

Learning the vi and Vim Editors

Arnold Robbins

Elbert Hannah

Linda Lamb

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

To my wife, Miriam, for your love, patience, and support.

— Arnold Robbins, Sixth and Seventh Editions

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com
 , you have the following benefits:

	DRM-free ebooks — use your ebooks across devices without restrictions or limitations

	Multiple formats — use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing — your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here
 to access your ebook upgrade.

Please note that upgrade offers are not available from sample content.

Preface

Text editing is one of the most common tasks on any computer system, and vi
 is one of the most useful standard text editors on a system. With vi
 you can create new files or edit any existing text-only file.

vi
 , like many of the classic utilities developed during the early years of Unix, has a reputation for being hard to navigate. Bram Moolenaar’s enhanced clone, Vim (“vi
 Improved”), has gone a long way toward removing reasons for such impressions. Vim includes countless conveniences, visual guides, and help screens. It has become probably the most popular version of vi
 , so this seventh edition of this book devotes seven new chapters to it in Part II
 . However, many other worthy clones of vi
 also exist; we cover three of them in Part III
 .

Scope of This Book

This book consists of 18 chapters and 4 appendixes, divided into 4 parts. Part I
 , is designed to get you started using vi
 quickly, and to follow up with advanced skills that will let you use it effectively.

The first two chapters, Chapter 1
 , and Chapter 2
 , present some simple vi
 commands with which you can get started. You should practice these until they are second nature. You could stop reading at the end of Chapter 2
 , having learned some elementary editing tools.

But vi
 is meant to do a lot more than rudimentary word processing; the variety of commands and options enables you to shortcut a lot of editing drudgery. Chapter 3
 , and Chapter 4
 , concentrate on easier ways to do tasks. During your first reading, you’ll get at least an idea of what vi
 can do and what commands you might harness for your specific needs. Later, you can come back to these chapters for further study.

Chapter 5
 , Chapter 6
 , and Chapter 7
 , provide tools that help you shift more of the editing burden to the computer. They introduce you to the ex
 line editor underlying vi
 , and they show you how to issue ex
 commands from within vi
 .

Chapter 8
 , provides an introduction to the extensions available in the four vi
 clones covered in this book. It centralizes in one place the descriptions of multiwindow editing, GUI interfaces, extended regular expressions, facilities that make editing easier, and several other features, providing a roadmap to what follows in the rest of this book. It also provides a pointer to source code for the original vi
 , which can be compiled easily on modern Unix systems (including GNU/Linux).

Part II
 , describes Vim, the most popular vi
 clone in the early part of the 21st century.

Chapter 9
 , provides a general introduction to Vim, including where to get binary versions for popular operating systems and some of the different ways to use Vim.

Chapter 10
 , describes the major improvements in Vim over vi
 , such as built-in help, control over initialization, additional motion commands, and extended regular expressions.

Chapter 11
 , focuses on multiwindow editing, which is perhaps the most significant additional feature over standard vi
 . This chapter provides all the details on creating and using multiple windows.

Chapter 12
 , looks into the Vim command language, which lets you write scripts to customize and tailor Vim to suit your needs. Much of Vim’s ease of use “out of the box” comes from the large number of scripts that other users have already written and contributed to the Vim distribution.

Chapter 13
 , looks at Vim in modern GUI environments, such as those that are now standard on commercial Unix systems, GNU/Linux and other Unix work-alikes, and MS Windows.

Chapter 14
 , focuses on Vim’s use as a programmer’s editor, above and beyond its facilities for general text editing. Of particular value are the folding and outlining facilities, smart indenting, syntax highlighting, and edit-compile-debug cycle speedups.

Chapter 15
 , is a bit of a catch-all chapter, covering a number of interesting points that don’t fit into the earlier chapters.

Part III
 , describes three other popular vi
 clones: nvi
 , elvis
 , and vile
 .

Chapter 16
 , Chapter 17
 , and Chapter 18
 , cover the various vi
 clones — nvi
 , elvis
 , and vile
 — showing you how to use their extensions to vi
 and discussing the features that are specific to each one.

Part IV
 , provides useful reference material.

Appendix A
 , lists all vi
 and ex
 commands, sorted by function. It also provides an alphabetical list of ex
 commands. Selected vi
 and ex
 commands from Vim are also included.

Appendix B
 , lists set
 command options for vi
 and for all four clones.

Appendix C
 , consolidates checklists found earlier in the book.

Appendix D
 , describes vi
 ’s place in the larger Unix and Internet culture.

How the Material Is Presented

Our philosophy is to give you a good overview of what we feel are vi
 survival materials for the new user. Learning a new editor, especially an editor with all the options of vi
 , can seem like an overwhelming task. We have made an effort to present basic concepts and commands in an easy-to-read and logical manner.

After providing the basics for vi
 , which are usable everywhere, we move on to cover Vim in depth. We then round out our coverage of the vi
 landscape by looking at nvi
 , elvis
 , and vile
 . The following sections describe the conventions used in this book.

Discussion of vi Commands

 A picture of a keyboard button, like the one on the left, marks the main discussion of that particular keyboard command or of related commands. You will find a brief introduction to the main concept before it is broken down into task-oriented sections. We then present the appropriate command to use in each case, along with a description of the command and the proper syntax for using it.

Conventions

In syntax descriptions and examples, what you would actually type is shown in the Courier
 font, as are all command names. Filenames are also shown in Courier
 , as are program options. Variables (which you would not type literally, but would replace with an actual value when you type the command) are shown in
Courier italic

 . Brackets indicate that a variable is optional. For example, in the syntax line:

vi [
filename

]

filename

 would be replaced by an actual filename. The brackets indicate that the vi
 command can be invoked without specifying a filename at all. The brackets themselves are not typed.

Certain examples show the effect of commands typed at the Unix shell prompt. In such examples, what you actually type is shown in
Courier Bold

 , to distinguish it from the system response. For example:

$
ls

ch01.xml ch02.xml ch03.xml ch04.xml

In code examples,
italic

 indicates a comment that is not to be typed. Otherwise,
italic

 introduces special terms and emphasizes anything that needs emphasis.

Following traditional Unix documentation convention, references of the form
printf

 (3) refer to the online manual (accessed via the man
 command). This example refers to the entry for the printf()
 function in section 3 of the manual (you would type man 3 printf
 on most systems to see it).

Keystrokes

Special keystrokes are shown in a box. For example:

iWith aESC

Throughout the book, you will also find columns of vi
 commands and their results:

	Keystrokes
	Results

	
ZZ

	
 "practice" [New file] 6 lines, 320 characters

	
	
Give the write and save command, ZZ
 . Your file is saved as a regular Unix file.

In the preceding example, the command ZZ
 is shown in the left column. In the window to the right is a line (or several lines) of the screen that show the result of the command. Cursor position is shown in reverse video. In this instance, since ZZ
 saves and writes the file, you see the status line shown when a file is written; the cursor position is not shown. Below the window is an explanation of the command and its result.

 Sometimes vi
 commands are issued by pressing the CTRL
 key and another key simultaneously. In the text, this combination keystroke is usually written within a box (for example, CTRL-G
). In code examples, it is written by preceding the name of the key with a caret (^). For example, ^G
 means to hold down CTRL
 while pressing the G
 key.

Problem Checklist

A problem checklist is included in those sections where you may run into some trouble. You can skim these checklists and go back to them when you actually encounter a problem. All of the problem checklists are also collected in Appendix C
 , for ease of reference.

What You Need to Know Before Starting

This book assumes you have already read Learning the Unix Operating System
 (O’Reilly), or some other introduction to Unix. You should already know how to:

	Log in and log out

	Enter Unix commands

	Change directories

	List files in a directory

	Create, copy, and remove files

Familiarity with grep
 (a global search program) and wildcard characters is also helpful.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

	O’Reilly Media, Inc.

	1005 Gravenstein Highway North

	Sebastopol, CA 95472

	800-998-9938 (in the United States or Canada)

	707-829-0515 (international or local)

	707-829-0104 (fax)

To ask technical questions or comment on the book, send email to:

	

bookquestions@oreilly.com

The web site for this book lists examples, errata, and plans for future editions. You can access this page at:

	
http://www.oreilly.com/catalog/9780596529833

For more information about our books, conferences, software, resource centers, and the O’Reilly Network, see our web site:

	
http://www.oreilly.com

Safari® Books Online

Note

When you see a Safari® Books Online icon on the cover of your favorite technology book, that means the book is available online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search thousands of top tech books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at http://safari.oreilly.com
 .

About the Previous Editions

In the fifth edition of this book (then called
Learning the vi Editor

), the ex
 editor commands were first discussed more fully. In Chapters 5
 , 6
 , and 7
 , the complex features of ex
 and vi
 were clarified by adding more examples, in topics such as regular expression syntax, global replacement, .exrc
 files, word abbreviations, keyboard maps, and editing scripts. A few of the examples were drawn from articles in Unix World
 magazine. Walter Zintz wrote a two-part tutorial[1
]
 on vi
 that taught us a few things we didn’t know, and that also had a lot of clever examples illustrating features we did already cover in the book. Ray Swartz also had a helpful tip in one of his columns.[2
]
 We are grateful for the ideas in these articles.

The sixth edition of Learning the vi Editor
 introduced coverage of four freely available “clones,” or work-alike editors. Many of them have improvements over the original vi
 . One could thus say that there is a “family” of vi
 editors, and the book’s goal was to teach you what you need to know to use them. That edition treated nvi
 , Vim, elvis
 , and vile
 equally.

The sixth edition also added the following features:

	Many minor corrections and additions were made to the basic text.

	For each chapter where appropriate, a command summary was added at the end.

	New chapters covered each vi
 clone, the features and/or extensions common to two or more of the clones, and multiwindow editing.

	The chapters for each vi
 clone described a bit of that program’s history and goals, its unique features, and where to get it.

	A new appendix described vi
 ’s place in the larger Unix and Internet culture.

[1
]
 “vi
 Tips for Power Users,” Unix World
 , April 1990; and “Using vi
 to Automate Complex Edits,” Unix World
 , May 1990. Both articles by Walter Zintz. (See Appendix D
 for the web location of these articles.)

[2
]
 “Answers to Unix,” Unix World
 , August 1990.

Preface to the Seventh Edition

This seventh edition of Learning the vi and Vim Editors
 retains all the good features of the sixth edition. Time has proven Vim to be the most popular vi
 clone, so this edition adds considerably expanded coverage of that editor (and gives it a place in the title). However, to be relevant for as many users as possible, we have retained and updated the material on nvi
 , elvis
 , and vile
 .

What’s New

The following features are new for this edition:

	Once again, we have corrected errors in the basic text.

	Seven new chapters provide exhaustive coverage of Vim.

	The material on nvi
 , elvis
 , and vile
 has been brought up-to-date.

	The previous edition’s two reference appendixes on ex
 and vi
 have been condensed into one and now contain selected additional material on Vim.

	The other appendixes have been updated as well.

Versions

The following programs were used for testing out various vi
 features:

	The Solaris version of vi
 for a “reference” version of Unix vi

	Version 1.79 of Keith Bostic’s nvi

	Version 2.2 of Steve Kirkendall’s elvis

	Version 7.1 of Bram Moolenaar’s Vim

	Version 9.6 of vile
 , by Kevin Buettner, Tom Dickey, and Paul Fox

Acknowledgments from the Sixth Edition

First and foremost, thanks to my wife, Miriam, for taking care of the kids while I was working on this book, particularly during the “witching hours” right before meal times. I owe her large amounts of quiet time and ice cream.

Paul Manno, of the Georgia Tech College of Computing, provided invaluable help in pacifying my printing software. Len Muellner and Erik Ray of O’Reilly & Associates helped with the SGML software. Jerry Peek’s vi
 macros for SGML were invaluable.

Although all of the programs were used during the preparation of the new and revised material, most of the editing was done with Vim versions 4.5 and 5.0 under GNU/Linux (Red Hat 4.2).

Thanks to Keith Bostic, Steve Kirkendall, Bram Moolenaar, Paul Fox, Tom Dickey, and Kevin Buettner, who reviewed the book. Steve Kirkendall, Bram Moolenaar, Paul Fox, Tom Dickey, and Kevin Buettner also provided important parts of Chapters 8 through 12. (These chapter numbers refer to the sixth edition.)

Without the electricity being generated by the power company, doing anything with a computer is impossible. But when the electricity is there, you don’t stop to think about it. So too when writing a book — without an editor, nothing happens, but when the editor is there doing her job, it’s easy to forget about her. Gigi Estabrook at O’Reilly is a true gem. It’s been a pleasure working with her, and I appreciate everything she’s done and continues to do for me.

Finally, many thanks to the production team at O’Reilly & Associates.

— Arnold Robbins Ra’anana, ISRAEL June 1998

Acknowledgments for the Seventh Edition

Once again, Arnold thanks his wife, Miriam, for her love and support. The size of his quiet time and ice cream debt continues to grow. In addition, thanks to J.D. “Illiad” Frazer for the great User Friendly
 cartoons.[3
]

Elbert would like to thank Anna, Cally, Bobby, and his parents for staying excited about his work through the tough times. Their enthusiasm was contagious and appreciated.

Thanks to Keith Bostic and Steve Kirkendall for providing input on revising their editors’ chapters. Tom Dickey provided significant input for revising the chapter on vile
 and the table of set
 options in Appendix B
 . Bram Moolenaar (the author of Vim) reviewed the book this time around as well. Robert P.J. Day, Matt Frye, Judith Myerson, and Stephen Figgins provided important review comments throughout the text.

Arnold and Elbert would both like to thank Andy Oram and Isabel Kunkle for their work as editors, and all of the tools and production staff at O’Reilly Media.

— Arnold Robbins Nof Ayalon, ISRAEL 2008

— Elbert Hannah Kildeer, Illinois USA 2008

[3
]
 See http://www.userfriendly.org
 if you’ve never heard of User Friendly
 .

Part I. Basic and Advanced vi

Part I is designed to get you started quickly with the vi
 editor and to provide the advanced skills that will let you use vi
 most effectively. These chapters cover the original, core vi
 and provide commands you can use on any version; later chapters cover popular clones. This part contains the following chapters:

	
Chapter 1, The vi Text Editor

	
Chapter 2, Simple Editing

	
Chapter 3, Moving Around in a Hurry

	
Chapter 4, Beyond the Basics

	
Chapter 5, Introducing the ex Editor

	
Chapter 6, Global Replacement

	
Chapter 7, Advanced Editing

	
Chapter 8, Introduction to the vi Clones

Chapter 1. The vi Text Editor

Unix[4
]
 has a number of editors that can process the contents of text files, whether those files contain data, source code, or sentences.

 There are line editors, such

 as ed
 and ex
 , which display a line of the file on the screen; and there are screen editors, such as vi
 and
 Emacs, which display a part of the file on your terminal screen.
 Text editors based on the X Window System
 are also commonly available and are becoming increasing popular. Both GNU Emacs and

 its derivative, XEmacs, provide multiple X windows; two interesting alternatives

 are the sam
 and Acme editors from Bell Labs. Vim also provides an X-based interface.

vi
 is the most useful standard text editor on your system. (vi
 is short for
vi

 sual editor and is pronounced “vee-eye.” This is illustrated graphically in Figure 1-1
 .) Unlike Emacs, it is available in nearly identical form on every modern Unix system, thus providing a kind of text-editing
lingua franca

 .[5
]
 The same might be said of ed
 and ex
 , but screen editors are generally much easier to use. (So much so, in fact, that line editors have generally fallen into disuse.) With a screen editor, you can scroll the page, move the cursor, delete lines, insert characters, and more, while seeing the results of your edits as you make them. Screen editors are very popular, since they allow you to make changes as you read through a file, like you would edit a printed copy, only faster.

 [image: Correct pronunciation of vi]

Figure 1-1. Correct pronunciation of vi

To many beginners, vi
 looks unintuitive and cumbersome — instead of using special control keys for word processing functions and just letting you type normally, it uses all of the regular keyboard keys for issuing commands. When the keyboard keys are issuing
 commands, vi
 is said to be
 in
command mode

 . You must be in a special
insert mode

 before
 you can type actual text on the screen. In addition, there seem to be so many commands.

Once you start learning, however, you realize that vi
 is well designed. You need only a few keystrokes to tell vi
 to do complex tasks. As you learn vi
 , you learn shortcuts that transfer more and more of the editing work to the computer — where it belongs.

vi
 (like any text editor) is not a “what you see is what you get” word processor. If you want to produce formatted documents, you must type in codes that are used by another formatting program to control the appearance of the printed copy. If you want to indent several paragraphs, for instance, you put a code where the indent begins and ends.
 Formatting codes allow you to experiment with or change the appearance of your printed files, and, in many ways, they give you much more control over the appearance of your documents than a word processor.
 Unix supports the troff
 formatting package.[6
]
 The TeX
 and LaTeX
 formatters are popular,

 commonly available alternatives.[7
]

(vi
 does support some simple formatting mechanisms. For example, you can tell it to automatically wrap when you come to the end of a line, or to automatically indent new lines. In addition, Vim version 7 provides
 automatic spellchecking.)

As with any skill, the more editing you do, the easier the basics become, and the more you can accomplish. Once you are used to all the powers you have while editing with vi
 , you may never want to return to any “simpler” editor.

What are the components of editing? First, you want

 to
insert

 text (a forgotten word or a new or missing sentence), and you want to
delete

 text (a stray character or an entire paragraph). You also need to
change

 letters and words (to correct misspellings or to reflect a change of mind about a term). You might want to
move

 text from one place to another part of your file. And, on occasion, you want to
copy

 text to duplicate it in another part of your file.

Unlike many word processors, vi
 ’s command mode is the initial
 or “default” mode. Complex, interactive edits can be performed with only a few keystrokes. (And to insert raw text, you simply give any of the several “insert” commands and then type away.)

One or two characters are used for the basic

 Ip commands. For example:

i

Insert

cw

Change

 word

Using letters as commands, you can edit a file with great speed. You don’t have to memorize banks of function keys or stretch your fingers to reach awkward combinations of keys. You never have to remove your hands from the keyboard, or mess around with multiple levels of menus! Most of the commands can be remembered by the letters that perform them, and nearly all commands follow similar patterns and are related to each other.

In general, vi
 commands:

	Are
 case-sensitive (uppercase and lowercase keystrokes mean different things; I
 is different from i
)
 .

	Are not shown (or “echoed”) on the screen when you type them
 .

	Do not require an ENTER
 after the command.

 There is also a group of commands that echo on the bottom line of the screen. Bottom-line commands are preceded by different symbols.

 The slash (/
) and the question mark (?
) begin search commands, and are discussed in Chapter 3
 .

 A colon (:
) begins all ex
 commands. ex
 commands are those used by the ex
 line editor. The ex
 editor is available to you when you use vi
 , because ex
 is the underlying editor and vi
 is really just its “visual” mode. ex
 commands and concepts are discussed fully in Chapter 5
 , but this chapter introduces you to the ex
 commands to quit a file without saving edits.

[4
]
 These days, the term “Unix” includes both commercial systems derived from the original Unix code base, and Unix work-alikes whose source code is available. Solaris, AIX, and HP-UX are examples of the former, and GNU/Linux and the various BSD-derived systems are examples of the latter. Unless otherwise noted, everything in this book applies across the board to all those systems.

[5
]
 GNU Emacs has become the universal version of Emacs. The only problem is that it doesn’t come standard with most commercial Unix systems; you must retrieve and install it yourself.

[6
]
 troff
 is for laser printers and typesetters. Its “twin brother” is nroff
 , for line printers and terminals. Both accept the same input language.
 Following common Unix convention, we refer to both with the name troff
 . Today, anyone using troff
 uses the GNU version, groff
 . See http://www.gnu.org/software/groff/
 for more information.

[7
]
 See http://www.ctan.org
 and http://www.latex-project.org
 for information on TeX
 and LaTeX
 , respectively.

A Brief Historical Perspective

Before diving into all the ins and outs of vi
 , it will help you to understand vi
 ’s worldview of your environment. In particular, this will help you make sense of many of vi
 ’s otherwise more obscure error messages, and also appreciate how the vi
 clones have evolved beyond the original vi
 .

vi
 dates back to a time when computer users worked on terminals connected via serial lines to central mini-computers. Hundreds of different kinds of terminals existed and were in use worldwide. Each one did the same kind of actions (clear the screen, move the cursor, etc.), but the commands needed to make them do these actions were different. In addition, the Unix system let you choose the characters to use for backspace, generating an interrupt signal, and other commands useful on serial terminals, such as suspending and resuming output. These facilities were (and still are) managed with
 the stty
 command.

The original UCB version of vi
 abstracted out the terminal control information from the code (which was hard to change) into a text-file database of
term

 inal
cap

 abilities (which was easy to change), managed
 by the termcap

 library. In the early 1980s, System V introduced a binary
term

 inal
info

 rmation database and terminfo
 library. The two libraries were largely functionally equivalent. In order to tell vi
 which terminal you had, you had to set the TERM
 environment variable.
 This was typically done in a shell startup file, such as .profile
 or .login
 .

Today, everyone uses terminal emulators in a graphic environment (such as xterm
). The system almost always takes care of setting TERM
 for you. (You can use vi
 from a PC non-GUI console too, of course. This is very useful when doing system recovery work in single-user mode. There aren’t too many people left who would want to work this way on a regular basis, though.) For day-to-day use, it is likely that you will want to use a GUI version of vi
 , such as Vim or one of the other clones. On a Microsoft Windows or Mac OS X system, this will probably be the default. However, when you run vi
 (or some other screen editor of the same vintage) inside a terminal emulator, it still uses TERM
 and termcap
 or terminfo
 and pays attention to the stty
 settings. And using it inside a terminal emulator is just as easy a way to learn vi
 as any other.

Another important fact to understand about vi
 is that it was developed at a time when Unix systems were considerably less stable than they are today. The vi
 user of yesteryear had to be prepared for the system to crash at arbitrary times, and so vi
 included support for recovering files that were in the middle of being edited when the system crashed.[8
]
 So, as you learn vi
 and see the descriptions of various problems that might occur, bear these historical developments in mind.

[8
]
 Thankfully, this kind of thing is much less common, although systems can still crash due to external circumstances, such as a power outage.

Opening and Closing Files

 You can use vi
 to edit any text file. vi
 copies the file to be edited into a
buffer

 (an area temporarily set aside in memory), displays the buffer (though you can see only one screenful at a time), and lets you add, delete, and change text. When you save your edits, vi
 copies the edited buffer back into a permanent file, replacing the old file of the same name. Remember that you are always working on a

copy

 of your file in the buffer, and that your edits will not affect your original file until you save the buffer. Saving your edits is also called
 “writing the buffer,” or more commonly, “writing your file.”

Opening a File

 vi
 is the Unix command that invokes the vi
 editor for an existing file or for a brand new file. The syntax for the vi
 command is:

$
 vi

 [
filename

]

The brackets shown on the above command line indicate that the filename is optional. The brackets should not be typed. The $
 is the Unix prompt. If the filename is omitted, vi
 will open an unnamed buffer. You can assign the name when you write the buffer into a file. For right now, though, let’s stick to naming the file on the command line.

 A filename must be unique inside its directory.

 A filename can include any 8-bit character except a slash (/), which is reserved as the separator between files and directories in a pathname, and ASCII NUL, the character with all zero bits.

 You can even include spaces in a filename by typing a backslash (\) before the space. In practice, though, filenames generally consist of any combination of uppercase and lowercase letters, numbers, and the characters

 dot (.) and

 underscore (_).
 Remember that Unix is case-sensitive: lowercase letters are distinct from uppercase letters. Also remember that you must press ENTER
 to tell Unix that you are finished issuing your command.

When you want to open a new file in a directory, give a new filename with the vi
 command. For example, if you want to open a new file called practice
 in the current directory, you would enter:

$
vi practice

Since this is a new file, the buffer is empty and the screen appears as follows:

~
~
~
"practice" [New file]

 The tildes (~) down the lefthand column of the screen indicate that there is no text in the file, not even blank lines.

 The prompt line (also called the status line) at the bottom of the screen echoes the name and status of the file.

You can also edit any existing text file in a directory by specifying its filename.
 Suppose that there is a Unix file with the pathname /home/john/letter
 . If you are already in the /home/john
 directory, use the relative pathname. For example:

$
vi letter

brings a copy of the file letter
 to the screen.

 If you are in another directory, give the full pathname to begin editing:

$
vi /home/john/letter

Problems Opening Files

	

When you invoke

 vi

, the message

 [open mode]

appears.

 Your terminal type is probably incorrectly identified. Quit the editing session immediately by typing :q
 . Check the environment variable $TERM
 . It should be set to the name of your terminal. Or ask your system administrator to provide an adequate terminal type setting.

	

You see one of the following messages:

Visual needs addressable cursor or upline capability
Bad termcap entry
Termcap entry too long
terminal

: Unknown terminal type
Block device required
Not a typewriter

 Your terminal type is either undefined, or there’s probably something wrong with your terminfo
 or termcap
 entry. Enter :q
 to quit. Check your $TERM
 environment variable, or ask your system administrator to select a terminal type for your environment.

	

A

 [new file]

message appears when you think a file already exists.

Check that you have used correct case in the filename (Unix filenames are case-sensitive). If you have, then you are probably in the wrong directory. Enter :q
 to quit. Then check to see that you are in the correct directory for that file (enter pwd
 at the Unix prompt). If you are in the right directory, check the list of files in the directory (with ls
) to see whether the file exists under a slightly different name.

	

You invoke

 vi

, but you get a colon prompt (indicating that you’re in

 ex

line-editing mode).

You probably typed an interrupt before vi
 could draw the screen. Enter vi
 by typing vi
 at the ex
 prompt (:
).

	

One of the following messages appears:

[Read only]
File is read only
Permission denied

“Read only” means that you can only look at the file; you cannot save any changes you make.
 You may have invoked vi
 in view
 mode (with view
 or vi -R
), or you do not have write permission for the file. See the section Problems Saving Files
 .

	

One of the following messages appears:

Bad file number
Block special file
Character special file
Directory
Executable
Non-ascii file
 file

 non-ASCII

The file you’ve called up to edit is not a regular text file. Type :q!
 to
 quit, then check the file you wish to edit, perhaps with the file
 command.

	

When you type

 :q

because of one of the previously mentioned difficulties, this message appears:

 No write since last change (:quit! overrides).

You have modified the file without realizing it. Type :q!
 to leave vi
 . Your changes from this session will not be saved in the file.

Modus Operandi

 As mentioned earlier, the concept of the current “mode” is fundamental to the way vi
 works.

 There are two modes,
command mode

 and
insert mode

 . You start out in command mode, where every keystroke represents a command. In insert mode, everything you type becomes text in your file.

Sometimes, you can accidentally enter insert mode, or conversely, leave insert mode accidentally. In either case, what you type will likely affect your files in ways you did not intend.

Press the ESC
 key
 to force vi
 to enter command mode. If you are already in command mode, vi
 will beep at you when you press the ESC
 key.
 (Command mode is thus sometimes referred to as “beep mode.”)

Once you are safely in command mode, you can proceed to repair any accidental changes, and then continue editing your text.

Saving and Quitting a File

 You can quit working on a file at any time, save your edits, and return to the Unix prompt. The vi
 command to quit and save edits is ZZ
 . Note that ZZ
 is capitalized.

Let’s assume that you do create a file called practice
 to practice vi
 commands, and that you type in six lines of text. To save the file, first check that you are in command mode by pressing ESC
 , and then enter ZZ
 .

	Keystrokes
	Results

	
ZZ

	
 "practice" [New file] 6 lines, 320 characters

	
	
Give the write and save command, ZZ
 . Your file is saved as a regular Unix file.

	
ls

	
 ch01 ch02 practice

	
	
Listing the files in the directory shows the new file practice
 that you created.

 You can also save your edits with ex
 commands. Type :w
 to save (write) your file but not quit vi
 ; type :q
 to quit if you haven’t made any edits; and type :wq
 to both

 save your edits and quit. (:wq
 is equivalent to ZZ
 .) We’ll explain fully how to use ex
 commands in Chapter 5
 ; for now, you should just memorize a few commands for writing and saving files.

Quitting Without Saving Edits

When you are first learning vi
 , especially if you are an intrepid experimenter, there are two other

 ex
 commands that are handy for getting out of any mess that you might create.

What if you want to wipe out all of the edits you have made in a session and then return to the

 original file? The command:

:e!ENTER

returns you to the last saved version of the file, so you can start over.

Suppose, however, that you want to wipe out your edits and then
 just quit vi
 ? The command:

:q!ENTER

quits the file you’re editing and returns you to the Unix prompt. With both of these commands, you lose all edits made in the buffer since the last time you saved the file. vi
 normally won’t let you throw away your edits. The exclamation point added to the :e
 or :q
 command causes vi
 to override this prohibition, performing the operation even though the buffer has been modified.

Problems Saving Files

	

You try to write your file, but you get one of the following messages:

File exists
File
 file

 exists - use w!
[Existing file]
File is read only

Type :w!

file

 to overwrite

 the existing file, or type

 :w

newfile

 to save the edited version in a new file.

	

You want to write a file, but you don’t have write permission for it. You get the message “Permission denied.”

Use :w

newfile

 to write out the buffer into a new file. If you have write permission for the directory, you can use mv
 to replace the original version with your copy of it. If you don’t have write permission for the directory, type :w

pathname/file

 to write out the buffer to a directory in which you do have write permission (such as your home directory, or /tmp
).

	

You try to write your file, but you get a message telling you that the file system is full.

Type

 :!rm

junkfile

 to delete a (large) unneeded file and free some space.

 (Starting an ex
 command with an exclamation point gives you access to Unix.)

 Or type :!df
 to see whether there’s any space on another file system. If there is, choose a directory on that file system and write your file to it with :w

pathname

 . (df
 is the Unix command to check a
d

 isk’s
f

 ree space.)

	

The system puts you into open mode and tells you that the file system is full.

The disk with vi
 ’s temporary files is filled up. Type :!ls /tmp
 to see whether there are any files you can remove to gain some disk space.[9
]
 If there are, create a temporary Unix shell from which you can remove files or issue other Unix commands.
 You can create a shell by typing :sh
 ; type CTRL-D
 or exit
 to terminate the shell and return to vi
 . (On modern Unix systems, when using a job-control shell, you can simply type CTRL-Z
 to suspend vi
 and return to the Unix prompt; type fg
 to return to vi
 .) Once you’ve freed up some space, write your file with :w!
 .

	

You try to write your file, but you get a message telling you that your disk quota has been reached.

Try to force the system to save your buffer with the ex
 command
 :pre
 (short for :preserve
). If that doesn’t work, look for some files to remove. Use :sh
 (or CTRL-Z
 if you are using a job-control system) to move out of vi
 and remove files. Use CTRL-D
 (or fg
) to return to vi
 when you’re done. Then write your file with :w!
 .

Exercises

The only way to learn vi
 is to practice. You now know enough to create a new file and to return to the Unix prompt. Create a file called practice
 , insert some text, and then save and quit the file.

	Open a file called practice
 in the current directory:
	
vi practice

	Insert text:
	
i

any text you like

	Return to command mode:
	
ESC

	Quit vi
 , saving edits:
	
ZZ

[9
]
 Your vi
 may keep its temporary files in /usr/tmp
 ,

 /var/tmp
 , or your current directory; you may need to poke around a bit to figure out where exactly you’ve run out of room. Vim generally keeps its temporary file in the same directory as the file being edited.

Chapter 2. Simple Editing

 This chapter introduces you to editing with vi
 , and it is set up to be read as a tutorial. In it you will learn how to move the cursor and how to make some simple edits. If you’ve never worked with vi
 , you should read the entire chapter.

Later chapters will show you how to expand your skills to perform faster and more powerful edits. One of the biggest advantages for an adept user of vi
 is that there are so many options to choose from. (One of the biggest
disadvantages

 for a newcomer to vi
 is that there are so many different editor commands.)

You can’t learn vi
 by memorizing every single vi
 command. Start out by learning the basic commands introduced in this chapter. Note the patterns of use that the commands have in common.

As you learn vi
 , be on the lookout for more tasks that you can delegate to the editor, and then find the command that accomplishes it. In later chapters you will learn more advanced features of vi
 , but before you can handle the advanced, you must master the simple.

This chapter covers:

	Moving the cursor

	Adding and changing text

	Deleting, moving, and copying text

	More ways to enter insert mode

vi Commands

 vi
 has two modes: command mode and insert mode. As soon as you enter a file, you are in command mode, and the editor is waiting for you to enter a command. Commands enable you to move anywhere in the file, to perform edits, or to enter insert mode to add new text. Commands can also be given to exit the file (saving or ignoring your edits) in order to return to the Unix prompt.

You can think of the different modes as representing two different keyboards. In insert mode, your keyboard functions like a typewriter. In command mode, each key has a new meaning or initiates some instruction.

 There are several ways to tell vi
 that you want to begin insert mode. One of the most common is to press i
 . The i
 doesn’t appear on the screen, but after you press it, whatever you type
will

 appear on the screen and will be entered into the buffer. The cursor marks the current insertion point.[10
]
 To tell vi
 that you want to stop inserting text, press
 ESC
 . Pressing ESC
 moves the cursor back one space (so that it is on the last character you typed) and returns vi
 to command mode.

For example, suppose you have opened a new file and want to insert the word “introduction.” If you type the keystrokes iintroduction
 , what appears on the screen is:

introduction

 When you open a new file, vi
 starts in command mode and interprets the first keystroke (i
) as the insert command. All keystrokes made after the insert command are considered text until you press ESC
 . If you need to correct a mistake while in insert mode, backspace and type over the error. Depending on the type of terminal you are using, backspacing may erase what you’ve previously typed or may just back up over it. In either case, whatever you back up over will be deleted. Note that you can’t use the backspace key to back up beyond the point where you entered insert mode. (If you have disabled vi
 compatibility, Vim allows you to backspace beyond the point where you entered insert mode.)

vi
 has an option that lets you define a right margin and provides a carriage return automatically when you reach it. For right now, while you are inserting text, press ENTER
 to break the lines.

Sometimes you don’t know whether you are in insert mode or command mode. Whenever vi
 does not respond as you expect, press ESC
 once or twice to check which mode you are in. When you hear the beep, you are in command mode.

[10
]
 Some versions show that you’re in input mode in the status line.

Moving the Cursor

 You may spend only a small amount of time in an editing session adding new text in insert mode; much of the time you will be making edits to existing text.

In command mode you can position the cursor anywhere in the file. Since you begin all basic edits (changing, deleting, and copying text) by placing the cursor at the text that you want to change, you want to be able to move the cursor to that place as quickly as possible.

There are vi
 commands to move the cursor:

	Up, down, left, or right — one
character

 at a time

	Forward or backward by blocks of
text

 such as words, sentences, or paragraphs

	Forward or backward through a file, one
screen

 at a time

In Figure 2-1
 , an underscore marks the present cursor position. Circles show movement of the cursor from its current position to the position that would result from various vi
 commands.

 [image: Sample movement commands]

Figure 2-1. Sample movement commands

Single Movements

 The keys h
 , j
 , k
 , and l
 , right under your fingertips, will move the cursor:

h

Left, one space

j

Down, one line

k

Up, one line

l

Right, one space

 You can also use the cursor arrow keys (←
 , ↓
 , ↑
 , →
), +
 and -
 to go up and down, or the ENTER
 and BACKSPACE
 keys, but they are out of the way. At first, it may seem awkward to use letter keys instead of arrows for cursor movement. After a short while, though, you’ll find it is one of the things you’ll like best about vi
 — you can move around without ever taking your fingers off the center of the keyboard.

Before you move the cursor, press ESC
 to make sure that you are in command mode. Use h
 , j
 , k
 , and l
 to move forward or backward in the file from the current cursor position. When you have gone as far as possible in one direction, you hear a beep and the cursor stops. For example, once you’re at the beginning or end of a line, you cannot use h
 or l
 to wrap around to the previous or next line; you have to use j
 or k
 .[11
]
 Similarly, you cannot move the cursor past a tilde (~) representing a line without text, nor can you move the cursor above the first line of text.

Numeric Arguments

 You can precede movement commands with numbers. Figure 2-2
 shows how the command 4l
 moves the cursor four spaces to the right, just as if you had typed l
 four times (llll
).

 [image: Multiplying commands by numbers]

Figure 2-2. Multiplying commands by numbers

The ability to multiply commands gives you more options and power for each command you learn. Keep this in mind as you are introduced to additional commands.

Movement Within a Line

 When you saved the file practice
 , vi
 displayed a message telling you how many lines are in that file. A
line

 is not necessarily the same length as the visible line (often limited to 80 characters) that appears on the screen. A line is any text entered between newlines. (A
newline

 character is inserted into the file when you press the ENTER
 key in insert mode.) If you type 200 characters before pressing ENTER
 , vi
 regards all 200 characters as a single line (even though those 200 characters visibly take up several lines on the screen).

As we mentioned in Chapter 1
 , vi
 has an option that allows you to set a distance from the right margin at which vi
 will automatically

 insert a newline character. This option is wrapmargin
 (its abbreviation is wm
). You can set a wrapmargin
 at 10 characters:

:set wm=10

This command doesn’t affect lines that you’ve already typed. We’ll talk more about setting options in Chapter 7
 . (This one really couldn’t wait!)

If you do not use vi
 ’s automatic wrapmargin
 option, you should break lines with carriage returns to keep the lines of manageable length.

 Two useful commands that involve movement within a line are:

0
 (digit zero)

 Move to beginning of line.

$

 Move to end of line.

 In the following example, line numbers are displayed. (Line numbers can be displayed in vi
 by using the number
 option, which is enabled by typing :set
 nu
 in command mode. This operation is described in Chapter 7
 .)

 1 With a screen editor you can scroll the page,
 2 move the cursor,d

elete lines, insert characters,
 and more, while seeing the results of your edits
 as you make them.
 3 Screen editors are very popular.

 The number of logical lines (3) does not correspond to the number of visible lines (5) that you see on the screen. If the cursor were positioned on the
d

 in the word
delete

 , and you entered $
 , the cursor would move to the period following the word
them

 . If you entered 0
 , the cursor would move back to the letter
m

 in the word
move

 , at the beginning of line two.

Movement by Text Blocks

 You can also move the cursor by blocks of text: words, sentences, paragraphs, etc.

 The w
 command moves the cursor forward one word at a time, counting symbols and punctuation as equivalent to words. The following line shows cursor movement by w
 :

c

ursor,

d

elete l

ines,

i

nsert c

haracters,

 You can also move by word, not counting symbols and punctuation, using the W
 command. (You can think of this as a “large” or “capital”
W

 ord.)

Cursor movement using W
 looks like this:

c

ursor,d

elete l

ines, i

nsert c

haracters,

 To move backward by word, use the b
 command. Capital B
 allows you to move backward by word, not counting punctuation.

As mentioned previously, movement commands take numeric arguments; so, with either the w
 or b
 commands you can multiply the movement with numbers. 2w
 moves forward two words; 5B
 moves back five words, not counting punctuation.

To move to a specific line, you can use the G
 command. Plain G
 goes to the end of the file, 1G
 goes to the top of the file, and 42G
 goes to line 42. This is described in more detail later in the section The G (Go To) Command
 .

We’ll discuss movement by sentences and by paragraphs in Chapter 3
 . For now, practice using the cursor movement commands that you know, combining them with numeric multipliers.

[11
]
 Vim, with nocompatible
 set, allows you to “space past” the end of the line to the next one with l
 or the space bar.

Simple Edits

When you enter text in your file, it is rarely perfect. You find typos or want to improve on a phrase; sometimes your program has a bug. Once you enter text, you have to be able to change it, delete it, move it, or copy it. Figure 2-3
 shows the kinds of edits you might want to make to a file. The edits are indicated by proofreading marks.

 [image: Proofreading edits]

Figure 2-3. Proofreading edits

 In vi
 you can perform any of these edits with a few basic keystrokes: i
 for insert (which you’ve already seen); a
 for append; c
 for change; and d
 for delete. To move or copy text, you use pairs of commands. You move text with a d
 for “delete,” then a p
 for “put”; you copy text with a y
 for “yank,” then a p
 for “put.” Each type of edit is described in this section. Figure 2-4
 shows the vi
 commands you use to make the edits marked in Figure 2-3
 .

 [image: Edits with vi commands]

Figure 2-4. Edits with vi commands

Inserting New Text

You have already seen the insert command used to enter text into a new file. You also use the insert command while editing existing text to add missing characters, words, and sentences. In the file practice
 , suppose you have the sentence:

 you can scroll
 the page, move the cursor, deletel

ines, and insert characters.

with the cursor positioned as shown. To insert
With a screen editor

 at the beginning of the sentence, enter the following:

	Keystrokes
	Results

	
2k

	

y

ou can scroll
 the page, move the cursor, delete
 lines, and insert characters.

Move the cursor up two lines with the k
 command, to the line where you want to make the insertion.

	
iWith a

	
 With a

you can scroll
 the page, move the cursor, delete
 lines, and insert characters.

Press i
 to enter insert mode and begin inserting text.

	
screen editor
 ESC

	
 With a screen editor

you can scroll
 the page, move the cursor, delete
 lines, and insert characters.

Finish inserting text, and press ESC
 to end the insert and return to command mode.

Appending Text

 You can append text at any place in your file with the append command, a
 . This works in almost the same way as i
 , except that text is inserted
after

 the cursor rather than
before

 the cursor. You may have noticed that when you press i
 to enter insert mode, the cursor doesn’t move until after you enter some text. By contrast, when you press a
 to enter insert mode, the cursor moves one space to the right. When you enter text, it appears after the original cursor position.

Changing Text

 You can replace any text in your file with the change command, c
 . To tell c
 how much text to change, you combine c
 with a movement command. In this way, a movement command serves as a
text object

 for the c
 command to affect. For example, c
 can be used to change text from the cursor:

cw

To the end of a word

c2b

Back two words

c$

To the end of line

c0

To the beginning of line

After issuing a change command, you can replace the identified text with any amount of new text, with no characters at all, with one word, or with hundreds of lines. c
 , like i
 and a
 , leaves you in insert mode until you press the ESC
 key.

 When the change affects only the current line, vi
 marks the end of the text that will be changed with a $
 , so that you can see what part of the line is affected. (See the example for cw
 , next.)

Words

 To change a word, combine the c
 (change) command with w
 for word. You can replace a word (cw
) with a longer or shorter word (or any amount of text). cw
 can be thought of as “delete the word marked and insert new text until ESC
 is pressed.”

Suppose you have the following line in your file practice
 :

With an editor you can scroll the page,

and want to change
an

 to
a screen

 . You need to change only one word:

	Keystrokes
	Results

	
w

	
 Witha

n editor you can scroll the page,

Move with w
 to the place you want the edit to begin.

	
cw

	
 Witha

$ editor you can scroll the page,

Give the change word command. The end of the text to be changed will be marked with a $
 (dollar sign).

	
a screen

	
 With a screen

 editor you can scroll the page,

Type in the replacement text, and then press ESC
 to return to command mode.

cw
 also works on a portion of a word. For example, to change
spelling

 to
spelled

 , you can position the cursor on the
i

 , type cw
 , then type
ed

 , and finish with ESC
 .

General Form of vi Commands

In the change commands we’ve mentioned up to this point, you may have noticed the following pattern:

(
command

)(
text object

)

command

 is the change command c
 , and
text object

 is a movement command (you don’t type the parentheses). But c
 is not the only command that requires a text object. The d
 command (delete) and the y
 command (yank) follow this pattern as well.

Remember also that movement commands take numeric arguments, so numbers can be added to the text objects of c
 , d
 , and y
 commands. For example, d2w
 and 2dw
 are commands to delete two words. With this in mind, you can see that most vi
 commands follow a general pattern:

(
command

)(
number

)(
text object

)

or the equivalent form:

(
number

)(
command

)(
text object

)

Here’s how this works.
number

 and
command

 are optional. Without them, you simply have a movement command. If you add a
number

 , you have a multiple movement. On the other hand, combine a
command

 (c
 , d
 , or y
) with a
text object

 to get an editing command.

When you realize how many combinations are possible in this way, vi
 becomes a powerful editor indeed!

Lines

 To replace the entire current line, use the special change command, cc
 . cc
 changes an entire line, replacing that line with any amount of text entered before pressing ESC
 . It doesn’t matter where the cursor is located on the line; cc
 replaces the entire line of text.

A command like cw
 works differently from a command like cc
 . In using cw
 , the old text remains until you type over it, and any old text that is left over (up to the $
) goes away when you press ESC
 . In using cc
 , though, the old text is wiped out first, leaving you a blank line on which to insert text.

 The “type over” approach happens with any change command that affects less than a whole line, whereas the “blank line” approach happens with any change command that affects one or more lines.

 C
 replaces characters from the current cursor position to the end of the line. It has the same effect as combining c
 with the special end-of-line indicator $
 (c$
).

The commands cc
 and C
 are really shortcuts for other commands, so they don’t follow the general form of vi
 commands. You’ll see other shortcuts when we discuss the delete and yank commands

 .

Characters

 One other replacement edit is given by the r
 command. r
 replaces a single character with another single character. You do
not

 have to press ESC
 to return to command mode after making the edit. There is a misspelling in the line below:

P

ith a screen editor you can scroll the page,

Only one letter needs to be corrected. You don’t want to use cw
 in this instance because you would have to retype the entire word. Use r
 to replace a single character at the cursor:

	Keystrokes
	Results

	
rW

	

W

ith a screen editor you can scroll the page,

Give the replace command r
 , followed by the replacement character
W

 .

Substituting text

 Suppose you want to change just a few characters, and not a whole word. The substitute command (s
), by itself, replaces a single character. With a preceding count, you can replace that many characters. As with the change command (c
), the last character of the text will be marked with a $
 so that you can see how much text will be changed.

 The S
 command, as is usually the case with uppercase commands, lets you change whole lines. In contrast to the C
 command, which changes the rest of the line from the current cursor position, the S
 command deletes the entire line, no matter where the cursor is. vi
 puts you in insert mode at the beginning of the line. A preceding count replaces that many lines.

Both s
 and S
 put you in insert mode; when you are finished entering new text, press ESC
 .

 The R
 command, like its lowercase counterpart, replaces text. The difference is that R
 simply enters overstrike mode. The characters you type replace what’s on the screen, character by character, until you type ESC
 . You can overstrike a maximum of only one line; as you type ENTER
 , vi
 will open a new line, effectively putting you into insert mode.

Changing Case

 Changing

 the case of a letter is a special form of replacement. The tilde (~
) command will change a lowercase letter to uppercase or an uppercase letter to lowercase. Position the cursor on the letter whose case you want to change, and type a ~
 . The case of the letter will change, and the cursor will move to the next character.

In older versions of vi
 , you cannot specify a numeric prefix or text object for the ~
 to affect. Modern versions do allow a numeric prefix.

 If you want to change the case of more than one line at a time, you must filter the text through a Unix command such as tr
 , as described in Chapter 7
 .

Deleting Text

 You can also delete any text in your file with the delete command, d
 . Like the change command, the delete command requires a text object (the amount of text to be operated on). You can delete by word (dw
), by line (dd
 and D
), or by other movement commands that you will learn later.

With all deletions, you move to where you want the edit to take place, then give the delete command (d
) and the text object, such as w
 for word.

Words

 Suppose you have the following text in the file:

S

creen editors are are very popular,
 since they allowed you to make
 changes as you read through a file.

with the cursor positioned as shown. You want to delete one
are

 in the first line:

	Keystrokes
	Results

	
2w

	
 Screen editorsa

re are very popular,
 since they allowed you to make
 changes as you read through a file.

Move the cursor to where you want the edit to begin (
are

).

	
dw

	
 Screen editorsa

re very popular,
 since they allowed you to make
 changes as you read through a file.

Give the delete word command (dw
) to delete the word
are

 .

dw
 deletes a word beginning where the cursor is positioned. Notice that the space following the word is deleted.

dw
 can also be used to delete a portion of a word. In this example:

 since they allowe

d you to make

you want to delete the
ed

 from the end of
allowed

 .

	Keystrokes
	Results

	
dw

	
 since they allow

you to make

Give the delete word command (dw
) to delete the word, beginning with the position of the cursor.

dw
 always deletes the space before the next word on a line, but we don’t want to do that in this example.

 To retain the space between words, use de
 , which deletes only to the end of a word. Typing dE
 deletes to the end of a word, including punctuation.

 You can also delete backward (db
) or to the end or beginning of a line (d$
 or d0
).

Lines

 The dd
 command deletes the entire line that the cursor is on. dd
 will not delete part of a line. Like its complement, cc
 , dd
 is a special command. Using the same text as in the previous example, with the cursor positioned on the first line as shown here:

 Screen editorsa

re very popular,
 since they allow you to make
 changes as you read through a file.

you can delete the first two lines:

	Keystrokes
	Results

	
2dd

	

c

hanges as you read through a file.

Give the command to delete two lines (2dd
). Note that even though the cursor was not positioned on the beginning of the line, the entire line is deleted.

 The D
 command deletes from the cursor position to the end of the line. (D
 is a shortcut for d$
 .) For example, with the cursor positioned as shown:

 Screen editors are very popular,
 since they allow you to make
 changesa

s you read through a file.

you can delete the portion of the line to the right of the cursor:

	Keystrokes
	Results

	
D

	
 Screen editors are very popular,
 since they allow you to make
 changes

Give the command to delete the portion of the line to the right of the cursor (D
).

Characters

 Often you want to delete only one or two characters. Just as r
 is a special change command to replace a single character, x
 is a special delete command to delete a single character. x
 deletes only the character the cursor is on. In the line here:

z

You can move text by deleting text and then

you can delete the letter
z

 by pressing x
 .[12
]
 A capital X
 deletes the character before the cursor.
 Prefix either of these commands with a number to delete that number of characters. For example, 5x
 will delete the five characters under and to the right of the cursor
 .

Problems with deletions

	

You’ve deleted the wrong text and you want to get it back.

There are several ways to recover deleted text. If you’ve just deleted something and you realize you want it back, simply type u
 to undo the last command (for example, a dd
).

 This works only if you haven’t given any further commands, since u
 undoes only the most recent command. Alternatively, a U
 will restore the line to its pristine state, the way it was before
any

 changes were applied to it.

 You can still recover a recent deletion, however, by using the p
 command, since vi
 saves the last nine deletions in nine numbered deletion buffers. If you know, for example, that the third deletion back is the one you want to restore, type:
"3p

to “put” the contents of buffer number 3 on the line below the cursor.

This works only for a deleted
line

 . Words, or a portion of a line, are not saved in a buffer.

 If you want to restore a deleted word or line fragment, and u
 won’t work, use the p
 command by itself. This restores whatever you’ve last deleted. The next few subsections will talk more about the commands u
 and p
 .

Note that Vim supports “infinite” undo, which makes life much easier. See the section Undoing Undos
 for more information.

Moving Text

 In vi
 , you move text by deleting it and then placing that deleted text elsewhere in the file, like a “cut and paste.” Each time you delete a text block, that deletion is temporarily saved in a special buffer. Move to another position in your file and use the put command (p
) to place that text in the new position. You can move any block of text, although moving is more useful with lines than with words.

 The put command (p
) puts the text that is in the buffer
after

 the cursor position. The uppercase version of the command,
 P
 , puts the text
before

 the cursor. If you delete one or more lines, p
 puts the deleted text on a new line(s) below the cursor. If you delete less than an entire line, p
 puts the deleted text into the current line, after the cursor.

Suppose in your file practice
 you have the text:

 You can move text by deleting it and then,l

ike a "cut and paste,"
 placing the deleted text elsewhere in the file.
 each time you delete a text block.

and you want to move the second line,
like a “cut and paste,”

 below the third line. Using delete, you can make this edit:

	Keystrokes
	Results

	
dd

	
 You can move text by deleting it and then,p

lacing the deleted text elsewhere in the file.
 each time you delete a text block.

With the cursor on the second line, delete that line. The text is placed in a buffer (reserved memory).

	
p

	
 You can move text by deleting it and then,
 placing that deleted text elsewhere in the file.l

ike a "cut and paste"
 each time you delete a text block.

Give the put command, p
 , to restore the deleted line at the next line below the cursor. To finish reordering this sentence, you would also have to change the capitalization and punctuation (with r
) to match the new structure.

Note

 Once you delete text, you must restore it before the next change command or delete command. If you make another edit that affects the buffer, your deleted text will be lost. You can repeat the put over and over, so long as you don’t make a new edit. In Chapter 4
 , you will learn how to save text you delete in a named buffer so that you can retrieve it later.

Transposing two letters

 You can use xp
 (delete character and put after cursor) to transpose two letters. For example, in the word
mvoe

 , the letters
vo

 are transposed (reversed). To correct a transposition, place the cursor on
v

 and press x
 , then p
 . By coincidence, the word
transpose

 helps you remember the sequence xp
 ; x
 stands for
trans

 , and p
 stands for
pose

 .

 There is no command to transpose words. The section More Examples of Mapping Keys
 discusses a short sequence of commands that transposes two words.

Copying Text

 Often you can save editing time (and keystrokes) by copying a part of your file to use in other places.
 With the two commands y
 (for yank) and p
 (for put), you can copy any amount of text and put that copied text in another place in the file. A yank command copies the selected text into a special buffer, where it is held until another yank (or deletion) occurs. You can then place this copy elsewhere in the file with the put command.

As with change and delete, the yank command can be combined with any movement command (yw
 , y$
 , 4yy
). Yank is most frequently used with a line (or more) of text, because to yank and put a word usually takes longer than simply to insert the word.

 The shortcut yy
 operates on an entire line, just as dd
 and cc
 do. But the shortcut Y
 , for some reason, does not operate the way D
 and C
 do. Instead of yanking from the current position to the end of the line, Y
 yanks the whole line; that is, Y
 does the same thing as yy
 .

Suppose you have in your file practice
 the text:

W

ith a screen editor you can
 scroll the page.
 move the cursor.
 delete lines.

You want to make three complete sentences, beginning each with
With a screen editor you can

 . Instead of moving through the file, making this edit over and over, you can use a yank and put to copy the text to be added.

	Keystrokes
	Results

	
yy

	
 With as

creen editor you can
 scroll the page.
 move the cursor.
 delete lines.

Yank the line of text that you want to copy into the buffer. The cursor can be anywhere on the line you want to yank (or on the first line of a series of lines).

	
2j

	
 With a screen editor you can
 scroll the page.m

ove the cursor.
 delete lines.

Move the cursor to where you want to put the yanked text.

	
P

	
 With a screen editor you can
 scroll the page.W

ith a screen editor you can
 move the cursor.
 delete lines.

Put the yanked text above the cursor line with P
 .

	
jp

	
 With a screen editor you can
 scroll the page.
 With a screen editor you can
 move the cursor.W

ith a screen editor you can
 delete lines.

Move the cursor down a line and put the yanked text below the cursor line with p
 .

 Yanking uses the same buffer as deleting. Each new deletion or yank replaces the previous contents of the yank buffer. As we’ll see in Chapter 4
 , up to nine previous yanks or deletions can be recalled with put commands. You can also yank or delete directly into up to 26 named buffers, which allows you to juggle multiple text blocks at once.

Repeating or Undoing Your Last Command

 Each edit command that you give is stored in a temporary buffer until you give the next command. For example, if you insert
the

 after a word in your file, the command used to insert the text, along with the text that you entered, is temporarily saved.

Repeat

 Any time you make the same editing command over and over, you can save time by duplicating it with the repeat command, the period (.). Position the cursor where you want to repeat the editing command, and type a period.

Suppose you have the following lines in your file:

 With a screen editor you can
 scroll the page.W

ith a screen editor you can
 move the cursor.

You can delete one line, and then, to delete another line, simply type a period.

	Keystrokes
	Results

	
dd

	
 With a screen editor you can
 scroll the page.m

ove the cursor.

Delete a line with the command dd
 .

	
.

	
 With a screen editor you cans

croll the page.

Repeat the deletion.

 Older versions of vi
 have problems repeating commands. For example, such versions may have difficulty repeating a long insertion when wrapmargin
 is set. If you have such a version, this bug will probably bite you sooner or later. There’s not a lot you can do about it after the fact, but it helps to be forewarned. (Modern versions do not seem to have this problem.) There are two ways you can guard against a potential problem when repeating long insertions. You can write your file (:w
) before repeating the insertion (returning to this copy if the insertion doesn’t work correctly). You can also turn off wrapmargin
 like this:

:set wm=0

In the later section More Examples of Mapping Keys
 , we’ll show you an easy way to use the wrapmargin
 solution.

 In some versions of vi
 , the command CTRL-@
 repeats the most recent insertion. CTRL-@
 is typed in insert mode and returns you to command mode
 .

Undo

 As mentioned earlier, you can undo your last command if you make an error. Simply press u
 . The cursor need not be on the line where the original edit was made.

To continue the previous example, showing deletion of lines in the file practice
 :

	Keystrokes
	Results

	
u

	
 With a screen editor you can
 scroll the page.m

ove the cursor.

u
 undoes the last command and restores the deleted line.

 U
 , the uppercase version of u
 , undoes all edits on a single line,
as long as the cursor remains on that line

 . Once you move off a line, you can no longer use U
 .

Note that you can undo your last undo with u
 , toggling between two versions of text. u
 will also undo U
 , and U
 will undo any changes to a line, including those made with u
 .

Tip

A tip: the fact that u
 can undo itself leads to a nifty way to get around in a file. If you ever want to get back to the site of your last edit, simply undo it. You will pop back to the appropriate line. When you undo the undo, you’ll stay on that line.

Vim lets you use CTRL-R
 to “redo” an undone operation. Combined with infinite undo, you can move backward and forward through the history of changes to your file. See the section Undoing Undos
 for more information

 .

[12
]
 The mnemonic for x
 is that it is supposedly like “x-ing out” mistakes with a typewriter. Of course, who uses a typewriter anymore?

More Ways to Insert Text

 You have inserted text before the cursor with the sequence:

i
text to be inserted

ESC

You’ve also inserted text after the cursor with the a
 command. Here are some other insert commands for inserting text at different positions relative to the cursor:

A

Append text to end of current line.

I

Insert text at beginning of line.

o
 (lowercase letter “o”)

Open blank line below cursor for text.

O
 (uppercase letter “o”)

Open blank line above cursor for text.

s

Delete character at cursor and substitute text.

S

Delete line and substitute text.

R

Overstrike existing characters with new characters.

All of these commands place you in insert mode. After inserting text, remember to press ESC
 to return to command mode.

 A
 (append) and I
 (insert) save you from having to move your cursor to the end or beginning of the line before invoking insert mode. (The A
 command saves one keystroke over $a
 . Although one keystroke might not seem like much of a saving, the more adept — and impatient — an editor you become, the more keystrokes you will want to omit.)

 o
 and O
 (open) save you from having to insert a carriage return. You can type these commands from anywhere within the line.

 s
 and S
 (substitute) allow you to delete a character or a whole line and replace the deletion with any amount of new text. s
 is the equivalent of the two-stroke command c
 SPACE
 , and S
 is the same as cc
 . One of the best uses for s
 is to change one character to several characters.

 R
 (“large” replace) is useful when you want to start changing text, but you don’t know exactly how much. For example, instead of guessing whether to say 3cw
 or 4cw
 , just type R
 and then enter your replacement text.

Numeric Arguments for Insert Commands

 Except for o
 and O
 , the insert commands just listed (plus i
 and a
) take numeric prefixes. With numeric prefixes, you might use the commands i
 , I
 , a
 , and A
 to insert a row of underlines or alternating characters. For example, typing 50i*
 ESC
 inserts 50 asterisks, and typing 25a*-
 ESC
 appends 50 characters (25 pairs of asterisk and hyphen). It’s better to repeat only a small string of characters.[13
]

 With a numeric prefix, r
 replaces that number of characters with a repeated instance of a single character. For example, in C or C++ code, to change ||
 to &&
 , you would place the cursor on the first pipe character and type 2r&
 .

You can use a numeric prefix with S
 to substitute several lines. It’s quicker and more flexible, though, to use c
 with a movement command.

A good case for using the s
 command with a numeric prefix is when you want to change a few characters in the middle of a word. Typing r
 wouldn’t be correct, and typing cw
 would change too much text. Using s
 with a numeric prefix is usually the same as typing R
 .

There are other combinations of commands that work naturally together. For example, ea
 is useful for appending new text to the end of a word. It helps to train yourself to recognize such useful combinations so that they become automatic.

[13
]
 Very old versions of vi
 have difficulty repeating the insertion of more than one line’s worth of text.

Joining Two Lines with J

 Sometimes while editing a file you end up with a series of short lines that are difficult to scan. When you want to merge two lines into one, position the cursor anywhere on the first line, and press J
 to join the two lines.

Suppose your file practice
 reads:

W

ith a
 screen editor
 you can
 scroll the page, move the cursor

	Keystrokes
	Results

	
J

	

W

ith a screen editor
 you can
 scroll the page, move the cursor

J
 joins the line the cursor is on with the line below.

	
.

	

W

ith a screen editor you can
 scroll the page, move the cursor

Repeat the last command (J
) with the .
 to join the next line with the current line.

Using a numeric argument with J
 joins that number of consecutive lines. In the example here, you could have joined three lines by using the command 3J
 .

Problem Checklist

	

When you type commands, text jumps around on the screen and nothing works the way it’s supposed to.

Make sure you’re not typing the J
 command when you mean j
 .

 You may have hit the CAPS LOCK
 key without noticing it. vi
 is case-sensitive; that is, uppercase commands (I
 , A
 , J
 , etc.) are different from lowercase commands (i
 , a
 , j
), and if you hit this key, all your commands are interpreted not as lowercase but as uppercase commands. Press the CAPS LOCK
 key again to return to lowercase, press ESC
 to ensure that you are in command mode, and then type either U
 to restore the last line changed or u
 to undo the last command. You’ll probably also have to do some additional editing to fully restore the garbled part of your file.

Review of Basic vi Commands

Table 2-1
 presents a few of the commands you can perform by combining the commands c
 , d
 , and y
 with various text objects. The last two rows show additional commands for editing. Tables 2-2
 and 2-3
 list some other basic commands. Table 2-4
 summarizes the rest of the commands described in this chapter.

Table 2-1. Edit commands

	Text object
	Change
	Delete
	Copy

	One word
	
cw

	
dw

	
yw

	
Two words, not counting punctuation

	
2cW
 or c2W

	
2dW
 or d2W

	
2yW
 or y2W

	Three words back
	
3cb
 or c3b

	
3db
 or d3b

	
3yb
 or y3b

	One line
	
cc

	
dd

	
yy
 or Y

	To end of line
	
c$
 or C

	
d$
 or D

	
y$

	To beginning of line
	
c0

	
d0

	
y0

	Single character
	
r

	
x
 or X

	
yl
 or yh

	Five characters
	
5s

	
5x

	
5yl

Table 2-2. Movement

	Movement
	Commands

	
←
 , ↓
 , ↑
 , →

	

h
 , j
 , k
 , l

	To first character of next line
	
+

	To first character of previous line
	
-

	To end of word
	
e
 or E

	Forward by word
	
w
 or W

	Backward by word
	
b
 or B

	To end of line
	
$

	To beginning of line
	
0

Table 2-3. Other operations

	Operations
	Commands

	Place text from buffer
	
P
 or p

	Start vi
 , open file if specified
	
vi

file

	Save edits, quit file
	
ZZ

	No saving of edits, quit file
	
:q!

Table 2-4. Text creation and manipulation commands

	Editing action
	Command

	Insert text at current position
	
i

	Insert text at beginning of line
	
I

	Append text at current position
	
a

	Append text at beginning of line
	
A

	Open new line below cursor for new text
	
o

	Open new line above cursor for new text
	
O

	Delete line and substitute text
	
S

	Overstrike existing characters with new text
	
R

	Join current and next line
	
J

	Toggle case
	
~

	Repeat last action
	
.

	Undo last change
	
u

	Restore line to original state
	
U

You can get by in vi
 using only the commands listed in these tables. However, in order to harness the real power of vi
 (and increase your own productivity), you will need more tools. The following chapters describe those tools.

Chapter 3. Moving Around in a Hurry

You will not use vi
 just to create new files. You’ll spend a lot of your time in vi
 editing existing files. You rarely want to simply open to the first line in the file and move through it line by line; you want to get to a specific place in a file and start working.

All edits start with you moving the cursor to where you want to begin the edit (or, with ex
 line editor commands, by identifying the line numbers to be edited). This chapter shows you how to think about movement in a variety of ways (by screens, by text, by patterns, or by line numbers). There are many ways to move in vi
 , since editing speed depends on getting to your destination with only a few keystrokes.

This chapter covers:

	Movement by screens

	Movement by text blocks

	Movement by searches for patterns

	Movement by line number

Movement by Screens

When you read a book, you think of “places” in the book in terms of pages: the page where you stopped reading or the page number in an index. You don’t have this convenience when you’re editing files. Some files take up only a few lines, and you can see the whole file at once. But many files have hundreds (or thousands!) of lines.

You can think of a file as text on a long roll of paper. The screen is a window of (usually) 24 lines of text on that long roll.

 In insert mode, as you fill up the screen with text, you will end up typing on the bottom line of the screen. When you reach the end and press ENTER
 , the top line rolls out of sight, and a blank line appears on the bottom of the screen for new text. This is called
scrolling

 .

In command mode, you can move through a file to see any text in it by scrolling the screen ahead or back. And, since cursor movements can be multiplied by numeric prefixes, you can move quickly to anywhere in your file.

Scrolling the Screen

 There are vi
 commands to scroll forward and backward through the file by full and half screens:

^F

Scroll forward one screen.

^B

Scroll backward one screen.

^D

Scroll forward half screen (down).

^U

Scroll backward half screen (up).

(In this list of commands, the ^
 symbol represents the CTRL
 key. So ^F
 means to hold down the CTRL
 key and press the f
 key simultaneously.)

 There are also commands to scroll the screen up one line (^E
) and down one line (^Y
). However, these two commands do not send the cursor to the beginning of the line. The cursor remains at the same point in the line as when the command was issued.

Repositioning the Screen with z

 If you want to scroll the screen up or down, but you want the cursor to remain on the line where you left it, use the z
 command.

z
 ENTER

Move current line to top of screen and scroll.

z.

Move current line to center of screen and scroll.

z-

Move current line to bottom of screen and scroll.

With the z
 command, using a numeric prefix as a multiplier makes no sense. (After all, you would need to reposition the cursor to the top of the screen only once. Repeating the same z
 command wouldn’t move anything.) Instead, z
 understands a numeric prefix as a line number that it will use in place of the current line. For example, z
 ENTER
 moves the current line to the top of the screen, but 200z
 ENTER
 moves line 200 to the top of the screen.

Redrawing the Screen

 Sometimes while you’re editing, messages from your computer system will display on your screen. These messages don’t become part of your editing buffer, but they do interfere with your work. When system messages appear on your screen, you need to redisplay, or redraw, the screen.

Whenever you scroll, you redraw part of (or all of) the screen, so you can always get rid of unwanted messages by scrolling them off the screen and then returning to your previous position. But you can also redraw the screen without scrolling, by typing
 CTRL-L
 .

Movement Within a Screen

 You can also keep your current screen, or view of the file, and move around within the screen using:

H

Move to home — the top line on screen.

M

Move to middle line on screen.

L

Move to last line on screen.

n

 H

Move to
n

 lines below top line.

n

 L

Move to
n

 lines above last line.

H
 moves the cursor from anywhere on the screen to the first, or “home,” line. M
 moves to the middle line, L
 to the last. To move to the line below the first line, use 2H
 .

	Keystrokes
	Results

	
L

	
 With a screen editor you can
 scroll the page, move the cursor,
 delete lines, insert characters, and more,
 while seeing the results of your
 edits as you make them.
 Screen editors are very popular,
 since they allow you to make changesa

s you read through a file.

Move to the last line of the screen with the L
 command.

	
2H

	
 With a screen editor you cans

croll the page, move the cursor,
 delete lines, insert characters, and more,
 while seeing the results of your
 edits as you make them.
 Screen editors are very popular,
 since they allow you to make changes
 as you read through a file.

Move to the second line of the screen with the 2H
 command. (H
 alone moves to the top line of the screen.)

Movement by Line

 Within the current screen there are also commands to move by line.

 You’ve already seen j
 and k
 . You can also use:

ENTER

Move to first character of next line.

+

Move to first character of next line.

-

Move to first character of previous line.

These three commands move down or up to the first
character

 of the line, ignoring any spaces or tabs. j
 and k
 , by contrast, move the cursor down or up to the first position of a line, even if that position is blank (and assuming that the cursor started at the first position).

Movement on the current line

 Don’t forget that h
 and l
 move the cursor to the left and right, and that 0
 (zero) and $
 move the cursor to the beginning or end of the line. You can also use:

^

Move to first nonblank character of current line.

n

 |

Move to column
n

 of current line.

As with the line movement commands shown earlier, ^
 moves to the first
character

 of the line, ignoring any spaces or tabs. 0
 , by contrast, moves to the first position of the line, even if that position is blank.

Movement by Text Blocks

 Another way that you can think of moving through a vi
 file is by text blocks — words, sentences, paragraphs, or sections.

You have already learned to move forward and backward by word (w
 , W
 , b
 or B
). In addition, you can use these commands:

e

Move to end of word.

E

Move to end of word (ignore punctuation).

(

Move to beginning of current sentence.

)

Move to beginning of next sentence.

{

Move to beginning of current paragraph.

}

Move to beginning of next paragraph.

[[

Move to beginning of current section.

]]

Move to beginning of next section.

 To find the end of a sentence, vi
 looks for one of these punctuation marks: ?
 , .
 , or !
 . vi
 locates the end of a sentence when the punctuation is followed by at least two spaces or when it appears as the last nonblank character on a line. If you have left only a single space following a period, or if the sentence ends with a quotation mark, vi
 won’t recognize the sentence.

 A paragraph is defined as text up to the next blank line, or up to one of the default paragraph macros (.IP
 , .PP
 , .LP
 , or .QP
) from the troff
 MS macro package. Similarly, a section is defined as text up to the next default section macro (.NH
 , .SH
 , .H 1
 , or .HU
). The macros that are recognized as paragraph or section separators can be customized with the :set
 command, as described in Chapter 7
 .

Remember that you can combine numbers with movement. For example, 3)
 moves ahead three sentences. Also remember that you can edit using movement commands: d)
 deletes to the end of the current sentence, 2y}
 copies (yanks) two paragraphs ahead.

Movement by Searches

 One of the most useful ways to move around quickly in a large file is by searching for text, or more properly, a
pattern

 of characters. Sometimes a search can be performed to find a misspelled word or to find each occurrence of a variable in a program.

 The search command is the special character /
 (slash). When you enter a slash, it appears on the bottom line of the screen; you then type in the
pattern

 that you want to find: /

pattern

 .

 A pattern can be a whole word or any other sequence of characters (called a “character string”). For example, if you search for the characters
red

 , you will match
red

 as a whole word, but you’ll also match occur
red

 . If you include a space before or after
pattern

 , the spaces will be treated as part of the word. As with all bottom-line commands, press ENTER
 to finish. vi
 , like all other Unix editors, has a special pattern-matching language that allows you to look for variable text patterns: for example, any word beginning with a capital letter, or the word
The

 at the beginning of a line.

We’ll talk about this more powerful pattern-matching syntax in Chapter 6
 . For right now, think of a
pattern

 simply as a word or phrase.

 vi
 begins the search at the cursor and searches forward, wrapping around to the start of the file if necessary. The cursor will move to the first occurrence of the pattern. If there is no match, the message
 “Pattern not found” will be shown on the status line.[14
]

Using the file practice
 , here’s how to move the cursor by searches:

	Keystrokes
	Results

	
/edits

	
 With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of youre

dits as you make them.

Search for the pattern
edits

 . Press ENTER
 to enter. The cursor moves directly to that pattern.

	
/scr

	
 With as

creen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.

Search for the pattern
scr

 . Press ENTER
 to enter. Note that there is no space after
scr

 .

The search wraps around to the front of the file. Note that you can give any combination of characters; a search does not have to be for a complete word.

 To search backward, type a ?
 instead of a /
 :

?
pattern

In both cases, the search wraps around to the beginning or end of the file, if necessary.

Repeating Searches

 The last pattern that you searched for stays available throughout your editing session. After a search, instead of repeating your original keystrokes, you can use a command to search again for the last pattern:

n

Repeat search in same direction.

N

Repeat search in opposite direction.

/
 ENTER

Repeat search forward.

?
 ENTER

Repeat search backward.

Since the last pattern stays available, you can search for a pattern, do some work, and then search again for the same pattern without retyping it by using n
 , N
 , /
 , or ?
 . The direction of your search (/
 is forward, ?
 is backward) is displayed at the bottom left of the screen. (nvi
 does not show the direction for the n
 and N
 commands. Vim puts the search text into the command line too, and lets you scroll through a saved history of search commands, using the up and down arrow keys.)

To continue with the previous example, since the pattern
scr

 is still available for search, you can do the following:

	Keystrokes
	Results

	
n

	
 With a screen editor you cans

croll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.

Move to the next instance of the pattern
scr

 (from
scr

 een to
scr

 oll) with the n
 (next) command.

	
?you

	
 With a screen editory

ou can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results of your edits as you make them.

Search backward with ?
 from the cursor to the first occurrence of
you

 . You need to press ENTER
 after typing the pattern.

	
N

	
 With a screen editor you can scroll the
 page, move the cursor, delete lines, insert
 characters, and more, while seeing the
 results ofy

our edits as you make them.

Repeat the previous search for
you

 but in the opposite direction (forward).

 Sometimes you want to find a word only if it is further ahead; you don’t want the search to wrap around earlier in the file. vi
 has an option, wrapscan
 , that controls whether searches wrap. You can disable wrapping like this:

:set nowrapscan

 When nowrapscan
 is set and a forward search fails, the status line displays the message:

Address search hit BOTTOM without matching pattern

When nowrapscan
 is set and a backward search fails, the message displays “TOP” instead of “BOTTOM.”

Changing through searching

 You can combine the /
 and ?
 search operators with the commands that change text, such as c
 and d
 . Continuing with the previous example:

	Keystrokes
	Results

	
d?move

	
 With a screen editor you can scroll the
 page,y

our edits as you make them.

Delete from before the cursor up to and through the word
move

 .

Note how the deletion occurs on a character basis, and whole lines are not deleted.

This section has given you only the barest introduction to searching for patterns. Chapter 6
 , will teach you more about pattern matching and its use in making global changes to a file.

Current Line Searches

 There are also miniature versions of the search commands that operate within the current line. The command f

x

 moves the cursor to the next instance of the character
x

 (where
x

 stands for any character). The command t

x

 moves the cursor to the character
before

 the next instance of
x

 . Semicolons can then be used repeatedly to “find” your way along.

The inline search commands are summarized here. None of these commands will move the cursor to the next line:

f

x

Find (move cursor to) next occurrence of
x

 in the line, where
x

 stands for any character.

F

x

Find (move cursor to) previous occurrence of
x

 in the line.

t

x

Find (move cursor to) character
before

 next occurrence of
x

 in the line.

T

x

Find (move cursor to) character
after

 previous occurrence of
x

 in the line.

;

Repeat previous find command in same direction.

,

Repeat previous find command in opposite direction.

With any of these commands, a numeric prefix
n

 locates the
n

 th occurrence. Suppose you are editing in practice
 , on this line:

W

ith a screen editor you can scroll the

	Keystrokes
	Results

	
fo

	
 With a screen edito

r you can scroll the

Find the first occurrence of
o

 in your current line with f
 .

	
;

	
 With a screen editor yo

u can scroll the

Move to the next occurrence of
o

 with the ;
 command (find next
o

).

 df

x

 deletes up to and including the named character
x

 . This command is useful in deleting or yanking partial lines. You might need to use df

x

 instead of dw
 if there are symbols or punctuation within the line that make counting words difficult. The t
 command works just like f
 , except that it positions the cursor before the character searched for. For example, the command ct.
 could be used to change text up to the end of a sentence, leaving the period.

[14
]
 The exact message varies with different vi
 clones, but their meanings are the same. In general, we won’t bother noting everywhere that the text of a message may be different; in all cases the information conveyed is the same.

Movement by Line Number

 Lines in a file are numbered sequentially, and you can move through a file by specifying line numbers.

Line numbers are useful for identifying the beginning and end of large blocks of text you want to edit. Line numbers are also useful for programmers, since compiler error messages refer to line numbers. Finally, line numbers are used by ex
 commands, which you will learn in the next chapters.

If you are going to move by line numbers, you must have a way to identify them. Line numbers can be displayed on
 the screen using the :set
 nu
 option described in Chapter 7
 . In vi
 , you can also display the current line number on the bottom of the screen.

 The command CTRL-G
 causes the following to be displayed at the bottom of your screen: the current line number, the total number of lines in the file, and what percentage of the total the present line number represents. For example, for the file practice
 , CTRL-G
 might display:

"practice" line 3 of 6 --50%--

CTRL-G
 is useful either for displaying the line number to use in a command or for orienting yourself if you have been distracted from your editing session.

Depending upon the implementation of vi
 you’re using, you may see additional information, such as what column the cursor is on, and an indication as to whether the file has been modified but not yet written out. The exact format of the message will vary as well.

The G (Go To) Command

 You can use line numbers to move the cursor through a file. The G
 (go to) command uses a line number as a numeric argument and moves directly to that line. For instance, 44G
 moves the cursor to the beginning of line 44. G
 without a line number moves the cursor to the last line of the file.

 Typing two backquotes (``
) returns you to your original position (the position where you issued the last G
 command), unless you have done some edits in the meantime. If you have made an edit and then moved the cursor using some command other than G
 , ``
 will return the cursor to the site of your last edit. If you have issued a search command (/
 or ?
), ``
 will return the cursor to its position when you started the search.

 A pair of apostrophes (''
) works much like two backquotes, except that it returns the cursor to the beginning of the line instead of the exact position on that line where your cursor had been.

The total number of lines shown with CTRL-G
 can be used to give yourself a rough idea of how many lines to move. If you are on line 10 of a 1,000-line file:

"practice" line 10 of 1000 --1%--

and you know that you want to begin editing near the end of that file, you could give an approximation of your destination with 800G
 .

Movement by line number is a tool that can move you quickly from place to place through a large file.

Review of vi Motion Commands

 Table 3-1
 summarizes the commands covered in this chapter.

Table 3-1. Movement commands

	Movement
	Command

	
Scroll forward one screen

	
^F

	
Scroll backward one screen

	
^B

	
Scroll forward half screen

	
^D

	
Scroll backward half screen

	
^U

	
Scroll forward one line

	
^E

	
Scroll backward one line

	
^Y

	
Move current line to top of screen and scroll

	
z
 ENTER

	
Move current line to center of screen and scroll

	
z.

	
Move current line to bottom of screen and scroll

	
z-

	
Redraw the screen

	
^L

	
Move to home — the top line of screen

	
H

	
Move to middle line of screen

	
M

	
Move to bottom line of screen

	
L

	
Move to first character of next line

	
ENTER

	
Move to first character of next line

	
+

	
Move to first character of previous line

	
-

	
Move to first nonblank character of current line

	
^

	
Move to column
n

 of current line

	

n

 |

	
Move to end of word

	
e

	
Move to end of word (ignore punctuation)

	
E

	
Move to beginning of current sentence

	
(

	
Move to beginning of next sentence

	
)

	
Move to beginning of current paragraph

	
{

	
Move to beginning of next paragraph

	
}

	
Move to beginning of current section

	
[[

	
Move to beginning of next section

	
]]

	
Search forward for pattern

	
/

pattern

	
Search backward for pattern

	
?

pattern

	
Repeat last search

	
n

	
Repeat last search in opposite direction

	
N

	
Repeat last search forward

	
/

	
Repeat last search backward

	
?

	
Move to next occurrence of
x

 in current line

	
f

x

	
Move to previous occurrence of
x

 in current line

	
F

x

	
Move to just before next occurrence of
x

 in current line

	
t

x

	
Move to just after previous occurrence of
x

 in current line

	
T

x

	
Repeat previous find command in same direction

	
;

	
Repeat previous find command in opposite direction

	
,

	
Go to given line
n

	

n

 G

	
Go to end of file

	
G

	
Return to previous mark or context

	
``

	
Return to beginning of line containing previous mark

	
''

	
Show current line (not a movement command)

	
^G

Chapter 4. Beyond the Basics

You have already been introduced to the basic vi
 editing commands, i
 , a
 , c
 , d
 , and y
 . This chapter expands on what you already know about editing. It covers:

	Descriptions of additional editing facilities, with a review of the general command form

	Additional ways to enter vi

	Making use of buffers that store yanks and deletions

	Marking your place in a file

More Command Combinations

In Chapter 2
 , you learned the edit commands c
 , d
 , and y
 , as well as how to combine them with movements and numbers (such as 2cw
 or 4dd
). In Chapter 3
 , you added many more movement commands to your repertoire. Although the fact that you can combine edit commands with movement is not a new concept to you, Table 4-1
 gives you a feel for the many editing options you now have.

Table 4-1. More editing commands

	Change
	Delete
	Copy
	From cursor to...

	
cH

	
dH

	
yH

	Top of screen

	
cL

	
dL

	
yL

	Bottom of screen

	
c+

	
d+

	
y+

	Next line

	
c5|

	
d5|

	
y5|

	Column 5 of current line

	
2c)

	
2d)

	
2y)

	Second sentence following

	
c{

	
d{

	
y{

	Previous paragraph

	
c/

pattern

	
d/

pattern

	
y/

pattern

	

Pattern

	
cn

	
dn

	
yn

	Next
pattern

	
cG

	
dG

	
yG

	End of file

	
c13G

	
d13G

	
y13G

	Line number 13

Notice how all of the sequences in Table 4-1
 follow the general pattern:

(
number

)(
command

)(
text object

)

number

 is the optional numeric argument.
command

 in this case is one of c
 , d
 , or y
 .
text object

 is a movement command.

The general form of a vi
 command is discussed in Chapter 2
 . You may wish to review Tables 2-1
 and 2-2
 as well.

Options When Starting vi

 So far, you have invoked the vi
 editor with the command:

$
vi

file

There are other options to the vi
 command that can be helpful. You can open a file directly to a specific line number or pattern. You can also open a file in read-only mode. Another option recovers all changes to a file that you were editing when the system crashed.

Advancing to a Specific Place

 When you begin editing an existing file, you can call the file in and then move to the first occurrence of a
pattern

 or to a specific line number. You can also specify your first movement by search or by line number right on the command line:[15
]

$

vi +

n file

Opens
file

 at line number
n

 .

$

vi +

file

Opens
file

 at last line.

$

vi +/

pattern file

Opens
file

 at the first occurrence of
pattern

 .

In the file practice
 , to open the file and advance directly to the line containing the word
Screen

 , enter:

	Keystrokes
	Results

	
vi +/Screen practice

	
 With a screen editor you can scroll
 the page, move the cursor, delete
 lines, and insert characters, while
 seeing the results of your edits as
 you make them.S

creen editors are
 very popular, since they allow you
 to make changes as you read

Give the vi
 command with the option +/

pattern

 to go directly to the line containing
Screen

 .

As you see in this example, your search pattern will not necessarily be positioned at the top of the screen. If you include spaces in the
pattern

 , you must enclose the whole pattern within single or double quotes:[16
]

+/"you make"

or escape the space with a backslash:

+/you\ make

In addition, if you want to use the general pattern-matching syntax described in Chapter 6
 , you may need to protect one or more special characters from interpretation by the shell with either single quotes or backslashes.

Using +/

pattern

 is helpful if you have to leave an editing session before you’re finished. You can mark your place by inserting a pattern such as ZZZ
 or HERE
 . Then, when you return to the file, all you have to remember is /ZZZ
 or /HERE
 .

Note

 Normally, when you’re editing in vi
 , the wrapscan
 option is enabled. If you’ve customized your environment so that wrapscan
 is always disabled (see Repeating Searches
), you might not be able to use +/

pattern

 . If you try to open a file this way, vi
 opens the file at the last line and displays the message, “Address search hit BOTTOM without matching pattern.”

Read-Only Mode

 There will be times when you want to look at a file but want to protect that file from inadvertent keystrokes and changes. (You might want to call in a lengthy file to practice vi
 movements, or you might want to scroll through a command file or program.) You can enter a file in read-only mode and use all the vi
 movement commands, but you won’t be able to change the file.

To look at a file in read-only mode, enter either:

$
vi -R

file

or:

$
view

file

(The view
 command, like the vi
 command, can use any of the command-line options for advancing to a specific place in the file.[17
]
)

 If you do decide to make some edits to the file, you can override read-only mode by adding an exclamation point to the write
 command:

:w!

or:

:wq

If you have a problem writing out the file, see the problem checklists summarized in Appendix C
 .

Recovering a Buffer

 Occasionally a system failure may happen while you are editing a file. Ordinarily, any edits made after your last write (save) are lost.

 However, there is an option, -r
 , which lets you recover the edited buffer at the time of a system crash.

On a traditional Unix system with the original vi
 , when you first log on after the system is running again, you will receive a mail message stating that your buffer has been saved. In addition, if you type the command:

$
ex -r

or:

$
vi -r

you will get a list of any files that the system has saved.

Use the -r
 option with a filename to recover the edited buffer. For example, to recover the edited buffer of the file practice
 after a system crash, enter:

$
vi -r practice

It is wise to recover the file immediately, lest you inadvertently make edits to the file and then have to resolve a version skew between the preserved buffer and the newly edited file.

 You can force the system to preserve your buffer even when there is not a crash by using the command :pre
 (short for :preserve
). You may find it useful if you have made edits to a file and then discover that you can’t save your edits because you don’t have write permission. (You could also just write out a copy of the file under another name or into a directory where you do have write permission. See Problems Saving Files
 .)

Note

Recovery may work differently for the various clones and can change from version to version. It is best to check your local documentation.
 vile
 does not support any kind of recovery. The vile
 documentation

 recommends the use of the autowrite
 and autosave
 options. How to do this is described in Customizing vi
 .

[15
]
 According to the POSIX standard, vi
 should use -c

command

 instead of +

command

 as shown here. Typically, for backward compatibility, both versions are accepted.

[16
]
 It is the shell that imposes the quoting requirement, not vi
 .

[17
]
 Typically view
 is just a link to vi
 .

Making Use of Buffers

 You have seen that while you are editing, your last deletion (d
 or x
) or yank (y
) is saved in a buffer (a place in stored memory). You can access the contents of that buffer and put the saved text back in your file with the put command (p
 or P
).

 The last nine deletions are stored by vi
 in numbered buffers. You can access any of these numbered buffers to restore any (or all) of the last nine deletions. (Small deletions, of only parts of lines, are not saved in numbered buffers, however. These deletions can be recovered only by using the p
 or P
 command immediately after you’ve made the deletion.)

vi
 also allows you to place yanks (copied text) into buffers identified by letters. You can fill up to 26 (a–z) buffers with yanked text and restore that text with a put command at any time in your editing session.

Recovering Deletions

 Being able to delete large blocks of text in a single bound is all very well and good, but what if you mistakenly delete 53 lines that you need? You can recover any of your past
nine

 deletions, for they are saved in numbered buffers. The last delete is saved in buffer 1, the second-to-last in buffer 2, and so on.

 To recover a deletion, type "
 (double quote), identify the buffered text by number, then give the put command. To recover your second-to-last deletion from buffer 2, type:

"2p

The deletion in buffer 2 is placed after the cursor.

 If you’re not sure which buffer contains the deletion you want to restore, you don’t have to keep typing "

n

 p
 over and over again.
 If you use the repeat command (.
) with p
 after u
 , it automatically increments the buffer number. As a result, you can search through the numbered buffers using:

"1pu.u.u
etc.

to put the contents of each succeeding buffer in the file one after the other. Each time you type u
 , the restored text is removed; when you type a dot (.), the contents of the
next

 buffer is restored to your file. Keep typing u
 and . until you’ve recovered the text you’re looking for.

Yanking to Named Buffers

 You have seen that you must put (p
 or P
) the contents of the unnamed buffer before you make any other edit, or the buffer will be overwritten. You can also use y
 and d
 with a set of 26 named buffers (a–z) that are specifically available for copying and moving text. If you name a buffer to store the yanked text, you can retrieve the contents of the named buffer at any time during your editing session.

 To yank into a named buffer, precede the yank command with a double quote ("
) and the character for the name of the buffer you want to load. For example:

"dyy
Yank current line into buffer d

.

"a7yy
Yank next seven lines into buffer a

.

After loading the named buffers and moving to the new position, use p
 or P
 to put the text back:

"dP
Put the contents of buffer d

 before cursor.

"ap
Put the contents of buffer a

 after cursor.

There is no way to put part of a buffer into the text — it is all or nothing.

In the next chapter, you’ll learn how to edit multiple files. Once you know how to travel between files without leaving vi
 , you can use named buffers to selectively transfer text between files. When using the multiple-window feature of the various clones, you can also use the unnamed buffer to transfer data between files.

You can also delete text into named buffers using much the same procedure:

"a5dd
Delete five lines into buffer a

.

 If you specify a buffer name with a capital letter, your yanked or deleted text will be
appended

 to the current contents of that buffer. This allows you to be selective in what you move or copy. For example:

"zd)

Delete from cursor to end of current sentence and save in buffer z
 .

2)

Move two sentences further on.

"Zy)

Add the next sentence to buffer z
 . You can continue adding more text to a named buffer for as long as you like, but be warned: if you forget once, and yank or delete to the buffer without specifying its name in capitalized form, you’ll overwrite the buffer, losing whatever you had accumulated in it.

Marking Your Place

 During a vi
 session, you can mark your place in the file with an invisible “bookmark,” perform edits elsewhere, and then return to your marked place. In command mode:

m

x

Marks the current position with
x

 (
x

 can be any letter). (The original vi
 allows only lowercase letters. Vim distinguishes between uppercase and lowercase letters.)

'

x

(Apostrophe.) Moves the cursor to the first character of the line marked by
x

 .

`

x

(Backquote.) Moves the cursor to the character marked by
x

 .

``

(Backquotes.) Returns to the exact position of the previous mark or context after a move.

''

(Apostrophes.) Returns to the beginning of the line of the previous mark or context.

Note

Place markers are set only during the current vi
 session; they are not stored in the file.

Other Advanced Edits

There are other advanced edits that you can execute with vi
 , but to use them you must first learn a bit more about the ex
 editor by reading the next chapter.

Review of vi Buffer and Marking Commands

 Table 4-2
 summarizes the command-line options common to all versions of vi
 . Tables 4-3
 and 4-4
 summarize the buffer and marking commands.

Table 4-2. Command-line options

	Option
	Meaning

	
+

n

file

	Open
file

 at line number
n

 .

	
+

file

	Open
file

 at last line.

	
+/

pattern file

	
Open
file

 at first occurrence of
pattern

 (traditional version of POSIX -c
).

	
-c

command file

	
Run
command

 after opening
file

 ; usually a line number or search (POSIX version of +
).

	
-R

	Operate in read-only mode (same as using view
 instead of vi
).

	
-r

	Recover files after a crash.

Table 4-3. Buffer names

	Buffer names
	Buffer use

	1–9
	The last nine deletions, from most to least recent.

	a–z
	
Named buffers for you to use as needed. Uppercase letters append to the buffer.

Table 4-4. Buffer and marking commands

	Command
	Meaning

	
"

b

command

	Do
command

 with buffer
b

 .

	
m

x

	Mark current position with
x

 .

	
'

x

	Move cursor to first character of line marked by
x

 .

	
`

x

	Move cursor to character marked by
x

 .

	
``

	Return to exact position of previous mark or context.

	
''

	Return to beginning of the line of previous mark or context.

Chapter 5. Introducing the ex Editor

 If this is a book on vi
 , why would we include a chapter on another editor? Well, ex
 is not really another editor. vi
 is the visual mode of the more general, underlying line editor, which is ex
 . Some ex
 commands can be useful to you while you are working in vi
 , since they can save you a lot of editing time. Most of these commands can be used without ever leaving vi
 .[18
]

You already know how to think of files as a sequence of numbered lines. ex
 gives you editing commands with greater mobility and scope. With ex
 , you can move easily between files and transfer text from one file to another in a variety of ways. You can quickly edit blocks of text larger than a single screen. And with global replacement you can make substitutions throughout a file for a given pattern.

This chapter introduces ex
 and its commands. You will learn how to:

	Move around a file by using line numbers

	Use ex
 commands to copy, move, and delete blocks of text

	Save files and parts of files

	Work with multiple files (reading in text or commands, traveling between files)

[18
]
 vile
 is different from the other clones in that many of the more advanced ex
 commands simply don’t work. Instead of noting each command here, we provide more details in Chapter 18
 .

ex Commands

 Long before vi
 or any other screen editor was invented, people communicated with computers on printing terminals, rather than on today’s CRTs (or bitmapped screens with pointing devices and terminal emulation programs). Line numbers were a way to quickly identify a part of a file to be worked on, and line editors evolved to edit those files. A programmer or other computer user would typically print out a line (or lines) on the printing terminal, give the editing commands to change just that line, and then reprint to check the edited line.

People don’t edit files on printing terminals anymore, but some ex
 line editor commands are still useful to users of the more sophisticated visual editor built on top of ex
 . Although it is simpler to make most edits with vi
 , the line orientation of ex
 gives it an advantage when you want to make large-scale changes to more than one part of a file.

Note

 Many of the commands we’ll see in this chapter have filename arguments. Although it’s possible, it is usually a very bad idea to have spaces in your files’ names. ex
 will be confused to no end, and you will go to more trouble than it’s worth trying to get the filenames to be accepted. Use underscores, dashes, or periods to separate the components of your filenames, and you’ll be much happier.

Before you start off simply memorizing ex
 commands (or worse, ignoring them), let’s first take some of the mystery out of line editors. Seeing how ex
 works when it is invoked directly will help make sense of the sometimes obscure command syntax.

Open a file that is familiar to you and try a few ex
 commands. Just as you can invoke the vi
 editor on a file, you can invoke the ex
 line editor on a file. If you invoke ex
 , you will see a message about the total number of lines in the file, and a colon command prompt. For example:

$
ex practice

"practice" 6 lines, 320 characters
:

You won’t see any lines in the file unless you give an ex
 command that causes one or more lines to be displayed.

 ex
 commands consist of a line address (which can simply be a line number) plus a command; they are finished with a carriage return (by hitting ENTER
). One of the most basic commands is p
 for print (to the screen). So, for example, if you type 1p
 at the prompt, you will see the first line of the file:

:
1p

With a screen editor you can
:

 In fact, you can leave off the p
 , because a line number by itself is equivalent to a print command for that line. To print more than one line, you can specify a range of line numbers (for example, 1,3
 — two numbers separated by a comma, with or without spaces in between). For example:

:
1,3

With a screen editor you can
scroll the page, move the cursor,
delete lines, insert characters, and more,

 A command without a line number is assumed to affect the current line. So, for example, the substitute command (s
), which allows you to substitute one word for another, could be entered like this:

:
1

With a screen editor you can
:
s/screen/line/

With a line editor you can

Notice that the changed line is reprinted after the command is issued. You could also make the same change like this:

:
1s/screen/line/

With a line editor you can

Even though you will be invoking ex
 commands from vi
 and will not be using them directly, it is worthwhile to spend a few minutes in ex
 itself. You will get a feel for how you need to tell the editor which line (or lines) to work on, as well as which command to execute.

After you have given a few ex
 commands in your practice
 file, you should invoke vi
 on that same file, so that you can see it in the more familiar visual mode. The command :vi
 will get you from ex
 to vi
 .

 To invoke an ex
 command from vi
 , you must type the special bottom-line character :
 (colon). Then type the command and press ENTER
 to execute it. So, for example, in the ex
 editor you move to a line simply by typing the number of the line at the colon prompt. To move to line 6 of a file using this command from within vi
 , enter:

:
6

Press ENTER
 .

After the following exercise, we will discuss ex
 commands only as they are executed from vi
 .

Exercise: The ex Editor

	
At the Unix prompt, invoke the ex
 editor on a file called practice
 :

	
ex practice

	
A message appears:

	

"practice" 6 lines, 320 characters

	
Go to and print (display) the first line:

	
:1

	
Print (display) lines 1 through 3:

	
:1,3

	
Substitute
screen

 for
line

 on line 1:

	
:1s/screen/line

	
Invoke the vi
 editor on file:

	
:vi

	
Go to the first line:

	
:1

Problem Checklist

	

While editing in

 vi

, you accidentally end up in the

 ex

editor.

 A Q
 in the command mode of vi
 invokes ex
 . Any time you are in ex
 , the command vi
 returns you to the vi
 editor.

Editing with ex

 Many ex
 commands that perform normal editing operations have an equivalent in vi
 that does the job more simply. Obviously, you will use dw
 or dd
 to delete a single word or line rather than using the delete
 command in ex
 . However, when you want to make changes that affect numerous lines, you will find the ex
 commands more useful. They allow you to modify large blocks of text with a single command.

These ex
 commands are listed here, along with abbreviations for those commands. Remember that in vi
 , each ex
 command must be preceded with a colon. You can use the full command name or the abbreviation, whichever is easier to remember.

	Full name
	Abbreviation
	Meaning

	
delete

	
d

	Delete lines

	
move

	
m

	Move lines

	
copy

	
co

	Copy lines

	
	
t

	Copy lines (a synonym for co
)

You can separate the different elements of an ex
 command with spaces, if you find the command easier to read that way. For example, you can separate line addresses, patterns, and commands in this way. You cannot, however, use a space as a separator inside a pattern or at the end of a substitute command.

Line Addresses

 For each ex
 editing command, you have to tell ex
 which line number(s) to edit. And for the ex
 move
 and copy
 commands, you also need to tell ex
 where to move or copy the text to.

You can specify line addresses in several ways:

	With explicit line numbers

	With symbols that help you specify line numbers relative to your current position in the file

	With search patterns as
addresses

 that identify the lines to be affected

Let’s look at some examples.

Defining a Range of Lines

 You can use line numbers to explicitly define a line or range of lines. Addresses that use explicit numbers are called
absolute

 line addresses. For example:

:3,18d

Delete lines 3 through 18.

:160,224m23

Move lines 160 through 224 to follow line 23. (Like delete
 and put
 in vi
 .)

:23,29co100

Copy lines 23 through 29 and put after line 100. (Like yank
 and put
 in vi
 .)

To make editing with line numbers easier, you can also display all line numbers on the left of the screen. The command:

:set number

or its abbreviation:

:set nu

displays line numbers. The file practice
 then appears:

1 With a screen editor
2 you can scroll the page,
3 move the cursor, delete lines,
4 insert characters and more

The displayed line numbers are not saved when you write a file, and they do not print if you print the file. Line numbers are displayed either until you quit the vi
 session or until you disable the set
 option:

:set nonumber

or:

:set nonu

 To temporarily display the line numbers for a set of lines, you can use the #
 sign. For example:

:1,10#

would display the line numbers from line 1 to line 10.

As described in Chapter 3
 , you can also use the
 CTRL-G
 command to display the current line number. You can thus identify the line numbers corresponding to the start and end of a block of text by moving to the start of the block, typing CTRL-G
 , and then moving to the end of the block and typing CTRL-G
 again.

 Yet another way to identify line numbers is with the ex
 =
 command:

:=

Print the total number of lines.

:.=

Print the line number of the current line.

:/

pattern

 /=

Print the line number of the first line that matches
pattern

 .

Line Addressing Symbols

 You can also use symbols for line addresses. A dot (.
) stands for the current line; and $
 stands for the last line of the file.

