	– convolution
	– – kernel



	– definition

	– edge
	– – Ando

	– – Canny

	– – Deriche

	– – Frei

	– – Lanser

	– – optimal

	– – Prewitt

	– – Sobel



	– Gaussian
	– – frequency response



	– isotropic

	– linear

	– mask

	– maximum see morphology, gray value, dilation

	– mean
	– – frequency response



	– median

	– minimum see morphology, gray value, erosion

	– nonlinear

	– optical
	– – anti-aliasing

	– – color

	– – infrared cut

	– – infrared pass

	– – polarizing



	– rank

	– recursive

	– runtime complexity

	– separable

	– smoothing
	– – optimal



	– spatial averaging

	– temporal averaging



	FireWire see IEEE

	fitting
	– circles
	– – outlier suppression

	– – robust



	– ellipses
	– – algebraic error

	– – geometric error

	– – outlier suppression

	– – robust



	– lines
	– – outlier suppression

	– – robust





	fluorescent lamp

	focal length
	– see also principal distance



	focal point

	focusing plane

	Fourier transform
	– 1D
	– – inverse



	– 2D
	– – inverse



	– continuous

	– convolution

	– discrete
	– – inverse



	– fast

	– frequency domain

	– Nyquist frequency

	– real-valued

	– spatial domain

	– texture removal



	FPGA see field-programmable gate array

	frame grabber
	– analog
	– – line jitter

	– – pixel clock





	frame transfer sensor

	Frei filter

	frequency domain

	fringe projection

	front light

	front porch

	full frame sensor

	fuzzy membership

	fuzzy set




g


	gamma response function

	gauge freedom

	Gaussian filter
	– frequency response



	Gaussian mixture model
	– kσ probability

	– novelty detection



	Gaussian optics

	GenApi see GenICam, GenApi

	GenCP see GenICam, GenCP

	generalized Hough transform
	– accumulator array

	– R-table



	GenICam
	– CLProtocol

	– GenApi

	– GenCP

	– GenTL
	– – GenTL consumer

	– – GenTL producer

	– – SFNC see GenICam, GenTL, standard features naming convention

	– – standard features naming convention



	– PFNC see GenICam, pixel format naming convention

	– pixel format naming convention

	– SFNC see GenICam, standard features naming convention

	– standard features naming convention

	– transport layer



	GenTL see GenICam, GenTL

	geometric camera calibration
	– binocular stereo calibration

	– calibration target

	– exterior orientation
	– – world coordinate system



	– interior orientation
	– – accuracy

	– – camera constant see geometric camera calibration, interior orientation, principal distance

	– – camera coordinate system

	– – camera motion vector

	– – distortion coefficient (division model)

	– – distortion coefficients (polynomial model)

	– – focal length see geometric camera calibration, interior orientation, principal distance

	– – image coordinate system

	– – image plane coordinate system

	– – image plane distance

	– – magnification

	– – pixel size

	– – principal distance

	– – principal point

	– – projection center

	– – tilt angle

	– – tilt axis angle



	– relative orientation
	– – base

	– – base line





	geometric error

	geometric hashing

	geometric matching

	GEV see GigE Vision

	Gigabit Ethernet see GigE Vision

	GigE Vision
	– control channel

	– GigE Vision Control Protocol

	– GigE Vision Streaming Protocol

	– GVCP see GigE Vision, GigE Vision Control Protocol

	– GVSP see GigE Vision, GigE Vision Streaming Protocol

	– message channel

	– stream channel



	global shutter

	GMM see Gaussian mixture model

	gradient
	– amplitude

	– angle

	– direction

	– length

	– magnitude

	– morphological



	Gray code

	gray value
	– 1D histogram
	– – cumulative

	– – maximum

	– – minimum

	– – peak



	– 2D histogram

	– α-quantile

	– camera response
	– – linear

	– – nonlinear



	– feature see features, gray value

	– maximum

	– mean

	– median

	– minimum

	– normalization
	– – robust



	– profile

	– robust normalization

	– scaling

	– standard deviation

	– transformation

	– variance



	GVCP see GigE Vision, GigE Vision Control Protocol

	GVSP see GigE Vision, GigE Vision Streaming Protocol




h


	Hamming distance

	hand–eye calibration
	– algebraic error

	– articulated robot
	– – linear

	– – nonlinear



	– base coordinate system

	– calibration object

	– camera coordinate system

	– coordinate systems

	– input poses

	– moving camera

	– poses

	– practical advice

	– requirements

	– robot pose

	– SCARA robot
	– – ambiguity

	– – linear

	– – nonlinear



	– screw congruence theorem

	– stationary camera

	– tool coordinate system

	– transformations

	– unity constraint

	– world coordinate system



	Hausdorff distance

	Hessian normal form

	hinge line

	histogram
	– 1D
	– – cumulative

	– – maximum

	– – minimum

	– – peak



	– 2D



	hit-or-miss opening

	hit-or-miss transform

	homogeneous coordinates

	horizontal blanking interval

	horizontal synchronization pulse

	Huber weight function

	hypothesize-and-test paradigm

	hysteresis Thresholding




i


	ICP see iterative closest point

	IDE see integrated development environment

	idempotent operation
	– closing

	– opening



	identification

	IEEE
	– asynchronous data transfer

	– IIDC

	– isochronous data transfer



	IIDC

	illumination
	– back light

	– bright-field

	– dark-field

	– diffuse

	– diffuse bright-field back light illumination

	– diffuse bright-field front light illumination

	– directed

	– directed bright-field front light illumination

	– directed dark-field front light illumination

	– front light

	– light sources
	– – fluorescent lamp

	– – incandescent lamp

	– – LED see illumination, light sources, light-emitting diode

	– – light-emitting diode

	– – xenon lamp



	– telecentric

	– telecentric bright-field back light illumination



	image
	– binary

	– bit depth

	– complement

	– domain see region of interest

	– enhancement

	– function

	– gray value

	– gray value normalization
	– – robust



	– gray value scaling

	– gray value transformation

	– label

	– multichannel

	– noise see noise

	– pyramid

	– rectification

	– RGB

	– segmentation see segmentation

	– single-channel

	– smoothing

	– spatial averaging

	– temporal averaging

	– transformation



	image acquisition modes
	– asynchronous acquisition

	– continuous acquisition

	– queued acquisition

	– synchronous acquisition

	– triggered acquisition



	image distance

	image plane
	– tilted



	image-side telecentric lens

	incandescent lamp

	increasing operation
	– closing

	– dilation

	– erosion

	– Minkowski addition

	– Minkowski subtraction

	– opening



	infrared cut filter

	infrared pass filter

	inhomogeneous coordinates

	integrated development environment

	interior orientation
	– accuracy

	– camera constant see interior orientation, camera constant

	– camera coordinate system

	– camera motion vector

	– distortion coefficient (division model)

	– distortion coefficients (polynomial model)