 %
 stands for every line in the file; it’s the same as the combination 1,$
 . These symbols can also be combined with absolute line addresses. For example:

:.,$d

Delete from current line to end of file.

:20,.m$

Move from line 20 through the current line to the end of the file.

:%d

Delete all the lines in a file.

:%t$

Copy all lines and place them at the end of the file (making a consecutive duplicate).

 In addition to an absolute line address, you can specify an address relative to the current line. The symbols +
 and -
 work like arithmetic operators. When placed before a number, these symbols add or subtract the value that follows. For example:

:.,.+20d

Delete from current line through the next 20 lines.

:226,$m.-2

Move lines 226 through the end of the file to two lines above the current line.

:.,+20#

Display line numbers from the current line to 20 lines further on in the file.

In fact, you don’t need to type the dot (.) when you use +
 or -
 because the current line is the assumed starting position.

Without a number following them, +
 and -
 are equivalent to +1 and –1, respectively.[19
]
 Similarly, ++
 and --
 each extend the range by an additional line, and so on. The +
 and -
 can also be used with search patterns, as shown in the next section.

The number 0
 stands for the top of the file (imaginary line 0). 0
 is equivalent to 1-
 , and both allow you to move or copy lines to the very start of a file, before the first line of existing text. For example:

:-,+t0

Copy three lines (the line above the cursor through the line below the cursor) and put them at the top of the file.

Search Patterns

 Another way that ex
 can address lines is by using search patterns. For example:

:/

pattern

 /d

Delete the next line containing
pattern

 .

:/

pattern

 /+d

Delete the line
below

 the next line containing
pattern

 . (You could also use +1
 instead of +
 alone.)

:/

pattern1

 /,/

pattern2

 /d

Delete from the first line containing
pattern1

 through the first line containing
pattern2

 .

:.,/

pattern

 /m23

Take the text from the current line (.
) through the first line containing
pattern

 and put it after line 23.

Note that a pattern is delimited by a slash both
before

 and
after

 .

If you make deletions by pattern with vi
 and ex
 , there is a difference in the way the two editors operate. Suppose your file practice
 contains the lines:

 With a screen editor you can scroll the
 page, move the cursor,d

elete lines, insert
 characters and more, while seeing results
 of your edits as you make them.

	Keystrokes
	Results

	
d/while

	
 With a screen editor you can scroll the
 page, move the cursor,w

hile seeing results
 of your edits as you make them.

The vi
 delete to
pattern

 command deletes from the cursor up to the word
while

 , but leaves the remainder of both lines.

	
:.,/while/d

	
 With a screen editor you can scroll theo

f your edits as you make them.

The ex
 command deletes the entire range of addressed lines, in this case both the current line and the line containing the pattern. All lines are deleted in their entirety.

Redefining the Current Line Position

 Sometimes, using a relative line address in a command can give you unexpected results. For example, suppose the cursor is on line 1 and you want to print line 100 plus the five lines below it. If you type:

:100,+5 p

 you’ll get an error message saying, “First address exceeds second.” The reason the command fails is that the second address is calculated relative to the current cursor position (line 1), so your command is really saying this:

:100,6 p

What you need is some way to tell the command to think of line 100 as the “current line,” even though the cursor is on line 1.

 ex
 provides such a way. When you use a semicolon instead of a comma, the first line address is recalculated as the current line. For example, the command:

:100;+5 p

prints the desired lines. The +5 is now calculated relative to line 100. A semicolon is useful with search patterns as well as absolute addresses. For example, to print the next line containing
pattern

 , plus the 10 lines that follow it, enter the command:

:/pattern/;+10 p

Global Searches

 You already know how to use /
 (slash) in vi
 to search for patterns of characters in your files. ex
 has a global command, g
 , that lets you search for a pattern and display all lines containing the pattern when it finds them. The command :g!
 does the opposite of :g
 . Use :g!
 (or its synonym, :v
) to search for all lines that do
not

 contain
pattern

 .

You can use the global command on all lines in the file, or you can use line addresses to limit a global search to specified lines or to a range of lines.

:g/

pattern

Finds (moves to) the last occurrence of
pattern

 in the file.

:g/

pattern

 /p

Finds and displays all lines in the file containing
pattern

 .

:g!/

pattern

 /nu

Finds and displays all lines in the file that don’t contain
pattern

 ; also displays the line number for each line found.

:60,124g/

pattern

 /p

Finds and displays any lines between lines 60 and 124 containing
pattern

 .

As you might expect, g
 can also be used for global replacements. We’ll talk about that in Chapter 6
 .

Combining ex Commands

 You don’t always need to type a colon to begin a new ex
 command. In ex
 , the vertical bar (|
) is a command separator, allowing you to combine multiple commands from the same ex
 prompt (in much the same way that a semicolon separates multiple commands at the Unix shell prompt). When you use the |
 , keep track of the line addresses you specify. If one command affects the order of lines in the file, the next command does its work using the new line positions. For example:

:1,3d | s/thier/their/

Delete lines 1 through 3 (leaving you now on the top line of the file), and then make a substitution on the current line (which was line 4 before you invoked the ex
 prompt).

:1,5 m 10 | g/
pattern

 /nu

Move lines 1 through 5 after line 10, and then display all lines (with numbers) containing
pattern

 .

Note the use of spaces to make the commands easier to read.

[19
]
 In a relative address, you shouldn’t separate the plus or minus symbol from the number that follows it. For example, +10
 means “10 lines following,” but +
 10
 means “11 lines following (1
 +
 10
),” which is probably not what you mean (or want).

Saving and Exiting Files

 You have learned the vi
 command ZZ
 to quit and write (save) your file. But you will frequently want to exit a file using ex
 commands, because these commands give you greater control. We’ve already mentioned some of these commands in passing. Now let’s take a more formal look:

:w

Writes (saves) the buffer to the file but does not exit. You can (and should) use :w
 throughout your editing session to protect your edits against system failure or a major editing error.

:q

Quits the editor (and returns to the Unix prompt).

:wq

Both writes the file and quits the editor. The write happens unconditionally, even if the file was not changed.

:x

 Both writes the file and quits (e
x

 its) the editor. The file is written only if it has been modified.[20
]

vi
 protects existing files and your edits in the buffer. For example, if you want to write your buffer to an existing file, vi
 gives you a warning. Likewise, if you have invoked vi
 on a file, made edits, and want to quit
without

 saving the edits, vi
 gives you an error message such as:

No write since last change.

These warnings can prevent costly mistakes, but sometimes you want to proceed with the command anyway. An exclamation point (!
) after your command overrides the warning:

:w!
:q!

:w!
 can also be used to save edits in a file that was opened in read-only mode with vi
 -R
 or view
 (assuming you have write permission for the file).

:q!
 is an essential editing command that allows you to quit without affecting the original file, regardless of any changes you made in this session. The contents of the buffer are discarded.

Renaming the Buffer

 You can also use :w
 to save the entire buffer (the copy of the file you are editing) under a new filename.

Suppose you have a file practice
 , which contains 600 lines. You open the file and make extensive edits. You want to quit but also save
both

 the old version of practice
 and your new edits for comparison. To save the edited buffer in a file called practice.new
 , give the command:

:w practice.new

Your old version, in the file practice
 , remains unchanged (provided that you didn’t previously use :w
). You can now quit editing the new version by typing :q
 .

Saving Part of a File

 While editing, you will sometimes want to save just part of your file as a separate, new file. For example, you might have entered formatting codes and text that you want to use as a header for several files.

 You can combine ex
 line addressing with the write command, w
 , to save part of a file. For example, if you are in the file practice
 and want to save part of practice
 as the file
newfile

 , you could enter:

:230,$w

newfile

Saves from line 230 to end of file in newfile
 .

:.,600w

newfile

Saves from the current line to line 600 in newfile
 .

Appending to a Saved File

 You can use the Unix redirect and append operator (>>
) with w
 to append all or part of the contents of the buffer to an existing file. For example, if you entered:

:1,10w
newfile

and then:

:340,$w >>
newfile

newfile

 would contain lines 1–10 and from line 340 to the end of the buffer.

[20
]
 The difference between :wq
 and :x
 is important when editing source code and using make
 , which performs actions based upon file modification times.

Copying a File into Another File

 Sometimes you want to copy text or data already entered on the system into the file you are editing. In vi
 , you can read in the contents of another file with the ex
 command:

:
read

filename

or its abbreviation:

:
r

filename

This command inserts the contents of
filename

 starting on the line after the cursor position in the file. If you want to specify a line other than the one the cursor’s on, simply type the line number (or other line address) you want before the read
 or r
 command.

Let’s suppose you are editing the file practice
 and want to read in a file called data
 from another directory called /home/tim
 . Position the cursor one line above the line where you want the new data inserted, and enter:

:r /home/tim/data

The entire contents of /home/tim/data
 are read into practice
 , beginning below the line with the cursor.

To read in the same file and place it after line 185, you would enter:

:185r /home/tim/data

Here are other ways to read in a file:

:$r /home/tim/data

Place the read-in file at the end of the current file.

:0r /home/tim/data

Place the read-in file at the very beginning of the current file.

:/

pattern

 /r /home/tim/data

Place the read-in file in the current file, after the line containing
pattern

 .

Editing Multiple Files

 ex
 commands enable you to switch between multiple files. The advantage of editing multiple files is speed. If you are sharing the system with other users, it takes time to exit and reenter vi
 for each file you want to edit. Staying in the same editing session and traveling between files is not only faster for access, but you also save abbreviations and command sequences that you have defined (see Chapter 7
), and you keep yank buffers so that you can copy text from one file to another.

Invoking vi on Multiple Files

 When you first invoke vi
 , you can name more than one file to edit, and then use ex
 commands to travel between the files. For example:

$
vi file1 file2

edits file1
 first. After you have finished editing the first file, the ex
 command :w
 writes (saves) file1
 and :n
 calls in the next file (file2
).

Suppose you want to edit two files, practice
 and note
 :

	Keystrokes
	Results

	
vi practice note

	

W

ith a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing

Open the two files practice
 and note
 . The first-named file, practice
 , appears on your screen. Perform any edits.

	
:w

	
 "practice" 6 lines, 328 characters

Save the edited file practice
 with the ex
 command w
 . Press ENTER
 .

	
:n

	

D

ear Mr.
 Henshaw:
 Thank you for the prompt . . .

Call in the next file, note
 , with the ex
 command n
 . Press ENTER
 . Perform any edits.

	
:x

	
 "note" 23 lines, 1343 characters

Save the second file, note
 , and quit the editing session.

Using the Argument List

 ex
 actually lets you do more than just move to the next file in the argument list with :n
 . The :args
 command (abbreviated :ar
) lists the files named on the command line, with the current file enclosed in brackets.

	Keystrokes
	Results

	
vi practice note

	

W

ith a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing

Open the two files practice
 and note
 . The first-named file, practice
 , appears on your screen.

	
:args

	
 [practice] note

vi
 displays the argument list in the status line, with brackets around the current filename.

 The :rewind
 (:rew
) command resets the current file to be the first file named on the command line. elvis
 and Vim provide a corresponding :last
 command to move to the last file on the command line.

Calling in New Files

 You don’t have to call in multiple files at the beginning of your editing session. You can switch to another file at any time with the ex
 command :e
 .
 If you want to edit another file within vi
 , you first need to save your
 current file (:w
), then give the command:

:
e

filename

Suppose you are editing the file practice
 and want to edit the file letter
 , and then return to practice
 :

	Keystrokes
	Results

	
:w

	
 "practice" 6 lines, 328 characters

Save practice
 with w
 and press ENTER
 . practice
 is saved and remains on the screen. You can now switch to another file, because your edits are saved.

	
:e letter

	
 "letter" 23 lines, 1344 characters

Call in the file letter
 with e
 and press ENTER
 . Perform any edits.

 vi
 “remembers” two filenames at a time as the current and alternate filenames. These can be referred to by the symbols %
 (current filename) and #
 (alternate filename). #
 is particularly useful with :e
 , since it allows you to switch easily back and forth between two files. In the example just given, you could return to the first file, practice
 , by typing the command :e #
 . You could also read the file practice
 into the current file by typing:r #
 .

If you have not first saved the current file, vi
 will not allow you to switch files with :e
 or :n
 unless you tell it imperatively to do so by adding an exclamation point after the command.

For example, if after making some edits to letter
 , you wanted to discard the edits and return to practice
 , you could type :e! #
 .

The following command is also useful. It discards your edits and returns to the last saved version of the current file:

:e!

In contrast to the #
 symbol, %
 is useful mainly when writing out the contents of the current buffer to a new file. For example, in the earlier section Renaming the Buffer
 , we showed you how to save a second version of the file practice
 with the command:

:w practice.new

Since %
 stands for the current filename, that line could also have been typed:

:w %.new

Switching Files from vi

 Since switching back to the previous file is something that you will tend to do a lot, you don’t have to move to the ex
 command line to do it. The vi
 command ^^
 (the Ctrl key with the caret key) will do this for you. Using this command is the same as typing :e #
 . As with the :e
 command, if the current buffer has not been saved, vi
 will not let you switch back to the previous file.

Edits Between Files

 When you give a yank buffer a one-letter name, you have a convenient way to move text from one file to another. Named buffers are not cleared when a new file is loaded into the vi
 buffer with the :e
 command. Thus, by yanking or deleting text from one file (into multiple named buffers if necessary), calling in a new file with :e
 , and putting the named buffer(s) into the new file, you can transfer material between files.

The following example illustrates how to transfer text from one file to another:

	Keystrokes
	Results

	
"f4yy

	
 With as

creen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 the results of the edits as you make them

Yank four lines into buffer f
 .

	
:w

	
 "practice" 6 lines, 238 characters

Save the file.

	
:e letter

	
 Dear Mr.
 Henshaw:
 I thought that you wouldb

e interested to know that:
 Yours truly,

Enter the file letter
 with :e
 . Move the cursor to where the copied text will be placed.

	
"fp

	
 Dear Mr.
 Henshaw:
 I thought that you would
 be interested to know that:W

ith a screen editor you can scroll
 the page, move the cursor, delete lines,
 insert characters, and more, while seeing
 the results of the edits as you make them
 Yours truly,

Place yanked text from named buffer f
 below the cursor.

 Another way to move text from one file to another is to use the ex
 commands :ya
 (yank) and :pu
 (put). These commands work the same way as the equivalent vi
 commands y
 and p
 , but they are used with ex
 ’s line-addressing capability and named buffers.

For example:

:160,224ya a

would yank (copy) lines 160 through 224 into buffer a
 . Next you would move with :e
 to the file where you want to put these lines. Place the cursor on the line where you want to put the yanked lines. Then type:

:pu a

to put the contents of buffer a
 after the current line.

Chapter 6. Global Replacement

Sometimes, halfway through a document or at the end of a draft, you may recognize inconsistencies in the way that you refer to certain things. Or, in a manual, some product whose name appears throughout your file is suddenly renamed (marketing!). Often enough it happens that you have to go back and change what you’ve already written, and you need to make the changes in several places.

The way to make these changes is with a powerful change command called global replacement. With one command you can automatically replace a word (or a string of characters) wherever it occurs in the file.

In a global replacement, the ex
 editor checks each line of a file for a given pattern of characters. On all lines where the pattern is found, ex
 replaces the pattern with a
new string

 of characters. For right now, we’ll treat the search pattern as if it were a simple string; later in the chapter we’ll look at the powerful pattern-matching language known as
regular expressions

 .

 Global replacement really uses two ex
 commands: :g
 (global) and :s
 (substitute). Since the syntax of global replacement commands can get fairly complex, let’s look at it in stages.

The substitute command has the syntax:

:s/
old

/
new

/

This changes the
first

 occurrence of the pattern
old

 to
new

 on the current line. The / (slash) is the delimiter between the various parts of the command. (The slash is optional when it is the last character on the line.)

A substitute command with the syntax:

:s/
old

/
new

/g

changes
every

 occurrence of
old

 to
new

 on the current line, not just the first occurrence.
 The :s
 command allows options following the substitution string. The g
 option in the syntax above stands for
global

 . (The g
 option affects each pattern on a line; don’t confuse it with the :g
 command, which affects each line of a file.)

By prefixing the :s
 command with addresses, you can extend its range to more than one line. For example, this command will change every occurrence of
old

 to
new

 from line 50 to line 100:

:50,100s/
old

/
new

/g

This command will change every occurrence of
old

 to
new

 within the entire file:

:1,$s/
old

/
new

/g

 You can also use %
 instead of 1,$
 to specify every line in a file. Thus, the last command could also be given like this:

:%s/
old

/
new

/g

Global replacement is much faster than finding each instance of a string and replacing it individually. Because the command can be used to make many different kinds of changes, and because it is so powerful, we will first illustrate simple replacements and then build up to complex, context-sensitive replacements

 .

Confirming Substitutions

 It makes sense to be overly careful when using a search and replace command. It sometimes happens that what you get is not what you expect. You can undo any search and replacement command by entering u
 , provided that the command was the most recent edit you made. But you don’t always catch undesired changes until it is too late to undo them. Another way to protect your edited file is to save the file with :w
 before performing a global replacement. Then at least you can quit the file without saving your edits and can go back to where you were before the change was made. You can also read the previous version of the buffer back in with :e!
 .

It’s wise to be cautious and know exactly what is going to be changed in your file. If you’d like to see what the search turns up and confirm each replacement before it is made,
 add the c
 option (for confirm) at the end of the substitute command:

:1,30s/his/the/gc

ex
 will display the entire line where the string has been located, and the string will be marked by a series of carets (^^^^):

copyists at his school
 ^^^

If you want to make the replacement, you must enter y
 (for yes) and press ENTER
 . If you don’t want to make a change, simply press ENTER
 .

this can be used for invitations, signs, and menus.
 ^^^

 The combination of the vi
 commands n
 (repeat last search) and dot (.
) (repeat last command) is also an extraordinarily useful and quick way to page through a file and make repetitive changes that you may not want to make globally. So, for example, if your editor has told you that you’re using
which

 when you should be using
that

 , you can spot-check every occurrence of
which

 , changing only those that are incorrect:

	
/which

	Search for
which

	
cwthat
 ESC

	Change to
that

	
n

	Repeat search

	
n

	Repeat search, skip a change

	
.

	Repeat change (if appropriate)

	
	(Etc.)

Context-Sensitive Replacement

 The simplest global replacements substitute one word (or a phrase) for another. If you have typed a file with several misspellings (
editer

 for
editor

), you can do the global replacement:

:%s/editer/editor/g

This substitutes
editor

 for every occurrence of
editer

 throughout the file.

There is a second, slightly more complex syntax for global replacement. This syntax lets you search for a pattern, and then, once you find the line with the pattern, make a substitution on a string different from the pattern. You can think of this as context-sensitive replacement.

The syntax is as follows:

:g/
pattern

/s/
old

/
new

/g

The first g
 tells the command to operate on all lines of a file.
pattern

 identifies the lines on which a substitution is to take place. On those lines containing
pattern

 , ex
 is to substitute (s
) for
old

 the characters in
new

 . The last g
 indicates that the substitution is to occur globally
on that line

 .

For example, as we write this book, the XML directives <keycap>
 and </keycap>
 place a box around ESC
 to show the Escape key. You want ESC
 to be all in caps, but you don’t want to change any instances of
Esc

 ape that might be in the text. To change instances of
Esc

 to
ESC

 only when
Esc

 is on a line that contains the <keycap>
 directive, you could enter:

:g/<keycap>/s/Esc/ESC/g

If the pattern being used to find the line is the same as the one you want to change, you don’t have to repeat it. The command:

:g/
string

/s//
new

/g

would search for lines containing
string

 and substitute for that same
string

 .

Note that:

:g/editer/s//editor/g

has the same effect as:

:%s/editer/editor/g

You can save some typing by using the second form. It is also possible to combine the :g
 command with :d
 , :mo
 , :co
 , and other ex
 commands besides :s
 . As we’ll show, you can thus make global deletions, moves, and copies.

Pattern-Matching Rules

 In making global replacements, Unix editors such as vi
 allow you to search not just for fixed strings of characters, but also for variable patterns of words, referred to as
regular expressions

 .

When you specify a literal string of characters, the search might turn up other occurrences that you didn’t want to match. The problem with searching for words in a file is that a word can be used in different ways. Regular expressions help you conduct a search for words in context. Note that regular expressions can be used with the vi
 search commands /
 and ?
 , as well as in the ex
 commands :g
 and :s
 .

For the most part, the same regular expressions work with other Unix programs, such as grep
 , sed
 , and awk
 .[21
]

 Regular expressions are made up by combining normal characters with a number of special characters called
metacharacters

 .[22
]
 The metacharacters and their uses are listed next.

Metacharacters Used in Search Patterns

.
 (period, dot)

 Matches any
single

 character except a newline. Remember that spaces are treated as characters. For example, p.p
 matches character strings such as
pep

 ,
pip

 , and
pcp

 .

*

 Matches zero or more (as many as there are) of the single character that immediately precedes it. For example, bugs*
 will match
bugs

 (one
s

) or
bug

 (no
s

). (It will also match
bugss

 ,
bugsss

 , and so on.)

The *
 can follow a metacharacter. For example, since .
 (dot) means any character, .*
 means “match any number of any character.”

Here’s a specific example of this: the command :s/End.*/End/
 removes all characters after
End

 (it replaces the remainder of the line with nothing).

^

 When used at the start of a regular expression, requires that the following regular expression be found at the beginning of the line. For example, ^Part
 matches
Part

 when it occurs at the beginning of a line, and ^...
 matches the first three characters of a line. When not at the beginning of a regular expression, ^
 stands for itself.

$

 When used at the end of a regular expression, requires that the preceding regular expression be found at the end of the line; for example, here:$
 matches only when
here:

 occurs at the end of a line. When not at the end of a regular expression, $
 stands for itself.

\

 Treats the following special character as an ordinary character. For example, \.
 matches an actual period instead of “any single character,” and *
 matches an actual asterisk instead of “any number of a character.” The \ (backslash) prevents the interpretation of a special character. This prevention is called “escaping the character.” (Use \\ to get a literal backslash.)

[]

 Matches any
one

 of the characters enclosed between the brackets. For example, [AB]
 matches either
A

 or
B

 , and p[aeiou]t
 matches
pat

 ,
pet

 ,
pit

 ,
pot

 , or
put

 . A range of consecutive characters can be specified by separating the first and last characters in the range with a hyphen. For example, [A-Z]
 will match any uppercase letter from
A

 to
Z

 , and [0-9]
 will match any digit from
0

 to
9

 .

You can include more than one range inside brackets, and you can specify a mix of ranges and separate characters. For example, [:;A-Za-z()]
 will match four different punctuation marks, plus all letters.

Note

When regular expressions and vi
 were first developed, they were meant to work only with the ASCII character set. In today’s global market, modern systems support
locales

 , which provide different interpretations of the characters that lie between a
 and z
 . To get accurate results, you should use POSIX bracket expressions (discussed shortly) in your regular expressions, and avoid ranges of the form a-z
 .

Most metacharacters lose their special meaning inside brackets, so you don’t need to escape them if you want to use them as ordinary characters. Within brackets, the three metacharacters you still need to escape are \
 -
]
 . The hyphen (-
) acquires meaning as a range specifier; to use an actual hyphen, you can also place it as the first character inside the brackets.

 A caret (^
) has special meaning only when it is the first character inside the brackets, but in this case the meaning differs from that of the normal ^
 metacharacter. As the first character within brackets, a ^
 reverses their sense: the brackets will match any one character
not

 in the list. For example, [^0-9]
 matches any character that is not a digit.

\(\)

 Saves the pattern enclosed between \(
 and \)
 into a special holding space, or a “hold buffer.” Up to nine patterns can be saved in this way on a single line. For example, the pattern:

\(That\) or \(this\)

saves
That

 in hold buffer number 1 and saves
this

 in hold buffer number 2. The patterns held can be “replayed” in substitutions by the sequences \1
 to \9
 . For example, to rephrase
That or this

 to read
this or That

 , you could enter:

:%s/\(That\) or \(this\)/\2 or \1/

You can also use the \

n

 notation within a search or substitute string. For example:

:s/\(abcd\)\1/alphabet-soup/

changes
abcdabcd

 into
alphabet-soup

 .[23
]

\< \>

 Matches characters at the beginning (\<
) or at the end (\>
) of a word. The end or beginning of a word is determined either by a punctuation mark or by a space. For example, the expression \<ac
 will match only words that begin with
ac

 , such as
action

 . The expression ac\>
 will match only words that end with
ac

 , such as
maniac

 . Neither expression will match
react

 . Note that unlike \(...\)
 , these do not have to be used in matched pairs.

~

 Matches whatever regular expression was used in the
last

 search. For example, if you searched for
The

 , you could search for
Then

 with /~n
 . Note that you can use this pattern only in a regular search (with /
).[24
]
 It won’t work as the pattern in a substitute command. It does, however, have a similar meaning in the replacement portion of a substitute command.

All of the clones support optional, extended regular expression syntaxes. See the section Extended Regular Expressions
 for more information.

POSIX Bracket Expressions

We have just described the use of brackets for matching any one of the enclosed characters, such as [a-z]
 . The POSIX standard introduced additional facilities for matching characters that are not in the English alphabet. For example, the French
è

 is an alphabetic character, but the typical character class [a-z]
 would not match it. Additionally, the standard provides for sequences of characters that should be treated as a single unit when matching and collating (sorting) string data.

POSIX also formalizes the terminology. Groups of characters within brackets are called “bracket expressions” in the POSIX standard. Within bracket expressions, beside literal characters such as
a

 ,
!

 , and so on, you can have additional components. These components
 are:

Character classes

A POSIX character class consists of keywords bracketed by [:
 and :]
 . The keywords describe different classes of characters, such as alphabetic characters, control characters, and so on (see Table 6-1
).

Collating symbols

A collating symbol is a multicharacter sequence that should be treated as a unit. It consists of the characters bracketed by [.
 and .]
 .

Equivalence classes

An equivalence class lists a set of characters that should be considered equivalent, such as
e

 and
è

 . It consists of a named element from the locale, bracketed by [=
 and =]
 .

All three of these constructs
must

 appear inside the square brackets of a bracket expression. For example, [[:alpha:]!]
 matches any single alphabetic character or the exclamation point, [[.ch.]]
 matches the collating element
ch

 , but does not match just the letter
c

 or the letter
h

 . In a French locale, [[=e=]]
 might match any of
e

 ,
è

 , or
é

 . Classes and matching characters are shown in Table 6-1
 .

Table 6-1. POSIX character classes

	Class
	Matching characters

	
[:alnum:]

	Alphanumeric characters

	
[:alpha:]

	Alphabetic characters

	
[:blank:]

	Space and tab characters

	
[:cntrl:]

	Control characters

	
[:digit:]

	Numeric characters

	
[:graph:]

	Printable and visible (nonspace) characters

	
[:lower:]

	Lowercase characters

	
[:print:]

	Printable characters (includes whitespace)

	
[:punct:]

	Punctuation characters

	
[:space:]

	Whitespace characters

	
[:upper:]

	Uppercase characters

	
[:xdigit:]

	Hexadecimal digits

vi
 on HP-UX 9.x (and newer) systems support POSIX bracket expressions, as does /usr/xpg4/bin/vi
 on Solaris (but not /usr/bin/vi
). This facility is also available in nvi
 , elvis
 , Vim, and vile
 . Current GNU/Linux systems, in particular, are sensitive to the locale chosen at installation time, and you can expect to get reasonable results, particularly when trying to match only lowercase or uppercase letters, just by using the POSIX bracket expressions.

Metacharacters Used in Replacement Strings

 When you make global replacements, the regular expression metacharacters discussed earlier carry their special meanings only within the search portion (the first part) of the command.

For example, when you type this:

:%s/1\. Start/2. Next, start with $100/

note that the replacement string treats the characters .
 and $
 literally, without your having to escape them. By the same token, let’s say you enter:

:%s/[ABC]/[abc]/g

If you’re hoping to replace
A

 with
a

 ,
B

 with
b

 , and
C

 with
c

 , you’ll be surprised. Since brackets behave like ordinary characters in a replacement string, this command will change every occurrence of
A

 ,
B

 , or
C

 to the five-character string
[abc]

 .

To solve problems like this, you need a way to specify variable replacement strings. Fortunately, there are additional metacharacters that have special meaning in a
replacement

 string.

\

n

 Is replaced with the text matched by the
n

 th pattern previously saved by \(
 and \)
 , where
n

 is a number from 1 to 9, and previously saved patterns (kept in hold buffers) are counted from the left on the line. See the explanation for \(
 and \)
 in the earlier section Metacharacters Used in Search Patterns
 .

\

 Treats the following special character as an ordinary character. Backslashes are metacharacters in replacement strings as well as in search patterns. To specify a real backslash, type two in a row (\\).

&

 Is replaced with the entire text matched by the search pattern when used in a replacement string. This is useful when you want to avoid retyping text:

:%s/Yazstremski/&, Carl/

The replacement will say
Yazstremski, Carl

 . The &
 can also replace a variable pattern (as specified by a regular expression). For example, to surround each line from 1 to 10 with parentheses, type:

:1,10s/.*/(&)/

The search pattern matches the whole line, and the &
 “replays” the line, included within your text.

~

 Has a similar meaning as when it is used in a search pattern: the string found is replaced with the replacement text specified in the last substitute command. This is useful for repeating an edit. For example, you could say :s/thier/their/
 on one line and repeat the change on another with :s/thier/~/
 . The search pattern doesn’t need to be the same, though.

For example, you could say :s/his/their/
 on one line and repeat the replacement on another with :s/her/~/
 .[25
]

\u
 or \l

 Causes the next character in the replacement string to be changed to uppercase or lowercase, respectively. For example, to change
yes, doctor

 into
Yes, Doctor

 , you could say:

:%s/yes, doctor/\uyes, \udoctor/

This is a pointless example, though, since it’s easier just to type the replacement string with initial caps in the first place. As with any regular expression, \u
 and \l
 are most useful with a variable string. Take, for example, the command we used earlier:

:%s/\(That\) or \(this\)/\2 or \1/

The result is
this or That

 , but we need to adjust the cases. We’ll use \u
 to uppercase the first letter in
this

 (currently saved in hold buffer 2); we’ll use \l
 to lowercase the first letter in
That

 (currently saved in hold buffer 1):

:s/\(That\) or \(this\)/\u\2 or \l\1/

The result is
This or that

 . (Don’t confuse the number one with the lowercase l
 ; the one comes after.)

\U
 or \L
 and \e
 or \E

 \U
 and \L
 are similar to \u
 or \l
 , but all following characters are converted to uppercase or lowercase until the end of the replacement string or until \e
 or \E
 is reached. If there is no \e
 or \E
 , all characters of the replacement text are affected by the \U
 or \L
 . For example, to uppercase
Fortran

 , you could say:

:%s/Fortran/\UFortran/

or, using the &
 character to repeat the search string:

:%s/Fortran/\U&/

 All pattern searches are case-sensitive. That is, a search for
the

 will not find
The

 . You can get around this by specifying both uppercase and lowercase in the pattern:

/[Tt]he

 You can also instruct vi
 to ignore case by typing :set
 ic
 . See Chapter 7
 for additional details

 .

More Substitution Tricks

 You should know some additional important facts about the substitute command:

	
 A simple :s
 is the same as :s//~/
 . In other words, repeat the last substitution. This can save enormous amounts of time and typing when you are working your way through a document making the same change repeatedly but you don’t want to use a global substitution.

	

 If you think of the &
 as meaning “the same thing” (as in, what was just matched), this command is relatively mnemonic. You can follow the &
 with a g
 , to make the substitution globally on the line, and even use it with a line range:
:%&g
Repeat the last substitution everywhere

	The &
 key can be used as a vi
 command to perform the :&
 command, i.e., to repeat the last substitution. This can save even more typing than :s
 ENTER
 — one keystroke versus three.

	

 The :~
 command is similar to the :&
 command but with a subtle difference. The search pattern used is the last regular expression used in
any

 command, not necessarily the one used in the last substitute command.

For example,[26
]
 in the sequence:
:s/red/blue/
:/green
:~

the :~
 is equivalent to :s/green/blue/
 .

	Besides the /
 character, you may use any nonalphanumeric, nonwhitespace character as your delimiter, except backslash, double quotes, and the vertical bar (\
 , "
 , and |
). This is particularly handy when you have to make a change to a pathname.
:%s;/user1/tim;/home/tim;g

	
 When the edcompatible
 option is enabled, vi
 remembers the flags (g
 for global and c
 for confirmation) used on the last substitution and applies them to the next one.

This is most useful when you are moving through a file and you wish to make global substitutions. You can make the first change:
:s/
old

/
new

/g
:set edcompatible

and after that, subsequent substitute commands will be global.

Despite the name, no known version of Unix ed
 actually works this way.

[21
]
 Much more information on regular expressions can be found in the two O’Reilly books sed & awk
 , by Dale Dougherty and Arnold Robbins, and Mastering Regular Expressions
 , by Jeffrey E.F. Friedl.

[22
]
 Technically speaking, we should probably call these
metasequences

 , since sometimes two characters together have special meaning, and not just single characters. Nevertheless, the term
metacharacters

 is in common use in Unix literature, so we follow that convention here.

[23
]
 This works with vi
 , nvi
 , and Vim, but not with elvis
 or vile
 .

[24
]
 This is a rather flaky feature of the original vi
 . After using it, the saved search pattern is set to the
new

 text typed after the ~
 ,
not

 the combined new pattern, as one might expect. Also, none of the clones behave this way. So, while this feature exists, it has little to recommend its use.

[25
]
 Modern versions of the ed
 editor use %
 as the sole character in the replacement text to mean “the replacement text of the last substitute command.”

[26
]
 Thanks to Keith Bostic, in the nvi
 documentation, for this example.

Pattern-Matching Examples

 Unless you are already familiar with regular expressions, the preceding discussion of special characters probably looks forbiddingly complex. A few more examples should make things clearer. In the examples that follow, a square (□) is used to mark a space; it is not a special character.

Let’s work through how you might use some special characters in a replacement. Suppose that you have a long file and that you want to substitute the word
child

 with the word
children

 throughout that file. You first save the edited buffer with :w
 , then try the global replacement:

:%s/child/children/g

When you continue editing, you notice occurrences of words such as
childrenish

 . You have unintentionally matched the word
childish

 . Returning to the last saved buffer with :e!
 , you now try:

:%s/child□

/children□

/g

(Note that there is a space after
child

 .) But this command misses the occurrences
child.

 ,
child,

 ,
child:

 and so on. After some thought, you remember that brackets allow you to specify one character from among a list, so you realize a solution:

:%s/child[□

,.;:!?]/children[□

,.;:!?]/g

This searches for
child

 followed by either a space (indicated by □) or any one of the punctuation characters ,.;:!?
 . You expect to replace this with
children

 followed by the corresponding space or punctuation mark, but you’ve ended up with a bunch of punctuation marks after every occurrence of
children

 . You need to save the space and punctuation marks inside a \(
 and \)
 . Then you can “replay” them with a \1
 . Here’s the next attempt:

:%s/child\([□

,.;:!?]\)/children\1/g

When the search matches a character inside the \(
 and \)
 , the \1
 on the righthand side restores the same character. The syntax may seem awfully complicated, but this command sequence can save you a lot of work.
Any time you spend learning regular expression syntax will be repaid a thousandfold!

The command is still not perfect, though. You’ve noticed that occurrences of
Fairchild

 have been changed, so you need a way to match
child

 when it isn’t part of another word.

As it turns out, vi
 (but not all other programs that use regular expressions) has a special syntax for saying “only if the pattern is a complete word.” The character sequence \<
 requires the pattern to match at the beginning of a word, whereas \>
 requires the pattern to match at the end of a word. Using both will restrict the match to a whole word. So, in the example task, \<child\>
 will find all instances of the word
child

 , whether followed by punctuation or spaces. Here’s the substitution command you should use:

:%s/\<child\>/children/g

Search for General Class of Words

 Suppose your subroutine names begin with the prefixes
mgi

 ,
mgr

 , and
mga

 :

 mgibox routine,
 mgrbox routine,
 mgabox routine,

If you want to save the prefixes, but want to change the name
box

 to
square

 , either of the following replacement commands will do the trick. The first example illustrates how \(
 and \)
 can be used to save whatever pattern was actually matched. The second example shows how you can search for one pattern but change another:

:g/mg\([ira]\)box/s//mg\1square/g

 mgisquare routine,
 mgrsquare routine,
 mgasquare routine,

The global replacement keeps track of whether an
i

 ,
r

 , or
a

 is saved. In that way,
box

 is changed to
square

 only when
box

 is part of the routine’s name.

:g/mg[ira]box/s/box/square/g

 mgisquare routine,
 mgrsquare routine,
 mgasquare routine,

This has the same effect as the previous command, but it is a little less safe since it could change other instances of
box

 on the same line, not just those within the routine names.

Block Move by Patterns

 You can also move blocks of text delimited by patterns. For example, assume you have a 150-page reference manual written in troff
 . Each page is organized into three paragraphs with the same three headings: SYNTAX, DESCRIPTION, and PARAMETERS. A sample of one reference page follows:

.Rh 0 "Get status of named file" "STAT"
.Rh "SYNTAX"
.nf
integer*4 stat, retval
integer*4 status(11)
character*123 filename
...
retval = stat (filename, status)
.fi
.Rh "DESCRIPTION"
Writes the fields of a system data structure into the
status array.
These fields contain (among other
things) information about the file's location, access
privileges, owner, and time of last modification.
.Rh "PARAMETERS"
.IP "\fBfilename\fR" 15n
A character string variable or constant containing
the Unix pathname for the file whose status you want
to retrieve.
You can give the ...

Suppose that you decide to move DESCRIPTION above the SYNTAX paragraph. With pattern matching, you can move blocks of text on all 150 pages with one command!

:g /SYNTAX/.,/DESCRIPTION/-1 move /PARAMETERS/-1

This command works as follows. First, ex
 finds and marks each line that matches the first pattern (i.e., that contains the word
SYNTAX

). Second, for each marked line, it sets .
 (dot, the current line) to that line, and executes the command. Using the move
 command, the command moves the block of lines from the current line (dot) to the line before the one containing the word
DESCRIPTION

 (/DESCRIPTION/-1
) to just before the line containing
PARAMETERS

 (/PARAMETERS/-1
).

Note that ex
 can place text only below the line specified. To tell ex
 to place text above a line, you first subtract one with -1
 , and then ex
 places your text below the previous line. In a case like this, one command saves literally hours of work. (This is a real-life example — we once used a pattern match like this to rearrange a reference manual containing hundreds of pages.)

Block definition by patterns can be used equally well with other ex
 commands. For example, if you wanted to delete all DESCRIPTION paragraphs in the reference chapter, you could enter:

:g/DESCRIPTION/,/PARAMETERS/-1d

This very powerful kind of change is implicit in ex
 ’s line addressing syntax, but it is not readily apparent even to experienced users. For this reason, whenever you are faced with a complex, repetitive editing task, take the time to analyze the problem and find out if you can apply pattern-matching tools to get the job done.

More Examples

Since the best way to learn pattern matching is by example, here is a list of pattern-matching examples, with explanations. Study the syntax carefully, so that you understand the principles at work. You should then be able to adapt these examples to your own situation:

	Put troff
 italicization codes around the word
ENTER

 :
:%s/ENTER/\\fI&\\fP/g

Notice that two backslashes (\\
) are needed in the replacement, because the backslash in the troff
 italicization code will be interpreted as a special character. (\fI
 alone would be interpreted as
fI

 ; you must type \\fI
 to get
\fI

 .)

	Modify a list of pathnames in a file:
:%s/\/home\/tim/\/home\/linda/g

A slash (used as a delimiter in the global replacement sequence) must be escaped with a backslash when it is part of the pattern or replacement; use \/
 to get /
 . An alternate way to achieve this same effect is to use a different character as the pattern delimiter. For example, you could make the previous replacement using colons as delimiters. (The delimiter colons and the ex
 command colon are separate entities.) Thus:
:%s:/home/tim:/home/linda:g

This is much more readable.

	Put HTML italicization codes around the word
ENTER

 :
:%s:ENTER:<I>&</I>:g

Notice here the use of &
 to represent the text that was actually matched, and, as just described, the use of colons as delimiters instead of slashes.

	Change all periods to semicolons in lines 1 to 10:
:1,10s/\./;/g

A dot has special meaning in regular expression syntax and must be escaped with a backslash (\.).

	Change all occurrences of the word
help

 (or
Help

) to
HELP

 :
:%s/[Hh]elp/HELP/g

or:
:%s/[Hh]elp/\U&/g

The \U
 changes the pattern that follows to all uppercase. The pattern that follows is the repeated search pattern, which is either
help

 or
Help

 .

	Replace
one or more

 spaces with a single space:
:%s/□□

*/□

/g

Make sure you understand how the asterisk works as a special character. An asterisk following any character (or following any regular expression that matches a single character, such as .
 or [[:lower:]]
) matches
zero or more

 instances of that character. Therefore, you must specify
two

 spaces followed by an asterisk to match one or more spaces (one space, plus zero or more spaces).

	Replace one or more spaces following a colon with two spaces:
:%s/:□□

*/:□□

/g

	Replace one or more spaces following a period
or

 a colon with two spaces:
:%s/\([:.]\)□□

*/\1□□

/g

Either of the two characters within brackets can be matched. This character is saved into a hold buffer, using \(
 and \)
 , and restored on the righthand side by the \1
 . Note that within brackets a special character such as a dot does not need to be escaped.

	Standardize various uses of a word or heading:
:%s/^Note[□

:s]*/Notes:□

/g

The brackets enclose three characters: a space, a colon, and the letter
s

 . Therefore, the pattern Note[
 □s:]
 will match
Note

 □,
Notes

 , or
Note:

 . An asterisk is added to the pattern so that it also matches
Note

 (with zero spaces after it) and
Notes:

 (the already correct spelling). Without the asterisk,
Note

 would be missed entirely and
Notes:

 would be incorrectly changed to
Notes:

 □
:

 .

	Delete all blank lines:
:g/^$/d

What you are actually matching here is the beginning of the line (^
) followed by the end of the line ($
), with nothing in between.

	Delete all blank lines, plus any lines that contain only whitespace:
:g/^[□

tab

]*$/d

(In the example, a tab is shown as
tab

 .) A line may appear to be blank, but may in fact contain spaces or tabs. The previous example will not delete such a line. This example, like the previous one, searches for the beginning and end of the line. But instead of having nothing in between, the pattern tries to find any number of spaces or tabs. If no spaces or tabs are matched, the line is blank. To delete lines that contain whitespace but that
aren’t

 empty, you would have to match lines with
at least

 one space or tab:
:g/^[□

tab

][□

tab

]*$/d

	Delete all leading spaces on every line:
:%s/^□□

\(.\)/\1/

Use ^
 □□*
 to search for one or more spaces at the beginning of each line; then use \(.*\)
 to save the rest of the line into the first hold buffer. Restore the line without leading spaces, using \1
 .

	Delete all spaces at the end of every line:
:%s/\(.*\)□□

*$/\1/

For each line, use \(.*\)
 to save all the text on the line, but only up until one or more spaces at the end of the line. Restore the saved text without the spaces.

The substitutions in this example and the previous one will happen only once on any given line, so the g
 option doesn’t need to follow the replacement string.

	Insert a >□□ at the start of every line in a file:
:%s/^/>
□□

/

What we’re really doing here is “replacing” the start of the line with >□□. Of course, the start of the line (being a logical construct, not an actual character) isn’t really replaced!

This command is useful when replying to mail or Usenet news postings. Frequently, it is desirable to include part of the original message in your reply. By convention, the inclusion is distinguished from your reply by setting off the included text with a right angle bracket and a couple of spaces at the start of the line. This can be done easily, as shown in the example. (Typically, only part of the original message will be included. Unneeded text can be deleted either before or after the replacement.) Advanced mail systems do this automatically. However, if you’re using vi
 to edit your mail, you can do it with this command.

	Add a period to the end of the next six lines:
:.,+5s/$/./

The line address indicates the current line plus five lines. The $
 indicates the end of line. As in the previous example, the $
 is a logical construct. You aren’t really replacing the end of the line.

	Reverse the order of all hyphen-separated items in a list:
:%s/\(.*\)□

-□

\(.*\)/\2□

-□

\1/

Use \(.*\)
 to save text on the line into the first hold buffer, but only until you find □-□. Then use \(.*\)
 to save the rest of the line into the second hold buffer. Restore the saved portions of the line, reversing the order of the two hold buffers. The effect of this command on several items is shown here:
more - display files

becomes:
display files - more

and:
lp - print files

becomes:
print files - lp

	Change every letter in a file to uppercase:
:%s/.*/\U&/

or:
:%s/./\U&/g

The \U
 flag at the start of the replacement string tells vi
 to change the replacement to uppercase. The &
 character replays the text matched by the search pattern as the replacement. These two commands are equivalent; however, the first form is considerably faster, since it results in only one substitution per line (.*
 matches the entire line, once per line), whereas the second form results in repeated substitutions on each line (.
 matches only a single character, with the replacement repeated on account of the trailing g
).

	Reverse the order of lines in a file:[27
]

:g/.*/mo0

The search pattern matches all lines (a line contains zero or more characters). Each line is moved, one by one, to the top of the file (that is, moved after imaginary line 0). As each matched line is placed at the top, it pushes the previously moved lines down, one by one, until the last line is on top. Since all lines have a beginning, the same result can be achieved more succinctly:
:g/^/mo0

	In a text-file database, on all lines not marked
Paid in full

 , append the phrase
Overdue

 :
:g!/Paid in full/s/$/ Overdue/

or the equivalent:
:v/Paid in full/s/$/ Overdue/

To affect all lines
except

 those matching your pattern, add a !
 to the g
 command, or simply use the v
 command.

	For any line that doesn’t begin with a number, move the line to the end of the file:
:g!/^[[:digit:]]/m$

or:
:g/^[^[:digit:]]/m$

As the first character within brackets, a caret negates the sense, so the two commands have the same effect. The first one says, “Don’t match lines that begin with a number,” and the second one says, “Match lines that don’t begin with a number.”

	Change manually numbered section heads (e.g., 1.1, 1.2, etc.) to a troff
 macro (e.g., .Ah
 for an A-level heading):
:%s/^[1-9]\.[1-9]/.Ah/

The search string matches a digit other than zero, followed by a period, followed by another nonzero digit. Notice that the period doesn’t need to be escaped in the replacement (though a \
 would have no effect, either). The command just shown won’t find chapter numbers containing two or more digits. To do so, modify the command like this:
:%s/^[1-9][0-9]*\.[1-9]/.Ah/

Now it will match chapters 10 to 99 (digits 1 to 9, followed by a digit), 100 to 999 (digits 1 to 9, followed by two digits), etc. The command still finds chapters 1 to 9 (digits 1 to 9, followed by no digit).

	Remove numbering from section headings in a document. You want to change the sample lines:
2.1 Introduction
10.3.8 New Functions

into the lines:
Introduction
New Functions

Here’s the command to do this:
:%s/^[1-9][0-9]*\.[1-9][0-9.]*□

//

The search pattern resembles the one in the previous example, but now the numbers vary in length. At a minimum, the headings contain
number

 ,
period

 ,
number

 , so you start with the search pattern from the previous example:
[1-9][0-9]*\.[1-9]

But in this example, the heading may continue with any number of digits or periods:
[0-9.]*

	Change the word
Fortran

 to the phrase
FORTRAN (acronym of FORmula TRANslation)

 :
:%s/\(For\)\(tran\)/\U\1\2\E□

(acronym□

of□

\U\1\Emula□

\U\2\Eslation)/g

First, since we notice that the words
FORmula

 and
TRANslation

 use portions of the original words, we decide to save the search pattern in two pieces: \(For\)
 and \(tran\)
 . The first time we restore it, we use both pieces together, converting all characters to uppercase: \U\1\2
 . Next, we undo the uppercase with \E
 ; otherwise, the remaining replacement text would all be uppercase. The replacement continues with actual typed words, and then we restore the first hold buffer. This buffer still contains
For

 , so again we convert to uppercase first: \U\1
 . Immediately after, we lowercase the rest of the word: \Emula
 . Finally, we restore the second hold buffer. This contains
tran

 , so we precede the “replay” with uppercase, follow it with lowercase, and type out the rest of the word: \U\2\Eslation)
 .

[27
]
 From an article by Walter Zintz in Unix World
 , May 1990.

A Final Look at Pattern Matching

We conclude this chapter by presenting sample tasks that involve complex pattern-matching concepts. Rather than solve the problems right away, we’ll work toward the solutions step by step.

Deleting an Unknown Block of Text

Suppose you have a few lines with this general form:

the best of times; the worst of times: moving
The coolest of times; the worst of times: moving

The lines that you’re concerned with always end with
moving

 , but you never know what the first two words might be. You want to change any line that ends with
moving

 to read:

The greatest of times; the worst of times: moving

Since the changes must occur on certain lines, you need to specify a context-sensitive global replacement. Using :g/moving$/
 will match lines that end with
moving

 . Next, you realize that your search pattern could be any number of any character, so the metacharacters .*
 come to mind. But these will match the whole line unless you somehow restrict the match. Here’s your first attempt:

:g/moving$/s/.*of/The□

greatest□

of/

This search string, you decide, will match from the beginning of the line to the first
of

 . Since you needed to specify the word
of

 to restrict the search, you simply repeat it in the replacement. Here’s the resulting line:

The greatest of times: moving

Something went wrong. The replacement gobbled the line up to the second
of

 instead of the first. Here’s why: when given a choice, the action of “match any number of any character” will match
as much text as possible

 . In this case, since the word
of

 appears twice, your search string finds:

the best of times; the worst of

rather than:

the best of

Your search pattern needs to be more restrictive:

:g/moving$/s/.*of times;/The greatest of times;/

Now the .*
 will match all characters up to the instance of the phrase
of times;

 . Since there’s only one instance, it has to be the first.

There are cases, though, when it is inconvenient, or even incorrect, to use the .*
 metacharacters. For example, you might find yourself typing many words to restrict your search pattern, or you might be unable to restrict the pattern by specific words (if the text in the lines varies widely). The next section presents such a case.

Switching Items in a Textual Database

 Suppose you want to switch the order of all last names and first names in a (text) database. The lines look like this:

Name: Feld, Ray; Areas: PC, Unix; Phone: 123-4567
Name: Joy, Susan S.; Areas: Graphics; Phone: 999-3333

The name of each field ends with a colon, and each field is separated by a semicolon. Using the top line as an example, you want to change
Feld, Ray

 to
Ray Feld

 . We’ll present some commands that look promising but don’t work. After each command, we show you the line the way it looked before the change and after the change.

:%s/: \(.*\), \(.*\);/: \2 \1;/

Name:
Feld, Ray; Areas: PC

,
Unix

; Phone: 123-4567
Before

Name:
Unix

Feld, Ray; Areas: PC

; Phone: 123-4567
After

We’ve highlighted the contents of the first hold buffer in
bold

 and the contents of the second hold buffer in
italic

 . Note that the first hold buffer contains more than you want. Since it was not sufficiently restricted by the pattern that follows it, the hold buffer was able to save up to the second comma. Now you try to restrict the contents of the first hold buffer:

:%s/: \(....\), \(.*\);/: \2 \1;/

Name:
Feld

,
Ray; Areas: PC, Unix

; Phone: 123-4567
Before

Name:
Ray; Areas: PC, Unix

Feld

; Phone: 123-4567
After

Here you’ve managed to save the last name in the first hold buffer, but now the second hold buffer will save anything up to the last semicolon on the line. Now you restrict the second hold buffer, too:

:%s/: \(....\), \(...\);/: \2 \1;/

Name:
Feld

,
Ray

; Areas: PC, Unix; Phone: 123-4567
Before

Name:
Ray

Feld

; Areas: PC, Unix; Phone: 123-4567
After

This gives you what you want, but only in the specific case of a four-letter last name and a three-letter first name. (The previous attempt included the same mistake.) Why not just return to the first attempt, but this time be more selective about the end of the search pattern?

:%s/: \(.*\), \(.*\); Area/: \2 \1; Area/

Name:
Feld

,
Ray

; Areas: PC, Unix; Phone: 123-4567
Before

Name:
Ray

Feld

; Areas: PC, Unix; Phone: 123-4567
After

This works, but we’ll continue the discussion by introducing an additional concern. Suppose that the
Area

 field isn’t always present or isn’t always the second field. The command just shown won’t work on such lines.

We introduce this problem to make a point. Whenever you rethink a pattern match, it’s usually better to work toward refining the variables (the metacharacters), rather than using specific text to restrict patterns. The more variables you use in your patterns, the more powerful your commands will be.

In the current example, think again about the patterns you want to switch. Each word starts with an uppercase letter and is followed by any number of lowercase letters, so you can match the names like this:

[[:upper:]][[:lower:]]*

A last name might also have more than one uppercase letter (
McFly

 , for example), so you’d want to search for this possibility in the second and succeeding letters:

[[:upper:]][[:alpha:]]*

It doesn’t hurt to use this for the first name, too (you never know when
McGeorge Bundy

 will turn up). Your command now becomes:

:%s/: \([[:upper:]][[:alpha:]]*\), \([[:upper:]][[:alpha:]]*\);/: \2 \1;/

Quite forbidding, isn’t it? It still doesn’t cover the case of a name like
Joy, Susan S.

 Since the first-name field might include a middle initial, you need to add a space and a period within the second pair of brackets. But enough is enough. Sometimes, specifying exactly what you want is more difficult than specifying what you
don’t

 want. In your sample database, the last names end with a comma, so a last-name field can be thought of as a string of characters that are
not

 commas:

[^,]*

This pattern matches characters up until the first comma. Similarly, the first-name field is a string of characters that are
not

 semicolons:

[^;]*

Putting these more efficient patterns back into your previous command, you get:

:%s/: \([^,]*\), \([^;]*\);/: \2 \1;/

The same command could also be entered as a context-sensitive replacement. If all lines begin with
Name

 , you can say:

:g/^Name/s/: \([^,]*\), \([^;]*\);/: \2 \1;/

You can also add an asterisk after the first space, in order to match a colon that has extra spaces (or no spaces) after it:

:g/^Name/s/: *\([^,]*\), \([^;]*\);/: \2 \1;/

Using :g to Repeat a Command

 In the usual way we’ve seen the :g
 command used, it selects lines that are typically then edited by subsequent commands on the same line — for example, we select lines with g
 , and then make substitutions on them, or select them and delete them:

:g/mg[ira]box/s/box/square/g
:g/^$/d

However, in his two-part tutorial in Unix World
 ,[28
]

 Walter Zintz makes an interesting point about the g
 command. This command selects lines, but the associated editing commands need not actually affect the lines that are selected.

Instead, he demonstrates a technique by which you can repeat ex
 commands some arbitrary number of times. For example, suppose you want to place 10 copies of lines 12 through 17 of your file at the end of your current file. You could type:

:1,10g/^/ 12,17t$

This is a very unexpected use of g
 , but it works! The g
 command selects line 1, executes the specified t
 command, then goes on to line 2 to execute the next copy command. When line 10 is reached, ex
 will have made 10 copies.

Collecting Lines

 Here’s another advanced g
 example, again building on suggestions provided in Zintz’s article. Suppose you’re editing a document that consists of several parts. Part 2 of this file is shown here, using ellipses to show omitted text and displaying line numbers for reference:

301 Part 2
302 Capability Reference
303 .LP
304 Chapter 7
305 Introduction to the Capabilities
306 This and the next three chapters ...

400 ... and a complete index at the end.
401 .LP
402 Chapter 8
403 Screen Dimensions

404 Before you can do anything useful

405 on the screen, you need to know ...

555 .LP
556 Chapter 9
557 Editing the Screen

558 This chapter discusses ...

821 .LP
822 Part 3:
823 Advanced Features
824 .LP
825 Chapter 10

The chapter numbers appear on one line, their titles appear on the line below, and the chapter text (marked in
bold

 for emphasis) begins on the line below that. The first thing you’d like to do is copy the beginning line of each chapter, sending it to an already existing file called begin
 .

Here’s the command that does this:

:g /^Chapter/ .+2w >> begin

You must be at the top of your file before issuing this command. First, you search for
Chapter

 at the start of a line, but then you want to run the command on the beginning line of each chapter — the second line below
Chapter

 . Because a line beginning with
Chapter

 is now selected as the current line, the line address .+2
 will indicate the second line below it. The equivalent line addresses +2
 or ++
 work as well. You want to write these lines to an existing file named begin
 , so you issue the w
 command with the append operator >>
 .

Suppose you want to send the beginnings of chapters that are only within Part 2. You need to restrict the lines selected by g
 , so you change your command to this:

:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin

Here, the g
 command selects the lines that begin with
Chapter

 , but it searches only that portion of the file from a line starting with
Part 2

 through a line starting with
Part 3

 . If you issue the command just shown, the last lines of the file begin
 will read as follows:

This and the next three chapters ...
Before you can do anything useful
This chapter discusses ...

These are the lines that begin Chapters 7, 8, and 9.

In addition to the lines you’ve just sent, you’d like to copy chapter titles to the end of the document, in preparation for making a table of contents. You can use the vertical bar to tack on a second command after your first command, like so:

:/^Part 2/,/^Part 3/g /^Chapter/ .+2w >> begin | +t$

Remember that with any subsequent command, line addresses are relative to the previous command. The first command has marked lines (within Part 2) that start with
Chapter

 , and the chapter titles appear on a line below such lines. Therefore, to access chapter titles in the second command, the line address is +
 (or the equivalents +1
 or .+1
). Then, use t$
 to copy the chapter titles to the end of the file.

As these examples illustrate, thought and experimentation may lead you to some unusual editing solutions. Don’t be afraid to try things. Just be sure to back up your file first! (Of course, with the infinite “undo” facilities in the clones, you may not even need to save a backup copy.)

[28
]
 Part one, “vi
 Tips for Power Users,” appears in the April 1990 issue of UNIX World
 . Part two, “Using vi
 to Automate Complex Edits,” appears in the May 1990 issue. The examples presented are from Part 2.

Chapter 7. Advanced Editing

This chapter introduces you to some of the more advanced capabilities of the vi
 and ex
 editors. You should be reasonably familiar with the material presented in the earlier chapters of this book before you start working with the concepts presented here.

We have divided this chapter into five parts. The first part discusses a number of ways to set options that allow you to customize your editing environment. You’ll learn how to use the set
 command and how to create a number of different editing environments using .exrc
 files.

The second part discusses how you can execute Unix commands from within vi
 , and how you can use vi
 to filter text through Unix commands.

The third part discusses various ways to save long sequences of commands by reducing them to abbreviations, or even to commands that use only one keystroke (this is called
mapping

 keys). It also includes a section on @-functions, which allow you to store command sequences in a buffer.

The fourth part discusses the use of ex
 scripts from the Unix command line or from within shell scripts. Scripting provides a powerful way to make repetitive edits.

The fifth part discusses some features of vi
 that are especially useful to programmers. vi
 has options that control line indentation and an option to display invisible characters (specifically tabs and newlines). There are search commands that are useful with program code blocks or with C functions.

Customizing vi

vi
 operates differently on various terminals

 . On modern Unix systems, vi
 gets operating instructions about your terminal type from the terminfo
 terminal database. (On older systems, vi
 uses the original termcap
 database.)[29
]

There are also a number of options that you can set from within vi
 that affect how it operates. For example, you can set a right margin that will cause vi
 to wrap lines automatically, so you don’t need to hit ENTER
 .

 You can change options from within vi
 by using the ex
 command :set
 . In addition, whenever vi
 is started up, it reads a file in your
 home directory called .exrc
 for further operating instructions. By placing :set
 commands in this file, you can modify the way vi
 acts whenever you use it.

You can also set up .exrc
 files in local directories to initialize various options that you want to use in different environments. For example, you might define one set of options for editing English text, but another set for editing source programs. The .exrc
 file in your home directory will be executed first, and then the one in your current directory.

 Finally, any commands stored in the environment variable EXINIT
 will be executed by vi
 on startup. The settings in EXINIT
 take precedence over those in the home directory.exrc
 file.

The :set Command

 There are two types of options that can be changed with the :set
 command: toggle options, which are either on or off, and options that take a numeric or string value (such as the location of a margin or the name of a file).

Toggle options may be on or off by default. To turn a toggle option on, the command is:

:set
option

To turn a toggle option off, the command is:

:set no
option

For example, to specify that pattern searches should ignore case, type:

:set ic

If you want vi
 to return to being case-sensitive in searches, give the command:

:set noic

 Some options have a value assigned to them. For example, the window
 option sets the number of lines shown in the screen’s “window.” You set values for these options with an equals sign (=):

:set window=20

 During a vi
 session, you can check which options vi
 is using. The command:

:set all

displays the complete list of options, including options that you have set and defaults that vi
 has “chosen.”

The display should look something like this:[30
]

autoindent nomodelines noshowmode
autoprint nonumber noslowopen
noautowrite nonovice tabstop=8
beautify nooptimize taglength=0
directory=/var/tmp paragraphs=IPLPPPQPP LIpplpipnpbp tags=tags /usr/lib/tags
noedcompatible prompt tagstack
errorbells noreadonly term=vt102
noexrc redraw noterse
flash remap timeout
hardtabs=8 report=5 ttytype=vt102
noignorecase scroll=11 warn
nolisp sections=NHSHH HUuhsh+c window=23
nolist shell=/bin/ksh wrapscan
magic shiftwidth=8 wrapmargin=0
nomesg showmatch nowriteany

You can find out the current value of any individual option by name, using the command:

:set
option

?

The command:

:set

shows options that you have specifically changed, or set, either in your .exrc
 file or during the current session.

For example, the display might look like this:

number sect=AhBhChDh window=20 wrapmargin=10

The .exrc File

 The .exrc
 file that controls your own vi
 environment is in your home directory (the directory you are in when you first log on). You can modify the .exrc
 file with the vi
 editor, just as you can any other text file.

If you don’t yet have an .exrc
 file, simply use vi
 to create one. Enter into this file the set
 , ab
 , and map
 commands that you want to have in effect whenever you use vi
 or ex
 . (ab
 and map
 are discussed later in this chapter.) A sample .exrc
 file might look like this:

set nowrapscan wrapmargin=7
set sections=SeAhBhChDh nomesg
map q :w^M:n^M
map v dwElp
ab ORA O'Reilly Media, Inc.

Since the file is actually read by ex
 before it enters visual mode (vi
), commands in .exrc
 need not have a preceding colon.

Alternate Environments

 In addition to reading the .exrc
 file in your home directory, you can allow vi
 to read a file called .exrc
 in the current directory. This lets you set options that are appropriate to a particular project.

 In all modern versions of vi
 , you have to first set the exrc
 option in your home directory’s .exrc
 file before vi
 will read the .exrc
 file in the current directory:

set exrc

This mechanism prevents other people from placing, in your working directory, an .exrc
 file whose commands might jeopardize the security of your system.[31
]

For example, you might want to have one set of options in a directory mainly used for programming:

set number autoindent sw=4 terse
set tags=/usr/lib/tags

and another set of options in a directory used for text editing:

set wrapmargin=15 ignorecase

Note that you can set certain options in the .exrc
 file in your home directory and unset them in a local directory.

 You can also define alternate vi
 environments by saving option settings in a file other than .exrc
 and reading in that file with the :so
 command. (so
 is short for source
 .)

For example:

:so .progoptions

Local .exrc
 files are also useful for defining abbreviations and key mappings (described later in this chapter). When we write a book or manual, we save all abbreviations to be used in that book in an .exrc
 file in the directory in which the book is being created.

Some Useful Options

As you can see when you type :set all
 , there are an awful lot of options that can be set. Many of them are used internally by vi
 and aren’t usually changed. Others are important in certain cases but not in others (for example, noredraw
 and window
 can be useful over a cross-continental ssh
 session). Table B-1
 in the section Solaris vi Options
 contains a brief description of each option. We recommend that you take some time to play with setting options. If an option looks interesting, try setting it (or unsetting it) and watch what happens while you edit. You may find some surprisingly useful tools.

 As discussed earlier in the section Movement Within a Line
 , one option, wrapmargin
 , is essential for editing nonprogram text. wrapmargin
 specifies the size of the right margin that will be used to autowrap text as you type. (This saves manually typing carriage returns.) A typical value is 7 to 15:

:set wrapmargin=10

 Three other options control how vi
 acts when conducting a search. Normally, a search differentiates between uppercase and lowercase (
foo

 does not match
Foo

), wraps around to the beginning of the file (meaning that you can begin your search anywhere in the file and still find all occurrences), and recognizes wildcard characters when pattern matching. The default settings that control these options are noignorecase
 , wrapscan
 , and magic
 , respectively. To change any of these defaults, you would set the opposite toggle options: ignorecase
 , nowrapscan
 , and nomagic
 .

Options that may be of particular interest to programmers include autoindent
 , showmatch
 , tabstop
 , shiftwidth
 , number
 , and list
 , as well as their opposite toggle options.

 Finally, consider using the autowrite
 option. When set, vi
 will automatically write out the contents of a changed buffer when you issue the :n
 (next) command to move to the next file to be edited, and before running a shell command with :!
 .

[29
]
 The location of these two databases varies from vendor to vendor. Try the commands man terminfo
 and man termcap
 to get more information about your specific system.

[30
]
 The result of :set all
 depends very much on the version of vi
 you have. This particular display is typical of Unix vi
 ; what comes out of the various clones will be different. The order is alphabetical going down the columns, ignoring any leading no
 .

[31
]
 The original versions of vi
 automatically read both files, if they existed. The exrc
 option closes a potential security hole.

Executing Unix Commands

 You can display or read in the results of any Unix command while you are editing in vi
 . An exclamation mark (!
) tells ex
 to create a shell and to regard what follows as a Unix command:

:!
command

So if you are editing and you want to check the time or date without exiting vi
 , you can enter:

:!date

The time and date will appear on your screen; press ENTER
 to continue editing at the same place in your file.

 If you want to give several Unix commands in a row without returning to vi
 editing in between, you can create a shell with the ex
 command:

:sh

When you want to exit the shell and return to vi
 , press CTRL-D
 .

 You can combine :read
 with a call to Unix, to read the results of a Unix command into your file. As a very simple example:

:r !date

will read in the system’s date information into the text of your file. By preceding the :r
 command with a line address, you can read the result of the command in at any desired point in your file. By default, it will appear after the current line.

Suppose you are editing a file and want to read in four phone numbers from a file called phone
 , but in alphabetical order. phone
 reads:

Willing, Sue 333-4444
Walsh, Linda 555-6666
Quercia, Valerie 777-8888
Dougherty, Nancy 999-0000

The command:

:r !sort phone

reads in the contents of phone
 after they have been passed through the sort
 filter:

Dougherty, Nancy 999-0000
Quercia, Valerie 777-8888
Walsh, Linda 555-6666
Willing, Sue 333-4444

Suppose you are editing a file and want to insert text from another file in the directory, but you can’t remember the new file’s name. You
could

 perform this task the long way: exit your file, give the ls
 command, note the correct filename, reenter your file, and search for your place.

Or you could do the task in fewer steps:

	Keystrokes
	Results

	
:!ls

	
 file1 file2 letter
 newfile practice

Display a list of files in the current directory. Note the correct filename. Press ENTER
 to continue editing.

	
:r newfile

	
 "newfile" 35 lines, 949 characters

Read in the new file.

Filtering Text Through a Command

 You can also send a block of text as standard input to a Unix command. The output from this command replaces the block of text in the buffer. You can filter text through a command from either ex
 or vi
 . The main difference between the two methods is that you indicate the block of text with line addresses in ex
 and with text objects (movement commands) in vi
 .

Filtering text with ex

 The first example demonstrates how to filter text with ex
 . Assume that the list of names in the preceding example, instead of being contained in a separate file called phone
 , is already contained in the current file on lines 96 through 99. You simply type the addresses of the lines you want to filter, followed by an exclamation mark and the Unix command to be executed. For example, the command:

:96,99!sort

will pass lines 96 through 99 through the sort
 filter and replace those lines with the output of sort
 .

Filtering text with vi

 In vi
 , text is filtered through a Unix command by typing an exclamation mark followed by any of vi
 ’s movement keystrokes that indicate a block of text, and then by the Unix command line to be executed. For example:

!)
command

will pass the next sentence through
command

 .

There are a few unusual aspects of the way vi
 acts when you use this feature:

	The exclamation mark doesn’t appear on your screen right away. When you type the keystroke(s) for the text object you want to filter, the exclamation mark appears at the bottom of the screen,
but the character you type to reference the object does not.

	Text blocks must be more than one line, so you can use only the keystrokes that would move more than one line (G
 , { }
 , ()
 , [[]]
 , +
 , -
). To repeat the effect, a number may precede either the exclamation mark or the text object. (For example, both !10+
 and 10!+
 would indicate the next 10 lines.) Objects such as w
 do not work unless enough of them are specified so as to exceed a single line. You can also use a slash (/
) followed by a
pattern

 and a carriage return to specify the object. This takes the text up to the pattern as input to the command.

	Entire lines are affected. For example, if your cursor is in the middle of a line and you issue a command to go to the end of the next sentence, the entire lines containing the beginning and end of the sentence will be changed, not just the sentence itself.[32
]

	There is a special text object that can be used only with this command syntax: you can specify the current line by entering a second exclamation mark:

!!
command

Remember that either the entire sequence or the text object can be preceded by a number to repeat the effect. For instance, to change lines 96 through 99 as in the previous example, you could position the cursor on line 96 and enter either:
4!!sort

or:
!4!sort

As another example, assume you have a portion of text in a file that you want to change from lowercase to uppercase letters. You could process that portion with the tr
 command to change the case. In this example, the second sentence is the block of text that will be filtered through the command:

 One sentence before.W

ith a screen editor you can scroll the page
 move the cursor, delete lines, insert characters,
 and more, while seeing the results of your edits
 as you make them.
 One sentence after.

	Keystrokes
	Results

	
!)

	
 One sentence after.
 ~
 ~
 ~
 !

An exclamation mark appears on the last line to prompt you for the Unix command. The)
 indicates that a sentence is the unit of text to be filtered.

	
tr '[:lower:]' '[:upper:]'

	
 One sentence before.W

ITH A SCREEN EDITOR YOU CAN SCROLL THE PAGE
 MOVE THE CURSOR, DELETE LINES, INSERT CHARACTERS,
 AND MORE, WHILE SEEING THE RESULTS OF YOUR EDITS
 AS YOU MAKE THEM.
 One sentence after.

Enter the Unix command and press ENTER
 . The input is replaced by the output.

To repeat the previous command, the syntax is:

!
object

 !

It is sometimes useful to send sections of a coded document to nroff
 to be replaced by formatted output. (Or, when editing electronic mail, you might use the fmt
 program to “beautify” your text before sending the message.) Remember that the “original” input is replaced by the output. Fortunately, if there is a mistake — such as an error message being sent instead of the expected output — you can undo the command and restore the lines.

[32
]
 Of course, there’s always an exception. In this example, Vim changes only the current line.

Saving Commands

 Often you type the same long phrases over and over in a file. vi
 and ex
 have a number of different ways of saving long sequences of commands, both in command mode and in insert mode. When you call up one of these saved sequences to execute it, all you do is type a few characters (or even only one), and the entire sequence is executed as if you had entered the whole sequence of commands one by one.

Word Abbreviation

 You can define abbreviations that vi
 will automatically expand into the full text whenever you type the abbreviation in insert mode. To define an abbreviation, use this ex
 command:

:ab
abbr phrase

abbr

 is an abbreviation for the specified
phrase

 . The sequence of characters that make up the abbreviation will be expanded in insert mode only if you type it as a full word;
abbr

 will not be expanded within a word.

Suppose in the file practice
 you want to enter text that contains a frequently recurring phrase, such as a difficult product or company name. The command:

:ab imrc International Materials Research Center

abbreviates
International Materials Research Center

 to the initials
imrc

 . Now whenever you type
imrc

 in insert mode,
imrc

 expands to the full text.

	Keystrokes
	Results

	
ithe imrc

	
 the International Materials Research Center

Abbreviations expand as soon as you press a nonalphanumeric character (e.g., punctuation), a space, a carriage return, or ESC
 (returning to command mode). When you are choosing abbreviations, choose combinations of characters that don’t ordinarily occur while you are typing text. If you create an abbreviation that ends up expanding in places where you don’t want it to, you can disable the abbreviation by typing:

:unab
abbr

To list your currently defined abbreviations, type:

:ab

The characters that compose your abbreviation cannot also appear at the end of your phrase. For example, if you issue the command:

:ab PG This movie is rated PG

you’ll get the message “No tail recursion,” and the abbreviation won’t be set. The message means that you have tried to define something that will expand itself repeatedly, creating an infinite loop. If you issue the command:

:ab PG the PG rating system

you may or may not produce an infinite loop, but in either case you won’t get a warning message. For example, when the above command was tested on a System V version of Unix, the expansion worked. Circa 1990 on a Berkeley version, the abbreviation expanded repeatedly, like this:

the the the the the ...

until a memory error occurred and vi
 quit.

When tested, we obtained the following results on these vi
 versions:

Solaris vi

 The tail recursive version is not allowed, while the version with the name in the middle of the expansion expands only once.

nvi
 1.79

 Both versions exceed an internal expansion limit, the expansion stops, and nvi
 produces an error message.

elvis
 , Vim, and vile

 Both forms are detected and expand only once.

If you are using Unix vi
 or nvi
 , we recommend that you avoid repeating your abbreviation as part of the defined phrase.

Using the map Command

 While you’re editing, you may find that you are using a command sequence frequently, or that you occasionally use a very complex command sequence. To save yourself keystrokes, or the time that it takes to remember the sequence, you can assign the sequence to an unused key by using the map
 command.

The map
 command acts a lot like ab
 except that you define a macro for vi
 ’s command mode instead of for insert mode:

:map

x sequence

Define character
x

 as a
sequence

 of editing commands.

:unmap

x

Disable the
sequence

 defined for
x

 .

:map

List the characters that are currently mapped.

Before you can start creating your own maps, you need to know the keys not used in command mode that are available for user-defined commands:

Letters

g
 , K
 , q
 , V
 , and v

Control keys

^A
 , ^K
 , ^O
 , ^W
 , and ^X

Symbols

_
 , *
 , \
 , and =

Note

The =
 is used by vi
 if Lisp mode is set, and to do text formatting by several of the clones. In many modern versions of vi
 , the _
 is equivalent to the ^
 command, and elvis
 and Vim have a “visual mode” that uses the v
 , V
 , and ^V
 keys. The moral is to test your version carefully.

Depending on your terminal, you may also be able to associate map sequences with special function keys.

 With maps, you can create simple or complex command sequences. As a simple example, you could define a command to reverse the order of words. In vi
 , with the cursor as shown:

you cant

he scroll page

the sequence to put
the

 after
scroll

 would be dwelp
 : delete word, dw
 ; move to the end of next word, e
 ; move one space to the right, l
 ; put the deleted word there, p
 . Saving this sequence:

:map v dwelp

enables you to reverse the order of two words at any time in the editing session with the single keystroke v
 .

Protecting Keys from Interpretation by ex

 Note that when defining a map, you cannot simply type certain keys, such as ENTER
 , ESC
 , BACKSPACE
 , and DELETE
 , as part of the command to be mapped, because these keys already have meaning within ex
 . If you want to include one of these keys as part of the command sequence, you must escape the normal meaning by preceding the key with CTRL-V
 . The keystroke ^V
 appears in the map as the ^
 character. Characters following the ^V
 also do not appear as you expect. For example, a carriage return appears as ^M
 , escape as ^[
 , backspace as ^H
 , and so on.

On the other hand, if you want to use a control character as the character to be mapped, in most cases all you have to do is hold down the CTRL
 key and press the letter key at the same time. So, for example, all you need to do in order to map ^A
 is to type:

:mapCTRL-A

sequence

There are, however, three control characters that must be escaped with a ^V
 . They are ^T
 , ^W
 , and ^X
 . So, for example, if you want to map ^T
 , you must type:

:mapCTRL-V

CTRL-T

sequence

The use of CTRL-V
 applies to any ex
 command, not just a map
 command. This means that you can type a carriage return in an abbreviation or a substitution command. For example, the abbreviation:

:ab 123 one^Mtwo^Mthree

expands to this:

one
two
three

(Here we show the sequence CTRL-V
 ENTER
 as ^M
 , the way it would appear on your screen.)

You can also globally add lines at certain locations. The command:

:g/^Section/s//As you recall, in^M&/

inserts, before all lines beginning with the word
Section

 , a phrase on a separate line. The &
 restores the search pattern.

Unfortunately, one character always has special meaning in ex
 commands, even if you try to quote it with CTRL-V
 . Recall that the vertical bar (|
) has special meaning as a separator of multiple ex
 commands. You cannot use a vertical bar in insert mode maps.

Now that you’ve seen how to use CTRL-V
 to protect certain keys inside ex
 commands, you’re ready to define some powerful map sequences.

A Complex Mapping Example

 Assume that you have a glossary with entries like this:

map - an ex command which allows you to associate
a complex command sequence with a single key.

You would like to convert this glossary list to troff
 format, so that it looks like this:

.IP "map" 10n
An ex command...

The best way to define a complex map is to do the edit once manually, writing down each keystroke that you have to type. Then recreate these keystrokes as a map. You want to:

	Insert the MS macro for an indented paragraph at the beginning of the line. Insert the first quotation mark as well (I.IP "
).

	Press ESC
 to terminate insert mode.

	Move to the end of the first word (e
) and add a second quotation mark, followed by a space and the size of the indent (a" 10n
).

	Press ENTER
 to insert a new line.

	Press ESC
 to terminate insert mode.

	Remove the hyphen and two surrounding spaces (3x
) and capitalize the next word (~
).

That will be quite an editing chore if you have to repeat it more than just a few times.

With :map
 you can save the entire sequence so that it can be reexecuted with a single keystroke:

:map g I.IP "^[ea" 10n^M^[3x~

Note that you have to “quote” both the ESC
 and the ENTER
 characters with CTRL-V
 . ^[
 is the sequence that appears when you type CTRL-V
 followed by ESC
 . ^M
 is the sequence shown when you type CTRL-V
 ENTER
 .

Now, simply typing g
 will perform the entire series of edits. On a slow connection you can actually see the edits happening individually. On a fast one it will seem to happen by magic.

Don’t be discouraged if your first attempt at key mapping fails. A small error in defining the map can give very different results from the ones you expect. Type u
 to undo the edit, and try again.

More Examples of Mapping Keys

 The following examples will give you an idea of the clever shortcuts possible when defining keyboard maps:

	Add text whenever you move to the end of a word:
:map e ea

Most of the time, the only reason you want to move to the end of a word is to add text. This map sequence puts you in insert mode automatically. Note that the mapped key, e
 , has meaning in vi
 . You’re allowed to map a key that is already used by vi
 , but the key’s normal function will be unavailable as long as the map is in effect. This isn’t so bad in this case, since the E
 command is often identical to e
 .

	

 Transpose two words:
:map K dwElp

We discussed this sequence earlier in the chapter, but now you need to use E
 (assume here, and in the remaining examples, that the e
 command is mapped to ea
). Remember that the cursor begins on the first of the two words. Unfortunately, because of the l
 command, this sequence (and the earlier version) doesn’t work if the two words are at the end of a line: during the sequence, the cursor ends up at the end of the line, and l
 cannot move further right. Here’s a better solution:
:map K dwwP

You could also use W
 instead of w
 .

	

 Save a file and edit the next one in a series:
:map q :w^M:n^M

Notice that you can map keys to ex
 commands, but be sure to finish each ex
 command with a carriage return. This sequence makes it easy to move from one file to the next and is useful when you’ve opened many short files with one vi
 command. Mapping the letter q
 helps you remember that the sequence is similar to a “quit.”

	

 Put troff
 emboldening codes around a word:
:map v i\fB^[e\fP^[

This sequence assumes that the cursor is at the beginning of the word. First, you enter insert mode, then you type the code for the bold font. In map commands, you don’t need to type two backslashes to produce one backslash. Next, you return to command mode by typing a “quoted” ESC
 . Finally, you append the closing troff
 code at the end of the word, and you return to command mode. Notice that when we appended to the end of the word, we didn’t need to use ea
 , since this sequence is itself mapped to the single letter e
 . This shows you that map sequences are allowed to contain other mapped commands. (The ability to use nested map sequences is controlled by vi
 ’s remap
 option, which is normally enabled.)

	Put HTML emboldening codes around a word, even when the cursor is not at the beginning of the word:
:map V lbi^[e^[

This sequence is similar the previous one; besides using HTML instead of troff
 , it uses lb
 to handle the additional task of positioning the cursor at the beginning of the word. The cursor might be in the middle of the word, so you want to move to the beginning with the b
 command. But if the cursor were already at the beginning of the word, the b
 command would move the cursor to the previous word instead. To guard against that case, type an l
 before moving back with b
 , so that the cursor never starts on the first letter of the word. You can define variations of this sequence by replacing the b
 with B
 and the e
 with Ea
 . In all cases, though, the l
 command prevents this sequence from working if the cursor is at the end of a line. (You could append a space to get around this.)

	

 Repeatedly find and remove parentheses from around a word or phrase: [33
]

:map = xf)xn

This sequence assumes that you first found an open parenthesis, by typing /(
 followed by ENTER
 .

If you choose to remove the parentheses, use the map
 command: delete the open parenthesis with x
 , find the closing one with f)
 , delete it with x
 , and then repeat your search for an open parenthesis with n
 .

If you don’t want to remove the parentheses (for example, if they’re being used correctly), don’t use the mapped command: press n
 instead to find the next open parenthesis.

You could also modify the map sequence in this example to handle matching pairs of quotes.

	

 Place C/C++ comments around an entire line:
:map g I/* ^[A */^[

This sequence inserts /*
 at the line’s beginning and appends */
 at the line’s end. You could also map a substitute command to do the same thing:
:map g :s;.*;/* & */;^M

Here, you match the entire line (with .*
), and when you replay it (with &
), you surround the line with the comment symbols. Note the use of semicolon delimiters, to avoid having to escape the /
 in the comment.

	

 Safely repeat a long insertion:
:map ^J :set wm=0^M.:set wm=10^M

We mentioned in Chapter 2
 that vi
 occasionally has difficulty repeating long insertions of text when wrapmargin
 is set. This map
 command is a useful workaround. It temporarily turns off the wrapmargin
 (by setting it to 0), gives the repeat command, and then restores the wrapmargin
 . Note that a map sequence can combine ex
 and vi
 commands.

In the previous example, even though ^J
 is a vi
 command (it moves the cursor down a line), this key is safe to map because it’s really the same as the j
 command. There are many keys that either perform the same tasks as other keys or are rarely used. However, you should be familiar with the vi
 commands before you boldly disable their normal use by using them in map definitions.

Mapping Keys for Insert Mode

 Normally, maps apply only to command mode — after all, in insert mode, keys stand for themselves and shouldn’t be mapped as commands. However, by adding an exclamation mark (!
) to the map
 command, you can force it to override the ordinary meaning of a key and produce the map in insert mode. This feature is useful when you find yourself in insert mode but need to escape briefly to command mode, run a command, and then return to insert mode.

For example, suppose you just typed a word but forgot to italicize it (or place quotes around it, etc.). You can define this map:

:map! + ^[bi<I>^[ea</I>

Now, when you type a +
 at the end of a word, you will surround the word with HTML italicization codes. The +
 won’t show up in the text.

The sequence just shown escapes to command mode (^[
), backs up to insert the first code (bi<I>
), escapes again (^[
), and moves ahead to append the second code (ea</I>
). Since the map sequence begins and ends in insert mode, you can continue entering text after marking the word.

Here’s another example. Suppose that you’ve been typing your text, and you realize that the previous line should have ended with a colon. You can correct that by defining this map sequence:[34
]

:map! % ^[kA:^[jA

Now, if you type a %
 anywhere along your current line, you’ll append a colon to the end of the previous line. This command escapes to command mode, moves up a line, and appends the colon (^[kA:
). The command then escapes again, moves down to the line you were on, and leaves you in insert mode (^[jA
).

Note that we wanted to use uncommon characters (%
 and +
) for the previous map commands. When a character is mapped for insert mode, you can no longer type that character as text.

To reinstate a character for normal typing, use the command:

:unmap!
x

where
x

 is the character that was previously mapped for insert mode. (Although vi
 will expand
x

 on the command line as you type it, making it look like you are unmapping the expanded text, it will correctly unmap the character.)

Insert-mode mapping is often more appropriate for tying character strings to special keys that you wouldn’t otherwise use. It is especially useful with programmable function keys.

Mapping Function Keys

 Many terminals have programmable function keys (which are faithfully emulated by today’s terminal emulators on bitmapped workstations). You can usually set up these keys to print whatever character or characters you want using a special setup mode on the terminal. However, keys programmed using a terminal’s setup mode work only on that terminal; they may also limit the action of programs that want to set up those function keys themselves.

ex
 allows you to map function keys by number, using the syntax:

:map #1
commands

for function key number 1, and so on. (It can do this because the editor has access to the entry for that terminal found in either the terminfo
 or termcap
 database and knows the escape sequence normally put out by the function key.)

As with other keys, maps apply by default to command mode, but by using the map!
 commands as well, you can define two separate values for a function key — one to be used in command mode, the other in insert mode. For example, if you are an HTML user, you might want to put font-switch codes on function keys. For example:

:map #1 i<I>^[
:map! #1 <I>

If you are in command mode, the first function key will enter insert mode, type in the three characters <I>
 , and return to command mode. If you are already in insert mode, the key will simply type the three-character HTML code.

If the sequence contains ^M
 , which is a carriage return, press CTRL-M
 . For instance, in order to have function key 1 available for mapping, the terminal database entry for your terminal must have a definition of k1
 , such as:

k1=^A@^M

In turn, the definition:

^A@^M

must be what is output when you press that key.

To see what the function key puts out, use the od
 (octal dump) command with the -c
 option (show each character). You will need to press ENTER
 after the function key, and then CTRL-D
 to get od
 to print the information. For example:

$
od -c

^[[[A

^D

0000000 033 [[A \n
0000005

Here, the function key sent Escape, two left brackets, and an A.

Mapping Other Special Keys

 Many keyboards have special keys, such as HOME
 , END
 , PAGE UP
 , and PAGE DOWN
 , that duplicate commands in vi
 . If the terminal’s terminfo
 or termcap
 description is complete, vi
 will be able to recognize these keys. But if it isn’t, you can use the map
 command to make them available to vi
 . These keys generally send an escape sequence to the computer — an Escape character followed by a string of one or more other characters. To trap the Escape, you should press ^V
 before pressing the special key in the map. For example, to map the HOME
 key on the keyboard of an IBM PC to a reasonable vi
 equivalent, you might define the following map:

:map CTRL-V

 HOME

 1G

This appears on your screen as:

:map ^[[H 1G

Similar map commands display as follows:

:mapCTRL-V

 END

 G
displays

 :map ^[[Y G
:map CTRL-V

 PAGE UP

 ^F
displays

 :map ^[[V ^F
:map CTRL-V

 PAGE DOWN

 ^B
displays

 :map ^[[U ^B

You’ll probably want to place these maps in your .exrc
 file. Note that if a special key generates a long escape sequence (containing multiple nonprinting characters), ^V
 quotes only the initial escape character, and the map doesn’t work. You will have to find the entire escape sequence (perhaps from the terminal manual) and type it in manually, quoting at the appropriate points, rather than simply pressing ^V
 and then the key.

If you use different kinds of terminals (such as both the console of a PC and an xterm
), you cannot expect that mappings like those just presented will always work. For this reason, Vim provides a portable way to describe such key mappings:

:map <Home> 1G
Enter six characters: < H o m e > (Vim)

Mapping Multiple Input Keys

Mapping multiple keystrokes is not restricted just to function keys. You can also map sequences of regular keystrokes. This can help make it easier to enter certain kinds of text, such as XML or HTML.

Here are some :map
 commands, thanks to Jerry Peek, coauthor of O’Reilly’s Learning the Unix Operating System
 , that make it easier to enter XML markup. (The lines beginning with a double quote are comments. This is discussed later in the section Comments in ex Scripts
 .)

" ADR: need this
:set noremap
" bold:
map! =b </emphasis>^[F<i<emphasis role="bold">
map =B i<emphasis role="bold">^[
map =b a</emphasis>^[
" Move to end of next tag:
map! =e ^[f>a
map =e f>
" footnote (tacks opening tag directly after cursor in text-input mode):
map! =f <footnote>^M<para>^M</para>^M</footnote>^[kO
" Italics ("emphasis"):
map! =i </emphasis>^[F<i<emphasis>
map =I i<emphasis>^[
map =i a</emphasis>^[
" paragraphs:
map! =p ^[jo<para>^M</para>^[O
map =P O<para>^[
map =p o</para>^[
" less-than:
map! *l <
...

Using these commands, to enter a footnote you would enter insert mode and type =f
 . vi
 would then insert the opening and closing tags, and leave you in insert mode between them:

All the world's a stage.<footnote>
<para>

</para>
</footnote>

Needless to say, these macros proved quite useful during the development of this book.

@-Functions

 Named buffers provide yet another way to create “macros” — complex command sequences that you can repeat with only a few keystrokes.

If you type a command line in your text (either a vi
 sequence or an ex
 command
preceded by a colon

), and then delete it into a named buffer, you can execute the contents of that buffer with the @
 command. For example, open a new line and enter:

 cwgadflyCTRL-V

ESC

This will appear as:

cwgadfly^[

on your screen. Press ESC
 again to exit insert mode, then delete the line into buffer g
 by typing "gdd
 . Now whenever you place the cursor at the beginning of a word and type @g
 , that word in your text will be changed to
gadfly

 .

Since @
 is interpreted as a vi
 command, a dot (.) will repeat the entire sequence, even if the buffer contains an ex
 command. @@
 repeats the last @
 , and u
 or U
 can be used to undo the effect of @
 .

This is a simple example. @-functions are useful because they can be adapted to very specific commands. They are especially useful when you are editing between files, because you can store the commands in their named buffers and access them from any file you edit. @-functions are also useful in combination with the global replacement commands discussed in Chapter 6
 .

Executing Buffers from ex

 You can also execute text saved in a buffer from ex
 mode. In this case, you would enter an ex
 command, delete it into a named buffer, and then use the @
 command from the ex
 colon prompt. For example, enter the following text:

ORA publishes great books.
ORA is my favorite publisher.
1,$s/ORA/O'Reilly Media/g

With your cursor on the last line, delete the command into the g
 buffer: "gdd
 . Move your cursor to the first line: kk
 . Then, execute the buffer from the colon command line: :@g
 ENTER
 . Your screen should now look like this:

O'Reilly Media publishes great books.
O'Reilly Media is my favorite publisher.

Some versions of vi
 treat *
 identically to @
 when used from the ex
 command line. In addition, if the buffer character supplied after the @
 or *
 command is *
 , the command will be taken from the default (unnamed) buffer.

[33
]
 From the article by Walter Zintz, in Unix World
 , April 1990.

[34
]
 From an article by Walter Zintz, in Unix World
 , April 1990.

Using ex Scripts

 Certain ex
 commands you use only within vi
 , such as maps, abbreviations, and so on. If you store these commands in your .exrc
 file, the commands will automatically be executed when you invoke vi
 . Any file that contains commands to execute is called a
script

 .

The commands in a typical .exrc
 script are of no use outside vi
 . However, you can save other ex
 commands in a script, and then execute the script on a file or on multiple files. Mostly you’ll use substitute commands in these external scripts.

For a writer, a useful application of ex
 scripts is to ensure consistency of terminology — or even of spelling — across a document set. For example, let’s assume that you’ve run the Unix spell
 command on two files and that the command has printed out the following list of misspellings:

$
spell sect1 sect2

chmod
ditroff
myfile
thier
writeable

As is often the case, spell
 has flagged a few technical terms and special cases it doesn’t recognize, but it has also identified two genuine spelling errors.

Because we checked two files at once, we don’t know which files the errors occurred in or where they are in the files. Although there are ways to find this out, and the job wouldn’t be too hard for only two errors in two files, you can easily imagine how time-consuming the job could grow to be for a poor speller or for a typist proofing many files at once.

To make the job easier, you could write an ex
 script containing the following commands:

%s/thier/their/g
%s/writeable/writable/g
wq

Assume you’ve saved these lines in a file named exscript
 . The script could be executed from within vi
 with the command:

:so exscript

or the script can be applied to a file right from the command line. Then you could edit the files sect1
 and sect2
 as follows:

$
ex -s sect1 < exscript

$
ex -s sect2 < exscript

The -s
 following the invocation of ex
 is the POSIX way to tell the editor to suppress the normal terminal messages.[35
]

If the script were longer than the one in our simple example, we would already have saved a fair amount of time. However, you might wonder if there isn’t some way to avoid repeating the process for each file to be edited. Sure enough, we can write a shell script that includes — but generalizes — the invocation of ex
 , so that it can be used on any number of files.

Looping in a Shell Script

 You may know that the shell is a programming language as well as a command-line interpreter. To invoke ex
 on a number of files, we use a simple type of shell script command called the for
 loop. A for
 loop allows you to apply a sequence of commands for each argument given to the script. (The for
 loop is probably the single most useful piece of shell programming for beginners. You’ll want to remember it even if you don’t write any other shell programs.)

Here’s the syntax of a for
 loop:

for
variable

 in
list

do

command(s)

done

For example:

for file in $*
do
 ex - $file < exscript
done

(The command doesn’t need to be indented; we indented it for clarity.) After we create this shell script, we save it in a file called correct
 and make it executable with the chmod
 command. (If you aren’t familiar with the chmod
 command and the procedures for adding a command to your Unix search path, see Learning the Unix Operating System
 , published by O’Reilly.) Now type:

$
correct sect1 sect2

The for
 loop in correct
 will assign each argument (each file in the list specified by $*
 , which stands for
all arguments

) to the variable file
 and execute the ex
 script on the contents of that variable.

It may be easier to grasp how the for
 loop works with an example whose output is more visible. Let’s look at a script to rename files:

for file in $*
do
 mv $file $file.x
done

Assuming this script is in an executable file called move
 , here’s what we can do:

$
ls

ch01 ch02 ch03 move
$
move ch??

Just the chapter files

$
ls

Check the results

ch01.x ch02.x ch03.x move

With creativity, you could rewrite the script to rename the files more specifically:

for nn in $*
do
 mv ch$nn sect$nn
done

With the script written this way, you’d specify numbers instead of filenames on the command line:

$
ls

ch01 ch02 ch03 move
$
move 01 02 03

$
ls

sect01 sect02 sect03 move

The for
 loop need not take $*
 (all arguments) as the list of values to be substituted. You can specify an explicit list as well. For example:

for
variable

 in
a b c d

assigns
variable

 to
a

 ,
b

 ,
c

 , and
d

 in turn. Or you can substitute the output of a command. For example:

for
variable

 in `grep -l "Alcuin" *`

assigns
variable

 in turn to the name of each file in which grep
 finds the string
Alcuin

 . (grep -l
 prints the filenames whose contents match the pattern, without printing the actual matching lines.)

If no list is specified:

for
variable

the variable is assigned to each command-line argument in turn, much as it was in our initial example. This is actually not equivalent to:

for
variable

 in $*

but to:

for
variable

 in "$@"

which has a slightly different meaning. The symbol $*
 expands to $1
 , $2
 , $3
 , etc., but the four-character sequence "$@"
 expands to "$1"
 , "$2"
 , "$3"
 , etc. Quotation marks prevent further interpretation of special characters.

Let’s return to our main point and our original script:

for file in $*
do
 ex - $file < exscript
done

It may seem a little inelegant to have to use two scripts — the shell script and the ex
 script. And in fact, the shell does provide a way to include an editing script inside a shell script.

Here Documents

 In a shell script, the operator <<
 means to take the following lines, up to a specified string, as input to a command. (This is often called a
here document

 .) Using this syntax, we could include our editing commands in correct
 like this:

for file in $*
do
ex - $file << end-of-script
g/thier/s//their/g
g/writeable/s//writable/g
wq
end-of-script
done

The string end-of-script
 is entirely arbitrary — it just needs to be a string that won’t otherwise appear in the input and can be used by the shell to recognize when the here document is finished. It also
must

 be placed at the start of the line. By convention, many users specify the end of a here document with the string EOF
 , or E_O_F
 , to indicate the end of the file.

There are advantages and disadvantages to each approach shown. If you want to make a one-time series of edits and don’t mind rewriting the script each time, the here document provides an effective way to do the job.

However, it’s more flexible to write the editing commands in a separate file from the shell script. For example, you could establish the convention that you will always put editing commands in a file called exscript
 . Then you only need to write the correct
 script once. You can store it away in your personal “tools” directory (which you’ve added to your search path) and use it whenever you like.

Sorting Text Blocks: A Sample ex Script

 Suppose you want to alphabetize a file of troff
 -encoded glossary definitions. Each term begins with an .IP
 macro. In addition, each entry is surrounded by the .KS
 /.KE
 macro pair. (This ensures that the term and its definition will print as a block and will not be split across a new page.) The glossary file looks something like this:

.KS
.IP "TTY_ARGV" 2n
The command, specified as an argument vector,
that the TTY subwindow executes.
.KE
.KS
.IP "ICON_IMAGE" 2n
Sets or gets the remote image for icon's image.
.KE
.KS
.IP "XV_LABEL" 2n
Specifies a frame's header or an icon's label.
.KE
.KS
.IP "SERVER_SYNC" 2n
Synchronizes with the server once.
Does not set synchronous mode.
.KE

You can alphabetize a file by running the lines through the Unix sort
 command, but you don’t really want to sort every line. You want to sort only the glossary terms, moving each definition — untouched — along with its corresponding term. As it turns out, you can treat each text block as a unit by joining the block into one line. Here’s the first version of your ex
 script:

g/^\.KS/,/^\.KE/j
%!sort

Each glossary entry is found between a .KS
 and .KE
 macro. j
 is the ex
 command to join a line (the equivalent in vi
 is J
). So, the first command joins every glossary entry into one “line.” The second command then sorts the file, producing lines like this:

.KS .IP "ICON_IMAGE" 2n Sets or gets ... image. .KE
.KS .IP "SERVER_SYNC" 2n Synchronizes with ... mode. .KE
.KS .IP "TTY_ARGV" 2n The command, ... executes. .KE
.KS .IP "XV_LABEL" 2n Specifies a ... icon's label. .KE

The lines are now sorted by glossary entry; unfortunately, each line also has macros and text mixed in (we’ve used ellipses [...] to show omitted text). Somehow, you need to insert newlines to “un-join” the lines. You can do this by modifying your ex
 script: mark the joining points of the text blocks
before

 you join them, and then replace the markers with newlines. Here’s the expanded ex
 script:

g/^\.KS/,/^\.KE/-1s/$/@@/
g/^\.KS/,/^\.KE/j
%!sort
%s/@@ /^M/g

The first three commands produce lines like this:

.KS@@ .IP "ICON_IMAGE" 2nn@@ Sets or gets ... image. @@ .KE
.KS@@ .IP "SERVER_SYNC" 2nn@@ Synchronizes with ... mode. @@ .KE
.KS@@ .IP "TTY_ARGV" 2nn@@ The ... vector, @@ that@@ .KE
.KS@@ .IP "XV_LABEL" 2nn@@ Specifies a ... icon's label. @@ .KE

Note the extra space following the @@
 . The spaces result from the j
 command, because it converts each newline into a space.

The first command marks the original line breaks with @@
 . You don’t need to mark the end of the block (after the .KE
), so the first command uses a -1
 to move back up one line at the end of each block. The fourth command restores the line breaks by replacing the markers (plus the extra space) with newlines. Now your file is sorted by blocks.

Comments in ex Scripts

 You may want to reuse such a script, adapting it to a new situation. With a complex script like this, it is wise to add comments so that it’s easier for someone else (or even yourself!) to reconstruct how it works. In ex
 scripts, anything following a double quote is ignored during execution, so a double quote can mark the beginning of a comment. Comments can go on their own line. They can also go at the end of any command that doesn’t interpret a quote as part of the command. (For example, a quote has meaning to map commands and shell escapes, so you can’t end such lines with a comment.)

Besides using comments, you can specify a command by its full name, something that would ordinarily be too time-consuming from within vi
 . Finally, if you add spaces, the ex
 script shown previously becomes this more readable one:

" Mark lines between each KS/KE block
global /^\.KS/,/^\.KE/-1 s /$/@@/
" Now join the blocks into one line
global /^\.KS/,/^\.KE/ join
" Sort each block--now really one line each
%!sort
" Restore the joined lines to original blocks
% s /@@ /^M/g

Surprisingly, the substitute
 command does not work in ex
 , even though the full names for the other commands do.

Beyond ex

 If this discussion has whetted your appetite for even more editing power, you should be aware that Unix provides editors even more powerful than ex
 : the sed
 stream editor and the awk
 data manipulation language. There is also the extremely popular perl
 programming language. For information on these programs, see the O’Reilly books sed & awk
 , Effective awk Programming
 , Learning Perl
 , and Programming Perl
 .

[35
]
 Traditionally, ex
 used a single minus sign for this purpose. Typically, for backward compatibility, both versions are accepted.

Editing Program Source Code

 All of the features discussed so far are of interest whether you are editing regular text or program source code. However, there are a number of additional features that are of interest chiefly to programmers. These include indentation control, searching for the beginning and end of procedures, and using ctags
 .

 The following discussion is adapted from documentation provided by Mortice Kern Systems with their excellent implementation of vi
 for DOS and Windows-based systems, available as a part of the MKS Toolkit or separately as MKS Vi. It is reprinted by permission of Mortice Kern Systems.

Indentation Control

 The source code for a program differs from ordinary text in a number of ways. One of the most important of these is the way in which source code uses indentation. Indentation shows the logical structure of the program: the way in which statements are grouped into blocks. vi
 provides automatic indentation control. To use it, issue the command:

:set autoindent

Now, when you indent a line with spaces or tabs, the following lines will automatically be indented by the same amount. When you press ENTER
 after typing the first indented line, the cursor goes to the next line and automatically indents the same distance as the previous line.

As a programmer, you will find this saves you quite a bit of work getting the indentation right, especially when you have several levels of indentation.

When you are entering code with autoindent enabled, typing CTRL-T
 at the start of a line gives you another level of indentation, and typing CTRL-D
 takes one away.

We should point out that CTRL-T
 and CTRL-D
 are typed while you are in insert mode, unlike most other commands, which are typed in command mode.

There are two additional variants of the CTRL-D
 command:[36
]

^ ^D

When you type ^ ^D
 (^
 CTRL-D
), vi
 shifts the cursor back to the beginning of the line, but only for the current line. The next line you enter will start at the current autoindent level. This is particularly useful for entering C preprocessor commands while typing in C/C++ source code.

0 ^D

When you type 0 ^D
 , vi
 shifts the cursor back to the beginning of the line. In addition, the current autoindent level is reset to zero; the next line you enter will not be autoindented.[37
]

Try using the autoindent
 option when you are entering source code. It simplifies the job of getting indentation correct. It can even sometimes help you avoid bugs — e.g., in C source code, where you usually need one closing curly brace (}
) for every level of indentation you go backward.

The <<
 and >>
 commands are also helpful when indenting source code. By default, >>
 shifts a line right eight spaces (i.e., adds eight spaces of indentation) and <<
 shifts a line left eight spaces. For example, move the cursor to the beginning of a line and press >
 twice (>>
). You will see the line move right. If you now press <
 twice (<<
), the line will move back again.

You can shift a number of lines by typing the number followed by >>
 or <<
 . For example, move the cursor to the first line of a good-sized paragraph and type 5>>
 . You will shift the first five lines in the paragraph.

The default shift is eight spaces (right or left). This default can be changed with a command such as:

:set shiftwidth=4

You will find it convenient to have a shiftwidth
 that is the same size as the width between tab stops.

vi
 attempts to be smart when doing indenting. Usually, when you see text indented by eight spaces at a time, vi
 will actually insert tab characters into the file, since tabs usually expand to eight spaces. This is the Unix default; it is most noticeable when you type a tab during normal input and when files are sent to a printer — Unix expands them with a tab stop of eight spaces.

If you wish, you can change how vi
 represents tabs on your screen, by changing the tabstop
 option. For example, if you have something that is deeply indented, you might wish to have use a tab stop setting of every four characters, so that the lines will not wrap. The following command will make this change:

:set tabstop=4

Note

Changing your tab stops is not recommended. Although vi
 will display the file using an arbitrary tab stop setting, the tab characters in your files will still be expanded using an eight-character tab stop by every other Unix program.

Even worse: mixing tabs, spaces, and unusal tab stops will make your file completely unreadable when viewed outside the editor, with a pager such as more
 , or when printed. Eight-character tab stops are one of the facts of life on Unix, and you should just get used to them.

Sometimes indentation won’t work the way you expect, because what you believe to be a tab character is actually one or more spaces. Normally, your screen displays both a tab and a space as whitespace, making the two indistinguishable. You can, however, issue the command:

:set list

This alters your display so that a tab appears as the control character ^I
 and an end-of-line appears as a $
 . This way, you can spot a true space, and you can see extra spaces at the end of a line. A temporary equivalent is the :l
 command. For example, the command:

:5,20 l

displays lines 5 through 20, showing tab characters and end-of-line characters.

A Special Search Command

 The characters (
 , [
 , {
 , and <
 can all be called opening brackets. When the cursor is resting on one of these characters, pressing the %
 key moves the cursor from the opening bracket forward to the corresponding closing bracket —)
 ,]
 , }
 , or >
 — keeping in mind the usual rules for nesting brackets.[38
]
 For example, if you were to move the cursor to the first (
 in:

if (cos(a[i]) == sin(b[i]+c[i]))
{
 printf("cos and sin equal!\n");
}

and press %
 , you would see that the cursor jumps to the parenthesis at the end of the line. This is the closing parenthesis that matches the opening one.

Similarly, if the cursor is on one of the closing bracket characters, pressing %
 will move the cursor backward to the corresponding opening bracket character. For example, move the cursor to the closing brace after the printf
 line just shown and press %
 .

vi
 is even smart enough to find a bracket character for you. If the cursor is not on a bracket character, when you press %
 , vi
 will search forward on the current line to the first open or close bracket character it finds, and then it will move to the matching bracket! For instance, with the cursor on the >
 in the first line of the example just shown, %
 will find the open parenthesis and then move to the close parenthesis.

Not only does this search character help you move forward and backward through a program in long jumps, it lets you check the nesting of brackets and parentheses in source code. For example, if you put the cursor on the first {
 at the beginning of a C function, pressing %
 should move you to the }
 that (you think) ends the function. If it’s the wrong one, something has gone wrong somewhere. If there is no matching }
 in the file, vi
 will beep at you.

Another technique for finding matching brackets is to turn on the following option:

:set showmatch

Unlike %
 , setting showmatch
 (or its abbreviation sm
) helps you while you’re in insert mode. When you type a)
 or a }
 ,[39
]
 the cursor will briefly move back to the matching (
 or {
 before returning to your current position. If the match doesn’t exist, the terminal beeps. If the match is merely off-screen, vi
 silently keeps going. Vim 7.0 and later can highlight the matching parenthesis or brace, using the matchparen
 plugin, which is loaded by default.

Using Tags

 The source code for a large C or C++ program will usually be spread over several files. Sometimes, it is difficult to keep track of which file contains which function definitions. To simplify matters, a Unix command called ctags
 can be used together with the :tag
 command of vi
 .

Note

Unix versions of ctags
 handle the C language and often Pascal and Fortran 77. Sometimes they even handle assembly language. Almost universally, however, they do not handle C++. Other versions are available that can generate tags
 files for C++ and for other languages and file types. For more information, see Enhanced Tags
 .

You issue the ctags
 command at the Unix command line. Its purpose is to create an information file that vi
 can use later to determine which files define which functions. By default, this file is called tags
 . From within vi
 , a command of the form:

:!ctags file.c

creates a file named tags
 in your current directory that contains information on the functions defined in file.c
 . A command such as:

:!ctags *.c

creates a tags
 file describing all the C source files in the directory.

Now suppose your tags
 file contains information on all the source files that make up a C program. Also suppose that you want to look at or edit a function in the program, but you do not know where the function is. From within vi
 , the command:

:tag
name

looks at the tags
 file to find out which file contains the definition of the function
name

 . It then reads in the file and positions the cursor on the line where the name is defined. In this way, you don’t have to know which file you have to edit; you only have to decide which function you want to edit.

You can use the tag facility from vi
 ’s command mode as well. Place the cursor on the identifier you wish to look up, and then type ^]
 . vi
 will perform the tag lookup and move to the file that defines the identifier. Be careful where you place the cursor; vi
 uses the “word” under the cursor starting at the current cursor position, not the entire word containing the cursor.

Note

If you try to use the :tag
 command to read in a new file and you haven’t saved your current text since the last time you changed it, vi
 will not let you go to the new file. You must either write out your current file with the :w
 command and then issue :tag
 , or else type:

:tag!
name

to override vi
 ’s reluctance to discard edits.

 The Solaris version of vi
 actually supports tag
stacks

 . It appears, however, to be completely undocumented in the Solaris manpages. Because many, if not most, versions of Unix vi
 don’t do tag stacking, in this book we have moved the discussion of this feature to Tag Stacks
 where tag stacking is introduced.

[36
]
 These do not work in elvis
 .

[37
]
 The nvi
 1.79 documentation has these two commands switched, but the program actually behaves as described here.

[38
]
 Of the versions tested, only nvi
 supported matching <
 and >
 with %
 . vile
 lets you set an option with the sets of pairs of characters that match for %
 .

[39
]
 In elvis
 , Vim, and vile
 , showmatch
 also shows you matching square brackets ([
 and]
).

Chapter 8. Introduction to the vi Clones

And These Are My Brothers, Darrell, Darrell, and Darrell

There are a number of freely available “clones” of the vi
 editor. Appendix D
 provides a pointer to a web site that lists all known vi
 clones, and Part II
 covers Vim in great detail. Part III
 covers an additional three of the more popular clones. They are:

	Version 1.79 of Keith Bostic’s nvi
 (Chapter 16
)

	Version 2.2.0 of Steve Kirkendall’s elvis
 (Chapter 17
)

	Version 9.6.4 of vile
 , by Kevin Buettner, Tom Dickey, Paul Fox, and Clark Morgan (Chapter 18
)

All the clones were written either because the source code for vi
 was not freely available — making it impossible to port vi
 to a non-Unix environment or to study the code — or because Unix vi
 (or another clone!) did not provide desired functionality. For example, Unix vi
 often has limits on the maximum length of a line, and it cannot edit binary files. (The chapters on the various programs present more information about each one’s history.)

Each program provides a large number of extensions to Unix vi
 ; often, several of the clones provide the same extensions, although usually not in an identical way. Instead of repeating the treatment of each common feature in each program’s chapter, we have centralized the discussion here. You can think of this chapter as presenting “what the clones do,” with each clone’s own chapter presenting “how the clone does it.”

The order in which topics are presented in this chapter is used in an expanded fashion in Part II
 on Vim, and in a much more compact fashion in the chapters in Part III
 . This chapter covers the following:

Multiwindow editing

This is the ability to split the (terminal) screen into multiple “windows,” and/or the ability to use multiple windows within a GUI environment. You can edit a different file in each window or have several views into the same file. This is perhaps the single most important extension over regular vi
 .

GUI interfaces

All of the clones except nvi
 can be compiled to support an X Window interface. If you have a system running X, use of the GUI version may be preferable to splitting the screen of an xterm
 (or other terminal emulator); the GUI versions generally provide such nice features as scrollbars and multiple fonts. The native GUIs of other operating systems may also be supported.

Extended regular expressions

All of the clones make it possible to match text using regular expressions that are similar or identical to those provided by the Unix egrep
 command.

Enhanced tags

As described earlier in Using Tags
 , you can use the ctags
 program to build up a searchable database of your files. The clones make it possible to “stack” tags by saving your current location when you do a tag search. You can then return to that location. Multiple locations can be saved in a “last in, first out” (LIFO) order, producing a stack of locations.

Several of the vi
 clone authors and the author of at least one ctags
 clone have gotten together to define a standard form for an enhanced version of the ctags
 format. In particular, it is now easier to use the tag functionality with programs written in C++, which allows overloaded function names.

Improved editing facilities

All of the clones provide the ability to edit the ex
 command line, an “infinite undo” capability, arbitrary length lines and 8-bit data, incremental searching, an option to scroll the screen left to right for long lines instead of wrapping long lines, and mode indicators, as well as other features.

Programming assistance

Several of the editors provide features that allow you to stay within the editor during the typical “edit-compile-debug” cycle of software development.

Syntax highlighting

In elvis
 , Vim, and vile
 , you can arrange to display different parts of a file in different colors and fonts. This is particularly useful for editing program source code.

Multiwindow Editing

 Perhaps the single most important feature that the clones offer over standard vi
 is the ability to edit files in multiple “windows.” This makes it possible to easily work on more than one file at the same time, and to “cut and paste” text from one file to another via yanking and putting.

Note

In the clones, you need not split the screen to yank and put between files; only the original vi
 discards the cut buffers when switching between files.

There are two fundamental concepts underlying each editor’s multiwindow implementation: buffers and windows.

 A
buffer

 holds text to be edited. The text may come from a file, or it may be brand new text to be eventually written to a file. Any given file has only one buffer associated with it.

A
window

 provides a view into a buffer, allowing you to see and modify the text in the buffer. There may be multiple windows associated with the same buffer. Changes made to the buffer in one window are reflected in any other windows open on the same buffer. A buffer may also have no windows associated with it. In that case, you can’t do a whole lot with the buffer, although you can open a window on it later. Closing the last window open on a buffer effectively “hides” the file. If the buffer has been modified but not written to disk, the editor may or may not let you close the last window that’s open on it.

When you create a new window, the editor splits the current screen. For most of the editors, this new window shows another view on the file you’re currently editing. You then switch to the window where you wish to edit the next file, and instruct the editor to start editing the file there. Each editor provides vi
 and ex
 commands to switch back and forth between windows, as well as the ability to change the window size and hide and restore windows.

Chapter 11
 is devoted to multiwindow editing in Vim. In each of the other editors’ chapters in Part III
 , we show a sample split screen (editing the same two files), and describe how to split the screen and move between windows

 .

GUI Interfaces

 elvis
 , Vim, and vile
 provide graphical user interface (GUI) versions that can take advantage of a bitmapped display and mouse. Besides supporting X Windows under Unix, support for Microsoft Windows or other windowing systems may also be available. Table 8-1
 summarizes the available GUIs for the different clones.

Table 8-1. Available GUIs

	Editor
	Terminal
	X11
	Microsoft Windows
	OS/2
	BeOS
	Macintosh
	Amiga
	QNX
	OpenVMS

	Vim
	•
	•
	•
	•
	•
	•
	•
	
	

	
nvi

	•
	
	
	
	
	
	
	
	

	
elvis

	•
	•
	•
	•
	
	
	
	
	

	
vile

	•
	•
	•
	•
	•
	
	
	•
	•

Extended Regular Expressions

 The metacharacters available in vi
 ’s search and substitution regular expressions are described back in Chapter 6
 in the section Metacharacters Used in Search Patterns
 . Each of the clones provides some form of extended regular expressions, which are either optional or always available. Typically, these are the same (or almost the same) as those provided by egrep
 . Unfortunately, each clone’s extended flavor is slightly different from the others’.

To give you a feel for what extended regular expressions can do, we present them in the context of nvi
 . The section Extended Regular Expressions
 describes Vim’s extended regular expressions, and each clone’s chapter in Part III
 describes that editor’s extended syntax, without repeating the examples.

 nvi
 ’s extended regular expressions are the Extended Regular Expressions (EREs) as defined by the POSIX standard. To enable this feature, use set extended
 from either your .nexrc
 file or from the ex
 colon prompt.

Besides the standard metacharacters described in Chapter 6
 and the POSIX bracket expressions mentioned in POSIX Bracket Expressions
 in the same chapter, the following metacharacters are available:

|

 Indicates alternation. For example, a|b
 matches either
a

 or
b

 . However, this construct is not limited to single characters: house|home
 matches either of the strings
house

 or
home

 .

(...)

 Used for grouping, to allow the application of additional regular expression operators. For example, house|home
 can be shortened (if not simplified) to ho(use|me)
 . The *
 operator can be applied to text in parentheses: (house|home)*
 matches
home

 ,
homehouse

 ,
househomehousehouse

 , and so on.

When extended
 is set, text grouped with parentheses acts like text grouped in \(...\)
 in regular vi
 : the actual text matched can be retrieved in the replacement part of a substitute command with \1
 , \2
 , etc. In this case, \(
 represents a literal left parenthesis.

+

 Matches
one

 or more of the preceding regular expressions. This is either a single character or a group of characters enclosed in parentheses. Note the difference between +
 and *
 . The *
 is allowed to match nothing, but with +
 there must be at least one match. For example, ho(use|me)*
 matches
ho

 as well as
home

 and
house

 , but ho(use|me)+
 will not match
ho

 .

?

 Matches zero or one occurrence of the preceding regular expression. This indicates “optional” text that is either present or not present. For example, free?d
 will match either
fred

 or
freed

 , but nothing else.

{...}

 Defines an
interval expression

 . Interval expressions describe counted numbers of repetitions. In the following descriptions,
n

 and
m

 represent integer constants:

{

n

 }

Matches exactly
n

 repetitions of the previous regular expression. For example, (home|house){2}
 matches
homehome

 ,
homehouse

 ,
househome

 , and
househouse

 , but nothing else.

{

n

 ,}

Matches
n

 or more repetitions of the previous regular expression. Think of it as “as least
n

 ” repetitions.

{

n

 ,

m

 }

Matches
n

 to
m

 repetitions. The bounding is important, since it controls how much text would be replaced during a substitute command.[40
]

When extended
 is not set, nvi
 provides the same functionality with \{
 and \}

 .

[40
]
 The *
 , +
 , and ?
 operators can be reduced to {0,}
 , {1,}
 , and {0,1}
 respectively, but the former are much more convenient to use. Also, interval expressions were developed later in the history of Unix regular expressions.

Enhanced Tags

 The “Exuberant ctags
 ” program is a ctags
 clone that is considerably more capable than Unix ctags
 . It produces an extended tags
 file format that makes the tag searching and matching process more flexible and powerful. We describe the Exuberant version first, since it is supported by most of the vi
 clones.

This section also describes tag stacks: the ability to save multiple locations visited with the :tag
 or ^]
 commands. All of the clones support tag stacking.

Exuberant ctags

The Exuberant ctags
 program was written
 by Darren Hiebert, and, as of this writing, the current version is 5.7. Its home page is http://ctags.sourceforget.net/
 . The following list of the program’s features is adapted from the README
 file in the ctags
 distribution:

	It is capable of generating tags for
all

 types of C and C++ language tags, including class names, macro definitions, enum names, enumerators (values inside an enumeration), function (method) definitions, function (method) prototypes/declarations, structure members and class data members, struct names, typedefs, union names, and variables. (Whew!)

	It supports both C and C++ code.

	Twenty-nine other languages are also supported, including C# and Java.

	It is very robust in parsing code and is far less easily fooled by code containing #if
 preprocessor conditional constructs.

	It can be used to print out a human-readable list of selected objects found in source files.

	It supports generation of GNU Emacs-style tag files (etags
).

	It works on Amiga, Cray, MS-DOS, Macintosh, OS/2, QDOS, QNX, RISC OS, Unix, VMS, and Windows 95 through XP. Some precompiled binaries are available on the web site.

Exuberant ctags
 produces tags
 files in the form described next.

The New tags Format

 Traditionally, a tags
 file has three tab-separated fields: the tag name (typically an identifier); the source file containing the tag; and an indication of where to find the identifier. This indication is either a simple line number or a nomagic
 search pattern enclosed either in slashes or question marks. Furthermore, the tags
 file is always sorted.

This is the format generated by the Unix ctags
 program. In fact, many versions of vi
 allowed
any

 command in the search pattern field (a rather gaping security hole). Furthermore, due to an undocumented implementation quirk, if the line ended with a semicolon and then a double quote (;"
), anything following those two characters would be ignored. (The double quote starts a comment, as it does in .exrc
 files.)

The new format is backward compatible with the traditional one. The first three fields are the same: tag, filename, and search pattern. Exuberant ctags
 only generates search patterns, not arbitrary commands. Extended attributes are placed after a separating ;"
 . Each attribute is separated from the next by a tab character, and consists of two colon-separated subfields. The first subfield is a keyword describing the attribute; the second is the actual value. Table 8-2
 lists the supported keywords.

Table 8-2. Extended ctags keywords

	Keyword
	Meaning

	
kind

	
The value is a single letter that indicates the tag’s lexical type.
 It can be f
 for a function, v
 for a variable, and so on. Since the default attribute name is kind
 , a solitary letter can denote the tag’s type (e.g., f
 for a function).

	
file

	
For tags that
 are “static,” i.e., local to the file. The value should be the name of the file.

If the value is given as an empty string (just file:
), it is understood to be the same as the filename field; this special case was added partly for the sake of compactness, and partly to provide an easy way to handle tags
 files that aren’t in the current directory. The value of the filename field is always relative to the directory in which the tags
 file itself resides.

	
function

	
For local tags.
 The value is the name of function in which they’re defined.

	
struct

	
For fields in a struct
 . The value is the name of the structure.

	
enum

	
For values in an enum
 data type.
 The value is the name of the enum
 type.

	
class

	
For C++ member functions and variables.
 The value is the name of the class.

	
scope

	
Intended mostly for
 C++ class member functions. It will usually be private
 for private members or omitted for public members, so users can restrict tag searches to only public members.

	
arity

	
For functions.
 Defines the number of arguments.

If the field does not contain a colon, it is assumed to be of type kind
 . Here are some examples:

ARRAYMAXED awk.h 427;" d
AVG_CHAIN_MAX array.c 38;" d file:
array.c array.c 1;" F

ARRAYMAXED
 is a C #define
 macro defined in awk.h
 . AVG_CHAIN_MAX
 is also a C macro, but it is used only in array.c
 . The third line is a bit different: it is a tag for the actual source file! This is generated with the -i F
 option to Exuberant ctags
 , and allows you to give the command :tag array.c
 . More usefully, you can put the cursor over a filename and use the ^]
 command to go to that file (for example, if you’re editing a Makefile
 and wish to go to a particular source file).

Within the value part of each attribute, the backslash, tab, carriage return, and newline characters should be encoded as \\
 , \t
 , \r
 , and \n
 , respectively.

Extended tags
 files may have some number of initial tags that begin with !_TAG_
 . These tags usually sort to the front of the file and are useful for identifying which program created the file. Here is what Exuberant ctags
 generates:

!_TAG_FILE_FORMAT 2 /extended format; --format=1 will not append ;" to lines/
!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted, 2=foldcase/
!_TAG_PROGRAM_AUTHOR Darren Hiebert /dhiebert@users.sourceforge.net/
!_TAG_PROGRAM_NAME Exuberant Ctags //
!_TAG_PROGRAM_URL http://ctags.sourceforge.net /official site/
!_TAG_PROGRAM_VERSION 5.7 //

Editors can take advantage of these special tags to implement special features. For example, Vim pays attention to the !_TAG_FILE_SORTED
 tag and will use a binary search to search the tags
 file instead of a linear search if the file is indeed sorted.

If you use tags
 files, we recommend that you get and install Exuberant ctags

 .

Tag Stacks

 The ex
 command :tag
 and the vi
 mode ^]
 command provide a limited means of finding identifiers, based on the information provided in a tags
 file. Each of the clones extends this ability by maintaining a
stack

 of tag locations. Each time you issue the ex
 command :tag
 , or use the vi
 mode ^]
 command, the editor saves the current location before searching for the specified tag. You may then return to a saved location using (usually) the vi
 command ^T
 or an ex
 command.

Solaris vi
 tag stacking and an example are presented next. Vim’s tag stacking is described in the section Tag Stacking
 . The ways the other clones handle tag stacking is described in each editor’s respective chapter in Part III
 .

Solaris vi

 Surprisingly enough, the Solaris version of vi
 supports tag stacking. Perhaps not so surprisingly, this feature is completely undocumented in the Solaris
ex

 (1) and
vi

 (1) manual pages. For completeness, we summarize Solaris vi
 tag stacking in Tables 8-3
 , 8-4
 , and 8-5
 . Tag stacking in Solaris vi
 is quite simple.[41
]

Table 8-3. Solaris vi tag commands

	Command
	Function

	
ta
 [g
][!
]
tagstring

	
Edit the file containing

tagstring

 as defined in the tags
 file. The !
 forces vi
 to switch to the new file if the current buffer has been modified but not saved.

	
po
 [p
][!
]
	
Pop the tag stack
 by one element.

Table 8-4. Solaris vi command mode tag commands

	Command
	Function

	
^]

	
Look up the location of the identifier under the cursor in the tags
 file, and move to that location. If tag stacking is enabled, the current location is automatically pushed onto the tag stack.

	
^T

	
Return to the previous location
 in the tag stack, i.e., pop off one element.

Table 8-5. Solaris vi options for tag management

	Option
	Function

	
taglength
 , tl

	
Controls the number of

 significant characters in a tag that is to be looked up. The default value of zero indicates that all characters are significant.

	
tags
 , tagpath

	
The value is a list of

 filenames in which to look for tags. The default value is "tags /usr/lib/tags"
 .

	
tagstack

	
When set to true,
 vi
 stacks each location on the tag stack. Use :set notagstack
 to disable tag stacking.

Exuberant ctags and Vim

To give you a feel for using tag stacks, we present a short example that uses Exuberant ctags
 and Vim.

Suppose you are working with a program that uses the GNU getopt_long
 function, and you need to understand more about it.

GNU getopt
 consists of three files: getopt.h
 , getopt.c
 , and getopt1.c
 .

First, you create the tags
 file, and then you start by editing the main program, found in main.c
 :

$
ctags *.[ch]

$
ls

Makefile getopt.c getopt.h getopt1.c main.c tags
$
vim main.c

	Keystrokes
	Results

	
/getopt_

	
 /* option processing. ready, set, go! */
 for (optopt = 0, old_optind = 1;
 (c =g

etopt_long(argc, argv, optlist, optab, NULL)) != EOF;
 optopt = 0, old_optind = optind) {
 if (do_posix)
 opterr = TRUE;

	
	
Edit main.c
 and move to the call to getopt_long
 .

	
^]

	
 intg

etopt_long (int argc, char *const *argv, const char *options,
 const struct option *long_options, int *opt_index)
 {
 return _getopt_internal (argc, argv, options, long_options, opt_index, 0);
 }

 "getopt1.c" 192L, 4781C

	
	
Do a tag lookup on getopt_long
 . Vim moves to getopt1.c
 , placing the cursor on the definition of getopt_long
 .

It turns out that getopt_long
 is a “wrapper” function for _getopt_internal
 . You place the cursor on _getopt_internal
 and do another tag search.

	Keystrokes
	Results

	
3jf_ ^]

	
 int_

getopt_internal (int argc, char *const *argv, const char *optstring,
 const struct option *longopts, int *longind, int long_only)
 {
 int result;

 getopt_data.optind = optind;
 getopt_data.opterr = opterr;

 result = _getopt_internal_r (argc, argv, optstring, longopts,
 longind, long_only, &getopt_data);

 optind = getopt_data.optind;
 "getopt.c" 1225L, 33298C

	
	
You have now moved to getopt.c
 . To find out more about struct option
 , move the cursor to option
 and do another tag search.

	
jfo; ^]

	
 one). For long options that have a zero `flag' field, `getopt'
 returns the contents of the `val' field. */s

truct option
 {
 const char *name;
 /* has_arg can't be an enum because some compilers complain about
 type mismatches in all the code that assumes it is an int. */
 int has_arg;
 int *flag;
 int val;
 };

 /* Names for the values of the `has_arg' field of `struct option'. */

 "getopt.h" 177L, 6130C

	
	
The editor moves to the definition of struct
 option
 in getopt.h
 . You may now look over the comments that explain how it’s used.

	
:tags

	
 # TO tag FROM line in file/text
 1 1 getopt_long 310 main.c
 2 1 _getopt_internal 67 getopt1.c
 3 1 option 1129 getopt.c

	
	
The :tags
 command in Vim displays the tag stack.

Typing ^T
 three times would move you back to main.c
 , where you started. The tag facilities make it easy to move around as you edit source code

 .

[41
]
 This information was discovered based on experimentation. YMMV (your mileage may vary).

Improved Facilities

 All of the clones provide additional features that make simple text editing easier and more powerful:

Editing the ex command line

The ability to edit ex
 mode commands as you type them, possibly including a saved history of ex
 commands. Also, the ability to complete filenames and possibly other things, such as commands and options.

No line length limit

The ability to edit lines of essentially arbitrary length. Also, the ability to edit files containing any 8-bit character.

Infinite undo

The ability to successively undo all of the changes you’ve made to a file.

Incremental searching

The ability to search for text while you are typing the search pattern.

Left/right scrolling

The ability to let long lines trail off the edge of the screen instead of wrapping.

Visual mode

The ability to select arbitrary contiguous chunks of texts upon which some operation will be done.

Mode indicators

A visible indication of insert mode versus command mode, as well as indicators of the current line and column.

Command-Line History and Completion

 Users of the csh
 , tcsh
 , ksh
 , zsh
 , and bash
 shells have known for years that being able to recall previous commands, edit them slightly, and resubmit them makes them more productive.

This is no less true for editor users than it is for shell users; unfortunately, Unix vi
 does not have any facility to save and recall ex
 commands.

This lack is remedied in each of the clones. Although each one provides a different way of saving and recalling the command history, each one’s mechanism is usable and useful.

In addition to a command history, all of the editors can do some kind of
completion

 . This is where you type the beginning of, for example, a filename. You then type a special character (such as tab), and the editor completes the filename for you. All of the editors can do filename completion, and some of them can complete other things as well. Details for Vim are found in the section Keyword and Dictionary Word Completion
 . Details for the other editors are provided in each editor’s chapter in Part III
 .

Arbitrary Length Lines and Binary Data

 All the clones can handle lines of any length.[42
]
 Historic versions of vi
 often had limits of around 1,000 characters per line; longer lines would be truncated.

All are also 8-bit clean, meaning that they can edit files containing any 8-bit character. It is even possible to edit binary and executable files, if necessary. This can be really useful at times. You may or may not have to tell each editor that a file is binary:

nvi

 Automatically handles binary data. No special command-line or ex
 options are required.

elvis

 Under Unix, does not treat a binary file differently from any other file. On other systems, it uses the elvis.brf
 file to set the binary
 option, to avoid newline translation issues. (The elvis.brf
 file and hex
 display modes are described in the section Interesting Features
 .)

Vim

 Does not limit the length of a line. When binary
 is not set, Vim is like nvi
 and automatically handles binary data. However, when editing a binary file, you should either use the -b
 command-line option or :set binary
 . These set several other Vim options that make it easier to edit binary files.

vile

 Automatically handles binary data. No special command-line or ex
 options are required.

 Finally, there is one tricky detail. Traditional vi
 always writes the file with a final newline appended. When editing a binary file, this might add one character to the file and cause problems. nvi
 and Vim are compatible with vi
 by default and add that newline. In Vim you can set the binary
 option so this doesn’t happen. elvis
 and vile
 never append the extra newline.

Infinite Undo

 Unix vi
 allows you to undo only your last change, or to restore the current line to the state it was in before you started making any changes. All of the clones provide “infinite undo,” the ability to keep undoing your changes, all the way back to the state the file was in before you started
any

 editing.

Incremental Searching

 When
incremental searching

 is used, the editor moves the cursor through the file, matching text
as you type

 the search pattern. When you finally type ENTER
 , the search is finished.[43
]
 If you’ve never seen it before, it is rather disconcerting at first. However, after a while you get used to it, and eventually you come to wonder how you ever did without it.

nvi
 , Vim, and elvis
 enable incremental searching with an option, and vile
 uses two special vi
 mode commands. vile
 can be compiled with incremental searching disabled, but it is enabled by default. Table 8-6
 shows the options each editor provides.

Table 8-6. Incremental searching

	Editor
	Option
	Command
	Action

	
nvi

	
searchincr

	
	
The cursor moves through the
 file as you type, always being placed on the first character of the text that matches.

	Vim
	
incsearch

	
	
The cursor moves through the
 file as you type. Vim highlights the text that matches what you’ve typed so far.

	
elvis

	
incsearch

	
	
The cursor moves through the
 file as you type. elvis
 highlights the text that matches what you’ve typed so far.

	
vile

	
	
^X S
 , ^X R

	
The cursor moves through the
 file as you type, always being placed on the first character of the text that matches. ^X S
 incrementally searches forward through the file, while ^X R
 incrementally searches backward.

Left-Right Scrolling

 By default, vi
 and most of the clones wrap long lines around the screen. Thus, a single logical line of the file may occupy multiple physical lines on your screen.

There are times when it might be preferable for a long line to simply disappear off the righthand edge of the screen instead of wrapping. Moving onto that line and then moving to the right would “scroll” the screen sideways. This feature is available in all of the clones. Typically, a numeric option controls how much to scroll the screen, and a Boolean option controls whether lines wrap or disappear off the edge of the screen. vile
 also has command keys to perform sideways scrolling of the entire screen. Table 8-7
 shows how to use horizontal scrolling with each editor.

Table 8-7. Sideways scrolling

	Editor
	Scroll amount
	Option
	Action

	
nvi

	
sidescroll = 16

	
leftright

	
Off by default.

 When set, long lines simply go off the edge of the screen. The screen scrolls left or right by 16 characters at a time.

	
elvis

	
sidescroll = 8

	
wrap

	
Off by default.

 When set, long lines simply go off the edge of the screen. The screen scrolls left or right by eight characters at a time.

	Vim
	
sidescroll = 0

	
wrap

	
Off by default.
 When set, long lines simply go off the edge of the screen. With sidescroll
 set to zero, each scroll puts the cursor in the middle of the screen. Otherwise, the screen scrolls by the desired number of characters.

	
vile

	
sideways = 0

	
linewrap

	
Off by default.

 When set, long lines wrap. Thus, the default is to have long lines go off the edge of the screen. Long lines are marked at the left and right edges with <
 and >
 . With sideways
 set to zero, each scroll moves the screen by ⅓. Otherwise, the screen scrolls by the desired number of characters.

	
	
	
horizscroll

	
On by default.
 When set, moving the cursor along a long line offscreen shifts the whole screen. When not set, only the current line shifts; this may be desirable on slower displays.

vile
 has two additional commands,
 ^X ^R
 and ^X ^L
 . These two commands scroll the screen right and left, respectively, leaving the cursor in its current location on the line. You cannot scroll so far that the cursor position would go off the screen.

Visual Mode

 Typically, operations in vi
 apply to units of text — such as lines, words, or characters — or to sections of text from the current cursor position to a position specified by a search command. For example, d/^}
 deletes up to the next line that starts with a right brace. elvis
 and vile
 provide a mechanism to explicitly select a region of text to which an operation will apply. In particular, it is possible to select a rectangular block of text and apply an operation to all the text within the rectangle. See the section Visual Mode Motion
 for details on Vim. For details on the other editors, see each editor’s respective chapter in Part III
 .

Mode Indicators

 As you know by now, vi
 has two modes — command mode and insert mode. Usually, you can’t tell by looking at the screen which mode you’re in. Furthermore, it’s often useful to know where in the file you are, without having to use the ^G
 or ex
 :=
 commands.

 Two options address these issues: showmode
 and ruler
 . All the clones agree on the option names and meanings, and even Solaris vi
 has the showmode
 option.

Table 8-8
 lists the special features in each editor.

Table 8-8. Position and mode indicators

	Editor
	With ruler, displays
	With showmode, displays

	
nvi

	Row and column
	
Insert, change, replace, and command mode indicators

	
elvis

	Row and column
	
Input and command mode indicators

	Vim
	Row and column
	
Insert, replace, and visual mode indicators

	
vile

	Row, column
 , and percent of file
	
Insert, replace, and overwrite mode indicators

	
vi

	N/A
	
Separate mode indicators for open, input, insert, append, change, replace, replace one character, and substitute modes

The GUI version of elvis
 changes the cursor shape depending on the current mode

 .

[42
]
 Well, up to the maximum value of a C long
 , 2,147,483,647 (on a 32-bit computer).

[43
]
 Emacs has always had incremental searching.

Programming Assistance

 vi
 was developed primarily as a programmer’s editor. It has features that make things especially easy for the traditional-style Unix programmer — someone writing C programs and troff
 documentation. (Real programmers write real documentation in troff
 .) Several of the clones are proud bearers of this tradition, adding a number of features that make them even more usable and capable for the “power user.”[44
]

Two features (among many) most deserve discussion:

Edit-compile speedup

elvis
 , Vim, and vile
 allow you to easily invoke make
 , capture the errors from your compiler, and automatically move to the lines containing the errors. You can then fix the errors and rerun make
 , all from within the editor.

Syntax highlighting

elvis
 , Vim, and vile
 have the ability to highlight and/or change the color of different syntactic elements in different kinds of files.

Edit-Compile Speedup

 Programming often consists of an “edit-compile-debug” cycle. You make changes, compile the new code, and then test and debug it. When learning a new language, syntax errors are especially common, and it is frustrating to be constantly stopping and restarting (or suspending and resuming) the editor in between compiles.

elvis
 , Vim, and vile
 all provide facilities that allow you to stay within the editor while compiling your program. Furthermore, they capture the compiler’s output and use it to automatically go to each line that contains an error.[45
]
 Consistent use of this capability can save time and improve programmer productivity.

Here is an example, using elvis
 . You are beginning to learn C++, so you start out with the obligatory first program:

	Keystrokes
	Results

	
:w hello.C

	

#

include <iostream>

 int main()
 {
 std::cout << "hello, world!\n ;
 return 0;
 }

	
	
You enter the program, forgetting the closing quote, and then write the program to hello.C
 .

	
:make hello

	
 g++ hello.C -o hello
 hello.C:5: error: missing terminating " character
 hello.C: In function 'int main()':
 hello.C:6: error: expected primary-expression before 'return'
 hello.C:6: error: expected `;' before 'return'
 make: *** [hello] Error 1

	
	
You type the :make
 command to run make
 , which in turn runs the C++ compiler. (In this case, g++
 .) The output from g++
 describes each error.

	
	
 #include <iostream>

 int main()
 {

std::cout << "hello, world\n ;
 return 0;
 }
 ~
 line 5: missing terminating " character 5,8 Command

	
	
The make
 output disappears quickly, and elvis
 replaces the status line with the first error message, positioning the cursor on the line that needs to be fixed.

You can fix the error, resave the file, rerun :make
 , and eventually compile your program without errors.

All of the editors have similar facilities. They will all compensate for changes in the file, correctly moving you to subsequent lines with errors. See the section Compiling and Checking Errors with Vim
 for details on Vim. For details on the other editors, see each editor’s respective chapter in Part III
 .

Syntax Highlighting

 elvis
 , Vim, and vile
 all provide some form of syntax highlighting. All three also provide syntax coloring, which changes the color of different parts of the file on displays that can do so (such as under X11 or the Linux console). See the section Syntax Highlighting
 for more information on syntax highlighting in Vim. For information on the other editors, see each editor’s chapter in Part III

 .

[44
]
 In contrast to the What You See Is What You Get (WYSIWYG) philosophy, Unix is the You Asked For It, You Got It operating system. (With thanks to Scott Lee.)

[45
]
 Yet another feature that Emacs users are accustomed to comes to vi
 .

Editor Comparison Summary

 Most of the clones support most or all of the features described earlier in this chapter. Table 8-9
 summarizes what each editor supports. Of course, the table does not tell the full story; the details are provided in the rest of the book.

Table 8-9. Feature summary chart

	Feature
	nvi
	elvis
	vim
	vile

	Multiwindow editing
	•
	•
	•
	•

	GUI
	
	•
	•
	•

	Extended regular expressions
	•
	•
	•
	•

	Enhanced tags
	
	•
	•
	•

	Tag stacks
	•
	•
	•
	•

	Arbitrary length lines
	•
	•
	•
	•

	8-bit data
	•
	•
	•
	•

	Infinite undo
	•
	•
	•
	•

	Incremental searching
	•
	•
	•
	•

	Left-right scrolling
	•
	•
	•
	•

	Mode indicators
	•
	•
	•
	•

	Visual mode
	
	•
	•
	•

	Edit-compile speedup
	
	•
	•
	•

	Syntax highlighting
	
	•
	•
	•

	Multiple OS support
	
	•
	•
	•

Nothing Like the Original

For many, many years, the source code to the original vi
 was unavailable without a Unix source code license. Although educational institutions were able to get licenses at a relatively low cost, commercial licenses were always expensive. This fact prompted the creation of all of the vi
 clones described in this book.

In January 2002, the source code for V7 and 32V UNIX was made available under an open source-style license.[46
]
 This opened up access to almost all of the code developed for BSD Unix, including ex
 and vi
 .

The original code does not compile “out of the box” on modern systems, such as GNU/Linux, and porting it is difficult.[47
]
 Fortunately, the work has already been done. If you would like to use the original, “real” vi
 , you can download the source code and build it yourself. See http://ex-vi.sourceforge.net/
 for more information.

[46
]
 For more information about this, see the Unix Historical Society web site at http://www.tuhs.org
 .

[47
]
 We know. We tried.

A Look Ahead

Part II
 covers Vim in excruciating detail. Seven full chapters cover the topics listed here, as well as the important subject of writing scripts for Vim, which provide much of the power and usefulness that come “out of the box” with that editor.

The three chapters in Part III
 cover nvi
 , elvis
 , and vile
 , in that order. Each chapter has the following outline:

	Who wrote the editor, and why.

	Important command-line arguments.

	Online help and other documentation.

	Initialization — what files and environment variables the program reads, and in what order.

	Multiwindow editing.

	GUI interface(s), if any.

	Extended regular expressions.

	Improved editing facilities (tag stacks, infinite undo, etc.).

	Programming assistance (edit-compile speedup, syntax highlighting).

	Interesting features unique to the program.

	Where to get the sources, and what operating systems the editor runs on.

 All of the distributions are compressed with gzip
 , GNU zip. If you don’t already have it, you can get gzip
 from ftp://ftp.gnu.org//gnu/gzip/gzip-1.3.12.tar
 .[48
]
 The untar.c
 program available from the elvis
 FTP site is a very portable, simple program for unpacking gzip
 ed tar
 files on non-Unix systems.

Because each of the programs discussed in Part III
 continues to undergo development, we have not attempted an exhaustive treatment of each one’s features. Such an approach would quickly become outdated. Instead, we have “hit the highlights,” covering the features that you are most likely to need and that are least likely to change as the program evolves. You should supplement this book with each program’s online documentation if you need to know how to use every last feature of your editor
 .

[48
]
 This is current as of this writing. You may find a newer version.

Part II. Vim

Part II describes the most popular vi
 clone, named Vim (which stands for “vi
 improved”). This part contains the following chapters:

	
Chapter 9, Vim (vi Improved): An Introduction

	
Chapter 10, Major Vim Improvements over vi

	
Chapter 11, Multiple Windows in Vim

	
Chapter 12, Vim Scripts

	
Chapter 13, Graphical Vim (gvim)

	
Chapter 14, Vim Enhancements for Programmers

	
Chapter 15, Other Cool Stuff in Vim

Chapter 9. Vim (vi Improved): An Introduction

This
 part of the book describes Vim, the other vi
 . We briefly introduce Vim and the most noteworthy of its many technical advances over vi
 , along with a bit of history. We’ll finish this chapter with some pointers to special Vim modes and teaching tools for new users. The following chapters cover:

	Editing enhancements over vi

	Multiwindow editing

	Vim scripts

	The Vim graphical user interface (GUI)

	Programming enhancements

	Editing patterns

	Other cool stuff

Vim stands for “vi
 improved.” It was written and is maintained by
 Bram Moolenaar. Today, Vim is perhaps the most widely used vi
 clone, and there exists a separate Internet domain (vim.org
) dedicated to it. The current version is 7.1.

Unconstrained by standards or committees, Vim continues to grow in functionality. An entire community has grown up around it. Collectively, they decide what new features to add and what existing features to modify, by nominating and voting for suggestions during development cycles.

Inspired by Bram’s dedicated energy and the voting system, Vim enjoys a strong following. It maintains its value by growing and changing with the computing industry and, correspondingly, with editing needs. For instance, its context-specific language editing started with C and has grown to encompass C++, Java, and now C#.

Vim includes many new features that facilitate the editing of code in many new languages. In fact, many features promised at the release of this book’s previous edition are now fully implemented. The computing landscape has changed dramatically and dynamically these last 10 years, and Vim has matched it stride for stride.

Today Vim is so ubiquitous, especially among Unix and its variants (e.g., BSD and GNU/Linux), that for many users Vim has become synonymous with vi
 . Indeed, many distributions of GNU/Linux come with a default installation of Vim as the /bin/vi
 binary!

Vim provides features not in vi
 that are considered essential in modern-day text editors, such as ease of use, graphical terminal support, color, syntax highlighting and formatting, as well as extended customization.

Overview

Author and History[49
]

Bram started work on Vim after buying an Amiga computer. As a Unix user he’d been using the vi
 -like editor called stevie
 , one
 he considered far from perfect. Fortunately, it came with the source code, and he began by making the editor more compatible with vi
 and fixing bugs. After a while the program became quite usable, and Vim version 1.14 was published on
 Fred Fish disk 591 (a collection of free software for the Amiga).

Other people began to use the program, liked it, and started helping with its development. A port to Unix was followed by ports to MS-DOS and other systems, and subsequently Vim became one of the most widely available vi
 clones. More features were added gradually: multilevel undo, multiwindowing, etc. Some features were unique to Vim, but many were inspired by other vi
 clones. The goal has always been to provide the best features to the user.

Today Vim is one of the most full-featured of the vi
 -style editors anywhere. The online help is extensive.

One of the more obscure features of Vim is its support for typing from right to left, which is useful for languages such as Hebrew and Farsi and illustrates Vim’s versatility. Being a rock-stable editor on which professional software developers can rely is another of Vim’s design goals. Vim crashes are rare, and when they happen you can recover your changes.

Development on Vim continues. The group of people helping to add features and port Vim to more platforms is growing, and the quality of the ports to different computer systems is increasing. The Microsoft Windows version has dialogs and a file-selector, which opens up the hard-to-learn vi
 commands to a large group of users.

Why Vim?

Vim so dramatically extends the traditional vi
 functionality that one might more easily ask, “Why
not

 Vim?” vi
 introduced the standard from which others borrowed (vile
 , elvis
 , nvi
), and Vim took the baton and ran with it. Vim dared to radically extend features, sometimes pushing processors to the edge of their ability to perform Vim’s work with adequate response time. We don’t know whether it was an article of faith by Bram that processor and memory speeds would improve enough to catch up with Vim’s demands, but fortunately, modern processors and computers handle even the toughest Vim tasks well.

Compare and Contrast with vi

Vim is more universally available than vi
 . There is at least some version of Vim available on virtually all operating systems, whereas vi
 is available only on Unix or Unix work-alike systems.

vi
 is the original and has changed little over the years. It is the POSIX standard-bearer
 and fulfills its role well. Vim starts where vi
 leaves off, providing all of vi
 ’s functionality and then extending that to add graphical interfaces and features such as complex options and scripting that go far beyond vi
 ’s original capabilities.

Vim ships with its own built-in documentation in the form of a directory of specialized text files. A casual inspection of this directory (using the standard Unix word count tool, wc -c *.txt
) shows 129 files comprising almost 122,000 lines of documentation! This is the first hint at the scope of Vim’s features. Vim accesses these files via its internal “help” command, another feature not available in vi
 . We look more closely at Vim’s help system later and offer tips and tricks to maximize your learning experience.

One way to contrast Vim’s features with vi
 ’s is to look more closely at the included directory of help files. Vim flags options, commands, and functions in these files with an annotation of “not in vi” or “not available in vi”. A nonscientific scan of the help files (using a quick grep -i 'not.. *in vi'
) yields over 700 hits. Even if these hits were redundant by a factor of two, it’s clear Vim has many features vi
 does not.

The following chapters cover some of the more interesting Vim features. From extensions of the historic Vim to new functionality, we describe the best and most popular productivity features. We cover topics universally recognized as useful enhancements, such as syntax color highlighting. We also look at some more obscure features that are useful for added productivity. For example, we show a way to customize the Vim status line to show a real-time update of the date and time each time you move the cursor.

Categories of Features

Vim’s features span the range of activities common to virtually any text-editing task. Some features just extend what users wanted the original vi
 to do; others are completely new and not in vi
 . And if you need something that’s
not

 there, Vim offers built-in scripting for unlimited extensibility and customization. Some categories of Vim features include:

Syntax extensions

Vim lets you
 control indentation and syntax-based color coding of your text. And you have many options to define this automatic format. If you don’t like the color highlighting, you can change it. If you need a certain style of indentation, Vim provides it, or if you have a specialized need, it lets you customize your environment.

Programmer assistance

Although Vim
 doesn’t try to provide all programming needs, it offers many features normally found in

 Integrated Development Environments (IDEs). From quick edit-compile-debug cycles to autocompletion of keywords, Vim has specialized features to let you do more than edit quickly — it helps you program.

Graphical user interface (GUI) features

Vim extends usability to a more general

 population by allowing point-and-click editing, like many modern easy-to-use editors. All of the power-user functionality gets the boost of simple GUI accessibility for lighter and simpler editing tasks.

Scripting and plug-ins

You can write your

 own Vim extensions or download plug-ins from the Internet. You can even contribute to the Vim community by publishing your extensions for others to use.

Initialization

Vim, like vi
 , uses
 configuration files to define sessions at startup time, but Vim has a vastly expanded repertoire of definable behaviors. You can keep it as simple as setting a few options, as you would in vi
 , or you can write an entire suite of customizations that define your session based on any context you define. For example, you can script your initialization files to precompile code based on which directory you’re editing files in, or you can retrieve information from some real-time source and incorporate it into your text at startup.

Session context

Vim keeps
 session information in a file, .viminfo
 . Ever wonder
 “Where was I?” when revisiting and editing a file? This fixes that! You can define how much and what kind of information to sustain across sessions. For example, you can define how many “recent documents” or last-edited files to track, how many edits (deletions, changes) to remember per file, how many commands to remember from the command history, and how many buffers and lines to keep from previous edit actions (“puts,” “deletes,” etc.). Not only does Vim remember edits in your last session for a file, it remembers basic things
between

 files. This is handy for editing activities such as grabbing a sequence of lines in one file (with y
 [yank], or d
 [delete]) and “putting” them in another. Whatever is in the unnamed buffer is remembered and available from one file to the next. Also, Vim remembers the last search pattern, so you can simply use the command n
 (find next occurrence) when beginning a session to find the last-used search pattern.

Vim also remembers which line you were on for each of your most recently edited files. If you exit your edit session with the cursor on line 25, it repositions you on line 25 the next time you edit that file.

Postprocessing

In addition to performing
 presession functions, Vim lets you define what to do
after

 you’ve edited a file. You can write cleanup routines to delete temporary files accumulated from compiles, or do real-time edits to the file before it’s written back to storage. You have complete control to customize any postedit activities

Transitions

Vim manages state transitions.

 When you move within a session from buffer to buffer or window to window (usually the same thing), Vim automatically does pre- and post- housekeeping.

Transparent editing

Vim detects and automatically

 unbundles archived or compressed files. For example, you can directly edit a zipped file such as myfile.tar.gz
 . You can even edit directories. Vim lets you navigate a directory and select files to edit using familiar Vim navigation commands.

Meta-information

Vim offers
 four handy read-only registers
 from which the user may extract meta-information for “puts”: the

 current filename (%
), the alternate filename

 (#
), the last command-line command

 executed (:
), and the last inserted

 text (.
 , a period).

The black-hole register

This is an
 obscure but useful extension of editing registers. Normally, text deletions put this text into buffers using a rotation scheme, which is useful for cycling through old deletes to get back old and deleted text. Vim provides the “black-hole” register as a place to throw deleted text away, without affecting the rotation of deleted text in the normal registers. If you’re a Unix user, this register is Vim’s version of /dev/null.

Keyword completion

Vim lets you complete
 partially typed words with context-sensitive completion rules. For example, Vim can look up words in a dictionary or in a file containing keywords specific to a language.

Vim also lets you drop back to a vi
 -compatible mode with

 its compatible
 option (:set compatible)
 . Most of the time you’ll probably want Vim’s extra features, but it’s a thoughtful touch to provide for backward compatibility if you need it.

Philosophy

Vim’s philosophy aligns closely with vi
 ’s. Both provide power and elegance in editing. Both rely on modality (command mode versus input mode). And both bring editing to the keyboard: that is, users can perform all of their editing work quickly and efficiently and never touch a mouse (or a ^X ^C
). We like to think of this as “touch editing,” which is analogous to “touch typing,” reflecting the corresponding increase in speed and efficiency that both bring to their respective tasks.

Vim extends that philosophy by permitting and providing features for less experienced users (GUI, visual highlight mode) and power options for the power users (scripting, extended regular expressions, configurable syntax, and configurable indenting).

And for the super power users who like to code, Vim comes with source code. Users are free (even encouraged) to improve on the improvements. Philosophically, Vim strikes a balance for
all

 users’ needs.

[49
]
 This section is adapted from material supplied by Bram Moolenaar, Vim’s author. We thank him.

Where to Get Vim

If your environment is some variant of Unix — including Mac OS X — you may be in luck and already have Vim installed. If it’s available and executable in your predefined PATH
 environment
 variable, you should be able to type vim
 at the shell command line and open a Vim window. If you get the following typical Unix error message:

sh: command not found: vim

try vi
 and see whether a Vim welcome message appears. Your installation may actually substitute Vim for vi
 .

On many systems you’ll find old versions of Vim. This section may therefore be useful to help you install the latest version, even if you have Vim already. Once you are in the editor, check not only that you are running Vim but also the version with
 the :version
 command. Vim will provide a screen resembling this:

:version
VIM - Vi IMproved 7.0 (2006 May 7, compiled Aug 30 2006 21:54:03)
Included patches: 1-76
Compiled by corinna@cathi
Huge version without GUI. Features included (+) or not (-):
+arabic +autocmd -balloon_eval -browse ++builtin_terms +byte_offset +cindent
-clientserver -clipboard +cmdline_compl +cmdline_hist +cmdline_info +comments
+cryptv +cscope +cursorshape
 ...
 +profile -python +quickfix +reltime +rightleft -ruby +scrollbind +signs
+smartindent -sniff +statusline -sun_workshop +syntax +tag_binary +tag_old_static
-tag_any_white -tcl +terminfo +termresponse +textobjects +title -toolbar
+user_commands +vertsplit +virtualedit +visual +visualextra +viminfo +vreplace
+wildignore +wildmenu +windows +writebackup -X11 -xfontset -xim -xsmp
-xterm_clipboard -xterm_save
 system vimrc file: "$VIM/vimrc"
 user vimrc file: "$HOME/.vimrc"
 user exrc file: "$HOME/.exrc"
 fall-back for $VIM: "/usr/share/vim"
Compilation: gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2
 Linking: gcc -L/usr/local/lib -o vim.exe -lncurses -liconv -lint

Some of this output is discussed in Chapter 10
 in the context of helping you compile Vim with customizations.

Note

Interestingly, on one of the authors’ Mac Mini, with
 OS X version 10.4.10 installed, not only does a vi
 command invoke Vim but the documentation (the “manpage”) documents Vim!

If you haven’t found Vim so far, here are a few common directories you may want to search before you try to download and install it. If you find the executable, add its directory as part of your PATH
 and you’re ready to go:

	
/usr/bin
 (this should be in PATH
 anyway)

	
/bin
 (so should this)

	
/opt/local/bin

	
/usr/local/bin

If none of those work, you probably don’t have Vim. Happily, Vim is available in many forms for many platforms and is (usually and relatively) easy to retrieve and install. The following sections guide you to getting Vim for your platform. We discuss how to install Vim for these platforms, in order:

	Unix and variants, including GNU/Linux

	Windows XP, 2000, Vista

	Macintosh

Getting Vim for Unix and GNU/Linux

Many modern
 Unix environments already come with some version of Vim. Most GNU/Linux distributions simply link the default vi
 location /bin/vi
 to a Vim executable. Most Unix users won’t ever need to install it.

Because there are so many variants of Unix and so many flavors of some variants (e.g., Sun Solaris HP-UX, *BSD, all the distributions of GNU/Linux), the most straightforward and recommended way to get Vim is to download its source, compile it, and install it.

Note

The installation procedure described here requires a development environment capable of compiling source code. Although most
 Unix variants provide compilers and related tools, some (notably current releases of the Ubuntu GNU/Linux distribution) require you to download and install additional packages before you can experience the pleasures of compiling code.

The Vim home page refers to a new installation procedure it recommends, called aap
 . It provides a link and brief introduction. Because aap
 is new and the old method of installing by downloading and compiling works well, we are not recommending aap
 as the installation procedure of choice. By the time you read this book, use of aap
 may be well established.

There are also prepackaged Vim bundles offering easy standard installations for GNU/Linux (Red Hat RPMs, Debian pkgs), IRIX (SoftwareManager), Sun Solaris (Companion Software), and HP-UX. The Vim home page provides links for all of these systems.

Vim source code is available from the Vim home page, http://www.vim.org
 . Source code is bundled in tarballs compressed in either GZIP (.gz
) or BZIP2 (.bz2
) format. Virtually all operating systems recognize and handle GZIP files nowadays, and most Unix variants have the utilities to handle BZIP2 as well. Download the source and unpack the compressed file as follows, substituting the name of the file you downloaded if you are installing a different version:

.gz
 file

$
gunzip vim-7.1.tar.gz

.bz2
 file

$
bunzip2 vim-7.1.tar.gz

After the command completes, the file vim-7.1.tar
 (or a comparable file reflecting the version you downloaded) remains. Now untar the tar file:

$
tar xvf vim-7.1.tar

vim71
vim71/README.txt
vim71/runtime
vim71/README_unix.txt
vim71/README_lang.txt
vim71/src
vim71/Makefile
vim71/Filelist
vim71/README_src.txt
 ...
vim71/runtime/doc/vimtutor-ru.1
vim71/runtime/doc/xxd-ru.1
vim71/runtime/doc/evim-ru.UTF-8.1
vim71/runtime/doc/vim-ru.UTF-8.1
vim71/runtime/doc/vimdiff-ru.UTF-8.1
vim71/runtime/doc/vimtutor-ru.UTF-8.1
vim71/runtime/doc/xxd-ru.UTF-8.1

You can now remove the vim-7.1.tar
 file. Change directories to the Vim directory created by the tar
 command:

$
cd vim71

The configure
 file is a script that configures the compilation parameters. Most configuration work should be left to the script, which examines the host environment and turns on and off features according to software installed on the system.

You can decide at this point whether to use the defaults or selectively choose (or not choose) features. For example, you may want to compile with the perl
 interface turned on where the configure
 script otherwise would not have done so, anticipating future installation of perl
 scripting tools:

$./configure

 --enable-perlinterp

Or, you may decide you have no use for a perl
 interface and turn that feature off with the configure
 options:

$./configure

 --disable-perlinterp

Warning

Current versions of Vim offer slightly different ways to customize your installation. Instead of putting all of the --disable-XXX
 and --enable-XXX
 options in configure
 options, the INSTALL
 file points you to making changes in the feature.h
 file. Unless you have compelling reasons to make changes in that file, we recommend you compile with available options (described in README.txt
) and customize your editing needs in Vim configuration files.

The normal configure
 output (default, with no options) looks something like:

$
configure

/home/ehannah/Desktop/vim/vim71/src
configure: loading cache auto/config.cache
checking whether make sets $(MAKE)... (cached) yes
checking for gcc... (cached) gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
...
checking for NLS... no "po/Makefile" - disabled
checking for dlfcn.h... (cached) yes
checking for dlopen()... no
checking for dlopen() in -ldl... yes
checking for dlsym()... yes
checking for setjmp.h... (cached) yes
checking for GCC 3 or later... yes
configure: creating auto/config.status
config.status: creating auto/config.mk
config.status: creating auto/config.h
config.status: auto/config.h is unchanged

Now build Vim with the make
 utility:

$
make

Starting make in the src directory.
If there are problems, cd to the src directory and run make there
cd src && /usr/local/lib/cw/make first
/home/ehannah/Desktop/vim/vim71/src
make[1]: Entering directory `/home/ehannah/Desktop/vim/vim71/src'
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 charset.o charset.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 diff.o diff.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 digraph.o digraph.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 edit.o edit.c

 ...

make[2]: Entering directory `/home/ehannah/Desktop/vim/vim71/src'
creating auto/pathdef.c
gcc -c -I. -Iproto -DHAVE_CONFIG_H -g -O2 -o objects/
 pathdef.o auto/
 pathdef.c
make[2]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src'
link.sh: Using auto/link.sed file to remove a few libraries
 gcc -o vim objects/buffer.o objects/charset.o objects/diff.o
 objects/digraph.o objects/edit.o objects/eval.o objects/ex_cmds.o
 objects/ex_cmds2.o objects/ex_docmd.o objects/ex_eval.o
 objects/ex_getln.o objects/fileio.o objects/fold.o objects/getchar.o
 objects/hardcopy.o objects/hashtab.o objects/if_cscope.o
 objects/if_xcmdsrv.o objects/main.o objects/mark.o objects/memfile.o
 objects/memline.o objects/menu.o objects/message.o objects/misc1.o
 objects/misc2.o objects/move.o objects/mbyte.o objects/normal.o
 objects/ops.o objects/option.o objects/os_unix.o objects/pathdef.o
 objects/popupmnu.o objects/quickfix.o objects/regexp.o objects/screen.o
 objects/search.o objects/spell.o objects/syntax.o objects/tag.o
 objects/term.o objects/ui.o objects/undo.o objects/window.o
 objects/netbeans.o objects/version.o -lncurses -lgpm -ldl
link.sh: Linked fine with a few libraries removed
cd xxd; CC="gcc" CFLAGS=" -g -O2" \
 /usr/local/lib/cw/make -f Makefile
/home/ehannah/Desktop/vim/vim71/src/xxd
make[2]: Entering directory `/home/ehannah/Desktop/vim/vim71/src/xxd'
gcc -g -O2 -DUNIX -o xxd xxd.c
make[2]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src/xxd'
make[1]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src'

If all has gone well, you now have an executable Vim binary in the src
 directory. Vim is now ready for use, but you have to either invoke it by specifying a full pathname or add the directory in which Vim was placed to each user’s executable path. If you can’t install programs as an administrator, this will have to do.

To finish installing Vim as a general resource to all users of the machine, you must have administrator (root
) privileges. If you do, become root
 and enter:

#
make install

Starting make in the src directory.
If there are problems, cd to the src directory and run make there
cd src && make install
/home/ehannah/Desktop/vim/vim71/src
make[1]: Entering directory `/home/ehannah/Desktop/vim/vim71/src'
if test -f /usr/local/bin/vim; then \
 mv -f /usr/local/bin/vim /usr/local/bin/vim.rm; \
 rm -f /usr/local/bin/vim.rm; \
fi
cp vim /usr/local/bin
strip /usr/local/bin/vim
chmod 755 /usr/local/bin/vim
cp vimtutor /usr/local/bin/vimtutor
chmod 755 /usr/local/bin/vimtutor
/bin/sh ./installman.sh install /usr/local/man/man1 "" /usr/local/
 share/vim /usr/local/share/vim/vim71 /usr/local/share/vim ../
 runtime/doc 644 vim vimdiff evim
installing /usr/local/man/man1/vim.1
installing /usr/local/man/man1/vimtutor.1
installing /usr/local/man/man1/vimdiff.1

 ...

if test -d /usr/local/share/icons/hicolor/48x48/apps -a -w /usr/
 local/share/icons/hicolor/48x48/apps \
 -a ! -f /usr/local/share/icons/hicolor/48x48/apps/gvim.png; then \
 cp ../runtime/vim48x48.png /usr/local/share/icons/hicolor/48x48/
 apps/gvim.png; \
fi
if test -d /usr/local/share/icons/locolor/32x32/apps -a -w /usr/
 local/share/icons/locolor/32x32/apps \
 -a ! -f /usr/local/share/icons/locolor/32x32/apps/gvim.png; then \
 cp ../runtime/vim32x32.png /usr/local/share/icons/locolor/32x32/
 apps/gvim.png; \
fi
if test -d /usr/local/share/icons/locolor/16x16/apps -a -w /usr/
 local/share/icons/locolor/16x16/apps \
 -a ! -f /usr/local/share/icons/locolor/16x16/apps/gvim.png; then \
 cp ../runtime/vim16x16.png /usr/local/share/icons/locolor/16x16/
 apps/gvim.png; \
fi
make[1]: Leaving directory `/home/ehannah/Desktop/vim/vim71/src'

Installation is complete; as long as users’ PATH
 variables are set correctly, they should all have access to Vim.

Getting Vim for Windows Environments

There
 are two main options for Microsoft Windows. The first is the self-installing executable, gvim.exe
 , available from the Vim home page. Download and run this, and it should do the rest. We have installed Vim using this executable on different Windows machines, and it’s always worked cleanly. The binary should install correctly on Windows XP, 2000, NT, ME, 98, and 95.

Note

At one point in the install process, a DOS window pops up and gives a warning about something not being verifiable. We have never seen this become a problem.

Another option for Windows users is to install Cygwin (http://www.cygwin.com/
), a suite of common GNU tools ported to the Windows platform. It’s an amazingly full implementation of virtually all mainstream software used on Unix platforms. Vim is part of the standard Cygwin installation and can run from a Cygwin shell window.

Using Vim with Cygwin

The text-based console Vim works fine in Cygwin, but Cygwin’s gvim
 expects an X Window System server to be running and will degrade gracefully into running text-based Vim if started without this server.

To get Cygwin’s gvim
 working (assuming you wish to run it on a local screen), start Cygwin’s X server from the command line in a Cygwin shell as follows:

$
X -multiwindow &

The -multiwindow
 option tells the X server to let Windows manage the Cygwin applications. There are many other ways to use Cygwin’s X server, but that discussion is outside the scope of this book. Installation of Cygwin’s X server is also outside the scope; if it is not installed, see the Cygwin home page for further information. A graphical “X” icon should appear in the Windows systray. This assures that the X server is in fact running.

It is confusing to have both Cygwin’s Vim and www.vim.org
 ’s Vim installed at the same time. Some of the configuration files referenced for Vim configuration may reside in different places, thus resulting in seemingly identical versions of Vim that start up with completely different options. For instance, Cygwin and Windows may have different notions of what is the home directory.

Getting Vim for the Macintosh Environment

Mac OS X comes with Vim 6.2 installed, but not with any GUI version. Users can download .tar.bz2
 files to compile versions 6.4 and 7.1 with a GUI.

When downloading the source, however, the maintainer recommends downloading from CVS (a source control system) to ensure up-to-date source code along with the most recent patches. This isn’t difficult, but the idea of downloading via command line may seem a bit foreign to newer users.

Once files are downloaded, the procedure for installation is very similar to the Unix compilation and installation procedure described earlier in the section Getting Vim for Unix and GNU/Linux
 .

Other Operating Systems

Vim’s home page lists more environments for which Vim ostensibly works, but it offers the caveat to use them at your own risk. These other Vims are for:

	QNX, a real-time operating system (RTOS)

	Agenda

	Sharp Zaurus, a Linux-based handheld device

	HP Jornada, a Linux-based handheld device

	Windows CE, a Windows version for handheld devices

	Compaq Tru64 Unix on Alpha

	Open VMS, Digital’s VMS with POSIX

	Amiga

	OS/2

	RISC OS, an OS-based on a reduced instruction set CPU (RISC)

	MorphOS, an OS-based on the Amiga OS built on top of the Quark kernel

Aids and Easy Modes for New Users

Recognizing that both vi
 and Vim make some learning demands on new users, Vim provides several features that make it easier to use for some:

Graphical Vim (gvim
)

When the user invokes the gvim
 command, a rich graphical window is displayed, offering Vim with some of the point-and-click features made popular by modern GUI programs. In many environments, gvim
 is a different binary file created by compiling Vim with all of the GUI options turned on. It can also be invoked through vim -g
 .

“Easy” Vim (evim
)

The evim
 command substitutes some simple behaviors for standard vi
 features, which some users who are unfamiliar with vi
 might find to be a more intuitive way to edit files. Expert users probably won’t find this mode easy, because they’re already used to standard vi
 behavior. It can also be invoked through vim -e
 .

vimtutor

Vim comes with vimtutor
 , a separate command that essentially starts Vim with a special help file. This invocation of Vim gives users another starting point for learning the editor. vimtutor
 takes about 30 minutes to complete.

Summary

vi
 is still the standard text-editing tool on Unix. vi
 was almost revolutionary in its time, with its dual mode and touch-edit philosophy. Vim continues where vi
 stops, and it is the next evolutionary step for powerful editing and text management:

	Vim extends vi
 , building on the excellent standard set by the older editor. Although other editors have also built upon the original, Vim has emerged as the most popular and widely used vi
 clone.

	Vim offers far more than vi
 , enough more to become the new standard.

	Vim is for beginners
and

 for power users. For beginners, it offers various learning tools and “easy” modes, whereas for experts it offers powerful extensions to vi
 , along with a platform on which power users can enhance and tune Vim to their exact needs.

	Vim runs everywhere. As discussed earlier, in environments where Vim wasn’t available, others stepped in and ported it to most useful OS platforms. Vim may not literally be everywhere, but it’s close!

	Vim is free. Furthermore, as mentioned in the previous release of this book, Vim is charityware. The work Bram Moolenaar has done creating, improving, maintaining, and sustaining Vim is one of the truly remarkable feats in the free software market. If you like
his

 work, Bram invites you to learn about his favorite cause, helping children in Uganda. More information is available at the web site, http://iccf-holland.org/
 , or simply use Vim’s built-in help command,
 topic “uganda” (
:help uganda

).

Chapter 10. Major Vim Improvements over vi

Vim’s improvements over vi
 are myriad, ranging from multiple color syntax definitions to full-blown scripting. If vi
 is excellent (it is), Vim is amazing. In this chapter we discuss how Vim fills in many features that users have complained were missing from vi
 . Some of these include:

	Built-in help

	Startup and initialization options

	New motion commands

	Extended regular expressions

	Extended undo

	Customizing the executable

Built-in Help

As mentioned in the previous chapter, Vim comes with more than 100,000 lines of documentation. Almost all of this is immediately available to you from Vim’s built-in help facility. In its simplest form, you invoke the :help
 command. (This is interesting because it exposes users to their first example of Vim’s multiple window editing.)

While this is nice, it presents a bit of a chicken-and-egg conundrum because the built-in help requires a modicum of understanding of vi
 navigation techniques; for it to be really effective, users must know how to jump back and forth in tags. We’ll give an overview of help screen navigation here.

The :help
 command brings up something similar to:

help.txt For Vim version 7.0. Last change: 2006 May 07

 VIM - main help file
 k
 Move around: Use the cursor keys, or "h" to go left, h l
 "j" to go down, "k" to go up, "l" to go right. j
Close this window: Use ":q[Enter]".
 Get out of Vim: Use ":qa![Enter]" (careful, all changes are lost!).

Jump to a subject: Position the cursor on a tag (e.g. |bars|) and hit CTRL-].
 With the mouse: ":set mouse=a" to enable the mouse (in xterm or GUI).
 Double-click the left mouse button on a tag, e.g. |bars|.
 Jump back: Type CTRL-T or CTRL-O (repeat to go further back).

Get specific help: It is possible to go directly to whatever you want help
 on, by giving an argument to the |:help| command.
 It is possible to further specify the context:
 help-context
 WHAT PREPEND EXAMPLE ~
 Normal mode command (nothing) :help x

Thankfully, Vim accommodates the potential navigation problem for beginners and considerately opens with basic guidelines for navigation, and even tells you how to exit the help screen. We recommend this as a starting point and urge you to spend time exploring the help.

Once you are familiar with help
 , you can branch out by using tab completion in Vim’s command line. For any command at the command prompt (:
), pressing the Tab key results in context-sensitive command-line completion. For example, the following:

:e /etc/termc[TAB]

on any Unix system would expand to:

:e /etc/termcap

The
:e

 command implies that the command argument is a file, so command completion looks for files that match the partial filename to complete the input.

But :help
 has its own context, covering the help topics. The partial topic string you type is matched by a substring in any available Vim help topic. We strongly encourage you to learn and use this feature. It saves time and reveals new and interesting features you probably didn’t know about.

For example, suppose you want to know how to split a screen. Start with:

:help split

and press the Tab key. In the current session, the help command cycles through: split()
 ; :split
 ; :split_f
 ; splitview
 ; splitfind
 ; 'splitright'
 ; 'splitbelow'
 ; g:netrw_browse_split
 ; :dsplit
 ; :vsplit
 ; :isplit
 ; :diffsplit
 ; +vertsplit
 ; and more. To see help for any topic, press the ENTER
 key when that topic is highlighted. You’ll not only see what you’re probably looking for (:split
), but you will also discover things you didn’t realize you could do, such as :vsplit
 , the “vertical split” command.

Startup and Initialization Options

Vim uses different mechanisms to set up its environment at startup. It inspects command-line options.
 It self-inspects (how was it invoked, and by what name?). There are different compiled binaries to serve different needs (GUI versus text window). Vim also uses a sequence of initialization files in which uncountable combinations of behaviors can be defined and modified. There are too many options to cover completely; we will touch on some of the interesting ones. In the next sections, we discuss Vim’s starting sequence along the following lines:

	Command-line options

	Behaviors associated to command name

	Configuration files (system-wide and per-user)

	Environment variables

This section introduces you to
some

 of the ways to start Vim. For a more detailed discussion of many more options, use the help command:

:help startup

Command-Line Options

Vim’s command-line options provide flexibility and power. Some options invoke extra features, whereas others override and suppress default behavior. We will discuss the command-line syntax as it would be used in a typical Unix environment. Single-letter options begin with -
 (one hyphen), as in -b
 , which allows editing of binary files. Word-length options begin with --
 (two hyphens), as in --noplugin
 , which overrides the default behavior of loading plugins. A command-line argument of two hyphens by themselves tells Vim that the rest of the command line contains no options (this is a standard Unix behavior).

Following the command-line options, you can optionally list one or more filenames to be edited. (Actually, there is an interesting case where a filename can be a single “-”, telling Vim that input comes from the standard input,
stdin

 . This will be covered later, but you are encouraged to look at uses for this on your own.)

The following is a partial list of Vim command-line options not available in vi
 (all vi
 options are available in Vim):

-b

Edit in binary mode. This is self-explanatory and very cool. Editing binary files is an acquired taste, but this is a powerful way to edit files not touchable by most other tools. Users should read Vim’s help section on editing binary files.

-c

command

command

 will be executed as an ex
 command. vi
 has this same option, but Vim allows up to 10 -c
 instances in one command.

-C

Run Vim in compatible (vi
) mode. For obvious reasons, this option would never be in vi
 .

-cmd

command

command

 executes before vimrc
 files. This is the long form of the -c
 option.

-d

Start in diff mode. Vim performs a diff on two, three, or four files and sets options making inspection of files differences simple (scrollbind, foldcolumn, etc.).

Vim uses the OS-available diff command, which is diff
 on Unix systems. The Windows version offers a downloadable executable with which Vim can perform the diff.

-E

Start in improved ex
 mode. For example, improved ex
 mode would use extended regular expressions.

-F
 or -A

Farsi or Arabic modes, respectively. These require key and character maps to be useful and draw the screen from right to left.

-g

Start gvim
 (GUI).

-m

Turn off the write option. Buffers will not be modifiable.

-o

Open all files in a separate window. Optionally an integer can specify the number of windows to open. Files named on the command line fill that number of windows only (the rest are in Vim buffers). If the specified number of windows exceeds the listed files, Vim opens empty windows to satisfy the request count of windows.

-O

Like -o
 , but opens vertically split windows.

-y

Run Vim in easy mode. This sets options to a more intuitive behavior for beginners. While “easy” may help the uninitiated, seasoned users will find this mode confusing and irritating.

-z

Run in restricted mode. This basically turns off all external interfaces and prevents access to the system features. For example, users can’t use !G!sort
 to sort from the current line in the buffer to end-of-file; the filter sort
 will not be available.

The following is a series of related options to use a remote instance of a server Vim. remote
 commands tell a remote Vim (which may or may not be executing on the same machine) to edit a file or evaluate an expression in that remote server. The server commands tell Vim which server to send to or can declare itself as a server. serverlist
 simply lists available servers:

	
-remote

file

	
-remote-silent

file

	
-remote-wait

file

	
-remote-send

file

	
-servername

name

	
-remote-expr

expr

	
-remote-wait-silent

file

	
-remote-tab

	
-remote-send

keys

	
-remote-wait-silent

file

	
-serverlist

For a more complete discussion of all command-line options, including the complete vi
 set, refer to the section Command-Line Syntax
 .

Behaviors Associated to Command Name

Vim comes in two main flavors, graphical (using the X Window System under Unix variants and native GUIs in other operating systems) and text, each of which can start up with subsets of characteristics. Unix users simply use one of the commands in the following list to get the desired behavior:

vim

Start the text-based Vim.

gvim

Start Vim in graphical mode. In many environments, gvim
 is a different binary file of Vim with all of the GUI options turned on during compilation. Same as vim -g
 . (In Unix environments, gvim
 requires the X Window System.)

view
 , gview

Start Vim or gvim
 in read-only mode. Same as vim -R
 .

rvim

Start Vim in restrictive mode. All external access to shell commands is disabled, as well as the ability to suspend the edit session with the ^Z
 command.

rgvim

Same as rvim
 but for the graphical version.

rview

Analogous to view
 , but start in restricted mode. In restricted mode, users do not have access to filters, outside enviroments, or OS features. Same as vim -Z
 (the -R
 option invokes just the read-only effect described previously).

rgview

Same as rview
 but for the graphical version.

evim
 , eview

Use “easy” mode for editing or read-only viewing. Vim sets options and features so it behaves in a more intuitive way for those who are not familiar with the Vim paradigm. Same as vim -y
 . Expert users probably won’t find this mode easy because they’re already used to standard vi
 behavior.

Note there is no analogous
gXXX

 version of these commands, because gvim
 is ostensibly thought to be already easy, or at least intuitive to learn, with predictable point-and-click behavior.

vimdiff
 , gvimdiff

Start in “diff” mode and perform a diff on the input files. This is covered in depth later in the section What’s the Difference?
 .

ex
 , gex

Use the old line-editing ex
 mode. Useful in scripts. Same as vim -e
 .

Windows users can access a similar choice of Vim versions in the program list (Start menu).

System and User Configuration Files

Vim looks for initialization cues in a special sequence. It executes the first set of instructions it finds (either in the form of an environment variable or in a file) and begins editing. So, the first element of the following list that is encountered is the only element of the list that is executed. The sequence follows:

	
VIMINIT
 . This is an environment variable. If it is nonempty, Vim executes its content as an ex
 command.

	User vimrc
 files. The vimrc
 (Vim resource) initialization file is a cross-platform concept, but because of subtle operating system and platform differences, Vim looks for it in different places in the following order:

	
$HOME/.vimrc
 (Unix, OS/2, and Mac OS X)

	
s:.vimrc
 (Amiga)

	
home:.vimrc
 (Amiga)

	
$VIM/.vimrc
 (OS/2 and Amiga)

	
$HOME/_vimrc
 (DOS and Windows)

	
$VIM/_vimrc
 (DOS and Windows)

	
exrc
 option. If the Vim exrc
 option is set, Vim looks for the three additional config files: [._]vimrc
 ; [._]vimrc
 ; and [._]exrc
 .

The vimrc
 file is a good place to configure Vim’s editing characteristics. Virtually any Vim option can be set or unset in this file, and it is particularly suited to setting up global variables and defining functions, abbreviations, key mappings, etc. Here are a few things to know about the vimrc
 file:

	Comments begin with a double quote ("
), and the double quote can be anywhere in the line. All text after and including the double quote is ignored.

	
ex
 commands can be specified with or without a colon. For example, set autoindent
 is identical to :set autoindent
 .

	The file is much more manageable if you break large sets of option definitions into separate lines. For example:set terse sw=1 ai ic wm=15 sm nows ruler wc=<Tab> more

is equivalent to:set terse " short error and info messages
set shiftwidth=1
set autoindent
set ignorecase
set wrapmargin=15
set nowrapscan " don't scan past end or top of file in searches
set ruler
set wildchar=<TAB>
set more

Notice how much more readable the second set of commands is. The second method is also much easier to maintain through deletions, insertions, and temporarily commenting out lines when debugging settings in the configuration file. For example, should you want to temporarily disable line numbering in the startup configuration, you simply insert the double quote ("
) at the beginning of the set number
 line in your configuration file.

Environment Variables

Many environment variables affect Vim’s startup behavior and even some edit-session behavior. These are mostly transparent and handled with defaults if not configured.

How to set environment variables

The command environment you have when you log in (called the shell
 in Unix) sets variables to reflect or control its behavior. Environment variables are especially powerful because they affect programs invoked within the command environment. The following instructions are not specific to Vim; they can be used to set any environment variables you want set in the command environment.

Windows

To set an environment variable:

	Bring up the control panel.

	Double-click System.

	Click the Advanced tab.

	Click the Environment Variables button.

The result is a window divided into two environment variable areas, User and System. Novices shouldn’t modify the System environment variables. In the User area, you can set environment variables related to Vim and make them persist across login sessions.

Unix/Linux Bash and other Bourne shells

Edit the appropriate shell configuration file (such as .bashrc
 for Bash users) and insert lines resembling:

VARABC

=
somevalue

VARXYZ

=
someothervalue

MYVIMRC

=
myfavoritevimrcfile

export
VARABC

VARXYZ

MYVIMRC

The order of these lines is irrelevant. The export
 statement just makes variables visible to programs that run in the shell, and thus turns them into environment variables. The value of exported variables can be set before or after exporting them.

Unix/Linux C shells

Edit the appropriate shell configuration file (such as .cshrc
) and insert lines resembling the following:

setenv
VARABC

somevalue

setenv
VARXYZ

someothervalue

setenv
MYVIMRC

myfavoritevimrcfile

Environment variables relevant to Vim

The following list shows most of Vim’s environment variables and their effects.

The Vim -u
 command-line option overrides Vim’s environment variables and goes directly to the specified initialization file. The -u
 does
not

 override non-Vim environment variables:

SHELL

Specifies which shell or external command interpreter Vim uses for shell commands (!!
 , :!
 , etc.). In MS-DOS, if SHELL
 is not set, the COMSPEC
 environment variable is used instead.

TERM

Sets Vim’s internal term
 option. This is somewhat unnecessary, because the editor sets its terminal itself as it deems appropriate. In other words, Vim probably knows what the terminal is better than a predefined variable.

MYVIMRC

Overrides Vim’s search for initialization files. If MYVIMRC
 has a value when starting, Vim assumes the value is the name of an initialization file and, if the file exists, takes initial settings from it. No other file is consulted (see the search sequence in the previous section).

VIMINIT

Specifies ex
 commands to execute when Vim starts. Define multiple commands by separating them with vertical bars (|
).

EXINIT

Same as VIMINIT
 .

VIM

Contains the path of a system directory where standard Vim installation information is found (for information only and not used by Vim).

Note

If more than one version of Vim exists on a machine, VIM
 will likely reflect different values depending upon which version the user started. For example, on one author’s machine, the Cygwin version sets the VIM
 environment variable to /usr/share/vim
 , whereas the vim.org
 package sets it to C:\Program Files\Vim
 .

This is important to know if you are making changes to Vim files, as changes may not take effect if you edit the wrong files!

VIMRUNTIME

Points to Vim support files, such as online documentation, syntax definitions, and plug-in directories. Vim typically figures this out on its own. If the user sets the variable — for example, in the vimrc
 file — it can cause errors if a newer version of Vim is installed because the user’s personal VIMRUNTIME
 variable may point to an old, nonexistent, or invalid location.

New Motion Commands

Vim provides all vi
 movement or motion commands, most of which are listed in Chapter 3
 , and adds several others, summarized in Table 10-1
 .

Table 10-1. Motion commands in Vim

	Command
	Description

	
<C-End>

	Go to the end of the file, i.e., the last character of the last line of the file. If a
count

 is given, go to the last character of the line
count

 .

	
<C-Home>

	Go to the first nonwhitespace character of the first line of the file. This differs from <C-End>
 because <C-Home>
 does not move the cursor to whitespace.

	

count

 %

	
Go to the line
count

 percent into the file, putting the cursor on the first nonblank line. It’s important to note that Vim bases its calculation on the number of lines in the file, not the total character count. This may not seem important, but consider an example of a file containing 200 lines, of which the first 195 contain 5 characters (for example, prices such as $4.98
), and the last four lines contain 1,000 characters. In Unix, accounting for the newline character, the file would contain approximately:

(195 * (5 + 1))
(The number of characters in the first 5-character lines)

+ 2 + (4 * (1000 + 1))
(The number of characters in the 1,000-character lines)

or 5,200 characters. A true 50% count would place the cursor on line 96, and Vim’s 50% motion command would place the cursor on line 100.

	

:go n

n go

	
Go to the n
 th byte in the buffer. All characters, including end-of-line characters, are counted.

Visual Mode Motion

Vim lets users define selections visually and perform editing commands on the visual selection. This is similar to what many users see in graphical editors where they highlight areas by clicking and dragging the mouse. What Vim offers with its visual mode is the convenience of seeing the selection on which work is done
and

 all of the powerful Vim commands with which to do work on the visually selected text. This lets you do much more sophisticated work on highlighted text than the traditional cut and paste actions in less sophisticated editors.

You can select a visual area in Vim in the same manner as other editors, by clicking and dragging the mouse. But Vim also lets you use its powerful motion commands and some special visual mode commands to define the visual selection.

For example, you can type v
 in normal mode to start visual mode. Once you are in visual mode, any motion commands move the cursor
and

 highlight text as the cursor moves to a new position. So, the “next word” command (w
) in visual mode moves the cursor to the next word and highlights the selected text. Additional movements extend the selected region appropriately.

In visual mode, Vim uses some specialized commands with which you conveniently extend the selected text by selecting the text object around the cursor. For example, the cursor can be within a “word,” and at the same time be within a “sentence,” and also be within a “paragraph.” Vim lets you add to the visual selection with commands that extend the highlighted region to a text object. To visually select a word, you can use aw
 (when in visual mode).

Vim uses the following motion commands by taking advantage of “visual mode,” which highlights lines and characters in the buffer in order to provide visual cues about what text will be targeted by subsequent Vim actions. You can highlight visual areas of the buffer in several ways. In text-based mode, simply type v
 to toggle visual mode on and off. When on, visual mode selects and highlights the buffer as the cursor moves. In gvim
 , just click and drag the mouse across the desired region. This sets Vim’s visual flag.

Table 10-2
 shows some of Vim’s visual mode motion commands.

Table 10-2. Visual mode motion commands in Vim

	Command
	Description

	

count

 aw
 ,
count

 aW

	Select
count

 words. Intervening whitespace is included. This is slightly different from iw
 (see next entry). Lowercase w
 looks for punctuation-delimited words, whereas uppercase W
 looks for whitespace-delimited words.

	

count

 iw
 ,
count

 iW

	Select
count

 words. Add words but not whitespace. Lowercase w
 looks for punctuation-delimited words, whereas uppercase W
 looks for whitespace-delimited words.

	
as
 , is

	Add sentence, or inner sentence.

	
ap
 , ip

	Add paragraph, or inner paragraph.

For a more detailed discussion of text objects and how they are used in visual mode, use the help command:

:help text-objects

Extended Regular Expressions

 Of all the clones, Vim provides the richest set of regular expression matching facilities. Much of the descriptive text in the following list is borrowed from the Vim documentation:

\|

Indicates alternation, house\|home
 .

\+

 Matches one or more of the preceding regular expression.

\=

 Matches zero or one of the preceding regular expression.

\{

n

 ,

m

 }

 Matches
n

 to
m

 of the preceding regular expression, as much as possible.
n

 and
m

 are numbers between 0 and 32,000. Vim requires only the left brace to be preceded by a backslash, not the right brace.

\{

n

 }

Matches
n

 of the preceding regular expression.

\{

n

 ,}

Matches at least
n

 of the preceding regular expression, as much as possible.

\{,

m

 }

Matches 0 to
m

 of the preceding regular expression, as much as possible.

\{}

Matches 0 or more of the preceding regular expression, as much as possible (same as *
).

\{-

n

 ,

m

 }

Matches
n

 to
m

 of the preceding regular expression, as few as possible.

\{-

n

 }

Matches
n

 of the preceding regular expression.

\{-

n

 ,}

Matches at least
n

 of the preceding regular expression, as few as possible.

\{-,

m

 }

Matches 0 to
m

 of the preceding regular expression, as few as possible.

\i

 Matches any identifier character, as defined by the isident
 option.

\I

Like \i
 , but excluding digits.

\k

Matches any keyword character, as defined by the iskeyword
 option.

\K

Like \k
 , but excluding digits.

\f

 Matches any filename character, as defined by the isfname
 option.

\F

Like \f
 , but excluding digits.

\p

 Matches any printable character, as defined by the isprint
 option.

\P

Like \p
 , but excluding digits.

\s

Matches a whitespace character (exactly a space or a tab).

\S

Matches anything that isn’t a space or a tab.

\b

Backspace.

\e

Escape.

\r

Carriage return.

\t

Tab.

\n

 Reserved for future use. Eventually, it will be used for matching multiline patterns. See the Vim documentation for more details.

~

 Matches the last given substitute (i.e., replacement) string.

\(…\)

 Provides grouping for *
 , \+
 , and \=
 , as well as making matched subtexts available in the replacement part of a substitute command (\1
 , \2
 , etc.).

\1

 Matches the same string that was matched by the first subexpression in \(
 and \)
 . For example, \([a-z]\).\1
 matches
ata

 ,
ehe

 ,
tot

 , etc. \2
 , \3
 , and so on may be used to represent the second, third, and so on subexpressions.

 The isident
 , iskeyword
 , isfname
 , and isprint
 options define the characters that appear in identifiers, keywords, and filenames, and that are printable. Use of these options makes regular expression matching very flexible.

Customizing the Executable

For most users, the default Vim suffices nicely. Today’s computers provide enough processing power (memory and processing cycles) for the full-featured Vim executable. You get all of Vim’s extended features with the confidence of good performance. However, in some instances, environment or circumstance may dictate a more stripped down Vim.

Users may need Vim to take up a minimal footprint, for example, on a handheld device running Linux that has limited memory. Users may also have no use for compiled-in features such as spellcheck (because they may be programmers with no interest in features that mimic word processing) or perl
 (because perl
 may not be installed on their machines).

It’s much easier to live with the available features than to reconfigure, recompile, and reinstall Vim with all new options, just to add missing features.

Chapter 11. Multiple Windows in Vim

By default,

 Vim edits all its files in a single window, showing just one buffer at a time as you move between files or to different parts of a single file. But Vim also offers multi-window editing, which can make complex editing tasks easier. This is different from starting multiple instances of Vim on a graphical terminal. This chapter covers the use of multiple windows in a single instance of a running Vim process (which we’ll
 call a session
).

You can initiate your editing session with multiple windows or create new windows after a session starts. You can add windows to your edit session up to the limit imposed by sanity, and you can delete them back to a single edit window.

Here are some examples where multiple windows make your life easier:

	Editing a number of files that need to be formatted the same way, where you would like to compare them visually as you go along

	Cutting and pasting
 text quickly and repeatedly among multiple files or multiple parts of a single file

	Displaying one part of a file for reference, to facilitate work elsewhere in the same file

	Comparing two versions of a file

Vim offers many window-managing convenience features, including the ability to:

	Split windows horizontally or vertically

	Navigate from one window to another and back again quickly

	Copy and move text to and from multiple windows

	Move and reposition windows

	Work with buffers, including hidden buffers (to be described later)

	Use external tools such as
 the diff
 command with multiple windows

In this chapter, we guide you through the multiwindow experience. We show you how to start a multiwindow session, discuss features and tips for the edit session, and describe how to exit your work and ensure that all your work is properly saved (or abandoned, if you wish!). The following topics are covered:

	Initializing or starting multiwindow editing

	Multiwindow :ex
 commands

	Moving the cursor from window to window

	Moving windows around the display

	Resizing windows

	Buffers and their interaction with windows

	Tabbed editing (like the tabs offered by modern Internet browsers and dialog boxes)

	Closing and quitting windows

Initiating Multiwindow Editing

You can initiate
 multiwindow editing when you start Vim, or
 you can split windows within your editing session. Multiwindow editing is dynamic in Vim, allowing you to open, close, and navigate among multiple windows at any point, from most contexts.

Multiwindow Initiation from the Command Line (Shell)

By default,
 Vim opens only one window for a session, even if you specify more than one file. While we don’t know for sure why Vim would not open multiple windows for
 multiple files, it may be because using just a single window is consistent with vi
 behavior. Multiple files occupy multiple buffers, with each file in its own buffer. (Buffers are discussed shortly.)

To open multiple windows from the command line, use Vim’s -o
 option. For example:

$ Vim -o file

1 file2

This opens the edit session with the display horizontally split into two equal-sized windows, one for each file (see Figure 11-1
). For each file named on the command line, Vim tries to open a window for editing. If Vim cannot split the screen into enough windows for the files, the first files listed in the command-line arguments get windows, while the remaining files are loaded into buffers not visible (but still available) to the user.

 [image: Results of “Vim -o5 file1 file2”]

Figure 11-1. Results of “Vim -o5 file1 file2”

Another form of the command line preallocates the windows by appending a number
n

 to -o
 :

$ Vim -o5 file

1 file2

This opens a session with the display
 horizontally split into five equal-sized windows, the topmost of which contains file1
 and the second of which contains file2
 (see Figure 11-2
).

 [image: Results of “Vim -o5 file1 file2”]

Figure 11-2. Results of “Vim -o5 file1 file2”

Tip

When Vim creates more than one window, its default behavior is to create a status line for each window (whereas the default behavior for a single window is not to display any status line). You can control this behavior with Vim’s laststatus
 option, e.g.:

:set laststatus=1

Set laststatus
 to 2 to always see a status line for each window, even in single window mode. (It is best to set this in your .vimrc
 file.)

Because window size affects readability and usability, you may want to control Vim’s limits for window sizes. Use Vim’s winheight
 and winwidth
 options

 to define reasonable limits for the current window (other windows may be resized to accommodate it).

Multiwindow Editing Inside Vim

You can initiate and modify the window configuration from within Vim. Create a new window with
 the :split
 command. This breaks the current window in half, showing the same buffer in both halves. Now you can navigate independently in each window on the same file.

Note

There are convenience key sequences for many of the commands in this chapter. In this case, for instance, ^Ws
 splits a
 window. (All Vim window-related commands begin with ^W
 , with the “W” being mnemonic for “window.”) For the purposes of discussion, we show only the command-line methods because they provide the added power of optional parameters that customize the default behavior. If you find yourself using commands routinely, you can easily find the corresponding key sequence in the Vim documentation, as described in Built-in Help
 .

Similarly, you can create a new, vertically separated edit window with
 the :vsplit
 command (see Figure 11-3
).

 [image: Vertically split window]

Figure 11-3. Vertically split window

For each of these methods, Vim splits the window (horizontally or vertically), and
 since no file was specified on the :split
 command line, you end up editing the same file with two views or windows.

Tip

Don’t believe you’re editing the same file at the same time? Split the edit window and scroll each window so that each shows the same area of the file. Make changes. Watch the other window. Magic.

Why or how is this useful? One common use by this author, when writing shell scripts or C programs, is to code a block of text that describes the program’s usage. (Typically, the program will display the block when passed a --help
 option.)
 I split the display so that one window displays the usage text, and I use this as a template to edit the code in the other window that parses all the options and command-line arguments described in the usage text. Often (almost always) this code is complex and ends up far enough from the usage text that I can’t display everything I want in a single window.

If you want to edit or browse another file without losing your place in your current file, provide the new file as an argument to your :split
 command. For instance:

:split otherfile

The next section describes splitting and unsplitting windows in more detail.

Opening Windows

This

 section goes into depth about how to get the precise behavior you want when you split your window.

New Windows

As discussed previously, the simplest way to open a new window is to
 issue :split
 (for a horizontal division) or :vsplit
 (for a vertical division). A more in-depth discussion of the many commands and variations follows. We also include a command synopsis for quick reference.

Options During Splits

The full :split
 command to open a new horizontal window is:

:[
n

]split [++
opt

] [+
cmd

] [
file

]

where:

n

Tells Vim how many lines to display in the new window, which goes at the top.

opt

Passes Vim option information to the new window session (note that it must be preceded by two plus signs).

cmd

Passes a command for execution in the new window (note that it must be preceded by a single plus sign).

file

Specifies a file to edit in the new window.

For example, suppose you are editing a file and want to split the window to edit another file named otherfile
 . You want to ensure that the session uses a fileformat
 of unix
 (which ensures the use of a line feed to end each line instead of a carriage return and line feed combination). Finally, you want the window to be 15 lines tall. Enter:

:15split ++fileformat=unix otherfile

To simply split the screen, showing the same file in both windows and using all the current defaults, you can use the key

 commands ^Ws
 , ^WS
 , or ^W^S
 .

Tip

If you want windows to always split equally, set the equalalways
 option, preferably putting it in your .vimrc
 to make it persistent over sessions. By default, setting equalalways
 splits both horizontal and vertical windows equally. Add the eadirection
 option (hor
 , ver
 , both
 , for horizontal, vertical, or both, respectively) to control which direction splits equally.

The following form of the :split
 command opens a new horizontal window as before, but with a slight nuance:

:[
n

]new [++
opt

] [+
cmd

] [
file

]

In addition to creating the new window,

 the WinLeave
 , WinEnter
 , BufLeave
 , and BufEnter
 autocommands execute. (For more information on autocommands, see the section Autocommands
 .)

Along with the horizontal split commands, Vim offers analogous vertical ones. So, for example, to split a vertical window, instead of :split
 or :new
 , use :vsplit
 and :vnew
 respectively.

 The same optional parameters are available as for the horizontal split commands.

There are two horizontal split commands without vertical cousins:

:sview

filename

Splits the screen
 horizontally to open a new window and sets the readonly
 for that buffer. :sview
 requires the filename argument.

:sfind [++

opt

] [+

cmd

]

filename

Works
 like :split
 , but looks for the
filename

 in the path
 . If Vim does not find the file, it doesn’t split the window.

Conditional Split Commands

Vim lets you specify a command that causes a window to open if a new file is found. :topleft

cmd

 tells Vim to execute
cmd

 and

 display a new window with the cursor at the top left if
cmd

 opens a new file. The command can produce three different results:

	

cmd

 splits the window horizontally, and the new window spans the top of the Vim window.

	

cmd

 splits the window vertically, and the new window spans the left side of the Vim window.