	– focal length see interior orientation, principal distance

	– image plane coordinate system

	– image plane distance

	– magnification

	– pixel size

	– principal distance

	– principal point

	– projection center

	– tilt angle

	– tilt axis angle



	interlaced scan

	interline transfer sensor

	Internet Protocol

	interpolation
	– bicubic

	– bilinear

	– nearest-neighbor



	intersection

	invariant moments

	IP see Internet Protocol

	iterative closest point

	iteratively reweighted least-squares




j


	junction




k


	kernel see convolution, kernel and support vector machine, kernel




l


	label image

	labeling

	Lanser filter
	– edge accuracy

	– edge precision



	Laplacian

	laser projector
	– cylindrical lens

	– Powell lens

	– raster lens



	laser triangulation
	– calibration

	– extraction of laser line



	lateral overflow drain

	law of refraction

	LCD see liquid-crystal display

	LCOS see liquid crystal on silicon

	LED see light-emitting diode

	lens
	– achromatic

	– Airy disk

	– aperture stop

	– apochromatic

	– aspherical

	– cardinal elements

	– chief ray see lens, principal ray

	– circle of confusion

	– cylindrical

	– depth of field

	– diaphragm

	– diffraction

	– entocentric

	– entrance pupil

	– exit pupil

	– f-number

	– field angle

	– focal length

	– focal point

	– focusing plane

	– image distance

	– image plane
	– – tilted



	– magnification

	– nodal point

	– numerical aperture

	– object distance

	– optical axis

	– perspective

	– Powell lens

	– principal plane

	– principal ray

	– pupil magnification factor

	– raster lens

	– sagittal focal surface

	– sagittal image

	– Scheimpflug lens

	– Scheimpflug optics

	– Scheimpflug principle

	– surface vertex

	– system of lenses

	– tangential focal surface

	– tangential image

	– telecentric

	– thick

	– tilt lens
	– – hinge line

	– – Scheimpflug line



	– vignetting



	lens aberrations
	– astigmatism

	– chromatic aberration

	– coma

	– curvature of field

	– distortion
	– – barrel

	– – pincushion



	– spherical aberration



	light
	– absorption

	– polarized

	– reflection

	– refraction

	– spectrum
	– – black body





	light sources
	– fluorescent lamp

	– incandescent lamp

	– LED see light sources, light-emitting diode

	– light-emitting diode

	– xenon lamp



	light-emitting diode

	line
	– Hessian normal form

	– Plücker coordinates



	line fitting
	– outlier suppression

	– robust



	line jitter

	line scan camera

	line sensor

	Link-Local Address

	liquid crystal on silicon

	liquid-crystal display

	LLA see Link-Local Address

	local deformation

	look-up table

	low-voltage differential signaling

	LUT see look-up table

	LVDS see low-voltage differential signaling




m


	magnification

	major axis

	maximum filter see morphology, gray value, dilation

	maximum likelihood estimator

	mean filter
	– frequency response



	mean squared edge distance

	median filter

	minimum filter see morphology, gray value, erosion

	Minkowski addition

	Minkowski subtraction

	minor axis

	MLP see multilayer perceptron

	moments
	– invariant



	morphology
	– anti-extensive operation
	– – erosion

	– – Minkowski subtraction

	– – opening



	– duality
	– – dilation–erosion

	– – hit-or-miss transform

	– – opening–closing



	– extensive operation
	– – closing

	– – dilation

	– – Minkowski addition



	– gray value
	– – closing

	– – complement

	– – dilation

	– – erosion

	– – gradient

	– – Minkowski addition

	– – Minkowski subtraction

	– – opening

	– – range



	– idempotent operation
	– – closing

	– – opening



	– increasing operation
	– – closing

	– – dilation

	– – erosion

	– – Minkowski addition

	– – Minkowski subtraction

	– – opening



	– region
	– – boundary

	– – closing

	– – complement

	– – difference

	– – dilation

	– – distance transform

	– – erosion

	– – hit-or-miss opening

	– – hit-or-miss transform

	– – intersection

	– – Minkowski addition

	– – Minkowski subtraction

	– – opening

	– – skeleton

	– – translation

	– – transposition

	– – union



	– structuring element

	– translation-invariant operation
	– – closing

	– – opening





	multi-channel edge tensor

	multilayer perceptron
	– evidence procedure

	– novelty detection

	– training
	– – cross-entropy error

	– – regularization

	– – weight decay



	– universal approximator






n


	neighborhood

	neural network
	– activation function
	– – hyperbolic tangent

	– – logistic

	– – rectified linear unit

	– – sigmoid

	– – softmax

	– – threshold



	– convolutional neural network
	– – convolution

	– – convolutional layer

	– – cross-entropy error

	– – dataset augmentation

	– – filter stride

	– – fine-tuning

	– – learning rate

	– – minibatch

	– – momentum

	– – novelty detection

	– – pooling

	– – receptive field

	– – regularization

	– – stochastic gradient descent

	– – universal approximator

	– – weight decay



	– multilayer perceptron
	– – cross-entropy error

	– – evidence procedure

	– – novelty detection

	– – regularization

	– – training

	– – universal approximator

	– – weight decay



	– single-layer perceptron



	nodal point

	noise
	– amplifier noise

	– dark current noise

	– dark noise

	– noise floor

	– pattern noise

	– photon noise

	– quantization noise

	– reset noise

	– signal-to-noise ratio

	– spatial noise

	– speckle

	– suppression

	– temporal noise

	– variance



	non-maximum suppression

	normal distribution

	normalized cross-correlation

	normalized moments

	novelty detection see classification, novelty detection

	NTSC

	numerical aperture

	Nyquist frequency




o


	object distance

	object identification

	object recognition see 3D object recognition

	object-side telecentric lens

	occlusion

	OCR see optical character recognition

	opening

	optical anti-aliasing filter

	optical axis

	optical character recognition
	– character segmentation
	– – touching characters



	– classification see classification

	– features

	– image rectification



	orientation
	– exterior
	– – world coordinate system



	– interior
	– – accuracy

	– – camera constant see orientation, interior, principal distance

	– – camera coordinate system

	– – camera motion vector

	– – distortion coefficient (division model)

	– – distortion coefficients (polynomial model)