	

cmd

 causes no split but instead positions the cursor at the top left of the current window.

Window Command Summary

Table 11-1
 summarizes the commands for splitting windows.

Table 11-1. Summary of window commands

	ex command
	vi command
	Description

	
:[
n

]split [++
opt

] [+
cmd

] [
file

]

	

^Ws

^WS

^W^S

	
Split the current window into two from side to side, placing the cursor in the new window. The optional
file

 argument places that file in the newly created window. The windows are created as equal in size as possible, determined by free window space.

	
:[
n

]new [++
opt

] [+
cmd

]

	

^Wn

^W^N

	
Same as :split
 , but start the new window editing an empty file. Note that the buffer will have no name until one is assigned.

	
:[
n

]sview [++
opt

] [+
cmd

] [
file

]

	
	
Read-only version of :split
 .

	
:[
n

]sfind [++
opt

] [+
cmd

] [
file

]

	
	
Split window and open
file

 (if specified) in the new window. Look for
file

 in the path
 .

	
:[
n

]vsplit [++
opt

] [+
cmd

] [
file

]

	

^Wv

^W^V

	
Split current window into two from top to bottom and open
file

 (if specified) in the new window.

	
:[
n

]vnew [++
opt

] [+
cmd

]

	
	
Vertical version of :new
 .

Moving Around Windows (Getting Your Cursor from Here to There)

It’s

 easy to move from window to window with a mouse in
 both gvim
 and Vim. gvim
 supports clicking with the mouse by default, whereas in Vim you can enable the behavior with the mouse
 option. A good default setting for Vim is :set mouse=a
 , to activate the mouse for all uses: command line, input, and navigation.

If you don’t have a mouse, or prefer to control your session from the keyboard, Vim provides a full set of navigation commands to move quickly and accurately among session windows. Happily, Vim uses the mnemonic prefix keystroke ^W
 consistently for window
 navigation. The keystroke that follows defines the motion or other action, and should be familiar to experienced vi
 and Vim users because they map closely to the same motion commands for editing.

Rather than describe each command and its behavior, we will consider an example. The command-synopsis table should then be self-explanatory.

To move from the current Vim window to the next one, type CTRL-W
 j
 (or CTRL-W
 <down>
 or CTRL-W
 CTRL-J
). The CTRL-W
 is
 the mnemonic for “window” command, and the j
 is analogous to Vim’s j
 command, which moves the cursor to the next line.

Table 11-2
 summarizes the window navigation commands.

Note

As with many Vim and vi
 commands, these can be multiply executed by prefixing them with a count. For example, 3^Wj
 tells Vim to jump to the third window down from the current window.

Table 11-2: Window navigation commands

 [image:]

Mnemonic Tips

t
 and b
 are mnemonic for
top

 and
bottom

 windows.

In keeping with the convention that lowercase and uppercase implement opposites, CTRL-W
 w
 moves you through the windows in the opposite direction from CTRL-W
 W
 .

The Control characters do not distinguish between uppercase and lowercase; in other words, pressing the Shift key while pressing a CTRL-
 key itself has no effect. However, an upper/lowercase distinction
is

 recognized for the regular keyboard key you press afterward.

Moving Windows Around

You can move
 windows two ways in Vim. One way simply swaps the windows on the screen. The other way changes the actual window layouts. In the first case, window sizes remain constant while windows change position on the screen. In the second case, windows not only move but are resized to fill the position to which they’ve moved.

Moving Windows (Rotate or Exchange)

Three commands move windows without modifying layout. Two of these rotate the windows positionally in one direction (to the right or down) or the other (to the left or up), and the other one exchanges the position of two possibly nonadjacent windows. These commands operate
only

 on the row or column in which the current window lives.

CTRL-W
 r
 rotates windows to the right or down. Its complement is CTRL-W
 R
 , which rotates windows in the opposite direction.

An easier way to imagine how these work is to think of a row or column of Vim windows as a one-dimensional array. CTRL-W
 r
 would shift each element of the array one position to the right, and move the last element into the vacated first position. CTRL-W
 R
 simply moves the elements the other direction.

If there are no windows in a column or row that aligns with the current window, this command does nothing.

After Vim rotates the windows, the cursor remains in the window from which the rotate command executed; thus, the cursor moves with the window.

CTRL-W
 x
 and CTRL-W
 CTRL-X
 let you exchange two windows in a row or column of windows. By default, Vim exchanges the current window with the next window, and if there is no next window, Vim tries to exchange with the previous window. You can exchange with the nth
 next window by prepending a count before the command. For example, to switch the current window with the third next window, use the command 3^Wx
 .

As with the two previous commands, the cursor stays in the window from which the exchange command executes.

Moving Windows and Changing Their Layout

Five commands move and reflow the windows: two move the current window to a full-width top or bottom window, two move the current window to a full-height left or right window, and the fifth moves the current window to another existing tab. (See the section Tabbed Editing
 .) The first four commands bear familiar mnemonic relationships to other Vim commands; for instance, CTRL-W
 K
 maps to the traditional notion of k
 as “up.” Table 11-2
 summarizes

 these commands.

Table 11-2. Commands to move and reflow windows

	Command
	Description

	
^WK

	
Move the current window to the top of the screen, using the full width of the screen.

	
^WJ

	
Move the current window to the bottom of the screen, using the full width of the screen.

	
^WH

	
Move the current window to the left of the screen, using the full height of the screen.

	
^WL

	
Move the current window to the right of the screen, using the full height of the screen.

	
^WT

	
Move the current window to a new existing tab.

It is difficult to describe the exact behavior of these layout commands. After the move and expansion of the window to the full height or width of the screen, Vim reflows the windows in a reasonable way. The behavior of the reflow can also be influenced by some of the windows options settings.

Window Move Commands: Synopsis

Tables 11-3
 and 11-4
 summarize the

 commands introduced in this section.

Table 11-3. Commands to rotate window positions

	Command
	Description

	

^Wr

^W^R

	Rotate windows down or to the right.

	
^WR

	Rotate windows up or to the left.

	

^Wx

^W^X

	Swap positions with the next window, or if issued with a count
n

 , swap with
n

 th
 next window.

Table 11-4. Commands to change position and layout

	Command
	Description

	
^WK

	
Move window to top of screen and use full width. The cursor stays with the moved window.

	
^WJ

	
Move window to bottom of screen and use full width. The cursor stays with the moved window.

	
^WH

	
Move window to left of screen and use full height. The cursor stays with the moved window.

	
^WL

	
Move window to right of screen and use full height. The cursor stays with the moved window.

	
^WT

	
Move window to new tab. The cursor stays with the moved window. If the current window is the only window in the current tab, no action is taken.

Resizing Windows

Now

 that you’re more familiar with Vim’s multiwindowing features, you need a little more control over them. This section addresses how you can change the size of the current window, with, of course, effects on other windows in the screen. Vim provides options to control window sizes and window sizing behavior when opening new windows with split commands.

If you’d rather control window sizes
sans

 commands, use gvim
 and
 let the mouse do the work for you. Simply click and drag window boundaries with the mouse to resize. For vertically separated windows, click the mouse on the vertical separator of |
 characters. Horizontal windows are separated by their status lines.

Window Resize Commands

As you’d expect, Vim
 has vertical and horizontal resize commands. Like the other window commands, these all begin with CTRL-W
 and map nicely to mnemonic devices, making them easy to learn and remember.

CTRL-W
 =
 tries to resize all windows to equal size. (This is also influenced by the current values of winheight
 and windwidth
 , discussed in the following section.) If the available screen real estate doesn’t divide equally, Vim sizes the windows to be as close to equal as possible.

CTRL-W
 -
 decreases the current window height by one line. Vim also has an ex
 command that lets you decrease the window size explicitly. For example, the command resize -4
 decreases the current window by four lines and gives those lines to the window below it.

Note

It’s interesting to note that Vim obediently decreases your window size even if you are not in a multiple window edit session. While it may seem counterintuitive at first, the side effect is that Vim decreases the window as requested and the vacated screen real estate is allocated to the command-line window. Typically, the command-line window always uses a single line, but there are reasons to use a command-line window larger than one line high. (The most common reason we know of is to provide enough space to let Vim display complete command-line status and feedback without intermediate prompts.) That said, it’s best to use the :resize
 command to resize your current window, and to use the winheight
 option to size your command window.

CTRL-W
 +
 increases the current window by one line
 . The :resize +

n

 command increases the current window size by
n

 lines. Once the window’s maximum height is reached, further use of this command has no effect.

Tip

One of the authors’ favorite ways to use the CTRL-W
 +
 and CTRL-W
 -
 commands is by mapping each to keys, both keys adjacent. The +
 key is a convenient choice. Though it is already the Vim “up” command, that behavior is redundant and little used by veteran Vim users (who use the k
 command instead). Therefore, this key is a good candidate to map to something else, in this case CTRL-W
 +
 . Immediately to that key’s left (on most standard keyboards) is the -
 . But since it is unshifted and the +
 is shifted, map the shifted key, _
 , to CTRL-W
 -
 . Now you have two convenient side-by-side keys to easily and quickly expand and contract your current window horizontally.

:resize

n

 sets the horizontal size of the current window to
n

 lines. It sets an absolute size, in contrast to the previously described commands that make a relative change.

z
n

 sets the current window height to
n

 lines. Note that
n

 is
not

 optional! Omitting it results in the vi
 /Vim command z
 , which moves the cursor to the top of the screen.

CTRL-W
 <
 and CTRL-W
 >
 decrease and increase the window width, respectively. Think of the mnemonic device of “shift left” (<<
) and “shift right” (>>
) to associate these commands to their function.

Finally, CTRL-W
 |
 resizes the current window to the widest size possible (by default). You can also specify explicitly how to change the window width with vertical resize

n

 . The
n

 defines the window’s new width.

Window Sizing Options

Several Vim options influence the behavior of the resize commands described in the previous section.

winheight
 and winwidth
 define

 the minimal window height and width, respectively, when a window becomes active. For example, if the screen accommodates two equal-sized windows of 45 lines, the default Vim behavior is to split them equally. If you were to set winheight
 to a value larger than 45 — say, 60 — Vim will resize the window to which you move each time to 60 lines, and will resize the other window to 30. This is handy for editing two files simultaneously; you automatically increase the allocated window size for maximum context when you switch from window to window and from file to file.

equalalways
 tells Vim to always resize windows equally after splitting or closing a window. This is a good option to set in order to ensure equitable allocation of windows as you add and delete them.

eadirection
 defines

 directional jurisdiction for equalalways
 . The possible values hor
 , ver
 , and both
 tell Vim to make windows of equal size
horizontally

 ,
vertically

 , or
both

 , respectively. The resizing applies each time you split or delete a window.

cmdheight
 sets the command line height. As described previously, decreasing
 a window’s height when there is only one window increases the command-line height. You can keep the command line the height you want using this option.

Finally, winminwidth
 and winminheight
 tell Vim the
minimum

 width and height to size windows. Vim considers these to be hard values, meaning that windows will never be allowed to get smaller than these values.

Resizing Command Synopsis

Table 11-5
 summarizes the ways to resize windows. Options are set with the :set
 command.

Table 11-5. Window resizing commands

	Command or option
	Description

	
^W=

	
Resize
 all windows equally. The current window honors the settings of the winheight
 and winwidth
 options.

	
:resize -
n

^W-

	
Decrease the current
 window size. The default amount is one line.

	
:resize +
n

^W+

	
Increase the current window size. The default amount is one line.

	
:resize
n

^W^_

^W_

	
Set the current window height. The default is to maximize

 window height (unless
n

 is specified).

	
z
n

 <ENTER>

	
Set the current window height to
n

 .

	
^W<

	
Increase
 the current window width. The default amount is one column.

	
^W>

	
Decrease the
 current window width. The default amount is one column.

	
:vertical resize
n

^W|

	
Set the current

 window width to
n

 . The default is to make window as wide as possible.

	
winheight
 option
	
When entering or creating a window, set its height to at least the specified value.

	
winwidth
 option
	
When entering or creating a window, set its width to at least the specified value.

	
equalalways
 option
	
When the number of windows changes, either by splitting or closing windows, resize them to be the same size.

	
eadirection
 option
	
Define whether Vim resizes windows equally vertically, horizontally, or both.

	
cmdheight
 option
	
Set the command line height.

	
winminheight
 option
	
Define
 the minimum window height, which applies to all windows created.

	
winminwidth
 option
	
Define
 the minimum window width, which applies to all windows created.

Buffers and Their Interaction with Windows

Vim

 uses
buffers

 as containers for work. Understanding buffers completely is an acquired skill; there are many commands for manipulating and navigating them. However, it is worthwhile to familiarize yourself with some of the buffer basics and understand how and why they exist throughout a Vim session.

A good starting point is to open up a few windows editing different files. For example, start Vim by opening file1
 . Then, within the session, issue :split file2
 and
 then :split file3
 . You should now have three open files in three separate Vim windows.

Now use the commands :ls
 , :files
 , or :buffers
 to list the buffers.

 You should see three lines, each numbered and including the filenames, along with additional information. These are Vim’s buffers for this session. There is one buffer for each file and each buffer has a unique, nonchanging associated number. In this example, file1
 is in buffer 1, file2
 is in buffer 2, etc.

Additional information on each buffer can be displayed if you append an

 exclamation point (!
) after any of the commands.

To the right of each buffer number are status flags. These flags describe the buffers as shown in Table 11-6
 .

Table 11-6. Status flags describing buffers

	Code
	Description

	
u

	
Unlisted buffer. This
 buffer is not listed unless you use the !
 modifier. To see an example of an unlisted buffer, type :help
 . Vim
 splits the current window to include a new window in which the built-in help appears. The plain :ls
 command
 will not show the help buffer, but :ls!
 includes it.

	
%
 or (mutually exclusive) #

	

%
 is

 the buffer for the current window.

 #
 is the buffer to which you would switch with the :edit #
 command.

	
a
 or (mutually exclusive) h

	

a

 indicates an active buffer. That means the buffer is loaded and visible. h
 indicates a hidden buffer. The hidden buffer exists but is not visible in any window.

	
-
 or (mutually exclusive) =

	

-
 means

 that a buffer has the modifiable
 option turned off. The file is read-only. =
 is a

 read-only buffer that cannot be made modifiable (for instance, because you don’t have filesystem privileges to write to the file).

	
+
 or (mutually exclusive) x

	

+
 indicates

 a modified buffer. x
 is a buffer with read errors.

Tip

The u
 flag is an interesting way to know what help file you are viewing in Vim. For example, had you issued :help split
 followed by :ls!
 , you would see that the unlisted buffer refers to the built-in Vim help file, windows.txt
 .

Now that you can list Vim buffers, we can talk about them and their various uses.

Vim’s Special Buffers

Vim uses some

 buffers for its own purposes, called special
 buffers. For instance, the help buffers described in the previous section are special. Typically, these buffers cannot be edited or modified.

Here are four examples of Vim special buffers:

quickfix

Contains
 the list of errors created by your commands (which can be viewed with :cwindow
) or the location list (which can be viewed with the :lwindow
 command). Do not edit the contents of this buffer! It helps programmers iterate through the edit-compile-debug cycle. See Chapter 14
 .

help

Contains Vim help files,
 described earlier in the section Built-in Help
 . :help
 loads these text files into this special buffer.

directory

Contain directory contents, that is, a list of
 files for a directory (and some helpful extra command hints). This is a handy tool within Vim that lets you move around in this buffer as you would in a regular text file and select files under the cursor for editing by pressing ENTER
 .

scratch

These buffers contain
 text for general purposes. This text is expendable and can be deleted at any time.

Hidden Buffers

Hidden buffers

 are Vim buffers that are not currently displayed in any window. This makes it easier to edit multiple files, considering the limited screen real estate for multiple windows, without constantly retrieving and rewriting files. For example, imagine you are editing the myfile
 file but wish to momentarily edit some other file, myOtherfile
 . If the hidden
 option is set, you can edit myOtherfile
 through :edit
 myOtherfile
 , causing Vim to hide the myfile
 buffer and display myOtherfile
 in its place. You can verify this with :ls
 and see both buffers listed with myfile
 flagged as
hidden

 .

Buffer Commands

There are almost
 50 commands that specifically target buffers. Many are useful but are for the most part outside the scope of this discussion. Vim manages buffers automatically as you open and close multiple files and windows. The suite of buffer commands allows you to do almost anything with buffers. Often they are used within scripts to handle such tasks as unloading, deleting, and modifying buffers.

Two buffer commands are worth knowing for general use because of their power to do lots of work across many files:

windo

cmd

Short for “window do” (at least we think it’s a decent mnemonic), this
 pseudo-buffer command (actually it’s a window command) executes the
 command
cmd

 in each window. It acts as if you go to the top of the screen (^Wt
), and cycles through each window to execute the specified command as :cmd
 in that window. It acts only within the current tab and stops at any window where :cmd
 generates an error. The window in which the error occurs becomes the new current window.

cmd
 is not permitted to change the state of the windows; that is, it cannot delete, add, or change the order of the windows.

Note

cmd
 can concatenate multiple commands with
 the pipe (|
) symbol.
Do not confuse this notation with the Unix shell convention of piping commands!

 The commands are executed in sequence, with the first command executed sequentially through all windows, then the second command in all windows, etc.

As an example of :windo
 in action, suppose you are editing a suite of Java files and for some reason you have a class name that is improperly capitalized. You need to repair this by changing every occurrence of myPoorlyCapitalizedClass
 to MyPoorlyCapitalizedClass
 . With :windo
 you can do that with:

:windo %s/myPoorlyCapitalizedClass/MyPoorlyCapitalizedClass/g

Pretty cool!

bufdo[!]

cmd

This is analogous
 to windo
 but operates on all of the buffers in your editing session, not just visible buffers in the current tab. bufdo
 stops at the first error encountered, just like windo
 , and leaves the cursor in the buffer where the command fails.

The following example changes all buffers to Unix file format:

:bufdo set fileformat=unix

Buffer Command Synopsis

Table 11-7
 makes no attempt to describe all the commands related to buffers; instead it summarizes the ones described in this section and some other popular commands.

Table 11-7. Summary of buffer commands

	Command
	Description

	
:ls[!]

:files[!]

:buffers[!]

	
List buffers

 and file names. Include unlisted buffers if !
 modifier is included.

	
:ball

:sball

	
Edit all args or
 buffers. (sball
 opens
 them in new windows.)

	
:unhide

:sunhide

	
Edit all
loaded

 buffers.

 (sunhide
 opens them in new windows.)

	
:baddfile

	
Add file
 to
 list.

	
:bunload[!]

	
Unload buffer from
 memory. The !
 modifier forces a modified buffer to be unloaded without being saved.

	
:bdelete[!]

	
Unload
 buffer and delete it from the buffer list. The !
 modifier forces a modified buffer to be unloaded without being saved.

	
:buffer [
n

]

:sbuffer [
n

]

	
Move to buffer
n

 . (sbuffer
 opens a new window.)

	
:bnext [
n

]

:sbnext [
n

]

	
Move

 to next
n

 th
 buffer. (sbnext
 opens a new window.)

	
:bNext [
n

]

:sbNext [
n

]

:bprevious [
n

]

:sbprevious [
n

]

	
Move

 to
n

 th
 next or previous buffer. (sbNext
 and sbprevious
 open

 a new window.)

	
:bfirst

:sbfirst

	
Move to

 first buffer (sbfirst
 opens a new window).

	
:bfirst

:sbfirst

	
Move to last buffer (sblast
 opens a new window).

	
:bmod [
n

]

:sbmod [
n

]

	

 Move to
n

 th
 modified buffer (sbmod
 opens a new window).

Playing Tag with Windows

Vim
 extends the vi
 tag functionality into windows by offering the same tag traversal mechanisms through multiple windows. Following a tag can also open a file in the associated place in a new window.

The tag windowing commands

 split the current window and follow a tag either to a file matching the tag or to the file matching the filename under the cursor.

:stag[!]

tag

 splits
 the window to display the location for the tag found. The new file containing the matched tag becomes the current window, and the cursor is placed over the matched tag. If no tag is found, the command fails and no new window is created.

Tip

As you become more familiar with Vim’s help system, you can use this :stag
 command to split your way through the help system rather than jumping from file to file in the same window.

^WJ
 or ^W^J
 splits

 the window and opens a window above the current window. The new window becomes the current window, and the cursor is placed on the matching tag. If there is no match on the tag, the command fails.

^Wg]
 splits
 the window and creates a new window above the current window. In the new window, Vim performs the
 command :tselect

tag

 , where
tag

 was the tag identifier under the cursor. If no matching tag exists, the command fails. The cursor is placed in the new window, and that new window becomes the current window.

^Wg^J
 works exactly like ^Wg]
 , except
 that instead of performing :tselect
 , it performs :tjump
 .

^Wf
 (or ^W^F
) splits
 the
 window and edits the filename underneath the cursor. Vim will look sequentially through the files set in the option variable path
 to find the file. If the file doesn’t exist in any of the path
 directories, the command fails and does not create a new window.

^WF
 splits the window and edits the filename under the cursor. The cursor is placed in the new window editing that file and positioned at the line number matching the number following the filename in the first window.

^Wgf
 opens the file under the cursor in a new tab. If the file doesn’t exist, the new tab is not created.

^Wgf
 opens the file under the cursor in a new tab and positions the cursor on the line specified by the number following the filename in the first window. If the file doesn’t exist, the new tab is not created.

Tabbed Editing

Did you know that
 in addition to editing in multiple windows, you can create multiple
tabs

 ? Vim lets you create new tabs, each of which behaves independently. In each tab you can split the screen, edit multiple files — virtually anything you would normally do in a single window, but now all of your work is easily managed in one window with tabs.

Many Firefox
 users are very familiar with and dependent on tabbed browsing and will recognize what this feature brings to power editing. For the uninitiated, it’s worth trying.

You can use tabs in both regular Vim and gvim
 , but gvim
 is much nicer and easier. Some of the more important ways to create and manage tabs include:

:tabnew

filename

Open a
 new tab and edit a file (optional). If no file is specified Vim opens a new tab with an empty buffer.

:tabclose

 Close the current tab.

:tabonly

 Close all other tabs. If other tabs have modified files, they are not removed unless the autowrite
 option is set, in which case all modified files are written before the other tabs are closed.

In gvim
 you
 can activate any tab simply by clicking the tab at the top of the screen. You can also activate tabs in character-based terminals with the mouse if the mouse is configured (see the mouse
 option). Also, it’s easy to move right and left from tab to tab with CTRL
 PAGE DOWN
 (move one tab to the right) and CTRL
 PAGE UP
 (move one tab to the left). If you are in the leftmost or rightmost tabs and you try to move left or right respectively, Vim moves to the far right or far left tab.

gvim
 offers right-click pop-up menus for the tab, from which you can open a new tab (with or without a new file to edit) and close a tab.

Figure 11-4
 is an example of a set of tabs (notice the tab pop-up menu).

 [image: Example of gvim tabs and tabbed editing]

Figure 11-4. Example of gvim tabs and tabbed editing

Closing and Quitting Windows

There are
 four different ways to close a window that are specific to window editing:
quit

 ,
close

 ,
hide

 , and
close all others

 .

^Wq
 (or ^W^Q
 , or :quit
) is

 really just a window version of the
 :quit
 command. In its simplest form (i.e., a single session edit with only one window), it behaves exactly like vi
 ’s :quit
 command. If the hidden
 option is set and the current window is the last window on the screen referencing that file, the window is closed but the file buffer is retained (it can be retrieved) and hidden. In other words, Vim is still storing the file and you can return to editing it later. If hidden
 is
not

 set, the window is the last one referencing that file, and there are unsaved changes in the current window buffer, the command fails in order to avoid losing your changes. But if some other window displays the file, the current window closes.

^Wc
 (or :close[!]
)

 closes the current window. If the hidden
 option is set and this is the last window referencing this file, Vim closes the window and the buffer is hidden. If this window is on a tab page and is the last window for that tab page, the window
and

 the tab page are closed. As long as you don’t use the !
 modifier, this command will not abandon any file with unsaved changes. The !
 modifier tells Vim to close the current window unconditionally.

Note

Note that this command does not use ^W^C
 , because Vim uses ^C
 to
cancel

 commands. Therefore, if you try to use ^W^C
 , the ^C
 simply cancels the command.

Similarly, while the ^W
 commands are used in combination with ^S
 and ^Q
 ,
some

 users may find their terminals frozen because some interpret ^S
 and ^Q
 as control characters to stop and start displaying information to the screen. If you find your screen freezing mysteriously when using these combinations, try the other listed combinations instead.

^Wo
 , ^W^O
 , and :only[!]
 close all windows except the current window. If the hidden
 option is set, all closed windows hide their buffers. If it’s not set, any window referencing a file with unsaved changes remains on the screen, unless you included the !
 modifier, in which case all windows are closed and the files are abandoned. The behavior of this command can be affected by the autowrite
 option: if it’s set, all windows are closed, but windows containing unsaved changes are written to the files on disk before being exited.

:hide [

cmd

]
 quits the current window and hides the buffer if no other window references it. If the optional
cmd

 is supplied, the buffer is hidden and the command is executed.

Table 11-8
 provides a summary of these commands.

Table 11-8. Commands for closing and quitting windows

	Command
	Description

	
:quit[!]

^Wq

^W^Q

	
Quit the current window.

	
:close[!]

^Wc

	
Close the current window.

	
:only[!]

^Wo

^W^O

	
Make the current window the only window.

Summary

As you now appreciate, Vim ramps up the editing horsepower with its many windowing features. Vim lets you create and delete windows easily and on the fly. Additionally, Vim provides the under-the-hood power of the raw buffer commands, buffers being the underlying file management infrastructure with which Vim manages window editing. This is once again a perfect example of how Vim brings multiwindow editing to beginners while

 simultaneously giving power users the tools they need to tune their windowing experience.

Chapter 12. Vim Scripts

Sometimes
 customization alone isn’t enough for your editing environment. Vim lets you define all of your favorite settings in your .vimrc
 file, but maybe you want more dynamic or “just in time” configuration. Vim scripts let you do that.

From inspecting buffer contents to handling unanticipated external factors, Vim’s scripting language lets you complete complex tasks and make decisions based on
your

 needs.

If you have a Vim configuration file (.vimrc
 , .gvimrc
 , or both), you are already scripting in Vim; you just don’t know it. All of the Vim commands and options are valid inputs to scripts. And, as you’d expect, Vim provides all of the standard flow control (if...then...else
 , while
 , etc.), variables, and functions typical in any language.

In this chapter, we’ll walk through an example and incrementally build up a script. We’ll look at simple constructs, use some of Vim’s built-in functions, and examine rules you must consider in order to write well-behaved and predictable Vim scripts.

What’s Your Favorite Color (Scheme)?

 Let’s begin with the simplest of configurations. We’ll customize our environment to a color scheme
we

 prefer. This is simple, and uses one of the basics of Vim scripts, the simple Vim command.

Vim ships with 17 customized color schemes. You can choose and activate a color scheme by putting
 the colorscheme
 command in your .vimrc
 or .gvimrc
 file. A
 favorite “understated” color scheme of one author is the desert scheme:

colorscheme desert

Put a colorscheme
 like that in your configuration file, and now every time you edit with Vim you will see your favorite colors.

So our first script is trivial. What if your tastes for your color scheme are more complex? What if you like more than one color scheme? What if the time of day correlates to your preferences? Vim scripts easily let you do this.

Note

Choosing an alternate color scheme depending on the time of day may seem trite, but maybe not as much as you may think. Even Google changes the colors and tone of your
iGoogle

 home page throughout the day.

Conditional Execution

One of the authors
 likes to divide the day into four partitions, each with its own dedicated color scheme:

darkblue

Midnight to 6 a.m.

morning

6 a.m. to noon

shine

Noon to 6 p.m.

evening

6 p.m. to midnight

We’ll build a nested if...then...else...
 block
 of code for this purpose. There are a couple of different syntaxes you can use for this block. One is more traditional, with an explicitly laid out syntax:

if
cond expr

line of vim code

another line of vim code

 ...
elseif
some secondary cond expr

code for this case

else

code that runs if none of the cases apply

endif

The elseif
 and else
 blocks are

 optional, and you can include multiple elseif
 blocks. Vim also allows the more terse and C-like construct:

cond

 ?
expr 1

 :
expr 2

Vim checks the condition
cond

 . If it’s true,
expr 1

 executes; otherwise,
expr 2

 executes.

Using the strftime() function

 Now
 that we can conditionally execute code, we need to figure out what part of the day it is. Vim has built-in
functions

 that return this kind of information. In our case, we use the strftime()
 function. strftime
 accepts two parameters, the first of which defines the output format of a time string. (This format is system dependent, and not portable, so you must pay due care when choosing a format. Fortunately, most mainstream formats are common across systems.) The second optional parameter is a time measured in seconds since Jan 1, 1970 (standard C time representation). This optional parameter defaults to the current time. For our example, we can use the time format %H
 , producing strftime("%H")
 , because the hour of the day is all we need to decide on our color scheme.

Now that we know how to use conditional code, we have the Vim built-in function to give us the information about the time of day with which we choose our matching color scheme. Put this code into
 your .vimrc
 file:

" progressively check higher values... falls out on first "true"
" (note addition of zero ... this guarantees return from function is numeric
if strftime("%H") < 6 + 0
 colorscheme darkblue
 echo "setting colorscheme to darkblue"
elseif strftime("%H") < 12 + 0
 colorscheme morning
 echo "setting colorscheme to morning"
elseif strftime("%H") < 18 + 0
 colorscheme shine
 echo "setting colorscheme to shine"
else
 colorscheme evening
 echo "setting colorscheme to evening"
endif

 Notice that we introduce another Vim script command, echo
 . As a convenience, we add this to echo the current scheme to ourselves; it also lets us check that the code actually ran and produced the desired result. The message should appear in Vim’s command status window or as a pop up, depending on where in the startup sequence the echo
 command
 is encountered.

Note

When we issue the command colorscheme
 , we
 use the name of the scheme (e.g., desert
)
without

 surrounding quotes, but when we use the echo
 command, we
do

 quote the name ("desert"
). This is an important distinction!

In the case of the colorscheme
 command in our script, we are issuing a direct Vim command, and the parameter for this command is a literal. If we include surrounding quotes, the quotes are interpreted as part of the name of the color scheme by the colorscheme
 . This is an error because none of the schemes include quotes in their names.

On the other hand, the echo
 command interpolates words without quotes as expressions (calculations that return values) or functions. Therefore, we need to quote the name of the color scheme we choose.

Variables

If you
 are a programmer, you probably see a problem with the script we just presented. While it’s unlikely to be a big concern in what we are trying to do, we are executing a conditional check of the hour of the day by invoking the strftime()
 function at each conditional point. Technically, we are conditionally checking one thing, but we are evaluating it as an expression multiple times, potentially making a conditional decision on something that changes value mid-execution.

Instead of executing the function each time, let’s evaluate it once and store the results in a Vim script
variable

 . We can then use the variable as often as we want in our conditional, without incurring the overhead of a function call.

Vim variables are fairly straightforward, but there are a few things to know and manage. Specifically, we must manage our variable’s
scope

 . Vim defines a variable’s scope through a convention that depends on the name’s prefix. The prefixes include:

b:

A variable
 recognized in a single Vim buffer

w:

A variable
 recognized in a single Vim window

t:

A variable
 recognized in a single Vim tab

g:

A variable
 recognized globally — i.e., it can be referenced
anywhere

l:

A variable
 recognized within the function (a local variable)

s:

 A variable recognized within the sourced Vim script

a:

 A function argument

v:

 A Vim variable — one controlled by Vim (these are also global variables)

Note

If you do not define a Vim variable’s scope with a prefix, it defaults to a global (g:
) variable when defined outside a function, and to a local (l:
) variable when defined within a function.

You assign a value to a variable with the let
 command:

:let
var

 = "
value

"

For our purposes, we can define our variable any way we want (context allowing) because we use it only once (though this will change later). For now, we use no prefix and let Vim treat it as global by default. Let’s call our variable currentHour
 . By assigning the result from strftime()
 only once, we now have a more efficient script:

" progressively check higher values... falls out on first "true"
" (note addition of zero ... this guarantees return from function is numeric)
let currentHour = strftime ("%H")
echo "currentHour is " currentHour
if currentHour < 6 + 0
 colorscheme darkblue
 echo "setting colorscheme to darkblue"
elseif currentHour < 12 + 0
 colorscheme morning
 echo "setting colorscheme to morning"
elseif currentHour < 18 + 0
 colorscheme shine
 echo "setting colorscheme to shine"
else
 colorscheme evening
 echo "setting colorscheme to evening"
endif

We can clean up the code a little more and get rid of a few lines by introducing a variable named colorScheme
 . This variable holds the value of the color scheme that we determine by time of day. We’ve added a capital “S” to distinguish the variable from the name of the colorscheme
 command, but we could use the exact same letters and it wouldn’t matter: Vim can determine from the context what is a command and what is a variable.

Note

Notice the use of the dot (
.

) notation

 with the echo
 command. This operator concatenates expressions into one string, which echo
 ultimately displays. In this case we concatenate a literal string, "setting color scheme to
 “, and the value assigned to the variable colorScheme
 .

" progressively check higher values... falls out on first "true"
" (note addition of zero ... this guarantees return from function is numeric
let currentHour = strftime("%H")
echo "currentHour is " . currentHour
if currentHour < 6 + 0
 let colorScheme ="darkblue"
elseif currentHour < 12 + 0
 let colorScheme = "morning"
elseif currentHour < 18 + 0
 let colorScheme = "shine"
else
 let colorScheme = "evening"
endif
echo "setting color scheme to" . colorScheme
colorscheme colorScheme

Warning

We made an incorrect assumption about executing commands within this script. If you coded along with the example, you already know this. We correct the error in the next section.

The execute Command

 So far we have improved how we pick our color scheme, but our last change introduced a slight twist. Initially, we decided to execute a color scheme discretely based on time of day. Our last improvement looks correct, but after defining a variable (colorScheme
) to hold the value of our color scheme, we find that the command:

colorscheme colorScheme

results in the error shown in Figure 12-1
 .

 [image: colorscheme colorScheme error]

Figure 12-1. colorscheme colorScheme error

We need a way to execute a Vim command that refers to a variable instead of a literal string such as darkblue
 . Vim gives us the execute
 command for this purpose. When passed a command, it evaluates variables and expressions and substitutes their values into the command. We can exploit this feature along with the concatenation shown in the previous section to pass the value of our variable to the colorscheme
 command:

execute "colorscheme " . colorScheme

The exact syntax used here (particularly the quotation marks) may be confusing. The execute
 command expects variables or expressions, but colorscheme
 is just a plain string, not a variable or expression. We don’t want execute
 to evaluate colorscheme
 ; we just want it to accept the name as is. So we turn the name of the command into a literal string by enclosing it in quotation marks. While we’re at it, we add a blank space to the end, before the final quotation mark. This is important because we need a space between the command and the value.

Our variable colorScheme
 must be
outside

 the quotation marks so that it’s evaluated by execute
 . Think of execute
 ’s behavior this way:

	Plain words are evaluated as variables or expressions, and execute
 substitutes their values.

	Quotation marks enclosing strings are taken literally;
execute

 does not try to evaluate them to return a value.

Using execute
 fixes our error, and Vim now loads the color scheme as expected.

After loading Vim, you can verify that you loaded the proper color scheme. The colorscheme
 command sets its own variable, colors_name
 . In addition to echoing values of the variables you set in your script, you can manually execute the echo
 command and examine the
colors_name

 variable to see whether our script has in fact executed the correct colorscheme
 command based on the time of day:

echo colors_name

Defining Functions

 So far we’ve created a script that works nicely for us. Now let’s create code we can execute at any time during a session, not just when Vim starts. We will give an example of this soon, but first we need to create a
function

 containing the code of our script.

Vim lets you define your own functions with function...endfunction
 statements.

 Here is a sample skeleton of a user-defined function:

function
myFunction

 (
arg1

,
arg2

...)

line of code

another line of code

endfunction

We can easily turn our script into a function. Notice that we don’t need to pass in any arguments, so the parentheses in the function definition are empty:

function SetTimeOfDayColors()
 " progressively check higher values... falls out on first "true"
 " (note addition of zero ... this guarantees return from function is numeric)
 let currentHour = strftime("%H")
 echo "currentHour is " . currentHour
 if currentHour < 6 + 0
let colorScheme = "darkblue"

 elseif currentHour < 12 + 0

let colorScheme = "morning"

 elseif currentHour < 18 + 0

let colorScheme = "shine"

 else

let colorScheme = "evening"

 endif
 echo "setting color scheme to" . colorScheme
 execute "colorscheme " . colorScheme
endfunction

Note

Vim user-defined function names must begin with a capital letter.

Now we have a function defined in our .gvimrc
 file.
 But if we don’t call it, the code will never execute. You call a function with Vim’s call
 statement. In our example it would look like:

call SetTimeOfDayColors()

Now we can set our color scheme at any time, anywhere within a Vim session. One option is just to put the previous call
 line in our .gvimrc
 . The results are the same as our earlier example, where we ran the code without using a function. But in the next section, we’ll see a neat Vim trick that calls our function repeatedly so that our color scheme gets set regularly throughout our session, thus changing dynamically throughout the day! Of course, this introduces other problems that we must address.

A Nice Vim Piggybacking Trick

In the previous section we defined a Vim function, SetTimeOfDayColors()
 , which we call once to define our color scheme. What if we want to repeatedly check the time of day and change the color scheme accordingly? Obviously the one-time call in .gvimrc
 doesn’t accomplish this. To fix this, we introduce a neat Vim trick using the statusline
 option.

 Most Vim users take the Vim status line for granted. By default, statusline
 has no value, but you can define it to display virtually any information available to Vim in the status line. And because the status line can display dynamic information, such as the current line and column, Vim recalculates and redisplays statusline
 any time the edit status changes. Almost any action in Vim triggers a statusline
 redraw. So we’ll use this as a trick to call our color scheme function and change the color scheme dynamically. As we will soon see, this is an imperfect approach.

The statusline
 accepts an expression, evaluates it, and displays it in the status line. This includes functions. We use this feature to call our SetTimeOfDayColors()
 every time the status line is updated, which is often. Because this feature overrides the default status line and we don’t want to lose the valuable information we get by default, let’s incorporate a wealth of information in the following initial definition of our status line:

set statusline=%<%t%h%m%r\ \ %a\ %{strftime(\"%c\")}%=0x%B\
 \\ line:%l,\ \ col:%c%V\ %P

Note

The definition for statusline
 is split across two lines. Vim considers any line with an initial nonblank character of backslash (\
) to be a continuation of the previous line, and it ignores all whitespace up to the backslash. So if you use our definition, make sure it is copied and entered exactly. If you can’t get it to work, you can revert to starting with an undefined statusline
 .

You can look up the meaning of the various characters preceded by percent signs in the Vim documentation. The definition produces a status line like the following:

ch12.xml Wed 13 Feb 2008 06:24:25 PM EST 0x3C line:1, col:1 Top

Our focus in this chapter is not on what the status line can display, but on exploiting the statusline
 option to evaluate a function.

Now we add our SetTimeOfDayColors()
 function to the statusline
 . By using +=
 instead of a plain equals sign, we add something to the end instead of replacing what we defined earlier:

set statusline += \ %{SetTimeOfDayColors()}

Now our function is part of the status line. Even though it doesn’t contribute interesting information to the status line, it now checks the time of day and potentially updates our color scheme as the hour of the day progresses. Can you see a problem with this?

We now have a Vim script function that inspects the hour of the day each time the Vim status line gets updated. In an earlier section we put some effort into eliminating a few calls to strftime()
 for the sake of efficiency, but now we’ve added so many calls to our session that the number is dizzying.

When our session happens to evaluate the statusline
 at the proper hour of the day, it does what we want and changes the color scheme. But as we’ve defined it, it checks the time and resets the color scheme regardless of whether there’s a change. In the next section, we examine more efficient means to this end by using global variables outside of our function.

Tuning a Vim Script with Global Variables

 As we discovered with our last modification to our Vim script, we
almost

 have the desired behavior. Our function is called every time the Vim status line is updated, but because that happens quite often, it’s problematic on several levels.

First, because it’s called so often, we might be concerned about the load it creates on the computer’s processor. Fortunately, with today’s computers this is unlikely to be of much concern, but it’s still probably bad form to redefine the color scheme over and over so often. If this were the only issue, we might consider our script complete and not bother tuning it further. However, it is not.

If you’ve coded along with the examples, you already know the problem. The constant reestablishment of the color scheme while you move around in the edit session creates a noticeable and annoying flicker, because each definition of the color scheme, even if it’s the same as the current color scheme, requires Vim to reread the color scheme definition script, reinterpret the text, and reapply all of the color syntax highlight rules. Even computers with extremely high computing power are unlikely to provide enough graphics processing power to render the constant updating flicker-free. We need to fix this.

We can define our color scheme once, and then, within a conditional block, determine each time whether the color scheme changes and consequently needs to be defined and drawn. We do this by taking advantage of the global variable set by the
 colorscheme
 command: colors_name
 . Let’s recast our function to take this into consideration:

function SetTimeOfDayColors()
 " progressively check higher values... falls out on first "true"
 " (note addition of zero ... this guarantees return from function is numeric)
 let currentHour = strftime("%H")
 if currentHour < 6 + 0
 let colorScheme = "darkblue"
 elseif currentHour < 12 + 0
 let colorScheme = "morning"
 elseif currentHour < 18 + 0
 let colorScheme = "shine"
 else
 let colorScheme = "evening"
 endif
" if our calculated value is different, call the colorscheme command.

 if g:colors_name !~ colorScheme

 echo "setting color scheme to " . colorScheme

 execute "colorscheme " . colorScheme

 endif
endfunction

This would seem to solve our problem, but now we have a different one. We now get the error shown in Figure 12-2
 .

 [image: Undefined variable]

Figure 12-2. Undefined variable

It turns out that Vim takes a very stern attitude when we try to refer to a variable that hasn’t yet been defined. But what’s wrong with the colors_name
 variable? We know that colorscheme
 sets it. We’ve even taken the precaution of using the g:
 prefix to indicate that it’s a global variable. But the first time this function executes, g:colors_name
 has no value and hasn’t even been defined, because the colorscheme
 command hasn’t executed. Only after the command runs can we safely check g:colors_name
 .

This is simple to fix, and we can do it one of two ways. Insert either:

let g:colors_name = "xyzzy"

or:

colorscheme default

in your .gvimrc
 file. Either statement defines the global variable as soon as your session starts, so the comparison in our function will always be valid. Now we have a dynamic and efficient function. We will make one last improvement in the following section.

Arrays

It
 would be nice if somehow we could just extract our color scheme value without the
 extended if...then...else
 block. With Vim arrays, we can improve the script and make it eminently more readable.

Vim arrays are created by defining a variable’s value as a comma-separated list of values within square brackets. We introduce an array named Favcolorschemes
 for our function. We could define it within the scope of the function, but to leave open the possibility of accessing the array elsewhere in our session, we’ll define the array outside of the function as a global array:

let g:Favcolorschemes = ["darkblue", "morning", "shine", "evening"]

This line should go in your .gvimrc
 file.
 Now we can reference any value within the array variable g:Favcolorschemes
 by its subscript, starting with element zero. For example, g:Favcolorschemes[2]
 is equal to the string "shine"
 .

Taking advantage of Vim’s treatment of math functions, where results of integer division are integers (the remainder gets truncated), we can now quickly and easily get our preferred color scheme based on the hour of the day. Let’s look at a final version of our function:

function SetTimeOfDayColors()
 " currentHour will be 0, 1, 2, or 3
 let g:CurrentHour = (strftime("%H") + 0) / 6
 if g:colors_name !~ g:Favcolorschemes[g:CurrentHour]
 execute "colorscheme " . g:Favcolorschemes[g:CurrentHour]
 echo "execute " "colorscheme " . g:Favcolorschemes[g:CurrentHour]
 redraw
 endif
endfunction

Congratulations! You have built a complete Vim script that takes into consideration many of the factors needed to build any useful script you may want.

Dynamic File Type Configuration Through Scripting

 Let’s look at another nifty script example. Normally, when editing a new file, the only clue Vim gets in order to determine and set filetype
 is the file’s extension. For example, .c
 means the file is C code. Vim easily determines this and loads the correct behavior to make it easy to edit a C program.

But not all files require an extension.
 For example, while it’s become common convention to create shell scripts with a .sh
 extension, this author doesn’t like or abide by this convention, especially having created thousands of scripts before a notion of this convention arose. Vim is actually sufficiently well-trained to recognize a shell script without the crutch of a file extension, by looking at the text inside the file. However, it can do so only on the second edit, when the file provides some context for determining the type. Vim scripts can fix that!

Autocommands

 In our first script example, we relied
 on Vim’s habit of updating the status line constantly and “hid” our function in the status line to set the color scheme by time of day. Our script to determine the file type dynamically relies on a bit more formal Vim convention,
autocommands

 .

Autocommands include any valid Vim commands. Vim uses
events

 to execute commands. Some examples of Vim events include:

BufNewFile

 Triggers an associated command when Vim begins editing a new file

BufReadPre

 Triggers an associated command
before

 Vim moves to a new buffer

BufRead

BufReadPost

 Trigger an associated command when editing a new buffer, but
after

 reading the file

BufWrite

BufWritePre

 Trigger an associated command before writing a buffer to a file

FileType

 Triggers an associated command after setting the filetype

VimResized

 Triggers an associated command after a Vim window size has changed

WinEnter

WinLeave

 Trigger an associated command upon entering or leaving a Vim window, respectively

CursorMoved

CursorMovedI

 Trigger an associated command every time the cursor moves in
normal

 mode or in
insert

 mode, respectively

 Altogether there are almost 80 Vim events. For any of these events, you can define an automatic autocmd
 that executes when that event occurs. The autocmd
 format is:

autocmd [
group

]
event

pattern

 [nested]
command

The elements of this format are:

group

An optional command group (described later)

event

The event that will trigger
command

pattern

The pattern matching the filename for which
command

 should execute

nested

If present, allows this autocommand to be nested within others

command

The Vim command, function, or user-defined script to execute when the event occurs

For our example, our goal is to identify the file type for any new file we open, so we use *
 for
pattern

 .

The next decision is which event to use to trigger our script. Because we want to try to identify our file type as early as possible, two good candidates suggest themselves: CursorMovedI
 and CursorMoved
 .

CursorMoved
 triggers an event when the cursor moves, which seems wasteful because merely moving the cursor is not likely to provide more information about a file’s type. CursorMovedI
 , in contrast, fires when text is input, and therefore seems like the best candidate.

We must write a function to do the work each time. Let’s call it CheckFileType
 . We now have enough information to define our autocmd
 command. It looks like this:

autocmd CursorMovedI * call CheckFileType()

Checking Options

In our CheckFileType
 function, we need to inspect the value of the filetype
 option. Vim scripts use special variables to extract values from options, by prefixing the option name (filetype
 in our case) with an ampersand (&
) character. Hence we will use the variable &filetype
 in our function.

We start with a simple version of our CheckFileType
 function:

function CheckFileType()
 if &filetype == ""
 filetype detect
 endif
 endfunction

The Vim command filetype detect
 is a Vim script installed in the $VIMRUNTIME
 directory. It runs through many criteria and tries to assign a file type to your file. Normally this occurs once, so if the file is new and filetype
 cannot determine a file type, the edit session cannot assign syntax formatting.

There is a problem: we call our function each time the cursor moves during input mode, continually trying to detect the file type. We first check to see whether the file already has a file type, which would mean that our function succeeded in its previous execution and therefore does not need to do it anymore. We won’t worry about anomalies, such as a mistaken identification or a file that we start in one programming language and then decide to change to another.

Let’s edit a new shell script file and see the results:

$
vim ScriptWithoutSuffix

Input the following:

#! /bin/sh

inputFile="DailyReceipts"

By now, Vim turns on color syntax, as shown in Figure 12-3
 .

 [image: File type of new file detected]

Figure 12-3. File type of new file detected

You can tell from the picture that Vim is using gray for the string, but the black-and-white image does not show that # /bin/sh
 is blue, inputFile=
 is black, and "DailyReceipts"
 is purple. Unfortunately, these aren’t the colors for shell syntax highlighting. A quick check of the filetype
 option through the command set filetype
 displays the message shown in Figure 12-4
 .

 [image: conf file type detected]

Figure 12-4. conf file type detected

Vim assigned file type conf
 to our file, which is not what we want. What went wrong?

If you try this example, you will see that Vim assigned the file type immediately when you entered the first character, #
 , at the first CursorMovedI
 event. Configuration files for Unix utilities and daemons typically use the #
 character to start a comment, so Vim’s heuristics assume that a #
 at the beginning of the line is the beginning of a comment in a configuration file. We have to teach Vim to be more patient.

Let’s change our function to allow for more context. Instead of trying to detect the file type at the first available opportunity, let’s allow the user to enter about 20 characters first.

Buffer Variables

 We need
 to introduce a variable into our function to tell Vim to hold off and
not

 try to detect the file type until the CursorMovedI
 autocommand calls the function more than 20 times. Our notion of what is a new file, as well as the number of characters we want to enter into that file, are specific to a buffer. In other words, cursor movement in other buffers of the edit session should not count against the check. Therefore, we use a buffer variable and call it b:countCheck
 .

Next, we revise the function to check for at least 20 moves of the cursor in input mode (implying approximately 20 characters entered), along with checking whether a file type has already been assigned:

function CheckFileType()

let b:countCheck += 1

" Don’t start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20
 filetype detect
 endif
 endfunction

But now we get the error shown in Figure 12-5
 .

 [image: b:countCheck generates an “undefined” error]

Figure 12-5. b:countCheck generates an “undefined” error

That’s a familiar error. As before, we had the gall to check a variable before it was defined. And this time, it’s all our fault because our script is responsible for defining b:countCheck
 . We’ll handle this subtlety in the next section.

The exists() Function

 It’s important to know how to manage all of your variables and functions: Vim requires you to define each one so it already
exists

 before any type of evaluation references it.

We can easily resolve our script error by checking
 for b:countCheck
 ’s existence and assigning it a value with the :let
 command shown earlier:

function CheckFileType()

 if exists(“b:countCheck”) == 0
 let b:countCheck = 0
endif

let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20
 filetype detect
 endif
 endfunction

Now test the code. Figure 12-6
 shows the moment before the 20-character limit is reached, and Figure 12-7
 shows the effect of entering the 21st character.

 [image: No file type detected yet]

Figure 12-6. No file type detected yet

 [image: File type detected]

Figure 12-7. File type detected

The /bin/sh
 text suddenly has syntax color highlighting. A quick check with set
 filetype
 verifies that Vim has made the correct assignment, as shown in Figure 12-8
 .

 [image: Correct detection]

Figure 12-8. Correct detection

For all practical purposes, we have a complete and satisfactory solution, but for good form we add another check to stop Vim from trying to detect a file type after approximately 200 characters have been entered:

function CheckFileType()

if exists("b:countCheck") == 0
 let b:countCheck = 0
endif

let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20 && b:countCheck < 200
 filetype detect
 endif
 endfunction

Now, even though our function CheckFileType
 is called each time Vim’s cursor moves, we incur little overhead because the initial checks exit the function once a file type is detected or the threshold of 200 characters is exceeded. Although this is probably all we need for reasonable functionality and minimal processing overhead, we’ll continue to look at more mechanisms to give us a more complete and satisfactory solution that not only incurs minimal overhead, but actually “goes away” when we don’t need it any more.

Note

You may have noticed we have been slightly vague about the exact meaning of our threshold count of 20 characters. This ambiguity is intentional. Because we are counting cursor movements, in input mode it’s reasonable to assume each movement of the cursor corresponds to a new character, adding to the “sufficient” context text from which CheckFileType()
 will determine the file type. However,
all

 cursor movement in input mode counts, so any backspacing to correct typing errors also counts against the threshold counter. To confirm this, try our example, type
#

 , and backspace over it and retype it 10 times. The 11th time should reveal a color-coded #
 , and the file type should now be (incorrectly) set to conf
 .

Autocommands and Groups

 Our script so far ignores any side effects introduced by calling our function for every movement of the cursor. We minimized overhead through reasonableness checks that avoid calling the heavy filetype detect
 command unnecessarily. But what if even minimal code for our function is expensive? We need a way to stop calling code when we don’t need it. For this we leverage Vim’s notion of autocommand
groups

 and their ability to remove commands based on their group association.

We modify our example by first associating our function called by the CursorMovedI
 event with a group. Vim provides an augroup
 command to do this. Its syntax is:

augroup
groupname

All subsequent autocmd
 definitions
 become associated with group
groupname

 until the statement:

augroup END

(There’s also a default group for commands not entered within an augroup
 block.)

Now we associate our previous autocmd
 command with our own group.

augroup newFileDetection
autocmd CursorMovedI * call CheckFileType()
augroup END

Our CursorMovedI
 -triggered function is part of the autocommand group newFile
 Detection
 . We will explore the usefulness of this in the next section.

Deleting Autocommands

 To implement our function as cleanly as possible, we strive to have it remain effective only as long as necessary. We want to undefine its reference once it has exceeded its useful life (that is, as soon as we’ve either detected a file type or decided we can’t). Vim lets you delete an autocommand simply by referencing the event, the pattern that filenames must match, or its group.

autocmd! [
group

] [
event

] [
pattern

]

The usual Vim “force” character — an exclamation point (!
) — follows the autocmd
 keyword to indicate that commands associated with the group, event, or pattern are to be removed.

Because we previously associated our function with our user-defined group newFile
 Detection
 , we now have control over it and can remove it by referencing the group in the autocommand remove syntax. We do so with:

autocmd! newFileDetection

This deletes all autocommands associated with the group newFileDetection
 , which in our case is only our function.

We verify both the definition and removal of our autocommand by querying Vim at startup (when creating the new file) with the command:

autocmd newFileDetection

Vim responds as shown in Figure 12-9
 .

 [image: Response to autocmd newFileDetection command]

Figure 12-9. Response to autocmd newFileDetection command

After a file type has been detected and assigned
or

 the threshold of 200 characters has been exceeded, we no longer want the autocommand definition. So, we add the final touch to our code. Combining the definition of our augroup
 , our autocmd
 command, and our function, the lines in our .vimrc
 look like:

augroup newFileDetection
autocmd CursorMovedI * call CheckFileType()
augroup END

function CheckFileType()

 if exists("b:countCheck") == 0
 let b:countCheck = 0
 endif

 let b:countCheck += 1

 " Don't start detecting until approx. 20 chars.
 if &filetype == "" && b:countCheck > 20 && b:countCheck < 200
 filetype detect
 " If we’ve exceeded the count threshold (200), OR a filetype has been detected
 " delete the autocmd!
 elseif b:countCheck >= 200 || &filetype != ""
 autocmd! newFileDetection
 endif
endfunction

After the syntax color highlighting begins, we can verify that our function deletes itself by entering the same command as when we entered the buffer:

autocmd newFileDetection

Vim’s response is shown in Figure 12-10
 .

 [image: After the deletion criteria have been met for our autocommand group]

Figure 12-10. After the deletion criteria have been met for our autocommand group

Notice now that no autocommands are defined for the newFileDetection
 group. You can delete the auto group as follows:

augroup!
groupname

but doing so does
not

 delete the associated autocommands, and Vim will create an error condition each time those autocommands are referenced. Therefore, make sure to delete the autocommands within a group before deleting the group.

Warning

Do not confuse deleting autocommands with deleting auto groups.

Congratulations! You have completed your second Vim script. This script extends your Vim knowledge and gives you a peek at the different features accessible with scripting.

Some Additional Thoughts About Vim Scripting

We’ve covered
 only a small corner of the entire Vim scripting universe, but we hope you get the sense of Vim’s power. Virtually everything you can do interactively using Vim can be coded in a script.

In this section we look at a nice example included in the built-in Vim documentation, discuss in more detail concepts we touched on earlier, and look at a few new features.

A Useful Vim Script Example

Vim’s built-in documentation includes a handy script we think you’ll want to use. It specifically addresses keeping a current timestamp in the meta
 line of an HTML file, but it could easily be used for many other types of files where it is useful to have the most recent modification time of the file within the text of that file.

Here is the example essentially intact (we have modified it slightly):

autocmd BufWritePre,FileWritePre *.html mark s|call LastMod()|'s
fun LastMod()
 " if there are more than 20 lines, set our max to 20, otherwise, scan
 " entire file.
 if line("$") > 20
 let lastModifiedline = 20
 else
 let lastModifiedline = line("$")
 endif
 exe "1," . lastModifiedline . "g/Last modified: /s/Last modified:
 .*/Last modified: " .
 \ strftime("%Y %b %d")
endfun

Here’s a brief breakdown of the
 autocmd
 command:

BufWritePre
 , FileWritePre

These are the events for which the command is triggered. In this case, Vim executes the autocommand
before

 the file or buffer gets written to the storage device.

*.html

Execute this autocommand for any file whose name ends in .html
 .

mark s

We changed this for readability from the original. Instead of ks
 , we used the equivalent but more obvious command mark s
 . This simply creates a marked position named s
 in the file so we can return to this point later.

|

Pipe characters separate multiple Vim commands that are executed within an autocommand definition. These are simple separators with no relationship to Unix shell pipes.

call LastMod()

This calls our user-defined LastMod
 function.

|

Same as previous.

's

Return to the line we marked with the name s
 .

It’s worth verifying this script by editing a .html
 file, adding the line “Last modified: “”, and issuing the w
 command.

Note

This example is useful, but it’s not canonically correct in relation to its stated goal of substituting the HTML meta
 statement. More appropriately, if indeed it were meant to address a meta
 statement, the substitution should look for the content=...
 part of the meta
 statement. Still, this example is a good start toward solving that problem and is a useful example for other file types.

More About Variables

 We now discuss in more detail what makes up Vim variables and how they’re used. Vim has five variable types:

Number

A signed 32-bit number. This number can be represented in decimal, hexadecimal (e.g., 0xffff
), or octal (e.g., 0177
).

String

A string of characters.

Funcref

A reference to a function.

List

This is Vim’s version of an array. It is an ordered “list” of values and can contain any mix of Vim values as elements.

Dictionary

This is Vim’s version of a
hash

 , often also referred to as an
associative array

 . It is an unordered collection of value-pairs, the first being a
key

 that can be used to retrieve an associated
value

 .

Vim performs convenience conversions of variables where context allows, most notably back and forth between strings and numbers. To be safe (as we were in our first script example), when using a string as a number, ensure conversion by adding 0 to it:

if strftime("%H") < 6 + 0

Expressions

 Vim evaluates expressions in a fairly straightforward way. An expression can be as simple as a number or literal string, or it can be as complex as a compound statement, itself composed of expressions.

It is important to note that Vim’s math functions work with integers only. If you want floating-point and precision, you need to use extensions, such as system calls to external math-capable routines.

Extensions

 Vim offers a number of extensions and interfaces to other scripting languages. Notably, these include perl
 , Python, and Ruby, three of the most popular scripting languages. See Vim’s built-in documentation for details on usage.

A Few More Comments About autocmd

In our earlier example in the section Dynamic File Type Configuration Through Scripting
 , we used Vim’s autocmd
 command to key on events from which our user-defined functions are called. This is very powerful, but do not discount simpler uses of autocmd
 . For example, you can use autocmd
 to tune specific Vim options for different file types.

A good example might be to change the shiftwidth
 option for different file types. File types with copious indentation and nesting levels may benefit from more modest indentation. You may want to define your shiftwidth
 as 2 for HTML in order to prevent code from “walking” off the right side of the screen, but use a shiftwidth
 of 4 for C programs. To accomplish this distinction, include these lines in your .vimrc
 or .gvimrc
 file:

autocmd BufRead,BufNewFile *.html set shiftwidth=2
autocmd BufRead,BufNewFile *.c,*.h set shiftwidth=4

Internal Functions

 In
 addition to all the Vim commands, you have access to about 200 built-in functions. It is beyond the scope of this discussion to identify and document all of these functions, but it is useful to know what categories or types of functions are available. The following categories are taken from the Vim built-in help file, usr_41.txt
 :

String manipulation

All of the standard string functions that programmers expect are included in these functions, from conversion routines to substring routines and more.

List functions

This is an entire array of array functions. They mirror closely the array functions found in perl
 .

Dictionary (associative array) functions

These functions include extraction, manipulation, verification, and other types of functions. Again, these closely resemble perl
 hash functions.

Variable functions

These functions are “getters” and “setters” to move variables around in Vim windows and buffers. There is also a type
 to determine variable types.

Cursor and position functions

These functions allow moving around in files and buffers, and creating marks so that positions can be remembered and returned to. There are also functions that give positional information (e.g., cursor line and column).

Text in current buffer functions

These functions manipulate text within buffers, for example, changing a line, retrieving a line, etc. There are also search functions.

System and file manipulation functions

These include functions to navigate the operating system on which Vim is running, for example, finding files within paths, determining the current working directory, creating and deleting files, etc. This group includes the system()
 function, which passes commands to the operating system for external execution.

Date and time functions

These do a wide variety of manipulations of date and time formats.

Buffer, window, and argument list functions

These functions provide mechanisms to gather information about buffers, and the arguments for each one.

Command-line functions

These functions get command-line position, the command line, and the command-line type, and set the cursor position within the command line.

Quick fix and location lists functions

These functions retrieve and modify the quick fix lists.

Insert mode completion functions

These functions are used for command and insertion completion features.

Folding functions

These functions give information for folds, and expand text displayed for closed folds.

Syntax and highlighting functions

These functions retrieve information about syntax highlighting groups and syntax IDs.

Spelling functions

These functions find suspected misspelled words and offer suggested correct spellings.

History functions

These functions get, add, and delete history items.

Interactive functions

These functions provide an interface to the user for activities such as file selection.

GUI functions

There are three simple functions here to get the name of the current font, get the GUI window
x

 coordinate, and get the GUI window
y

 coordinate.

Vim server functions

These functions communicate with a (possibly) remote Vim server.

Window size and position functions

These functions get window information and allow for saving and restoring window “views.”

Various functions

These are the miscellaneous “other” functions that don’t fit nicely in the previous categories. They include functions such as exists
 , which checks for the existence of a Vim item, and has
 , which checks to see whether Vim supports a certain feature.

Resources

We hope we’ve piqued enough interest and provided enough information to get you started with Vim scripts. An entire book could be devoted to the subject of Vim scripting. Luckily, there are other resources to turn to for help.

A good starting point is to go to the source of Vim itself and visit the pages specifically dedicated to scripting: http://www.vim.org/scripts/index.php
 . Here you will find over 2,000 scripts available for download. The entire body of work is searchable and you are invited to participate by rating scripts and even contributing your own.

We also remind you that the built-in Vim help is invaluable. The most productive help topics we recommend are:

help autocmd
help scripts
help variables
help functions
help usr_41.txt

And don’t forget the myriad Vim scripts in the Vim runtime directories. All of the files with the suffix .vim
 are scripts, and these provide an excellent and fertile playground for learning how to code by example.

Go play. It’s the best way to learn.

Chapter 13. Graphical Vim (gvim)

A longtime

 complaint about vi
 and its clones was the lack of a graphical user interface (GUI). Especially for those caught up in the
 Emacs versus vi
 religious wars, vi
 ’s lack of a GUI was the ultimate trump card to argue that vi
 was a nonstarter when discussing editors.

Eventually, the vi
 clones and “work-alikes” created their own GUI versions.
 Graphical Vim is called gvim
 . Like the other vi
 clones, gvim
 offers robust and extensible GUI functions and features. We’ll cover the most useful ones in this chapter.

Some of gvim
 ’s graphical functionality wraps commonly used Vim features, whereas others introduce the point-and-click convenience functionality most computer users now expect. Although some veteran Vim users (this author included!) may cringe at the thought of grafting a GUI onto their workhorse editor, gvim
 is thoughtfully conceived and implemented. gvim
 offers functionality and features spanning the range of its users’ abilities, softening Vim’s steep learning curve for beginners and transparently bringing expert users extra editing power. This strikes a nice compromise.

Tip

gvim
 for MS Windows comes

 with a menu entry labeled “easy gvim
 .” This is indeed valuable to people who have never used Vim, but, ironically, it is anything
but

 easy for expert users.

In this chapter we first discuss the general gvim
 GUI concepts and features, with a brief introductory section about mouse interaction. Additionally, we refine the discussion around differences and things you should know for different gvim
 environments. Specifically, we focus on MS Windows and the X Window System,
 the two main graphical platforms. We touch briefly on other platforms and guide you to appropriate resources for more complete information. We also provide a brief list of GUI options with synopses.

General Introduction to gvim

gvim
 brings all the functionality, power, and features of Vim while adding the convenience and intuitive nature of a GUI environment. From traditional menus to visual highlighting editing, gvim
 provides the GUI experience today’s users expect. For veteran, console-based, text-environment vi
 users, gvim
 still gives the familiar core power and doesn’t dumb down the paradigm that garnered vi
 its reputation as a power editor.

Starting gvim

When Vim
 is compiled with GUI support, you can invoke it by issuing a gvim
 command or a Vim command with an added -g
 option. On
 Windows, the self-installing executable adds one interesting feature that many discover only accidentally after installation: a new Windows Explorer menu item labeled “Edit with Vim.” This provides quick and easy access to gvim
 by integrating it into the Windows environment. It is worth trying on files you maybe wouldn’t have considered before, especially unusual files such as binaries. However, it
is

 potentially dangerous to edit binary files, and we caution you to use extreme care when editing these files.

The
 configuration files and options recognized by gvim
 are slightly different from those used by Vim. gvim
 reads and executes two startup

 files: .vimrc
 , followed by .gvimrc
 . Although you can put gvim
 -specific options and definitions in .vimrc
 , it’s better to define them in .gvimrc
 . This provides a nice separation of regular Vim and gvim
 customization. It also assures proper behavior on startup. For example,
:set columns=100

 isn’t valid in Vim and will generate an error when Vim is started.

If a system gvimrc
 exists (usually in $VIM/gvimrc
), it is executed. Administrators can use this system-wide configuration file to set common options for their users. This provides a baseline configuration so that users will share a common editing experience.

More experienced Vim users can add their own favorite custom settings and features. After gvim
 reads the optional system configuration, it looks in four places for additional configuration information, in the following order, and stops searching after finding any one of these:

	An exrc
 command stored in the $GVIMINIT
 environment
 variable.

	A user’s gvimrc
 file, usually stored in $HOME/.gvimrc
 . If it is found, it
 is
sourced

 .

	In a Windows environment, if $HOME
 is not set, gvim
 looks in $VIM/_gvimrc
 . (This is the normal situation for Windows users, but it’s an important distinction for users who have Unix work-alikes installed and are likely to have the $HOME
 variable set. One example would be the popular Cygwin suite of Unix tools.)

	If a _gvimrc
 isn’t found, gvim
 finally looks again for .gvimrc
 .

If gvim
 finds a nonempty file to execute, that file’s name is stored in the $MYGVIMRC
 variable
 and further initialization stops.

There is one more option for customization. If, in the cascading sequence of initialization just described, the option exrc
 is set:

set exrc

gvim
 will additionally look in the current directory for .gvimrc
 , .exrc
 , or .vimrc
 and
source

 that file if it isn’t one of the previously listed files (i.e., it hasn’t already been discovered as an initialization file and already executed).

Warning

In a Unix environment, there are security issues around local directories containing configuration files (both .gvimrc

and

 .vimrc
 files), and gvim
 defaults to enforcing some restrictions on what can be executed from these files by setting the secure
 option if the file is not owned by the user. This helps prevent malicious code from being malicious. If you want to be sure, set the secure
 option explicitly in your .vimrc
 or .gvimrc
 file.

Using the Mouse

The mouse

 in gvim
 does something useful in every editing mode. Let’s look at the standard Vim editing modes and how gvim
 treats the mouse in each:

Command mode

You enter this
 mode when you open the command buffer at the bottom of the window by typing a colon (:
). If the window is in command mode, you can use the mouse to reposition the cursor anywhere in the command line. This is enabled by default or when you include the c
 flag in your mouse
 option.

Insert mode

This
 is the mode for entering text. If you click in a buffer that’s in insert mode, the mouse repositions the cursor and lets you immediately start entering text at that position. This mode is enabled by default or when you include
 the i
 flag in your mouse
 option.

The mouse’s behavior in insert mode provides easy and intuitive point-and-click positioning. In particular, it bypasses the need to exit insert mode, navigate with the mouse, motion commands, or other methods, and then reenter insert mode.

Superficially, this seems like a great idea, but in practice it will appeal to only a subset of users. It may be more annoying than helpful to experienced Vim users.

Consider what happens when you are in insert mode and leave gvim
 for some other application. When you click back into the gvim
 window, the point you click is now the insertion point for text, and probably not the one you want. In a single-window gvim
 session, you could land in a different spot from where you were originally working; in a multiple-window gvim
 screen, you could end up with the mouse in a completely different window. You might end up entering text into the wrong file!

Normal mode

This includes
 any time you’re not in insert mode or on the command line. Clicking the mouse in the screen simply leaves the cursor on the character where you clicked. This mode is enabled by default or when you include
 the n
 flag in your mouse
 option.

Normal mode provides a straightforward and easy method to position the cursor, but it offers only clunky support for moving beyond the top or bottom of the visible window. Click and hold the mouse and slide to the top or bottom of a window; gvim
 will scroll up and down correspondingly. If scrolling stops, move the mouse back and forth sideways to make it resume. (It’s not clear why normal mode acts this way.)

Another drawback to normal mode is that users, especially beginners, can come to rely on point and click as the positioning method of choice. This can hold back their motivation to learn Vim’s navigation commands, and hence its power-editing methods. Finally, it creates the same potential confusion as insert mode.

Additionally, gvim
 offers
visual

 mode,

 also known as
select

 mode. This mode is enabled by default, or when you include the v
 flag in your mouse
 option. Visual is the most versatile mode, because it lets you select text by dragging the mouse, which highlights the selection. It can be used in combination with command, insert, and normal modes.

Any combination of flags can be specified in the mouse
 option. The syntax to use is illustrated by the following commands:

:set mouse=""

Disable all mouse behavior.

:set mouse=a

Enable all mouse behavior (the default).

:set mouse+=v

Enable visual mode (v
). This example uses the +=
 syntax to add a flag to the current mouse
 setting.

:set mouse-=c

Disable mouse behavior in command mode (c
). This example uses the -=
 syntax to remove a flag from the current mouse
 setting.

Beginners may prefer more “on” settings, whereas experts may turn the mouse off completely (as the author of this chapter does).

If you use the mouse, we recommend choosing a familiar behavior through gvim
 ’s :behave
 command,
 which accepts either mswin
 or xterm
 as an argument. As suggested by the names of the arguments, mswin
 will set options to closely mimic Windows behavior, whereas xterm
 mimics a window on the X Window System.

Vim has a number of other mouse options, including mousefocus
 , mousehide
 , mousemodel
 , and selectmode
 . For more information, refer to the Vim built-in documentation for these options.

If you have a mouse with a scroll wheel, gvim
 handles it well by default, scrolling the screen or window up and down predictably, regardless of how you set the mouse
 option.

Useful Menus

One

 nice touch gvim
 brings to the GUI environment is menu actions that simplify some of Vim’s more esoteric commands. There are two worth mentioning.

gvim’s Window menu

gvim
 ’s
Window

 menu contains
 many of the most useful and common Vim window management commands: commands that split a single GUI window into multiple display areas. You may find it worth “tearing off” this menu, as shown in Figure 13-1
 , so that you can conveniently open and bounce around among windows. The result is shown in Figure 13-2
 .

 [image: gvim Window menu]

Figure 13-1. gvim Window menu

 [image: gvim Window menu, torn off and floating]

Figure 13-2. gvim Window menu, torn off and floating

gvim’s right-click pop-up menu

gvim
 pops up the menu shown in Figure 13-3
 when you right-click within a buffer you’re editing.

 [image: gvim general editing menu]

Figure 13-3. gvim general editing menu

If any text is selected (highlighted), another menu pops up when you right-click, as shown in Figure 13-4
 .

 [image: gvim editing menu when text is selected]

Figure 13-4. gvim editing menu when text is selected

Notice how the menu in Figure 13-3
 is moved and floats over completely unrelated application. This is a nice way to have an often-used menu conveniently available but out of the way of the editing. Both of these are handy for common select, cut, copy, delete, and paste operations. Users of other GUI editors employ this kind of feature all the time, but this is useful even for long-time Vim users. It is especially useful in that it interacts with the Windows clipboard in a predictable way.

Customizing Scrollbars, Menus, and Toolbars

gvim
 provides the usual GUI widgets, such as scrollbars, menus, and toolbars. Like most modern GUI applications, these widgets are customizable.

The gvim
 window, by default, shows several menus and a toolbar at the top, as illustrated by Figure 13-5
 .

 [image: Top of gvim window]

Figure 13-5. Top of gvim window

Scrollbars

Scrollbars,

 which let you navigate up and down or right and left quickly through a file, are optional in gvim
 . You can display or hide them with the
 guioptions
 option, described at the end of this chapter in GUI Options and Command Synopsis
 .

Because Vim’s standard behavior is to show all text in the file (wrapping lines in the window if necessary), it’s interesting to note that the horizontal scrollbar serves no purpose in typically configured gvim
 sessions.

Turn the left and right scrollbars on and off by including or excluding r
 or l
 in the guioptions
 option. l
 makes sure the screen always has a left scrollbar, whereas r
 makes it always have a right scrollbar. The uppercase variants L
 and R
 tell gvim
 to show left or right scrollbars only when there is a vertically split window.

The horizontal scrollbar is controlled by including or excluding b
 in the guioptions
 option.

And yes, you
can

 scroll the right and left scrollbars at the same time! More precisely, scrolling either one causes the other to move in the corresponding direction. It can be pretty convenient to have scrollbars configured on both sides. Depending upon where your mouse is positioned, you simply click and drag the nearest scrollbar.

Note

Many options, including guioptions
 , control many behaviors, and thus can include many flags by default. New flags could even be added in future versions of gvim
 . Hence, it is important to use the +=
 and -=
 syntax in the :set guioptions
 command, to avoid deleting desirable behaviors. For example, :set guioptions+=l
 adds the “scrollbar always on left” option to gvim
 , leaving the other components in the guioptions
 string intact.

Menus

gvim
 has a
 fully customizable menu feature. In this section we describe the default menu characteristics, which appeared earlier in Figure 13-5
 , and show how you can control the menu layout.

Figure 13-6
 shows one example of using a menu. In this case we’re choosing Global Settings from the Edit menu.

 [image: Cascading Edit menu]

Figure 13-6. Cascading Edit menu

It’s interesting to note these menu options are merely wrappers for Vim commands. In fact, that is exactly how you can create and customize your own menu entries, which we discuss shortly.

Tip

Notice that if you pay attention to the menus, including the keystrokes or commands shown on the right side, you can learn Vim commands over time. For example, in Figure 13-6
 , although it’s handy for beginners to find the familiar Undo command in the Edit menu, where it appears in other popular applications, it is
much

 faster and easier to use the Vim u
 keystroke, which is shown in the menu.

As shown in Figure 13-6
 , each menu starts with a dashed line containing a picture of scissors. Clicking this line “tears off” the menu to create a free-standing window in which that submenu’s options are available without going to the menu bar. If you clicked the dashed line above the Toggle Pattern Highlight menu in Figure 13-6
 , you would see something like Figure 13-7
 . You can position the free-floating menu anywhere on your desktop.

 [image: Tearing off a menu]

Figure 13-7. Tearing off a menu

Now, all of the commands on this submenu are immediately available with just one click in the submenu’s window. Each menu selection is mapped to a button. If a menu selection itself is a submenu, it is represented by a button with greater-than signs (which look like rightward-pointing arrows) at the right side of the button. Clicking these arrows expands the submenu.

Basic menu customization

gvim
 stores menu definitions in a file named $VIMRUNTIME/menu.vim
 .

Defining menu items is similar to mapping. As you saw in the section Using the map Command
 , you can map a key like this:

:map <F12> :set syntax=html<CR>

Menus are handled very similarly.

Suppose that, rather than map F12 to set the syntax to html
 , we want a special “HTML” entry on our File menu to do this task. Use the :amenu
 command:

:amenu File.HTML :set syntax=html<CR>

The four characters <CR>
 are to be typed as shown, and are part of the command.

Now look at your file menu. You should see a new HTML entry, as shown in Figure 13-8
 . By
 using amenu
 instead of menu
 ,
 we ensure that the entry is available in all modes (command, insert, and normal).

 [image: HTML menu item under File menu]

Figure 13-8. HTML menu item under File menu

Note

The menu
 command adds the entry to the menu only in command mode; the entry does not appear in insert and normal modes.

The location for a menu entry is specified by a series of cascading menu entries separated by periods (.
). In our example, File.HTML
 added the menu entry “HTML” to the File menu. The last entry in the series is the one you want to add. Here we’ve added it to an existing menu, but we’ll soon see that we can just as easily create a whole cascading series of new menus.

Be sure to test your new menu selection. For example, we started editing a file that Vim treats as an XML file, as can be seen in the status line in Figure 13-9
 . We’ve customized the status line so that Vim and gvim
 display the currently active syntax on the far right. (See A Nice Vim Piggybacking Trick
 .)

 [image: Status line showing XML syntax before new menu action]

Figure 13-9. Status line showing XML syntax before new menu action

After invoking our new HTML menu item, the Vim status line verifies that the menu item worked and that the syntax is now HTML. See Figure 13-10
 .

 [image: Status line showing HTML syntax after new menu action]

Figure 13-10. Status line showing HTML syntax after new menu action

Notice that the HTML menu item we added doesn’t have a shortcut or command on the righthand side. So let’s redo the menu addition and include this nice enhancement.

First, delete the existing entry:

:aunmenu File.HTML

Note

If you add a menu entry for command mode only using the menu
 command, you can remove it using unmenu
 .

Next, add a new HTML menu item that displays the command you associated to the item:

:amenu File.HTML<TAB>syntax=html<CR> :set syntax=html<CR>

The specification of the menu entry is now followed
 by <TAB>
 (typed literally) and syntax=html<CR>
 . In general, to display text on the righthand side of the menu, place it after the string <TAB>
 and terminate it with <CR>
 . Figure 13-11
 shows the resulting File menu.

 [image: HTML menu item, displaying associated command]

Figure 13-11. HTML menu item, displaying associated command

Note

If you want spaces in the descriptive text of the menu item (or in the menu name itself), quote the spaces with backslashes (\
). If you don’t, Vim uses everything after the first space character for the definition of the menu action. In the previous example, if we wanted :set
 syntax=html
 instead of just syntax=html
 for the descriptive text, the :amenu
 command would have to be:

:amenu File.HTML<TAB>set\ syntax=html<CR> :set syntax=html<CR>

In most cases, it’s probably best not to modify the default menu definitions, but instead to create separate and independent entries. This requires defining a new menu at the root level, but this is just as simple as adding an entry to an existing menu.

Continuing our example, let’s create a new menu tree called MyMenu
 on the menu bar, and then add an HTML menu item to it. First, remove the HTML item from the File menu:

:aunmenu File.HTML

Next, enter the command:

:amenu MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>

Figure 13-12
 shows how your menu bar may appear.

 [image: Menu bar with “MyMenu” menu added]

Figure 13-12. Menu bar with “MyMenu” menu added

The menu commands offer more subtle control over where the menus appear and their behavior, such as whether the command indicates any activity, or even whether the menu item is visible. We discuss these possibilities further in the following section.

More menu customization

Now that we
 see how easy it is to modify and extend gvim
 ’s menus, let’s look at more examples of customization and control.

Our previous example didn’t specify where to put the new MyMenu menu, and gvim
 arbitrarily placed it on the menu bar between Window and Help. gvim
 lets us control the position with its notion of
priority

 , which is simply a numerical value assigned to each menu to determine where it goes on the menu bar. The higher this value is, the further to the right the menu appears. Unfortunately, the way users think of priority is the opposite of how it’s defined by gvim
 . To get priority straight, look back at the order of menus in Figure 13-5
 and compare it to gvim
 ’s default menu priorities, as listed in Table 13-1
 .

Table 13-1. gvim’s default menu priorities

	Menu
	Priority

	File
	10

	Edit
	20

	Tools
	40

	Syntax
	50

	Buffers
	60

	Window
	70

	Help
	9999

Most users would consider File a higher priority than Help (which is why File is on the left and Help on the right), but the priority of Help is higher. So, just think of the priority value as an indication of how far to the right a menu appears.

You can define a menu’s priority by prepending its numeric value to the menu command. If no value is specified, a default value of 500 is assigned, which explains why MyMenu ended up where it did in our earlier example: it landed between Window (priority 70) and Help (priority 9999).

Assume we want our new menu to be between the File and Edit menus. We need to assign MyMenu a numeric priority greater than 10 and less than 20. The following command assigns a priority of 15, leading to the desired effect:

:15amenu MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>

Note

Once a menu exists, its position is fixed for an entire editing session and does not change in response to additional commands that affect the menu. For example, you cannot change a menu’s position by adding a new item to it and prefixing the command with a different priority value.

To add some more confusion to priorities and menu placement, you can also control item placement
within

 a menu by specifying a priority. Higher-priority menu items appear further down in the menu than lower-priority items, but the syntax is different from priority definitions for menus.

We’ll extend one of our earlier menu examples here by assigning a very high value (9999) to the HTML menu item, so that it appears at the bottom of the File menu:

:amenu File.HTML .9999 <TAB>syntax=html<CR> :set syntax=html<CR>

Why is there a period before 9999? You need to specify two priorities here, separated by a period: one for File and one for HTML. We are leaving the File priority blank because it’s a pre-existing menu and can’t be changed.

In general, priorities for a menu item appear between the item’s menu placement and the item’s definition. For every level in the menu hierarchy, you must specify a priority, or include a period to indicate that you’re leaving it blank. Thus, if you add an item deep in the menu hierarchy — such as under Edit → Global Settings → Context lines→ Display — and you want to assign the priority 30 to the last item (Display), you would specify the priority as ...30
 , and the placement together with the priority would look like:

Edit.Global\ Settings.Context\ lines.Display ...30

As with menu priorities, menu item priorities are fixed once they are assigned.

Finally, you can control menu “whitespace” with gvim
 ’s menu separators. Use the same definition as you would to add a menu item, but instead of a command named “…”, place a hyphen (-
) before and after it.

Putting it all together

Now we know how to create, place, and customize menus. Let’s make our example a permanent part of our gvim
 environment by adding the commands we discussed to the .gvimrc
 file. The sequence of lines should look something like:

" add HTML menu between File and Edit menus

[image: 1]

15amenu MyMenu.XML<TAB>syntax=xml :set syntax=xml<CR>

[image: 2]

amenu

[image: 3]

.600 MyMenu.-Sep- :

[image: 4]

amenu

[image: 5]

.650 MyMenu.HTML<TAB>syntax=html :set syntax=html<CR>

[image: 6]

amenu

[image: 7]

.700 MyMenu.XHTML<TAB>syntax=xhtml :set syntax=xhtml<CR>

We now have a top-level, personalized menu with three favorite syntax commands quickly available to us. There are a few important things to note in this example:

	The first command ([image: 1]

) uses the prefix 15
 , telling gvim
 to use priority 15
 . For an uncustomized environment, this places the new menu between the File and Edit menus.

	The subsequent commands ([image: 2]

 , [image: 4]

 , and [image: 6]

) do
not

 specify the priority, because once a priority is determined, no other values are used.

	We’ve used the submenu priority syntax ([image: 3]

 , [image: 5]

 , and [image: 7]

) after the first command to ensure the correct order for each new item. Notice we started with the first definition of .600
 . This assures that the submenu item is placed behind the first one we defined, because we didn’t assign
that

 priority and it therefore defaulted to 500
 .

For even handier access, click on the “scissors” tear-off line to have your personalized floating menu, as shown in Figure 13-13
 .

 [image: Personalized floating tearoff menu]

Figure 13-13. Personalized floating tearoff menu

Toolbars

Toolbars

 are long strips of icons that allow quick access to program functions. On Windows, for instance, gvim
 displays the toolbar shown in Figure 13-14
 at the top of the window.

 [image: gvim’s toolbar]

Figure 13-14. gvim’s toolbar

Table 13-2
 shows the toolbar icons and their meanings.

Table 13-2. gvim toolbar icons and their meanings

	Icon
	Description
	Icon
	Description

	

 [image:]

	Open file dialog
	

 [image:]

	Find next occurence of search pattern

	

 [image:]

	Save current file
	

 [image:]

	Find previous occurence of search pattern

	

 [image:]

	Save all files
	

 [image:]

	Choose saved edit session to load

	

 [image:]

	Print buffer
	

 [image:]

	Save current edit session

	

 [image:]

	Undo last change
	

 [image:]

	Choose Vim script to run

	

 [image:]

	Redo last action
	

 [image:]

	Make current project with make
 command

	

 [image:]

	Cut selection to clipboard
	

 [image:]

	Build tags for current directory tree

	

 [image:]

	Copy selection to clipboard
	

 [image:]

	Jump to tag under cursor

	

 [image:]

	Paste clipboard into buffer
	

 [image:]

	Open help

	

 [image:]

	Find and replace
	

 [image:]

	Search help

If these icons are not familiar or intuitive, you can make the toolbar show both text and icons. Issue this command:

:set toolbar="text,icons"

Note

As with many advanced features, Vim requires toolbar features to be turned on during compilation so people who don’t want them can save memory by not including them. The toolbar does not exist unless one of the +GUI_GTK
 , +GUI_Athena
 , +GUI_Motif
 , or +GUI_Photon
 features is compiled into your version of gvim
 . Chapter 9
 explains how to recompile Vim, during which the link to the gvim
 executable is created.

We modify the toolbar very much like we do menus. As a matter of fact, we use the same :menu

 command,
 but with extra syntax to specify graphics. Although an algorithm exists to help gvim
 find the icon associated with each command, we recommend explicitly pointing to the icon graphic.

gvim
 treats the toolbar as a one-dimensional menu. And, just as you control the right-to-left position of new menus, you can control the position of new toolbar entries by prefixing the menu
 command with a number that determines its positional
priority

 . Unlike menus, there is no notion of creating a new toolbar. All new toolbar definitions appear on the single toolbar. The syntax for adding a toolbar selection is:

:amenu icon=
/some/icon/image.bmp

 ToolBar.
NewToolBarSelection

Action

where
/some/icon/image.bmp

 is the path of the file containing the toolbar button or image (usually an icon) to display in the toolbar,
NewToolBarSelection

 is the new entry for the toolbar button, and
Action

 defines what the button does.

For example, let’s define a new toolbar selection that, when clicked or selected, brings up a DOS window in Windows. Assuming the Windows path is set up correctly (it should be), we will define our toolbar selection to start a DOS window from within gvim
 by executing the following (this is its
Action

):

:!cmd

For the new selection’s toolbar button, or image, we use an icon showing a DOS command prompt, shown in Figure 13-15
 , which on our system is stored in $HOME/dos.bmp
 .

 [image: DOS icon]

Figure 13-15. DOS icon

Execute the command:

:amenu icon="c:$HOME/dos.bmp" ToolBar.DOSWindow :!cmd<CR>

This creates a toolbar entry and adds our icon at the end of the toolbar. The toolbar should now look like Figure 13-16
 . The new icon appears on the rightmost end of the toolbar.

 [image: Toolbar with added DOS command]

Figure 13-16. Toolbar with added DOS command

Tooltips

gvim
 lets you define tooltips for both menu entries and toolbar icons. Menu tooltips display in the gvim
 command-line area when the mouse is over that menu selection. Toolbar tooltips pop up graphically when the mouse hovers over a toolbar icon. For example, Figure 13-17
 shows the tooltip that pops up when we put the mouse over the toolbar’s Find Previous button.

 [image: Tooltip for the Find Previous icon]

Figure 13-17. Tooltip for the Find Previous icon

The :tmenu
 command
 defines tooltips for both menus and toolbar items. The syntax is:

:tmenu
TopMenu.NextLevelMenu.MenuItem

tool tip text

where
TopMenu.NextLevellMenu.MenuItem

 defines the menu as it cascades from the top level all the way to the menu item for which you wish to define a tooltip. So, for example, a tooltip for the Open menu item under the File menu would be defined with the command:

:tmenu

 File.Open

 Open a file

Use ToolBar
 for the top-level “menu” if you are defining a toolbar item (there is no real top-level menu for a toolbar).

Let’s define a pop-up tooltip for the DOS toolbar icon we created in the previous section. Enter the command:

:tmenu

 ToolBar.DOSWindow Open up a DOS window

Now when you hover over the newly added toolbar icon, you can see the tooltip, as shown in Figure 13-18
 .

 [image: Toolbar with added DOS command and its new tooltip]

Figure 13-18. Toolbar with added DOS command and its new tooltip

gvim in Microsoft Windows

gvim
 is increasingly

 popular among Windows users. Veteran vi
 and Vim users will find the Windows version excellent, and it is probably the most current version across all operating systems.

Note

The self-installing executable should automatically and seamlessly integrate Vim into the Windows environment. If it doesn’t, consult the gui-w32.txt
 help file in the Vim runtime directory for regedit
 instructions. Because this involves editing the Windows Registry, do
not

 try it if it’s a procedure with which you are the slightest bit uncomfortable. You may be able to find someone with more expertise to help you. It is a common but nontrivial exercise.

Long-time Windows users are familiar with the
clipboard

 , a storage
 area where text and other information is kept to facilitate copy, cut, and paste operations. Vim supports interaction with the Windows clipboard. Simply highlight text in visual mode and click the Copy or Cut menu item to store Vim text in the Windows clipboard. You can then paste that text into other Windows applications.

gvim in the X Window System

Users familiar with the
 X environment can define and use many of the tunable X features. For example, you can define many resources with the standard class definitions typically defined in the .Xdefaults
 file.

Caution

Note that these standard X resources are useful only for the Motif or Athena versions of the GUI. Obviously, the Windows version has no understanding of X resources. Not so obviously, X resources are not picked up by KDE or GNOME either.

A full discussion of X and how you configure and customize it has been exhaustively documented elsewhere and is beyond the scope of this book. For a brief (or not so brief) introduction to X, we suggest the X manpage.

GUI Options and Command Synopsis

Table 13-3
 summarizes the commands and options specially associated with gvim
 . These are added to Vim when it is compiled with GUI support, and they take effect when it is invoked

 as gvim
 or vim -g
 .

Table 13-3. gvim-specific options

	Command or option
	Type
	Description

	

guicursor

	Option
	Settings
 for cursor shape and blinking

	

guifont

	Option
	Names
 of single-byte fonts to be used

	

guifontset

	Option
	Names of
 multi-byte fonts to be used

	

guifontwide

	Option
	List of font
 names for double-wide characters

	

guiheadroom

	Option
	Number of
 pixels to leave for window decorations

	

guioptions

	Option
	Which
 components and options are used

	

guipty

	Option
	Use
 a pseudo-tty for “:!” commands

	
guitablabel

	Option
	Custom
 label for a tab page

	

guitabtooltip

	Option
	Custom
 tooltip for a tab page

	
toolbar

	Option
	Items
 to show in the toolbar

	
-g

	Option
	Start
 the GUI (which also allows the other options)

	
-U
 gvimrc

	Option
	Use gvim
 startup
 file, named gvimrc
 or something similar, when starting the GUI

	
:gui

	Command
	Start
 the GUI (on Unix-like systems only)

	
:gui

filename

 ...

	Command
	Start the GUI and edit the specified files

	
:menu

	Command
	List
 all menus

	
:menu

menupath

	Command
	List menus starting with
menupath

	
:menu

menupath

action

	Command
	Add menu
menupath

 , to perform action
action

	
:menu

n

menupath

action

	Command
	Add menu
menupath

 with positional priority of
n

	
:menu
 ToolBar.
toolbarname

action

	Command
	Add toolbar item
toolbarname

 to perform action action

	
:tmenu

menupath

text

	Command
	Create tooltip for menu item
menupath

 with text of
text

	
:unmenu

menupath

	Command
	Remove menu
menupath

Chapter 14. Vim Enhancements for Programmers

Text editing is only one
 of Vim’s strong suits. Good programmers demand powerful tools to ensure efficient and proficient work. A good editor is only a start and, by itself, isn’t enough. Many modern programming environments attempt to provide comprehensive solutions when all that is really necessary is a strong editor with some extra smarts.

Programming
 tools offer extra features ranging from editors with syntax coloring, auto indentation and formatting, keyword completion, and so on, to full-blown

 Integrated Development Environments
 (IDEs) with sophisticated integration that build up complete development ecosystems. These IDEs can be expensive (e.g., Visual Studio) or

 free (Eclipse), but their disk and memory requirements are large, their learning curves steep, and their demand for resources immense.

Programmers’ tasks vary, and so do their technology requirements. Small development tasks are easily completed with simple editors that offer little more than text editing capabilities. Large, multicomponent, multiplatform, and multistaff efforts
almost

 demand the heavy lifting IDEs provide. But from anecdotal experience, many veteran programmers feel that IDEs offer little more than extra complexity with no higher probability of success.

Vim strikes a nice compromise between simple editors and monolithic IDEs. It has features that until recently were available only in expensive IDEs. It lets you do quick and simple programming tasks without the overhead and learning curve of an IDE.

The many options, features, commands, and functions especially suited to making the programmer’s life easier range from folding lines of code into one line, to syntax coloring, to automatic formatting. Vim affords programmers many tools that can be fully appreciated only by using them. At the high end, it offers a sort of mini-IDE called Quickfix, but it also has convenience features specific to various programming tasks. We present the following topics in this chapter:

	Folding

	Auto and smart indenting

	Keyword and dictionary word completion

	Tags and extended tags

	Syntax highlighting

	Syntax highlight authoring (roll your own)

	Quickfix, Vim’s mini-IDE

Folding and Outlining (Outline Mode)

Folding lets

 you define what parts of the file you see. For instance, in a block of code you can hide anything within curly braces,

 or hide all comments. Folding is a two-stage process. First, using any of several fold methods
 (we’ll talk more about these later), you define what constitutes a block of text to fold. Then, when you use a fold command, Vim hides the designated text and leaves in its place a one-line placeholder. Figure 14-1
 shows what folds look like in Vim. You can manage the lines hidden by the fold with the fold placeholder.

 [image: Example of Vim folds]

Figure 14-1. Example of Vim folds

In the example, line 11 is hidden by a two-line fold starting with line 10. An eight-line fold starting at line 15 hides lines 16 through 22. And a four-line fold starting at line 26 hides lines 27 through 29.

There are virtually no limits on how many folds you can create. You can even create
 nested folds (folds within folds).

Several options control how Vim creates and displays folds. Also, if you’ve taken the time to create many folds, Vim provides the convenience commands :mkview
 and :loadview
 to preserve

 folds between sessions so you don’t have to create them again.

Folds require some effort to learn but, when mastered, add a powerful way to control what to display and when. Do not underestimate the power this brings. Correct and maintainable programs require robust design at several levels, so good programming often requires looking at the forest rather than the trees — in other words, ignoring details of implementation in order to see the overall structure of a file.

For power users, Vim offers six different ways to define, create, and manipulate folds. This flexibility lets you create and manage folds in different contexts. Ultimately, once created, folds open and close and behave similarly for the whole suite of fold commands.

The six methods of creating folds are:

manual

Define the
 span of a fold with standard Vim constructs, such as motion commands.

indent

Folds
 and fold levels correspond to the indentation of text and the value of the option shiftwidth
 .

expr

Regular
 expressions define folds.

syntax

Folds
 correspond to the semantics of a file’s language (e.g., a C program’s function blocks could fold).

diff

The
 differences between two files define folds.

marker

Predefined
 (but also user-definable) markers in the file specify fold boundaries.

The manipulation of folds (opening and closing, deleting, etc.) is the same for all methods. We’ll examine manual folds and discuss Vim fold commands in detail. We address some details for the other methods, but they are complex, specialized, and beyond the scope of this introduction. We hope our coverage will prompt you to explore the richness of these other methods.

So, let’s take a brief look at the important fold commands and go through a short example of what folds look like.

The Fold Commands

Fold commands all begin with z
 . As a mnemonic to remember this, think of the side view of a folded piece of paper (when folded correctly) and how it looks like the letter “z.”

There are about 20 z
 fold commands. With these commands you create and delete folds, open and close folds (hide and expose text belonging to folds), and toggle the expose/hide state of the folds. Here are short descriptions:

zA

Toggle the
 state of folds, recursively.

zC

Close folds,
 recursively.

zD

Delete
 folds, recursively.

zE

Eliminate

all

 folds.

zf

Create
 a fold from the current line to the one where the following motion command takes the cursor.

count

 zF

Create a
 fold covering
count

 lines, starting with the current line.

zM

Set
 option foldlevel
 to 0.

zN

zn

Set (zN
) or

 reset (zn
) the foldenable
 option.

zO

Open
 folds, recursively.

za

Toggle
 the state of one fold.

zc

Close one
 fold.

zd

Delete
 one fold.

zi

Toggle
 the value of the foldenable
 option.

zj

zk

Move

 cursor to the start (zj
) of the next fold or to the end (zk
) of the previous fold. (Note the mnemonic of the j
 (“jump”) and k
 motion commands and how they are analogous to motions within the context of folds.)

zm

zr

Decrement (zm
) or

 increment (zr
) the value of the foldlevel
 option by one.

zo

Open one
 fold.

Warning

Don’t confuse
delete fold

 with the
delete

 command. Use the
delete fold

 command to remove, or undefine, a fold. A deleted fold has no effect on the text contained in that fold.

zA
 , zC
 , zD
 , and zO
 are called recursive
 because they operate on all folds nested within the one where you issue the commands.

Manual Folding

If

 you know Vim motion commands, you already know half of what you must learn to be proficient with manual fold commands.

For example, to hide three lines in a fold, enter either of the following:

3zF
2zfj

3zf
 executes the zF
 folding command over three lines, starting with the current one.
2zfj

 executes the zf
 folding command from the current line to the line where j
 moves the cursor (two lines down).

Let’s try a more sophisticated command of use to C programmers. To fold a block of C code, position the cursor over the beginning or ending brace ({
 or }
) of a block of code and type zf%
 . (Remember that %
 moves to the matching brace.)

Create a fold from the cursor to the beginning of file by
 typing zfgg
 . (gg
 goes to the beginning of the file.)

It is easier to understand folds by seeing an example. We’ll take a simple file, create and manipulate folds, and watch the behavior. We’ll also see some of the enhanced visual folding cues that Vim provides.

First consider the example file in Figure 14-2
 , which contains some (meaningless) lines of C code. Initially, there are no folds.

 [image: Sample file with no folds]

Figure 14-2. Sample file with no folds

There are a few things to note in this picture. First, Vim displays line numbers on the left side of the screen. We recommend that you always turn them on (using the number
 option) for added visual information about file location, and in this context the information becomes more valuable when you fold lines out of view. Vim tells you how many lines are not displayed, and the line numbers confirm and reinforce that information.

Also notice the gray columns to the left of the line numbers. These columns are reserved for more folding visual cues. As we create and use folds, we will see the visual cues Vim inserts into these columns.

In Figure 14-2
 , notice that the cursor is on line 18. Let’s fold that line and the two following lines into one fold. We type zf2j
 . Figure 14-3
 shows the result.

 [image: Three lines folded at line 18]

Figure 14-3. Three lines folded at line 18

Notice how Vim creates an easily identified marker with the +--
 as a prefix,
 and how it displays text from the first folded line in the
fold

 placeholder. Now notice the far left side of the screen where Vim inserted the +
 . This is another visual cue.

In the same file, we’ll next fold the block of code between and including the braces after the if
 statement. Position the cursor on either one of the braces and type zf%
 . The file now appears as in Figure 14-4
 .

 [image: Block of code folded following an if statement]

Figure 14-4. Block of code folded following an if statement

Now there are eight lines of code folded, three of which are contained in a fold already created. This is called a
nested

 fold. Note there is no indication of the nested fold.

Our next experiment is to position the cursor on line 25 and fold all lines up to and including the function declaration for fcn
 . This time we use the Vim
search

 motion. We initiate the fold command with zf
 , search backward to the beginning of the fcn
 function using ?int fcn
 (the backward search command in Vim), and press the ENTER
 key. The screen now looks like Figure 14-5
 .

 [image: Folding to the beginning of a function]

Figure 14-5. Folding to the beginning of a function

Note

If you count lines and create a fold that spans another fold (for example, 3zf
), all lines contained in the spanned fold count as one line. For example, if the cursor is on line 30, and lines 31–35 are hidden in a fold on the next screen line, so that the next line on the screen displays line 36, 3zf
 creates a new fold containing three lines as they appear on the screen: the text line 30, the five lines contained in the fold holding lines 31–35, and the text line 36 displayed in the next line on the screen. Confusing? A little. You might say that the zf
 command counts lines in accordance with the rule, “What you see is what you fold.”

Let’s try some other features. First, open all the folds with the command zO
 (that’s z
 followed by the letter O, not z
 followed by a zero). Now we start seeing some visual cues in the left margin about the folds we made, as shown in Figure 14-6
 . Each of the columns in this margin is called a foldcolumn
 .

 [image: All folds opened]

Figure 14-6. All folds opened

In this figure, the first line of each fold is marked with a minus sign (–
), and

 all the other lines of the fold are marked by a vertical bar or pipe character (|
). The largest (outermost) fold is in the

 leftmost column, and the innermost fold is in the rightmost column. As you see in our picture, lines 5–25 represent the lowest fold level (in this case, 1), lines 15–22 represent the next fold level (2), and lines 18–20 represent the highest fold level.

Tip

By default, this helpful visual metaphor is turned off (we don’t know why; perhaps because it uses up screen space). Turn it on and define its width with the following command:

:set foldcolumns=
n

where
n

 is the number of columns to use (maximum is 12, default is 0). In the figure, we use foldcolumn=5
 . (For those paying close attention, yes, the earlier figures had foldcolumn
 set to 3. We changed the value for a better visual presentation.)

Now create more folds to observe their effects.

First, refold the deepest fold, which covers lines 18–20, by positioning the cursor on any line within the range of that fold and
 typing zc
 (close fold). Figure 14-7
 shows the result.

 [image: After refolding lines 18–20]

Figure 14-7. After refolding lines 18–20

See the change in the gray margin? Vim maintains the visual cues, making visualization and management of your folds easy.

Now let’s see what a typical “one line” command
 does to a fold. Position the cursor on the folded line (18). Type ~~
 (toggle case for all characters in the current line). Remember that in

 Vim, ~
 is an object operator (unless the compatible
 option is set) and therefore should toggle the case of all the characters in the line for this example. Next, open the fold by

 typing zo
 (open fold). The code now looks like Figure 14-8
 .

 [image: Case change applied to a fold]

Figure 14-8. Case change applied to a fold

This is a powerful feature. Line commands or operators act on the entire text represented by a fold line! Admittedly this may seem like a contrived example, but it illustrates nicely the potential of this technique.

Note

Any action on a fold affects the whole fold. For instance, in Figure 14-7
 , if you position the cursor over line 18 — a fold hiding lines 18 through 20 — and
 type dd
 (delete line), all three lines are deleted and the fold is removed.

It’s also important to note that Vim manages all edit actions as if there were no folds, so any undos will undo an entire edit’s action. So, if we typed u
 (undo) after the previous change, all three lines that had been deleted would be restored. The undo feature is separate from the “one line” actions discussed in this section, although sometimes they seem to act similarly.

Now is a good time to familiarize yourself with the visual cues in the foldcolumn
 margin.
 They make it easy to see what fold you are about to act on. For example, the zc
 (close fold)
 command closes the innermost fold containing the line the cursor is on. You can see how large this fold is through the vertical bars in the foldcolumns. Once mastered, actions such as opening, closing, and deleting folds become second nature.

Outlining

Consider

 the following simple (and contrived) file using tabs for indentation:

1. This is Headline ONE with NO indentation and NO fold level.
 1.1 This is sub-headline ONE under headline ONE
 This is a paragraph under the headline. Its fold
 level is 2.
 1.2 This is sub-headline TWO under headline ONE.
2. This is Headline TWO. No indentation, so no folds!
 2.1 This is sub-headline ONE under headline TWO.
 Like the indented paragraph above, this has fold level 2.
 - Here is a bullet at fold level 3.
 A paragraph at fold level 4.
 - Here is the next bullet, again back at fold level 3.
 And, another set of bullets:
 - Bullet one.
 - Bullet two.
 2.2 This is heading TWO under Headline TWO.
3. This is Headline THREE.

You can use Vim folds to look at your file as a pseudo-outline. Define your folding method as indent
 :

:set foldmethod=indent

In our file we define the shiftwidth
 (the indentation level for tabs) to be 4. Now we can open and close folds based on indentation of lines. For each shiftwidth
 (a
 multiple of four columns in this case) to a line that is indented, its fold level increases by 1. For example, the subheadlines in our file are indented one shiftwidth
 , or four columns, and hence have a fold level of 1. Lines indented eight columns (two shiftwidth
 s) have a fold level of 2, etc.

You can control the level of folds you see with the foldlevel
 command. It takes an
 integer as its argument and displays only lines whose fold levels are
less than or equal

to

 the argument. In our file we can ask to view only the highest-level headings with:

:set foldlevel=0

and our screen now looks like Figure 14-9
 .

 [image: fold level = 0]

Figure 14-9. fold level = 0

Display everything up to and including the bullets by setting foldlevel
 to 2. Everything with a fold level
greater than or equal to

 2 is then displayed, as in Figure 14-10
 .

 [image: fold level = 2]

Figure 14-10. fold level = 2

Using this technique to inspect your file, you can quickly expand and collapse the level of detail you see with Vim’s fold

 increment (zr
) and decrement (zm
) commands.

A Few Words About the Other Fold Methods

We don’t have time to cover all of the other fold methods, but to whet your appetite, we invite you to take a quick peek at the
syntax

 folding
 method.

We use the same C file as before, but this time we let Vim decide what to fold based on C syntax. The rules governing folding within C are complex, but this simple snippet of code suffices to demonstrate Vim’s automatic capabilities.

First, make sure to get rid of all folds by typing zD
 (delete all folds).
 The screen now displays all code with no visual markers in the fold column.

Make sure folding is turned on with the command:

:set foldenable

(You didn’t need to do this before for
manual

 folding,
 because foldenable
 was automatically set when foldmethod
 was set to manual
 .) Now type the command:

:set foldmethod=syntax

The folds appear as in Figure 14-11
 .

 [image: After the command set foldmethod=syntax]

Figure 14-11. After the command set foldmethod=syntax

Vim folded all bracketed blocks of code, because those are logical semantic blocks in C. If you type zo
 on line 6 of this example, Vim expands the fold and reveals the inner fold.

Each fold method uses different rules to define folds. We encourage you to roll up (fold up?) your sleeves and read more on these powerful methods in the Vim documentation.

The Vim diff mode (also invoked through the vimdiff
 command) is a powerful
 combination of folding, windowing, and syntax highlighting, a feature we discuss later. As illustrated in Figure 14-12
 , the mode shows the differences between files, usually between two versions of the same file.

 [image: Vim diff feature and its use of folds]

Figure 14-12. Vim diff feature and its use of folds

Auto and Smart Indenting

Vim

 offers four increasingly complex and powerful methods to automatically indent text. In its simplest form, Vim behaves almost identically to vi
 ’s autoindent
 option, and indeed it uses the same name to describe the behavior.

You can choose the indentation method simply by specifying it in a :set
 command, such as:

:set cindent

Vim offers the following methods, listed in order of increasing sophistication:

autoindent

Auto indentation
 closely mimics vi
 ’s autoindent
 . It differs subtly as to where the cursor is placed after indentation is deleted.

smartindent

Slightly
 more powerful than
autoindent

 , but it recognizes some basic C syntax primitives for defining indentation levels.

cindent

As its
 name implies, cindent
 embodies a much richer awareness of C syntax and introduces sophisticated customization beyond simple indentation levels. For example, cindent
 can be configured to match your (or your boss’s) favorite coding style rules, including but not limited to how braces ({}
) indent, where braces are placed, whether either or both braces are indented, and even how indentation matches included text.

indentexpr

Lets
 you define your own expression, which Vim evaluates in the context of each new line you begin. With this feature, you write your own rules. We refer you to the discussions of scripting and functions in this book and to the Vim documentation for details. If the other three options don’t give you enough flexibility for automatic indentation, indentexpr
 certainly will.

Vim autoindent Extensions to vi’s autoindent

autoindent
 for Vim behaves almost like vi
 ’s and can be made identical by setting the compatible
 option. One nice extension to vi
 ’s autoindent
 is Vim’s ability to recognize a file’s “type” and insert appropriate comment characters when comment lines in a file wrap to a new line. This feature works cooperatively with either the wrapmargin
 (text wraps within wrapmargin
 columns of the right margin) or textwidth
 (text wraps when characters in a line exceed textwidth
 characters) options. Figure 14-13
 shows the results of identical inputs, one using Vim’s autoindent
 and the other using vi
 .

 [image: Difference between Vim and vi autoindent]

Figure 14-13. Difference between Vim and vi autoindent

Notice that in the second block of text (line 16 and beyond) there is no leading comment character. Also, with the compatible
 option set (to mimic vi
 ’s behavior), the textwidth
 option isn’t recognized, and now the text wraps only because option wrapmargin
 has a value.

smartindent

smartindent
 extends autoindent
 , slightly. It’s useful, but if you are writing code in a C-like programming language with a fairly complex syntax, you are better served by using cindent
 instead.

smartindent
 automatically inserts indents when:

	A new line follows a line with a left brace ({
).

	A new line begins with a keyword that’s contained in the option cinwords
 .

	A new line is created preceding a line starting with a right brace (}
),
if

 the cursor is positioned on the line containing the brace and the user creates a new line using the O
 (open line above) command.

	A new line is a closing, or right, brace (}
).

cindent

Regular Vim users who program in C-like languages will want to use either cindent
 or indentexpr
 for coding. Although indentexpr
 is more powerful, flexible, and customizable, cindent
 is more practical for most programming tasks. It has plenty of settings for most programmers’ needs (and corporate standards). Try it for a while with its default settings, and then customize it if your standards differ.

Note

If the indentexpr
 option has a defined value, it overrides cindent
 ’s actions.

Three options define cindent
 ’s behavior:

cinkeys

Defines
 keyboard keys that signal Vim to reevaluate indentation

cinoptions

Defines
 the indentation style

cinwords

Defines
 keywords that signal when Vim should add an extra indent in subsequent lines

cindent
 uses the string defined by cinkeys
 as its ruleset to define how to indent. We’ll examine the default value of cinkeys
 and then look at other settings you can define and how they work.

The cinkeys option

cinkeys
 is a comma-separated list of values:

0{,0},0),:,0#,!^X^F,o,O,e

Here are the values, broken into their separate contexts, with brief descriptions for each behavior:

0{

0
 (zero) sets a
beginning of line

 context
 for the following character, {
 . That is, if you type the

 character {
 as the first character of a line, Vim will reevaluate the indentation for that line.

Do not confuse the zero in this option with the behavior “use zero indentation here,” a common practice in C indentation. The zero here means “if the character is typed at the beginning of the line,” not “force the character to appear at the beginning of the line.”

The default indentation for {
 is zero: no added indentation beyond the current level. The following example shows typical results:

main ()
{
 if (argv[0] == (char *)NULL)
 { ...

0}

0)

As in the previous description, these two settings define
beginning of line

 context. Thus, if you type either }
 or)
 at the beginning of a line, Vim reevaluates indentation.

The default indentation for }
 matches the indentation defined for its matching open brace {
 .

The default indentation for)
 is one shiftwidth
 .

:

This is the C label or case statement
 context. If a :
 (colon) is typed at the end of a label or case statement
 statement, Vim reevaluates indentation.

The default indentation for :
 is column 1, the first column in a line. Do not confuse this with zero indentation, which leaves the new line at the same indentation level as the previous one. When the indentation is 1, the first character of a new line is shifted left
all the way

 to the first column.

0#

Again, this is a
beginning of line

 context. When #
 is the first character typed in a line, Vim reevaluates indentation.

Default indentation, as in the previous definition, shifts the entire line to the first column. This is consistent with the practice of beginning macros (#define...
) in column 1.

!^F

The special character !
 defines any following character as a trigger
 to reevaluate the indentation in the current line. In this case, the triggering character is ^F
 , which stands for CTRL-F
 , so the default behavior is for Vim to reevaluate a line’s indentation any time you type CTRL-F
 .

o

This context defines any new line you create, whether by pressing the ENTER
 key in
insert

 mode or by using the o
 (open new line) command.

O

This context covers the creation of a new line
above

 the current line using the O
 (open new line above) command.

e

This is the
else

 context. If you begin a line with the word else
 , Vim reevaluates indentation. Vim does not recognize this context until the final “e” of
else

 is typed.

cinkeys syntax rules

 . Each cinkeys
 definition consists of an optional prefix (one of !
 , *
 , or 0
) and the key for which indentation is reevaluated. The prefixes have the following meanings:

!

Indicates

 a key (default CTRL-F
) that causes Vim to reevaluate indentation on the current line. You can add an additional key definition as a command (by using the +=
 syntax) without overriding the preexisting command. In other words, you can provide multiple keys to trigger line indentation. Any key you add to the !
 definition still performs its old function as well.

*

Tells Vim

 to reevaluate the current line indentation before inserting the key.

0

Sets a
beginning of line

 context. The key you specify after the 0
 triggers a reevaluation of indentation only when typed as the first character of a line.

Note

Be aware of the distinction in vi
 and Vim between “first character in a line” and “first column in a line.” You already know that typing ^
 moves to the first character of a line, not necessarily the first column (flush left); the same is true of inserting with I
 . In the same way, the 0
 prefix applies to entering a character as the first character in a line, regardless of whether it is flush left.

cinkeys
 has special key names and provides ways to override any reserved characters, such as those used as prefix characters. Here are the special key options:

<>

Use this form to define keys literally. For special nonprinting keys, use the spelled-out versions. For example, you can define the literal character “:” with <:>
 . Another example for a nontyping key is to define the “up arrow” as <Up>
 .

^

Use the caret (^
) to signify a control character. For example, ^F
 defines the key CTRL-F
 .

o

O

e

:

We saw these special keys in the default value for cinkeys
 .

=

word

=~

word

Use these to define a word that should receive special behavior. Once the string
word

 is matched, if it is the first text on a new line, Vim reevaluates indentation.

The form =~

word

 is the same as =

word

 except that it ignores case.

Note

The term
word

 is an unfortunate misnomer. More properly, it represents
beginning of word

 , because the trigger occurs as soon as the string matches, but it does not require that the matched end of string also be the end of word. Vim’s built-in documentation gives the example of end
 matching both end
 and endif
 .

The cinwords option

cinwords
 defines
 keywords that, when typed, trigger extra indentation on the following line. The option’s default value is:

if,else,while,do,for,switch

This covers the standard keywords in the C programming language.

Note

These keywords are case-sensitive. In checking for them, Vim even ignores the setting of the ignorecase
 option. If you need variations for different cases of keywords, you must specify all combinations in the cinwords
 string.

The cinoptions option

cinoptions
 controls how
 Vim reindents lines of text in their C context. It includes settings to control a number of code formatting standards, such as:

	How far to indent a code block enclosed by braces

	Whether to insert a newline in front of a brace that follows a condition statement

	How to align blocks of code relative to their enclosing braces

cinoptions
 defines 28 settings with its default value:

s,e0,n0,f0,{0,}0,^0,:s,=s,l0,b0,gs,hs,ps,ts,is,+s,c3,C0,/0,(2s,us,U0,w0,W0,
 m0,j0,)20,*30

The very length of the option gives you a sense of how many ways Vim lets you customize indentation. Most customization with cinoptions
 defines slight differences in context blocks. Some customizations define how far to scan (how many lines forward and backward in the file to go) in order to establish the right context and properly evaluate indentation.

Settings that alter the amount of indentations for various contexts can increase or decrease levels of indentation. Also, you can redefine the number of columns to use for indentation. For example, setting cinoptions=f5
 causes an opening brace ({
) to be indented five columns, so long as it is not inside any
other

 braces.

Another way to define increments of indentation is by some multiplier (which doesn’t have to be an integer) of shiftwidth
 . If, in the previous example, you append w
 to the definition (i.e., cinoptions=f5w
), the opening brace shifts five shiftwidth
 s.

Insert a minus sign (-
) before any numeric value to alter the indentation level to the left (a negative indentation).

Warning

This option and its string value is one to modify with great care. Remember that when you use =
 syntax, you redefine an option completely. Because cinoptions
 carries so many possible settings, use very fine-grained commands to make changes: +=
 to add a setting, -=
 to remove an existing setting, and -=
 followed by +=
 to change an existing setting.

The following is a brief list of the options you are most likely to change. It is a small subset of the settings in cinoptions
 , and many readers may find the other (or even
all

) settings useful to customize.

>

n

 (default is s
)

Any line where indentation is indicated should be indented
n

 places. The default for this is s
 , meaning that the default indentation for a line is one shiftwidth
 .

f

n

{

n

The f
 defines how far to indent an opening unnested brace ({
). The default value is zero, thus aligning braces with their logical counterpart. For example, a brace following a line with a while
 statement is placed under the “w” of the while
 .

The {
 behaves the same way as the f
 but applies to
nested

 opening braces. Again, this one defaults to an indent level of zero.

Figures 14-14
 and 14-15
 show two examples of identical text entry in Vim, the first example with cinoptions=s,f0,{0
 , and the second with cinoptions=s,fs,{s
 . For both examples, option shiftwidth
 has the value 4
 (four columns).

 [image: cinoptions=s,f0,{0]

Figure 14-14. cinoptions=s,f0,{0

 [image: cinoptions=s,fs,{s]

Figure 14-15. cinoptions=s,fs,{s

}

n

Use this setting to define a closing brace’s (}
) offset from its matching brace. The default is zero (aligned with the matching brace).

^

n

Add
n

 to the current indentation inside a set of braces ({...}
) if the opening brace is in column one.

:

n

=

n

b

n

These three control indentation in case
 statements. With :
 , Vim indents case labels
n

 characters from the position of its corresponding switch
 statement. The default is one shiftwidth
 .

The =
 setting defines the offset for lines of code from their corresponding case label. The default is to indent statements one shiftwidth
 .

The b
 setting defines where to place break
 statements. The default (zero) aligns break
 with the other statements within the corresponding case
 block. Any nonzero value aligns the break
 with its corresponding case
 label.

)

n

*

n

These two settings tell Vim how many lines to scan to find unclosed parentheses (default is 20 lines) and unclosed comments (default is 30 lines), respectively.

Tip

Ostensibly, these two settings limit how hard Vim has to work to look for matches. With today’s powerful computers, you should consider ratcheting these values up to assure more complete scope management to match comments and parentheses. Try doubling each to 40 and 60 as a starting point.

indentexpr

indentexpr
 , if defined, overrides cindent
 so that you can define indentation rules and tailor them exactly to your language editing needs.

indentexpr
 defines an expression to be evaluated each time a new line is created in a file. This expression resolves to an integer that Vim uses as the indentation of the new line.

In addition, the option indentkeys
 can define useful keywords in the same way that cinkeys
 keywords define lines after which indentation is reevaluated.

The bad news is that it is a nontrivial project to write customized indentation rules from scratch for any language. The good news is it’s likely that the work is already done. Look in the $VIMRUNTIME/indent
 directory to see whether your favorite language is represented. A quick peek today reveals more than 70 indent files.

The most common programming languages are represented, including
ada

 ,
awk

 ,
docbook

 (the indent file is named docbk
),
eiffel

 ,
fortran

 ,
html

 ,
java

 ,
lisp

 ,
pascal

 , perl
 ,
php

 ,
python

 ,
ruby

 ,
scheme

 ,
sh

 ,
sql

 , and
zsh

 . There is even an indent file defined for xinetd
 !

You can tell Vim to automatically detect your file type and load the indent file by putting the command filetype indent on
 in your .vimrc
 file. Now Vim will try to detect what file type you are editing and load a corresponding
indent

 definition file for you. If the indent rules do not fill your needs — for example, if they indent in some unfamiliar or unwanted fashion — turn the definitions off with the command :filetype indent off
 .

We encourage power users to explore and learn from the indent definition files that come with Vim. And if you develop new definition files or improvements to existing ones, we encourage you to submit them to
vim.org

 for possible addition to the Vim package.

A Final Word on Indentation

Before ending our discussion, it’s worth noting a couple of points about working with automatic indenting:

When automatic indenting isn’t

Any time you act on a line in an edit session with automatic indenting and you change that line’s indentation manually, Vim flags that line and will no longer try to automatically define its indentation.

Copy and paste

When you paste text into your file where automatic indenting is turned on, Vim considers this regular input and applies all automatic indentation rules. In most cases, this is probably not what you intend. Any indentation in pasted text is tacked on to applied indentation rules. Typically the result is text that progressively skews to the right side of the screen with large indentation and no corresponding retreat to the left side.

To avoid this awkward situation and to paste text intact without side effects, set Vim’s paste
 option before adding the imported text. paste
 comprehensively reconfigures all of Vim’s automatic features to faithfully incorporate pasted text. To return to automatic mode, simply reset the paste
 option with the command :set nopaste
 .

Keyword and Dictionary Word Completion

Vim

 offers a comprehensive suite
 of
insertion-completion

 capabilities. From programming language-specific keywords to filenames, dictionary words, and even entire lines, Vim knows how to offer possible completions to partially entered text. Not only that, but Vim abstracts the semantic of dictionary-based completion to include completions based on synonyms for the completed word from a thesaurus!

In this section we look at the different completion methods, their syntaxes, and descriptions of how they work with examples. The methods of completion include:

	Whole line

	Current file keywords

	
dictionary
 option keywords

	
thesaurus
 option keywords

	Current and
included

 file keywords

	Tags (as in ctags
)

	Filenames

	Macros

	Vim command line

	User-defined

	Omni

	Spelling suggestions

	
complete
 option keywords

Except for complete
 keywords, all completion commands start with CTRL-X
 . The
 second key specifically defines the type of completion Vim attempts. For example, the command to autocomplete filenames is CTRL-X
 CTRL-F
 . (Not all the commands are so mnemonic, unfortunately.) Vim uses unmapped (default) keys, which allows you to shorten most of these commands to just the second keystroke by mapping the commands appropriately. (For instance, you can map CTRL-X
 CTRL-N
 to just CTRL-N
 .)

All completion methods have virtually identical behavior: they cycle through a list of candidate completions as you retype the second keystroke. Thus, if you choose filename autocompletion through CTRL-X
 CTRL-F
 and you don’t get the right word on the first try, you can repeatedly press CTRL-F
 to see the other options. Additionally, if you press CTRL-N
 (for “next”), you move forward through the possibilities, whereas CTRL-P
 (for “previous”) moves backward.

Let’s look at some of these autocompletion methods with examples and consider how they might be useful.

Insertion Completion Commands

These

 methods range in function from simply looking for words in your current file to spanning the range of function, variable, macro, and other names throughout an entire suite of code. The final method combines features of the others for a nice compromise between power and sophistication.

Tip

You may want to find your favorite completion method and map it to a single easy-to-use key. I map mine to the Tab key:

:imap Tab <C-P>

This sacrifices my ability to insert tabs easily, but it allows me to use the same key I use (available by default) in command-line environments such as DOS and shell (xterm
 , konsole
 , etc.) to complete partially typed information. (Remember, you can always insert a tab by quoting it with CTRL-V
 .) Mapping to the Tab key also corresponds to the normal completion key in Vim’s command-line mode.

Completing whole lines

This is invoked through CTRL-X
 CTRL-L
 . The method looks backward in the current file for a line matching the characters you’ve typed. We’ll try an example to give you a sense of how completion works.

Consider a file that contains terminal, or console, definitions that characterize the features of terminals and how to manipulate them. Say your screen resembles Figure 14-16
 .

 [image: Example of completion by line]

Figure 14-16. Example of completion by line

Note the highlighted line containing “This terminal widely used in our company...”. You need this line in many places as you mark terminals as “widely used” for your company. Simply type enough of the line to make it unique, or close to unique, and then type CTRL-X
 CTRL-L
 . Thus, Figure 14-17
 contains the partial input line:

Thi

 [image: Partially typed line waiting for completion]

Figure 14-17. Partially typed line waiting for completion

CTRL-X
 CTRL-L
 causes Vim to show a set of possible completions for the line, based on lines previously entered in the file. The list of completions is shown in Figure 14-18
 .

 [image: After typing CTRL-X CTRL-L]

Figure 14-18. After typing CTRL-X CTRL-L

It is hard to see in grayscale, but the screen offers a colored pop-up window containing multiple occurrences of lines matching the beginning of our partial line. Also displayed, but not visible in the screenshot, is information describing where the match is found. This method uses the complete
 option to define the scope for searching for matches. Scope is discussed in detail in the last method of this section.

The pop up[50
]
 list highlights selections as you move forward (CTRL-N
) or backward (CTRL-P
) through the list. Press ENTER
 to select your match. If you do not want any of the choices in the list, type CTRL-E
 to halt the match method without substituting any text. Your cursor returns to its original position on the same partial input.

Figure 14-19
 shows the results after we select an option from the list.

 [image: After typing CTRL-X CTRL-L and selecting our matching line]

Figure 14-19. After typing CTRL-X CTRL-L and selecting our matching line

Completion by keyword in file

CTRL-X
 CTRL-N
 searches forward through the current file for keywords matching the keyword in front of the cursor. Once you enter those keystrokes, you can use CTRL-N
 and CTRL-P
 to search forward or backward, respectively. Press ENTER
 to select a match.

Note

Note that “keyword” is loosely defined. While it may be keywords programmers are familiar with, it can really match any word in the file. Words are defined as a contiguous set of characters in the iskeyword
 option.
 The iskeyword
 defaults are pretty sane, but you can redefine the option if you want to include or leave out some punctuation. Characters in iskeyword
 can be specified either directly (such as a–z
) or through ASCII code (such as using 97-122
 to represent a–z).

For instance, the defaults allow an underscore as part of a word, but consider a period or hyphen to be a delimiter. This works fine for C-like languages, but may not be the best choice for other environments.

Completion by dictionary

CTRL-X
 CTRL-K
 searches forward through the files defined
 by the dictionary
 option for keywords matching the keyword in front of the cursor.

The default setup leaves the dictionary
 option undefined. There are common places to find dictionary files, and you can define your own. The most common dictionary files are:

	
/usr/dict/words
 (Cygwin on XP)

	
/usr/share/dict/words
 (FreeBSD)

	
$HOME
 /.mydict
 (personal list of dictionary words)

Notice that for Windows XP, the dictionary word file is
 provided
 by Cygwin (http://www.cygwin.com/
), a free software emulation suite of Unix utilities. Although installation of Cygwin is beyond the scope of this discussion, it is worth noting that you can selectively install small portions of it, and you may find it worthwhile to install the piece that contains the word dictionary.

Completion by thesaurus

CTRL-X
 CTRL-T
 searches forward through the files defined by
 the thesaurus
 option for keywords that match the keyword in front of the cursor.

This method offers an interesting twist. When Vim finds a match, if the line in the thesaurus file contains more than one word, Vim includes all the words in the list of completion candidates.

Ostensibly (and implied by the option’s name), this method provides synonyms but allows
you

 to define your own standard. Consider the example file containing these lines:

fun enjoyable desirable
funny hilarious lol rotfl lmao
retrieve getchar getcwd getdirentries getenv getgrent ...

The first two lines are typical English-language synonyms (matching “fun” and “funny,” respectively), while the third line might be useful for C programmers who regularly insert function names that begin with get
 . The synonym we use for these functions is “retrieve.”

In real life, we’d separate the English-language thesaurus from the C-language one, because Vim can search multiple thesauruses.

In input mode, type the word fun
 , then CTRL-X
 CTRL-T
 . Figure 14-20
 shows the resulting pop up in gvim
 .

 [image: Thesaurus completion of “fun”]

Figure 14-20. Thesaurus completion of “fun”

Notice the following:

	Vim matches
any

 word it can find in a thesaurus entry, not just the first word of each line in the thesaurus file.

	Vim includes candidate words from all lines in the thesaurus that have a match with the keyword in front of the cursor. Thus, in this case, it finds the matches for both “fun” and “funny.”

Note

Another interesting and perhaps unanticipated behavior of thesaurus
 is that the match can be on words on a line in the thesaurus file
other than

 the first word. For instance, in the line from the previous example file:

funny
hilarious

 lol rotfl lmao

If you type hilar
 and complete it, Vim will include in the list all words from hilarious
 on that line, i.e., “hilarious,” “lol,” “rotfl,” and “lmao.” Funny!

Did you notice the extra information in the list of candidates for completion? You can get information about where Vim found the match in the pop-up menu by adding the value preview
 to the completeopt
 option.

Now consider an example, using the same file as before, in which you type the partial word retrie
 . This matches “retrieve,” a synonym we like as a mnemonic for “getting” stuff, and we include all “get” function names as synonyms. Now, CTRL-X
 CTRL-T
 gives us the pop-up menu (in gvim
) of all of our functions as choices for completion. See Figure 14-21
 .

 [image: Thesaurus completion of string “retrie”]

Figure 14-21. Thesaurus completion of string “retrie”

As with other completion methods, press ENTER
 to select the match.

Completion by keyword in current file and included files

CTRL-X
 CTRL-I
 searches forward through the current file and included files for keywords matching the keyword in front of the cursor. This method differs from the “search current file” method (CTRL-X
 CTRL-P
) in that Vim inspects the current file for
include

 file references
 and searches those files, too.

Vim uses the value in include
 to detect lines referencing
include

 files. The default is a pattern telling Vim to find lines matching the standard C construct:

include <somefile.h>

In this case, Vim would find matches in the file somefile.h
 in the standard include file directories on the system. Vim also uses the path
 option as a list of directories to search for the included files.

Completion by tag

CTRL-X
 CTRL-]
 searches forward through the current file and included files for keywords matching
tags

 . (See the earlier section Using Tags
 for a discussion of tags.)

Completion by filename

CTRL-X
 CTRL-F
 searches for filenames matching the keyword in front of the cursor. Note that this causes Vim to complete the keyword with the
name of the file

 , not with words found in files.

Note

As of Vim 7.1, Vim searches
only

 in the current directory for files with possible filename matches. This is in contrast to many Vim features that use the path
 option to look for files. The built-in Vim documentation hints that this behavior is temporary, by pointing out that path
 isn’t used “yet.”

Completion by macro and definition names

CTRL-X
 CTRL-D
 searches forward through the current file and included files for macro names and definitions defined by the #define
 directive. This method inspects the current file for include file references and searches those files, too.

Completion method with Vim commands

This method, invoked through CTRL-X
 CTRL-V
 , is meant for use on the Vim command line and tries to guess the best completions for words. This context is provided to assist users developing Vim scripts.

Completion by user functions

This method, invoked through CTRL-X
 CTRL-U
 , lets you define the completion method with your own function. Vim uses the function pointed to by the option completefunc
 to make the completion. Refer to Chapter 12
 for discussions about scripting and writing Vim functions.

Completion by omni function

This method, invoked through CTRL-X
 CTRL-O
 , uses user-defined functions much like the previous user function method. The significant difference is that this method expects the functions to be file type-specific, and hence, determined and loaded as a file is loaded. Omni completion files are already available for C, CSS, HTML, JavaScript, PHP, Python, Ruby, SQL, and XML. The built-in Vim documentation mentions that more scripts will be available soon for Vim 7.1, including an omni function file for C++. We encourage you to experiment with them.

Completion for spelling correction

This method is invoked through CTRL-X
 CTRL-S
 . The word in front of the cursor is used as the base word for which Vim offers candidates for completion. If the word appears to be badly spelled, Vim offers suggested “more correct” spellings.

Completion with the complete option

This is the most generic option, invoked through CTRL-N
 , and lets you combine all the other searches into one. For many users, this may be the most satisfactory because it requires little understanding of the nuances of the more specific methods.

Define where and how this completion acts by setting the comma-separated list of available sources in the complete
 option. Each available source is denoted by a single character. The choices include:

.
 (period)

Search the current buffer

w

Search buffers in other windows (within the screen containing your Vim session)

b

Search other loaded buffers in the buffer list (which might not be visible in any Vim windows)

u

Search the unloaded buffers in the buffer list

U

Search the buffers
not

 in the buffer list

k

Search the dictionary files (listed in the dictionary
 option)

kspell

Use the current spellchecking scheme (this is the only option that is not a single character)

s

Search the thesaurus files (listed in the thesaurus
 option)

i

Search the current and included files

d

Search the current and included files for defined macros

t

]

Search for tag completion

Some Final Comments on Vim Autocompletion

We’ve

 covered a lot of material related to autocompletion, but there’s lots more. The autocompletion methods yield great returns for the time you invest in mastering their use. If you edit a
lot

 , and if there’s
any

 notion or context of text to be completed, find the method best suited to that and learn it.

One final tip. Combinations with two keystrokes (more if you are a typical Unix user and count key combinations as “more than one”) can be error-prone, especially given that they are combinations with the CTRL
 key. If you think you’d use autocompletion heavily, consider mapping your favorite autocompletion to just one keystroke or key combination. Large numbers of autocompletion commands abbreviated to half the length offer that much more efficiency.

The following example shows you why we find this customization so valuable. I map the Tab key to generic keyword matching, as mentioned earlier. While editing this book using DocBook XML tags, I have (using a conservative grep
 of the files) typed “emphasis” more than 1,200 times! Using keyword completion, I know the partial “emph” always matches to one choice, the “emphasis” tag I want. Thus, for each occurence of this word, I save at least three keystrokes (assuming perfect typing for the three initial letters), giving me a total savings of at least 3,600 keystrokes!

Here’s another way to measure the efficiency of this method: I already know I type about four characters per second, thus gaining a savings in typing for
one keyword alone

 of 3,600 divided by 4, or
15 minutes

 time saved. For the same DocBook files, I complete another 20 to 30 keywords in the same fashion. The savings in time accrue quickly!

[50
]
 The pop up is in gvim
 ; Vim behaves slightly differently.

Tag Stacking

Tag
 stacking
 is
 described earlier in the section Tag Stacks
 . Besides moving back and forth among the tags you search for, you can choose among multiple matching tags. You can also do tag selection and window splitting with one command. The
 Vim ex
 mode commands for working with tags are provided in Table 14-1
 .

Table 14-1. Vim tag commands

	Command
	Function

	
ta
 [g
][!
] [
tagstring

]
	
Edit the file containing
tagstring

 as defined in the tags
 file. The !
 forces Vim to switch to the new file if the current buffer has been modified but not saved. The file may or may not be written out, depending on the setting of the autowrite
 option.

	[
count

]ta
 [g
][!
]
	
Jump to the
count

 ’th newer entry in the tag stack.

	[
count

]po
 [p
][!
]
	
Pop a cursor position off the stack, restoring the cursor to its previous position. If supplied, go to the
count

 ’th older entry.

	
tags

	
Display the contents of the tag stack.

	
ts
 [elect
][!
] [
tagstring

]
	
List the tags that match
tagstring

 , using the information in the tags file(s). If no
tagstring

 is given, the last tag name from the tag stack is used.

	
sts
 [elect
][!
] [
tagstring

]
	
Like :tselect
 , but
 splits the window for the selected tag.

	[
count

]tn
 [ext
][!
]
	
Jump to the
count

 ’th next matching tag (default is 1).

	[
count

]tp
 [revious
][!
]
	
Jump to the
count

 ’th previous matching tag (default is 1).

	[
count

]tN
 [ext
][!
]

	[
count

]tr
 [ewind
][!
]
	
Jump to the first matching tag. With
count

 , jump to the
count

 ’th matching tag.

	
tl
 [ast
][!
]
	
Jump to the last matching tag.

Normally, Vim shows you which matching tag out of how many it has jumped to. For example:

tag 1 of >3

It uses a greater-than sign (>
) to indicate that it has not yet tried all the matches. You can use :tnext
 or :tlast
 to try more matches. If this message is not displayed because of some other message, use :0tn
 to see it.

Here is the output of the :tags
 command, with the current location marked with a greater-than sign (>
):

 # TO tag FROM line in file
 1 1 main 1 harddisk2:text/vim/test
 > 2 2 FuncA 58 -current-
 3 1 FuncC 357 harddisk2:text/vim/src/amiga.c

The :tselect
 command lets you
 pick from more than one matching tag. The “priority” (pri
 field) indicates the quality of the match (global versus static, exact case versus case-independent, etc.); this is described more fully in the vim
 documentation.

 nr pri kind tag file ~
 1 F f mch_delay os_amiga.c
 mch_delay(msec, ignoreinput)
> 2 F f mch_delay os_msdos.c
 mch_delay(msec, ignoreinput)
 3 F f mch_delay os_unix.c
 mch_delay(msec, ignoreinput)
Enter nr of choice (<CR> to abort):

The :tag
 and :tselect
 commands can be given an argument that starts with /
 . In that case, the command uses it as a regular expression, and Vim will find all the tags that match the given regular expression. For example, :tag /normal
 will find the macro NORMAL
 , the function normal_cmd
 , and so on. Use :tselect /normal
 and enter the number of the tag you want.

The vi
 command mode commands are described in Table 14-2
 . Besides using the keyboard, as in the other editors, you can also use the mouse if mouse support is enabled in your version of Vim.

Table 14-2. Vim command mode tag commands

	Command
	Function

	
^]

	
Look
 up the location of the identifier under the cursor in the tags
 file, and move to that location. The current location is automatically pushed onto the tag stack.

	
g <LeftMouse>

	
CTRL-<LeftMouse>

	
^T

	
Return
 to the previous location in the tag stack, i.e., pop off one element. A preceding count specifies how many elements to pop off the stack.

The Vim options that affect tag searching are described in Table 14-3
 .

Table 14-3. Vim options for tag management

	Option
	Function

	
taglength
 , tl

	
Controls the number of significant characters in a tag that is to be looked up. The default value of zero indicates that all characters are significant.

	
tags

	
The value is a list of filenames in which to look for tags. As a special case, if a filename starts with ./
 , the dot is replaced with the directory part of the current file’s pathname, making it possible to use tags
 files in a different directory. The default value is "./tags,tags"
 .

	
tagrelative

	
When set to true (the default) and using a tags
 file in another directory, filenames in that tags
 file are considered to be relative to the directory where the tags
 file is.

Vim can use Emacs-style etags
 files, but this is only for backward compatibility; the format is not documented in the Vim documentation, nor is the use of etags
 files encouraged.

Finally, Vim also looks up the entire word containing the cursor, not just the part of the word from the cursor location forward.

Syntax Highlighting

One

 of Vim’s strongest enhancements to vi
 is its syntax highlighting. Vim’s syntax formatting relies heavily on the use of color, but it also degrades gracefully on screens that do not support color. In this section we discuss three topics: getting started, customizing, and rolling your own. Syntax highlighting for Vim contains features that go beyond the scope of this book, so we focus on providing enough information to get you familiar with it and enable you to extend it to fit your needs.

Note

Because the impact of Vim’s syntax highlighting is most dramatic in color, and this book isn’t (in color), we strongly encourage you to try syntax highlighting to fully appreciate the power of color in defining context. I have never met a user who tried it and then did not continue to always use it.

Getting Started

Displaying a file’s syntax highlighting is simple. Just issue the command:

:syntax enable

If all is well, and if you edit a file with a formal syntax, such as a
 programming language, you should see text in various colors, all determined by context and syntax. If nothing changed, try turning
syntax

 on:

:syntax on

Enabling syntax should be enough by itself, but we have encountered situations where the additional command was required to turn on the syntax highlighting.

If you still see no syntax highlights, Vim may not know what your file type is and thus not understand which syntax is appropriate. There are a number of reasons this happens.

For example, if you create a new file and don’t use a recognized suffix, or no suffix at all, Vim cannot determine the file type because the file is new and therefore empty. For instance, I write shell scripts without any .sh
 suffix. Each new shell script begins its editing life without syntax highlighting. Fortunately, once the file contains code, Vim knows how to figure out the file type and syntax highlighting works as expected.

It’s also possible (though not likely) that Vim doesn’t recognize your file type. This is very rare, and usually you just need to specify a file type explicitly, because someone has already written a syntax file for the language. Unfortunately, creating one from scratch is a complex undertaking, although we give you some tips later in this chapter.

You can force Vim to use the syntax highlighting of your choice by setting the syntax manually from the command line. When starting a new shell script, for instance, I always define the syntax with:

:set syntax=sh

The section Dynamic File Type Configuration Through Scripting
 shows a clever and rather roundabout way to avoid this step.

When you enable syntax, Vim sets up syntax highlighting by going through a checklist. Without getting mired in too many technical details, we’ll just say that Vim ultimately determines your file type, finds the appropriate syntax definition file, and loads it for you. The standard location for syntax files is the $VIMRUNTIME
 /syntax
 directory.

To get a sense of the comprehensive coverage of syntax definitions, the Vim syntax file directory contains
almost 500 syntax files

 . Available syntaxes span the gamut from languages (C, Java, HTML) to content (calendar
) to well-known configuration files (fstab
 , xinetd
 , crontab
). If Vim doesn’t recognize your file type, try looking in the $VIMRUNTIME
 /syntax
 directory for a syntax file that closely matches yours.

Customization

Once you start using syntax highlighting,
 you may find that some of the colors do not work for you. They may be difficult to see or just not suit your taste. Vim has a few ways to customize and tune colors.

Here are some things to try before taking more drastic measures (e.g., writing your own syntax, as described in the next section) to make syntax highlighting work for you.

Two of the most common and dramatic symptoms of syntax highlighting gone amok are:

	Bad contrast, with colors too similar and hard to see distinctly as different from each other

	Too many, or too varied, colors, which creates a harsh look to the text

Although these are subjective deficiencies, it’s nice that Vim lets you make corrections. Two commands, colorscheme
 and highlight
 , and one option, background
 , can probably bring the colors to

 a satisfactory balance for most users.

There are a few other commands and options with which you can customize your syntax highlighting. After a brief introduction to syntax
groups

 , we
 will talk about these commands and options in the following sections, with an emphasis on the three just mentioned.

Syntax groups

Vim classifies different types of text into groups. These groups each receive color and highlight definitions. Additionally, Vim allows groups of groups. You can address definitions at different levels. If you assign a definition to a group containing subgroups, unless otherwise defined, each subgroup inherits the parent group’s definitions.

Some high-level groups for syntax highlighting include:

Comment

Comments specific to the programming language, e.g.:

 // I am both a C++ and a JavaScript comment

Constant

Any constant, e.g. TRUE

Identifier

Variable and function names

Type

Declarations, such as int
 and struct
 in C

Special

Special characters, such as delimiters

Taking the “special” group from the previous list, we can look at an example of subgroups:

	SpecialChar

	Tag

	Delimiter

	SpecialComment

	Debug

With a basic understanding of syntax highlighting, groups, and subgroups, we now know enough to modify syntax highlighting to suit our tastes.

The colorscheme command

This command
 changes colors for different syntax highlights such as comments, keywords, or strings by redefining these syntax groups. Vim ships with the following color scheme choices:

	
blue

	
darkblue

	
default

	
delek

	
desert

	
elflord

	
evening

	
koehler

	
morning

	
murphy

	
pablo

	
peachpuff

	
ron

	
shine

	
slate

	
torte

	
zellner

These files are in the directory $VIMRUNTIME
 /colors
 . You can activate any one of them with:

:colorscheme
schemeName

Tip

In non-GUI Vim, you can quickly cycle through the different schemes this way: type the partial command :color
 ,
 press the Tab key to start command completion, press the Space bar, then repeatedly press the Tab key to cycle through the different choices.

In gvim
 , the choice is even easier. Click on the Edit menu, move the mouse over the Colorscheme submenu, and select the “tear off” (the line with scissors) menu. Now you can look at all the choices by clicking each button.

Setting the background option

When Vim sets colors, it
 first tries to determine what kind of background color your screen has. Vim has just two categories for background: dark or light. Based on Vim’s determination, it sets colors differently for each, with the end result hopefully being a set of colors that works well with that background (one with good contrast and color compatibility). Although Vim does try very hard, a correct assessment is tricky, and an assignment to dark or light is subjective. Sometimes the contrasts render the session uncomfortable to view, and sometimes they are unreadable.

So, if the colors don’t look good, try explicitly choosing a background
 setting. Make sure first to identify the setting:

:set background?

so that you know that you are changing the setting. Then, issue a command such as:

:set background=dark

Use the background
 option in tandem with the colorscheme
 command
 to fine-tune your screen colors. These two together can usually produce a satisfactory color palette that is comfortable to view.

The highlight command

Vim’s highlight
 command
 lets you manipulate different groups and control how they are highlighted in your edit session. This command is powerful. You can inspect settings for various groups either as a list or by requesting specific group highlight information. For example:

:highlight comment

in my edit session returns Figure 14-22
 .

 [image: Highlight for comments]

Figure 14-22. Highlight for comments

The output shows how comments in this file will appear. The xxx
 is dark gray on this page, but on the screen it’s blue. The term=bold
 output means that on a terminal incapable of color, comments will be shown in bold. ctermfg=4
 means that on a color terminal, such as an xterm
 on a color monitor, the foreground color for comments will be the matching DOS color dark blue. Finally, guifg=Blue
 means the GUI interface will display comments with the foreground color blue.

Note

The DOS color scheme is a more restricted set of colors than modern GUI sets. For the DOS colors, there are eight: black
 , red
 , green
 , yellow
 , blue
 , magenta
 , cyan
 , and white
 . Each of these can be set for text foreground or background and optionally can be defined as “bright,” a brighter color on the screen. Vim uses analogous mappings for defining text colors in non-GUI windows, e.g., xterm
 s.

GUI windows offer virtually unlimited color definitions. Vim lets you define some colors with common names such as Blue
 , but you can also define these colors with red, green, and blue values. The format is #rrggbb
 where the #
 is literal, and rr
 , gg
 , and bb
 are hex numbers representing the level of each color. For example, red could be defined with #ff0000
 .

Use the highlight
 command to change settings for groups whose colors you don’t like. For example, we can find that identifiers in this file are dark cyan for our GUI interface, as shown in the output in Figure 14-23
 .

:highlight identifier

 [image: Highlight for identifiers]

Figure 14-23. Highlight for identifiers

We can redefine the color for identifiers with the command:

:highlight identifiers guifg=red

Now all identifiers on the screen are (a rather ugly) red. This kind of customization is fairly inflexible: it applies to all file types and does not adapt to different backgrounds or color schemes.

To see how many highlight definitions exist and what their values are, again use highlight
 :

:highlight

Figure 14-24
 shows a small sample of the results from the highlight
 command.

 [image: Partial results from the highlight command]

Figure 14-24. Partial results from the highlight command

Note how some lines contain full definitions (listing term
 , ctermfg
 , and so on), whereas others receive their attributes from parent groups (e.g., String
 links back to Constant
).

Overriding syntax files

In the previous
 section, we learned how to define syntax group attributes for all instances of a group. Suppose you want to change a group for only one or a few syntax definitions. Vim lets you do this with the after
 directory. This is a directory in which you can create any number of
after

 syntax files that Vim will execute after the normal syntax file.

To do this, simply include highlight commands (or any processing commands — the notion of “after” processing is generic) in the specific file in a directory named after
 that is included in the runtimepath
 option. Now, when Vim sets up syntax highlighting rules for your file type, it will also execute your custom commands in the after
 file.

For example, let’s apply a customization to XML files, which use the xml
 syntax. This means Vim loaded syntax definitions from a file in the syntax directory named xml.vim
 . As in the previous example, we want to define identifiers always to be red. So we create our own file named xml.vim
 in a directory named ~/.vim/after/syntax
 . In our xml.vim
 file we put the line:

highlight identifier ctermfg=red guifg=red

Before this customization works, we must ensure that ~/.vim/after/syntax
 is in the runtimepath
 path:

:set runtimepath+=~/.vim/after/syntax
In our .vimrc

To make the change permanent, of course, the line should go in our .vimrc
 file.

Now, whenever Vim loads syntax definitions for xml
 , it will override the definitions for
identifier

 with our own customization.

Rolling Your Own

With the building blocks of the previous sections, we now have enough knowledge to write our own syntax files, simple as they might be. There are still many facets to learn before we can fully develop a syntax file.

We will incrementally build our own syntax file. Because syntax definitions can be extremely complex, let’s consider something simple enough to be easily grasped, but complex enough to show its potential power.

Consider an excerpt from a generated Latin file, loremipsum.latin
 :

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Proin eget
tellus. Suspendisse ac magna at elit pulvinar aliquam. Pellentesque
iaculis augue sit amet massa. Aliquam erat volutpat. Donec et dui at
massa aliquet molestie. Ut vel augue id tellus hendrerit porta. Quisque
condimentum tempor arcu. Aenean pretium suscipit felis. Curabitur semper
eleifend lectus. Praesent vitae sapien. Ut ornare tempus mauris. Quisque
ornare sapien congue tortor.

In dui. Nam adipiscing ligula at lorem. Vestibulum gravida ipsum iaculis
justo. Integer a ipsum ac est cursus gravida. Etiam eu turpis. Nam laoreet
ligula mollis diam. In aliquam semper nisi. Nunc tristique tellus eu
erat. Ut purus. Nulla venenatis pede ac erat.

...

Create a new syntax by creating a new file of that syntax name, in this case latin
 . Its corresponding Vim file is latin.vim
 , which you can create in your personal Vim runtime directory, $HOME/.vim
 . Then, start your syntax definition simply by creating some keywords with the syntax keyword
 command. Choosing lorem
 , dolor
 , nulla
 , and lectus
 as our keywords, you can inaugurate the syntax file with the line:

syntax keyword identifier lorem dolor nulla lectus

There still isn’t any syntax highlighting when you edit loremipsum.latin
 . More work needs to be done before highlighting is automatic. But for the time being, activate the syntax with the command:

:set syntax=latin

Because the $HOME/.vim
 directory is one of the directories in the runtimepath
 option, the text should now look something like Figure 14-25
 .

 [image: Latin file with keywords defined]

Figure 14-25. Latin file with keywords defined

It is a little difficult to see, but the keywords you defined that are visible in this snapshot are dark gray instead of black, indicating a different color from the rest of the text. (The actual colors on the screen were black text with blue keywords.)

You may have noticed that the first occurence of Lorem
 isn’t highlighted. By default, syntax keywords are case-sensitive. Add the line at the top of our syntax file:

:syntax case ignore

and you should now see Lorem
 included as a highlighted keyword.

Before we try this again, let’s make it all work automatically. After Vim tries to detect any file type, it optionally checks for other definitions, or even overriding definitions (which are not recommended), in a directory named ftdetect
 in your runtimepath
 . Therefore, create that directory under $HOME/.vim
 and create a file in it named latin.vim
 containing a single line:

au BufRead,BufNewFile *.latin set filetype=latin

This line tells Vim that any files with the suffix .latin
 are latin
 files, and therefore that Vim should execute the syntax file in $HOME/.vim/syntax/latin.vim
 when displaying them.

Now when you edit loremipsum.latin
 , you see Figure 14-26
 .

 [image: Latin file with keywords defined, ignoring case]

Figure 14-26. Latin file with keywords defined, ignoring case

First, notice that the syntax was active right away, as Vim correctly detected your new syntax file type, latin
 . And keywords now match without any sensitivity to case.

For some more interesting extensions, define a match
 and assign it to group Comment
 . The match
 method uses a regular expression to define what is highlighted. For example, we will define all words beginning with s
 and ending with t
 to be Comment
 syntax (remember, this is just an example!). Our regular expression is: \<s[^\t]*t\>
 (trust us). We also will define a region and highlight it as a Number
 . Regions are defined with a start
 and end
 regular expression.

Our region begins with Suspendisse
 and ends with sapien\.
 . To add even more of a twist, we decide that the keyword lectus
 is
contained

 within our region. Our latin.vim
 syntax file now looks like:

syntax case ignore
syntax keyword identifier lorem dolor nulla lectus
syntax keyword identifier lectus contained
syntax match comment /\<s[^\t]*t\>/
syntax region number start=/Suspendisse/ end=/sapien\./ contains=identifier

Now, when we edit loremipsum.latin
 , we see Figure 14-27
 .

 [image: New latin syntax highlighting]

Figure 14-27. New latin syntax highlighting

There are several things to notice, which you can see much more easily if you run the example and view the results in color:

	The new match highlights appear. On the first line, sit
 is highlighted in blue because it satisfies the regular expression for the match
 .

	The new region highlights appear. The entire section of the paragraph beginning with Suspendisse
 through sapien.
 is highlighted in purple (ick).

	The keywords are still highlighted as before.

	Within the highlighted region, the keyword lectus
 is still highlighted in green because we defined group identifier
 as contained
 and defined our region as contains identifier
 .

This example only begins to tap the rich powers of syntax highlighting. Although this particular example is somewhat useless, we hope that it demonstrates enough to convince you of its power and encourages you to experiment and create your own syntax definitions.

Compiling and Checking Errors with Vim

Vim

 isn’t an Integrated Development Environment (IDE), but it tries to make life a little easier for programmers by incorporating compilation into the edit session and providing a quick and easy way to find and correct errors.

Additionally, Vim offers some convenience functions to track and navigate
locations

 in your files. We discuss a simple example: the edit-compile-edit cycle using Vim’s built-in features and some of its related commands and options, as well as the convenience functions. All of these depend on the same
 Vim Quickfix List
 window.

As a simple starting point, Vim lets you compile files using make
 each
 time you change one. Vim uses default behavior to manage the results of your build so that you can easily alternate between editing and compilation. Compilation errors appear in Vim’s special Quickfix List
 window, where you can inspect, jump to, and correct errors.

For this topic we use a little C program that generates Fibonacci numbers. In its correct and compilable form, the code is:

include <stdio.h>

int main(int argc, char *argv[])
 {
 /*
 * arg 1: starting value
 * arg 2: second value
 * arg 3: number of entries to print
 *
 */

 if (argc - 1 != 3)
 {
 printf ("Three command line args: (you used %d)\n", argc);
 printf ("usage: value 1, value 2, number of entries\n");
 return (1);
 }

 /* count = how many to print */
 int count = atoi(argv[3]);

 /* index = which to print */
 long int index;

 /* first and second passed in on command line */
 long int first, second;

 /* these get calculated */
 long int current, nMinusOne, nMinusTwo;

 first = atoi(argv[1]);
 second = atoi(argv[2]);
 printf("%d fibonacci numbers with starting values: %d, %d\n", count, first,
 second);
 printf("=======================================\n");

 /* print the first 2 from the starter values */
 printf("%d %04d\n", 1, first);
 printf("%d %04d ratio (golden?) %.3f\n", 2, second, (double) second/first);

 nMinusTwo = first;
 nMinusOne = second;

 for (index=1; index<=count; index++)
 {
 current = nMinusTwo + nMinusOne;
 printf("%d %04d ratio (golden?) %.3f\n",
 index,
 current,
 (double) current/nMinusOne);
 nMinusTwo = nMinusOne;
 nMinusOne = current;
 }
 }

From Vim, compile this program (assuming a filename of fibonacci.c
) with the command:

:make fibonacci

By default, Vim passes the make
 command through to the external shell and captures the results in the special Quickfix List
 window. After compiling the previous code, the screen with the Quickfix List
 window looks something like Figure 14-28
 .

 [image: Quickfix List window after a clean compile]

Figure 14-28. Quickfix List window after a clean compile

Next, we change enough lines in our program to introduce a healthy number of errors.

Change:

 long int current, nMinusOne, nMinusTwo;

to the invalid declaration:

 longish int current, nMinusOne, nMinusTwo;

Change:

 nMinusTwo = first;
 nMinusOne = second;

to misspelled variables xfirst
 and xsecond
 :

 nMinusTwo = xfirst;
 nMinusOne = xsecond;

Change:

 printf("%d %04d ratio (golden?) %.3f\n", 2, second, (float) second/first);

to this, with missing commas:

 printf("%d %04d ratio (golden?) %.3f\n", 2 second (float) second/first);

Now recompile the program. Figure 14-29
 shows what the Quickfix List
 window now contains.

 [image: Quickfix List window after a compilation with errors]

Figure 14-29. Quickfix List window after a compilation with errors

Line 1 of the Quickfix List
 window shows the compile command executed. If there had been no errors, this would be the only line in the window. But because there are errors, line 3 begins the list of errors and their context.

Vim lists all errors in the Quickfix List
 window and lets you access the code, where errors are indicated in several ways. Vim starts with the convenience behavior by highlighting the first error in the Quickfix List
 window. It then repositions the source file (scrolling if necessary) and places the cursor at the beginning of the source code line corresponding to the error.

As you fix errors, you can navigate to the next error in one of a couple ways: enter the command :cnext
 , or position the cursor over the error line in the Quickfix List
 window and press ENTER
 . Again, Vim scrolls the source file if necessary, and positions the cursor at the beginning of the offending source code line.

After you’ve made changes and are satisfied that you’ve corrected your errors, you’re ready to begin the compile-edit cycle again using the same technique. If you have a standard developer’s environment (which is almost always true for Unix/Linux machines), Vim’s default behaviors will handle edit-compile-edit as described without any tweaking.

If Vim’s defaults don’t find a proper compile program, it has options you can use to define where utilities are located, to let you do your work. The details about programming environments and compilers are outside the scope of this discussion, but we present these Vim options as a starting point in case you need to play with your environment:

makeprg

An option containing
 the name of the development environment’s make
 or compile
 program.

:cnext

:cprevious

Commands

 that move the cursor to
next

 and
previous

 error locations, as defined in the Quickfix List
 window, respectively.

:colder

:cnewer

Vim remembers

 the last 10 lists of errors. These commands load the next
older

 or next
newer

 list of errors in the Quickfix List
 window. Each command takes an optional integer
n

 to load the
n

 th
 older or newer error list.

errorformat

An option defining
 a format that Vim matches to find errors returned from a compile. Vim’s built-in documentation gives much more detailed information on how this is defined, but the default almost always works. If you need to tune the option, view its details with:

:help errorformat

More Uses for the Quickfix List Window

Vim also lets you build your own list of locations within files, specifying the locations through a grep
 -like syntax. The Quickfix List
 window returns the results you asked for in a format closely resembling the lines returned from the compilation process described earlier.

This feature is useful for such tasks as refactoring. As an example, we composed this manuscript in DocBook, a form similar to XML. At some point in the composition process we switched the notation for any occurence of “vim” from <
 emphasis>
 to <
 literal>
 . So, each occurence like:

<emphasis>vim</emphasis>

needed to be changed to:

<literal>vim</literal>

After executing this command:

:vimgrep

 /<emphasis>vim<\/emphasis>/ *.xml

the Quickfix List
 window contained the information shown in Figure 14-30
 .

 [image: Quickfix List window after :vimgrep command]

Figure 14-30. Quickfix List window after :vimgrep command

Then it was a simple matter to navigate through all occurrences and quickly change to the new values.

Note

This example may seem to solve a problem more easily solved with this simple command:

:%s/<emphasis>vim<\/emphasis>/<literal>vim<\/literal>/g

But remember, vimgrep
 is more general and operates against multiple files. This is an example of what vimgrep
 does, not a definitive way to perform this task. In Vim, there are usually many ways to complete a task.

Some Final Thoughts on Vim for Writing Programs

We
 have looked at many powerful features in this chapter. Spend some time mastering these techniques and you’ll gain great productivity. If you’re a long-time vi
 user, you’ve already climbed one steep learning curve. The extra effort to learn Vim’s additional features is worth a second learning curve.

If you’re a programmer, we hope this chapter shows how much Vim offers for your programming tasks. We encourage you to try some of these features and even to extend Vim to your own needs. And maybe

 you will create extensions to give back to the Vim community. Now, go program!

Chapter 15. Other Cool Stuff in Vim

Chapters 10
 through 14
 covered powerful Vim features and techniques we think you should know about to make effective use of the editor. This chapter takes a lighter look at Vim. It’s a catch-all for some of the features that didn’t fit into previous topics, ideas about editing and the Vim philosophy, and some fun things about Vim (not that the earlier chapters weren’t fun!).

Editing Binary Files

Officially, Vim, like vi
 , is a
text

 editor.
 But in pinch, Vim also lets you edit files containing data that is normally unreadable by humans.

Why would you ever want to edit a binary file? Aren’t binary files binary for a reason? Aren’t binary files typically generated by some application in a well-defined and specific format?

Warning

While we enjoy Vim’s binary editing feature, we do not present an in-depth discussion about potential serious issues to consider while editing binary files. For example, some binary files contain digital signatures or checksums to ensure file integrity. Editing these files risks damaging their integrity and could render them unusable. Therefore, do not consider this an endorsement of casual binary edits.

It’s true that binary files are typically created by a computerized or analog process and are not intended to be edited manually. For example, digital cameras often store pictures in JPEG format, a compressed binary format for digital pictures. These are binary, but they have well-defined sections or blocks where standard information is stored (that is, they do if they’re implemented according to specification). Digital pictures in JPEG format store picture meta-information (time of picture, resolution, camera settings, date, etc.) in reserved blocks separate from the compressed digital picture data. A practical application might use Vim’s binary file editing feature to edit a directory of JPEG pictures to change all of the
year

 fields in the “created” block to correct the picture’s “date of creation” field.

Figure 15-1
 shows an editing session on a JPEG file. Notice how the cursor is positioned over the date field. You can directly edit information about this picture by changing these fields.

 [image: Editing a binary JPEG file]

Figure 15-1. Editing a binary JPEG file

For power users familiar with a particular binary format, Vim can be extremely handy for making changes directly that might otherwise require tedious, repetitive access with other tools.

There are two main ways to edit binary files. You can set the binary
 option from the Vim command line:

set binary

or start Vim with
 the -b
 option.

To facilitate binary editing
and

 protect Vim from damaging the file’s integrity, Vim sets the following options accordingly:

	The textwidth
 and wrapmargin
 options

 are set to 0. This stops Vim from inserting spurious newline sequences into the file.

	The modeline
 and expandtab
 options are

 unset (nomodeline
 and noexpandtab
). This stops Vim from expanding tabs to shiftwidth
 spaces, and prevents it from interpreting commands in a modeline, which potentially would set options that introduce unexpected and unwanted side effects.

Note

Be careful when moving from window to window, or buffer to buffer, when using binary mode. Vim uses entry and exit events to set and change options for switching buffers and windows, and you may confuse it into removing some of the protections just listed. We recommend a single-window, single-buffer session when editing binary files.

Digraphs: Non-ASCII Characters

Do you say that the
Messiah

 is

 composed by George Frideric
Händel

 , not George Frideric
Handel

 ? Do you think your
résumé

 conveys a little more cachet than a
resume

 ? Use Vim’s digraphs to enter special characters.

Even English-language text files occasionally need a special character, especially when making references to a globalized world. Text files in languages other than English need scads of special characters.

Vim lets you enter special characters in a number of ways, and two of them are relatively straightforward and intuitive. Both rely on defining a digraph through a prefix (CTRL-K
) or the use of the BS
 (Backspace) key between two keyboard characters. (The other methods are more suited to entering characters by their raw numerical values, specified as decimal, hexadecimal, or octal numbers. While powerful, these methods do not lend themselves to easy mnemonics for digraphs.)

Note

The term
digraph

 traditionally describes a two-letter combination that represents a single phonetic sound, such as the
ph

 in “digraph” or “phonetic.” Vim borrows the notion of “two-letter” combinations to describe its input mechanism for characters with special characteristics, typically accents or other markings such as the umlaut on
ä

 . These special marks are properly called
diacritics

 , or
diacritical marks

 . In other words, Vim uses digraphs to create diacritics. Glad we could clear that up.

The first input method for diacritics is a three-character sequence consisting of CTRL-K
 , the base letter, and a punctuation character indicating the accent or mark to be added. For example, to create a c with a cedilla (ç), enter CTRL-K
 c,
 . To create an a with a grave accent (à), enter CTRL-K
 a!
 .

Greek letters can be created by a corresponding Latin letter followed by an asterisk (for instance, enter CTRL-K
 p*
 for a lowercase π). Russian letters can be created by a corresponding Latin letter followed by an equals sign or, in a few places, a percent sign. Use CTRL-K
 ?I
 (make sure to use a capital I) to enter an inverted question mark (¿) and CTRL-K
 ss
 to enter a German sharp S (ß).

To use Vim’s second method, set the digraph
 option:

set digraph

Now create special characters by typing the first character of the two-character combination, then a backspace character (BS
), and then the punctuation that creates a mark. Thus, enter ç through c
 BS
 ,
 and à through a
 BS
 !
 .

Setting the digraph
 option doesn’t preclude you from entering digraphs with the CTRL-K
 method. Consider using
only

 the CTRL-K
 method if your typing is less than stellar. Otherwise, you may find yourself inadvertently entering digraphs more often than you want as you backspace and type corrections.

Use the :digraph
 command to show all the default sequences; more verbose descriptions can be obtained with :help digraph-table
 . Figure 15-2
 shows a partial list from the digraph
 command.

 [image: Vim digraphs]

Figure 15-2. Vim digraphs

In the display, each digraph
 is represented by three columns. The display is a bit jumbled because Vim jams as many three-column combinations on each line as the screen permits. For each of the groups, column one shows the digraph’s two-character combination, column two displays the digraph, and column three lists the decimal Unicode value for the digraph.

For your convenience, Table 15-1
 , lists the punctuation to use as the final character in the sequence to enter the most commonly needed accents and marks.

Table 15-1. How to enter accents and other marks

	
Mark

	
Character to enter as part of digraph

	
Acute accent (fiancé)

	
Apostrophe ('
)

	
Breve (publică)

	
Left parenthesis (

	
Caron (Dubček)

	
Less-than sign (<
)

	
Cedilla (français)

	
Comma (,
)

	
Circumflex or carot (português)

	
Greater-than sign (>
)

	
Grave accent (voilà)

	
Exclamation point (!
)

	
Macron (ātmā)

	
Hyphen (-
)

	
Stroke (Søren)

	
Slash (/
)

	
Tilde (señor)

	
Question mark (?
)

	
Umlaut or diaeresis (Noël)

	
Colon (:
)

Editing Files in Other Places

Thanks to
 seamless integration of network protocols, Vim lets you edit files on remote machines just as if they were local! If you simply specify a URL for a filename, Vim opens it in your window and writes your changes to it on the remote system (depending on your access rights). For instance, the following command edits a .vimrc
 file owned by user ehannah
 on the system mozart
 . The remote machine offers the SSH secure protocol on port 122 (this is a nonstandard port, providing additional security through obscurity):

$
vim scp://ehannah@mozart:122//home/ehannah/.vimrc

Because we’re editing a file in ehannah
 ’s home directory on the remote machine, we can shorten the URL by using a simple filename. It’s treated as a pathname relative to the user’s home directory on the remote system:

$
vim scp://ehannah@mozart:122/.vimrc

Let’s take apart the URL so you can learn how to build URLs for your particular environment:

scp:

The first part, up to the colon, represents the transport protocol. In this example, the protocol is scp
 , a file copy protocol built on the Secure Shell (SSH) protocol. The following :
 is required.

//

This introduces host information, which for most transport protocols takes the form [
user

 @
]
hostname

 [:
port

].

ehannah@

This is optional. For secure protocols such as scp
 , it specifies what user to log in as on the remote machine. When omitted, it defaults to your username on the local machine. When you are prompted for a password, you must enter the user’s password on the remote machine.

mozart

This is the remote machine’s symbolic name, and it can also be specified as a numeric address, e.g., 192.168.1.106
 .

:122

This is optional and specifies the port on which the protocol is provided. The colon separates the port number from the preceding hostname. All standard protocols use well-known ports, so this element of the URL can be omitted if the standard port is used. In this example, 122 in
not

 the standard port for the scp
 protocol, and because the administrator of the mozart
 system has chosen to provide the service on 122, this specification is required.

//home/ehannah/.vimrc

This is the file on the remote machine we want to edit. We start with two slashes because we’re specifying an absolute path. A relative path or simple filename requires only a single slash to separate it from the preceding hostname. A relative path is relative to the home directory of the user that you logged in as. So, in the example a relative path would be relative to ehannah
 ’s home directory, e.g., /home/ehannah
 .

Here is a partial list of the supported protocols:

	

ftp:

 and
sftp:

 (regular FTP and

 secure FTP)

	

scp:

 (secure remote copy
 over SSH)

	

http:

 (file transfer using standard browser protocol)

	

dav:

 (a relatively new but
 popular proposed open standard for web transfer)

	

rcp:

 (remote
 copy)

What we’ve described so far is enough to allow remote editing, but the process may not be as transparent as editing a file locally. That is, because of the intervening requirement to move data from remote hosts, you may be prompted for passwords to do your work. This can become tedious if you are used to periodically writing your file to disk while editing, as each of the “writes” is interrupted to prompt you to enter a password to complete the transaction.

All of the transport protocols in the preceding list allow you to configure the service to allow password-free access, but the details vary. Use the service’s documentation for specific protocol details and configurations.

Navigating and Changing Directories

If you’ve used Vim
 a lot, you may have accidentally discovered that you can view a directory and move through it using keystrokes similar to those used with files.

Let’s consider a directory containing many .c
 files, ex-050325
 (this happens to be the directory containing the compilable source for the original vi
 editor). Edit ex-050325
 with:

$
vim ex-050325

Figure 15-3
 is a partial screenshot of something similar to what you might see.

 [image: Vim “editing” the ex-050325 directory]

Figure 15-3. Vim “editing” the ex-050325 directory

Vim displays three types of information: introductory comments (preceded by equals signs), directories (displayed with trailing slashes), and files. Each directory or file is on its own line.

There are many ways to use this feature, but with little effort you can be immediately and intuitively productive with standard Vim motion commands (e.g., w
 to move to the next word, j
 or the down arrow to jump down one line) and by clicking the mouse over entries. Some particular features of directory mode include:

	When the cursor is positioned over a directory name, move to that directory by pressing the ENTER
 key.

	If the cursor is over a filename, pressing ENTER
 edits that file.

Tip

If you want to keep the directory window around for further work in that directory, edit the file under the cursor by typing o
 , and Vim will split the window, editing the file in the newly created window. (This is also true for moving to another directory when the cursor is over a directory name; Vim splits the window and “edits” the directory to which you moved in the new window.)

	You can delete and rename files and directories. Rename a file or directory by typing capital R
 . Probably a little counterintuitively, Vim creates a command-line prompt with which you perform the rename. It should look something like Figure 15-4
 .

To complete the rename, edit the second command-line argument.

Deleting a file works similarly. Simply position the cursor over the filename you want to delete and type capital D
 . Vim prompts you with a verification dialog to delete the file. As with the rename function, Vim prompts for verification in the command-line area of the screen.

 [image: Prompt for rename in “edit directory”]

Figure 15-4. Prompt for rename in “edit directory”

	One really nice advantage of editing directories is quick access to files through Vim’s search function. For example, suppose you want to edit the file expreserve.c
 in the ex-050325
 directory described earlier. To quickly navigate to and edit this file, you can search for part or all of the filename:/expreserve.c

and with the cursor over that filename, press ENTER
 or o
 .

Note

When you read the online help for directory editing, you will see that Vim describes it as part of the entire suite of editing files with network protocols, which was described in the previous section. We have made directory editing its own topic in this chapter because it is useful, and it could get lost in the large volume of detail about network protocol editing.

Backups with Vim

Vim

 helps protect you from unintentionally losing data by letting you make a backup of the files you edit. For an edit session that has gone terribly wrong, this can be useful because you can recover your previous file.

Backups are controlled by the settings of two

 options: backup
 and writebackup
 . Where and how backups are created are controlled by four other options: backupskip
 , backupcopy
 , backupdir
 , and backupext
 .

If both the backup
 and writebackup
 options
 are off (i.e., nobackup
 and nowritebackup
), Vim makes no backup files for your edit sessions. If backup
 is on, Vim deletes any old backups and creates a backup for the current file. If backup
 is off and writebackup
 is on, Vim creates a backup file for the duration of the edit session and deletes the backup afterward.

The backupdir
 is a comma-separated list of directories in which Vim creates backup files. For example, if you want backups to always be created in your system’s temporary directory, set backupdir
 to "C:\TEMP"
 for Windows or "/tmp"
 for Unix and Linux.

Tip

If you’d like to always create a backup of your file in the current directory, you can specify “.
 ” (a dot) as your backup directory. Or you could try to create a backup in a hidden subdirectory first if it exists, and then in the current directory if the hidden subdirectory doesn’t exist. Do this by defining backupdir
 ’s value to be something such as "./.mybackups,."
 (the single dot at the end denotes the file’s current directory). This is a flexible option that supports many strategies for defining backup locations.

If you want to make backups for your edit sessions but not for all files, use the backupskip
 option to define a comma-separated list of patterns. Vim will not make a backup of any file matching one of the patterns. For example, you may never want to back up any files edited in the /tmp
 or /var/tmp
 directories. Prevent Vim from doing so by setting backupskip
 to "/tmp/*,/var/tmp/*"
 .

By default, Vim creates your backup with the same filename as the original and the suffix ~
 (a tilde). This is a fairly safe suffix, because filenames ending in that character are rare. Change the suffix to your preference with the backupext
 option. For example, if you want your backups to have the suffix .bu
 , set backupext
 to the string ".bu"
 .

Finally, the backupcopy
 option defines
how

 a backup copy is created. We recommend setting this option to "auto"
 to let Vim make a calculated choice of the best method for the backup.

HTML Your Text

Have you ever
 needed to present your code or text to a group? Have you ever tried to do a code review but were using someone else’s Vim configuration and couldn’t figure it out? Consider converting your text or code to HTML and viewing it from a browser.

Vim provides three methods to create an HTML version of your text. They all create a new buffer with the same name as the original file and the suffix .html
 Vim splits the current session window and displays the HTML version of the file in the new window:

gvim
 “Convert to HTML”

This is the friendliest method, and is built into the gvim
 graphical editor (described in Chapter 13
). Open the Syntax menu in gvim
 and select “Convert to HTML.”

2html.vim
 script

This is the underlying script invoked by the “Convert to HTML” menu option described in the previous item. Invoke it through the command:

:runtime!syntax/2html.vim

It doesn’t accept a range; it converts the whole buffer.

TOhtml
 command

This is more flexible
 than the 2html.vim
 script, because you can specify an exact range of lines you want to convert. For instance, to convert lines 25 through 44 of a buffer, enter:

:25,44TOhtml

One advantage of using gvim
 for HTML conversion is that the GUI lets it accurately detect colors and create correct corresponding HTML directives. These methods still work in a non-GUI context, but the results are less assured to be accurate and may not be very useful.

Note

It’s up to you to manage the newly created file. Vim does not save it for you; it merely creates a buffer. We recommend providing a management policy to save and synchronize HTML versions of your text files. For example, you could create some autocommands to trigger the creation and saving of your HTML files.

The saved HTML file can be viewed in any web browser. Some people may not be familiar with ways to open files on the local system in their browsers. It’s quite easy, though: virtually all browsers offer an Open File menu option in the File menu and display a file selection dialog to let you navigate to the folder containing the HTML file. If you plan on using this feature on a regular basis, we recommend building up a collection of bookmarks for all of your files.

What’s the Difference?

Changes between different versions of a file are often subtle, and a tool that lets you view precise differences at a glance could save hours of work. Vim integrates the well known Unix diff
 command into a very sophisticated visualization interface invoked through

 its vimdiff
 command.

There are two equivalent ways to invoke this feature: as a standalone command and as an option to Vim:

$
vimdiff
old_file

new_file

$
vim -d
old_file

new_file

Typically, the first file to be compared is an old version of a file, and the second is a newer version, but that is by convention only. Indeed, it’s possible to make a case for reversing the order.

Figure 15-5
 shows an example of vimdiff
 output. Because of limited real estate, we’ve squeezed the width and turned off Vim’s wrap
 option to allow illustration of the differences.

 [image: vimdiff results]

Figure 15-5. vimdiff results

Though the figure does not convey the full impact of the visual content (particularly because colors are reduced to gray), it shows some key characteristic behaviors:

	On line 4, you can see a dark block on the left line that isn’t on the right line. This is a highlighted word indicating a difference between the two lines. Similarly, on line 32, the righthand line contains a highlighted word that is not on the left.

	On line 11 of both sides, Vim has created a 15-line
fold

 . These 15 lines in both files are identical, so Vim folds them to maximize useful “diff” information on the screen.

	Lines 41–42 on the left are highlighted, whereas in the corresponding positions on the right, strings of hyphens (-
) indicate that the lines are missing. The line numbering differs from this point on, because the right side has two lines fewer, but corresponding lines in the two files still line up horizontally.

The vimdiff
 feature comes with all Unix-like Vim installations because the diff
 command is a Unix standard. Non-Unix Vim installations should come with Vim’s own version of diff
 . Vim allows drop-in replacements of diff
 commands as long as they create standard diff
 output.

The diffexpr
 variable defines the replacement expression for the default vimdiff
 behavior and is typically implemented as a script that operates on the following variables:

v:fname_in

The first input
 file to be compared

v:fname_new

The second
 file to be compared

v:fname_out

A file that
 captures the diff
 output

Undoing Undos

Beyond
 the convenience of undoing an arbitrary number of edits, Vim offers an interesting twist
 called
branching

 undos.

To use this feature, first decide how much control you want over undoing edits. Use the undolevels
 option to define the number of undoable changes you can make in an edit session. The default is 1,000, which is probably more than enough for most users. If you want vi
 compatibility, set undolevels
 to zero:

:set undolevels=0

In vi
 , the undo command u
 is basically a toggle between the file’s current state and its most recent change. The first
undo

 reverts to the state before the last change. The next
undo

 redoes the undone change. Vim behaves quite differently, and therefore the commands are implemented differently.

Instead of toggling the most recent change, repeated invocations of Vim’s undo rolls back the state of the file through the most recent changes, in order, for as many changes as defined by
 the undolevels
 option. Because the undo command u
 only moves backward, we need a command to roll forward and “redo” changes. Vim does this with the redo command, :redo
 , or the CTRL-R
 key. The CTRL-R
 key accepts a numeric prefix to redo several changes at once.

When rolling forward and backward through changes with the redo (CTRL-R
) and undo (u
) commands, Vim maintains a map of the file’s state and knows when the last possible undo has been performed. When all possible undos are done, Vim resets the file’s
modified

 status, which allows quitting without the !
 suffix. Although this is a modest benefit for general user interaction, it is more useful for behind-the-scenes scripting where the modified state of the file is important.

For most users, simply undoing and redoing changes is sufficient. But consider a more complex scenario. What if you make seven changes to a file, and undo three? So far, so good, nothing unusual to consider. But now, suppose that after undoing three out of seven changes, you then make a change different from the next forward change in Vim’s collection of changes? Vim defines that point in the change history as a
branch

 from which different paths of changes occur. With that path you can now move back and forth chronologically, with the added twist that at a branch point you can move forward along any of the different paths of recorded changes.

For more complete descriptions of how to navigate changes as a tree, use Vim’s help command:

:help usr_32.txt

Now, Where Was I?

Most text editors start editing files at line 1, column 1. That is, each time the editor is started, the file is loaded and editing begins from line 1. If you edit a file many times, progressing through it, you would find it more convenient to begin an edit session where the last one ended. Vim lets you do just that.

There are two different methods to save edit session information for future uses: the viminfo
 option and the mksession
 command.

The viminfo Option

Vim
 uses the viminfo
 option to define what, how, and where to save edit session information. The option is a string with comma-delimited parameters that tell Vim how much information to save and where to save it. Some of viminfo
 ’s suboptions are defined by the following:

<

n

Tells Vim to save lines for each register, up to a maximum of
n

 lines.

Tip

If you do not specify any value for this option,
all

 lines are saved. While at first this may seem to be the normal desire, consider whether you commonly edit very large files and make large changes to those files. For example, if you commonly edit a 10,000-line file and delete all lines (possibly to pare it down from rapid growth caused by some external application) and then save it, all 10,000 lines get saved in the viminfo
 file for that entry. If you do this often for many files, the viminfo
 file will grow very large. You may then notice long delays when starting Vim, even for files not related to the large file, because Vim must process the viminfo
 file each time it starts up.

We recommend specifying some sane but useful limit. This author uses 50.

/

n

The number of search pattern history items to be saved. If not specified, Vim uses the value in the history
 option.

:

n

The maximum number of commands from the command-line history to save. If not specified, Vim uses the value in the history
 option.

'

n

The maximum number of files for which Vim maintains information. If you define the viminfo
 option, this parameter is required.

Here is what Vim saves in the viminfo
 file:

	Command-line history

	Search string history

	Input-line history

	Registers

	File marks (e.g., a mark created by m

x

 is saved and can be moved to when re-editing the file by typing '

x

)

	Last search and substitute patterns

	Buffer list

	Global variables

This option is really handy for sustaining continuity across edit sessions. For example, if you edit a large file in which you are changing a pattern, the search pattern is remembered as well as where the cursor is positioned in the file. To continue searching in a new session, you need only type n
 to move to the next occurrence of the search pattern.

The mksession Command

Vim
 saves all edit information specific to a session with its mksession
 command. The sessionoptions
 option contains a comma-separated string specifying which components of a session to save. This way of saving edit session information is much more comprehensive but much more specific than viminfo
 . Saving session information this way is specific to all of the files, buffers, windows, etc. in the current edit session, and mksession
 saves the information so that the entire session can be reconstructed. All of the files being edited and all of the settings for all options, even window sizes, are saved so that reloading the information brings back an exact recreation of the session. Contrast this with viminfo
 , which only restores edit information on a per-file basis.

To save a session this way, enter:

:mksession [
filename

]

where
filename

 specifies a file in which to save the session information. Vim creates a script file that, when executed later with the source
 command, reconstructs the session. (The default filename, if none was specified, is Session.vim
 .). So, if you save a session with the command:

:mksession mysession.vim

you could later reestablish the session with the command:

:source mysession.vim

Here is what you can save from a session, and the parameter in
 the sessionoptions
 option to save it:

blank

Empty
 windows

buffers

Hidden
 and unloaded buffers

curdir

The
 current directory

folds

Manually
 created folds, opened/closed folds, and local fold options

Note

It wouldn’t make any sense to save anything but manually created folds. Automatically created folds will be automatically recreated!

globals

Global variables, which start with an uppercase letter
 and contain at least one lowercase letter

help

The
 help window

localoptions

Options
 defined locally to a window

options

Options
 set by :set

resize

Size
 of the Vim window

sesdir

The
 directory in which the session file is located

slash

Backslashes
 in filenames replaced with forward slashes

tabpages

All
 tab pages

Note

If you do not specify this in the sessionoptions
 string, only the current tab session is saved as a standalone entity. This gives you the flexibility of defining sessions at either the tab level or globally across all tabs.

unix

Unix
 end-of-line format

winpos

Position
 of Vim window on the screen

winsize

Size
 of buffer windows on the screen

So, for example, if you want to save a session to retain all information for all buffers, all folds, global variables, all options, window size, and window position, you would define the sessionoptions
 option with:

:set sessionoptions=buffers,folds,globals,options,resize,winpos

What’s My Line (Size)?

Vim allows lines of virtually unlimited lengths. You can have them either wrap onto multiple screen lines, so you can see them all without
 horizontal scrolling, or you can display the beginning of each line on one screen line and scroll to the right to see hidden parts.

If you prefer one line of text per screen line, turn off the wrap
 option:

set nowrap

With nowrap
 , Vim
 displays as many characters as the screen width permits. Think of the screen as a view port or window through which the wide line is viewed. For example, a 100-character line contains 20 characters too many for a screen that is 80 columns wide. Depending on what character is displayed in the screen’s first column, Vim determines which characters in the 100-character line are not displayed. For example, if the screen’s first column is the line’s 5th character, characters 1–4 are to the left of the visible screen and therefore invisible, that is, not displayed. Characters 5–84 are visible in the screen, and the remaining characters from 85–100 are to the right of the screen and are also invisible.

Vim manages how the line is displayed as you move left and right through the long line. Vim shifts the line left and right a minimum of sidescroll
 characters. You can set its value as follows:

set sidescroll=
n

where
n

 is the number of columns to scroll. We recommend setting sidescroll
 to 1, because modern PCs easily provide the processing power necessary to smoothly shift the screen one column at a time. If your screen slows down and response times lag, you may need to bump the value to something higher to minimize the screen redraws.

The sidescroll
 value defines a
minimum

 shift. As you probably expect, Vim shifts far enough to complete any motion commands. For example, typing w
 moves the cursor to the next word in the line. However, Vim’s treatment of the movement is a bit tricky. If the next word is partially visible (on the right), Vim moves to the first character of that word but does not shift the line. The next w
 command will shift the line to the left far enough to position the cursor over the first character of the next word, but only far enough to expose this first character.

You can control this behavior with
 the sidescrolloff
 option. sidescrolloff
 defines the minimum number of columns to maintain to the right and left of the cursor. So, for example, if you defined sidescrolloff
 to be 10, Vim maintains at least 10 characters of context as the cursor nears either side of the screen. Now when you move left and right on a line, your cursor will never get closer than (in this case) 10 columns from either side of the screen, as Vim shifts enough text into view to maintain that context. This is probably a better way to configure Vim in nowrap
 mode.

Vim provides convenient visual cues with the listchar
 option. listchar
 defines how to display characters when Vim’s list
 option is set. Vim also provides two settings in this option that control whether to use characters to indicate if there are more characters to the left or right of the visible screen for long lines. For example:

set listchars=extends:>
set listchars+=precedes:<

tells Vim to display a <
 in column 1 if a long line contains more characters to the left of the visible screen, and a >
 in the last column to indicate there are more characters to the right of the visible screen. Figure 15-6
 shows an example.

 [image: A long line in nowrap mode]

Figure 15-6. A long line in nowrap mode

In contrast, if you prefer to see a whole line without scrolling, tell Vim to wrap the lines with the wrap
 option:

set wrap

Now the line appears as in Figure 15-7
 .

 [image: A long line in wrap mode]

Figure 15-7. A long line in wrap mode

Very long lines that can’t be entirely displayed on the screen are displayed with the single character @
 in the first position, until the cursor and file are positioned in such a way that the line can be displayed completely. The line in Figure 15-7
 appears as shown in Figure 15-8
 when it is near the bottom of the screen.

 [image: Long line indicator]

Figure 15-8. Long line indicator

Abbreviations of Vim Commands and Options

There are so

 many commands and options in Vim that we recommend learning them by name first. Almost all commands and options (at least any that have more than a few characters) have some associated short form. These can save time, but
be sure

 you know what you’re abbreviating! This author has had some embarrassing and unexpected results using short forms thought to be one thing that turned out to be something quite different.

As you become more experienced and develop your favorite subset of Vim commands and options, using some of the abbreviated forms for commands and options saves time. Vim typically tries for Unix-like abbreviations for options and allows for the shortest unique initial substring for commands’ abbreviations.

Some abbreviations for common commands include:

	
n

	
next

	
prev

	
previous

	
q

	
quit

	
se

	
set

	
w

	
write

Some abbreviations for common options include:

	
ai

	
autoindent

	
bg

	
background

	
ff

	
fileformat

	
ft

	
filetype

	
ic

	
ignorecase

	
li

	
list

	
nu

	
number

	
sc

	
showcommand
 (
not

 showcase
)

	
sm

	
showmatch

	
sw

	
shiftwidth

	
wm

	
wrapmargin

Short forms for commands and options save time when you know your commands and options well. But for scripting and setting up sessions with commands in your .vimrc
 or .gvimrc
 files, you’re more likely to save time in the long run by sticking with full command and option names. Your configuration file and scripts are easier to read and debug when you use full names.

Note

Note that this is not the approach taken with the suite of Vim script files (syntax
 , autoindent
 , colorscheme
 , etc.) in the Vim distribution, though we take no issue with their approach. We just recommend, for ease of managing your own scripts, that you stay with full names.

A Few Quickies (Not Necessarily Vim-Specific)

We now offer several techniques — some of which are offered by basic vi
 as well as Vim — that are worth remembering and having handy:

A quick swap

A common typing error is to enter two characters in the wrong order. Position the cursor over the first wayward character and type xp
 (delete character, put character).

Another quick swap

Got two lines you’d rather swap? Position the cursor on the top line, and type ddp
 (delete line, put line after current line).

Quick help

Don’t forget about Vim’s built-in help. A quick tap on the F1
 function key splits your screen and displays the introduction to the online help.

What was that great command I used?

In its simplest form, Vim lets you access recently executed commands by using the arrow keys in the command line. Moving up and down with the arrow keys, Vim displays recent commands, any one of which you may edit. Whether or not you edit a command from Vim’s history, you can execute the command by pressing the ENTER
 key.

You can get even more sophisticated by invoking Vim’s built-in command history editing. Do this by entering CTRL-F
 on the command line. A small “command” window opens up (with the default height of 7) in which you can navigate with normal Vim motion commands. You can search as if in a normal Vim buffer, and make changes.

In the command edit window, you can easily find a recent command, modify it if necessary, and execute it by pressing ENTER
 . You can write the buffer to a filename of your choice, to record the command history for future reference.

A bit of humor

Try entering the command:

:help sure

and read Vim’s reply.

More Resources

Here are two links for HTML renditions of Vim’s built-in help for the two most recent major Vim releases:

Vim 6.2

http://www.vim.org/htmldoc/help.html

Vim 7

http://vimdoc.sourceforge.net/htmldoc/usr_toc.html

Additionally, http://vimdoc.sourceforge.net/vimfaq.html
 is a Vim Frequently Asked Questions list. It doesn’t link questions to answers, but it is all on one page. We recommend scrolling down to the section with the answers and scanning from there.

The official Vim page used to host tips on Vim, but because of problems with spammers, the administrators moved the tips to a wiki where spam is more easily managed. That wiki is here: http://vim.wikia.com/wiki/Category:Integration
 .

Part III. Other vi Clones

Part III covers other popular clones of vi
 that have grown up in parallel with Vim. This part contains the following chapters:

	
Chapter 16, nvi: New vi

	
Chapter 17, Elvis

	
Chapter 18, vile: vi Like Emacs

Chapter 16. nvi: New vi

nvi
 is short for “new vi
 .” It was developed initially at the University of California at Berkeley (UCB), home of the famous Berkeley Software Distribution (BSD) versions of Unix. It was used for writing this chapter.

Author and History

 The original vi
 was developed at UCB in the late 1970s by Bill Joy, then a computer science graduate student, and later a founder and vice president of Sun Microsystems.

Prior to nvi
 , Bill Joy first built ex
 , by starting with and heavily enhancing the sixth edition ed
 editor. The first enhancement was open mode, done with Chuck Haley.

 Between 1976 and 1979, ex
 evolved into vi
 . Mark Horton then came to Berkeley, added macros “and other features,”[51
]
 and did much of the labor on vi
 to make it work on a large number of terminals and Unix systems. By 4.1 BSD (1981), the vi
 editor already had essentially all of the features we have described in Part I
 of this book.

Despite all of the changes, vi
 ’s core was (and is) the original Unix ed
 editor. As such, it was code that could not be freely distributed. By the early 1990s, when they were working on 4.4 BSD, the BSD developers wanted a version of vi
 that could be freely distributed in source code form.

 Keith Bostic of UCB started with elvis
 1.8,[52
]
 which was a freely distributable vi
 clone, and began turning it into a “bug for bug compatible” clone of vi
 . nvi
 also complies with the POSIX Command Language and Utilities Standard (IEEE P1003.1) where it makes sense to do so.

Although no longer affiliated with UCB, Keith Bostic continues to distribute nvi
 . The current version at the time of this writing is nvi
 1.79.

nvi
 is important because it is the “official” Berkeley version of vi
 . It is part of 4.4 BSD-Lite II, and it is the vi
 version used on the various popular BSD variants, such as NetBSD and FreeBSD.

[51
]
 From the nvi
 reference manual. Unfortunately, it does not say which features.

[52
]
 Although little or no original elvis
 code is left.

Important Command-Line Arguments

 In a pure BSD environment, nvi
 is installed under the names ex
 , vi
 , and view
 . Typically they are all links to the same executable, and nvi
 looks at how it is invoked to determine its behavior. (Unix vi
 works this way, too.) It allows the Q
 command from vi
 mode to switch it into ex
 mode. The view
 variant is like vi
 , except that the readonly
 option is set initially.

nvi
 has a number of command-line options. The most useful are described here:

-c

command

 Execute
command

 upon startup. This is the POSIX version of the historical +
 command
 syntax, but nvi
 is not limited to positioning commands. (The old syntax is also accepted.)

-F

 Don’t copy the entire file when starting to edit. This may be faster, but it allows the possibility of someone else changing the file while you’re working on it.

-r

Recover specified files, or if no files are listed on the command line, list all the files that can be recovered.

-R

 Start in read-only mode, setting the readonly
 option.

-s

 Enter batch (script) mode. This is only for ex
 and is intended for running editing scripts. Prompts and nonerror messages are disabled. This is the POSIX version of the historic “-” argument; nvi
 supports both.

-S

 Run with the secure
 option set, disallowing access to external programs.[53
]

-t

tag

 Start editing at the specified
tag

 .

-w

size

 Set the initial window size to
size

 lines.

[53
]
 As with anything labeled “secure,” blind trust is usually inappropriate. Keith Bostic says, though, that you
can

 trust nvi
 ’s secure
 option.

Online Help and Other Documentation

 nvi
 comes with quite comprehensive printable documentation. In particular, it comes with troff
 source, formatted ASCII, and formatted PostScript for the following documents:

The vi reference manual

The reference manual for nvi
 . This manual describes all of the nvi
 command-line options, commands, options, and ex
 commands.

The vi manpage

The manpage for nvi
 .

The vi tutorial

This document is a tutorial introduction to editing with vi
 .

The ex reference manual

The reference manual for ex
 . This manual is the original one for ex
 ; it is a bit out-of-date with respect to the facilities in nvi
 .

Also included are ASCII files that document some of the nvi
 internals and provide a list of features that should be implemented, along with files that can be used as an online tutorial to vi
 .

 The online help built into nvi
 is minimal, consisting of two commands, :exusage
 and :viusage
 . These commands provide one-line summaries of each ex
 and vi
 command. This is usually sufficient to remind you about how something works, but not very good for learning about new or obscure features in nvi
 .

You can give a command as an argument to the :exusage
 and :viusage
 commands, in which case nvi
 will display the help just for that command. nvi
 prints one line explaining what the command does, and a one-line summary of the command’s usage.

Initialization

 If the -s
 or “-” options have been specified, then nvi
 will bypass all initializations. Otherwise, nvi
 performs the following steps:

	

 Read and execute the file /etc/vi.exrc
 . It must be owned either by root
 or by you.

	

 Execute the value of the NEXINIT
 environment variable if it exists; otherwise, use EXINIT
 if it exists. Only one will be used, not both. Bypass executing $HOME/.nexrc
 or $HOME/.exrc
 .

	

 If $HOME/.nexrc
 exists, read and execute it. Otherwise, if $HOME/.exrc
 exists, read and execute it. Only one will be used.

	

 If the exrc
 option has been set, then look for and execute either ./.nexrc
 if it exists, or ./.exrc
 . Only one will be used.

nvi
 will not execute any file that is writable by anyone other than the file’s owner.

The nvi
 documentation suggests putting common initialization actions into your .exrc
 file (i.e., options and commands for Unix vi
), and having your .nexrc
 file execute :source .exrc
 before or after the nvi
 -specific initializations.

Multiwindow Editing

 To create a new window in nvi
 , you use a capitalized version of one of the ex
 editing commands: Edit
 , Fg
 , Next
 , Previous
 , Tag
 , or Visual
 . (As usual, these commands can be abbreviated.) If your cursor is in the top half of the screen, the new window is created on the bottom half, and vice versa. You then switch to another window with CTRL-W
 :

<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system, and
<command>vi</command> is one of the most useful standard text editors
on your system.
With <command>vi</command> you can create new files, or edit any existing
Unix text file.
</para>ch00.sgm: unmodified: line 1

Makefile for vi book
#
Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm \
 ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
 ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \Makefile: unmodified: line 1

This example shows nvi
 editing two files, ch00.sgm
 and Makefile
 . The split screen is the result of typing nvi ch00.sgm
 followed by :Edit Makefile
 . The last line of each window acts as the status line, and it’s where colon commands are executed for that window. The status lines are highlighted in reverse video.

The windowing ex
 mode commands and what they do are described in Table 16-1
 .

Table 16-1. nvi window management commands

	Command
	Function

	
bg

	
Hide the current window.
 It can be recalled with the fg
 and Fg
 commands.

	
di
 [splay
] b
 [uffers
]
	
Display all buffers, including

 named, unnamed, and numeric buffers.

	
di
 [splay
] s
 [creens
]
	
Display the filenames of all backgrounded windows.

	
Edit

filename

	
Edit
filename

 in a new window.

	
Edit /tmp

	
Create a new window editing an empty buffer. /tmp
 is interpreted specially to create a new temporary file.

	
fg

filename

	
Uncover
filename

 into the current
 window. The previous file moves to the background.

	
Fg

filename

	
Uncover
filename

 in a new window. The current window is split, instead of redistributing the screen
 space among all open windows.

	
Next

	
Edit the next file in the argument list in a new window.

	
Previous

	
Edit the previous file in the argument list in a new window. (The corresponding previous
 command, which moves back to the previous file, exists in
 nvi
 ; it is not in Unix vi
 .)

	
resize
 ±
nrows

	
Increase or decrease the size of the current window by
nrows

 rows.

	
Tag

tagstring

	
Edit the file containing
tagstring

 in a new window.

 The CTRL-W
 command cycles between windows, top to bottom. The :q
 and ZZ
 commands exit the current window.

You may have multiple windows open on the same file. Changes made in one window are reflected in the other, although changes made in nvi
 ’s insert mode are not seen in the other window until after you finalize the change by typing ESC
 . You will not be prompted to save your changes until you issue a command that would cause nvi
 to leave the last window open upon a file

 .

GUI Interfaces

nvi
 does not provide a graphical user interface (GUI) version.

Extended Regular Expressions

 We introduced extended regular expressions earlier in the section Extended Regular Expressions
 . Here, we just summarize the metacharacters that nvi
 provides. nvi
 also supports the POSIX bracket expressions, [[:alnum:]]
 , and so on.

You use :set extended
 to enable extended regular expression matching:

|

Indicates alternation. The left and right sides need not be just single characters.

(...)

 Used for grouping, to allow the application of additional regular expression operators.

When extended
 is set, text grouped with parentheses acts like text grouped in \(...\)
 in regular vi
 ; the actual text matched can be retrieved in the replacement part of a substitute command with \1
 , \2
 , etc. In this case, \(
 represents a literal left parenthesis.

+

 Matches one or more of the preceding regular expressions. This is either a single character or a group of characters enclosed in parentheses.

?

 Matches zero or one occurrence of the preceding regular expression.

{...}

 Defines an
interval expression

 . Interval expressions describe counted numbers of repetitions. In the following descriptions,
n

 and
m

 represent integer constants:

{

n

 }

Matches exactly
n

 repetitions of the previous regular expression.