	– – focal length see orientation, interior, principal distance

	– – image plane coordinate system

	– – image plane distance

	– – magnification

	– – pixel size

	– – principal distance

	– – principal point

	– – projection center

	– – tilt angle

	– – tilt axis angle



	– relative
	– – base

	– – base line





	outlier

	outlier suppression
	– Huber weight function

	– iteratively reweighted least-squares

	– random sample consensus

	– RANSAC

	– Tukey weight function



	overall system gain




p


	PAL

	parallax

	paraxial approximation

	pattern noise

	perspective camera
	– projection center



	perspective lens

	perspective transformation

	PFNC see GenICam, pixel format naming convention

	phase shift

	phase unwrapping

	photon noise

	photoresponse nonuniformity

	pinhole camera
	– projection center



	pixel

	pixel clock

	pixel vignetting

	PLC see programmable logic controller

	Plücker coordinates
	– line representation



	polar coordinates

	polar transformation

	polarization

	polarizing filter

	polygonal approximation
	– Ramer algorithm



	pose

	position detection

	Powell lens

	precision
	– edge angle

	– edges

	– hardware requirements

	– phase



	Precision Time Protocol

	Prewitt filter

	principal distance

	principal plane

	principal point

	principal ray

	print inspection

	PRNU see photoresponse nonuniformity

	programmable logic controller

	progressive scan

	projection center

	projective transformation

	projector
	– laser
	– – cylindrical lens

	– – Powell lens

	– – raster lens



	– random texture

	– structured light
	– – digital light processing

	– – digital micromirror device

	– – liquid crystal on silicon display

	– – liquid-crystal





	PTP see Precision Time Protocol

	pupil magnification factor

	pure dual quaternion

	pure quaternion




q


	quadratic programming

	quantization noise

	quantum efficiency

	quaternion
	– advantages

	– ambiguity

	– basis elements

	– conjugation

	– exponential form

	– interpolation

	– inversion

	– multiplication

	– norm

	– overparameterization

	– pure

	– rotation

	– scalar part

	– unit

	– vector part






r


	radiometric camera calibration
	– calibration target

	– chart-based

	– chartless
	– – defining equation



	– gamma response function

	– inverse response function
	– – discretization

	– – normalization

	– – polynomial

	– – smoothness constraint



	– response function



	Ramer algorithm

	rank filter

	raster lens

	reflection

	reflectivity

	refraction

	refractive index

	region
	– as binary image

	– boundary

	– characteristic function

	– complement

	– connected components

	– convex hull

	– definition

	– difference

	– feature see features, region

	– intersection

	– run-length representation

	– translation

	– transposition

	– union



	region of interest

	regularization

	relative orientation
	– base

	– base line



	reset noise

	RGB video

	rigid 3D transformation

	rigid transformation

	robot
	– articulated

	– base

	– controller

	– end effector

	– joints

	– kinematics

	– mechanical interface

	– movement

	– SCARA

	– tool

	– tool center point



	ROI see region of interest

	rolling shutter

	rotation

	R-table

	run-length encoding




s


	sagittal focal surface

	sagittal image

	saturation capacity

	scaling

	SCARA robot

	Scheimpflug lens

	Scheimpflug line

	Scheimpflug optics

	Scheimpflug principle

	screw
	– angle

	– axis

	– Chasles’ theorem

	– direction

	– dual quaternion

	– moment

	– Plücker coordinates

	– rotation

	– translation



	screw theory

	segmentation
	– connected components

	– dynamic thresholding

	– hysteresis thresholding

	– subpixel-precise thresholding

	– thresholding
	– – automatic threshold selection



	– variation model



	sensor

	serial interface

	SFNC see GenICam, standard features naming convention and GenICam, GenTL, standard features naming convention