{

n

 ,}

Matches
n

 or more repetitions of the previous regular expression.

{

n

 ,

m

 }

Matches
n

 to
m

 repetitions.

When extended
 is not set, nvi
 provides the same functionality with \{
 and \}
 .

As might be expected, when extended
 is set, you should precede metacharacters with a backslash in order to match them literally

 .

Improvements for Editing

 This section describes the features of nvi
 that make simple text editing easier and more powerful.

Command-Line History and Completion

 nvi
 saves your ex
 command lines and makes it possible for you to edit them for resubmission.

This facility is controlled with the cedit
 option, whose value is a string.

When you type the first character of this string on the colon command line, nvi
 opens a new window on the command history that you can then edit. On any given line when you hit ENTER
 , nvi
 executes that line. ESC
 is a good choice for this option. (Use ^V ^[
 to enter it.)

Because the ENTER
 key actually executes the command, be careful to use either the j
 or ↓ keys to move down from one line to the next.

In addition to being able to edit your command line, you can also do filename expansion. This feature is controlled with the filec
 option.

When you type the first character of this string on the colon command line, nvi
 treats the blank delimited word in front of the cursor as if it had an *
 appended to it and does shell-style filename expansion. ESC
 is also a good choice for this option. (Use ^V ^[
 to enter it.) When this character is the same as for the cedit
 option, the command-line editing is performed only when it is entered as the first character on the colon command line.

Note

The nvi
 documentation indicates that TAB
 is another common choice for the filec
 option. To make this work, you must type :set filec=\
 TAB
 . In any case, in practice, using ESC
 for both options works well.

It is easiest to set these options in your .nexrc
 file:

set cedit=^[
set filec=^[

Tag Stacks

 Tag stacking is described earlier in the section Tag Stacks
 . nvi
 ’s tag stack is the simplest of the four clones. Tables 16-2
 and 16-3
 show the commands it uses.

Table 16-2. nvi tag commands

	Command
	Function

	
di
 [splay
] t
 [ags
]
	
Display the tag stack.

	
ta
 [g
][!
]
tagstring

	
Edit the file containing
tagstring

 as defined in the tags

 file. The !
 forces nvi
 to switch to the new file if the current buffer has been modified but not saved.

	
Ta
 [g
][!
]
tagstring

	
Just like :tag
 ,
 except that the file is edited in a new window.

	
tagp
 [op
][!
]
tagloc

	
Pop to the given tag, or to the most
 recently used tag if no
tagloc

 is supplied. The location may be either a filename of the tag of interest or a number indicating a position in the stack.

	
tagt
 [op
][!
]
	
Pop to the oldest tag in the stack,
 clearing the stack in the process.

Table 16-3. nvi command mode tag commands

	Command
	Function

	
^]

	
Look up the location of the identifier
 under the cursor in the tags
 file, and move to that location. The current location is automatically pushed onto the tag stack.

	
^T

	
Return to the previous location in the tag stack, i.e., pop off one element.

 You can set the tags
 option to a list of filenames where nvi
 should look for a tag. This provides a simplistic search path mechanism. The default value is "tags /var/db/libc.tags /sys/kern/tags"
 , which on a 4.4 BSD system looks in the current directory, and then in the files for the C library and the operating system source code.

 The taglength
 option controls how many characters in a tag string are significant. The default value of zero means to use all the characters.

nvi
 behaves like vi
 : it uses the “word” under the cursor starting at the current cursor position. If your cursor is on the
i

 in
main

 , nvi
 searches for the identifier
in

 , not
main

 .

 nvi
 relies on the traditional tags
 file format. Unfortunately, this format is very limited. In particular, it has no concept of programming language
scope

 , which allows the same identifier to be used in different contexts to mean different things. The problem is exacerbated by C++, which explicitly allows function name
overloading

 , i.e., the use of the same name for different functions.

nvi
 gets around the tags
 file limitations by using a different mechanism entirely: the
 cscope
 program. cscope
 , once proprietary, is now an open source program available from the Bell Labs World-Wide Exptools project (see http://www.bell-labs.com/project/wwexptools/
). It reads C source files and builds a database describing the program. nvi
 provides commands that query the database and allow you to process the results. Because cscope
 is not universally available, we do not cover its use here. Details of the nvi
 commands are provided in the nvi
 documentation.

 The extended tags
 file format produced by Exuberant ctags
 does not produce any errors with nvi
 1.79; however, nvi
 does not take advantage of this format, either

 .

Infinite Undo

 In vi
 , the dot (.
) command generally acts as the “do again” command; it repeats the last editing action you performed, be it a deletion, insertion, or replacement.

nvi
 generalizes the dot command into a full “redo” command, applying it even if the last command was u
 for “undo.”

Thus, to begin a series of “undo” commands, first type a u
 . Then, for each .
 (dot) that you type, nvi
 will continue to undo changes, moving the file progressively closer to its original state.

Eventually, you will reach the initial state of your file. At that point, typing .
 will just ring the bell (or flash the screen). You can now begin redoing by typing u
 to “undo the undos” and then using .
 to reapply successive changes.

nvi
 does not allow you to provide a count to either the u
 or .
 command.

Arbitrary Length Lines and Binary Data

 nvi
 can edit files with arbitrary length lines and with an arbitrary number of lines.

nvi
 automatically handles binary data. No special command-line options or ex
 options are required. You use ^X
 followed by one or two hexadecimal digits to enter any 8-bit character into your file.

Incremental Searching

 Enable incremental searching in nvi
 using :set searchincr
 .

The cursor moves through the file as you type, always being placed on the first character of the text that matches.

Left-Right Scrolling

 Enable left-right scrolling in nvi
 using

 :set leftright
 . The value of sidescroll
 controls the number of characters by which nvi
 shifts the screen when scrolling left to right

 .

Programming Assistance

nvi
 does not provide specific programming assistance facilities.

Interesting Features

 nvi
 is the most minimal of the clones, without a large number of additional features that have not yet been covered. However, it does have several important features worthy of mention:

Internationalization support

 Most of the informational and warning messages in nvi
 can be replaced with translations into a different language, using a facility known as a “message catalog.” nvi
 implements this facility itself, using a straightforward mechanism documented in the file catalog/README
 in the nvi
 distribution. Message catalogs are provided for Dutch, English, French, German, Russian, Spanish, and Swedish.

Arbitrary buffer names

 Historically, vi
 buffer names are limited to the 26 characters of the alphabet. nvi
 allows you to use any character as a buffer name.

Special interpretation of /tmp

 For any ex
 command that needs a filename argument, if you use the special name /tmp
 , nvi
 will replace it with the name of a unique temporary file.

Sources and Supported Operating Systems

 nvi
 can be obtained from http://www.bostic.com/vi
 . This is a web page from which you can download the current version,[54
]
 and can also ask to be added to a mailing list that sends notifications about new versions of nvi
 and new features.

The source code for nvi
 is freely distributable. The licensing terms are described in the LICENSE
 file in the distribution, and they permit distribution in source and binary form.

nvi
 builds and runs under Unix. It can also be built to run under LynxOS 2.4.0, and possibly later versions. It may build and run on other POSIX-compliant systems as well, but the documentation does not contain a specific list of known operating systems.

Compiling nvi
 is straightforward. Retrieve the distribution via ftp
 . Uncompress and untar it, run the configure
 program, and then run make
 :

$
gzip -d < nvi.tar.gz | tar -xvpf -

...
$
cd nvi-1.79; ./configure

...
$
make

...

nvi
 should configure and build with no problems. Use make install
 to install it.

Should you need to report a bug or problem in nvi
 , the person to contact is Keith Bostic, at
bostic@bostic.com

 .

[54
]
 A GUI version of nvi
 is under development; see the web page for contact information if you’re interested.

Chapter 17. Elvis

elvis
 was written and is maintained by Steve Kirkendall. An earlier version became the basis for nvi
 . This chapter was originally written using elvis
 .

Author and History

With our thanks for his help, we’ll let Steve Kirkendall give the history in his own words:

I started writing elvis
 1.0 after an early clone called stevie

 crashed on me, causing me to lose a few hours’ work and totally destroying my confidence in that program. Also, stevie
 stored the edit buffer in RAM, which simply wasn’t practical in Minix. So I started writing my own clone, which stored its edit buffer in a file. And even if my editor crashed, the edited text could still be retrieved from that file.

elvis
 2.x is almost completely separate from 1.x. I wrote this, my second vi
 clone, because my first one inherited too many limitations from the real vi
 , and from Minix. The biggest change is the support for multiple edit buffers and multiple windows, neither of which could be retrofitted into 1.x very easily. I also wanted to shed the line-length limitation, and have online help written in HTML.

As to the name “elvis,” Steve says that at least part of the reason he chose the name was to see how many people would ask him why he chose the name![55
]
 It is also common for vi
 clones to have the letters “vi” somewhere in their names.

[55
]
 ☺ In around eight years, I was only number four! — A.R.

Important Command-Line Arguments

 elvis
 is not typically installed as vi
 , though it can be. If invoked as ex
 , it operates as a line editor and allows the Q
 command from vi
 mode to switch into ex
 mode.

elvis
 has a number of command-line options. The most useful are described here:

-a

 Load each file named on the command line into a separate window.

-c

command

 Execute
command

 upon startup. This is the POSIX version of the historical +
 command
 syntax. (The old syntax is also accepted.)

-f

filename

 Use
filename

 for the session file instead of the default name. Session files are discussed later in this chapter.

-G

gui

 Use the given interface. The default is the termcap
 interface. Other choices include x11
 , windows
 , curses
 , open
 , and quit
 . Not all the interfaces may be compiled into your version of elvis
 .

-i

Start editing in input mode instead of in command mode.
 This may be easier for novice users.

-o

logfile

 Redirect the startup messages out to a file, instead of stdout
 /stderr
 . This is of critical importance to MS Windows users because Windows discards anything written to standard output and standard error, which made WinElvis configuration problems almost impossible to diagnose. With -o

filename

 you can send the diagnostic info to a file and view it later.

-r

Perform recovery after a crash.

-R

Start editing each file in read-only mode.

-s

 Read an ex
 script from standard input and execute (per the POSIX standard). This bypasses all initialization scripts.

-S

 Set the option security=safer
 for the whole session, not just execution of .exrc
 files. This adds a certain amount of security, but it should not necessarily be trusted blindly.

-SS

 Set the option security=restricted
 , which is even more paranoid than security=safer
 .

-t

tag

 Start editing at the specified
tag

 .

-V

 Output more verbose status information. Useful for diagnosing problems with initialization files.

-?

 Print a summary of the possible options

 .

Online Help and Other Documentation

 elvis
 is very interesting in this department. The online help is comprehensive and written entirely in HTML. This makes is easy to view in your favorite web browser. elvis
 also has an HTML display mode (discussed later), which makes it easy and pleasant to view the online help from within elvis
 itself.

When viewing HTML files, you use the tag commands (^]
 and ^T
) to go to different topics and then return, making it easy to browse the help files. We applaud this innovation in online help.

Of course, elvis
 also comes with Unix manpages.

Initialization

 This section describes elvis
 ’s session files and itemizes the steps it takes during initialization.

The Session File

 elvis
 is intended to eventually meet Common Open System Environment (COSE) standards. These require that programs be able to save their state and return to that saved state at a later time.

To be able to do this, elvis
 maintains all its state in a session file. Normally elvis
 creates the session file when it starts and removes it when it exits, but if elvis
 crashes, a left-over session file can be used to implement recovery of the edited files.

Initialization Steps

elvis
 performs the following initialization steps. Interestingly, much of the customization for elvis
 is moved out of editor options and into initialization files:

	Initialize all hardcoded options.

	Select an interface from those compiled into elvis
 . elvis
 will choose the “best” of the
 ones that are compiled in and that can work. For example, the X11 interface is considered to be better than the termcap
 interface, but it may not be usable if the X Window System is not currently running.

The selected interface can process the command line for initialization options that are specific to it.

	Create the session file if it doesn’t exist; otherwise, read it (in preparation for recovery).

	

 Initialize the elvispath
 option from the ELVISPATH
 environment variable. Otherwise, give it a default value. "~/.elvislib:/usr/local/lib/elvis"
 is a typical value, but the actual value will depend on how elvis
 was configured and built.

	
 Search elvispath
 for an ex
 script named elvis.ini
 and run it. The default elvis.ini
 file performs the following actions:

	Chooses a digraph table based on the current operating system. (Digraphs are a way to define the system’s extended ASCII character set and how characters from the extended set should be entered.)

	Sets options based on the program’s name (for example, ex
 versus vi
 mode).

	Handles system-dependent tweaks, such as setting the colors for X11 and adding menus to the interface.

	Picks an initialization filename, either .exrc
 for Unix or elvis.rc
 for non-Unix systems. Call this file f
 .

	
 If the EXINIT
 environment variable exists, executes its value. Otherwise, it executes :source
 ~/f
 , where f
 is the filename chosen previously.

	
 If the exrc
 option has been set, runs the safely source
 command on f
 in the current directory.

	For X11, sets the normal, bold, and italic fonts, if they have not been set already.

	

 Load the pre- and post-read and pre- and post-write command files, if they exist. Also load the elvis.msg
 file. All of these files are described later in this chapter.

	Load and display the first file named on the command line.

	
 If the -a
 option was given, load and display the rest of the files, each in its own window.

Multiwindow Editing

 To create a new window in elvis
 , you use the ex
 command :split
 . You then use one of the regular ex
 commands, such as :e

filename

 or :n
 to edit a new file. This is the simplest method; other, shorter methods are described later in this chapter. You can switch back and forth between windows with CTRL-W
 CTRL-W
 :

<preface id="VI6-CH-0">
<title>Preface </title>

<para>
Text editing is one of the most common uses of any computer system, and
<command>vi</command> is one of the most useful standard text editors
on your system.
With <command>vi</command> you can create new files, or edit any
existing Unix text file.

Makefile for vi book
#
Arnold Robbins

CHAPTERS = ch00_6.sgm ch00_5.sgm ch00.sgm ch01.sgm ch02.sgm ch03.sgm \
 ch04.sgm ch05.sgm ch06.sgm ch07.sgm ch08.sgm
APPENDICES = appa.sgm appb.sgm appc.sgm appd.sgm

POSTSCRIPT = ch00_6.ps ch00_5.ps ch00.ps ch01.ps ch02.ps ch03.ps \
 ch04.ps ch05.ps ch06.ps ch07.ps ch08.ps \
 appa.ps appb.ps appc.ps appd.ps

The split screen is the result of typing elvis ch00.sgm
 followed by :split Makefile
 .

Like nvi
 , elvis
 gives each window its own status line. elvis
 is unique in that it uses a highlighted line of underscores, instead of reverse video, for the status line. ex
 colon commands are carried out on each window’s status line.

Table 17-1
 describes the windowing ex
 mode commands and what they do.

Table 17-1. elvis window management commands

	Command
	Function

	
sp
 [lit
] [
file

]
	
Create a new window, and
 load it with
file

 if supplied. Otherwise, the new window shows the current file.

	
new

	
Create a new empty buffer,
 and then create a new window to show that buffer.

	
sne
 [w
]

	
sn
 [ext
] [
file...

]
	
Create a new window,

 showing the next file in the argument list. The current file is not affected.

	
sN
 [ext
]
	
Create a new window, showing the
previous

 file in the argument list.
 The current file is not affected.

	
sre
 [wind
][!
]
	
Create a new window, showing the first file in the argument
 list. Reset the “current” file to be the first one with respect to the :next
 command. The current file is not affected.

	
sl
 [ast
]
	
Create a new window,
 showing the last file in the argument list. The current file is not affected.

	
sta
 [g
][!
]
tag

	
Create a new window showing the file
 where the requested
tag

 is found.

	
sa
 [ll
]
	
Create a new window for any
 files named in the argument list that don’t already have a window.

	
wi
 [ndow
] [
target

]
	
With no
target

 ,
 list all windows. The possible values for
target

 are described in Table 17-2
 .

	
close

	
Close the current window. The buffer that the window was
 displaying remains intact. If it was modified, the other elvis
 commands that quit will prevent you from quitting until you explicitly save or discard the buffer.

	
wquit

	
Write the buffer back to the file and close the window.
 The file is saved, regardless of whether it has been modified.

	
qall

	
Issues a :q
 command
 for each window. Buffers without windows are not affected.

Table 17-2
 describes the windowing ex
 arguments and their meanings.

Table 17-2. Arguments to the elvis window command

	Argument
	Meaning

	
+

	
Switch to the next window, like ^W k
 .

	
++

	
Switch to the next window, wrapping like ^W ^W
 .

	
-

	
Switch to the previous window, like ^W j
 .

	
--

	
Switch to the previous window, wrapping.

	

num

	
Switch to the window whose windowid
 =
num

 .

	

buffer-name

	
Switch to the window editing the named buffer.

elvis
 provides a number of vi
 mode commands for moving between windows. They are summarized in Table 17-3
 .

Table 17-3. elvis window commands from vi command mode

	Command
	Function

	
^W c

	
Hide the buffer and close the window. This is identical to the
 :close
 command.

	
^W d

	
Toggle the display mode between syntax
 mode and the other display modes (html
 , man
 , tex
) if that’s appropriate. This makes editing web pages a little more convenient. This is a per-window option. Display modes are discussed in the later section Display Modes
 .

	
^W j

	
Move down to the next window.

	
^W k

	
Move up to the previous window.

	
^W n

	
Create a new window, and create a new buffer to be displayed in the window. It is similar to the :snew
 command.

	
^W q

	
Save the buffer and close the window, identical to ZZ
 .

	
^W s

	
Split the current window, equivalent to :split
 .

	
^W S

	
Toggle the wrap
 option. This option controls whether long lines wrap or whether the whole screen scrolls to the right. This is a per-window option. This option is discussed in the later section Left-Right Scrolling
 .

	
^W]

	
Create a new window, then look up the tag underneath the cursor. It is similar to the :stag
 command.

	[
count

] ^W ^W

	
Move to next window, or to the
count

 th window.

	
^W +

	
Increase the size of the current window (termcap
 interface only).

	
^W -

	
Reduce the size of the current window (termcap
 interface only).

	
^W \

	
Make the current window as large as possible (termcap
 interface only)

 .

GUI Interfaces

 The screenshots and explanation for this section were supplied by Steve Kirkendall. We thank him.

 elvis
 ’s X11 interface provides a scrollbar and mouse support, and it allows you to select which fonts to use. There is no way to change fonts after elvis
 has created the first window. The fonts must all be monospace fonts, typically some variation of a Courier or other fixed-width font.

elvis
 ’s X11 interface supports multiple fonts and colors, a blinking cursor that changes shape to indicate your editing mode (insert versus command), a scrollbar, anti-aliased text, an image file to use for the background (with optional tint), a user-specified icon image, and mouse actions. The mouse can be used for selecting text, cutting and pasting between applications, and performing tag searches. In addition, there is a configurable toolbar, dialog windows, a status bar, and the -client
 flag.

Note

The MS Windows GUI interface also supports a background image file, using the same command and using XPM format files, so that the same background image file may be used in both environments.

The Basic Window

The basic elvis
 window is shown in Figure 17-1
 .

 [image: The elvis GUI window]

Figure 17-1. The elvis GUI window

elvis
 provides a separate text search pop-up dialog box, which is shown in Figure 17-2
 .

 [image: The elvis search dialog]

Figure 17-2. The elvis search dialog

The look and feel are intended to resemble Motif, but elvis
 doesn’t actually use the Motif libraries.

Command-line options let you choose the four different fonts that elvis
 uses: normal, italic, bold, and “control,” which is the font for the toolbar text and button labels. You may also specify foreground and background colors, the initial window geometry, and whether elvis
 should start out iconified.

 The -client
 option causes elvis
 to look for an already running elvis
 process and send it a message requesting it to start editing the files named on the command line. Doing it this way allows you to share yanked text and other information between the files elvis
 is currently editing and the new files.

Besides the toolbar, there is also a status bar that displays status messages and any available information about toolbar buttons.

Mouse Behavior

 The mouse behavior tries to strike a balance between xterm
 and what makes sense for an editor. To do this correctly, elvis
 distinguishes between clicking and dragging.

Dragging the mouse always selects text. Dragging with button 1 pressed selects characters, dragging with button 2 selects a rectangular area, and dragging with button 3 selects whole lines. (Buttons 1, 2, and 3 correspond to the left, middle, and right buttons for a right-handed user. The order will be the opposite for a left-handed user.) These operations correspond to elvis
 ’s v
 , ^V
 , and V
 commands, respectively. (These commands are described later in this chapter.) When you release the button at the end of the drag, the selected text is immediately copied into an X11 cut buffer, so you can paste it into another application, such as xterm
 . The text remains selected, so you can apply an operator command to it.

Clicking button 1 cancels any pending selection and moves the cursor to the clicked-on character. Clicking button 3 moves the cursor without canceling the pending selection; you use this to extend a pending selection.

Clicking button 2 “pastes” text from the X11 cut buffer (such as xterm
). If you’re entering an ex
 command line, the text will be pasted into the command line as though you had typed it. If you’re in visual command mode or input mode, the text will be pasted into your edit buffer. When pasting, it doesn’t matter where you click in the window; elvis
 always inserts the text at the position of the text cursor.

Double-clicking button 1 simulates a ^]
 keystroke, causing elvis
 to perform tag lookup on the clicked-on word. If elvis
 happens to be displaying an HTML document, then tag lookup pursues hypertext links, so you can double-click on any underlined text to view the topic that describes that text. Double-clicking button 3 simulates a ^T
 keystroke, taking you back to where you did the last tag lookup.

The Toolbar

 The X11 interface supports a user-configurable toolbar. By default, the toolbar is enabled unless your ~/.exrc
 file has a set notoolbar
 command.

 The default toolbar already has some buttons defined. You use the :gui
 command to reconfigure the toolbar.

There are a number of commands. In particular, you can reconfigure the toolbar to suit your tastes, deleting one or all of the existing buttons, adding new ones, and controlling the spacing between buttons or groups of buttons. Here is a simple example:

:gui Make:make
:gui Make " Rebuild the program
:gui Quit:q
:gui Quit?!modified

 These commands add two new buttons. The first line adds a button named Make, which will execute the :make
 command when pressed. (The :make
 command is described later in this chapter.) The second line adds descriptive text for the Make button that shows up in the status line when the button is pressed. In this case, the "
 does not start a comment; rather it is an operator for the :gui
 command.

 The second button, named Quit, is created by the third line. It exits the program. The fourth line changes its behavior. If the condition (!modified
) is true, the button will behave normally. But if it’s false, the button will ignore any mouse clicks, and it will also be displayed as being “flat” instead of having the normal 3-D appearance. Thus, if the current file is modified, you won’t be able to use the Quit button to exit.

You can create pop-up dialogs that appear when a toolbar button is pressed. The dialog can set the value(s) of predefined variables (options) that can then be tested from the ex
 command associated with the button. There are 26 predefined variables, named a–z
 , that are set aside for user “programs” of this sort to use. This example associates a dialog with a new button named Split:

:gui Split"Create a new window, showing a given file
:gui Split;"File to load:" (file) f = filename
:gui Split:split (f)

 The first command associates descriptive text with the Split button. The second command creates the pop-up dialog: its prompt
 is File to load:
 and it will set the filename
 option. The (file)
 indicates that any string may be entered, but that the TAB
 key may be used for filename completion. The f = filename
 copies the value of filename
 into f
 . Finally, the third command actually executes the :split
 command on the value of f
 , which will be the new filename supplied by the user.

The facility is quite flexible; see the online help for the full details.

Options

 A large number of options control the X11 interface. You typically set these in your .exrc
 file. There are options and abbreviations for setting the various fonts, and for enabling and configuring the toolbar, status bar, scrollbars, and the cursor. Other options control the cursor’s behavior when you switch windows with ^W ^W
 and whether the cursor goes back to the original xterm
 when elvis
 exits.

The online documentation describes all of the X11-related ex
 options. Here, we describe some of the more interesting ones:

autoiconify

 Normally, when the ^W ^W
 command switches focus to an iconified window, that window is de-iconified. When autoiconify
 is true, elvis
 will iconify the old window, so that the number of open elvis
 windows remains constant.

blinktime

 The value is a number between 1 and 10 that indicates for how many 10ths of a second the cursor should be visible and then invisible. A value of 0 disables blinking.

firstx
 , firsty
 , stagger

 firstx
 and firsty
 control the position of the first window that elvis
 creates. If not set, the -geometry
 option or the window manager controls placement. If stagger
 is set to a nonzero value, any new windows are created that many pixels down and to the right of the current window. Setting it to zero lets the window manager do the placement.

stopshell

 Stores a command that runs an interactive shell, for the ex
 commands :shell
 and :stop
 , and for the ^Z
 visual command. The default value is xterm &
 , which starts an interactive terminal emulator in another window.

xscrollbar

 Values left
 and right
 place the scrollbar on the indicated side of the window, and none
 disables the scrollbar. The default is right
 .

 elvis
 can be configured via X resources.[56
]
 The resource values can be overridden by command-line flags, or by explicit :set
 or :color
 commands in the initialization scripts. elvis
 ’s resources are listed in Table 17-4
 .

Table 17-4. elvis X resources

	Resource class (name is lowercase of class)
	Type
	Default value

	
Elvis.Toolbar

	Boolean
	
true

	
Elvis.Statusbar

	Boolean
	
true

	
Elvis.Font

	Font
	
fixed

	
Elvis.Geometry

	Geometry
	
80x34

	
Elvis.Foreground

	Color
	
black

	
Elvis.Background

	Color
	
gray90

	
Elvis.MultiClickTimeout

	Timeout
	
3

	
Elvis.Control.Font

	Font
	
variable

	
Elvis.Cursor.Foreground

	Color
	
red

	
Elvis.Cursor.Selected

	Color
	
red

	
Elvis.Cursor.BlinkTime

	Timeout
	
3

	
Elvis.Tool.Foreground

	Color
	
black

	
Elvis.Tool.Background

	Color
	
gray75

	
Elvis.Scrollbar.Foreground

	Color
	
gray75

	
Elvis.Scrollbar.Background

	Color
	
gray60

	
Elvis.Scrollbar.Width

	Number
	
11

	
Elvis.Scrollbar.Repeat

	Timeout
	
4

	
Elvis.Scrollbar.Position

	Edge
	
right

The “Timeout” type gives a time value, in 10ths of a second. The “Edge” type gives a scrollbar position, one of left
 , right
 , or none
 .

For example, if your X resource database contains the line elvis.font: 10x20
 , the default text font would be 10x20
 . This value would be used if the normalfont
 option was unset

 .

[56
]
 X resources are a way to configure X11 applications based on a set of name/value pairs stored in memory by the X server. They are not used very much by the current crop of desktop environments, such as KDE and GNOME. Nonetheless, you can still set them using the xrdb
 command.

Extended Regular Expressions

 We introduced extended regular expressions earlier in the section Extended Regular Expressions
 . The additional metacharacters available in elvis
 are:

\|

 Indicates alternation.

\(...\)

Used for grouping, to allow the application of additional regular expression operators.

\+

 Matches one or more of the preceding regular expressions.

\?

Matches zero or one of the preceding regular expressions.

\@

Matches the word under the cursor.

\=

 Indicates where to put the cursor when the text is matched. For instance, hel\=lo
 would put the cursor on the second
l

 in the next occurrence of
hello

 .

\{...\}

 Describes an interval expression, such as x\{1,3\}
 to match
x

 ,
xx

 , or
xxx

 .

POSIX bracket expressions (character classes, etc.) are available

 .

Improved Editing Facilities

 This section describes the features of elvis
 that make simple text editing easier and more powerful.

Command-Line History and Completion

 Everything you type on the ex
 command line is saved in a buffer named Elvis
 ex
 history
 . This is accessible like any other elvis
 buffer, but it is not directly useful when just viewed in a window.

To access the history, you use the arrow keys to display previous commands and to edit them. Use ↑
 and ↓
 to page through the list, and ←
 and →
 to move around on a command line. You can insert characters by typing, and you can erase them by backspacing over them. Much as when editing in a regular vi
 buffer, the backspace does remove the characters, but the line is not updated as you type, so be careful!

When entering text into the Elvis ex history
 buffer (i.e., on the colon command line), the TAB
 key can be used for filename expansion. The preceding word is assumed to be a partial filename, and elvis
 searches for all matching files. If there are multiple matches, it fills in as many characters of the name as possible, and then beeps; or, if no additional characters are implied by the matching filenames, elvis
 lists all matching names and redisplays the command line. If there is a single match, elvis
 completes the name and appends a tab character. If there are no matches, elvis
 simply inserts a tab character.

To get a real tab character, precede it with a ^V
 . You can also disable filename completion entirely by setting the
 Elvis ex history
 buffer’s inputtab
 option to tab
 , via the following command:

:(Elvis ex history)set inputtab=tab

Tag Stacks

 Tag stacking is described earlier in the section Tag Stacks
 . In elvis
 , tag stacking is very straightforward, as shown in Tables 17-5
 and 17-6
 .

Table 17-5. elvis tag commands

	Command
	Function

	
ta
 [g
][!
] [
tagstring

]
	
Edit the file containing
tagstring

 as defined in the tags

 file. The !
 forces elvis
 to switch to the new file if the current buffer has been modified but not saved.

	
stac
 [k
]
	
Display the current
 tag stack.

	
po
 [p
][!
]
	
Pop a cursor position off the stack,
 restoring the cursor to its previous position.

Table 17-6. elvis command mode tag commands

	Command
	Function

	
^]

	
Look up the location of the identifier
 under the cursor in the tags
 file, and move to that location. The current location is automatically pushed onto the tag stack.

	
^T

	
Return to the previous location
 in the tag stack, i.e., pop off one element.

Unlike traditional vi
 , when you type ^]
 , elvis
 looks up the entire word containing the cursor, not just the part of the word from the cursor location forward.

 In HTML mode (discussed in the later section Display Modes
), the commands all work the same, except that :tag
 expects to be given a URL instead of a tag name. URLs don’t depend on having a tags
 file, so the tags
 file is ignored when in HTML mode. elvis
 supports file:
 , http:
 , and ftp:
 URLs. It can also write via FTP. Simply give a URL wherever elvis
 expects a filename. To access your own account on an FTP site (instead of the anonymous account), the directory name portion of the URL must begin with /~
 . elvis
 will read your ~/.netrc
 file to find the right name and password. The html
 display mode makes good use of these features! (The network functions work in Windows and OS/2, too.)

Several :set
 options affect how elvis
 works with tags, as described in Table 17-7
 .

Table 17-7. elvis options for tag management

	Option
	Function

	
taglength
 , tl

	
Control the number of significant

 characters in a tag that is to be looked up. The default value of zero indicates that all characters are significant.

	
tags
 , tagpath

	
The value is a list of directories

 and/or filenames in which to look for tags
 files. elvis
 looks for a file named tags
 in any entry that is a directory. Entries in the list are colon-separated (or semicolon-separated on DOS/Windows), in order to allow spaces in directory names. The default value is just tags
 , which looks for a file named tags
 in the current directory. This can be overridden by setting the TAGPATH
 environment variable.

	
tagstack

	
When set to true, elvis
 stacks each location on the tag stack.

 Use :set notagstack
 to disable tag stacking.

 elvis
 supports the extended tags
 file format described in Chapter 8
 . elvis
 comes with its own version of ctags
 (named elvtags
 , to avoid conflict with the standard version). It generates the enhanced format described earlier. Here is an example of the special !_TAG_
 lines it produces:

!_TAG_FILE_FORMAT 2 /supported features/
!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted/
!_TAG_PROGRAM_AUTHOR Steve Kirkendall /kirkenda@cs.pdx.edu/
!_TAG_PROGRAM_NAME Elvis Ctags //
!_TAG_PROGRAM_URL ftp://ftp.cs.pdx.edu/pub/elvis/README.html //
!_TAG_PROGRAM_VERSION 2.1 //

In elvis
 , each window has its own tag stack.

In general, elvis
 does some innovative things with tags. When reading overloaded tags, it tries to guess which one you’re looking for and presents the most likely one first. If you reject it (by hitting ^]
 again, or typing :tag
 again), it then presents you with the next most likely match, and so on. It also notes the attributes of the tags that you reject or accept and uses those to improve its guessing heuristic for later searches.

 The :tag
 command’s syntax has been extended to allow you to search for tags by features other than just the tag name. There are too many details to go into here; see the chapter in the online help that describes the use of tags.

 There is also a :browse
 command, which finds all matching tags at once and builds an HTML table from them. From this table, you can follow hypertext links to any matching tags you want.

 Finally, there is the tagprg
 option, which, if set, discards the built-in tag searching algorithm and instead runs an external program to perform the search.

Infinite Undo

 With elvis
 , before being able to undo and redo multiple levels of changes,
 you must first set the undolevels
 option to the number of levels of “undo” that elvis
 should allow. A negative value disallows
any

 undoing (which is not terribly useful). The elvis
 documentation warns that each level of undo uses around 6K bytes of the session file (the file that describes your editing session), and thus can eat up disk space rather quickly. It recommends not setting undolevels
 any higher than 100 and “probably much lower.”

Once you’ve set undolevels
 to a nonzero value, you enter text as normal. Then, each successive u
 command undoes one change. To redo (undo the undo), you use the (rather mnemonic) ^R
 (Ctrl-R) command.

In elvis
 , the default value of undolevels
 is zero, which causes elvis
 to mimic Unix vi
 . The option applies per buffer being edited; see the earlier section Initialization Steps
 for a description of how to set it for every file that you edit.

Once undolevels
 has been set, adding a count to either the u
 or ^R
 commands undoes or redoes the given number of changes.

Arbitrary Length Lines and Binary Data

 elvis
 can edit files with arbitrary length lines and with an arbitrary number of lines.

 Under Unix, elvis
 does not treat a binary file differently from any other file. On other systems, it uses the elvis.brf
 file to set the binary
 option. This avoids newline translation issues. You can enter 8-bit text by typing ^X
 followed by two hexadecimal digits. Using the hex
 display mode is an excellent way to edit binary files. The elvis.brf
 file and the hex
 display mode are described in the later section Interesting Features
 .

Left-Right Scrolling

 You enable left-right scrolling in elvis
 using :set nowrap
 . The value of sidescroll
 controls the number of characters by which elvis
 shifts the screen when scrolling left to right. The ^W S
 command toggles the value of this option.

Visual Mode

 elvis
 allows you to select regions one character at a time, one line at a time, or rectangularly, using the commands shown in Table 17-8
 .

Table 17-8. elvis block mode command characters

	Command
	Function

	
v

	
Start region selection,
 character-at-a-time mode.

	
V

	
Start region selection, line-at-a-time mode.

	
^V

	
Start region selection,
 rectangular mode.

elvis
 highlights the text (using reverse video) as you are selecting it. To make your selection, simply use the normal motion keys. The screen here shows a rectangular region:

The 6th edition of <citetitle>Learning the vi Editor</citetitle>
brings thebook into the late 19

90’s.
In particular, besides the &ldqu

o;original” version of
<command>vi</command> that comes

 as a standard part of every Unix
system, there are now a number o

f freely available “clones”
or work-alike editors.

elvis
 permits only a few operations on selected areas of text. Some operations work only on whole lines, even if you’ve selected a region that does not contain whole lines (see Table 17-9
).

Table 17-9. elvis block mode operations

	Command
	Operation

	
c
 , d
 , y

	
Change, delete, or yank text. Only d
 works exactly on rectangles.

	
<
 , >
 , !

	
Shift text left or right, and filter text. These operate on the whole lines containing the marked region.

After using the d
 command to delete the region, the screen now looks like this

 :

The 6th edition of <citetitle>Learning the vi Editor</citetitle>b

rings the 90’s.
In particulo;original” version of
<command>vi as a standard part of every
system, there are n available “clones”
or work-alike editors.

Programming Assistance

 elvis
 ’s programming assistance capabilities are described in this section.

Edit-Compile Speedup

 elvis
 provides commands that make it easier to stay within the editor while working on a program. You can recompile a single file, rebuild your entire program, and work through compiler errors one at a time. The elvis
 commands are summarized in Table 17-10
 .

Table 17-10. elvis program development commands

	Command
	Option
	Function

	
cc
 [!
] [
args

]
	
ccprg

	
Run the C compiler. Useful for

 recompiling an individual file.

	
mak
 [e
][!
] [
args

]
	
makeprg

	
Recompile everything that

 needs recompiling (usually via make
).

	
er
 [rlist
][!
] [
file

]
	
	
Move to the next error’s
 location.

The cc
 command recompiles an individual source file. You run it from the colon command line. For example, if you are editing the file hello.c
 and you type :cc
 , elvis
 will compile hello.c
 for you.

If you supply additional arguments to the :cc
 command, those arguments will be passed on to the C compiler. In this case, you need to supply
all

 the arguments, including the filename.

The :cc
 command works by executing the text of the ccprg
 option. The default value is "cc ($1?$1:$2)"
 . elvis
 sets $2
 to the name of the current source file, and $1
 to the arguments you give to the :cc
 command. The value of ccprg
 thus uses your arguments if they are present; otherwise, it just passes the current file’s name to the system cc
 command. (You can, of course, change ccprg
 to suit your taste.)

Similarly, the :make
 command is intended to recompile everything that needs recompiling. It does this by executing the contents of the makeprg
 option, which by default is "make $1"
 . Thus, you could type :make hello
 to make just the hello
 program, or just :make
 to make everything.

elvis
 captures the output of the compile or make
 and looks for things that look like filenames and line numbers. When it finds likely candidates, it treats them as such and moves to the location of the first error. The :errlist
 command moves to each successive error location in turn. elvis
 displays the error message text in the status line as you move to each location.

If you supply a
filename

 argument to :errlist
 , elvis
 will load a fresh batch of error messages from that file, and move to the location of the first error.

The vi
 mode command *
 (asterisk) is equivalent to :errlist
 . This is more convenient to use when you have a lot of errors to step through.

Finally, one really nice feature is that elvis
 compensates for changes in the file. As you add or delete lines, elvis
 keeps track, so that when you go to the next error, you end up on the correct line — which is not necessarily the one with the same absolute line number as in the compiler’s error message.

Syntax Highlighting

 To cause elvis
 to do syntax highlighting, use the :display syntax
 command. This is a per-window command. (The other elvis
 display modes are described in Display Modes
 .)

You specify the appearance of text directly, using the :color
 command. You first give the type of text to highlight. For example, in the syntax
 display mode, some of the possibilities are:

comment

 How to display comments

function

 How to display identifiers that are function names

keyword

 How to display identifiers that are keywords

prep

 How to display C and C++ preprocessor directives

string

 How to display string constants (such as "Don't panic!"
 in awk
)

variable

 How to display for variables, fields, and so on

other

 How to display things that don’t fall into the other categories but that should not be displayed in the normal font (e.g., type names defined with the C typedef
 keyword)

Next, you indicate the font face, one of normal
 , bold
 , italic
 , underlined
 , emphasized
 , boxed
 , graphic
 , proportional
 , or fixed
 . (These can be abbreviated to a single letter.) You can then follow the face with a color. For example:

:color function bold yellow

The description of each language’s comments, functions, keywords, etc., is stored in the elvis.syn
 file. This file comes with a number of specifications in it already. As an example, here is the syntax specification for awk
 :

Awk. This is actually for Thompson Automation's AWK compiler, which is
somewhat beefier than the standard AWK interpreter.
language tawk awk
extension .awk
keyword BEGIN BEGINFILE END ENDFILE INIT break continue do else for function
keyword global if in local next return while
comment #
function (
string "
regexp /
useregexp (,~
other allcaps

The format is mostly self-explanatory and is fully documented in the elvis
 online documentation.

The reason elvis
 associates fonts and colors with different parts of a file’s syntax is its ability to print files as they’re shown on the screen (see the discussion of the :lpr
 command in the later section Display Modes
).

On a nonbitmapped display, such as the Linux console, all of the fonts map into the one used by the console driver. This makes it rather difficult to distinguish normal
 from italic
 , for example. However, on some displays (such as the Linux console), elvis
 compensates by changing the color of the different fonts. If you have a GNU/Linux system with elvis
 , use it to edit a convenient C source file and you will see different parts of the code in different colors. The effect is rather pleasant; we regret that we can’t reproduce it here in print.

In elvis
 , the syntax colors are per-window attributes. You can change the color for the italic font in one window, and it will not affect the color for the italic font in another window. This is true even if both windows are showing the same file.

Syntax coloring makes program editing much more interesting and lively. But you have to be careful in your choice of colors

 !

Interesting Features

 elvis
 has a number of interesting features:

Internationalization support

 Like nvi
 , elvis
 also has a home-grown method for allowing translations of messages into different languages.
 The elvis.msg
 file is searched for along the elvispath
 and loaded into a buffer named Elvis messages
 .

Messages have the form “
terse message

 :

long message.

 ” Before printing a message, elvis
 looks up the terse form, and if there is a corresponding long form, that message is used. Otherwise, the terse message is used.

Display modes

This is perhaps the most interesting of elvis
 ’s features. For certain kinds of files, elvis
 formats the file content on the screen, giving a surprisingly good approximation of a WYSIWYG effect. elvis
 can also use the same formatting for printing the buffer to several kinds of printers. Display modes get their own subsection later in this chapter.

Pre- and post-operation command files

elvis
 loads four files (if they exist) that allow you to customize its behavior before and after reading and writing a file. This feature also gets its own subsection, later.

Open mode

 elvis
 is the only one of the clones that actually implements vi
 ’s open mode. (Think of open mode as like vi
 , but with only a one-line window. The “advantage” of open mode is that it can be used on terminals that don’t have cursor motion capabilities.)

Security

 The :safely
 command sets the security
 option for execution of non-home-directory.exrc
 files, or any other untrusted files. When security=safer
 is set, “certain commands are disabled, wildcard expansion in filenames is disabled, and certain options are locked (including the security
 option itself).” The elvis
 documentation provides the details; however, don’t blindly trust elvis
 to provide complete security for you.

Built-in calculator

 elvis
 extends the ex
 command language with a built-in calculator (sometimes referred to as an expression evaluator in the documentation). It understands C expression syntax, and is most used in the :if
 , :calc
 , and :eval
 commands. See the online help for details, as well as examples in the elvis
 distribution’s sample initialization files.

Macro debugger

elvis
 has a debugger for vi
 macros (the :map
 command). This can be useful when writing complicated input or command maps.

Macros for ex
 mode

 The :alias
 command provides for defining ex
 macros. It is intended to resemble the alias
 command in csh
 . For example, there is a :safer
 alias for the :safely
 command, which provides backward compatibility with earlier versions of elvis
 .

Smarter %
 command

The visual %
 command has been extended to recognize #if
 , #else
 , and #endif
 directives if you’re using the syntax
 display mode.

Built-in spellchecker

In syntax
 display mode, the spellchecker is smart enough to check the tags
 file for program symbols and a natural-language dictionary for comments. See :help set spell
 .

Text folding

Text folding allows you to hide and reveal certain parts of a file, which is useful for working with structured text. See :help :fold
 .

Highlighting selected lines

Steve tells us: “elvis
 can add a highlight to selected lines. See :help :region
 . For example, the commands :load since
 and then :rcssince
 will highlight lines that have been changed since the last time the file was checked into RCS.”

Display Modes

 elvis
 has several display modes. Depending on the kind of file, elvis
 produces a formatted version of the file, producing a WYSIWYG effect. The display modes are outlined in Table 17-11
 .

Table 17-11. elvis display modes

	Mode
	Display appearance

	
normal

	
No formatting;
 displays your text as it exists in the file.

	
syntax

	
Like normal
 ,
 but with syntax coloring turned on.

	
hex

	
An interactive hex dump, reminiscent of mainframe hex dumps.
 Good for editing binary files.

	
html

	
A simple web page formatter. The tag commands can be used to
 follow links and return to the original starting point.

	
man

	
Simple manpage formatter. Like the output of
 nroff
 -man
 .

	
tex

	
A simple subset of the TeX formatter.

 The :normal
 command will switch the display from one of the formatted views to normal
 mode. Use :display

mode

 to switch back. As a shortcut, the ^W d
 command will toggle the display modes for the window.

Of the available modes, html
 and man
 are the most WYSIWYG in nature. The online documentation clearly defines the subset of both markup languages that elvis
 understands.

elvis
 uses the html
 mode for displaying its online help, which is written in HTML and has
many

 cross-referencing links within it.

The example here shows elvis
 editing one of the HTML help files. The screen is split. Both windows show the same buffer; the bottom window is using the html
 display mode, whereas the top is using the normal
 display mode:

<html><head>
<title>Elvis 2.0 Sessions</title>
</head><body>

<h1>10. SESSIONS, INITIALIZATION, AND RECOVERY</h1>

This section of the manual describes the life-cycle of an
edit session. We begin with the definition of an
edit session and
what that means to elvis.
This is followed by sections discussing
initialization
and recovery after a crash.

10.0 SESSIONS, INITIALIZATION, AND RECOVERY

 This section of the manual describes the life-cycle of an
 edit session. We begin with the definition of an
edit

 session

 and what that means to elvis. This is
 followed by sections discussing
initialization

 and
recovery after a crash.

10.1 Sessions

The man
 mode is also interesting, since normally you have to format and print a manpage to be sure you’ve done a decent job of laying it out. The following quote from the online help seems appropriate:

Troff source was never designed to be interactively edited, and although I did the best I could, attempting to edit in man
 mode is still a disorienting experience. I suggest you get in the habit of using normal
 mode when making changes, and man
 mode to preview the effect of those changes. The ^W d
 command makes switching between modes a pretty easy thing to do.

As an interesting adjunct, both the html
 and man
 modes also work with the :color
 command described later in Syntax Highlighting
 . This is particularly nice with man
 mode. For example, by default on a Linux console, only bold text (.B
) is distinguishable from normal text. But with syntax coloring on, both bold and italic (.I
) text become distinct. The mode commands are summarized in Table 17-12
 .

Table 17-12. elvis display mode commands

	Command
	Function

	
di
 [splay
] [
mode

 [
lang

]]
	
Change the display mode

 to
mode

 . Use
lang

 for syntax
 mode.

	
no
 [rmal
]
	
Same as

 :display normal
 , but much easier to type.

 Associated with each window is the bufdisplay
 option, which should be set to one of the supported display modes.
 The standard elvis.arf
 file (see the next subsection) will look at the extension of the buffer’s filename and attempt to set the display to a more interesting mode than normal
 .

 Finally, elvis
 can also apply its WYSIWYG formatting to printing the contents of a buffer. The :lpr
 command formats a line range (or the whole buffer, by default) for printing. You can print to a file or down a pipe to a command. By default, elvis
 prints to a pipe that executes the system print spooling command.

The :lpr
 command is controlled by several options, described in Table 17-13
 .

Table 17-13. elvis options for print management

	Option
	Function

	
lptype
 , lp

	
The printer type.

	
lpconvert
 , lpcvt

	
If set, convert Latin-8 extended ASCII to PC-8 extended ASCII.

	
lpcrlf
 , lpc

	
The printer needs CR/LF to end each line.

	
lpout
 , lpo

	
The file or command to print to.

	
lpcolumns
 , lpcols

	
The printer’s width.

	
lpwrap
 , lpw

	
Simulate line wrapping.

	
lplines
 , lprows

	
The length of the printer’s page.

	
lpformfeed
 , lpff

	
Send a form feed after the last page.

	
lpoptions
 , lpopt

	

 Control of various printer features. This matters only for PostScript printers.

	
lpcolor
 , lpcl

	
Enables color printing for PostScript and MS Windows printers.

	
lpcontrast
 , lpct

	
Controls shading and contrast; for use with the lpcolor
 option.

Most of the options are self-explanatory. elvis
 supports several printer types, as described in Table 17-14
 .

Table 17-14. Values for the lptype option

	Name
	Printer Type

	
ps

	
PostScript,
 one logical page per sheet of paper.

	
ps2

	
PostScript, two logical pages per sheet of paper.

	
epson

	
Most dot-matrix printers;
 no graphic characters supported.

	
pana

	
Panasonic dot-matrix printers.

	
ibm

	
Dot-matrix printers with IBM
 graphic characters.

	
hp

	
Hewlett-Packard printers,
 and most non-PostScript laser printers.

	
cr

	
Line printers;
 overtyping is done with carriage return.

	
bs

	
Overtyping is done via backspace characters.
 This setting is the closest to traditional Unix nroff
 .

	
dumb

	
Plain ASCII,
 no font control.

If you have a PostScript printer, by all means use an lptype
 of ps
 or ps2
 . Use the latter to save paper, which is particularly handy when printing drafts.

Pre- and Post-Operation Control Files

 elvis
 gives you the ability to control its actions at four points when reading and writing files: before and after reading a file, and before and after writing a file. It does this by executing the contents of four ex
 scripts at those respective points. These scripts are searched for using the directories listed in the elvispath
 option:

elvis.brf

 This file is executed Before Reading a File (.brf
). The default version looks at the file’s extension and attempts to guess whether the file is binary. If it is, the binary
 option is turned on, to prevent elvis
 from converting newlines (which may be actual CR/LF pairs in the file) into line feeds internally.

elvis.arf

 This file is executed After Reading a File (.arf
). The default version examines the file’s extension in order to turn on syntax highlighting.

elvis.bwf

 This file is executed Before Writing a File (.bwf
), in particular, before completely replacing an original file with the contents of the buffer. The default version implements copying the original file to a file with a .bak
 extension. You must set the backup
 option for this to work.

elvis.awf

 This file is executed After Writing a File (.awf
). There is no default file for this, although it might be a good place to add hooks into a source code control system.

The use of command files to control these actions is quite powerful. It allows you to easily tailor elvis
 ’s behavior to suit your needs; in other editors these kinds of features are much more hardwired into the code.

In addition, elvis
 supports Vim-style autocommands with :autocmd
 . See the online help for details
 .

elvis Futures

 Steve Kirkendall informs us that there are a few things he has implemented but not yet released, as described in the following list:

	An interface to the GDB (GNU debugger) for use in software development

	A persistence feature similar to Vim’s viminfo
 file

	The ability to embed one syntax within another, such as JavaScript embedded in HTML

Sources and Supported Operating Systems

 The official WWW location for elvis
 is ftp://ftp.cs.pdx.edu/pub/elvis/README.html
 . From there, you can download the elvis
 distribution or get it directly, using ftp
 from ftp://ftp.cs.pdx.edu/pub/elvis/elvis-2.2_0.tar.gz
 .

The source code for elvis
 is freely distributable. elvis
 is distributed under the terms of perl
 ’s Artistic License. The licensing terms are described in the doc/license.html
 file in the distribution.

elvis
 works under Unix, OS/2, MS-DOS, and modern versions of MS Windows. The Unix and Windows ports provide a graphical user interface. The MS-DOS version includes mouse support.

Compiling elvis
 is straightforward. Retrieve the distribution via ftp
 or via a web browser. Uncompress and untar it,[57
]
 run the configure
 program, and then run make
 :

$
gzip -d < elvis-2.2_0.tar.gz | tar -xvpf -

...
$
cd elvis-2.2_0; ./configure

...
$
make

...

elvis
 should configure and build with no problems. Use make install
 to install it.

Note

The default configuration causes elvis
 to install itself in standard system directories, such as /usr/bin
 , /usr/share
 , and so on. If you wish to have things installed in /usr/local
 , use the --prefix
 option to the configure
 script.

Should you need to report a bug or problem in elvis
 , the person to contact is Steve Kirkendall at
kirkenda@cs.pdx.edu

 .

[57
]
 The untar.c
 program available from the elvis
 ftp
 site is a very portable, simple program for unpacking gzip
 ed tar
 files on non-Unix systems.

Chapter 18. vile: vi Like Emacs

vile
 stands for “vi
 Like Emacs.” It started out as a copy of version 3.9 of MicroEMACS that was modified to have the “finger-feel” of vi
 . Thomas Dickey and Paul Fox are the maintainers.

 Over the years (since 1990), there have been other contributors, including Kevin Buettner and Clark Morgan.

The current version is 9.6, released late in 2007. The screenshots in this chapter were made with 9.5s (a pre-release beta). Until the late 1990s, version numbers advanced roughly one per year; starting with 1999, the scheme is about 0.1 per year — and someday will reach 10.

This chapter was written using vile
 .

Authors and History

Paul Fox describes the early vile
 history this way:

vile
 ’s design goal has always been a little different than that of the other clones. vile
 has never
really

 attempted to be a “clone” at all, though most people find it close enough. I started it because in 1990 I wanted to be able to edit multiple files in multiple windows, I had been using vi
 for 10 years already, and the sources to MicroEMACS came floating past my newsreader at a job where I had too much time on my hands. I started by changing the existing keymaps in the obvious way, and ran full-tilt into the “Hey! Where’s ‘insert’ mode?” problem. So I hacked a little more, and hacked a little more, and eventually released in ’91 or ’92. (Starting soon thereafter, major version numbers tracked the year of release: 7.3 was the third release in ’97.)

But my goal has always been to preserve finger-feel (as opposed to the display visuals), and, selfishly, to preserve finger-feel most for the commands I use. ☺ vile
 has quite an amazing ex
 mode, that works very well — it just
looks

 really odd, and a couple of commands that are beyond the scope of the current parser are missing. For the same reasons, vile
 also won’t fully parse existing .exrc
 files, since I don’t really think that’s so important — it does simple ones, but more sophisticated ones need some tweaking. But when you toss in vile
 ’s built-in command/macro language, you quickly forget you ever cared about .exrc
 .

Thomas Dickey started working on vile
 in December of 1992, initially just contributing patches, and later doing more significant features and extensions, such as line numbering, name completion, and animating the buffer list window. He explains: “Integrating features together is more important to my design goals than implementing a large number of features.”

In February of 1994, Kevin Buettner started working on vile
 . Initially, he supplied bug fixes for the X11 version, xvile
 , and then improvements, such as scrollbars. This evolved into support for the Motif, OpenLook, and Athena widget sets. Because the Athena widgets were, surprisingly, not “universally available in a bug-free form,” he wrote a version that used the raw Xt
 toolkit. This version ended up providing superior functionality to the Athena version. Kevin also contributed the initial support in vile
 for GNU Autoconf.

The Win32 GUI port, called winvile
 , started in 1997, and continued on with extensions, including an OLE server and a Visual Studio add-in.

In the current version of vile
 , the perl
 interface and major modes (discussed later) are stable. They are used as a basis for other features, such as a server (using the perl
 interface) and syntax highlighting based on the major modes. For the near term, future work will focus on improving the locale support.

Important Command-Line Arguments

 Although vile
 does not expect to be invoked as either vi
 or ex
 , it can be invoked as view
 , in which case it will treat each file as read-only. Unlike the other clones, it does
not

 have a line-editor mode.

Here are the important vile
 command-line arguments:

-c

command

+

command

vile
 will execute the given ex
 -style command.
 Any number of -c
 options may be given.

-h

Invokes vile
 on the help file.

-R

Invokes vile
 in “read-only” mode; no writes are
 permitted while in this mode. (This will also be true if vile
 is invoked as view
 , or if readonly
 mode is set in the startup file.)

-t

tag

Start editing at the specified
tag

 .
 The -T
 option is equivalent and can be used when X11 option parsing eats the -t
 .

-v

Invokes vile
 in “view” mode; no changes are
 permitted to any buffer while in this mode.

-?

vile
 prints a short usage summary and then exits.

@

cmdfile

 vile
 will run the specified file as its startup file, and will bypass any normal startup file (i.e., .vilerc
) or environment variable (i.e., VILEINIT
).

A few often-used options are obsolete since vile
 implements the POSIX -c
 (or +
) option:

-g

N

vile
 will begin editing on the
 first file at the specified line number. This can also be given as +

N

 .

-s

pattern

In the first file, vile
 will execute an initial
 search for the given pattern. This can also be given as +/

pattern

 .

Online Help and Other Documentation

 vile
 currently comes with a single (rather large) ASCII text file, vile.hlp
 .
 The :help
 command (which can be abbreviated to :h
) opens a new window on that file. You can then search for information on a particular topic, using standard vi
 search techniques. Because it is a flat ASCII file, it is also easy to print out and read through.

In addition to the help file, vile
 has a number of built-in commands for displaying information about the facilities and state of the editor. Some of the most useful commands are:

:show-commands

Creates a new window that shows a complete list of all vile

 commands, with a brief description of each one. The information is placed in its own buffer that can be treated just like any other vile
 buffer. In particular, it is easy to write it out to a file for later printing.

:apropos

Shows all commands whose names contain a given substring.
 This is easier than just randomly searching through the help file to find information on a particular topic.

:describe-key

 Prompts you for a key or key sequence, and then shows the description of that command. For instance, the x
 key implements the delete-next-character
 function.

:describe-function

Prompts you for a function name, and then shows the description
 of that function. For instance, the delete-next-character
 function deletes a given number of characters to the right of the current cursor position.

The :apropos
 , :describe-function
 , and :describe-key
 commands all give the descriptive information, plus all other synonyms (since a function may have more than one name, for convenience), all other keys that are bound to it (since many key sequences may be bound to the same function), and whether the command is a “motion” or an “operator.” A good example of this is the output of :describe-function next-line
 :

"next-line" ^J ^N j #-B
 or "down-arrow"
 or "down-line"
 or "forward-line"
 (motion: move down CNT lines)

This shows all four of its names and its key bindings. (The sequence #-B
 is vile
 ’s terminal-independent representation of the up arrow — use :show-key-names
 for a complete list.)

 The VILE_STARTUP_PATH
 environment variable can be set to a colon-separated search path for the help file.[58
]
 The VILE_HELP_FILE
 environment variable can be
 used to override the name of the help file (typically vile.hlp
).

The combination of online searchable help, built-in command and key descriptions, and command completion makes the help facility straightforward to use.

[58
]
 The Win32 port uses a semicolon as a list-separator; the OpenVMS port uses commas.

Initialization

 xvile
 performs extra initialization for its menus, before the other steps:

	(xvile
 only.)
 Use the value of the XVILE_MENU
 environment variable for the name of the menu description file, if provided. Otherwise, it
 uses .vilemenu
 . This file sets the default menus for the X11 interface.[59
]

After that, the different versions vile
 , xvile
 , and winvile
 perform the same two-stage initialization. The first stage uses a mixture of environment variables and files:

	

 Execute the file named on the command line with @

cmdfile

 options, if any. Bypass any other initialization steps that would otherwise be done.

	
 If the VILEINIT
 environment variable exists, execute its value. Otherwise, look for an initialization file.

	
 If the VILE_STARTUP_FILE
 environment variable exists, use that as the name of the startup file. If not, on Unix use .vilerc
 , and on other systems use vile.rc
 .

	Look for the startup file in the current directory, and then in the user’s home directory. Use whichever one is found first.

The second stage uses the initialization commands:

	Load the first file specified on the command line into a memory buffer.

	Execute the commands given with -c
 options, applying them by default to the first file.

Like the other clones, vile
 lets you place common initialization actions into your .exrc
 file (i.e., options and commands for Unix vi
 and/or the other clones), and use your .vilerc
 file to execute :source .exrc
 before or after the vile
 -specific initializations.

[59
]
 winvile
 ’s menus are not configurable; they provide features that are supported only in Win32.

Multiwindow Editing

 vile
 is somewhat different from the other clones. It started life as a version of MicroEMACS, and then was modified into an editor with the “finger-feel” of vi
 .

One of the things that versions of Emacs have always done is handle multiple windows and multiple files; as such, vile
 was the first vi
 -like program to provide multiple windows and editing buffers.

 As in elvis
 and Vim, the :split
 command[60
]
 creates a new window, and then you can use the ex
 command :e

filename

 to edit a new file in the new window. After that, things become different; in particular, the vi
 command mode keys to switch among windows are very different.

 [image: Editing this chapter in vile]

Figure 18-1. Editing this chapter in vile

Figure 18-1
 depicts a split screen that results from typing vile ch12.xml
 [61
]
 followed by :split
 and :e !zcat chapter.xml.gz
 .

Like Vim, all windows share the bottom line for execution of ex
 commands. Each window has its own status line, with the current window indicated by filling its status line with equals signs. The status line also acquires an I
 in the second column when in insert mode, and [modified]
 is appended after the filename when the file has been changed but not yet written out.

vile
 is also like Emacs in that commands are bound to key sequences. Table 18-1
 presents the commands and their key sequences. In some cases, two sets of key sequences do the same operation, for example, the delete-other-windows
 command

 .

Table 18-1. vile window management commands

	
Command

	
Key sequence(s)

	
Function

	
delete-other-windows

	

^O
 , ^X 1

	
Eliminate all windows
 except the current one.

	
delete-window

	

^K
 , ^X 0

	
Destroy the current window,
 unless it is the last one.

	
edit-file
 , E
 , e

	
^X e

	Bring given (or under-cursor, for ^X e
)
 file or existing buffer into window.

	
find-file

	
^X e

	Like edit-file
 .

	
grow-window

	

V

	
Increase the size of the
 current window by
count

 lines.

	
move-next-window-down

	

^A ^E

	
Move next window down
 (or buffer up) by
count

 lines.

	
move-next-window-up

	

^A ^Y

	
Move next window up
 (or buffer down) by
count

 lines.

	
move-window-left

	

^X ^L

	
Scroll window to left
 by
count

 columns, or a half screen if
count

 is unspecified.

	
move-window-right

	

^X ^R

	
Scroll window to
 right by
count

 columns, or a half screen if
count

 is unspecified.

	
next-window

	

^X o

	
Move to the next window.

	
position-window

	

z

where

	
Reframe with cursor specified
 by
where

 , as follows: center (.
 , M
 , m
), top (ENTER
 , H
 , t
), or bottom (-
 , L
 , b
).

	
previous-window

	

^X O

	
Move to the previous window.

	
resize-window

	
	
Change the current window to
count

 lines.

count

 is supplied as a prefix argument.

	
restore-window

	
	
Return to window saved
 with save-window
 .

	
save-window

	
	
Mark a window for later return
 with restore-window
 .

	
scroll-next-window-down

	

^A ^D

	
Move next window down
 by
count

 half screens.
count

 is supplied as a prefix argument.

	
scroll-next-window-up

	

^A ^U

	
Move next window up
 by
count

 half screens.
count

 is supplied as a prefix argument.

	
shrink-window

	

v

	
Decrease the size of the current window by
count

 lines.

count

 is supplied as a prefix argument.

	
split-current-window

	

^X 2

	
Split the window in half; a
count

 of 1 or 2 chooses which becomes current.

count

 is supplied as a prefix argument.

	
view-file

	
	
Bring given file or existing
 buffer into window, and mark it “view-only.”

	
set-window

	
	
Bring existing
 buffer into window.

	
historical-buffer

	

_

	
Display a list of the first nine buffers. A digit moves to the given buffer; __

 moves to the most recently edited file. Tab (and back-tab) rotate the list, making it simple to navigate in a list of long buffer names.

	
toggle-buffer-list

	

*

	
Pop up/down a window showing

all

 the vile
 buffers.

[60
]
 That this works is an artifact of vile
 allowing you to abbreviate commands. The actual command name is
 split-current-window
 .

[61
]
 The alert reader may have noticed that this is not Chapter 12. The chapters were renumbered during the development of the seventh edition.

GUI Interfaces

 The screen shots and the explanation in this section were supplied by Kevin Buettner, Thomas Dickey, and Paul Fox. We thank them.

 There are several X11 interfaces for vile
 , each utilizing a different toolkit based on the Xt
 library.

 There is a plain “No Toolkit” version that does not use a toolkit, but it has custom scrollbars and a bulletin board widget for geometry management. There are versions that use the Motif, Athena, or OpenLook toolkits.[62
]
 The Motif and Athena versions are the best supported, and have menu support.

There is a “single” Win32 GUI — with variations to support OLE and Unicode. On the surface, they look the same.

Fortunately, the basic interface is the same for all versions. There is a single top-level window that can be split into two or more panes. The panes, in turn, may be used to display multiple views of a buffer, multiple buffers, or a mixture of both. In vile
 parlance these panes are called “windows,” but to avoid confusion, we will continue to call them “panes” in the following discussion.

Building xvile

Although there are binary packages for xvile
 , you may wish to compile it on a platform with no package support.

When building xvile
 , you have to choose which toolkit version to use. This is done when you configure vile
 with the configure
 command.[63
]
 The relevant options are:

--with-screen=

value

Specify terminal driver. The default is tcap
 , for the termcap
 /terminfo
 driver. Other values include curses
 , ncurses
 , ncursesw
 , X11
 , OpenLook
 , Motif
 , Athena
 , Xaw
 , Xaw3d
 , neXtaw
 , and ansi
 .

--with-x

Use the X Window System. This is the “No Toolkit” version.

--with-Xaw-scrollbars

Use Xaw
 scrollbars rather than the vile
 custom scrollbars.

--with-drag-extension

Use the drag/scrolling extension with Xaw
 .

xvile Basic Appearance and Functionality

The following figures show xvile
 ’s Motif interface. It is similar to the Athena interface.

 [image: The xvile GUI window]

Figure 18-2. The xvile GUI window

Figure 18-2
 shows three panes:

	The manpage for vile
 , which shows the use of underlining and boldface.

	A buffer misc.c
 , from tin
 , which shows syntax highlighting (this time with colors — grayscaled for printing — for preprocessor statements, comments, and keywords).

	A three-line pane, which is active (noted by a darker status line), named [Completions]
 , for filename completions. The pane is coordinated with the minibuffer (the colon command line): the first line reads Completions prefixed by /usr/build/in/tin-1.9.2+/src/m:
 , and the minibuffer reads Find file: m
 . The rest of the pane contains the actual filenames that match. The first line of [Completions]
 and the contents change as the user completes the filename (and presses TAB
 to tell vile
 to show the reduced set of choices).

 [image: Buffers and completions in vile]

Figure 18-3. Buffers and completions in vile

Figure 18-3
 also shows three panes:

	The [Help]
 pane, which of course shows the most important feature of an editor (how to exit without modifying your files). ☺

	The [Buffer List]
 , which indicates that charset.c
 is the #
 (previous) buffer. The %
 (current) buffer is not shown on the list, since only the “visible” buffers are displayed in this copy of [Buffer List]
 . Supplying an argument to the *
 command would have shown the invisible buffers as well. Buffers 0 and 2 are charset.c
 and misc.c
 . They have been loaded, so their sizes (12425 and 89340) are displayed in the [Buffer List]
 . Buffer 1 (<vile.1>
) holds a formatted manpage generated by a macro and does not correspond to a file.[64
]
 Buffer 3 (color.c
) has not been loaded, so a u
 is displayed in the first column, and the size is shown as zero.

	The [Completions]
 buffer is active. This time it displays tag completions for the partial match
co

 , and the
Completions prefixed

 message is not shown because the buffer is scrolled down, which is another side effect of pressing TAB
 : vile
 cycles through a scrolling action so that all of the choices will be shown, even when the window is small.[65
]

Generated buffers such as [Help]
 and [Buffer List]
 are “scratch” buffers. When popped down, they are closed, and their content is discarded. There are other buffers, e.g., those containing scripts, which are “invisible.” Both are normally not shown in [Buffer List]
 .

Scrollbars

 At the right of each pane is a scrollbar that may be used in the customary fashion to move about in the buffer. Note, however, that the customary fashion varies from toolkit to toolkit. In the Athena and “No Toolkit” versions, the middle mouse button may be used to drag the “thumb” or visible indicator around. The left and right mouse buttons move down or up (respectively) in the buffer. The amount moved depends on the location of the mouse cursor on the scrollbar. Placing it near the top will scroll by as little as one line. When placed near the bottom, the text will scroll by as much as a full pane.

The Motif scrollbar is probably more familiar. The leftmost mouse button is used for all operations. Clicking on the little arrows will move up or down by one line. The scrollbar indicator may be dragged in order to move about, and scrolling up or down by an entire pane can be accomplished by clicking above or below the indicator.

In each version, there is a small handle above or below (i.e., between) scrollbars that may be used to adjust the size of two adjacent panes. In the “No Toolkit” version of xvile
 , the pane resize handle blends in with the status line of two adjacent panes. In the other versions, the resize handle is more distinguishable. But in each case, the mouse cursor will change to a heavy vertical double arrow when placed above the resize handle. The windows may be resized by clicking on and dragging the handle.

A pane can be split into two by holding the Ctrl key down and clicking the left mouse button on a scrollbar. Then you will have two views of a particular buffer. Other vile
 commands may be used to replace one of the views with another buffer if desired. A pane may be deleted by holding the Ctrl key down and clicking the middle mouse button. Sometimes after creating a lot of panes, you find yourself wanting to use all of the window real estate for just one pane. To do this, Ctrl-click the right mouse button; all other panes will be removed, leaving the entire xvile
 window containing only the pane on which you clicked. These actions are summarized in Table 18-2
 .

Table 18-2. vile pane management commands

	Command
	Function

	Ctrl-left button
	
On a scrollbar, split the pane.

	Ctrl-middle button
	
Delete a pane.

	Ctrl-right button
	
Make the clicked pane the only pane.

Setting the cursor position and mouse motions

 Within the text area of a pane, the cursor may be set by clicking the left mouse button. This not only sets the cursor position, but also sets the pane in which editing is being done. To set just the pane but preserve the old position, click on the status line below the text you wish to edit.

A mouse click is viewed as a motion, just like 4j
 is considered a motion. To delete five lines, you could enter d4j
 , which will delete the current line and the four below it. You can do the same thing with a mouse click. Position your cursor at the place you want to start deleting from and then press d
 . After this, click in the buffer at the point to which you wish to delete. Mouse clicks are real motions and may be used with other operators as well.

Selections

 Selections may be made by holding the left mouse button down and dragging with the mouse. This is called the PRIMARY selection. Release of the mouse button causes the selection to be yanked and made available (if desired) for pasting. You can force the selected region to be rectangular by holding the Ctrl key down while dragging with the left button depressed. If the dragging motion goes out of the current window, text will be scrolled in the appropriate direction, if possible, to accommodate selections larger than the window. The speed at which the scrolling occurs will increase with the passage of time, making it practical to select large regions of text quickly.

Individual words or lines may be selected by double- or triple-clicking on them.

A selection may be extended by clicking the right mouse button. As with the left button, the selection can be adjusted or scrolled by holding the right button down and dragging with it. Selections may be extended in any window open to the same buffer as the one in which the selection was started. That is, if you have two views of a buffer (in two different panes), one containing the start of the buffer and the other the end, it is possible to select the entire buffer by clicking the left button at the beginning of the pane that shows the beginning of the buffer and then clicking the right button in the pane that shows the end of the buffer. Also, selections may be extended in a rectangular fashion by holding the Ctrl key down in conjunction with the right mouse button.

The middle button is used for pasting the selection. By default, it pastes at the last text cursor position. If the Shift key is held down while clicking the middle button, the paste occurs at the position of the mouse cursor.

A selection may be cleared (if owned by xvile
) by double-clicking on one of the status lines.

Clipboard

 Data may be exchanged between many X applications via the PRIMARY selection. This selection is set and manipulated as described previously.

Other applications use the CLIPBOARD selection to exchange data between applications. On many Sun keyboards, selected text is moved to the clipboard by pressing the COPY
 key and pasted by pressing the PASTE
 key. If you find that you cannot paste text selected in xvile
 into other applications (or vice versa), it may well be that these applications use the CLIPBOARD selection instead of the PRIMARY selection. (The other mechanism used among really old applications involves the use of a ring of cut buffers.)

 xvile
 provides two commands for manipulating the clipboard: copy-to-clipboard
 and paste-from-clipboard
 . When copy-to-clipboard
 is executed, the contents of the current selection are copied to the special clipboard kill register (denoted by ;
 in the register list). When an application requests the clipboard selection, xvile
 gives it the contents of this kill register. The paste-from-clipboard
 command requests clipboard data from the current owner of the CLIPBOARD selection.

Users of Sun systems may want to put the following key bindings in their .vilerc
 file in order to make use of the COPY
 and PASTE
 keys found on their keyboards:

bind-key copy-to-clipboard #-^
bind-key paste-from-clipboard #-*

Key bindings are described in detail later in this chapter.

Resources

xvile
 has many resources that can be used to control appearance and behavior. Font choice is particularly important if you want italic or oblique fonts to be displayed properly. vile
 ’s documentation has a complete list of resources, as well a sample set of .Xdefault
 entries.

Adding menus

 The Motif and Athena versions have menu support. Menu items, which are user-definable, are read from the .vilemenu
 file, in the current or home directory.

xvile
 allows three types of menu items:

	Built-in, i.e., specific to the menuing system, such as rereading the .vilerc
 file or spawning a new copy of xvile

	Direct invocation of built-in commands (e.g., displaying the [Buffer List]
)

	Invocation of arbitrary command strings (e.g., running interactive macros, such as a search command)

We make a distinction between the last two because the authors prefer making vile
 able to check the validity of commands before they are executed

 .

Building winvile

 Binaries are available for each release of winvile
 , but you may wish to compile one of the interim patch versions. The sources provide makefiles for the Microsoft (makefile.wnt
) and Borland (makefile.tbc
) compilers. The former has more features, providing options for building with OLE
 , perl
 , and built-in syntax highlighting. The Win32 GUI can be built with either compiler environment.

winvile Basic Appearance and Functionality

Figures 18-4
 and 18-5
 show winvile
 ’s Win32 GUI interface. On the surface, it is much like the “No Toolkit” X11 interface, having scrollbars. Underneath the surface — which is easily accessed — it is more elaborate than the Motif interface.

 [image: winvile with non-Unicode font]

Figure 18-4. winvile with non-Unicode font

Figure 18-4
 shows a view of winvile
 editing Unicode data:

	The font dialog is initially set to the fixed-pitch system font. Like xvile
 , the font can be set when winvile
 is started, or via a script. It can also be set via an OLE server. Finally, as shown here, it can use the Win32 common controls.

	The data is Unicode UTF-16, with no byte order mark. It is underlined, since the highlighting palette used underlining and cyan for coloring quoted strings.

	The default system font cannot display the characters in the file. winvile
 sees that the font is small, and displays the Unicode data in hexadecimal form.

 [image: winvile with Unicode font]

Figure 18-5. winvile with Unicode font

Figure 18-5
 shows the result of selecting a more capable font. If you select the system font again, winvile
 will show the hexadecimal values again. If you prefer to see the wide characters as hexadecimal all the time, vile
 has an option setting for this purpose.

 [image: The winvile recent files menu]

Figure 18-6. The winvile recent files menu

Figure 18-6
 shows some of the winvile
 menu functions, which include:

	
winvile
 extends the system menu, which is accessed by right-clicking on the title bar of the window.

It also has the same selections on a right-click pop-up menu, eliminating the need to go up to the title bar. That is enabled by the “Menu” entry at the bottom.

	The menus provide the open, save, print, and font operations typical of GUI applications. You can also set winvile
 ’s current working directory with the
CD

 entry.

The corresponding dialogs are also accessible from the Win32 console version, though without a menu.

	
winvile
 also allows you to browse the Windows
Favorites

 folder.

	The recent files (and recent folders) entries select from a user-configurable number of “recent” files (or folders). winvile
 saves the names in the user’s registry data, making them available for each instance of winvile
 that might be running

 .

[62
]
 Sun Microsystems dropped support for OpenLook before releasing Solaris 9 in 2002.

[63
]
 The configure
 script should work for any Unix (or similar) platform. For building on OpenVMS, use the vmsbuild.com
 script. Build instructions are in comments at the top of the script.

[64
]
 The angle-brackets in the name <vile.1>
 are a convention to avoid naming conflicts, since two buffers are not allowed to have the same name.

[65
]
 The [Completions]
 buffer is automatically sized, showing no more lines than necessary. If it is too large for the available space, vile
 borrows up to ¾ of the space from an adjacent pane.

Extended Regular Expressions

 We introduced extended regular expressions earlier in the section Extended Regular Expressions
 . vile
 provides essentially the same facilities as nvi
 ’s extended
 option. This includes the POSIX bracket expressions for character classes, [[:alnum::]]
 , with some extensions (additional classes and abbreviations), and interval expressions, such as {,10}
 . The syntax is somewhat different from nvi
 , relying on additional backslash-escaped characters:

\|

Indicates alternation: house\|home
 .

\+

Matches one or more of the preceding regular expression.

\?

Matches zero or one of the preceding regular expression.

\(...\)

 Provides grouping for *
 , \+
 , and \?
 , as well as making matched subtexts available in the replacement part of a substitute command (\1
 , \2
 , etc.).

\s
 , \S

Match whitespace and nonwhitespace characters, respectively.

\w
 , \W

 Match “word-constituent” characters (alphanumerics and the underscore, “_”) and non-word-constituent characters, respectively. For example, \w\+
 would match C/C++ identifiers and keywords.[66
]

\d
 , \D

Match digits and nondigits, respectively.

\p
 , \P

 Match printable and nonprintable characters, respectively. Whitespace is considered to be printable.

vile
 allows the escape sequences \b
 , \f
 , \r
 , \t
 , and \n
 to appear in the replacement part of a substitute command. They stand for backspace, form feed, carriage return, tab, and newline, respectively. Also, from the vile
 documentation:

Note that vile
 mimics perl
 ’s handling of \u\L\1\E
 instead of vi
 ’s. Given :s/\(abc\)/\u\L\1\E/
 , vi
 will replace with
abc

 whereas vile
 and perl
 will replace with
Abc

 . This is somewhat more useful for capitalizing words.

[66
]
 For the pedantic among you, it also matches identifiers that start with a leading digit; usually this isn’t much of a problem.

Improved Editing Facilities

 This section describes the features of vile
 that make simple text editing easier and more powerful.

Command-Line History and Completion

 vile
 records your ex
 commands in a buffer named [History]
 . This feature is controlled with the history
 option, which is true by default. Turning it off disables the history feature and removes the [History]
 buffer.
 The command show-history
 splits the screen and displays the [History]
 buffer in a new window.

The colon command line is really a minibuffer. You can use it to recall lines from the [History]
 buffer and edit them.

You use the ↑
 and ↓
 keys to scroll backward and forward in the history, and ←
 and →
 to move around within the line. Your current delete character (usually BACKSPACE
) can be used to delete characters. Any other characters you type will be inserted at the current cursor position.

You can toggle the minibuffer into vi
 mode by typing the mini-edit
 character (by default, ^G
). When you do this, vile
 will highlight the minibuffer using the mechanism specified
 by the mini-hilite
 option. The default is reverse
 , for reverse video. In vi
 mode, you can use vi
 -style commands for positioning. You can also use other vile
 commands that are appropriate to editing within a single line, such as i
 , I
 , a
 , and A
 . vile
 decides which commands to accept based on its command tables, which allows your key bindings to work in the minibuffer, too.

An interesting feature is that vile
 will use the history to show you previous data that corresponds to the command you’re entering. For instance, after typing :set
 followed by a space, vile
 will prompt you with Global value:
 . At that point, you can use ↑
 to see previous global variables that you have set, should you wish to change one of them.

The ex
 command line provides completion of various sorts. As you type the name of a command, you can hit the TAB
 key at any point. vile
 fills out the rest of the command name as much as possible. If you type a TAB
 a second time, vile
 creates a new window that shows you all the possible completions.

Completion applies to built-in and user-defined vile
 commands, tags, filenames, modes (described later in this chapter), variables, enumerated values (such as color names), and to the terminal characters (the character settings such as backspace, suspend, and so on, derived from your stty
 settings).

As a side note, this leads to an interesting phenomenon. In vi
 -style editors, commands may have long names, but they tend to be unique in the first few characters, since abbreviations are accepted. In Emacs-style editors, command names often are not unique in the first several characters, but command completion still allows you to get away with less typing.

Tag Stacks

 Tag stacking is described earlier in the section Tag Stacks
 . In vile
 , tag stacking is available and straightforward. It is somewhat different than the other clones, most notably in the vi
 mode commands that are used for tag searching and popping the tag stack. Table 18-3
 shows the vile
 tag commands.

Table 18-3. vile tag commands

	Command
	Function

	
next-tag

	
Continues searching through
 the tags
 file for more matches.

	
pop
 [!
]
	
Pops a cursor position off the stack,
 restoring the cursor to its previous position.

	
show-tagstack

	
Creates a new window that displays
 the tag stack. The display changes as tags are pushed onto or popped off of the stack.

	
ta
 [g
][!
] [
tagstring

]
	
Edit the file containing
tagstring

 as defined in the tags

 file. The !
 forces vile
 to switch to the new file if the current buffer has been modified but not saved.

The vi
 mode commands are described in Table 18-4
 .

Table 18-4. vile command mode tag commands

	Command
	Function

	

^]

	
Look up the location of the identifier
 under the cursor in the tags
 file, and move to that location. The current location is automatically pushed onto the tag stack.

	

^T
 , ^X ^]

	
Return to the previous location
 in the tag stack, i.e., pop off one element.

	

^A ^]

	

 Same as the :next-tag
 command.

As in the other editors, options control how vile
 manages the tag-related commands, as shown in Table 18-5
 .

Table 18-5. vile options for tag management

	Option
	Function

	
pin-tagstack

	
Makes tag searches and pop ups not change the current window, thereby “pinning” it.
 This option is false by default.

	
tagignorecase

	
Makes tag searches ignore case.
 This option is false by default.

	
taglength

	
Controls the number of significant characters in a tag
 that is to be looked up. The default value of zero indicates that all characters are significant.

	
tagrelative

	
When using a tags
 file in another directory, filenames in
 that tags
 file are considered to be relative to the directory where the tags
 file is.

	
tags

	
Can be set to a whitespace-separated list of tags
 files to use for
 looking up tags. vile
 loads all tags
 files into separate buffers that are hidden by default, but that can be edited if you wish. You can place environment variables and shell wildcards into tags
 .

	
tagword

	
Uses the whole word under the cursor for the tag lookup, not just the subword starting at the current
 cursor position. This option is disabled by default, which keeps vile
 compatible with vi
 .

Infinite Undo

 vile
 is similar in principle but different in practice from the other editors. Like elvis
 and Vim, you can set an undo limit, but like nvi
 , the .
 command will do the next undo or redo as appropriate. Separate vi
 mode commands implement successive undo and redo.

 vile
 uses the undolimit
 option to control how many changes it will store. The default is 10, meaning that you can undo up to the 10 most recent changes. Setting it to zero allows true “infinite undo,” but this may consume a lot of memory.

To start an undo, first use either the u
 or ^X u
 commands. Then, each successive .
 command will do another undo. Like vi
 , two u
 commands just toggle the state of the change; however, each ^X u
 command does another undo.

The ^X r
 command does a redo. Typing .
 after the first ^X r
 will do successive redos. You can provide a count to the ^X u
 and ^X r
 commands, in which case vile
 performs the requested number of undos or redos.

Arbitrary Length Lines and Binary Data

 vile
 can edit files with arbitrary length lines, and with an arbitrary number of lines.

vile
 automatically handles binary data. No special command lines or options are required. To enter 8-bit text, type ^V
 followed by an x
 and two hexadecimal digits, or a 0
 and three octal digits, or three decimal digits.

You can also enter 16-bit Unicode values by typing ^V
 followed by a u
 and up to four hexadecimal digits. If the current buffer’s file-encoding
 option is one of the Unicode flavors (utf-8
 , utf-16
 , or utf-32
), vile
 stores it directly as UTF-8, displaying it according to the capabilities of the terminal or display.

This leads us into the topic of localization.

Locale support

For many years, vile
 had only rudimentary locale support. In part this was because locale support on the various platforms was rudimentary (except for vendor Unix systems). It had its own character type tables (i.e., control, numeric, printable, punctuation, as well as application-specific filename, wildcard, shell), allowing you to specify which of those non-ASCII characters were printable.

Times change, and vile
 continues to evolve according to its users’ needs. Here is a brief summary of those changes, ordered logically rather than in the order they were developed:

	Rather than having a fixed notion of the character types, vile
 imports the host’s character type tables and then provides commands to modify the data via scripts.[67
]

	
vile
 regular expressions support POSIX character classes, as well as classes corresponding to vile
 ’s own character types.

	
vile
 supports extraction of tokens from the screen, e.g., for tags
 , for scripting, etc. Once, these tokens were a mixture of character-type tests with special parsing logic. Now, they are purely regular expressions, with no need for the parsing logic.

	Editing a file containing 8-bit data — e.g., data encoded in ISO-8859-7 (Greek) — when the host’s locale encoding uses UTF-8 can be challenging. When vile
 starts up, it checks whether the host locale ends with UTF-8 (or similar), e.g., el_GR.UTF-8
 . If so, it then supports editing in the corresponding 8-bit locale, e.g., el_GR
 .

	Similarly, when editing files in a host environment supporting UTF-8, there are files encoded in UTF-8. In the newest release, you can tell vile
 to write a file in various Unicode encodings, and to read the same encodings. The 8-bit editing model is carried forward, translating to the 8-bit encoding for buffers that are marked as 8-bit, and directly editing (i.e., with no translation) the Unicode buffers.

These are all extensions; at each stage the older features are still retained.

There are other aspects of localization that are not addressed in vile
 , such as message formatting and text collating order.

File formats

When vile
 reads a file, it makes several guesses about its content, in order to present you with useful data:

	It checks whether the file permissions allow you to write to the file.

	It checks for line endings, which may be different flavors of CR, LF, or CR/LF.

	It checks for Unicode byte order marks.

	It checks for Unicode multibyte encodings.

Based on these checks, vile
 may set properties (called “modes”) of the newly read buffer that apply to that buffer. In addition, it may translate the data as it is read:

	It removes the line endings from each line, remembering the associated recordseparator
 mode.

	If the file is missing a final line ending, vile
 sets the nonewline
 option.

	It translates UTF-16 and UTF-32 data into UTF-8, remembering the associated file-encoding
 option.

When you tell vile
 to write a buffer to a file, it uses these local option settings to reconstruct the file.

Incremental Searching

 As mentioned earlier in the section Incremental Searching
 , you perform incremental searching in vile
 using the ^X S
 and ^X R
 commands. It is not necessary to set an option to enable incremental searching.

The cursor moves through the file as you type, always being placed on the first character of the text that matches. ^X S
 incrementally searches forward through the file, whereas ^X R
 incrementally searches backward.

You may wish to add the following commands (described later in The vile Editing Model
) to your .vilerc
 file to make the more familiar /
 and ?
 search commands work incrementally:

bind-key incremental-search /
bind-key reverse-incremental-search ?

 Also of interest is the “visual match” facility, which highlights
all

 occurrences of the matched expression. For a .vilerc
 file:

set visual-matches reverse

directs vile
 to use reverse video for visual matching. Since the highlighting can sometimes be visually distracting, the =
 command turns off any current highlighting until you enter a new search pattern.

Left-Right Scrolling

 As mentioned earlier in the section Left-Right Scrolling
 , you enable left-right scrolling in vile
 using :set nolinewrap
 . Unlike the other editors, left-right scrolling is the default. Long lines are marked at the left and right edges with <
 and >
 . The value of sideways
 controls the number of characters by which vile
 shifts the screen when scrolling left to right. With sideways
 set to zero, each scroll moves the screen by one third. Otherwise, the screen scrolls by the desired number of characters.

Visual Mode

 vile
 is different from elvis
 and Vim in the way you highlight the text you want to operate on. It uses the “quoted motion” command, q
 .

You enter q
 at the beginning of the region, any other vi
 motions to get to the opposite end of the region, and then another q
 to end the quoted motion. vile
 highlights the marked text.

Arguments to the q
 command determine what kind of highlighting it will do. 1q
 (same as q
) does an exact highlighting, 2q
 does line-at-a-time highlighting, and 3q
 does rectangular highlighting.

Typically, you use a quoted motion in conjunction with an operator, such as d
 or y
 . Thus, d3qjjwq
 deletes the rectangle indicated by the motions. When used without an operator, the region is left highlighted. It can be referred to later using ^S
 . Thus, d ^S
 will delete the highlighted region.

 In addition, rectangular regions can be indicated through the use of marks.[68
]
 As you know, a mark can be used to refer to either a specific character (when referred to with `
) or a specific line (when referred to with '
). In addition, referring to the mark (say, a mark set with mb
) with `b
 instead of 'b
 can change the nature of the operation being done — d'b
 will delete a set of lines, and d`b
 will delete two partial lines and the lines in between. Using the `
 form of mark reference gives a more “exact” region than the '
 form of mark reference.

 vile
 adds a third form of mark reference. The \
 command can be used as another way of referring to a mark. By itself, it behaves just like `
 and moves the cursor to the character at which the mark was set. When combined with an operator, however, the behavior is quite different. The mark reference becomes “rectangular,” such that the action d\b
 will delete the rectangle of characters whose corners are marked by the cursor and the character that holds mark b
 :

	Keystrokes
	Results

	
ma

	
 The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings theb

ook into the late 1990’s.
 In particular, besides the “original” version of
 <command>vi</command> that comes as a standard part of every Unix system,
 there are now a number of freely available “clones”
 or work-alike editors.

	
	
Set mark a
 at the
b

 in
book

 .

	
3jfr

	
 The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings the book into the late 1990’s.
 In particular, besides the “original” version of
 <command >vi</command> that comes as a standard part of every Unix system,
 there are now a number

 of freely available “clones”
 or work-alike editors.

	
	
Move the cursor to the
r

 in
number

 to mark the opposite corner.

	
^A ~\a

	
 The 6th edition of <citetitle>Learning the vi Editor</citetitle>
 brings the BOOK INTO The late 1990’s.
 In particulAR, BESIDES the “original” version of
 <command>vi</COMMAND> that comes as a standard part of every Unix system,
 there are nOW A NUMBER of freely available “clones”
 or work-alike editors.

	
	
Toggle the case of the rectangle bounded with mark a
 .

The commands that define arbitrary regions and operate upon them are summarized in Table 18-6
 .

Table 18-6. vile block mode operations

	Command
	Operation

	
q

	
Start and end a quoted motion.

	
^A r

	
Open up a rectangle.

	
>

	
Shift text to the right. Same as ^A r
 when the region is rectangular.

	
<

	
Shift text to the left. Same as d
 when the region is rectangular.

	
y

	
Yank the whole region. vile
 remembers that it was rectangular.

	
c

	
Change the region. For a nonrectangular region, delete all the text between the end points and enter insert mode. For a rectangular region, prompt for the text to fill the lines.

	
^A u

	
Change the case of the region to all uppercase.

	
^A l

	
Change the case of the region to all lowercase.

	
^A ~

	
Toggle the case of all alphabetic characters in the region.

	
^A
 SPACE

	
Fill the region with spaces.

	
p
 , P

	
Put the text back. vile
 does a rectangular put if the original text was rectangular.

	
^A p
 , ^A P

	
Force previously yanked text to be put back as if it were rectangular. The width of the longest yanked line is used for the rectangle’s width

 .

[67
]
 This feature is useful even on the vendor Unix systems, which do not always deliver correct tables.

[68
]
 Thanks to Paul Fox for this explanation.

Programming Assistance

 vile
 ’s programming assistance capabilities are discussed in this section.

Edit-Compile Speedup

 vile
 uses two straightforward vi
 mode commands to manage program development, shown in Table 18-7
 .

Table 18-7. vile program development vi mode commands

	Command
	Function

	
^X !

command

 ENTER

	
Run
command

 , saving the output in a buffer named [Output]
 .

	
^X ^X

	
Find the next error. vile
 parses the output and moves to the location of each successive error.

vile
 understands the
Entering directory
XXX

 and
Leaving directory
XXX

 messages that GNU make
 generates, allowing it to find the correct file, even if it’s in a different directory.

The error messages are parsed using regular expressions in the buffer [Error
 Expressions]
 . vile
 automatically creates this buffer, and then it uses the buffer when you use ^X ^X
 . You can add expressions to it as needed, and it has an extended syntax that allows you to specify where filenames, line numbers, columns, and so on appear in the error messages. Full details are provided in the online help, but you probably won’t need to make any changes, as it works pretty well “out of the box.”

 vile
 ’s error finder also compensates for changes in the file, keeping track of additions and deletions as you progress to each error.

The error finder applies to the most recent buffer created by reading from a shell command. For example, ^X!command
 produces a buffer named [Output]
 , and :e !command
 produces a buffer named [!command]
 . The error finder will be set appropriately.

You can point the error finder at an arbitrary buffer (not just the output of shell commands) using the :error-buffer
 command. This lets you use the error finder on the output of previous compiler or egrep
 runs.

Syntax Highlighting

 vile
 supports syntax highlighting in all configurations. It uses custom
syntax filter

 programs to perform syntax coloring. These may be built into vile
 or run as external programs. vile
 sends the contents of the buffer to be colored by the syntax filter, reads a marked-up version of it, and applies the markup to color the buffer.

Note

Built-in filters are faster than external programs, and eliminate interference from your shell when displaying in a terminal. For some platforms, the syntax filters can be dynamically loaded. This allows the editor executable to be smaller, though not as fast as with the built-in filters.

There are currently 71 programs, as well as a separate program for Unix manpages. Some of the programs are used for more than one type of file. For instance, C, C++, and Java have similar syntax, but use different keywords.

vile
 provides macros that run the syntax filters on demand, or automatically as you modify the buffer. These are summarized in Table 18-8
 .

Table 18-8. vile syntax highlighting commands

	Command
	Key binding
	Function

	
:HighlightFilter

	
	
Invoke syntax-highlighting filter on the current buffer. vile
 chooses a filter based on an extended property of the buffer, called a
major mode

 (discussed later in the section Major Modes
).

If the filters are built-in, vile
 ’s initialization sets the
autocolor

 mode to invoke this macro five seconds after you stop modifying a buffer.

	
:HighlightFilterMsg

	
^X-q

	
Attach highlighting to the current buffer using Highlight
 Filter
 . Display a message on completion.[a
]

	
:HighlightClear

	
^X-Q

	
Clear all highlighting from the current buffer. This does not alter the buffer’s major mode.

	
:set-highlighting

majormode

	
	
Change the buffer’s major mode to
majormode

 and run the syntax highlighter.

	
:show-filtermsgs

	
	
Show syntax-filter error messages for the current buffer. If the
syntax filter

 finds any errors, it reports them, and vile
 displays them in the [Filter Messages]
 buffer and sets the error buffer to allow you to step through the places where an error is found.

	

[a
]
 When syntax highlighting was first implemented in vile
 in the mid-1990s, it was important to show that it was completed. Times change — machines are faster.

Each time a
syntax filter

 runs, it reads one or more external files containing the keywords to be highlighted, along with their corresponding color and video attributes (bold, underline, italic). It searches for these files (suffixed .keywords
) using the name of the buffer’s
majormode

 . The search rules are documented in the online help. You can use the :which-keywords
 macro to show the locations where vile
 will look for the files, and where it finds them. See Example 18-1
 .

Example 18-1. Sample output of “:which-keywords cmode”

Show which keyword-files are tested for:
 cmode

[image: 1]

(* marks found-files)

$cwd

[image: 2]

 ./.c.keywords
$HOME
 ~/.c.keywords
 ~/.vile/c.keywords
$startup-path

[image: 3]

* /usr/local/share/vile/c.keywords

[image: 1]

The
major mode

 , which always ends with “mode”

[image: 2]

Your current working directory

[image: 3]

vile
 ’s search path for scripts

Whether the configuration is X11, terminal (termcap
 , terminfo
 , curses
), or Windows, vile
 ’s syntax filters use a common set of colors, defined in classes: Action
 , Comment
 , Error
 , Ident
 , Ident2
 , Keyword
 , Keyword2
 , Literal
 , Number
 , Preproc
 , and Type
 . Most of the keyword definitions refer to a class. Doing this allows you to modify all of the colors by changing just one file, normally your $HOME/.vile.keywords
 file. The online help gives details on customizing the syntax colors.

On the one hand, because syntax highlighting is accomplished with an external program, it should be possible to write any number of highlighters for different languages. On the other hand, because the facilities are rather low-level, doing so is not for nonprogrammers. The online help describes how the highlight filters should work.

The directory ftp://invisible-island.net/vile/utilities
 contains user-contributed filters for coloring makefiles, input, perl
 , HTML, and troff
 . It even contains a macro that will color the lines in RCS files according to their age!

Interesting Features

 vile
 has a number of interesting features that are the topic of this section:

The vile
 editing model

vile
 ’s editing model is somewhat different from vi
 ’s. Based on concepts from Emacs, it provides key rebinding and a more dynamic command line.

Major modes

vile
 supports editing “modes.” These are groups of option settings that make it convenient for editing different kinds of files.

The procedure language

vile
 ’s procedure language allows you to define functions and macros that make the editor more programmable and flexible.

Miscellaneous small features

A number of smaller features make day-to-day editing easier.

The vile Editing Model

 In vi
 and the other clones, editing functionality is “hardwired” into the editor. The association between command characters and what they do is built into the code. For example, the x
 key deletes characters, and the i
 key enters insert mode. Without resorting to severe trickery, you cannot switch the functionality of the two keys (if it can even be done at all).

vile
 ’s editing model, derived from Emacs through MicroEMACS, is different. The editor has defined, named functions, each of which performs a single editing task, such as delete-next-character
 or delete-previous-character
 . Many of the functions are then bound to keystrokes, such as binding delete-next-character
 to x
 .[69
]

 vile
 has different flavors of key bindings for its insert, command, and selection modes. Here we are describing the bindings for the normal editing mode. Changing bindings is very easy to do. Use the :bind-key
 command, and as arguments, give the name of the function and then the key sequence to bind the function to. As mentioned earlier, you might put the following commands into your .vilerc
 file:

bind-key incremental-search /
bind-key reverse-incremental-search ?

These commands change the /
 and ?
 search commands to do incremental searching.

In addition to predefined functions, vile
 contains a simple programming language that allows you to write procedures. You can then bind the command for executing a procedure to a keystroke sequence. GNU Emacs uses a variant of Lisp for its language, which is extremely powerful. vile
 has a somewhat simpler, less general-purpose language.

Also, as in Emacs, the vile
 command line is very interactive. Many commands display a default value for their operand, which you can either edit if inappropriate or select by hitting ENTER
 . As you type vi
 mode editing commands, such as those that change or delete characters, you will see feedback about the operation in the status line.

 The “amazing” ex
 mode that Paul referred to earlier is best reflected in the behavior of the :s
 (substitute) command. It prompts for each part of the command: the search pattern, the replacement text, and any flags.

As an example, let’s assume you wish to change all instances of
perl

 to
awk

 everywhere in your file. In the other editors, you’d simply type :1,$s/perl/awk/g
 ENTER
 , and that’s what would appear on the command line. The following examples describe what you see on the vile
 colon command line
as you type

 :

	Keystrokes
	Results

	
:1,$s

	
The first part of the substitute command.

	
/

	
substitute pattern:

vile
 prompts you for the pattern to search for. Any previous pattern is placed there for you to reuse.

	
perl/

	
replacement string:

At the next
/

 delimiter, vile
 prompts you for the replacement text. Any previous text is placed there for you to reuse.

	
awk/

	
(g)lobally, ([1-9])th occurrence on line, (c)onfirm, and/or (p)rint result:

At the final delimiter, vile
 prompts for the optional flags. Enter any desired flags, then press ENTER
 .

vile
 follows through with this style of behavior on all appropriate ex
 commands. For example, the read command (:r
) prompts you with the name of the last file you read. To read that file again, just hit ENTER
 .

Finally, vile
 ’s ex
 command parser is weaker than in the other editors. For example, you cannot use search patterns to specify line ranges (:/now/,/forever/s/perl/awk/g
), and the move command (m
) is not implemented. In practice, what’s not implemented does not seem to hinder you very much.

Major Modes

 A
major mode

 [70
]
 is a collection of option settings that apply when editing a certain class of file. These options apply on a per-buffer basis, such as the tab-stop settings.

vile
 provides three types of options:

	

Universal

 , applied to the program

	

Buffer

 , applied to the content of a memory buffer

	

Window

 , applied to windows (“panes,” in our terminology)

The
buffer

 — and
window

 — option settings can be global or local values. Any buffer (or window, depending on the option) can have its own private (local) option value. If it does not have a private value, it uses the global value. Major modes add a level between the
buffer

 global and local values by providing option values that a buffer uses if it does not have a private value.

 vile
 has two built-in major modes: cmode
 , for editing C and C++ programs, and vilemode
 , for its scripts that are loaded into memory buffers. With cmode
 , you can use %
 to match C preprocessor conditionals (#if
 , #else
 , and #endif
). vile
 will do automatic source code indentation based on the placement of braces ({
 and }
), and it will do smart formatting of C comments. The tabstop
 and shiftwidth
 options are set on a per-major-mode basis as well.

Using major modes, you can apply the same features to programs written in other languages. This example, courtesy of
 Thomas Dickey, defines a new major mode, shmode
 , for editing Bourne shell scripts. (This is useful for any Bourne-style shell, such as ksh
 , bash
 , or zsh
 .)

define-mode sh
set shsuf "\.sh$"
set shpre "^#!\\s*\/.*sh\\>$"
define-submode sh comment-prefix "^\\s*/[:#]"
define-submode sh comments "^\\s*/\\?[:#]\\s+/\\?\\s*$"
define-submode sh fence-if "^\\s*\\<if\\>"
define-submode sh fence-elif "^\\s*\\<elif\\>"
define-submode sh fence-else "^\\s*\\<else\\>"
define-submode sh fence-fi "^\\s*\\<fi\\>"

The shsuf
 (shell suffix) variable describes the filename suffix that indicates a file is a shell script. The shpre
 (shell preamble) variable describes a first line of the file that indicates that the file contains shell code. The define-submode
 commands then add options that apply only to buffers where the corresponding major mode is set. The examples here set up the smart comment formatting and the smart %
 command matching for shell programs.

The example shown is more verbose than needed. vile
 ’s scripting language recognizes a more concise description using ~with
 :

define-mode sh
~with define-submode sh
 suf "\.sh$"
 pre "^#!\\s*\/.*sh\\>$"
 comment-prefix "^\\s*/[:#]"
 comments "^\\s*/\\?[:#]\\s+/\\?\\s*$"
 fence-if "^\\s*\\<if\\>"
 fence-elif "^\\s*\\<elif\\>"
 fence-else "^\\s*\\<else\\>"
 fence-fi "^\\s*\\<fi\\>"
~endwith

With its initialization scripts, vile
 provides 90 predefined major modes. Use the :show-majormodes
 command to see the definitions of the available major modes.

The suffix
 and prefix
 are criteria used by vile
 to decide which major mode to apply, when it reads a file into a buffer.[71
]
 Table 18-9
 lists all of the criteria.

Table 18-9. Major mode criteria

	
Criteria

	
Description

	
after

	
Force the defined major mode to be checked after the given major mode. Normally, major modes are checked in the order in which they are defined.

	
before

	
Force the defined major mode to be checked before the given major mode. Normally, major modes are checked in the order in which they are defined.

	
mode-filename (mf)

	
A regular expression describing filenames for which the corresponding major mode will be set. The expression is applied only to the portion of the complete pathname after removing the directory name.

	
mode-pathname (mp)

	
A regular expression describing pathnames for which the corresponding major mode will be set.

	
preamble (pre)

	
A regular expression describing the first line of filenames for which the corresponding major mode will be set.

	
qualifiers

	
Tells how to combine the preamble
 and suffixes
 criteria. Use all
 to tell vile
 to use both, and any
 to use either.

	
suffixes (suf)

	
A regular expression describing filename suffixes for which the corresponding major mode will be set. The expression is applied only to the portion of the filename starting with the first period.

You can always tell vile
 to use a specific major mode; for example:

:setl cmode

will set it to “c” mode.[72
]
 But that does not update the syntax highlighting. Use the macro:

:set-h cmode

(set-highlighting
 ; see Table 18-8
), which does both parts.

The Procedure Language

 vile
 ’s procedure language is almost unchanged from that of MicroEMACS. Comments begin with a semicolon or a double quote character. Environment variable names (editor options) start with a $
 , and user variable names start with %
 . A number of built-in functions exist for doing comparisons and testing conditions; their names all begin with &
 . Flow control commands and certain others begin with ~
 . An @
 with a string prompts the user for input, and the user’s answer is returned. This rather whimsical example from the macros.doc
 file should give you a taste of the language’s flavor:

~if &sequal %curplace "timespace vortex"
 insert-string "First, rematerialize\n"
~endif
~if &sequal %planet "earth" ;If we have landed on earth...
 ~if &sequal %time "late 20th century" ;and we are then
 write-message "Contact U.N.I.T."
 ~else
 insert-string "Investigate the situation....\n"
 insert-string "(SAY 'stay here Sara')\n"
 ~endif
~elseif &sequal %planet "luna" ;If we have landed on our neighbor...
 write-message "Keep the door closed"
~else
 setv %conditions @"Atmosphere conditions outside? "
 ~if &sequal %conditions "safe"
 insert-string &cat "Go outside......" "\n"
 insert-string "lock the door\n"
 ~else
 insert-string "Dematerialize..try somewhen else"
 newline
 ~endif
~endif

You can store these procedures into a numbered macro or give them names that can be bound to keystrokes. The procedure just shown is most useful when using the Tardis vile
 port. ☺

This more realistic example from Paul Fox runs grep
 , searching for the word under the cursor in all C source files. It then puts the results in a buffer named after the word, and sets things up so that the built-in error finder (^X ^X
) will use this output as its list of lines to visit. Finally, the macro is bound to ^A g
 . The ~force
 command allows the following command to fail without generating an error message:

14 store-macro
 set-variable %grepfor $identifier
 edit-file &cat "!egrep -n " &cat %grepfor " *.[ch]"
 ~force rename-buffer %grepfor
 error-buffer $cbufname
~endm
bind-key execute-macro-14 ^A-g

User-defined procedures can have parameters, much like the Bourne shell — but the parameters can be limited to specific data types. This makes procedures work as expected with vile
 ’s editing model (and command-history mechanism). The procedures are not completely interchangeable with the built-in commands, since there is not yet a mechanism for making the undo feature treat a whole macro as a single operation.

 Finally, the read-hook
 and write-hook
 variables can be set to names of procedures to run after reading and before writing a file, respectively. This allows you to do things similar to the pre- and post-operation files in elvis
 and the autocommand facility in Vim.

The language is quite capable, including flow control and comparison features, as well as variables that provide access to a large amount of vile
 ’s internal state. The macros.doc
 file in the vile
 distribution describes the language in detail.

Miscellaneous Small Features

Several other, smaller features are worth mentioning:

Piping into vile

 If you make vile
 the last command in a pipeline, it will create a buffer named [Standard Input]
 and edit that buffer for you. This is perhaps the “pager to end all pagers.”

Editing Windows files

When set to true, the
 dos
 option causes vile
 to strip carriage returns at the end of a line in files when reading, and to write them back out again. This makes it easy to edit Windows files on a Unix or GNU/Linux system.

Text reformatting

 The ^A f
 command reformats text, performing word wrapping on selected text. It understands C and shell comments (lines with a leading *
 or #
) and quoted email (a leading >
). It is similar to the Unix fmt
 command, but faster.

Formatting the information line

The modeline-format
 variable is a string
 that controls the way vile
 formats the status line. This is the line at the bottom of each window that describes the buffer’s status, such as its name, current major mode, modification status, insert versus command mode, and so on.[73
]

The string consists of
printf

 (3)-style percent sequences. For example, %b
 represents the buffer name, %m
 the major mode, and %l
 the line number if ruler
 has been set. Characters in the string that are not part of a format specifier are output verbatim.

vile
 has many other features. The vi
 finger-feel makes it easy to switch to vile
 from another editor. The programmability provides flexibility, and its interactive nature and use of defaults is perhaps friendlier than traditional vi
 for the novice
 .

[69
]
 vile
 9.6 has 421 defined functions (including some that are available only in the X11 or Win32 configurations), with predefined key bindings for about 260.

[70
]
 vile
 ’s documentation spells it as a single word.

[71
]
 These criteria are a fourth category of option, counting universal, buffer, and window. They are not listed with the others in Table B-5
 because you set them in an entirely different way.

[72
]
 The setl
 command sets the local properties of the buffer. The command :set cmode
 sets the default major mode if vile
 is unable to recognize the file.

[73
]
 vile
 ’s documentation refers to this as the
modeline

 . However, since vile
 also implements the vi
 modeline
 feature, we are calling it a status line, to reduce confusion.

Sources and Supported Operating Systems

 The official WWW location for vile
 is http://invisible-island.net/vile/vile.html
 . The ftp
 location is ftp://invisible-island.net/vile/vile.tar.gz
 . The file vile.tar.gz
 is always a symbolic link to the current version.

vile
 is written in ANSI C. It builds and runs on Unix, OpenVMS, MS-DOS, Win32 console and Win32 GUI, BeOS, QNX, and OS/2.

Compiling vile
 is straightforward. Retrieve the distribution via ftp
 or from the web page. Uncompress and untar it, run the configure
 program, and then run make
 :

$
gzip -d < vile.tar.gz | tar -xvpf -

...
$
cd vile-*; ./configure

...
$
make

...

vile
 should configure and build with no problems. Use make install
 to install it.

Note

If you want syntax coloring to work smoothly, you may wish to run configure
 with the option --with-builtin-filters
 . You should use flex
 (version 2.54a or newer) rather than lex
 , since Unix versions of that tool do not perform well. The configure
 script will also not accept a version of flex
 that is too old.

Should you need to report a bug or problem in vile
 , send email to the address
vile@nongnu.org

 . This is the preferred way to report bugs. If necessary, you can contact Thomas Dickey directly at
dickey@invisible-island.net

 .

Part IV. Appendixes

Part IV provides reference material that should be of interest to a vi
 user. This part contains the appendixes:

	
Appendix A
 ,
The vi, ex, and Vim Editors

	
Appendix B
 ,
Setting Options

	
Appendix C
 ,
Problem Checklists

	
Appendix D
 ,
vi and the Internet

Appendix A. The vi, ex, and Vim Editors

This appendix summarizes the standard features of vi
 in quick-reference format. Commands entered at the colon (known as ex
 commands because they date back to the original creation of that editor) are included, as well as the most popular Vim features.

This appendix presents the following topics:

	Command-line syntax

	Review of vi
 operations

	Alphabetical list of keys in command mode

	
vi
 commands

	
vi
 configuration

	
ex
 basics

	Alphabetical summary of ex
 commands

Command-Line Syntax

The three
 most common ways of starting a vi
 session are:

vi [
options

]
file

vi [
options

] +
num file

vi [
options

] +/
pattern file

You can open
file

 for editing, optionally at line
num

 or at the first line matching
pattern

 . If no
file

 is specified, vi
 opens with an empty buffer.

Command-Line Options

Because vi
 and ex
 are the same
 program, they share the same options. However, some options only make sense for one version of the program. Options specific to Vim are so marked:

+[

num

]

Start editing

 at line number
num

 , or the last line of the file if
num

 is omitted.

+/

pattern

Start
 editing at the first line matching
pattern

 . (For ex
 , this fails if nowrapscan
 is set in your .exrc
 startup file, since ex
 starts editing at the last line of a file.)

+?

pattern

Start
 editing at the last line matching
pattern

 .

-b

Edit the
 file in binary mode. {Vim}

-c

command

Run the given ex
 command
 upon startup. Only one -c
 option is permitted for vi
 ; Vim accepts up to 10. An older form of this option, +

command

 , is still supported.

--cmd

command

Like -c
 , but execute
 the command before any resource files are read. {Vim}

-C

Solaris vi
 : same as
 -x
 , but assume the file is encrypted already.

Vim: start the editor in vi
 -compatible mode.

-d

Run
 in diff mode. Works like vimdiff
 . {Vim}

-D

Debugging
 mode for use with scripts. {Vim}

-e

Run
 as ex
 (line-editing rather than full-screen mode).

-h

Print help message,
 then exit. {Vim}

-i

file

Use
 the specified
file

 instead of the default (~/.viminfo
) to save or restore Vim’s state. {Vim}

-l

Enter Lisp mode
 for running Lisp programs (not supported in all versions).

-L

List files
 that were saved due to an aborted editor session or system crash (not supported in all versions). For Vim, this option is the same as -r
 .

-m

Start the
 editor with the write
 option turned off so that the user cannot write to files. {Vim}

-M

Do not
 allow text in files to be modified. {Vim}

-n

Do not
 use a swap file; record changes in memory only. {Vim}

--noplugin

Do not
 load any plug-ins. {Vim}

-N

Run Vim
 in a non-vi
 -compatible mode. {Vim}

-o
 [
num

]

Start
 Vim with
num

 open windows. The default is to open one window for each file. {Vim}

-O
 [
num

]

Start Vim with
num

 open
 windows arranged horizontally (split vertically) on the screen. {Vim}

-r
 [
file

]

Recovery mode; recover and resume editing on
file

 after an aborted editor session or system crash. Without
file

 , list files available for recovery.

-R

Edit files
 in read-only mode.

-s

Silent;
 do not display prompts. Useful when running a script. This behavior also can be set through the older -
 option. For Vim, applies only when used together with -e
 .

-s

scriptfile

Read and execute commands given in the specified
scriptfile

 as if they were typed in from the keyboard. {Vim}

-S

commandfile

Read
 and execute commands given in
commandfile

 after loading any files for editing specified on the command line. Shorthand for vim -c 'source

commandfile

 '
 . {Vim}

-t

tag

Edit the
 file containing
tag

 , and position the cursor at its definition.

-T

type

Set the option
 terminal type. This value overrides the $TERM environment variable. {Vim}

-u

file

Read
 configuration information from the specified resource file instead of the default .vimrc
 resource file. If the
file

 argument is NONE
 , Vim will read no resource files, load no plug-ins, and run in compatible mode. If the argument is NORC
 , it will read no resource files, but it will load plug-ins. {Vim}

-v

Run
 in full-screen mode (default for vi
).

--version

Print
 version information, then exit. {Vim}

-V
 [
num

]

Verbose
 mode; print messages about what options are being set and what files are being read or written. You can set a level of verbosity to increase or decrease the number of messages received. The default value is 10 for high verbosity. {Vim}

-w

rows

Set the window
 size so
rows

 lines at a time are displayed; useful when editing over a slow dial-up line (or long distance Internet connection). Older versions of vi
 do not permit a space between the option and its argument. Vim does not support this option.

-W

scriptfile

Write all typed
 commands from the current session to the specified
scriptfile

 . The file created can be used with the -s
 command. {Vim}

-x

Prompt for a
 key that will be used to try to encrypt or decrypt a file using crypt
 (not supported in all versions).[74
]

-y

Modeless vi
 ; run
 Vim in insert mode only, without a command mode. This is the same as invoking Vim as evim
 . {Vim}

-Z

Start Vim in restricted
 mode. Do not allow shell commands or suspension of the editor. {Vim}

Although most people know ex
 commands only by their use within vi
 , the editor also exists as a separate program and can be invoked from the shell (for instance, to edit files as part of a script). Within ex
 , you can enter the vi
 or visual
 command to start vi
 . Similarly, within vi
 , you can enter Q
 to quit the vi
 editor and enter ex
 .

You can exit ex
 in several ways:

	

:x

	
Exit
 (save changes and quit).

	

:q!

	
Quit
 without saving changes.

	

:vi

	
Enter
 the vi
 editor.

[74
]
 The crypt
 command’s encryption is weak. Don’t use it for serious secrets.

Review of vi Operations

This
 section provides a review of the following:

	
vi
 modes

	Syntax of vi
 commands

	Status-line commands

Command Mode

Once the file is opened,
 you are in command mode. From command mode, you can:

	Invoke insert mode

	Issue editing commands

	Move the cursor to a different position in the file

	Invoke ex
 commands

	Invoke a Unix shell

	Save the current version of the file

	Exit vi

Insert Mode

In insert mode, you
 can enter new text in the file. You normally enter insert mode with the i
 command. Press the ESC
 key to exit insert mode and return to command mode. The full list of commands that enter insert mode is provided later in the section Insert Commands
 .

Syntax of vi Commands

In vi
 , editing commands have the following general form:

[
n

]
operator

 [
m

]
motion

The basic editing
operators

 are:

	

c

	
Begin a change.

	

d

	
Begin a deletion.

	

y

	
Begin a yank (or copy).

If the current line is the object of the operation, the
motion

 is the same as the operator: cc
 , dd
 , yy
 . Otherwise, the editing operators act on objects specified by cursor-movement commands or pattern-matching commands. (For example, cf.
 changes up to the next period.)
n

 and
m

 are the number of times the operation is performed, or the number of objects the operation is performed on. If both
n

 and
m

 are specified, the effect is
n

 ×

m

 .

An object of operation can be any of the following text blocks:

word

Includes characters up to a whitespace character (space or tab) or punctuation mark. A capitalized object is a variant form that recognizes only whitespace.

sentence

Up to .
 , !
 , or ?
 , followed by two spaces.

paragraph

Up to the next blank line or paragraph macro defined by the para=
 option.

section

Up to the next nroff
 /troff
 section heading defined by the sect=
 option.

motion

Up to the character or other text object as specified by a motion specifier, including pattern searches.

Examples

	

2cw

	
Change the next two words.

	

d}

	
Delete up to the next paragraph.

	

d^

	
Delete back to the beginning of the line.

	

5yy

	
Copy the next five lines.

	

y]]

	
Copy up to the next section.

	

cG

	
Change to the end of the edit buffer.

More commands and examples may be found in the section Changing and deleting text
 later in this appendix.

Visual mode (Vim only)

Vim provides an additional facility, “visual mode.” This allows you to highlight blocks of text, which then become the object of edit commands such as deletion or saving (yanking). Graphical versions of Vim allow you to use the mouse to highlight text in a similar fashion. See the earlier section Visual Mode Motion
 for more information.

	

v

	
Select text in visual mode one character at a time.

	

V

	
Select text in visual mode one line at a time.

	

CTRL-V

	
Select text in visual mode in blocks.

Status-Line Commands

Most commands are not echoed
 on the screen as you input them. However, the status line at the bottom of the screen is used to edit these commands:

	

/

	
Search forward for a pattern.

	

?

	
Search backward for a pattern.

	

:

	
Invoke an ex
 command.

	

!

	
Invoke a Unix command that takes as its input an object in the buffer and replaces it with output from the command. You type a motion command after the !
 to describe what should be passed to the Unix command. The command itself is entered on the status line.

Commands that are entered on the status line must be entered by pressing the ENTER
 key. In addition, error messages and output from the CTRL-G
 command are displayed on the status line.

vi Commands

vi
 supplies a large set of single-key commands when in command mode. Vim supplies additional multikey commands.

Movement Commands

Some versions of vi
 do not recognize extended keyboard keys
 (e.g., arrow keys, page up, page down, home, insert, and delete); some do. All versions, however, recognize the keys in this section. Many users of vi
 prefer to use these keys, as it helps them keep their fingers on the home row of the keyboard. A number preceding a command repeats the movement. Movement commands are also used after an operator. The operator works on the text that is moved.

Character

	

h
 , j
 , k
 , l

	
Left, down, up, right (←
 , ↓
 , ↑
 , →
)

	
Spacebar

	
Right

	

BACKSPACE

	
Left

	

CTRL-H

	
Left

Text

	

w
 , b

	
Forward, backward by “word” (letters, numbers, and underscores make up words).

	

W
 , B

	
Forward, backward by “WORD” (only whitespace separates items).

	

e

	
End of word.

	

E

	
End of WORD.

	

ge

	
End of previous word. {Vim}

	

gE

	
End of previous WORD. {Vim}

	

)
 , (

	
Beginning of next, current sentence.

	

}
 , {

	
Beginning of next, current paragraph.

	

]]
 , [[

	
Beginning of next, current section.

	

][
 , [ ]

	
End of next, current section. {Vim}

Lines

Long lines in a file may show up on the screen as multiple lines. (They wrap
 around from one screen line to the next.) Although most commands work on the lines as defined in the file, a few commands work on lines as they appear on the screen. The Vim option wrap
 allows you to control how long lines are displayed.

	

0
 , $

	
First, last position of current line.

	

^
 , _

	
First nonblank character of current line.

	

+
 , -

	
First nonblank character of next, previous line.

	

ENTER

	
First nonblank character of next line.

	

num

 |

	
Column
num

 of current line.

	

g0
 , g$

	
First, last position of screen line. {Vim}

	

g^

	
First nonblank character of screen line. {Vim}

	

gm

	
Middle of screen line. {Vim}

	

gk
 , gj

	
Move up, down one screen line. {Vim}

	

H

	
Top line of screen (Home position).

	

M

	
Middle line of screen.

	

L

	
Last line of screen.

	

num

 H

	

num

 lines after top line.

	

num

 L

	

num

 lines before last line.

Screens

	

CTRL-F
 , CTRL-B

	
Scroll forward, backward one screen.

	

CTRL-D
 , CTRL-U

	
Scroll down, up one-half screen.

	

CTRL-E
 , CTRL-Y

	
Show one more line at bottom, top of screen.

	

z
 ENTER

	
Reposition line with cursor to top of screen.

	

z.

	
Reposition line with cursor to middle of screen.

	

z-

	
Reposition line with cursor to bottom of screen.

	

CTRL-L

	
Redraw screen (without scrolling).

	

CTRL-R

	

vi
 : redraw screen (without scrolling).

	
	
Vim: redo last undone change.

Searches

	

/

pattern

	
Search forward for
pattern

 . End with ENTER
 .

	

/

pattern

 /+

num

	
Go to line
num

 after
pattern

 . Forward search for
pattern

 .

	

/

pattern

 /-

num

	
Go to line
num

 before
pattern

 . Forward search for
pattern

 .

	

?

pattern

	
Search backward for
pattern

 . End with ENTER
 .

	

?

pattern

 ?+

num

	
Go to line
num

 after
pattern

 . Backward search for
pattern

 .

	

?

pattern

 ?-

num

	
Go to line
num

 before
pattern

 . Backward search for
pattern

 .

	

:noh

	
Suspend search highlighting until next search. {Vim}

	

n

	
Repeat previous search.

	

N

	
Repeat search in opposite direction.

	

/

	
Repeat previous search forward.

	

?

	
Repeat previous search backward.

	

*

	
Search forward for word under cursor. Matches only exact words. {Vim}

	

#

	
Search backward for word under cursor. Matches only exact words. {Vim}

	

g*

	
Search backward for word under cursor. Matches the characters of this word when embedded in a longer word. {Vim}

	

g#

	
Search backward for word under cursor. Matches the characters of this word when embedded in a longer word. {Vim}

	

%

	
Find match of current parenthesis, brace, or bracket.

	

f

x

	
Move cursor forward to
x

 on current line.

	

F

x

	
Move cursor backward to
x

 on current line.

	

t

x

	
Move cursor forward to character before
x

 in current line.

	

T

x

	
Move cursor backward to character after
x

 in current line.

	

,

	
Reverse search direction of last f
 , F
 , t
 , or T
 .

	

;

	
Repeat last f
 , F
 , t
 , or T
 .

Line numbering

	

CTRL-G

	
Display current line number.

	

gg

	
Move
 to first line in file. {Vim}

	

num

 G

	
Move to line number
num

 .

	

G

	
Move to last line in file.

	

:

num

	
Move to line number
num

 .

Marks

	

m

x

	
Place mark
x

 at current position.

	

`

x

	
(Backquote.) Move cursor to mark
x

 .

	

'

x

	
(Apostrophe.) Move to start of line containing
x

 .

	

``

	
(Backquotes.) Return to position before most recent jump.

	

''

	
(Apostrophes.) Like preceding, but return to start of line.

	

'"

	
(Apostrophe quote.) Move to position when last editing the file. {Vim}

	

`[
 , ']

	
(Backquote bracket.) Move to beginning/end of previous text operation. {Vim}

	

'[
 , ']

	
(Apostrophe bracket.) Like preceding, but return to start of line where operation occurred. {Vim}

	

`.

	
(Backquote period.) Move to last change in file. {Vim}

	

'.

	
(Apostrophe period.) Like preceding, but return to start of line. {Vim}

	

'0

	
(Apostrophe zero.) Position where you last exited Vim. {Vim}

	

:marks

	
List active marks. {Vim}

Insert Commands

	

a

	
Append
 after
 cursor.

	

A

	
Append
 to end of line.

	

c

	
Begin
 change operation.

	

C

	
Change
 to end of line.

	

gI

	
Insert at
 beginning of line. {Vim}

	

i

	
Insert
 before cursor.

	

I

	
Insert
 at beginning of line.

	

o

	
Open a
 line below cursor.

	

O

	
Open a
 line above cursor.

	

R

	
Begin
 overwriting text.

	

s

	
Substitute
 a character.

	

S

	
Substitute entire
 line.

	

ESC

	
Terminate insert mode.

The following commands work in insert mode:

	

BACKSPACE

	
Delete previous character.

	

DELETE

	
Delete current character.

	

TAB

	
Insert a tab.

	

CTRL-A

	
Repeat last insertion. {Vim}

	

CTRL-D

	
Shift line left to previous shiftwidth. {Vim}

	

CTRL-E

	
Insert character found just below cursor. {Vim}

	

CTRL-H

	
Delete previous character (same as backspace).

	

CTRL-I

	
Insert a tab.

	

CTRL-K

	
Begin insertion of multikeystroke character.

	

CTRL-N

	
Insert next completion of the pattern to the left of the cursor. {Vim}

	

CTRL-P

	
Insert previous completion of the pattern to the left of the cursor. {Vim}

	

CTRL-T

	
Shift line right to next shiftwidth. {Vim}

	

CTRL-U

	
Delete current line.

	

CTRL-V

	
Insert next character verbatim.

	

CTRL-W

	
Delete previous word.

	

CTRL-Y

	
Insert character found just above cursor. {Vim}

	

CTRL-[

	
(ESC) Terminate insert mode.

Some of the control characters listed in the previous table are set by stty
 . Your terminal settings may differ.

Edit Commands

Recall that c
 , d
 , and y
 are the basic editing
 operators.

Changing and deleting text

The following list is not exhaustive, but it illustrates the most common operations:

	

cw

	
Change
 word.

	

cc

	
Change line.

	

c$

	
Change text from current position to end-of-line.

	

C

	
Same
 as c$
 .

	

dd

	
Delete
 current line.

	

num

 dd

	
Delete

num

 lines.

	

d$

	
Delete text from current position to end-of-line.

	

D

	
Same
 as d$
 .

	

dw

	
Delete a
 word.

	

d}

	
Delete
 up to next paragraph.

	

d^

	
Delete
 back to beginning of line.

	

d/

pat

	
Delete up to first occurrence of pattern.

	

dn

	
Delete up t
 o next occurrence of pattern.

	

df

x

	
Delete
 up to and including
x

 on current line.

	

dt

x

	
Delete
 up to (but not including)
x

 on current line.

	

dL

	
Delete
 up to last line on screen.

	

dG

	
Delete to
 end of file.

	

gqap

	
Reformat
 current paragraph to textwidth
 . {Vim}

	

g~w

	
Switch case
 of word. {Vim}

	

guw

	
Change
 word to lowercase. {Vim}

	

gUw

	
Change
 word to uppercase. {Vim}

	

p

	
Insert last deleted or yanked text after cursor.

	

gp

	
Same as p
 , but
 leave cursor at end of inserted text. {Vim}

	

gP

	
Same as P
 , but leave
 cursor at end of inserted text. {Vim}

	

]p

	
Same as p
 , but match current indention. {Vim}

	

[p

	
Same as P
 , but match current indention. {Vim}

	

P

	
Insert last deleted or yanked text before cursor.

	

r

x

	
Replace character with
x

 .

	

R

text

	
Replace with new
text

 (overwrite), beginning at cursor. ESC
 ends replace mode.

	

s

	
Substitute character.

	

4s

	
Substitute four characters.

	

S

	
Substitute entire line.

	

u

	
Undo last change.

	

CTRL-R

	
Redo last change. {Vim}

	

U

	
Restore current line.

	

x

	
Delete
 current cursor position.

	

X

	
Delete back one
 character.

	

5X

	
Delete previous five characters.

	

.

	
Repeat last change.

	

~

	
Reverse case and move cursor right.

	

CTRL-A

	
Increment number under cursor. {Vim}

	

CTRL-X

	
Decrement number under cursor. {Vim}

Copying and moving

Register names are the letters a
 –z
 . Uppercase names append text to the corresponding register.

	

Y

	
Copy
 current line.

	

yy

	
Copy current
 line.

	

"

x

 yy

	
Copy current line to register
x

 .

	

ye

	
Copy text
 to end of word.

	

yw

	
Like ye
 , but include
 the whitespace after the word.

	

y$

	
Copy rest
 of line.

	

"

x

 dd

	
Delete current line into register
x

 .

	

"

x

 d

	
Delete into register
x

 .

	

"

x

 p

	
Put contents of register
x

 .

	

y]]

	
Copy up to next section heading.

	

J

	
Join current line
 to next line.

	

gJ

	
Same
 as J
 , but without inserting a space. {Vim}

	

:j

	
Same as J
 .

	

:j!

	
Same as gJ
 .

Saving and Exiting

Writing a file means overwriting
 the file with the current text.

	

ZZ

	
Quit vi
 , writing
 the file only if changes were made.

	

:x

	
Same as ZZ
 .

	

:wq

	
Write file and quit.

	

:w

	
Write file.

	

:w

file

	
Save copy to
file

 .

	

:

n

 ,

m

 w

file

	
Write lines
n

 to
m

 to new
file

 .

	

:

n

 ,

m

 w >>

file

	
Append lines
n

 to
m

 to existing
file

 .

	

:w!

	
Write file (overriding protection).

	

:w!

file

	
Overwrite
file

 with current text.

	

:w %.

new

	
Write current buffer named
file

 as
file

 .new
 .

	

:q

	
Quit vi
 (fails if changes were made).

	

:q!

	
Quit vi
 (discarding edits).

	

Q

	
Quit vi
 and invoke ex
 .

	

:vi

	
Return to vi
 after Q
 command.

	

%

	
Replaced with current filename in editing commands.

	

#

	
Replaced with alternate filename in editing commands.

Accessing Multiple Files

	

:e

file

	
Edit

 another
file

 ; current file becomes alternate.

	

:e!

	
Return to version of current file at time of last write.

	

:e +

file

	
Begin editing at end of
file

 .

	

:e +

num file

	
Open
file

 at line
num

 .

	

:e #

	
Open to previous position in alternate file.

	

:ta

tag

	
Edit file at location
tag

 .

	

:n

	
Edit next file in the list of files.

	

:n!

	
Force next file.

	

:n

files

	
Specify new list of
files

 .

	

:rewind

	
Edit first file in the list.

	

CTRL-G

	
Show current file and line number.

	

:args

	
Display list of files to be edited.

	

:prev

	
Edit previous file in the list of files.

Window Commands (Vim)

The following
 table lists common commands for controlling windows in Vim. See also the split
 , vsplit
 , and resize
 commands in the later section Alphabetical Summary of ex Commands
 . For brevity, control characters are marked in the following list by ^
 .

	

:new

	
Open a
 new window.

	

:new

file

	
Open
file

 in a new window.

	

:sp
 [
file

]

	
Split the current window. With
file

 , edit that file in the new window.

	

:sv
 [
file

]

	
Same as :sp
 , but make new window read-only.

	

:sn
 [
file

]

	
Edit next file in file list in new window.

	

:vsp
 [
file

]

	
Like :sp
 , but split vertically instead of horizontally.

	

:clo

	
Close current window.

	

:hid

	
Hide current window, unless it is the only visible window.

	

:on

	
Make current window the only visible one.

	

:res

num

	
Resize window to
num

 lines.

	

:wa

	
Write all changed buffers to their files.

	

:qa

	
Close all buffers and exit.

	

^W s

	
Same as :sp
 .

	

^W n

	
Same as :new
 .

	

^W ^

	
Open new window with alternate (previously edited) file.

	

^W c

	
Same as :clo
 .

	

^W o

	
Same as :only
 .

	

^W j
 , ^W k

	
Move cursor to next/previous window.

	

^W p

	
Move cursor to previous window.

	

^W h
 , ^W l

	
Move cursor to window on left/right of screen.

	

^W t
 , ^W b

	
Move cursor to window on top/bottom of screen.

	

^W K
 , ^W B

	
Move current window to top/bottom of screen.

	

^W H
 , ^W L

	
Move current window to far left/right of screen.

	

^W r
 , ^W R

	
Rotate windows down/up.

	

^W +
 , ^W -

	
Increase/decrease current window size.

	

^W =

	
Make all windows same height.

Interacting with the System

	

:r

file

	
Read in contents of
file

 after cursor.

	

:r !

command

	
Read in output from
command

 after current line.

	

:

num

 r !

command

	
Like previous, but place after line
num

 (0 for top of file).

	

:!

command

	
Run
command

 , then return.

	

!

motion command

	
Send the text covered by
motion

 to Unix
command

 ; replace with output.

	

:

n

 ,

m

 !

command

	
Send lines
n

 –
m

 to
command

 ; replace with output.

	

num

 !!

command

	
Send
num

 lines to Unix
command

 ; replace with output.

	

:!!

	
Repeat last system command.

	

:sh

	
Create subshell; return to editor with
EOF

 .

	

CTRL-Z

	
Suspend editor, resume with fg
 .

	

:so

file

	
Read and execute ex
 commands from
file

 .

Macros

	

:ab

in out

	
Use

in

 as abbreviation for
out

 in insert mode.

	

:unab

in

	
Remove abbreviation for
in

 .

	

:ab

	
List abbreviations.

	

:map

string sequence

	
Map characters
string

 as
sequence

 of commands. Use #1
 , #2
 , etc., for the function keys.

	

:unmap

string

	
Remove map for characters
string

 .

	

:map

	
List character strings that are mapped.

	

:map!

string sequence

	
Map characters
string

 to input mode
sequence

 .

	

:unmap!

string

	
Remove input mode map (you may need to quote the characters with CTRL-V
).

	

:map!

	
List character strings that are mapped for input mode.

	

q

x

	
Record typed characters into register specified by letter
x

 . If letter is uppercase, append to register. {Vim}

	

q

	
Stop recording. {Vim}

	

@

x

	
Execute the register specified by letter
x

 . Use @@
 to repeat the last @
 command.

In vi
 , the following characters are unused in command mode and can be mapped as user-defined commands:

Letters

g
 , K
 , q
 , V
 , and v

Control keys

^A
 , ^K
 , ^O
 , ^W
 , ^X
 , ^_
 , and ^\

Symbols

_
 , *
 , \
 , =
 , and #

 Tip

The =
 is used by vi
 if Lisp mode is set. Different versions of vi
 may use some of these characters, so test them before using.

Vim does not use ^K
 , ^_
 , _
 , or \
 .

Miscellaneous Commands

	

<

	
Shift text described by following motion command left by one shiftwidth. {Vim}

	

>

	
Shift text described by following motion command right by one shiftwidth. {Vim}

	

<<

	
Shift line left one shiftwidth (default is eight spaces).

	

>>

	
Shift line right one shiftwidth (default is eight spaces).

	

>}

	
Shift right to end of paragraph.

	

<%

	
Shift left until matching parenthesis, brace, or bracket. (Cursor must be on the matching symbol.)

	

==

	
Indent line in C-style, or using program specified in equalprg
 option. {Vim}

	

g

	
Start many multiple character commands in Vim.

	

K

	
Look up word under cursor in manpages (or program defined in keywordprg
). {Vim}

	

^O

	
Return to previous jump. {Vim}

	

^Q

	
Same as ^V
 . {Vim} (On some terminals, resume data flow.)

	

^T

	
Return to the previous location in the tag stack. (Solaris vi
 , Vim, nvi
 , elvis
 , and vile
 .)

	

^]

	
Perform a tag lookup on the text under the cursor.

	

^\

	
Enter ex
 line-editing mode.

	

^^

	
(Caret key with Ctrl key pressed.) Return to previously edited file.

vi Configuration

This section describes the following:

	The :set
 command

	Options available with :set

	Example .exrc
 file

The :set Command

The :set
 command
 allows you to specify options that change characteristics of your editing environment. Options may be put in the ~/.exrc
 file or set during a vi
 session.

The colon does not need to be typed if the command is put in .exrc
 :

	

:set

x

	
Enable Boolean option
x

 ; show value of other options.

	

:set no

x

	
Disable option
x

 .

	

:set

x

 =

value

	
Give
value

 to option
x

 .

	

:set

	
Show changed options.

	

:set all

	
Show all options.

	

:set

x

 ?

	
Show value of option
x

 .

Appendix B
 provides tables of :set
 options for Solaris vi
 , Vim, nvi
 , elvis
 , and vile
 . Please see that appendix for more information.

Example .exrc File

In an ex
 script file, comments start with
 the double quote character. The following lines of code are an example of a customized .exrc
 file:

set nowrapscan " Searches don't wrap at end of file
set wrapmargin=7 " Wrap text at 7 columns from right margin
set sections=SeAhBhChDh nomesg " Set troff macros, disallow message
map q :w^M:n^M " Alias to move to next file
map v dwElp " Move a word
ab ORA O'Reilly Media, Inc. " Input shortcut

 Tip

The q
 alias isn’t needed for Vim, which has the :wn
 command. The v
 alias would hide the Vim command v
 , which enters character-at-a-time visual mode operation.

ex Basics

The ex
 line
 editor serves as the foundation for the screen editor vi
 . Commands in ex
 work on the current line or on a range of lines in a file. Most often, you use ex
 from within vi
 . In vi
 , ex
 commands are preceded by a colon and entered by pressing ENTER
 .

You can also invoke ex
 on its own — from the command line — just as you would invoke vi
 . (You could execute an ex
 script this way.) Or you can use the vi
 command Q
 to quit the vi
 editor and enter ex
 .

Syntax of ex Commands

To enter an ex
 command from vi
 , type:

:

[
address

]
command

 [
options

]

An initial :
 indicates an ex
 command. As you type the command, it is echoed on the status line. Execute the command by pressing the ENTER
 key.
Address

 is the line number or range of lines that are the object of
command

 .
Options

 and
addresses

 are described later. ex
 commands are described in the later section Alphabetical Summary of ex Commands
 .

You can exit ex
 in several ways:

	

:x

	
Exit (save changes and quit).

	

:q!

	
Quit without saving changes.

	

:vi

	
Switch to the vi
 editor on the current file.

Addresses

If no address is given, the current line is the object of the command. If the address specifies a range of lines, the format is:

x

,
y

where
x

 and
y

 are the first and last addressed lines (
x

 must precede
y

 in the buffer).
x

 and
y

 each may be a line number or a symbol. Using ;
 instead of ,
 sets the current line to
x

 before interpreting
y

 . The notation 1,$
 addresses all lines in the file, as does %
 .

Address Symbols

	

1,$

	
All lines in the file.

	

x

 ,

y

	
Lines
x

 through
y

 .

	

x

 ;

y

	
Lines
x

 through
y

 , with current line reset to
x

 .

	

0

	
Top of file.

	

.

	
Current line.

	

num

	
Absolute line number
num

 .

	

$

	
Last line.

	

%

	
All lines; same as 1,$
 .

	

x

 -

n

	

n

 lines before
x

 .

	

x

 +

n

	

n

 lines after
x

 .

	

-
 [
num

]

	
One or
num

 lines previous.

	

+
 [
num

]

	
One or
num

 lines ahead.

	

'

x

	
(Apostrophe.) Line marked with
x

 .

	

''

	
(Apostrophe apostrophe.) Previous mark.

	

/

pattern

 /

	
Forward to line matching
pattern

 .

	

?

pattern

 ?

	
Backward to line matching
pattern

 .

See Chapter 6
 for more information on using patterns.

Options

!

Indicates a variant form of the command, overriding the normal behavior. The !
 must come immediately after the command.

count

The number of times the command is to be repeated. Unlike in vi
 commands,
count

 cannot precede the command, because a number preceding an ex
 command is treated as a line address. For example, d3
 deletes three lines, beginning with the current line; 3d
 deletes line 3.

file

The name of a file that is affected by the command. %
 stands for the current file; #
 stands for the previous file.

Alphabetical Summary of ex Commands

ex
 commands can be entered by specifying
 any unique abbreviation. In the following list of reference entries, the full name appears as the heading of the reference entry, and the shortest possible abbreviation is shown in the syntax line below it. Examples are assumed to be typed from vi
 , so they include the :
 prompt.

Name

abbreviate

Synopsis

ab [
string text

]

Define
string

 when typed to
 be translated into
text

 . If
string

 and
text

 are not specified, list all current abbreviations.

Examples

Note: ^M
 appears when you type ^V
 followed by ENTER
 .

:ab ora O'Reilly Media, Inc.
:ab id Name:^MRank:^MPhone:

Name

append

Synopsis

[
address

] a[!]

text

.

Append new
text

 at specified

address

 , or at present address if none is specified. Add a !
 to toggle the autoindent
 setting that is used during input. That is, if autoindent
 was enabled, !
 disables it. Enter new text after entering the command. Terminate input of new text by entering a line consisting of just a period.

Example

:a
Begin appending to current line

Append this line
and this line too.
.
Terminate input of text to append

Name

args

Synopsis

ar
args
file

 ...

Print the

 members of the argument list (files named on the command line), with the current argument printed in brackets ([]
).

The second syntax is for Vim, which allows you to reset the list of files to be edited.

Name

bdelete

Synopsis

[
num

] bd[!] [
num

]

Unload buffer
num

 and
 remove it from the buffer list. Add a !
 to force removal of an unsaved buffer. The buffer may also be specified by filename. If no buffer is specified, remove the current buffer. {Vim}

Name

buffer

Synopsis

[
num

] b[!] [
num

]

Begin editing
 buffer
num

 in the buffer list. Add a !
 to force a switch from an unsaved buffer. The buffer may also be specified by filename. If no buffer is specified, continue editing the current buffer. {Vim}

Name

buffers

Synopsis

buffers[!]

Print the members of the
 buffer list. Some buffers (e.g., deleted buffers) will not be listed. Add !
 to show unlisted buffers. ls
 is another abbreviation for this command. {Vim}

Name

cd

Synopsis

cd
dir

chdir
dir

Change the current directory
 within the editor to
dir

 .

Name

center

Synopsis

[
address

] ce [
width

]

Center the line within
 the specified
width

 . If
width

 is not specified, use textwidth
 . {Vim}

Name

change

Synopsis

[
address

] c[!]

text

.

Replace the
 specified lines with
text

 . Add a !
 to switch the autoindent
 setting during input of
text

 . Terminate input by entering a line consisting of just a period.

Name

close

Synopsis

clo[!]

Close current
 window unless it is the last window. If buffer in window is not open in another window, unload it from memory. This command will not close a buffer with unsaved changes, but you may add !
 to hide it instead. {Vim}

Name

copy

Synopsis

[
address

] co
destination

Copy the
 lines included in
address

 to the specified
destination

 address. The command t
 (short for “to”) is a synonym for copy
 .

Example

:1,10 co 50
Copy first 10 lines to just after line 50

Name

delete

Synopsis

[
address

] d [
register

] [
count

]

Delete the lines included in
address

 . If
register

 is specified, save or append the text to the named register. Register names are the lowercase letters a
 –z
 . Uppercase names append text to the corresponding register. If
count

 is specified, delete that many lines.

Examples

:/Part I/,/Part II/-1d
Delete to line above “Part II”

:/main/+d
Delete line below “main”

:.,$d x
Delete from this line to last line into register x

Name

edit

Synopsis

e[!] [+
num

] [
filename

]

Begin editing
 on
filename

 . If no
filename

 is given, start over with a copy of the current file. Add a !
 to edit the new file even if the current file has not been saved since the last change. With the +

num

 argument, begin editing on line
num

 . Alternatively,
num

 may be a pattern, of the form /

pattern

 .

Examples

:e file
Edit file in current editing buffer

:e +/^Index #
Edit alternate file at pattern match

:e!
Start over again on current file

Name

file

Synopsis

f [
filename

]

Change the filename
 for the current buffer to
filename

 . The next time the buffer is written, it will be written to file
filename

 . When the name is changed, the buffer’s “not edited” flag is set, to indicate that you are not editing an existing file. If the new filename is the same as a file that already exists on the disk, you will need to use :w!
 to overwrite the existing file. When specifying a filename, the %
 character can be used to indicate the current filename. A #
 can be used to indicate the alternate filename. If no
filename

 is specified, print the current name and status of the buffer.

Example

:f %.new

Name

fold

Synopsis

address

 fo

Fold the lines specified by
address

 . A fold
 collapses several lines on the screen into one line, which can later be unfolded. It doesn’t affect the text of the file. {Vim}

Name

foldclose

Synopsis

[
address

] foldc[!]

Close folds in the specified
address

 , or
 at the present address if none is specified. Add a !
 to close more than one level of folds. {Vim}

Name

foldopen

Synopsis

[
address

] foldo[!]

Open folds in the specified
address

 , or at the present address
 if none is specified. Add a !
 to open more than one level of folds. {Vim}

Name

global

Synopsis

[
address

] g[!]/
pattern

/[
commands

]

Execute
commands

 on all
 lines that contain
pattern

 or, if
address

 is specified, on all lines within that range. If
commands

 are not specified, print all such lines. Add a !
 to execute
commands

 on all lines
not

 containing
pattern

 . See also v
 , later in this list.

Examples

:g/Unix/p
Print all lines containing “Unix”

:g/Name:/s/tom/Tom/
Change “tom” to “Tom” on all lines containing “Name:”

Name

hide

Synopsis

hid

Close current
 window unless it is the last window, but do not remove the buffer from memory. This command is safe to use on an unsaved buffer. {Vim}

Name

insert

Synopsis

[
address

] i[!]

text

.

Insert
text

 at line

 before the specified
address

 , or at present address if none is specified. Add a !
 to switch the autoindent
 setting during input of
text

 . Terminate input of new text by entering a line consisting of just a period.

Name

join

Synopsis

[
address

] j[!] [
count

]

Place the text in the specified range on one line, with whitespace adjusted to provide two space characters after a period (.), no space characters before a)
 , and one space character otherwise. Add a !
 to prevent whitespace adjustment.

Example

:1,5j!
Join first five lines, preserving whitespace

Name

jumps

Synopsis

ju

Print jump
 list used with CTRL-I
 and CTRL-O
 commands. The jump list is a record of most movement commands that skip over multiple lines. It records the position of the cursor before each jump. {Vim}

Name

k

Synopsis

[
address

] k
char

Same as mark
 ; see mark
 later in this list.

Name

left

Synopsis

[
address

] le [
count

]

Left-align lines specified by
address

 , or current line if no address is specified. Indent lines by
count

 spaces. {Vim}

Name

list

Synopsis

[
address

] l [
count

]

Print the specified lines so that tabs display as ^I
 and the ends of lines display as $
 . l
 is like a temporary version of :set list
 .

Name

map

Synopsis

map[!] [
string commands

]

Define a
 keyboard macro named
string

 as the specified sequence of
commands

 .
string

 is usually a single character or the sequence #

num

 , the latter representing a function key on the keyboard. Use a !
 to create a macro for input mode. With no arguments, list the currently defined macros.

Examples

:map K dwwP
Transpose two words

:map q :w^M:n^M
Write current file; go to next

:map! + ^[bi(^[ea)
Enclose previous word in parentheses

 Tip

Vim has K
 and q
 commands, which the example aliases would hide.

Name

mark

Synopsis

[
address

] ma
char

Mark the specified line with
char

 , a single lowercase letter. Same as k
 . Return later to the line with '

x

 (apostrophe plus
x

 , where
x

 is the same as
char

). Vim also uses uppercase and numeric characters for marks. Lowercase letters work the same as in vi
 . Uppercase letters are associated with filenames and can be used between multiple files. Numbered marks, however, are maintained in a special viminfo
 file and cannot be set using this command.

Name

marks

Synopsis

marks [
chars

]

Print list of marks specified by
chars

 , or all current marks if no
chars

 specified. {Vim}

Example

:marks abc
Print marks a, b, and c

Name

mkexrc

Synopsis

mk[!]
file

Create an .exrc
 file containing set
 commands for changed ex
 options and key mappings. This saves the current option settings, allowing you to restore them later. {Vim}

Name

move

Synopsis

[
address

] m
destination

Move the lines specified by
address

 to the
destination

 address.

Example

:.,/Note/m /END/
Move text block to after line containing “END”

Name

new

Synopsis

[
count

] new

Create a new
 window
count

 lines high with an empty buffer. {Vim}

Name

next

Synopsis

n[!] [[+
num

]
filelist

]

Edit the next file from the command-line argument list. Use args
 to list these files. If
filelist

 is provided, replace the current argument list with
filelist

 and begin editing on the first file. With the +

num

 argument, begin editing on line
num

 . Alternatively,
num

 may be a pattern, of the form /

pattern

 .

Example

:n chap*
Start editing all “chapter” files

Name

nohlsearch

Synopsis

noh

Temporarily stop
 highlighting all matches to a search when using the hlsearch
 option. Highlighting is resumed with the next search. {Vim}

Name

number

Synopsis

[
address

] nu [
count

]

Print
 each line specified by
address

 , preceded by its buffer line number. Use #
 as an alternate abbreviation for number
 .
count

 specifies the number of lines to show, starting with
address

 .

Name

only

Synopsis

on [!]

Make the current window be the only one on the screen. Windows open on modified buffers are not removed from the screen (hidden), unless you also use the !
 character. {Vim}

Name

open

Synopsis

[
address

] o [/
pattern

/]

Enter open mode (vi
) at the lines specified by
address

 , or at the lines matching
pattern

 . Exit open mode with Q
 . Open mode lets you use the regular vi
 commands, but only one line at a time. It can be useful on slow dial-up lines (or on very distant Internet ssh
 connections).

Name

preserve

Synopsis

pre

Save the
 current editor buffer as though the system were about to crash.

Name

previous

Synopsis

prev[!]

Edit the previous
 file from the command-line argument list. {Vim}

Name

print

Synopsis

[
address

] p [
count

]

Print the lines
 specified by
address

 .
count

 specifies the number of lines to print, starting with
address

 . P
 is another abbreviation.

Example

:100;+5p
Show line 100 and the next 5 lines

Name

put

Synopsis

[
address

] pu [
char

]

Place previously deleted or yanked
 lines from the named register specified by
char

 , to the line specified by
address

 . If
char

 is not specified, the last deleted or yanked text is restored.

Name

qall

Synopsis

qa[!]

Close all windows and
 terminate the current editing session. Use !
 to discard changes made since the last save. {Vim}

Name

quit

Synopsis

q[!]

Terminate the current editing session. Use !
 to discard changes made since the last save. If the editing session includes additional files in the argument list that were never accessed, quit by typing q!
 or by typing q
 twice. Vim closes the editing window only if there are still other windows open on the screen.

Name

read

Synopsis

[
address

] r
filename

Copy the
 text of
filename

 after the line specified by
address

 . If
filename

 is not specified, the current filename is used.

Example

:0r $HOME/data
Read file in at top of current file

Name

read

Synopsis

[
address

] r !
command

Read the output of shell
command

 into the text after the line specified by
address

 .

Example

:$r !spell %
Place results of spellchecking at end of file

Name

recover

Synopsis

rec [
file

]

Recover

file

 from the system save area.

Name

redo

Synopsis

red

Restore last
 undone change. Same as CTRL-R
 . {Vim}

Name

resize

Synopsis

res [[±]
num

]

Resize
 current window to be
num

 lines high. If +
 or -
 is specified, increase or decrease the current window height by
num

 lines. {Vim}

Name

rewind

Synopsis

rew[!]

Rewind
 the argument list and begin editing the first file in the list. Add a !
 to rewind even if the current file has not been saved since the last change.

Name

right

Synopsis

[
address

] ri [
width

]

Right-align lines specified by
address

 , or current line if no address is specified, to column
width

 . Use textwidth
 option if no
width

 is specified. {Vim}

Name

sbnext

Synopsis

[
count

] sbn [
count

]

Split the current window
 and begin editing the
count

 next buffer from the buffer list. If no count is specified, edit the next buffer in the buffer list. {Vim}

Name

sbuffer

Synopsis

[
num

] sb [
num

]

Split the current
 window and begin editing buffer
num

 from the buffer list in the new window. The buffer to be edited may also be specified by filename. If no buffer is specified, open the current buffer in the new window. {Vim}

Name

set

Synopsis

se
parameter1 parameter2

 ...

Set a value
 to an option with each
parameter

 , or if no
parameter

 is supplied, print all options that have been changed from their defaults. For Boolean options, each
parameter

 can be phrased as
option

 or no

option

 ; other options can be assigned with the syntax
option

 =

value

 . Specify all
 to list current settings. The form set

option

 ?
 displays the value of
option

 . See the tables that list set
 options in Appendix B
 .

Examples

:set nows wm=10
:set all

Name

shell

Synopsis

sh

Create a new shell. Resume
 editing when the shell terminates.

Name

snext

Synopsis

[
count

] sn [[+
num

]
filelist

]

Split the current window
 and begin editing the next file from the command-line argument list. If
count

 is provided, edit the
count

 next file. If
filelist

 is provided, replace the current argument list with
filelist

 and begin editing the first file. With the
+n

 argument, begin editing on line
num

 . Alternately,
num

 may be a pattern of the form /

pattern

 . {Vim}

Name

source

Synopsis

so
file

Read (source) and execute ex
 commands from
file

 .

Example

:so $HOME/.exrc

Name

split

Synopsis

[
count

] sp [+
num

] [
filename

]

Split the current
 window and load
filename

 in the new window, or the same buffer in both windows if no file is specified. Make the new window
count

 lines high, or if
count

 is not specified, split the window into equal parts. With the
+n

 argument, begin editing on line
num

 .
num

 may also be a pattern of the form
/pattern

 . {Vim}

Name

sprevious

Synopsis

[
count

] spr [+
num

]

Split the current window
 and begin editing the previous file from the command-line argument list in the new window. If
count

 is specified, edit the
count

 previous file. With the +

num

 argument, begin editing on line
num

 .
num

 may also be a pattern of the form
/pattern

 . {Vim}

Name

stop

Synopsis

st

Suspend the editing session.
 Same as CTRL-Z
 . Use the shell fg
 command to resume the session.

Name

substitute

Synopsis

[
address

] s [/
pattern

/
replacement

/] [
options

] [
count

]

Replace the first instance of
pattern

 on each of the specified lines with
replacement

 . If
pattern

 and
replacement

 are omitted, repeat last substitution.
count

 specifies the number of lines on which to substitute, starting with
address

 . (Spelling out the command name does not work in Solaris vi
 .)

Options

	

c

	
Prompt for confirmation before each change.

	

g

	
Substitute all instances of
pattern

 on each line (global).

	

p

	
Print the last line on which a substitution was made.

Examples

:1,10s/yes/no/g
Substitute on first 10 lines

:%s/[Hh]ello/Hi/gc
Confirm global substitutions

:s/Fortran/\U&/ 3
Uppercase “Fortran” on next three lines

:g/^[0-9][0-9]*/s//Line &:/
For every line beginning with one or more digits, add “Line” and a colon

Name

suspend

Synopsis

su

Suspend the
 editing session. Same as CTRL-Z
 . Use the shell fg
 command to resume the session.

Name

sview

Synopsis

[
count

] sv [+
num

] [
filename

]

Same as the split
 command,
 but set the readonly
 option for the new buffer. {Vim}

Name

t

Synopsis

[
address

] t
destination

Copy the lines included in
address

t

 o the specified
destination

 address. t
 is equivalent to copy
 .

Example

:%t$
Copy the file and add it to the end

Name

tag

Synopsis

[
address

] ta
tag

In the tags
 file, locate the file and line matching
tag

 and start editing there.

Example

Run ctags
 , then switch to the file containing
myfunction

 :

:!ctags *.c
:tag
myfunction

Name

tags

Synopsis

tags

Print list of tags in the tag stack. {Vim}

Name

unabbreviate

Synopsis

una
word

Remove
word

 from the list of abbreviations.

Name

undo

Synopsis

u

Reverse the changes made by the last editing command. In vi
 the undo command will undo itself, redoing what you undid. Vim supports multiple levels of undo. Use redo
 to redo an undone change in Vim.

Name

unhide

Synopsis

[
count

] unh

Split screen to show one window for each active buffer in the buffer list. If specified, limit the number of windows to
count

 . {Vim}

Name

unmap

Synopsis

unm[!]
string

Remove
string

 from the
 list of keyboard macros. Use !
 to remove a macro for input mode.

Name

v

Synopsis

[
address

] v/
pattern

/[
command

]

Execute
command

 on all lines
not

 containing
pattern

 . If
command

 is not specified, print all such lines. v
 is equivalent to g!
 . See global
 , earlier in this list.

Example

:v/#include/d
Delete all lines except “#include” lines

Name

version

Synopsis

ve

Print the editor’s current version number and date of last change.

Name

view

Synopsis

vie[[+
num

]
filename

]

Same as edit
 , but set file to readonly
 . When executed in ex
 mode, return to normal or visual mode. {Vim}

Name

visual

Synopsis

[
address

] vi [
type

] [
count

]

Enter visual mode (vi
) at the line specified by
address

 . Return to ex
 mode with Q
 .
type

 can be one of -
 , ^
 , or .
 (see the z
 command, later in this section).
count

 specifies an initial window size.

Name

visual

Synopsis

vi [+
num

]
file

Begin editing
file

 in visual mode (vi
), optionally at line
num

 . Alternately,
num

 may be a pattern, of the form /

pattern

 . {Vim}

Name

vsplit

Synopsis

[
count

] vs [+
num

] [
filename

]

Same as the split
 command, but split the screen vertically. The
count

 argument can be used to specify a width for the new window. {Vim}

Name

wall

Synopsis

wa[!]

Write all changed buffers with filenames. Add !
 to force writing of any buffers marked readonly
 . {Vim}

Name

wnext

Synopsis

[
count

] wn[!] [[+
num

]
filename

]

Write current buffer and open next file in argument list, or the
count

 next file if specified. If
filename

 is specified, edit it next. With the +

num

 argument, begin editing on line
num

 .
num

 may also be a pattern of the form
/pattern

 . {Vim}

Name

wq

Synopsis

wq[!]

Write and quit the file in one action. The file is always written. The !
 flag forces the editor to write over any current contents of
file

 .

Name

wqall

Synopsis

wqa[!]

Write all changed buffers and quit the editor. Add !
 to force writing of any buffers marked readonly
 . xall
 is another alias for this command. {Vim}

Name

write

Synopsis

[
address

] w[!] [[>>]
file

]

Write lines specified by
address

 to
file

 , or write full contents of buffer if
address

 is not specified. If
file

 is also omitted, save the contents of the buffer to the current filename. If >>

file

 is used, append lines to the end of the specified
file

 . Add a !
 to force the editor to write over any current contents of
file

 .

Examples

:1,10w name_list
Copy first 10 lines to file

name_list

:50w >> name_list
Now append line 50

Name

write

Synopsis

[
address

] w !
command

Write lines specified by
address

 to
command

 .

Example

:1,66w !pr -h myfile | lp
Print first page of file

Name

X

Synopsis

X

Prompt for an encryption key. This can be preferable to :set key
 , as typing the key is not echoed to the console. To remove an encryption key, just reset the key
 option to an empty value. {Vim}

Name

xit

Synopsis

x

Write the file if it was changed since the last write, and then quit.

Name

yank

Synopsis

[
address

] y [
char

] [
count

]

Place lines specified by
address

 in named register
char

 . Register names are the lowercase letters a
 –z
 . Uppercase names append text to the corresponding register. If no
char

 is given, place lines in the general register.
count

 specifies the number of lines to yank, starting with
address

 .

Example

:101,200 ya a
Copy lines 100–200 to register “a”

Name

z

Synopsis

[
address

] z [
type

] [
count

]

Print a window of text with the line specified by
address

 at the top.
count

 specifies the number of lines to be displayed.

Type

+

Place specified line at the top of the window (default).

-

Place specified line at the bottom of the window.

.

Place specified line in the center of the window.

^

Print the previous window.

=

Place specified line in the center of the window and leave the current line at this line.

Name

&

Synopsis

[
address

] & [
options

] [
count

]

Repeat the previous substitute (s
) command.
count

 specifies the number of lines on which to substitute, starting with
address

 .
options

 are the same as for the substitute command.

Examples

:s/Overdue/Paid/
Substitute once on current line

:g/Status/&
Redo substitution on all “Status” lines

Name

@

Synopsis

[
address

] @ [
char

]

Execute contents of register specified by
char

 . If
address

 is given, move cursor to the specified address first. If
char

 is @
 , repeat the last @
 command.

Name

=

Synopsis

[
address

] =

Print the line number of the line indicated by
address

 . The default is the line number of the last line.

Name

!

Synopsis

[
address

] !
command

Execute Unix
command

 in a shell. If
address

 is specified, use the lines contained in
address

 as standard input to
command

 , and replace those lines with the output and error output. (This is called filtering
 the text through the
command

 .)

Examples

:!ls
List files in the current directory

:11,20!sort -f
Sort lines 11–20 of current file

Name

< >

Synopsis

[
address

] < [
count

]
 or
[
address

] > [
count

]

Shift lines specified by
address

 either left (<
) or right (>
). Only leading spaces and tabs are added or removed when shifting lines.
count

 specifies the number of lines to shift, starting with
address

 . The shiftwidth
 option controls the number of columns that are shifted. Repeating the <
 or >
 increases the shift amount. For example, :>>>
 shifts three times as much as :>
 .

Name

~

Synopsis

[
address

] ~ [
count

]

Replace the last-used regular expression (even if from a search, and not from an s
 command) with the replacement pattern from the most recent s
 (substitute) command. This is rather obscure; see Chapter 6
 for details.

Name

address

Synopsis

address

Print the lines specified in
address

 .

Name

ENTER

Synopsis

Print the next line in the file. (For ex
 only, not from the :

 prompt in vi
 .)

Appendix B. Setting Options

 This appendix describes the important set
 command options for Solaris vi
 , nvi
 1.79, elvis
 2.2, Vim 7.1, and vile
 9.6.

Solaris vi Options

 Table B-1
 contains brief descriptions of the important set
 command options. In the first column, options are listed in alphabetical order; if the option can be abbreviated, that abbreviation is shown in parentheses. The second column shows the default setting that vi
 uses unless you issue an explicit set
 command (either manually or in the .exrc
 file). The last column describes what the option does, when enabled.

Table B-1. Solaris vi set options

	Option
	Default
	Description

	
autoindent (ai)

	
noai

	
In insert mode, indents each line to the same level as the line above or below. Use with the shiftwidth
 option.

	
autoprint (ap)

	
ap

	
Display changes after each editor command. (For global replacement, display last replacement.)

	
autowrite (aw)

	
noaw

	
Automatically write (save) the file if changed before opening another file with :n
 or before giving a Unix command with :!
 .

	
beautify (bf)

	
nobf

	
Ignore all control characters during input (except tab, newline, or form feed).

	
directory (dir)

	
/tmp

	
Names directory in which ex
 /vi
 stores buffer files. (Directory must be writable.)

	
edcompatible

	

noedcompatible

	
Remember the flags used with the most recent substitute command (global, confirming), and use them for the next substitute command. Despite the name, no version of ed
 actually does this.

	
errorbells (eb)

	
errorbells

	Sound bell when an error occurs.

	
exrc (ex)

	
noexrc

	
Allow the execution of .exrc
 files that reside outside the user’s home directory.

	

flash (fp)

	
nofp

	
Flash the screen instead of ringing the bell.

	
hardtabs (ht)

	
8

	
Define boundaries for terminal hardware tabs.

	
ignorecase (ic)

	
noic

	
Disregard case during a search.

	
lisp

	
nolisp

	
Insert indents in appropriate Lisp format. ()
 , { }
 , [[
 , and]]
 are modified to have meaning for Lisp.

	
list

	
nolist

	
Print tabs as ^I
 ; mark ends of lines with $
 . (Use list
 to tell whether end character is a tab or a space.)

	
magic

	
magic

	
Wildcard characters .
 (dot), *
 (asterisk), and []
 (brackets) have special meaning in patterns.

	
mesg

	
mesg

	
Permit system messages to display on terminal while editing in vi
 .

	
novice

	
nonovice

	
Require the use of long ex
 command names, such as copy
 or read
 .

	
number (nu)

	
nonu

	
Display line numbers on left of screen during editing session.

	
open

	
open

	
Allow entry to
open

 or
visual

 mode from ex
 . Although not in Solaris vi
 , this option has traditionally been in vi
 , and may be in your Unix’s version of vi
 .

	
optimize (opt)

	
noopt

	
Abolish carriage returns at the end of lines when printing multiple lines; this speeds output on dumb terminals when printing lines with leading whitespace (spaces or tabs).

	
paragraphs (para)

	

IPLPPPQP LIpplpipbp

	
Define paragraph delimiters for movement by {
 or }
 . The pairs of characters in the value are the names of troff
 macros that begin paragraphs.

	
prompt

	
prompt

	
Display the ex
 prompt (:) when vi
 ’s Q
 command is given.

	
readonly (ro)

	
noro

	
Any writes (saves) of a file fail unless you use !
 after the write (works with w
 , ZZ
 , or autowrite
).

	
redraw (re)

	
	

vi
 redraws the screen whenever edits are made (in other words, insert mode pushes over existing characters, and deleted lines immediately close up). Default depends on line speed and terminal type. noredraw
 is useful at slow speeds on a dumb terminal: deleted lines show up as @, and inserted text appears to overwrite existing text until you press ESC
 .

	
remap

	
remap

	
Allow nested map sequences.

	
report

	
5

	
Display a message on the status line whenever you make an edit that affects at least a certain number of lines. For example, 6dd
 reports the message “6 lines deleted.”

	
scroll

	[
½ window

]
	
Number of lines to scroll with ^D
 and ^U
 commands.

	
sections (sect)

	
SHNHH HU

	
Define section delimiters for [[
 and]]
 movement. The pairs of characters in the value are the names of troff
 macros that begin sections.

	
shell (sh)

	
/bin/sh

	
Pathname of shell used for shell escape (:!
) and shell command (:sh
). Default value is derived from shell environment, which varies on different systems.

	
shiftwidth (sw)

	
8

	
Define number of spaces in backward (^D
) tabs when using the autoindent
 option, and for the <<
 and >>
 commands.

	
showmatch (sm)

	
nosm

	
In vi
 , when)
 or }
 is entered, cursor moves briefly to matching (
 or {
 . (If no match, ring the error message bell.) Very useful for programming.

	
showmode

	
noshowmode

	
In insert mode, display a message on the prompt line indicating the type of insert you are making, for example, “OPEN MODE” or “APPEND MODE.”

	
slowopen (slow)

	
	
Hold off display during insert. Default depends on line speed and terminal type.

	
tabstop (ts)

	
8

	
Define number of spaces that a tab indents during editing session. (Printer still uses system tab of 8.)

	
taglength (tl)

	
0

	
Define number of characters that are significant for tags. Default (zero) means that all characters are significant.

	
tags

	

tags
 /usr/lib/tags

	
Define pathname of files containing tags. (See the Unix ctags
 command.) By default, vi
 searches the file tags
 in the current directory and /usr/lib/tags
 .

	
tagstack

	
tagstack

	
Enable stacking of tag locations on a stack.

	
term

	
	Set terminal type.

	
terse

	
noterse

	
Display shorter error messages.

	
timeout (to)

	
timeout

	
Keyboard maps time out after 1 second.[a
]

	
ttytype

	
	
Set terminal type. This is just another name for term
 .

	
warn

	
warn

	
Display the warning message, “No write since last change.”

	
window (w)

	
	
Show a certain number of lines of the file on the screen. Default depends on line speed and terminal type.

	
wrapmargin (wm)

	
0

	
Define right margin. If greater than zero, automatically inserts carriage returns to break lines.

	
wrapscan (ws)

	
ws

	
Searches wrap around either end of file.

	
writeany (wa)

	
nowa

	Allow saving to any file.

	

[a
]
 When you have mappings of several keys (for example, :map zzz 3dw
), you probably want to use notimeout
 . Otherwise, you need to type zzz
 within one second. When you have an insert mode mapping for a cursor key (for example, :map! ^[OB ^[ja
), you should use timeout
 . Otherwise, vi
 won’t react to ESC
 until you type another key.

nvi 1.79 Options

 nvi
 1.79 has a total of 78 options that affect its behavior. Table B-2
 summarizes the most important ones. Most options described in Table B-1
 are not repeated here.

Table B-2. nvi 1.79 set options

	Option
	Default
	Description

	
backup

	
	
A string describing a backup filename to use. The current contents of a file are saved in this file before writing the new data out. A first character of N
 causes nvi
 to include a version number at the end of the file; version numbers are always incremented. "N%.bak"
 is a reasonable example.

	
cdpath

	
Environment variable CDPATH
 , or current directory

	
A search path for the :cd
 command.

	
cedit

	
	
When the first character of this string is entered on the colon command line, nvi
 opens a new window on the command history that you can then edit. Hitting ENTER
 on any given line executes that line. ESC
 is a good choice for this option. (Use ^V ^[
 to enter it.)

	
comment

	
nocomment

	
If the first nonempty line begins with /*
 , //
 , or #
 , nvi
 skips the comment text before displaying the file. This avoids displaying long, boring legal notices.

	
directory (dir)

	
Environment variable TMPDIR
 , or /tmp

	
The directory where nvi
 puts its temporary files.

	
extended

	
noextended

	
Searches use egrep
 -style extended regular expressions.

	
filec

	
	
When the first character of this string is entered on the colon command line, nvi
 treats the blank delimited word in front of the cursor as if it had an *
 appended to it and does shell-style filename expansion. ESC
 is also a good choice for this option. (Use ^V ^[
 to enter it.) When this character is the same as for the cedit
 option, command-line editing is performed only when the character is entered as the first character on the colon command line.

	
iclower

	
noiclower

	
Make all regular expression searches case-insensitive, as long as the search pattern contains no uppercase letters.

	
leftright

	
noleftright

	
Long lines scroll the screen left to right, instead of wrapping.

	
lock

	
lock

	

nvi
 attempts to get an exclusive lock on the file. Editing a file that cannot be locked creates a read-only session.

	
octal

	
nooctal

	
Display unknown characters in octal, instead of in hexadecimal.

	
path

	
	
A colon-separated list of directories in which nvi
 will look for the file to be edited.

	
recdir

	
/var/tmp/vi.recover

	
The directory where recovery files are stored.

	
ruler

	
noruler

	
Displays the row and column of the cursor.

	
searchincr

	
nosearchincr

	
Searches are done incrementally.

	
secure

	
nosecure

	
Turn off access to external programs via text filtering (:r!
 , :w!
), disable the vi
 mode !
 and ^Z
 commands, and the ex
 mode !
 , shell
 , stop
 , and suspend
 commands. Once set, it cannot be changed.

	
shellmeta

	
~{[*?$`'"\

	
When any of these characters appear in a filename argument to an ex
 command, the argument is expanded by the program named by the shell
 option.

	
showmode (smd)

	
noshowmode

	
Display a string in the status line showing the current mode. Display an *
 if the file has been modified.

	
sidescroll

	
16

	
The number of columns by which the screen is shifted left or right when leftright
 is true.

	
taglength (tl)

	
0

	
Defines number of characters that are significant for tags. Default (zero) means that all characters are significant.

	
tags (tag)

	

tags
 /var/db/libc.tags
 /sys/kern/tags

	
The list of possible tag files.

	
tildeop

	
notildeop

	
The ~
 command takes an associated motion, not just a preceding count.

	
wraplen (wl)

	
0

	
Identical to the wrapmargin
 option, except that it specifies the number of characters from the left margin at which the line will be split. The value of wrapmargin
 overrides wraplen
 .

elvis 2.2 Options

 elvis
 2.2 has a total of 225 options that affect its behavior. Table B-3
 summarizes the most important ones. Most options described in Table B-1
 are not repeated here.

Table B-3. elvis 2.2 set options

	Option
	Default
	Description

	
autoiconify (aic)

	
noautoiconify

	
Iconify the old window when de-iconifying a new one. X11 only.

	
backup (bk)

	
nobackup

	
Make a backup file (xxx.bak
) before writing the current file out to disk.

	
binary (bin)

	
	
The buffer’s data is not text. This option is set automatically.

	
boldfont (xfb)

	
	
The name of the bold font. X11 only.

	
bufdisplay (bd)

	
normal

	
The default display mode for the buffer (hex
 , html
 , man
 , normal
 , syntax
 , or tex
).

	
ccprg (cp)

	
cc ($1?$1:$2)

	
The shell command for :cc
 .

	
directory (dir)

	
	
Where to store temporary files. The default is system-dependent.

	
display (mode)

	
normal

	
The name of current display mode, set by the :display
 command.

	
elvispath (epath)

	
	
A list of directories in which to search for configuration files. The default is system-dependent.

	
focusnew (fn)

	
focusnew

	
Force keyboard focus into the new window. X11 only.

	
font (fnt)

	
	
The name of the normal font, for the Windows and X11 interfaces.

	
gdefault (gd)

	
nogdefault

	
Cause the substitute command to change all instances.

	
home (home)

	
$HOME

	
The home directory for ~
 in filenames.

	
italicfont (xfi)

	
	
The name of the italic font. X11 only.

	
locked (lock)

	
nolocked

	
Make the buffer read-only and cause most commands that would modify the buffer to fail. Usually set automatically for read-only HTML files.

	
lpcolor (lpcl)

	
nolpcl

	
Use color when printing; for :lpr
 .

	
lpcolumns (lpcols)

	
80

	
The width of a printer page; for :lpr
 .

	
lpcrlf (lpc)

	
nolpcrlf

	
The printer needs CR/LF for newline in the file; for :lpr
 .

	
lpformfeed (lpff)

	
nolpformfeed

	
Send a form feed after the last page; for :lpr
 .

	
lpheader (lph)

	
nolph

	
Print a header at the top of the page; for :lpr
 .

	
lplines (lprows)

	
60

	
The length of a printer page; for :lpr
 .

	
lpout (lpo)

	
	
The printer file or filter, for :lpr
 . A typical value might be !lpr
 . The default is system-dependent.

	
lptype (lpt)

	
dumb

	
The printer type, for :lpr
 . The value should be one of: ps
 , ps2
 , epson
 , pana
 , ibm
 , hp
 , cr
 , bs
 , dumb
 , html
 , or ansi
 .

	
lpwrap (lpw)

	
lpwrap

	
Simulate line wrap; for :lpr
 .

	
makeprg (mp)

	
make $1

	
The shell command for :make
 .

	
prefersyntax (psyn)

	
never

	
Control use of syntax mode. Useful for HTML and manpages to show the input instead of the formatted contents. With a value of never
 , never use syntax mode. With writable
 , do so for writable files. With local
 , do so for files in the current directory. With always
 , always use syntax mode.

	
ruler (ru)

	
noruler

	
Display the cursor’s line and column.

	
security (sec)

	
normal

	
One of normal
 (standard vi
 behavior), safer
 (attempt to prevent writing malicious scripts), or restricted
 (try to make elvis
 safe for use as a restricted editor). In general, use the :safely
 command to set this; don’t do it directly.

	
showmarkups (smu)

	
noshowmarkups

	
For the man
 and html
 modes, show the markup at the cursor position, but not elsewhere.

	
sidescroll (ss)

	
0

	
The sideways scrolling amount. Zero mimics vi
 , making lines wrap.

	
smartargs (sa)

	
nosmartargs

	
Place the arguments for a function on the screen based on a tags
 file lookup after typing the function name and the function
 character (usually a left parenthesis).

	
spell (sp)

	
nospell

	
Highlight misspelled words. This also works with programs, based on lookups in a tags
 file.

	
taglength (tl)

	
0

	
Defines the number of characters that are significant for tags. Default (zero) means that all characters are significant.

	
tags (tagpath)

	
tags

	
The list of possible tag files.

	
tagstack (tsk)

	
tagstack

	
Remember the origin of tag searches on a stack.

	
undolevels (ul)

	
0

	
The number of undoable commands. Zero mimics vi
 . You probably want to set this to a bigger number.

	
warpback (wb)

	
nowarpback

	
Upon exit, move the pointer back to the xterm
 that started elvis
 . X11 only.

	
warpto (wt)

	
don't

	
How ^W ^W
 forces pointer movement: don't
 for no movement, scrollbar
 moves the pointer to the scrollbar, origin
 moves the pointer to the upper left corner, and corners
 moves it to the corners furthest from and nearest to the current cursor position. This forces the X display to pan, to make sure the window is entirely onscreen.

Vim 7.1 Options

 Vim 7.1 has a total of 295 (!) options that affect its behavior. Table B-4
 summarizes the most important ones. Most options described in Table B-1
 are not repeated here.

The summaries in this table are by necessity very brief. Much more information about each option may be found in the Vim online help.

Table B-4. Vim 7.1 set options

	
Option

	
Default

	
Description

	
autoread (ar)

	
noautoread

	Detect whether a file inside Vim has been modified externally, not by Vim, and automatically refresh the Vim buffer with the changed version of the file.

	

background (bg)

	

dark
 or light

	
Vim tries to use background and foreground colors that are appropriate to the particular terminal. The default depends on the current terminal or windowing system.

	

backspace (bs)

	

0

	
Control whether you can backspace over a newline and/or over the start of insert. Values are: 0 for vi
 compatibility; 1 to backspace over newlines; and 2 to backspace over the start of insert. Using a value of 3 allows both.

	

backup (bk)

	

nobackup

	
Make a backup before overwriting a file, then leave it around after the file has been successfully written. To have a backup file just while the file is being written, use the writebackup
 option.

	

backupdir (bdir)

	

., ~/tmp/, ~/

	
A list of directories for the backup file, separated with commas. The backup file is created in the first directory in the list where this is possible. If empty, you cannot create a backup file. The name .
 (dot) means the same directory as where the edited file is.

	

backupext (bex)

	

~

	
The string that is appended to a filename to make the name of the backup file.

	

binary (bin)

	

nobinary

	
Change a number of other options to make it easier to edit binary files. The previous values of these options are remembered and restored when bin
 is switched back off. Each buffer has its own set of saved option values. This option should be set before editing a binary file. You can also use the -b
 command-line option.

	

cindent (cin)

	

nocindent

	
Enable automatic smart C program indenting.

	

cinkeys (cink)

	

0{,0},:,0#,!^F, o,O,e

	
A list of keys that, when typed in insert mode, cause reindenting of the current line. Only happens if cindent
 is on.

	

cinoptions (cino)

	
	
Affects the way cindent
 reindents lines in a C program. See the online help for details.

	

cinwords (cinw)

	

if
 , else
 , while
 , do
 , for
 , switch

	
These keywords start an extra indent in the next line when smartindent
 or cindent
 is set. For cindent
 this is done only at an appropriate place (inside {...}
).

	

comments (com)

	
	
A comma-separated list of strings that can start a comment line. See the online help for details.

	

compatible (cp)

	

cp
 ; nocp
 when a .vimrc
 file is found

	
Makes Vim behave more like vi
 in too many ways to describe here. It is on by default, to avoid surprises. Having a .vimrc
 turns off the vi
 compatibility; usually this is a desirable side effect.

	
completeopt (cot)

	
menu,preview

	A comma-separated list of options for insert mode completion.

	

cpoptions (cpo)

	

aABceFs

	
A sequence of single character flags, each one indicating a different way in which Vim will or will not exactly mimic vi
 . When empty, the Vim defaults are used. See the online help for details.

	
cursorcolumn (cuc)

	
nocursorcolumn

	Highlight the screen column of the cursor with CursorColumn
 highlighting. This is useful for lining up text vertically. Can slow down screen display.

	
cursorline (cul)

	
nocursorline

	Highlight the screen line of the cursor with CursorRow
 highlighting. Makes it easy to find the current line in the edit session. Use in conjunction with cursorcolumn
 for a crosshairs effect. Can slow down screen display.

	

define (def)

	

^#\s*define

	
A search pattern that describes macro definitions. The default value is for C programs. For C++, use ^\(#\s*define\ |[a-z]*\s*const\s*[a-z]*\)
 . When using the :set
 command, you need to double the backslashes.

	

directory (dir)

	

., ~/tmp, /tmp

	
A list of directory names for the swap file, separated with commas. The swap file will be created in the first directory where this is possible. If empty, no swap file will be used and recovery is impossible! The name .
 (dot) means to put the swap file in the same directory as the edited file. Using .
 first in the list is recommended so that editing the same file twice will result in a warning.

	

equalprg (ep)

	
	
External program to use for =
 command. When this option is empty, the internal formatting functions are used.

	

errorfile (ef)

	

errors.err

	
Name of the error file for the quickfix mode. When the -q
 command-line argument is used, errorfile
 is set to the following argument.

	

errorformat (efm)

	
(Too long to print)

	
Scanf-like description of the format for the lines in the error file.

	

expandtab (et)

	

noexpandtab

	
When inserting a tab, expand it to the appropriate number of spaces.

	

fileformat (ff)

	

unix

	
Describes the convention to terminate lines when reading/writing the current buffer. Possible values are dos
 (CR/LF), unix
 (LF), and mac
 (CR). Vim usually sets this automatically.

	

fileformats (ffs)

	

dos,unix

	
List the line-terminating conventions that Vim tries to apply to a file when reading. Multiple names enable automatic end-of-line detection when reading a file.

	

formatoptions (fo)

	
Vim default: tcq
 ; vi
 default: vt

	
A sequence of letters that describes how automatic formatting is to be done. See the online help for details.

	

gdefault (gd)

	

nogdefault

	
Cause the substitute command to change all instances.

	

guifont (gfn)

	
	
A comma-separated list of fonts to try when starting the GUI version of Vim.

	

hidden (hid)

	

nohidden

	
Hide the current buffer when it is unloaded from a window, instead of abandoning it.

	

history (hi)

	
Vim default: 20; vi
 default: 0

	
Control how many ex
 commands, search strings, and expressions are remembered in the command history.

	

hlsearch (hls)

	

nohlsearch

	
Highlight all matches of the most recent search pattern.

	

icon

	

noicon

	
Vim attempts to change the name of the icon associated with the window where it is running. Overridden by the iconstring
 option.

	

iconstring

	
	
String value used for the icon name of the window.

	

include (inc)

	

^#\s*include

	
Define a search pattern for finding include commands. The default value is for C programs.

	

incsearch (is)

	

noincsearch

	
Enable incremental searching.

	

isfname (isf)

	

@,48-57,/,.,-,_, +,,,$,:,~

	
A list of characters that can be included in file and path names. Non-Unix systems have different default values. The @ character stands for any alphabetic character. It is also used in the other is

XXX

 options, described next.

	

isident (isi)

	

@,48-57,_,192-255

	
A list of characters that can be included in identifiers. Non-Unix systems may have different default values.

	

iskeyword (isk)

	

@,48-57,_,192-255

	
A list of characters that can be included in keywords. Non-Unix systems may have different default values. Keywords are used in searching and recognizing with many commands, such as w
 , [i
 , and many more.

	

isprint (isp)

	

@,161-255

	
A list of characters that can be displayed directly to the screen. Non-Unix systems may have different default values.

	

makeef (mef)

	

/tmp/vim##.err

	
The error file name for the :make
 command. Non-Unix systems have different default values. The ##
 is replaced by a number to make the name unique.

	

makeprg (mp)

	

make

	
The program to use for the :make
 command. %
 and #
 in the value are expanded.

	
modifiable (ma)

	
modifiable

	When turned off, do not allow any changes in the buffer.

	

mouse

	
	
Enable the mouse in non-GUI versions of Vim. This works for MS-DOS, Win32, QNX pterm
 , and xterm
 . See the online help for details.

	

mousehide (mh)

	

nomousehide

	
Hide the mouse pointer during typing. Restores the pointer when the mouse is moved.

	

paste

	

nopaste

	
Change a large number of options so that pasting into a Vim window with a mouse does not mangle the pasted text. Turning it off restores those options to their previous values. See the online help for details.

	

ruler (ru)

	

noruler

	
Show the line and column number of the cursor position.

	

secure

	

nosecure

	
Disable certain kinds of commands in the startup file. Automatically enabled if you don’t own the .vimrc
 and .exrc
 files.

	

shellpipe (sp)

	
	
The shell string to use for capturing the output from :make
 into a file. The default value depends upon the shell.

	

shellredir (srr)

	
	
The shell string for capturing the output of a filter into a temporary file. The default value depends upon the shell.

	

showmode (smd)

	
Vim default: smd
 ; vi
 default: nosmd

	
Put a message in the status line for insert, replace, and visual modes.

	

sidescroll (ss)

	

0

	
How many columns to scroll horizontally. The value zero puts the cursor in the middle of the screen.

	

smartcase (scs)

	

nosmartcase

	
Override the ignorecase
 option if the search pattern contains uppercase characters.

	
spell

	
nospell

	Turn on spellchecking.

	

suffixes

	

*.bak,~,.o,.h,.info,.swp

	
When multiple files match a pattern during filename completion, the value of this variable sets a priority among them, in order to pick the one Vim will use.

	

taglength (tl)

	

0

	
Define number of characters that are significant for tags. Default (zero) means that all characters are significant.

	

tagrelative (tr)

	
Vim default: tr
 ; vi
 default: notr

	
Filenames in a tags
 file from another directory are taken to be relative to the directory where the tags
 file is.

	

tags (tag)

	

./tags
 ,tags

	
Filenames for the :tag
 command, separated by spaces or commas. The leading ./
 is replaced with the full path to the current file.

	

tildeop (top)

	

notildeop

	
Make the ~
 command behave like an operator.

	

undolevels (ul)

	

1000

	
The maximum number of changes that can be undone. A value of 0 means vi
 compatibility: one level of undo and u
 undoes itself. Non-Unix systems may have different default values.

	

viminfo (vi)

	
	
Read the viminfo
 file upon startup, and write it upon exiting. The value is complex; it controls the different kinds of information that Vim will store in the file. See the online help for details.

	

writebackup (wb)

	

writebackup

	
Make a backup before overwriting a file. The backup is removed after the file is successfully written, unless the backup
 option is also on.

vile 9.6 Options

 vile
 9.6 has 167 options (called “modes” in vile
), which are denoted
universal

 ,
buffer

 , or
window

 modes according to their use. There are also 101
environment variables

 , which are more useful in scripts than for direct user manipulation.[75
]
 Not all are available on every platform; some apply only to X11 or Win32.

Table B-5
 shows the compiled-in default values for the most important of vile
 ’s options. The initialization scripts, such as vileinit.rc
 , override several of those values. Most options described in Table B-1
 are not repeated here.

Table B-5. vile 9.6 set options

	
Option

	
Default

	
Description

	
alt-tabpos (atp)

	
noatp

	
Controls whether the cursor sits at the left or right end of the whitespace representing a tab character.

	
animated

	
animated

	
Automatically updates the contents of scratch buffers when their contents change.

	
autobuffer (ab)

	
autobuffer

	
Uses “most-recently-used” style buffering; the buffers are sorted in order of use. Otherwise, buffers remain in the order in which they were edited.

	
autocolor (ac)

	
0

	
Automatic syntax coloring. If set to zero, automatic syntax coloring is disabled. Otherwise, it should be set to a small positive integer that represents the number of milliseconds to wait for a “quiet interval” before invoking the autocolor-hook
 hook.

	
autosave (as)

	
noautosave

	
Automatic file saving. Writes the file after every autosavecnt
 characters of inserted text.

	
autosavecnt (ascnt)

	
256

	
Specifies after how many inserted characters automatic saves take place.

	
backspacelimit (bl)

	
backspacelimit

	
If disabled, then in insert mode you can backspace past the point at which the insert began.

	
backup-style

	
off

	
Controls how backup files are created when writing a file. Possible values are off
 , .bak
 for DOS-style backups, and tilde
 for Emacs-style hello.c~
 backups under Unix.

	
bcolor

	
default

	
Sets the background color on systems that support it.

	
byteorder-mark (bom)

	
auto

	
Controls the check for a prefix used to distinguish different types of UTF encoding. The default value auto
 tells vile
 to inspect the file; specific values tell it to use that value.

	
check-modtime

	
nocheck-modtime

	
Issues a “file newer than buffer” warning if the file has changed since it was last read or written, and prompts for confirmation.

	
cindent

	
nocindent

	
Enable C-style indentation, which helps maintain current indentation level automatically during insert, like autoindent
 .

	
cindent-chars

	
:#{}()[]

	
The list of characters interpreted by the cindent
 mode. These include #
 to indent to column 1, and :
 to indent further, as after a label. Listing a pair of characters that are also in fence-pairs
 causes text enclosed by the pair to be further indented.

	
cmode

	
off

	
A built-in major mode for C code.

	
color-scheme (cs)

	
default

	
Specify by name an aggregate of fcolor
 , bcolor
 , video-attrs
 , and $palette
 defined via the define-color-scheme
 command.

	
comment-prefix

	
^\s*\(\(\s*[#*>]\)\|\(///*\)\)\+

	
Describes the leading part of a line that should be left alone when reformatting comments. The default value is good for Makefile
 , shell and C comments, and email.

	
comments

	
^\s*/\?\(\s*[#*>/]\)\+/\?\s*$

	
A regular expression defining commented paragraph delimiters. Its purpose is to preserve paragraphs inside comments when reformatting.

	
cursor-tokens

	
regex

	
Controls whether vile
 uses regular expressions or character classes for parsing tokens from the screen for various commands. This uses an enumeration: both
 , cclass
 , and regex
 .

	
dirc

	
nodirc

	

vile
 checks each name when scanning directories for filename completion. This allows you to distinguish between directory names and filenames in the prompt.

	
dos

	
nodos

	
Strips out the CR from CR/LF pairs when reading files, and puts them back when writing. New buffers for nonexistent files inherit the line style of the operating system, whatever the value of dos
 .

	
fcolor

	
default

	
Sets the foreground color on systems that support it.

	
fence-begin

	
/*

	
Regular expressions for the start and end of simple non-nestable fences, such as C comments.

	
fence-end

	
*/

	
fence-if

	
^\s*#\s*if

	
Regular expressions marking the start, “else if”, “else”, and end of line-oriented, nested fences, such as C-preprocessor control lines.

	
fence-elif

	
^\s*#\s*elif\>

	
fence-else

	
^\s*#\s*else\>

	
fence-fi

	
^\s*#\s*endif\>

	
fence-pairs

	
{}()[]

	
Each pair of characters denotes a set of “fences” that should be matched with %
 .

	
file-encoding

	
auto

	
Specifies the character encoding of the buffer contents, e.g., one of 8bit
 , ascii
 , auto
 , utf-8
 , utf-16
 , or utf-32
 .

	
filtername (fn)

	
	
Specifies a syntax-highlighting filter, for a given major mode.

	
for-buffers (fb)

	
mixed

	
Specifies whether globbing or regular expressions are used to select buffer names in the for-buffers
 and kill-buffer
 commands.

	
glob

	
!echo %s

	
Controls how wildcard characters (e.g., *
 and ?
) are treated in prompts for filenames. A value of off
 disables expansion, and on
 uses the internal globber, which can handle normal shell wildcards and ~
 notation. The default value for Unix guarantees compatibility with your shell.

	
highlight (hl)

	
highlight

	
Enables or disables syntax highlighting in the corresponding buffers.

	
history (hi)

	
history

	
Logs commands from the colon command line (minibuffer) in the [History]
 buffer.

	

horizscroll (hs)

	
horizscroll

	
Moving off the end of a long line shifts the whole screen sideways. If not set, only the current line shifts.

	
ignoresuffix (is)

	
\(\.orig\|~\)$

	
Strips the given pattern from a filename before matching it for major mode suffixes.

	
linewrap (lw)

	
nolinewrap

	
Wraps long logical lines onto multiple screen lines.

	
maplonger

	
nomaplonger

	
The map facility matches against the longest possible mapped sequence, not the shortest.

	
meta-insert-
 bindings (mib)

	
mib

	
Controls behavior of 8-bit characters during insert. Normally, key bindings are operational only when in command mode; when in insert mode, all characters are self-inserting. If this mode is on, and a metacharacter (i.e., a character with the eighth bit set) is typed that is bound to a function, then that function binding will be honored and executed from within insert mode. Any unbound metacharacters will remain self-inserting.

	
mini-hilite (mh)

	
reverse

	
Defines the highlight attribute to use when the user toggles the editing mode in the minibuffer.

	
modeline

	
nomodeline

	
Controls whether a vi
 -like mode line feature is enabled.

	
modelines

	
5

	
Controls the number of lines from each end of the buffer to scan for vi
 -like mode lines.

	
overlap-matches

	
overlap-matches

	
Modifies the highlighting shown by visual-matches
 to control whether overlapping matches are shown.

	
percent-crlf

	
50

	
Percentage of total lines that must end with CR/LF for vile
 to automatically convert buffer’s recordseparator
 to crlf
 .

	
percent-utf8

	
90

	
Percentage of total characters that contain embedded nulls, making them look like UTF-16 or UTF-32 encodings. If the file-encoding
 option is set to auto
 and the match is higher than this threshold, vile
 will load the buffer data as UTF-8.

	
popup-choices (pc)

	
delayed

	
Controls the use of a pop-up window for help in doing completion. The value is either off
 for no window, immediate
 for an immediate pop up, or delayed
 to wait for a second Tab key.

	
popup-msgs (pm)

	
nopopup-msgs

	
When enabled, vile
 pops up the [Messages]
 buffer, showing the text that was written to the message line.

	
recordseparator (rs)

	
lf
 [a
]

	
Specify format of files that vile
 reads and writes. Formats are lf
 (for Unix), crlf
 (for DOS), cr
 (for Macintosh), and default
 (lf
 or crlf
 , depending on the platform).

	
resolve-links

	
noresolve-links

	
If set, vile
 fully resolves filenames in case some path components are symbolic links. This helps avoid multiple unintentional edits of the same physical file via different pathnames.

	
ruler

	
noruler

	
Shows the current line and column in the status line, as well as what percentage of the current buffer’s lines are in front of the cursor.

	
showchar (sc)

	
noshowchar

	
Shows the value of the current character in the status line.

	
showformat (sf)

	
foreign

	
Controls when/whether recordseparator
 information is shown in the status line. Values are: always
 , differs
 (to show when the local mode differs from the global), local
 (to show whenever a local mode is set), foreign
 (to show when the recordseparator
 differs from the native default), and never
 .

	
showmode (smd)

	
showmode

	
Displays an indicator on the status line for insert and replace modes.

	
sideways

	
0

	
Controls by how many characters the screen scrolls to the left or right. The value of 0 moves the screen by one-third.

	
tabinsert (ti)

	
tabinsert

	
Allows the physical insertion of tab characters into the buffer. If turned off (notabinsert
), vile
 will never insert a tab into a buffer; instead it will always insert the appropriate number of spaces.

	
tagignorecase (tc)

	
notagignorecase

	
Makes tag searches ignore case.

	
taglength (tl)

	
0

	
Defines the number of characters that are significant for tags. Default (zero) means that all characters are significant. This does not affect tags picked up from the cursor; they are always matched exactly. (This is different from the other editors).

	
tagrelative (tr)

	
notagrelative

	
When using a tags
 file in another directory, filenames in that tags
 file are considered to be relative to the directory where the tags
 file is.

	
tags

	
tags

	
A space-separated list of files in which to look up tag references.

	
tagword (tw)

	
notagword

	
Use the whole word under the cursor for the tag lookup, not just the subword starting at the current cursor position.

	
undolimit (ul)

	
10

	
Limits how many changes may be undone. The value zero means “no limit.”

	
unicode-as-hex (uh)

	
nounicode-as-hex

	
If displaying a buffer whose file encoding says it is one of the Unicode flavors (e.g., utf-8
 , utf-16
 , or utf-32
), shows the values that are non-ASCII in \u

XXXX

 format even if the display is capable of showing these as regular characters.

	
unprintable-as-
 octal (uo)

	
nounprintable-as-octal

	
Displays nonprinting characters with the eighth bit set in octal. Otherwise, uses hexadecimal. Nonprinting characters whose eighth bit is not set are always displayed in control character notation.

	
visual-matches

	
none

	
Controls highlighting of all matching occurrences of a search pattern. The possible values are none
 for no highlighting, or underline
 , bold
 , and reverse
 for those kinds of highlighting. Colors may also be used on systems that support it.

	
xterm-fkeys

	
noxterm-fkeys

	
Supports xterm
 ’s modified function keys by generating system bindings for the Shift-, Ctrl-, and Alt- modifiers of each function key listed in the terminal description.

	
xterm-mouse

	
noxterm-mouse

	
Allows use of the mouse from inside an xterm
 . See the online help for details.

	
xterm-title

	
noxterm-title

	
Enables title bar updates if you are running within an xterm
 . Each time you switch to a different buffer, vile
 can update the title. This uses the same tests of the TERM
 variable as the xterm-mouse
 mode.

	

[a
]
 This depends on the platform for which vile
 is compiled.

[75
]
 These include variables that are set or used as a side effect of other commands. Owing to their focus on scripting, their descriptions are also not suitable for this table since they tend to be lengthy — read the online help for details.

Appendix C. Problem Checklists

This appendix consolidates the problem checklists that are provided throughout Part I
 . Here they are presented in one place for ease of reference.

Problems Opening Files

	

When you invoke

 vi

, the message

 [open mode]

appears.

Your
 terminal type is probably incorrectly identified. Quit the editing session immediately by typing :q
 . Check the environment
 variable $TERM
 . It should be set to the name of your terminal. Alternatively, ask your system administrator to provide an adequate terminal type setting.

	

You see one of the following messages:

 Visual needs addressable cursor or upline capability
 Bad termcap entry
 Termcap entry too long
terminal

: Unknown terminal type
 Block device required
 Not a typewriter

Either your terminal type is undefined, or there’s probably something wrong with your terminfo
 or termcap
 entry. Enter :q
 to quit. Check your $TERM
 environment variable, or ask your system administrator to select a terminal type for your environment.

	

A

 [new file]

message appears when you think a file already exists.

Check that you have used the correct case in the filename (filenames are often case-sensitive). If you have, you are probably in the wrong directory. Enter :q
 to quit. Then check to see that you are in the correct directory for that file (enter pwd
 at the Unix prompt). If you are in the right directory, check the list of files in the directory (with ls
) to see whether the file exists
 under a slightly different name.

	

You invoke

 vi

, but you get a colon prompt (indicating that you’re in

 ex

line-editing mode).

You probably typed an interrupt before vi
 could draw the screen. Enter vi
 by typing vi
 at the ex
 prompt (:
).

	

One of the following messages appears:

 [Read only]
 File is read only
 Permission denied

“Read only” means
 that you can only look at the file; you cannot save any changes you make. You may have invoked vi
 in
view mode

 (with view
 or vi -R
), or you do not have write permission for the file. See the next section, Problems Saving Files
 .

	

One of the following messages appears:

 Bad file number
 Block special file
 Character special file
 Directory
 Executable
 Non-ascii file
 file

 non-ASCII

The file you’ve called up to edit is not a regular text file. Type :q!
 to quit, then check the file you wish to edit, perhaps with the file
 command.

	

When you type

 :q

because of one of the previously mentioned difficulties, this message appears:

 No write since last change (:quit! overrides).

You have modified the file without realizing it. Type :q!
 to leave vi
 . Your changes from this session will not be saved in the file.

Problems Saving Files

	

You try to write your file, but you get one of the following messages:

 File exists
 File
file

 exists - use w!
 [Existing file]
 File is read only

Type :w!

file

 to overwrite the existing file, or
 type :w

newfile

 to save the edited version in a new file.