	shape inspection

	shape-based 3D matching see 3D object recognition, shape-based 3D matching

	shape-based matching

	sheet of light reconstruction
	– calibration

	– extraction of laser line

	– occlusion



	shutter
	– electronic

	– global

	– mechanical

	– rolling



	signal-to-noise ratio

	similarity measure
	– absolute sum of normalized dot products

	– normalized cross-correlation

	– sum of absolute gray value differences

	– sum of absolute normalized dot products

	– sum of normalized dot products

	– sum of squared gray value differences

	– sum of unnormalized dot products



	similarity transformation

	singular value

	singular value decomposition

	skeleton

	skew

	slant

	smallest enclosing circle

	smallest enclosing rectangle

	smart camera

	smoothing filter
	– Gaussian
	– – frequency response



	– mean
	– – frequency response



	– median

	– optimal

	– spatial averaging

	– temporal averaging



	SNR see signal-to-noise ratio

	Sobel filter

	spacetime stereo

	spatial averaging

	spatial domain

	spatial noise

	speckle noise

	spectral response
	– Gaussian filter

	– human visual system

	– mean filter

	– sensor



	speed of light

	spherical aberration

	stereo geometry
	– corresponding points

	– disparity

	– epipolar line

	– epipolar plane

	– epipolar standard geometry

	– epipole

	– image rectification

	– parallax



	stereo matching
	– occlusion

	– robust
	– – disparity consistency check

	– – excluding weakly textured areas



	– similarity measure
	– – normalized cross-correlation

	– – sum of absolute gray value differences

	– – sum of squared gray value differences



	– spacetime stereo

	– subpixel-accurate

	– window size



	stereo reconstruction

	stochastic process
	– ergodic

	– stationary



	structured light reconstruction
	– binary code patterns

	– camera calibration

	– fringe projection

	– Gray code decoding

	– Gray code patterns

	– occlusion

	– phase decoding

	– phase shift

	– projector calibration

	– radiometric calibration

	– stripe decoding



	structuring element

	subpixel-precise contour
	– convex hull

	– features see features, contour



	subpixel-precise thresholding

	sum of absolute gray value differences

	sum of absolute normalized dot products

	sum of normalized dot products

	sum of squared gray value differences

	sum of unnormalized dot products

	support vector machine
	– kernel
	– – Gaussian radial basis function

	– – homogeneous polynomial

	– – inhomogeneous polynomial

	– – sigmoid



	– margin

	– margin errors

	– novelty detection

	– ν-SVM

	– one-versus-all

	– one-versus-one

	– separating hyperplane

	– universal approximator



	surface inspection

	surface vertex

	surface-based 3D matching, see 3D object recognition, surface-based 3D matching

	SVD

	S-Video

	SVM see support vector machine




t


	tangential focal surface

	tangential image

	TCP see Transmission Control Protocol

	telecentric bright-field back light illumination

	telecentric camera

	telecentric illumination

	telecentric lens
	– bilateral

	– image-side

	– object-side



	template matching
	– clutter

	– erosion

	– generalized Hough transform
	– – accumulator array

	– – R-table



	– geometric hashing

	– geometric matching

	– Hausdorff distance

	– hierarchical search

	– hit-or-miss transform

	– hypothesize-and-test paradigm

	– image pyramid

	– linear illumination changes

	– matching geometric primitives

	– mean squared edge distance

	– nonlinear illumination changes

	– occlusion

	– opening

	– robust

	– rotation

	– scaling

	– shape-based matching

	– similarity measure
	– – absolute sum of normalized dot products

	– – normalized cross-correlation

	– – sum of absolute gray value differences

	– – sum of absolute normalized dot products

	– – sum of normalized dot products

	– – sum of squared gray value differences

	– – sum of unnormalized dot products



	– stopping criterion
	– – normalized cross-correlation

	– – sum of absolute gray value differences

	– – sum of normalized dot products



	– subpixel-accurate

	– translation



	temporal averaging

	temporal noise

	texture
	– removal



	thick lens
	– cardinal elements

	– focal length

	– focal point

	– image distance

	– magnification

	– nodal point

	– object distance

	– optical axis

	– principal plane

	– surface vertex



	thresholding
	– automatic threshold selection

	– subpixel-precise



	tilt lens
	– hinge line

	– Scheimpflug line



	tilted image plane

	time-of-flight camera
	– continuous-wave-modulated
	– – distance computation

	– – distance range

	– – phase demodulation

	– – random errors

	– – resolution

	– – scene intensity

	– – systematic errors



	– pulse-modulated
	– – distance computation

	– – distance range

	– – random errors

	– – resolution

	– – systematic errors

	– – time-of-flight computation





	TOF camera see time-of-flight camera

	transformation
	– affine

	– geometric

	– gray value

	– image

	– local deformation

	– perspective

	– polar

	– projective

	– rigid

	– rigid 3D

	– rotation

	– scaling

	– similarity

	– skew

	– slant

	– translation



	translation

	translation-invariant operation
	– closing

	– opening



	Transmission Control Protocol

	transmittance

	transposition

	triangulation
	– sheet of light sensor

	– stereo sensor

	– structured light sensor



	trigger

	Tukey weight function




u


	U3V see USB3 Vision

	U3VCP see USB3 Vision, USB3 Vision Control Protocol

	U3VSP see USB3 Vision, USB3 Vision Streaming Protocol

	UDP see User Datagram Protocol

	union

	unit dual quaternion
	– transformation matrix



	unit quaternion

	universal approximator

	universal serial bus see USB

	USB
	– bulk data transfers

	– control transfers

	– interrupt data transfers

	– isochronous data transfers



	USB 2.0

	USB3 Vision
	– U3VCP see USB3 Vision, USB3 Vision Control Protocol

	– U3VSP see USB3 Vision, USB3 Vision Streaming Protocol

	– USB3 Vision Control Protocol

	– USB3 Vision Streaming Protocol



	User Datagram Protocol




v


	variation model

	vertical blanking interval

	vertical overflow drain

	vertical synchronization pulse

	video signal
	– analog
	– – back porch

	– – CCIR

	– – EIA-170

	– – front porch

	– – horizontal blanking interval

	– – horizontal synchronization pulse

	– – interlaced scan

	– – NTSC

	– – PAL

	– – progressive scan

	– – vertical blanking interval

	– – vertical synchronization pulse



	– color
	– – composite video

	– – RGB

	– – S-Video

	– – Y/C



	– digital
	– – Camera Link

	– – Camera Link HS

	– – CoaXPress

	– – FireWire see video signal, digital, IEEE

	– – frame valid

	– – GenICam GenTL, see video signal, digital, GenICam GenTL standard features naming convention

	– – GenICam GenTL standard features naming convention

	– – Gigabit Ethernet see video signal, digital, GigE Vision

	– – GigE Vision

	– – IEEE

	– – IIDC

	– – line valid

	– – low-voltage differential signaling

	– – LVDS see video signal, digital, low-voltage differential signaling

	– – pixel clock

	– – USB 2.0

	– – USB3 Vision
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