	

You want to write a file, but you don’t have write permission for it. You get the message “Permission denied.”

Use :w

newfile

 to write out the buffer into a new file. If you have write permission for the directory, you can use mv
 to replace the original version with your copy of it. If you don’t have write permission for the directory, type :w

pathname/file

 to write out the buffer to a directory in which you do have write permission (such as your home directory, or /tmp
).

	

You try to write your file, but you get a message telling you that the file system is full.

Type :!rm

junkfile

 to delete a (large) unneeded file and free some
 space. (Starting an ex
 command line with an exclamation point gives you access to Unix.)

Or type :!df
 to see whether there’s any space on another file system. If there is, choose a directory on that file system and write your file to it with :w

pathname

 . (df
 is the Unix command to check a d
 isk’s f
 ree space.)

	

The system puts you into open mode and tells you that the file system is full.

The disk with vi
 ’s temporary files is filled up. Type :!ls /tmp
 to see whether there are any files you can remove to gain some disk space.[76
]
 If there are, create a temporary Unix shell from which you can remove files or issue other Unix commands. You can create a shell by typing :sh
 ; type CTRL-D
 or exit
 to terminate the shell and return to vi
 . (On most Unix systems, when using a job-control shell, you can simply type CTRL-Z
 to suspend vi
 and return to the Unix prompt; type fg
 to return to vi
 .) Once you’ve freed up some space, write your file with :w!
 .

	

You try to write your file, but you get a message telling you that your disk quota has been reached.

Try to force the system to save your buffer with the ex
 command :pre
 (short for :preserve
). If that doesn’t work, look for some files to remove. Use :sh
 (or CTRL-Z
 if you are using a job-control system) to move out of vi
 and remove files. Use CTRL-D
 (or fg
) to return to vi
 when you’re done. Then write your file with :w!
 .

[76
]
 Your vi
 may keep its temporary files in /usr/tmp
 , /var/tmp
 , or your current directory; you may need to poke around a bit to figure out where exactly you’ve run out of room.

Problems Getting to Visual Mode

	

While editing in

 vi

, you accidentally end up in the

 ex

editor.

A Q
 in the
 command mode of vi
 invokes ex
 . Any time you are in ex
 , the command vi
 returns you to the vi
 editor.

Problems with vi Commands

	

When you type commands, text jumps around on the screen and nothing works the way it’s supposed to.

Make sure you’re not typing the J
 command when you mean j
 .

You may have hit the CAPS LOCK
 key without
 noticing it. vi
 is case-sensitive; that is, uppercase commands (I
 , A
 , J
 , etc.) are different from lowercase commands (i
 , a
 , j
), so all your commands are being interpreted not as lowercase but as uppercase commands. Press the CAPS LOCK
 key again to return to lowercase, press ESC
 to ensure that you are in command mode, then type either U
 to restore the last line changed or u
 to undo the last command. You’ll probably also have to do some additional editing to fully restore the garbled part of your file.

Problems with Deletions

	

You’ve deleted the wrong text and you want to get it back.

There are several ways to recover deleted text. If you’ve just deleted something and you realize you want it back, simply type u
 to undo the last command (for example, a dd
). This works only if you haven’t given any further commands, since u
 undoes only the most recent command. On the other hand, a U
 will restore the line to its pristine state, the way it was before
any

 changes were applied to it.

You can still recover a recent deletion, however, by using the p
 command, since vi
 saves the last nine deletions in nine numbered deletion buffers. If you know, for example, that the third deletion back is the one you want to restore, type:
"3p

to “put” the contents of buffer number 3 on the line below the cursor. This works only for a deleted
line

 . Words, or a portion of a line, are not saved in a buffer. If you want to restore a deleted word or line fragment, and u
 won’t work, use the p
 command by itself. This restores whatever you’ve last deleted.

Appendix D. vi and the Internet

Sure, vi is user friendly. It’s just particular about who it makes friends with.

 Being the “standard” Unix screen editor since at least 1980 has enshrined vi
 firmly in Unix culture.

vi
 helped build Unix, and Unix in turn built the foundation for today’s Internet. Thus, it was inevitable that there be at least one Internet web site devoted to vi
 . This appendix describes some of the vi
 resources that are available for the vi
 connoisseur.

Where to Start

There is surely no activity with more built-in obsolescence than publishing World Wide Web sites in a printed book. We have tried to publish URLs that we hope will have a reasonable lifetime.

In the meantime, the “Tips” section of the elvis
 documentation lists interesting vi
 -related web sites (that’s where we started), and the Usenet comp.editors
 newsgroup is also a good place to look.

vi Web Sites

 There are two primary vi
 -related web sites, the vi Lover’s Home Page
 , by Thomer M. Gil, and the Vi Pages
 , by Sven Guckes. Each contains a large number of links to interesting vi
 -related items.

The vi Lover’s Home Page

The vi Lover’s Home Page
 can be found at http://www.thomer.com/vi/vi.html
 . This site contains the following items:

	A table of all known vi
 clones, with links to the source code or binary distributions

	Links to other vi
 sites, including the Vi Pages
 , by Sven Guckes

	A large number of links to vi
 documentation, manuals, help, and tutorials, at a number of different levels

	
vi
 macros for writing HTML documents and solving the Towers of Hanoi, and FTP sites for other macro sets

	Miscellaneous vi
 links: poems, a story about the “real history” of vi
 , vi
 versus Emacs discussions, and vi
 coffee mugs (see the section vi for Java Lovers
)

There are other things there, too; this makes a great starting point.

The Vi Pages

The Vi Pages
 can be found at http://www.vi-editor.org
 .[77
]
 This site contains the following items:

	A detailed comparison of options and features among different vi
 clones

	Screenshots of different versions of vi

	A table listing many vi
 clones, as well as a list with contact information (name, address, URL) for the clones

	Pointers to several FAQ files

	Some cute quotes about vi
 , such as the one that opened this chapter

	Other links, including a link to the vi
 coffee mugs

The vi Lover’s Home Page
 refers to this web site as “the only Vi site on this planet better than the one you’re looking at.” This site is also well worth checking out.

vi Powered!

 One of the cuter items we found is the
vi Powered

 logo (Figure D-1
). This is a small GIF file you can add to your personal web page to show that you used vi
 to create it.

 [image: vi Powered!]

Figure D-1. vi Powered!

The original home page for the
vi Powered

 logo was http://www.abast.es/~avelle/vi.html
 . That page was written in Spanish and is no longer available. The English home page is at http://www.darryl.com/vi.shtml
 . Instructions for adding the logo are at http://www.darryl.com/addlogo.html
 . Doing so consists of several simple steps:

	Download the logo. Enter http://www.darryl.com/vipower.gif
 into your (graphical) web browser, and then save it to a file, or use a command-line web retrieval utility, such as wget
 .

	Add the following code to your web page in an appropriate place:

This puts the logo into your page and makes it into a hypertext link that, when selected, will go to the
vi Powered

 home page. You may wish to add an ALT="This Web Page is vi Powered"
 attribute to the
 tag, for users of nongraphical browsers.

	Add the following code to the <HEAD>
 section of your web page:
<META name="editor" content="/usr/bin/vi">

Just as the Real Programmer will eschew a WYSIWYG word processor in favor of troff
 , so too will Real Webmasters eschew fancy HTML authoring tools in favor of vi
 . You can use the
vi Powered

 logo to display this fact with pride. ☺

You can find the Vim logo, in several variations, at http://www.vim.org/logos.php
 . A number of
Vim Powered

 logos for web sites are at http://www.vim.org/buttons.php
 .

vi for Java Lovers

Despite the title, this subsection is about the java you drink, not the Java you program in.[78
]

Our hypothetical Real Programmer, while using vi
 to write her C++ code, her troff
 documentation, and her web page, undoubtedly will want a cup of coffee now and then. She can now drink her coffee from a mug with a vi
 command reference printed on it!

When we first found vi
 reference mugs, they were available in sets of four from a dedicated web site. That site seems to have disappeared. However, vi
 reference mugs, T-shirts, sweatshirts, and mouse pads are now available from a different site: http://www.cafepress.com/geekcheat/366808
 .

Online vi Tutorial

 The two home pages we’ve mentioned have a large number of links to documentation on vi
 . Of special note, though, is a nine-part online tutorial from Unix World
 magazine, by Walter Zintz. The starting-off point is here: http://www.networkcomputing.com/unixworld/tutorial/009/009.html
 . (The link for this has moved around; it may not be up-to-date on the vi
 home pages, but this URL worked when we tried it early in 2008.) The tutorial covers the following topics:

	Editor fundamentals

	Line-mode addresses

	The g
 (global) command

	The substitute command

	The editing environment (the set
 command, tags, and EXINIT
 and .exrc
)

	Addresses and columns

	The replacement commands, r
 and R

	Automatic indentation

	Macros

Also available with the tutorial is an online quiz that you can use to see how well you’ve absorbed the material in the tutorial. Or you can just try the quiz directly, to see how well we’ve done with this book!

[77
]
 This site is mirrored at http://www.saki.com.au/mirror/vi/index.php3
 .

[78
]
 Still, it’s somehow fitting that Java came from Sun Microsystems, where Bill Joy — vi
 ’s original author — is a founder and former vice president.

A Different vi Clone

Depicted in Figures D-2
 through D-9
 is the story of vigor
 , a
different

 vi
 clone.

 [image: The story of vigor — part I]

Figure D-2. The story of vigor — part I

 [image: The story of vigor — part II]

Figure D-3. The story of vigor — part II

 [image: The story of vigor — part III]

Figure D-4. The story of vigor — part III

 [image: The story of vigor — part IV]

Figure D-5. The story of vigor — part IV

 [image: The story of vigor — part V]

Figure D-6. The story of vigor — part V

 [image: The story of vigor — part VI]

Figure D-7. The story of vigor — part VI

 [image: The story of vigor — part VII]

Figure D-8. The story of vigor — part VII

 [image: The story of vigor — part VIII]

Figure D-9. The story of vigor — part VIII

The source code for vigor
 is available at http://vigor.sourceforge.net
 .

Amaze Your Friends!

 In the long term, perhaps the most useful items are in the collection of vi-
 related information in the FTP archives at alf.uib.no
 . The original archives were at ftp://afl.uib.no/pub/vi
 . This site has gone away, but you can find the archives mirrored at ftp://ftp.uu.net/pub/text-processing/vi
 .[79
]
 The file INDEX
 in that directory describes what’s in the archives and lists additional mirrors that may be geographically closer to you.

Unfortunately, these files were last updated in May of 1995. Fortunately, vi
 ’s basic functionality has not changed, and the information and macros in the archive are still useful. The archive has four subdirectories:

docs

Documentation on vi
 , and also some comp.editors
 postings.

macros

vi
 macros.

comp.editors

Various materials posted to comp.editors
 .

programs

Source code for vi
 clones for various platforms (and other programs). Take things from here with caution, as much of it is out of date.

The docs
 and macros
 are the most interesting. The docs
 directory has a large number of articles and references, including beginners’ guides, explanations of bugs, quick references, and many short “how to” kinds of articles (e.g., how to capitalize just the first letter of a sentence in vi
). There’s even a song about vi
 !

The macros
 directory has over 50 files in it that do different things. We mention just three of them here. (Files whose names end in .Z
 are compressed with the Unix compress
 program. They can be uncompressed with either uncompress
 or gunzip
 .)

evi.tar.Z

An Emacs “emulator.” The idea behind it is to turn vi
 into a modeless editor (one that is always in input mode, with commands done with control keys). It is actually done with a shell script that replaces the EXINIT
 environment variable.

hanoi.Z

This is perhaps the most famous of the unusual uses of vi
 : a set of macros that solve the Towers of Hanoi programming problem. This program simply displays the moves; it does not actually draw the disks. For fun, we have reprinted it in the sidebar later in this chapter.

turing.tar.Z

This program uses vi
 to implement an actual Turing machine! It’s rather amazing to watch it execute the programs.

There are many, many more interesting macros, including perl
 and RCS modes.

The Towers of Hanoi, vi Version

" From: gregm@otc.otca.oz.au (Greg McFarlane)
" Newsgroups: comp.sources.d,alt.sources,comp.editors
" Subject: VI SOLVES HANOI
" Date: 19 Feb 91 01:32:14 GMT
"
" Submitted-by: gregm@otc.otca.oz.au
" Archive-name: hanoi.vi.macros/part01
"
" Everyone seems to be writing stupid Tower of Hanoi programs.
" Well, here is the stupidest of them all: the hanoi solving
" vi macros.
"
" Save this article, unshar it, and run uudecode on
" hanoi.vi.macros.uu. This will give you the macro file
" hanoi.vi.macros.
" Then run vi (with no file: just type "vi") and type:
" :so hanoi.vi.macros
" g
" and watch it go.
"
" The default height of the tower is 7 but can be easily changed
" by editing the macro file.
"
" The disks aren't actually shown in this version, only numbers
" representing each disk, but I believe it is possible to write
" some macros to show the disks moving about as well. Any takers?
"
" (For maze solving macros, see alt.sources or comp.editors)
"
" Greg
"
" ------------ REAL FILE STARTS HERE ---------------
set remap
set noterse
set wrapscan
" to set the height of the tower, change the digit in the following
" two lines to the height you want (select from 1 to 9)
map t 7
map! t 7
map L 1G/t^MX/^0^M$P1GJ$An$BGC0e$X0E0F$X/T^M@f^M@h^M$A1GJ@f0lXnPU
map g IL
map I KMYNOQNOSkRTV
map J /^0[^t]*$^M
map X x
map P p
map U L
map A
map B "hyl
map C "fp
map e "fy2l
map E "hp
map F "hy2l
map K 1Go^[
map M dG
map N yy
map O p
map q tllD
map Y o0123456789Z^[0q
map Q 0iT^[
map R $rn
map S r
map T ko0^M0^M^M^[
map V Go/^[

[79
]
 You may have better luck accessing this site with a command-line FTP client than with a web browser.

Tastes Great, Less Filling

vi is [[13~^[[15~^[[15~^[[19~^[[18~^ a
muk[^[[29~^[[34~^[[26~^[[32~^ch better editor than this emacs. I know
I^[[14~'ll get flamed for this but the truth has to be
said. ^[[D^[[D^[[D^[[D ^[[D^[^[[D^[[D^[[B^
exit ^X^C quit :x :wq dang it :w:w:w :x ^C^C^Z^D

— Jesper Lauridsen from alt.religion.emacs

 We can’t discuss vi
 as part of Unix culture without acknowledging what is perhaps the longest running debate in the Unix community:[80
]
 vi
 versus Emacs.

Discussions about which is better have cropped up on comp.editors
 (and other newsgroups) for years and years. (This is illustrated nicely in Figure D-10
 .) You will find summaries of some of these discussions in the many web sites described earlier. You will find pointers to more recent versions on the web pages.

 [image: It’s not a religious war. Really!]

Figure D-10. It’s not a religious war. Really!

Some of the better arguments in favor of vi
 are:

	
vi
 is available on every Unix system. If you are installing systems, or moving from system to system, you might have to use vi
 anyway.

	You can usually keep your fingers on the home row of the keyboard. This is a big plus for touch typists.

	Commands are one (or sometimes two) regular characters; they are much easier to type than all of the control and metacharacters that Emacs requires.

	
vi
 is generally smaller and less resource-intensive than Emacs. Startup times are appreciably faster, sometimes up to a factor of 10.

	Now that the vi
 clones have added features such as incremental searching, multiple windows, and buffers, GUI interfaces, syntax highlighting and smart indenting, and programmability via extension languages, the functional gap between the two editors has narrowed significantly, if not disappeared entirely.

To be complete, two more items should be mentioned. First, there are actually two versions of Emacs that are popular: the original GNU Emacs and XEmacs, which is derived from an earlier version of GNU Emacs. Both have advantages and disadvantages, and their own sets of devotees.[81
]

Second, although GNU Emacs has always had vi
 -emulation packages, they are usually not very good. However, the “viper mode” is now reputed to be an excellent vi
 emulation. It can serve as a bridge for learning Emacs for those who are interested in doing so.

To conclude, always remember that you are the final judge of a program’s utility. You should use the tools that make you the most productive, and for many tasks, vi
 and its clones are excellent tools.

[80
]
 OK, it’s really a religious war, but we’re trying to be nice. (The other religious war, BSD versus System V, was settled by POSIX. System V won, although BSD received significant concessions. ☺)

[81
]
 Who undoubtedly share a joint distaste for vi
 ! ☺

vi Quotes

 Finally, here are some more vi
 quotes, courtesy of Bram Moolenaar, Vim’s author:

THEOREM: vi
 is perfect.

PROOF: VI in roman numerals is 6. The natural numbers less than 6 which divide 6 are 1, 2, and 3. 1 + 2 + 3 = 6. So 6 is a perfect number. Therefore, vi
 is perfect.

— Arthur Tateishi

A reaction from Nathan T. Oelger:

So, where does the above leave Vim? VIM in roman numerals might be: (1000 – (5 + 1)) = 994, which happens to be equal to 2*496+2. 496 is divisible by 1, 2, 4, 8, 16, 31, 62, 124, and 248 and 1+2+4+8+16+31+62+124+248 = 496. So, 496 is a perfect number. Therefore, Vim is twice as perfect as vi
 ,
plus

 a couple extra bits of goodies. ☺

That is, Vim is
better

 than perfect.

This quote seems to sum it up for the true vi
 lover:

To me vi
 is zen. To use vi
 is to practice zen. Every command is a koan. Profound to the user, unintelligible to the uninitiated. You discover truth every time you use it.

— Satish Reddy

Index

A note on the digital index

A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols

! (exclamation point)

buffers, interaction with, Buffers and Their Interaction with Windows

cinkeys syntax rules, The cinkeys option

ex commands starting with, Problems Saving Files

mapping keys for insert mode, Mapping Keys for Insert Mode

overriding save warnings, Saving and Exiting Files

for Unix commands, Executing Unix Commands
 , Filtering text with vi

(pound sign)

for alternate filename, Calling in New Files

buffers, describing, Buffers and Their Interaction with Windows

meta-information, extracting, Categories of Features

show line numbers command, Defining a Range of Lines

$ (dollar sign)

cursor movement command, Movement Within a Line
 , Movement on the current line

for last file line (ex), Line Addressing Symbols

marking end of change region, Changing Text

metacharacter, Metacharacters Used in Search Patterns

$MYGVIMRC variable, Starting gvim

% (percent sign)

buffers, describing, Buffers and Their Interaction with Windows

for current filename, Calling in New Files

every line symbol (ex), Global Replacement

matching brackets, A Special Search Command

meta-information, extracting, Categories of Features

representing every line (ex), Line Addressing Symbols

& (ampersand)

metacharacter, Metacharacters Used in Replacement Strings

to repeat last command, More Substitution Tricks

' (apostrophe)

'' (move to mark) command, The G (Go To) Command
 , Marking Your Place

marking lines (vile), Visual Mode

move to mark command, Marking Your Place

() (parentheses)

((move cursor) command, Movement by Text Blocks

) (move cursor) command, Movement by Text Blocks

\(...\) metacharacters, Metacharacters Used in Search Patterns
 , Extended Regular Expressions

\(…\) metacharacters, Extended Regular Expressions

finding and removing, More Examples of Mapping Keys

as grouping metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

matching, A Special Search Command

(underscore), using in file names, Opening a File

* (asterisk)

cinkeys syntax rules, The cinkeys option

* (asterisk) metacharacter, Metacharacters Used in Search Patterns

+ (plus sign), Command-Line Options

\+ metacharacter, Extended Regular Expressions
 , Extended Regular Expressions
 , Extended Regular Expressions

buffers, describing, Buffers and Their Interaction with Windows

metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

move cursor command, Single Movements
 , Movement by Line
 , Movement by Line

for next file lines (ex), Line Addressing Symbols

running commands when starting vi, Advancing to a Specific Place

+-- marker, as a fold placeholder, Manual Folding

+/ option, Command-Line Options

+? option, Command-Line Options

, (comma)

for line ranges (ex), ex Commands
 , Defining a Range of Lines

repeat search command, Current Line Searches

- (hyphen)

buffers, describing, Buffers and Their Interaction with Windows

manual folding and, Manual Folding

move cursor command, Single Movements
 , Movement by Line

for previous file lines (ex), Line Addressing Symbols

-? option (elvis), Important Command-Line Arguments

-? option (vile), Important Command-Line Arguments

-b option, Command-Line Options

-e option, Command-Line Options

-h option, Command-Line Options

. (dot)

current line symbol (ex), Line Addressing Symbols

echo command and, Variables

filenames and, Opening a File

meta-information, extracting, Categories of Features

metacharacter, Metacharacters Used in Search Patterns

repeat command, Repeat
 , Confirming Substitutions

undo/redo (nvi), Infinite Undo

.viminfo file, Categories of Features

.vimrc startup file

strftime() function and, Using the strftime() function

/ (slash)

pathname separator, Opening a File

referring to marks (vile), Visual Mode

search command, The vi Text Editor
 , Movement by Searches

opening files at specific place, Advancing to a Specific Place

0 (move cursor) command, Movement Within a Line
 , Movement on the current line

\1, \2, ... metacharacters, Metacharacters Used in Replacement Strings
 , Extended Regular Expressions

: (colon)

:! commands and, Executing Unix Commands

ex commands and, ex Commands

line-editing mode, Problems Opening Files

meta-information, extraction, Categories of Features

using ex commands and, The vi Text Editor

:ls command

buffers, describing and, Buffers and Their Interaction with Windows

:sball command, Buffer Command Synopsis

:tmenu command, Tooltips

:tselect command, Tag Stacking

:version command, Where to Get Vim

:vertical command, Resizing Command Synopsis

:w (write) command, Read-Only Mode

:w command, saving existing files, Problems Saving Files

:w! command overwriting files, Problems Saving Files

; (semicolon)

for line ranges (ex), Redefining the Current Line Position

repeat search command, Current Line Searches

<> (angle brackets)

<< (redirect/here document) operator, Here Documents

>> (redirect/append) operator, Appending to a Saved File

\< \> metacharacters, Metacharacters Used in Search Patterns

matching, A Special Search Command

= (equals sign)

:= (identify line) command, Defining a Range of Lines

\= metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

buffers, describing, Buffers and Their Interaction with Windows

? (question mark)

\? metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

search command, The vi Text Editor
 , Movement by Searches

@ (at sign)

@ option (vile), Important Command-Line Arguments
 , Initialization

\@ metacharacter, Extended Regular Expressions

@-functions, @-Functions

[] (brackets)

[[,]] (move cursor) commands, Movement by Text Blocks

[: :] metacharacters, POSIX Bracket Expressions

[. .] metacharacters, POSIX Bracket Expressions

[= =] metacharacters, POSIX Bracket Expressions

metacharacters, Metacharacters Used in Search Patterns

\ (backslash) metacharacter, Metacharacters Used in Search Patterns
 , Metacharacters Used in Replacement Strings

\1, \2, ... metacharacters, Metacharacters Used in Replacement Strings
 , Extended Regular Expressions

\< \> metacharacters, Metacharacters Used in Search Patterns

\@ metacharacter, Extended Regular Expressions

\b metacharacter, Extended Regular Expressions

\{...} metacharacter, Extended Regular Expressions

\{…} metacharacter, Extended Regular Expressions

\d, \D metacharacters, Extended Regular Expressions

\e metacharacter, Metacharacters Used in Replacement Strings
 , Extended Regular Expressions

\E metacharacter, Metacharacters Used in Replacement Strings

\= metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

\f, \F metacharacters, Extended Regular Expressions

\i, \I metacharacters, Extended Regular Expressions

\k, \K metacharacters, Extended Regular Expressions

\n metacharacter, Metacharacters Used in Replacement Strings
 , Extended Regular Expressions
 , Extended Regular Expressions

\p, \P metacharacters, Extended Regular Expressions
 , Extended Regular Expressions

\(...\) metacharacters, Metacharacters Used in Search Patterns
 , Extended Regular Expressions

\(…\) metacharacters, Extended Regular Expressions

\+ metacharacter, Extended Regular Expressions
 , Extended Regular Expressions
 , Extended Regular Expressions

\? metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

\r metacharacter, Extended Regular Expressions

\s, \S metacharacters, Extended Regular Expressions
 , Extended Regular Expressions

\t metacharacter, Extended Regular Expressions

\u and \l metacharacters, Metacharacters Used in Replacement Strings
 –Metacharacters Used in Replacement Strings

\U and \L metacharacters, Metacharacters Used in Replacement Strings

\| metacharacter, Extended Regular Expressions
 , Extended Regular Expressions
 , Extended Regular Expressions

\w, \W metacharacters, Extended Regular Expressions

^ (caret)

cursor movement command, Movement on the current line

metacharacter, Metacharacters Used in Search Patterns

representing CTRL key, Keystrokes
 , Keystrokes

(see also CTRL- commands)

within [] metacharacters, Metacharacters Used in Search Patterns

^] command, Tag Stacking

` (backquote)

`` (move to mark) command, The G (Go To) Command
 , Marking Your Place

marking characters (vile), Visual Mode

move to mark command, Marking Your Place

{ } (braces)

\{...} metacharacter, Extended Regular Expressions

\{…} metacharacter, Extended Regular Expressions

{ (move cursor) command, Movement by Text Blocks

} (move cursor) command, Movement by Text Blocks

cinkeys option, The cinkeys option

finding and matching, A Special Search Command

folding and, Folding and Outlining (Outline Mode)

metacharacters, Extended Regular Expressions
 , Extended Regular Expressions

| (vertical bar)

alternation metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

\| metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

for combining ex commands, Combining ex Commands

cursor movement command, Movement on the current line

manual folding and, Manual Folding

~ (tilde)

:~ (substitute using last search pattern) command (ex), More Substitution Tricks

along left screen margin, Opening a File

case conversion command, Changing Case

folding, Manual Folding

as last replacement text, Metacharacters Used in Search Patterns

metacharacter, Metacharacters Used in Replacement Strings
 , Extended Regular Expressions

~~ (folding), toggling case, Manual Folding

A

a (append) command, Simple Edits
 , Appending Text
 , Insert Commands

ex,

A (append) command, More Ways to Insert Text
 , Insert Commands

-a option (elvis), Important Command-Line Arguments
 , Initialization Steps

a status flag, Buffers and Their Interaction with Windows

a: Vim variable, Variables

:ab (abbreviation) command (ex), Word Abbreviation
 ,

commands in .exrc files, The .exrc File

abbreviations of commands, Word Abbreviation
 , Abbreviations of Vim Commands and Options

absolute line addresses, Defining a Range of Lines

absolute pathnames, Opening a File

Acme editor, The vi Text Editor

“Address search hit BOTTOM without matching pattern” message, Repeating Searches

:alias command (elvis), Interesting Features

alphabetizing text blocks (example), Sorting Text Blocks: A Sample ex Script

alternate .exrc files, Alternate Environments

alternate filenames (#), Calling in New Files

alternation, Extended Regular Expressions
 , Extended Regular Expressions
 , Extended Regular Expressions
 , Extended Regular Expressions
 , Extended Regular Expressions

:amenu command, Basic menu customization

ampersand (&)

metacharacter, Metacharacters Used in Replacement Strings

to repeat last command, More Substitution Tricks

angle brackets (<>)

<< (redirect/here document) operator, Here Documents

>> (redirect/append) operator, Appending to a Saved File

\< \> metacharacters, Metacharacters Used in Search Patterns

matching, A Special Search Command

apostrophe (') command

'' (move to mark) command, The G (Go To) Command
 , Marking Your Place

move to mark command, Marking Your Place

appending text, Simple Edits
 , Appending Text

from named buffers, Yanking to Named Buffers

to saved files, Appending to a Saved File

:apropos command (vile), Online Help and Other Documentation

:ar command, Using the Argument List
 ,

archives on vi (FTP), Amaze Your Friends!

:args command, Using the Argument List
 ,

arity keyword (ctags), The New tags Format

arrays (Vim), Arrays

arrow keys, Single Movements

ASCII characters, Digraphs: Non-ASCII Characters

asterisk (*), Metacharacters Used in Search Patterns

cinkeys syntax rules and, The cinkeys option

at sign (@)

@ option (vile), Important Command-Line Arguments
 , Initialization

\@ metacharacter, Extended Regular Expressions

auto indenting, Auto and Smart Indenting
 –Keyword and Dictionary Word Completion

autocmd command, Autocommands
 , Autocommands and Groups
 , A Useful Vim Script Example

autocommands, Autocommands
 –Some Additional Thoughts About Vim Scripting

autoiconify option (elvis), Options

autoindent method, Auto and Smart Indenting

autosave option, Recovering a Buffer

autowrite option, Recovering a Buffer
 , Some Useful Options

awk data manipulation language, Beyond ex

B

:b (buffer) command,

b (move word) command, Movement by Text Blocks

B (move word) command, Movement by Text Blocks

-b option, Editing Binary Files

\b, \B metacharacters, Extended Regular Expressions

b: Vim variable, Variables

background color options, Setting the background option

backquote (`)

`` (move to mark) command, The G (Go To) Command
 , Marking Your Place

marking characters (vile), Visual Mode

move to mark command, Marking Your Place

backslash (\) (see \ (backslash) metacharacter)

Backspace key

deleting in insert mode, vi Commands

moving with, Single Movements

backup files, Backups with Vim

backupcopy option, Backups with Vim

backupdir option, Backups with Vim

backupnext option, Backups with Vim

backupskip option, Backups with Vim

backward searching, Movement by Searches

“Bad file number” message, Problems Opening Files

“Bad termpcap entry” message, Problems Opening Files

:badd command, Buffer Command Synopsis

:ball command, Buffer Command Synopsis

:bd (bdelete) command,

:bdelete command, Buffer Command Synopsis

beep mode, Modus Operandi

(see also command mode)

beginning of line context, The cinkeys option

:behave command (gvim), Using the Mouse

:bfirst command, Buffer Command Synopsis

:bg (hide window) command (nvi), Multiwindow Editing

binary data, editing, Arbitrary Length Lines and Binary Data

elvis editor, Arbitrary Length Lines and Binary Data

nvi editor, Arbitrary Length Lines and Binary Data

vile editor, Arbitrary Length Lines and Binary Data

binary files, editing, Editing Binary Files

binary option (elvis), Arbitrary Length Lines and Binary Data

:bind-key command, The vile Editing Model

black-hole registers, Categories of Features

blank parameter (sessionoptions option), The mksession Command

blinktime option (elvis), Options

block (visual) mode, Visual Mode

elvis editor, Visual Mode

vile editor, Visual Mode

“Block device required” message, Problems Opening Files

“Block special file” message, Problems Opening Files

:bmod command, Buffer Command Synopsis

:bnext command, Buffer Command Synopsis

:bNext command, Buffer Command Synopsis

bookmarks, placing, Marking Your Place

Bostic, Keith, Author and History

bottom-line commands, The vi Text Editor

:bprevious command, Buffer Command Synopsis

braces ({ })

\{...} metacharacter, Extended Regular Expressions

\{…} metacharacter, Extended Regular Expressions

{ (move cursor) command, Movement by Text Blocks

} (move cursor) command, Movement by Text Blocks

cinkeys options and, The cinkeys option

finding and matching, A Special Search Command

folding and, Folding and Outlining (Outline Mode)

metacharacters, Extended Regular Expressions
 , Extended Regular Expressions

brackets ([])

[[,]] (move cursor) commands, Movement by Text Blocks

[: :] metacharacters, POSIX Bracket Expressions

[. .] metacharacters, POSIX Bracket Expressions

[= =] metacharacters, POSIX Bracket Expressions

matching, A Special Search Command

metacharacters, Metacharacters Used in Search Patterns

branching undos, Undoing Undos

:browse command, Tag Stacks

bs values (lptype option), Display Modes

Buettner, Kevin, vile: vi Like Emacs

bufdisplay option (elvis), Display Modes

bufdo command, Buffer Commands

BufEnter autocommand, Options During Splits

buffer variables, Buffer Variables

buffers, Opening and Closing Files
 , Making Use of Buffers

autowrite and autosave options, Recovering a Buffer

commands, Buffer Commands
 , Command-Line History and Completion

for summary, Review of vi Buffer and Marking Commands

copying file contents into, Copying a File into Another File

executing contents of, @-Functions

hidden, Hidden Buffers

hold buffer (metacharacters), Metacharacters Used in Search Patterns
 , Extended Regular Expressions
 , Extended Regular Expressions

interaction with windows, Buffers and Their Interaction with Windows
 –Playing Tag with Windows

multiple windows, editing, Multiple Windows in Vim

multiwindow editing and, Multiwindow Editing

named buffers, Copying Text
 , Yanking to Named Buffers
 , Edits Between Files

arbitrarily naming (nvi), Interesting Features

numbered buffers for deletions/yanks, Moving Text
 , Making Use of Buffers

preserving manually, Recovering a Buffer

recovering after system failure, Recovering a Buffer

renaming (ex), Renaming the Buffer

special, Vim’s Special Buffers

buffers command,

:buffers command, Buffers and Their Interaction with Windows
 , Buffer Command Synopsis

buffers parameter (sessionoptions option), The mksession Command

BufLeave autocommand, Options During Splits

BufNewFile command, Autocommands

BufRead command, Autocommands

BufReadPost command, Autocommands

BufReadPre command, Autocommands

BufWrite command, Autocommands

BufWritePre command, Autocommands

built-in calculator, elvis, Interesting Features

:bunload command, Buffer Command Synopsis

C

c (change) command, Simple Edits
 , Changing Text
 , Insert Commands
 ,

cc command, Lines
 –Lines

cw command, Words
 –Words

examples of use, Review of Basic vi Commands
 , More Command Combinations

review examples of, Changing through searching

C (change) command, Lines
 , Insert Commands

c option

:s command, Confirming Substitutions

-c option, Advancing to a Specific Place
 , Command-Line Options

elvis editor, Important Command-Line Arguments

nvi editor, Important Command-Line Arguments

vile editor, Important Command-Line Arguments

-C option, Command-Line Options

c$ command, Changing and deleting text

C/C++ programming languages

cmode mode (vile), Major Modes

comments, placing (example), More Examples of Mapping Keys

:calc command (elvis), Interesting Features

calculator, elvis, Interesting Features

capitals, changing to lowercase, Changing Case
 , Metacharacters Used in Replacement Strings
 –Metacharacters Used in Replacement Strings

Caps Lock key, Problem Checklist

caret (^)

cursor movement command, Movement on the current line

metacharacter, Metacharacters Used in Search Patterns

representing CTRL key, Keystrokes
 , Keystrokes

(see also CTRL- commands)

within [] metacharacters, Metacharacters Used in Search Patterns

case sensitivity, The vi Text Editor
 , Opening a File
 , Problem Checklist
 , Metacharacters Used in Replacement Strings

case-insensitive pattern searches, The :set Command

of commands, The vi Text Editor

pattern searching, Some Useful Options

case, converting, Changing Case
 , Metacharacters Used in Replacement Strings
 –Metacharacters Used in Replacement Strings

cc command, Edit-Compile Speedup
 , Changing and deleting text

ccprg option (elvis), Edit-Compile Speedup

cd command,

cedit option (nvi), Command-Line History and Completion

center command,

change word (cw) command, The vi Text Editor

changing (replacing) text, Simple Edits
 , Changing Text

by characters, Characters

globally, Global Replacement

confirming substitutions, Confirming Substitutions

context sensitivity, Context-Sensitive Replacement

replacement-string metacharacters, Metacharacters Used in Replacement Strings

substitution tricks, More Substitution Tricks

by lines, Lines
 –Lines
 , Substituting text

searching and, Changing through searching

by words, Words
 –Words

character classes, POSIX Bracket Expressions
 –POSIX Bracket Expressions

“Character special file” message, Problems Opening Files

character strings, Movement by Searches

characters, Review of Basic vi Commands

(see also lines; text; words)

case conversions, Changing Case
 , Metacharacters Used in Replacement Strings
 –Metacharacters Used in Replacement Strings

deleting, vi Commands
 , Characters

marking with ` (vile), Visual Mode

matching (see metacharacters)

moving by, Single Movements

replacing (changing) singly, Characters

searching for in lines, Current Line Searches

transposing, Transposing two letters

cindent method, Auto and Smart Indenting

cinkeys cindent option, cindent

cinoptions cindent option, cindent
 , The cinoptions option

cinwords cindent option, cindent
 , The cinwords option

class keyword (ctags), The New tags Format

clicking in elvis, Mouse Behavior

-client option (elvis), The Basic Window

clipboard

Windows, gvim in Microsoft Windows

xvile and, Clipboard

clo (close) command,

clones, vi, And These Are My Brothers, Darrell, Darrell, and Darrell
 –A Look Ahead
 , Editor Comparison Summary

(see also specific clone)

enhanced tags, Enhanced Tags
 –Exuberant ctags and Vim

feature summary, Editor Comparison Summary

GUI interfaces, GUI Interfaces

elvis editor, GUI Interfaces
 –Options
 , Syntax Highlighting
 , Display Modes
 –Display Modes

vile editor, GUI Interfaces
 –winvile Basic Appearance and Functionality
 , GUI Interfaces
 –winvile Basic Appearance and Functionality
 , Syntax Highlighting

improvements over vi, Improved Facilities
 –Mode Indicators

elvis editor, Improved Editing Facilities
 –Visual Mode

nvi editor, Improvements for Editing
 –Left-Right Scrolling

vile editor, Improved Editing Facilities
 –Visual Mode

multiwindow editing, Multiwindow Editing
 –Multiwindow Editing

elvis editor, Multiwindow Editing
 –Multiwindow Editing

nvi editor, Multiwindow Editing
 –Multiwindow Editing

vile editor, Multiwindow Editing
 –Multiwindow Editing

programming assistance, Programming Assistance
 –Syntax Highlighting

elvis editor, Programming Assistance
 –Syntax Highlighting

vile editor, Programming Assistance
 –Syntax Highlighting

regular expressions, Extended Regular Expressions
 –Extended Regular Expressions

elvis editor, Extended Regular Expressions
 –Extended Regular Expressions

nvi editor, Extended Regular Expressions
 –Extended Regular Expressions

vile editor, Extended Regular Expressions
 –Extended Regular Expressions

Vim editor, Extended Regular Expressions
 –Extended Regular Expressions

set command options (list), Setting Options

:close command (elvis), Multiwindow Editing

:close[!] command, Closing and Quitting Windows

cmd command, Conditional Split Commands
 , Command-Line Options

windo and bufdo commands, Buffer Commands

cmdheight option, Window Sizing Options

cmode mode (vile), Major Modes

:cnewer command, Compiling and Checking Errors with Vim

:cnext command, Compiling and Checking Errors with Vim

:co (copy) command (ex), Editing with ex
 ,

coffee mugs with vi logo, vi for Java Lovers

:colder command, Compiling and Checking Errors with Vim

collating symbols, POSIX Bracket Expressions

colon (:)

:! commands and, Executing Unix Commands

ex commands and, The vi Text Editor
 , ex Commands

line-editing mode, Problems Opening Files

meta-information, extracting, Categories of Features

:color command, The colorscheme command

colors

GUI interfaces, GUI Interfaces

schemes, What’s Your Favorite Color (Scheme)?
 –Dynamic File Type Configuration Through Scripting

colorscheme command, What’s Your Favorite Color (Scheme)?
 , Using the strftime() function
 , Customization
 , The colorscheme command
 , Setting the background option

global variables, using Vim scripts, Tuning a Vim Script with Global Variables

comma (,)

for line ranges (ex), ex Commands
 , Defining a Range of Lines

repeat search command, Current Line Searches

command completion, Command-Line History and Completion

elvis editor, Command-Line History and Completion

nvi editor, Command-Line History and Completion

vile editor, Command-Line History and Completion

command mode, The vi Text Editor
 , Modus Operandi
 , vi Commands
 , Command Mode

gvim, using the mouse, Using the Mouse

keystroke maps, Using the map Command

function keys and special keys, Mapping Function Keys

useful examples of, More Examples of Mapping Keys

mode indicators, Mode Indicators

command-line

history, Command-Line History and Completion

elvis editor, Command-Line History and Completion

nvi editor, Command-Line History and Completion

vile editor, Command-Line History and Completion

multiwindow initiation from, Multiwindow Initiation from the Command Line (Shell)

options, Options When Starting vi
 , Startup and Initialization Options
 , Command-Line Options

elvis editor, Important Command-Line Arguments
 –Important Command-Line Arguments

nvi editor, Important Command-Line Arguments
 –Important Command-Line Arguments

vile editor, Important Command-Line Arguments
 –Important Command-Line Arguments

syntax, Command-Line Syntax
 –Review of vi Operations

commands, The vi Text Editor
 , Problems with vi Commands

abbreviations of Vim, Abbreviations of Vim Commands and Options

auto, Autocommands

deleting, Deleting Autocommands
 –Deleting Autocommands
 , Deleting Autocommands

groups, Autocommands and Groups

cw (change word), The vi Text Editor

echo, Using the strftime() function

ex, Quitting Without Saving Edits

execute, The execute Command

i (insert), The vi Text Editor

saving, Saving Commands

:w command, saving edited files, Problems Saving Files

:w!, overwriting files, Problems Saving Files

window (Vim), Window Commands (Vim)

wq, saving edits, Saving and Quitting a File

comment display mode (elvis), Syntax Highlighting

comments

in ex scripts, Comments in ex Scripts

placing markers around lines (example), More Examples of Mapping Keys

compatible option, Categories of Features

compiling program source code, Edit-Compile Speedup

elvis editor, Edit-Compile Speedup

vile editor, Edit-Compile Speedup

completion commands, Insertion Completion Commands
 –Some Final Comments on Vim Autocompletion

completion, command-line, Command-Line History and Completion

elvis editor, Command-Line History and Completion

nvi editor, Command-Line History and Completion

vile editor, Command-Line History and Completion

conditional execution, Conditional Execution

configuration files

gvim, Starting gvim

:configure command (vile), Building xvile

confirming substitutions, Confirming Substitutions

context-sensitive global replacement, Context-Sensitive Replacement

copies of files, working in buffers, Opening and Closing Files

:copy command (ex), Editing with ex

:copy-to-clipboard command (xvile), Clipboard

copying files into other files, Copying a File into Another File

copying text, Copying Text

by lines, Editing with ex

named deletion/yank buffers, Yanking to Named Buffers
 , Edits Between Files

yank-and-put, Simple Edits

numbered deletion/yank buffers, Moving Text
 , Making Use of Buffers

COSE standards, The Session File

countzF fold command, The Fold Commands

:cprevious command, Compiling and Checking Errors with Vim

cr values (lptype option), Display Modes

cscope program, Tag Stacks

ctags command (Unix), Using Tags

Exuberant ctags program, Enhanced Tags
 –Exuberant ctags and Vim
 , Tag Stacks
 , Tag Stacks

tag stacks, Tag Stacks
 –Exuberant ctags and Vim

elvis editor, Tag Stacks

nvi editor, Tag Stacks
 –Tag Stacks

Solaris vi, Using Tags
 , Solaris vi
 –Exuberant ctags and Vim

vile editor, Tag Stacks

CTRL- commands

CTRL-A CTRL-] (next tag; vile), Tag Stacks

CTRL-@, Repeat

CTRL-B, CTRL-F (scrolling), Scrolling the Screen

CTRL-] (find tag), Tag Stacks
 –Exuberant ctags and Vim
 , Tag Stacks
 , Tag Stacks
 , Tag Stacks

CTRL-^ command, Switching Files from vi

CTRL-D, CTRL-U (scrolling), Scrolling the Screen

CTRL-E, CTRL-Y (scrolling), Scrolling the Screen

CTRL-G (display line numbers), Movement by Line Number
 , Defining a Range of Lines

CTRL-L, CTRL-R (redrawing), Redrawing the Screen

CTRL-T (find tag), Solaris vi
 , Tag Stacks
 , Tag Stacks

CTRL-T CTRL-X CTRL-] (next tag; vile), Tag Stacks

CTRL-V, Protecting Keys from Interpretation by ex

CTRL-V command (elvis block mode), Visual Mode

CTRL-W commands

elvis vi-mode window commands, Multiwindow Editing

nvi window cycle commands, Multiwindow Editing

CTRL-X CTRL-R, CTRL-X CTRL-L (scroll; vile), Left-Right Scrolling

CTRL-X CTRL-S, CTRL-X CTRL-R (search; vile), Incremental Searching

cursors, moving inside windows and, Moving Around Windows (Getting Your Cursor from Here to There)

resizing windows, Window Resize Commands

word completions and, Keyword and Dictionary Word Completion

curdir parameter (sessionoptions option), The mksession Command

curly braces ({ })

{ (move cursor) command, Movement by Text Blocks

} (move cursor) command, Movement by Text Blocks

finding and matching, A Special Search Command

metacharacters, Extended Regular Expressions
 , Extended Regular Expressions

current file, % for, Calling in New Files

current line (ex)

. symbol for, Line Addressing Symbols

redefining, Redefining the Current Line Position

cursor, moving, Moving the Cursor
 , Movement Within a Screen

commands for, Review of vi Motion Commands

to marks, Marking Your Place

opening files at specific place, Advancing to a Specific Place

by searching for patterns, Movement by Searches
 , Movement by Line Number

by text blocks, Movement by Text Blocks
 , Movement by Text Blocks

xvile interface, Setting the cursor position and mouse motions

CursorMoved command, Autocommands

CursorMoverI command, Autocommands

customizing editing environment, Customizing vi

cut-and-paste, Simple Edits
 , Moving Text

multiple windows in Vim and, Multiple Windows in Vim

cw (change word) command, The vi Text Editor
 , Changing and deleting text

Cygwin, Completion by dictionary

D

d (delete) command, Simple Edits
 , Deleting Text

db, d$, d0 commands, Words

dd command, Lines

de and dE commands, Words

df command, Current Line Searches

dw command, Words

examples of use, Review of Basic vi Commands
 , More Command Combinations

with named buffers, Copying Text
 , Yanking to Named Buffers

numbered buffers for, Moving Text
 , Making Use of Buffers

review examples of, Changing through searching

D (delete) command, Lines

:d (delete) command (ex), Editing with ex

-d option, Command-Line Options

-D option, Command-Line Options

d$ command, Changing and deleting text

\d, \D metacharacters, Extended Regular Expressions

database, switching items in (example), Switching Items in a Textual Database

date command (Unix), Executing Unix Commands

dav, Editing Files in Other Places

dd (delete line) command, Manual Folding
 , Changing and deleting text

“default” command mode, The vi Text Editor

:delete command (ex), Editing with ex

:delete-other-windows command (vile), Multiwindow Editing

:delete-window command (vile), Multiwindow Editing

:edit-file command (vile), Multiwindow Editing

deleting

lines, Editing with ex

parentheses (example), More Examples of Mapping Keys

recovering deletions, Recovering Deletions

text, Simple Edits
 , Deleting Text
 , Current Line Searches

by characters, vi Commands
 , Characters

with ex editor, Search Patterns

by lines, Lines

named buffers for, Copying Text
 , Yanking to Named Buffers
 , Edits Between Files

numbered buffers for, Moving Text
 , Making Use of Buffers

undoing deletions, Problems with deletions

by words, Words

:describe-function command (vile), Online Help and Other Documentation

:describe-key command (vile), Online Help and Other Documentation

df command, Problems Saving Files
 , Current Line Searches
 , Changing and deleting text

dG command, Changing and deleting text

:di (display) command

elvis editor, Display Modes

nvi editor, Multiwindow Editing
 , Tag Stacks

Dickey, Thomas, vile: vi Like Emacs

dictionary option, Completion by dictionary

diff command, Multiple Windows in Vim
 , What’s the Difference?

diff method, creating folds, Folding and Outlining (Outline Mode)

digraphs, Digraphs: Non-ASCII Characters

directories, navigating and changing, Navigating and Changing Directories
 –Backups with Vim

directory buffer, Vim’s Special Buffers

“Directory” message, Problems Opening Files

“Disk quota has been reached” message, Problems Saving Files

:display (di) command

elvis editor, Display Modes

nvi editor, Multiwindow Editing
 , Tag Stacks

display modes, elvis, Syntax Highlighting
 , Display Modes
 –Display Modes

:display syntax command (elvis), Syntax Highlighting
 , Display Modes
 –Display Modes

dL command, Changing and deleting text

dn command, Changing and deleting text

documentation

elvis editor, Online Help and Other Documentation

nvi editor, Online Help and Other Documentation

vi-related archives (FTP), Amaze Your Friends!

vi-related web sites, vi Web Sites

vile editor, Online Help and Other Documentation

dollar sign ($)

cursor movement command, Movement Within a Line
 , Movement on the current line

for last file line (ex), Line Addressing Symbols

marking end of change region, Changing Text

metacharacter, Metacharacters Used in Search Patterns

dot (.)

current line symbol (ex), Line Addressing Symbols

echo command and, Variables

filenames and, Opening a File

meta-information, extracting, Categories of Features

metacharacter, Metacharacters Used in Search Patterns

repeat command, Repeat
 , Confirming Substitutions

undo/redo (nvi), Infinite Undo

double quote (XXX_DQUOTE) command, Recovering Deletions
 , Yanking to Named Buffers

dt command, Changing and deleting text

dumb values (lptype option), Display Modes

dw command, Changing and deleting text

d^ command, Changing and deleting text

d} command, Changing and deleting text

E

:e (edit file) command (ex), Calling in New Files
 ,

:e! command, Calling in New Files

e (move cursor) command, Movement by Text Blocks

E (move cursor) command, Movement by Text Blocks

:e command, Accessing Multiple Files

\E metacharacter, Metacharacters Used in Replacement Strings

\e metacharacter, Metacharacters Used in Replacement Strings
 , Extended Regular Expressions

:e! ENTER command, Quitting Without Saving Edits

eadirection option, Window Sizing Options

“easy gvim” (MS Windows), Graphical Vim (gvim)

echo command, Using the strftime() function

echoing of commands, The vi Text Editor

Eclipse, Vim Enhancements for Programmers

ed line editor, The vi Text Editor

ed text editor, The vi Text Editor

edcompatible option, More Substitution Tricks

:edit command, Buffers and Their Interaction with Windows

:Edit command (nvi), Multiwindow Editing

edit commands, Edit Commands

edit-compile speedup, Edit-Compile Speedup

elvis editor, Edit-Compile Speedup

vile editor, Edit-Compile Speedup

editing, Simple Editing
 –Review of Basic vi Commands

clone improvements over vi, Improved Facilities
 –Mode Indicators
 , Improvements for Editing
 –Left-Right Scrolling
 , Improved Editing Facilities
 –Visual Mode
 , Improved Editing Facilities
 –Visual Mode

customizing editing environment, Customizing vi

ex commands on command line, Command-Line History and Completion

elvis editor, Command-Line History and Completion

nvi editor, Command-Line History and Completion

vile editor, Command-Line History and Completion

ex editor for, Editing with ex

lists of files, More Examples of Mapping Keys

multiple files, Editing Multiple Files

read-only mode, Read-Only Mode

recovering the buffer, Recovering a Buffer

replacing text (see replacing text)

source code, advice for, Editing Program Source Code

indentation control, Indentation Control

matching brackets, A Special Search Command

using tags, Using Tags
 , Enhanced Tags
 –Exuberant ctags and Vim

transparent for Vim, Categories of Features

using multiple windows, Multiwindow Editing
 –Multiwindow Editing

elvis editor, Multiwindow Editing
 –Multiwindow Editing

nvi editor, Multiwindow Editing
 –Multiwindow Editing

vile editor, Multiwindow Editing
 –Multiwindow Editing

vile editing model, The vile Editing Model

else blocks, Conditional Execution

elseif blocks, Conditional Execution

elvis (vi clone), Author and History
 , Elvis
 –Sources and Supported Operating Systems

documentation and online help, Online Help and Other Documentation

extended regular expressions, Extended Regular Expressions
 –Extended Regular Expressions

feature summary, Editor Comparison Summary

future of, elvis Futures

GUI interfaces for, GUI Interfaces
 –Options

important command-line arguments, Important Command-Line Arguments
 –Important Command-Line Arguments

improvements over vi, Improved Editing Facilities
 –Visual Mode

infinite undo facility, Infinite Undo

initialization of, Initialization

interesting features, Interesting Features
 –Pre- and Post-Operation Control Files

line length, Arbitrary Length Lines and Binary Data

mode indicators, Mode Indicators

multiwindow editing, Multiwindow Editing
 –Multiwindow Editing

obtaining source code, Sources and Supported Operating Systems

print management, Display Modes

programming assistance, Programming Assistance
 –Syntax Highlighting

set command options (list), elvis 2.2 Options

sideways scrolling, Left-Right Scrolling

tag stacks, Tag Stacks

word abbreviations, Word Abbreviation

“elvis ex history” buffer, Command-Line History and Completion

elvis.arf file, Display Modes
 , Pre- and Post-Operation Control Files

elvis.awf file, Pre- and Post-Operation Control Files

elvis.brf file, Arbitrary Length Lines and Binary Data
 , Pre- and Post-Operation Control Files

elvis.bwf file, Pre- and Post-Operation Control Files

elvis.ini script, Initialization Steps

elvis.msg file, Initialization Steps
 , Interesting Features

ELVISPATH environment variable (elvis), Initialization Steps

elvispath option (elvis), Initialization Steps

Emacs text editor, The vi Text Editor
 , Graphical Vim (gvim)

vi editor versus, Tastes Great, Less Filling

vile editing model, The vile Editing Model

END key, mapping, Mapping Other Special Keys

endfunction statement, Defining Functions

ENTER command, Quitting Without Saving Edits

Enter key

moving with, Single Movements
 , Movement by Line

newlines in insert mode, Movement Within a Line

enum keyword (ctags), The New tags Format

epson values (lptype option), Display Modes

equalalways option, Window Sizing Options

equals sign (=)

:= (identify line) command, Defining a Range of Lines

\= metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

buffers, describing, Buffers and Their Interaction with Windows

equivalence classes, POSIX Bracket Expressions

:er, errlist commands (elvis), Edit-Compile Speedup

erasing (see deleting)

error finder, vile, Edit-Compile Speedup

errorformat option, Compiling and Checking Errors with Vim

errors, compiling and checking, Compiling and Checking Errors with Vim
 –Some Final Thoughts on Vim for Writing Programs

ESC for command mode, vi Commands

ESC key

command mode, entering, Modus Operandi

/etc/vi.exrc file (nvi), Initialization

:eval command (elvis), Interesting Features

ex commands, Quitting Without Saving Edits
 , ex Commands

combining, Combining ex Commands

editing on command line, Command-Line History and Completion

elvis editor, Command-Line History and Completion

nvi editor, Command-Line History and Completion

vile editor, Command-Line History and Completion

executing Unix commands, Executing Unix Commands

line addresses, ex Commands
 , Line Addresses

ranges of lines, Defining a Range of Lines
 , Redefining the Current Line Position

line addressing

redefining current line, Redefining the Current Line Position

relative addressing, Line Addressing Symbols

symbols for, Line Addressing Symbols

opening files and, Problems Opening Files

saving and exiting, Saving and Quitting a File
 , Saving and Exiting Files

saving files and, Problems Saving Files

tag stacking and, Tag Stacking

ex line editor, The vi Text Editor

ex scripts, Using ex Scripts

ex text editor, The vi Text Editor
 , Introducing the ex Editor

basics of, ex Basics

commands, Alphabetical Summary of ex Commands
 –

editing with, Editing with ex

executing buffers from, Executing Buffers from ex

filtering text with, Filtering text with ex

invoking on multiple files, Looping in a Shell Script

using ex commands in vi, The vi Text Editor

exclamation point (!)

buffers, interaction with, Buffers and Their Interaction with Windows

cinkeys syntax rules, The cinkeys option

ex commands starting with, Problems Saving Files

mapping keys for insert mode, Mapping Keys for Insert Mode

overriding save warnings, Saving and Exiting Files

for Unix commands, Executing Unix Commands
 , Filtering text with vi

“Executable” message, Problems Opening Files

execute command, The execute Command

executing text from buffers, @-Functions

EXINIT environment variable, Customizing vi

elvis editor, Initialization Steps

nvi editor, Initialization

“[Existing file]” message, Problems Saving Files

exists() function, The exists() Function

exiting ex (into vi), Problem Checklist

exiting vi, Saving and Quitting a File
 , Saving and Exiting Files

expr method, creating folds, Folding and Outlining (Outline Mode)

expressions, Expressions

.exrc files, Customizing vi
 , The .exrc File
 , Initialization
 , Example .exrc File

security concerning (elvis), Interesting Features

exrc option, Alternate Environments
 , Initialization
 , Initialization Steps

extended regular expressions, Extended Regular Expressions

elvis editor, Extended Regular Expressions
 –Extended Regular Expressions

nvi editor, Extended Regular Expressions
 –Extended Regular Expressions

vile editor, Extended Regular Expressions
 –Extended Regular Expressions

Vim editor, Extended Regular Expressions
 –Extended Regular Expressions

extended tags file format, Enhanced Tags
 –Exuberant ctags and Vim
 , Tag Stacks
 , Tag Stacks

extensions, Extensions

Exuberant ctags program, Enhanced Tags
 –Exuberant ctags and Vim
 , Tag Stacks
 , Tag Stacks

:exusage command (nvi), Online Help and Other Documentation

F

:f (file) command,

f (search line) command, Current Line Searches

F (search line) command, Current Line Searches

-f option (elvis), Important Command-Line Arguments

-F option, Important Command-Line Arguments

\f, \F metacharacters, Extended Regular Expressions

:fg (uncover window) command (nvi), Multiwindow Editing

:Fg (uncover window) command (nvi), Multiwindow Editing

“File exists” message, Problems Saving Files

“File is read only” message, Problems Opening Files
 , Problems Saving Files

file keyword (ctags), The New tags Format

“File system is full” message, Problems Saving Files

“File to load” prompt, The Toolbar

filec option (nvi), Command-Line History and Completion

files

accessing multiple, Accessing Multiple Files

copying into other files, Copying a File into Another File

current and alternate (% and #), Calling in New Files

deleting, Problems Saving Files

editing (see editing)

editing in other places, Editing Files in Other Places

executing ex scripts on, Using ex Scripts

extensions, Dynamic File Type Configuration Through Scripting

filenames, Opening a File
 , ex Commands

iterating through lists of, More Examples of Mapping Keys

multiwindow editing and, Multiwindow Initiation from the Command Line (Shell)

opening, Opening a File

multiple at once, Invoking vi on Multiple Files
 , Calling in New Files

previous file, Switching Files from vi

read-only mode, Read-Only Mode

at specific place, Advancing to a Specific Place

problems opening, Problems Opening Files

quitting (see quitting vi)

reading as vi environments, Alternate Environments

renaming buffer (ex), Renaming the Buffer

saving, Problems Saving Files
 (see saving edits)

writing (see writing the buffer)

:files command, Buffers and Their Interaction with Windows
 , Buffer Command Synopsis

FileType command, Autocommands

filtering text through Unix commands, Filtering Text Through a Command

:find-file command (vile), Multiwindow Editing

“First address exceeds second” message, Redefining the Current Line Position

first line of file

moving to, Movement Within a Screen

firstx, firsty option (elvis), Options

fold command,

foldc command,

foldcolumn margin, Manual Folding

foldenable, setting, A Few Words About the Other Fold Methods

folding, Folding and Outlining (Outline Mode)

manual, Manual Folding
 –Outlining

foldlevel command, Outlining

foldo command,

folds parameter (sessionoptions option), The mksession Command

fonts (see GUI interfaces)

for loops, Looping in a Shell Script

formatting codes, The vi Text Editor

Fox, Paul, vile: vi Like Emacs

Fred Fish disk 591, Author and History

FreeBSD, Completion by dictionary

FTP, Editing Files in Other Places

archives on vi, Amaze Your Friends!

function display mode (elvis), Syntax Highlighting

function keys, mapping, Mapping Function Keys

function keyword (ctags), The New tags Format

function statement, Defining Functions

functions

defining, Defining Functions

exists(), The exists() Function
 –The exists() Function

internal, Internal Functions
 –Internal Functions
 , Internal Functions

strftime, Using the strftime() function

G

:g (global replacement) command (ex), Context-Sensitive Replacement
 ,

collecting lines with (example), Collecting Lines

pattern-matching examples, Pattern-Matching Examples

repeating commands with (example), Using :g to Repeat a Command

replacement-string metacharacters, Metacharacters Used in Replacement Strings

search-pattern metacharacters, Metacharacters Used in Search Patterns

substitution tricks, More Substitution Tricks

g (global) command (ex), Global Searches

G (go to) command, The G (Go To) Command

g option (:s command), Global Replacement

-g option, GUI Options and Command Synopsis

gvim, Starting gvim

-G option (elvis), Important Command-Line Arguments

g: Vim variable, Variables

gg option, Line numbering

gI command, Insert Commands

gJ command, Copying and moving

global replacement, Global Replacement

confirming substitutions, Confirming Substitutions

context sensitivity, Context-Sensitive Replacement

examples of, Pattern-Matching Examples

global pattern-matching rules, Pattern-Matching Rules

pattern-matching rules

replacement-string metacharacters, Metacharacters Used in Replacement Strings

search-pattern metacharacters, Metacharacters Used in Search Patterns

substitution tricks, More Substitution Tricks

global searches (ex), Global Searches

globals parameter (sessionoptions option), The mksession Command

glossary

converting to troff (example), A Complex Mapping Example

GNU Emacs text editor, The vi Text Editor

gp command, Changing and deleting text

gP command, Changing and deleting text

gqap command, Changing and deleting text

Graphical User Interfaces (see GUI interfaces)

Graphical Vim (see gvim)

groups (syntax highlighting), Customization

:gui command, GUI Options and Command Synopsis

elvis, The Toolbar

GUI interfaces, Categories of Features

elvis editor, GUI Interfaces
 –Options

display modes, Syntax Highlighting
 , Display Modes
 –Display Modes

gvim, Graphical Vim (gvim)
 –GUI Options and Command Synopsis

vi clones, GUI Interfaces

vile editor, GUI Interfaces
 –Adding menus

guicursor option, GUI Options and Command Synopsis

guifont option, GUI Options and Command Synopsis

guifontset option, GUI Options and Command Synopsis

guifontwide option, GUI Options and Command Synopsis

guiheadroom option, GUI Options and Command Synopsis

guioptions option, Scrollbars
 , GUI Options and Command Synopsis

guitablabel option, GUI Options and Command Synopsis

guitabtooltip option, GUI Options and Command Synopsis

guw command, Changing and deleting text

gUw command, Changing and deleting text

gvim, Moving Around Windows (Getting Your Cursor from Here to There)
 , Graphical Vim (gvim)

menus, Useful Menus

mouse behavior and, Using the Mouse
 –Useful Menus

resizing windows and, Resizing Windows

starting, Starting gvim

tabbed editing, Tabbed Editing

$GVIMINIT environment variable, Starting gvim

.gvimrc startup file, Starting gvim

arrays and, Arrays

colorscheme command and, What’s Your Favorite Color (Scheme)?

functions, defining, Defining Functions

gzip utility, A Look Ahead

g~w command, Changing and deleting text

H

H (home) command, Movement Within a Screen

h (move cursor) command, Single Movements
 , Movement on the current line

-h option

vile editor, Important Command-Line Arguments

h status flag, Buffers and Their Interaction with Windows

Haley, Chuck, Author and History

hash mark (see pound sign (#))

help

elvis editor, Online Help and Other Documentation

nvi editor, Online Help and Other Documentation

vile editor, Online Help and Other Documentation

help buffer, Vim’s Special Buffers

:help command, Buffers and Their Interaction with Windows

:help (:h) command (vile), Online Help and Other Documentation

--help option, Multiwindow Editing Inside Vim

help parameter (sessionoptions option), The mksession Command

here documents, Here Documents

hex display mode (elvis), Arbitrary Length Lines and Binary Data
 , Display Modes

hid (hide) command,

hidden buffers, Hidden Buffers

Hiebert, Darren, Exuberant ctags

highlight command, The highlight command

highlight option, Customization

:historical-buffer command (vile), Multiwindow Editing

[History] buffer (vile), Command-Line History and Completion

history, command-line, Command-Line History and Completion

elvis editor, Command-Line History and Completion

nvi editor, Command-Line History and Completion

vile editor, Command-Line History and Completion

hold buffer, Metacharacters Used in Search Patterns
 , Extended Regular Expressions
 , Extended Regular Expressions

home (see first line of file)

HOME key, mapping, Mapping Other Special Keys

$HOME/.nexrc file (nvi), Initialization

horizontal scrolling, Left-Right Scrolling

elvis editor, Left-Right Scrolling

nvi editor, Left-Right Scrolling

vile editor, Left-Right Scrolling

horizontally splitting windows, Multiwindow Initiation from the Command Line (Shell)

horizscroll option, Left-Right Scrolling

Horton, Mark, Author and History

hp values (lptype option), Display Modes

HTML, HTML Your Text

html display mode (elvis), Tag Stacks
 , Display Modes
 –Display Modes

hyphen (-)

buffers, describing, Buffers and Their Interaction with Windows

manual folding and, Manual Folding

move cursor command, Single Movements
 , Movement by Line

for previous file lines (ex), Line Addressing Symbols

I

i (insert) command, The vi Text Editor
 , vi Commands
 , Insert Commands
 ,

I (insert) command, More Ways to Insert Text
 , Insert Commands

i flag (gvim mouse option), Using the Mouse

-i option, Command-Line Options

elvis editor, Important Command-Line Arguments

\i, \I metacharacters, Extended Regular Expressions

ibm values (lptype option), Display Modes

ic option, Metacharacters Used in Replacement Strings
 , The :set Command

IDEs (Integrated Development Environments), Categories of Features
 , Vim Enhancements for Programmers

if...then...else block, Conditional Execution
 , Arrays

ignorecase option, Some Useful Options

include files (C), Completion by keyword in current file and included files

:incremental-search command (vile), Incremental Searching

incremental searching, Incremental Searching

nvi editor, Incremental Searching

vile editor, Incremental Searching

incsearch option

elvis editor, Incremental Searching

Vim editor, Incremental Searching

indent method, creating folds, Folding and Outlining (Outline Mode)

indentation, Indentation Control

indentexpr method, Auto and Smart Indenting

indenting, Auto and Smart Indenting
 –Keyword and Dictionary Word Completion

infinite undo facility, Infinite Undo

elvis editor, Infinite Undo

nvi editor, Infinite Undo

vile editor, Infinite Undo

initialization

elvis editor, Initialization

nvi editor, Initialization

vile editor, Initialization

initialization for Vim, Categories of Features

inputtab option (elvis), Command-Line History and Completion

insert (i) command, The vi Text Editor
 ,

insert commands, Insert Commands

insert mode, The vi Text Editor
 , Modus Operandi
 , Insert Mode

gvim, using the mouse, Using the Mouse

mapping keys for, Mapping Keys for Insert Mode

mode indicators, Mode Indicators

word abbreviations, Word Abbreviation

inserting text, More Ways to Insert Text

a (append) command, Simple Edits
 , Appending Text

handling long insertions, Repeat
 , More Examples of Mapping Keys
 , Arbitrary Length Lines and Binary Data

elvis editor, Arbitrary Length Lines and Binary Data

nvi editor, Arbitrary Length Lines and Binary Data

vile editor, Arbitrary Length Lines and Binary Data

in insert mode, vi Commands

repeating insert with CTRL-@, Repeat

insertion completion command, Insertion Completion Commands
 –Some Final Comments on Vim Autocompletion

insertion-completion capabilities, Keyword and Dictionary Word Completion

Integrated Development Environments (IDEs), Categories of Features
 , Vim Enhancements for Programmers

interfaces for vi clones, GUI Interfaces

elvis editor, GUI Interfaces
 –Options

display modes, Syntax Highlighting
 , Display Modes
 –Display Modes

vile editor, GUI Interfaces
 –Adding menus

internal functions, Internal Functions

internationalization support

elvis editor, Interesting Features

nvi editor, Interesting Features

Internet, vi and, vi and the Internet

invoking vi

command-line options, Options When Starting vi

on multiple files, Invoking vi on Multiple Files

isfname option (Vim), Extended Regular Expressions

isident option (Vim), Extended Regular Expressions
 , Extended Regular Expressions

iskeyword option (Vim), Extended Regular Expressions
 , Completion by keyword in file

isprint option (Vim), Extended Regular Expressions

J

J (join) command, Joining Two Lines with J
 , Copying and moving

j (move cursor) command, Single Movements
 , Movement by Line

joining lines, Joining Two Lines with J

Joy, Bill, Author and History

ju (jump) command,

K

k (move cursor) command, Single Movements
 , Movement by Line

\k, \K metacharacters, Extended Regular Expressions

keystrokes, remembering with :map, Using the map Command

function keys and special keys, Mapping Function Keys

useful examples of, More Examples of Mapping Keys

keyword completion, Categories of Features
 , Keyword and Dictionary Word Completion
 –Tag Stacking

keyword display mode (elvis), Syntax Highlighting

kill ring (see deleting text, buffers for)

kind keyword (ctags), The New tags Format

Kirkendall, Steve, Elvis

L

L (last line) command, Movement Within a Screen

l (move cursor) command, Single Movements
 , Movement on the current line

\l metacharacter, Metacharacters Used in Replacement Strings
 –Metacharacters Used in Replacement Strings

\L metacharacter, Metacharacters Used in Replacement Strings

-l option, Command-Line Options

-L option, Command-Line Options

l: Vim variable, Variables

:last command (elvis, Vim), Using the Argument List

last line of file

$ symbol for (ex), Line Addressing Symbols

moving to, Movement Within a Screen

LaTeX formatter, The vi Text Editor

left/right scrolling, Left-Right Scrolling

elvis editor, Left-Right Scrolling

nvi editor, Left-Right Scrolling

vile editor, Left-Right Scrolling

leftright option (nvi), Left-Right Scrolling
 , Left-Right Scrolling

:let command, The exists() Function

line editors, The vi Text Editor
 , The vi Text Editor

line numbers, Movement Within a Line

displaying, Movement by Line Number
 , Defining a Range of Lines

in ex commands, ex Commands
 , Line Addresses

ranges of lines, Defining a Range of Lines
 , Redefining the Current Line Position

redefining current line, Redefining the Current Line Position

relative addressing, Line Addressing Symbols

symbols for, Line Addressing Symbols

moving by, Movement by Line Number

opening files at specific, Advancing to a Specific Place

line-editing mode, Problems Opening Files

lines, Review of Basic vi Commands

(see also characters; text; words)

case conversions, Changing Case

collecting with :g command, Collecting Lines

deleting by, Lines

undoing deletions, Problems with deletions

ex commands for, Editing with ex

joining, Joining Two Lines with J

length limitations, More Examples of Mapping Keys
 , Arbitrary Length Lines and Binary Data

elvis editor, Arbitrary Length Lines and Binary Data

nvi editor, Arbitrary Length Lines and Binary Data

vile editor, Arbitrary Length Lines and Binary Data

marking with ' (vile), Visual Mode

moving by, Movement Within a Line
 , Movement by Line

moving to specific, Movement Within a Screen
 , Movement by Line Number

moving within, Movement Within a Line

opening files at specific, Advancing to a Specific Place

placing C/C++ comments around (example), More Examples of Mapping Keys

printing, ex Commands

replacing (changing), Changing Text
 , Lines
 –Lines
 , Substituting text

searching within, Current Line Searches

to start/end of (see words)

visible on screen, option for, The :set Command

yanking, Copying Text

linewrap option (vile), Left-Right Scrolling

Linux, getting Vim for, Getting Vim for Unix and GNU/Linux
 –Getting Vim for Windows Environments

:loadview command, Folding and Outlining (Outline Mode)

local .exrc files, Alternate Environments
 , Initialization

localoptions parameter (sessionoptions option), The mksession Command

long insertions, Repeat
 , More Examples of Mapping Keys
 , Arbitrary Length Lines and Binary Data

elvis editor, Arbitrary Length Lines and Binary Data

nvi editor, Arbitrary Length Lines and Binary Data

vile editor, Arbitrary Length Lines and Binary Data

loops in shell scripts, Looping in a Shell Script

lowercase, converting to uppercase, Changing Case
 , Metacharacters Used in Replacement Strings

lpc, lpcrlf options (elvis), Display Modes

lpcolor option (elvis), Display Modes

lpcolumns option (elvis), Display Modes

lpcontrast option (elvis), Display Modes

lpconvert option (elvis), Display Modes

lpff, lpformfeed options (elvis), Display Modes

lplines option (elvis), Display Modes

lpo, lpout options (elvis), Display Modes

lpopt, lpoptions options (elvis), Display Modes

:lpr command (elvis), Display Modes

lprows option (elvis), Display Modes

lptype option (elvis), Display Modes

lpw, lpwrap options (elvis), Display Modes

:ls command, Buffers and Their Interaction with Windows

buffers, using, Buffer Command Synopsis

M

m (mark place) command, Marking Your Place

M (middle line) command, Movement Within a Screen

:m (move) command (ex), Editing with ex

-m option, Command-Line Options

-M option, Command-Line Options

Mac OS X, installing Vim, Where to Get Vim

macros, Macros

magic option, Some Useful Options

major modes, vile, Major Modes

Make button (elvis), The Toolbar

:make command (elvis), The Toolbar
 , Edit-Compile Speedup

make program, Compiling and Checking Errors with Vim

makeprg option, Compiling and Checking Errors with Vim

elvis editor, Edit-Compile Speedup

man display mode (elvis), Display Modes
 –Display Modes

manual folding, Manual Folding
 –Outlining

manual method, creating folds, Folding and Outlining (Outline Mode)

:map command (ex), Using the map Command
 ,

commands in .exrc files, The .exrc File

useful examples of, More Examples of Mapping Keys

maps, Using the map Command

function keys and special keys, Mapping Function Keys

for insert mode, Mapping Keys for Insert Mode

named buffer contents as, @-Functions

useful examples of, More Examples of Mapping Keys

margins

repeating long insertions, Repeat

setting, Movement Within a Line

marker method, creating folds, Folding and Outlining (Outline Mode)

marking your place, Marking Your Place

marks (vile visual mode), Visual Mode

matching brackets, A Special Search Command

:menu command, Basic menu customization
 , GUI Options and Command Synopsis

toolbars, Toolbars

menu support for xvile, Adding menus

menus, using gvim, Useful Menus
 , Menus
 –Toolbars

customizing, More menu customization

meta-information, Categories of Features

metacharacters, Pattern-Matching Rules

extended regular expressions, Extended Regular Expressions
 –Extended Regular Expressions

elvis editor, Extended Regular Expressions
 –Extended Regular Expressions

nvi editor, Extended Regular Expressions
 –Extended Regular Expressions

vile editor, Extended Regular Expressions
 –Extended Regular Expressions

Vim editor, Extended Regular Expressions
 –Extended Regular Expressions

Microsoft Windows (see MS Windows)

middle line, moving to, Movement Within a Screen

mini-hilite option (vile), Command-Line History and Completion

minus sign (see hyphen)

mksession command, The mksession Command

:mkview command, Folding and Outlining (Outline Mode)

mode indicators (vi clones), Mode Indicators

:modeline-format command (vile), Miscellaneous Small Features

modeline option, Editing Binary Files

modes, Modus Operandi

Moolenaar, Bram, Vim (vi Improved): An Introduction
 , vi Quotes

Morgan, Clark, vile: vi Like Emacs

Mortice Kern Systems, Editing Program Source Code

mouse behavior

elvis editor, Mouse Behavior

gvim, Using the Mouse
 –Useful Menus

:move command (ex), Editing with ex

:move-next-window-down command (vile), Multiwindow Editing

:move-next-window-up command (vile), Multiwindow Editing

:move-window-left command (vile), Multiwindow Editing

:move-window-right command (vile), Multiwindow Editing

movement commands, Movement Commands

moving

among multiple files, Invoking vi on Multiple Files

lines, Editing with ex

switching database items (example), Switching Items in a Textual Database

text (delete-and-put), Simple Edits

numbered deletion/yank buffers, Moving Text
 , Making Use of Buffers

text blocks by patterns, Block Move by Patterns

moving the cursor, Moving the Cursor
 , Movement Within a Screen

commands for, Review of vi Motion Commands

to marks, Marking Your Place

opening files at specific place, Advancing to a Specific Place

by searching for patterns, Movement by Searches
 , Movement by Line Number

by text blocks, Movement by Text Blocks
 , Movement by Text Blocks

xvile interface, Setting the cursor position and mouse motions

MS Windows, using gvim, Graphical Vim (gvim)
 , gvim in Microsoft Windows

mugs with vi logo, vi for Java Lovers

multiwindow editing, Multiwindow Editing
 –Multiwindow Editing

elvis editor, Multiwindow Editing
 –Multiwindow Editing

initiation, Initiating Multiwindow Editing
 –Opening Windows

nvi editor, Multiwindow Editing
 –Multiwindow Editing

vile editor, Multiwindow Editing
 –Multiwindow Editing

Vim editor, Multiple Windows in Vim
 –Summary

N

:n (next file) command (ex), Invoking vi on Multiple Files

n (search again) command, Repeating Searches
 , Confirming Substitutions

N (search again) command, Repeating Searches

n flag (mouse option), Using the Mouse

\n metacharacter, Extended Regular Expressions

-N option, Command-Line Options

vile editor, Important Command-Line Arguments

-n option, Command-Line Options

named buffers, Copying Text
 , Yanking to Named Buffers
 , Edits Between Files

arbitrarily naming (nvi), Interesting Features

executing contents of, @-Functions

nested folds, Folding and Outlining (Outline Mode)

:new command, Options During Splits
 , Window Commands (Vim)
 ,

elvis, Multiwindow Editing

“[new file]” message, Problems Opening Files

newline characters, Movement Within a Line
 , Arbitrary Length Lines and Binary Data

NEXINIT environment variable, Initialization

.nexrc file (nvi), Initialization

:Next command (nvi), Multiwindow Editing

:next-tag command (vile), Tag Stacks

:next-window command (vile), Multiwindow Editing

:no (:normal) command (elvis), Display Modes
 , Display Modes

“No Toolkit” vile interface, GUI Interfaces

“No write since last change” message, Problems Opening Files
 , Saving and Exiting Files

noexpandtab option, Editing Binary Files

noh command,

noignorecase option, Some Useful Options

nolinewrap option (vile), Left-Right Scrolling

nomagic option, Some Useful Options

non-ASCII characters, Digraphs: Non-ASCII Characters

“Non-ascii file” message, Problems Opening Files

nonu (nonumber) option, Defining a Range of Lines

--noplugin option, Command-Line Options

:normal (:no) command (elvis), Display Modes
 , Display Modes

normal display mode (elvis), Display Modes

normal mode (gvim), Using the Mouse

“Not a typewriter” message, Problems Opening Files

notagstack option (elvis), Tag Stacks

nowrap option, What’s My Line (Size)?

elvis editor, Left-Right Scrolling

nowrapscan option, Repeating Searches
 , Some Useful Options

nroff formatting package, The vi Text Editor

nu option, Movement Within a Line
 , Movement by Line Number
 ,

num command, Changing and deleting text

numbered deletions/yanks buffers, Moving Text
 , Making Use of Buffers

numbers for lines (see line numbers)

numeric arguments for commands, Numeric Arguments
 , Numeric Arguments for Insert Commands

nvi (vi clone), nvi: New vi
 –Sources and Supported Operating Systems

documentation and online help, Online Help and Other Documentation

extended regular expressions, Extended Regular Expressions
 , Extended Regular Expressions
 –Extended Regular Expressions

feature summary, Editor Comparison Summary

important command-line arguments, Important Command-Line Arguments
 –Important Command-Line Arguments

improvements over vi, Improvements for Editing
 –Left-Right Scrolling

infinite undo facility, Infinite Undo

initialization of, Initialization

interesting features, Interesting Features

line length, Arbitrary Length Lines and Binary Data

mode indicators, Mode Indicators

multiwindow editing, Multiwindow Editing
 –Multiwindow Editing

obtaining source code, Sources and Supported Operating Systems

set command options (list), nvi 1.79 Options

sideways scrolling, Left-Right Scrolling

tag stacks, Tag Stacks
 –Tag Stacks

word abbreviations, Word Abbreviation

O

o (open line) command, More Ways to Insert Text
 , Insert Commands

O (open line) command, More Ways to Insert Text
 , Insert Commands

-o option, Command-Line Options

elvis editor, Important Command-Line Arguments

-O option, Command-Line Options

obtaining source code

elvis editor, Sources and Supported Operating Systems

nvi editor, Sources and Supported Operating Systems

vile editor, Sources and Supported Operating Systems

“one line” command, Manual Folding

online help

elvis editor, Online Help and Other Documentation

nvi editor, Online Help and Other Documentation

vi tutorial, Online vi Tutorial

vile editor, Online Help and Other Documentation

open mode (elvis), Interesting Features

“[open mode]” message, Problems Opening Files

opening files

multiple files at once, Invoking vi on Multiple Files
 , Calling in New Files

previous file, Switching Files from vi

read-only mode, Read-Only Mode

at specific place, Advancing to a Specific Place

options parameter (sessionoptions option), The mksession Command

options, set command, The :set Command

(see also :set command)

list, Setting Options

viewing current, The :set Command

options, vi command, Options When Starting vi

other display mode (elvis), Syntax Highlighting

outline mode, Folding and Outlining (Outline Mode)
 –Auto and Smart Indenting
 , Outlining

output (Unix), reading into files, Executing Unix Commands

overstrike mode, Substituting text

P

:p (print) command (ex), ex Commands
 ,

p (put) command, Simple Edits
 , Problems with deletions
 , Moving Text

with named buffers, Copying Text
 , Yanking to Named Buffers
 , Edits Between Files

P (put) command, Moving Text

with named buffers, Copying Text
 , Yanking to Named Buffers
 , Edits Between Files

:p (put) command (ex), Edits Between Files

\p, \P metacharacters, Extended Regular Expressions
 , Extended Regular Expressions

PAGE UP, PAGE DOWN keys, mapping, Mapping Other Special Keys

pana values (lptype option), Display Modes

paragraphs

delimiters for, Movement by Text Blocks

moving by, Movement by Text Blocks

parentheses ()

((move cursor) command, Movement by Text Blocks

) (move cursor) command, Movement by Text Blocks

\(...\) metacharacters, Metacharacters Used in Search Patterns
 , Extended Regular Expressions

\(…\) metacharacters, Extended Regular Expressions

finding and removing, More Examples of Mapping Keys

as grouping metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

matching, A Special Search Command

parts of files, saving, Saving Part of a File

:paste-to-clipboard command (xvile), Clipboard

PATH environment variable, installing Vim, Where to Get Vim

“Pattern not found” message, Movement by Searches

pattern searching, Movement by Searches

configuration options for, Some Useful Options

ex commands for, Search Patterns
 , Global Searches

global pattern-matching rules, Pattern-Matching Rules

examples, Pattern-Matching Examples

replacement-string metacharacters, Metacharacters Used in Replacement Strings

search-pattern metacharacters, Metacharacters Used in Search Patterns

substitution tricks, More Substitution Tricks

incremental searching (vi clones), Incremental Searching

nvi editor, Incremental Searching

vile editor, Incremental Searching

making case-insensitive, The :set Command

matching brackets, A Special Search Command

opening files at specific place, Advancing to a Specific Place

replacing text and (see replacing text)

within lines, Current Line Searches

wrapping searches, Movement by Searches
 , Repeating Searches

percent sign (%)

buffers, describing, Buffers and Their Interaction with Windows

for current filename, Calling in New Files

every line symbol (ex), Global Replacement

matching brackets, A Special Search Command

meta-information, extracting, Categories of Features

representing every line (ex), Line Addressing Symbols

period (.) (see dot)

current line symbol (ex), Line Addressing Symbols

metacharacter, Metacharacters Used in Search Patterns

repeat command, Repeat
 , Confirming Substitutions

“Permission denied” message, Problems Opening Files
 , Problems Saving Files

pin-tagstack option (vile), Tag Stacks

pipe (|) (see vertical bar)

piping into vile, Miscellaneous Small Features

place marking, Marking Your Place

plug-ins for Vim, Categories of Features

plus sign (+), Command-Line Options

\+ metacharacter, Extended Regular Expressions
 , Extended Regular Expressions
 , Extended Regular Expressions

buffers, describing, Buffers and Their Interaction with Windows

metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

move cursor command, Single Movements
 , Movement by Line
 , Movement by Line

for next file lines (ex), Line Addressing Symbols

running commands when starting vi, Advancing to a Specific Place

:po command (Solaris vi), Solaris vi

:pop (:po) command

elvis editor, Tag Stacks

vile editor, Tag Stacks

:position-window command (vile), Multiwindow Editing

POSIX standards, Compare and Contrast with vi

post-read, post-write files (elvis), Initialization Steps
 , Pre- and Post-Operation Control Files

postprocessing (Vim), Categories of Features

pound sign (#)

for alternate filename, Calling in New Files

buffers, describing, Buffers and Their Interaction with Windows

meta-information, extracting, Categories of Features

show line numbers command, Defining a Range of Lines

:pre command,

ex, Problems Saving Files
 , Recovering a Buffer

pre-read, pre-write files (elvis), Initialization Steps
 , Pre- and Post-Operation Control Files

prep display mode (elvis), Syntax Highlighting

prev command,

:Previous command (nvi), Multiwindow Editing

previous file, switching to, Switching Files from vi

:previous-window command (vile), Multiwindow Editing

printing

elvis print management, Display Modes

lines, ex Commands

procedure language, vile, The Procedure Language

programming assistance, Programming Assistance
 –Syntax Highlighting
 , Vim Enhancements for Programmers
 –Some Final Thoughts on Vim for Writing Programs

edit-compile speedup, Edit-Compile Speedup

elvis editor, Edit-Compile Speedup

vile editor, Edit-Compile Speedup

elvis editor, Programming Assistance
 –Syntax Highlighting

source code editing, Editing Program Source Code

indentation control, Indentation Control

matching brackets, A Special Search Command

using tags, Using Tags

syntax highlighting, Syntax Highlighting

elvis display modes, Syntax Highlighting
 , Display Modes
 –Display Modes

vile editor, Syntax Highlighting

using tags, Enhanced Tags
 –Exuberant ctags and Vim

vile editor, Programming Assistance
 –Syntax Highlighting

Vim editor, Categories of Features

prompt line, Opening a File

ps, ps2 values (lptype option), Display Modes

:pu (put) command,

putting text, Simple Edits

deleting and (cut-and-paste), Moving Text

from named buffers, Copying Text
 , Yanking to Named Buffers
 , Edits Between Files

yanking and (copy-and-paste), Copying Text

Q

:q (quit) command (ex), Saving and Quitting a File
 , Saving and Exiting Files

:q! command, Saving and Exiting Files

Q command, Problem Checklist

:q (quoted motion) command (vile), Visual Mode

:q! command, Quitting Without Saving Edits
 , Command-Line Options

quitting, Problems Opening Files

qa command,

:qall command (elvis), Multiwindow Editing

question mark (?)

\? metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

search command, The vi Text Editor
 , Movement by Searches

quickfix buffer, Vim’s Special Buffers

Quickfix List window, Compiling and Checking Errors with Vim

quipty option, GUI Options and Command Synopsis

Quit button (elvis), The Toolbar

:quit command, Closing and Quitting Windows

quitting vi, Saving and Exiting Files

XXX_DQUOTE (yank from buffer) command, Recovering Deletions
 , Yanking to Named Buffers

quote (XXX_DQUOTE) command, Recovering Deletions
 , Yanking to Named Buffers

quoted motion (q) command (vile), Visual Mode

quotes about vi, vi Quotes

R

:r (read) command (ex), Copying a File into Another File
 ,

r (replace character) command, Characters
 , Numeric Arguments for Insert Commands

R (replace character) command, Substituting text
 , More Ways to Insert Text
 , Insert Commands

\r metacharacter, Extended Regular Expressions

-R option, Read-Only Mode
 , Recovering a Buffer
 , Command-Line Options

vile editor, Important Command-Line Arguments

-r option, Recovering a Buffer

elvis editor, Important Command-Line Arguments

-R option

nvi editor, Important Command-Line Arguments

range of lines, Defining a Range of Lines
 , Redefining the Current Line Position

rcp (remote copy), Editing Files in Other Places

:read command (ex), Copying a File into Another File

reading Unix command output, Executing Unix Commands

read-hook option (vile), The Procedure Language

“Read Only” files, Problems Opening Files

“[Read only]” message, Problems Opening Files

read-only mode, Read-Only Mode

read-only registers (Vim), Categories of Features

rec command,

recovering deletions, Problems with deletions
 , Recovering Deletions

recovering the buffer, Recovering a Buffer

red command,

redrawing screen, Redrawing the Screen

reformatting text (vile), Miscellaneous Small Features

regular expressions, Pattern-Matching Rules
 , Extended Regular Expressions
 –Extended Regular Expressions

elvis editor, Extended Regular Expressions
 –Extended Regular Expressions

metacharacters

in replacement strings, Metacharacters Used in Replacement Strings

in search patterns, Metacharacters Used in Search Patterns

substitution tricks, More Substitution Tricks

nvi editor, Extended Regular Expressions
 –Extended Regular Expressions

pattern-matching examples, Pattern-Matching Examples

vile editor, Extended Regular Expressions
 –Extended Regular Expressions

Vim editor, Extended Regular Expressions
 –Extended Regular Expressions

relative line addressing (ex), Line Addressing Symbols

relative pathnames, Opening a File

renaming buffer (ex), Renaming the Buffer

repeating commands, Repeat
 –Repeat

:g command for (example), Using :g to Repeat a Command

global substitutions, More Substitution Tricks

pattern searches, Repeating Searches
 , Current Line Searches

searching numbered buffers, Recovering Deletions

replacing text, Simple Edits
 , Changing Text

by characters, Characters

globally, Global Replacement

confirming substitutions, Confirming Substitutions

context sensitivity, Context-Sensitive Replacement

replacement-string metacharacters, Metacharacters Used in Replacement Strings

substitution tricks, More Substitution Tricks

by lines, Lines
 –Lines
 , Substituting text

searching and, Changing through searching

by words, Words
 –Words

repositioning screen, Repositioning the Screen with z

res command,

:resize command, Window Resize Commands

nvi, Multiwindow Editing

resize parameter (sessionoptions option), The mksession Command

:resize-window command (vile), Multiwindow Editing

:restore-window command (vile), Multiwindow Editing

:reverse-incremental-search command (vile), Incremental Searching

rew command,

:rew, :rewind commands (ex), Using the Argument List

right margin, setting, Movement Within a Line

right/left scrolling, Left-Right Scrolling

elvis editor, Left-Right Scrolling

nvi editor, Left-Right Scrolling

vile editor, Left-Right Scrolling

rm command (Unix), Problems Saving Files

ruler option, Mode Indicators

S

s (substitute) command, Substituting text
 , More Ways to Insert Text
 –Numeric Arguments for Insert Commands
 , Insert Commands

S (substitute) command, Substituting text
 , More Ways to Insert Text
 –Numeric Arguments for Insert Commands
 , Insert Commands

s (substitute) command (ex), ex Commands
 , Global Replacement
 –Global Replacement

context-sensitive replacement, Context-Sensitive Replacement

pattern-matching examples, Pattern-Matching Examples

replacement-string metacharacters, Metacharacters Used in Replacement Strings

search-pattern metacharacters, Metacharacters Used in Search Patterns

substitution tricks, More Substitution Tricks

vile editor, The vile Editing Model

-s option, Command-Line Options

elvis editor, Important Command-Line Arguments

nvi editor, Important Command-Line Arguments

vile editor, Important Command-Line Arguments

-S option

elvis editor, Important Command-Line Arguments

nvi editor, Important Command-Line Arguments

-S option, Command-Line Options

-SS option (elvis), Important Command-Line Arguments

\s, \S metacharacters, Extended Regular Expressions
 , Extended Regular Expressions

s: Vim variable, Variables

:safely command (elvis), Interesting Features

:sall (:sa) command (elvis), Multiwindow Editing

sam editor, The vi Text Editor

:save-window command (vile), Multiwindow Editing

saving commands, Saving Commands

saving edits, Saving and Quitting a File
 , Saving and Exiting Files
 , Saving and Exiting

appending to saved files, Appending to a Saved File

iterating through list of files, More Examples of Mapping Keys

preserving the buffer, Recovering a Buffer

saving parts of files, Saving Part of a File

sb command,

:sbfirst command, Buffer Command Synopsis

:sbmod command, Buffer Command Synopsis

sbn command,

:sbnext command, Buffer Command Synopsis

:sbNext command, Buffer Command Synopsis

:sbprevious command, Buffer Command Synopsis

:sbuffer command, Buffer Command Synopsis

scope keyword (ctags), The New tags Format

scp (secure remote copy over SSH), Editing Files in Other Places

scratch buffer, Vim’s Special Buffers

screen editors, The vi Text Editor

screens

left/right scrolling, Left-Right Scrolling

elvis editor, Left-Right Scrolling

nvi editor, Left-Right Scrolling

vile editor, Left-Right Scrolling

moving cursor (see moving the cursor)

multiwindow editing, Multiwindow Editing
 –Multiwindow Editing

elvis editor, Multiwindow Editing
 –Multiwindow Editing

nvi editor, Multiwindow Editing
 –Multiwindow Editing

vile editor, Multiwindow Editing
 –Multiwindow Editing

redrawing, Redrawing the Screen

repositioning, Repositioning the Screen with z

scrolling, Movement by Screens

setting number of lines shown, The :set Command

scripting for Vim, Categories of Features

scripts

ex, Using ex Scripts

Vim, Vim Scripts
 –Resources

:scroll-next-window-down command (vile), Multiwindow Editing

:scroll-next-window-up command (vile), Multiwindow Editing

scrollbars, Scrollbars

gvim, Scrollbars

xvile, Scrollbars

scrolling, Movement by Screens

without moving cursor, Repositioning the Screen with z

scrolling right/left, Left-Right Scrolling

elvis editor, Left-Right Scrolling

nvi editor, Left-Right Scrolling

vile editor, Left-Right Scrolling

se command,

searchincr option (nvi), Incremental Searching
 , Incremental Searching
 , Incremental Searching

searching

for class of words, Search for General Class of Words

metacharacters for, Pattern-Matching Rules

searching for patterns, Movement by Searches

configuration options for, Some Useful Options

ex commands for, Search Patterns
 , Global Searches

global pattern-matching rules, Pattern-Matching Rules

examples, Pattern-Matching Examples

replacement-string metacharacters, Metacharacters Used in Replacement Strings

search-pattern metacharacters, Metacharacters Used in Search Patterns

substitution tricks, More Substitution Tricks

incremental searching (vi clones), Incremental Searching

nvi editor, Incremental Searching

vile editor, Incremental Searching

making case-insensitive, The :set Command

matching brackets, A Special Search Command

opening files at specific place, Advancing to a Specific Place

replacing text and (see replacing text)

within lines, Current Line Searches

wrapping searches, Movement by Searches
 , Repeating Searches

searching numbered buffers, Recovering Deletions

sections, moving by, Movement by Text Blocks

security, elvis, Interesting Features

sed stream editor, Beyond ex

select mode (gvim), Using the Mouse

selecting text with xvile, Selections

semicolon (;)

for line ranges (ex), Redefining the Current Line Position

repeat search command, Current Line Searches

sentences

delimiters for, Movement by Text Blocks

moving by, Movement by Text Blocks

sesdir parameter (sessionoptions option), The mksession Command

session context for Vim, Categories of Features

session files, elvis, The Session File

sessionoptions option, The mksession Command

sessions (Vim), Multiple Windows in Vim

:set command, Categories of Features
 , The :set Command

commands in .exrc files, The .exrc File

ex, Customizing vi

list of options for, Setting Options

viewing current options, The :set Command

mouse options and, Using the Mouse

:set-window command (vile), Multiwindow Editing

:sfind command, Options During Splits

sftp (secure FTP), Editing Files in Other Places

:sh (create shell) command (ex), Executing Unix Commands

:sh command (ex), Problems Saving Files
 ,

shell, Unix, Executing Unix Commands

shiftwidth, using outline modes, Outlining

shmode mode (vile; example), Major Modes

:show-history command (vile), Command-Line History and Completion

:show-tagstack command (vile), Tag Stacks

:show-commands command (vile), Online Help and Other Documentation

showmode option, Mode Indicators

:shrink-window command (vile), Multiwindow Editing

sidescroll option (nvi), Left-Right Scrolling

sidescroll value, Left-Right Scrolling
 , Left-Right Scrolling

sidescrolloff option, What’s My Line (Size)?

sideways scrolling, Left-Right Scrolling

elvis editor, Left-Right Scrolling

nvi editor, Left-Right Scrolling

vile editor, Left-Right Scrolling

slash (/)

pathname separator, Opening a File

referring to marks (vile), Visual Mode

search command, The vi Text Editor
 , Movement by Searches

opening files at specific place, Advancing to a Specific Place

slash parameter (sessionoptions option), The mksession Command

:slast (:sl) command (elvis), Multiwindow Editing

smart indenting, Auto and Smart Indenting
 –Keyword and Dictionary Word Completion

smartindent method, Auto and Smart Indenting

sn command,

:snew (:sne) command (elvis), Multiwindow Editing

:sNext (:sN) command (elvis), Multiwindow Editing
 , Multiwindow Editing

:so command (ex), Alternate Environments

Solaris vi

set command options (list), Solaris vi Options

tag stacks, Using Tags
 , Solaris vi
 –Exuberant ctags and Vim

word abbreviations, Word Abbreviation

sort command (Unix), Executing Unix Commands

sorting

text blocks (example), Sorting Text Blocks: A Sample ex Script

source code editing, Editing Program Source Code

indentation control, Indentation Control

matching brackets, A Special Search Command

using tags, Using Tags
 , Enhanced Tags
 –Exuberant ctags and Vim

sourced, finding startup files, Starting gvim

sp command,

spaces (see whitespace)

special buffers, Vim’s Special Buffers

spellchecking, The vi Text Editor

Split button (elvis), The Toolbar

:split command, Multiwindow Editing Inside Vim

buffers, using, Buffers and Their Interaction with Windows

elvis, Multiwindow Editing

opening new windows, New Windows

vile, Multiwindow Editing

:split-current-window command (vile), Multiwindow Editing
 , Multiwindow Editing

split windows (see multiwindow editing)

spr command,

:srewind (:sre) command (elvis), Multiwindow Editing

st command,

:stack (:stac) command (elvis), Tag Stacks

stacks, tags, Tag Stacks
 –Exuberant ctags and Vim

elvis editor, Tag Stacks

nvi editor, Tag Stacks
 –Tag Stacks

Solaris vi, Using Tags
 , Solaris vi
 –Exuberant ctags and Vim

vile editor, Tag Stacks

:stag (:sta) command (elvis), Multiwindow Editing

:stag[!] tag, Playing Tag with Windows

starting vi (see invoking vi)

state transitions for Vim, Categories of Features

status line (see prompt line)

status-line commands, Status-Line Commands

statusline option, A Nice Vim Piggybacking Trick

stevie editor, Author and History
 , Author and History

stopshell option (elvis), Options

strftime() function, Using the strftime() function

string display mode (elvis), Syntax Highlighting

struct keyword (ctags), The New tags Format

sts command, Tag Stacking

stty command, A Brief Historical Perspective

su command,

substitute (:s) command (ex), ex Commands
 , Global Replacement
 –Global Replacement

context-sensitive replacement, Context-Sensitive Replacement

pattern-matching examples, Pattern-Matching Examples

replacement-string metacharacters, Metacharacters Used in Replacement Strings

search-pattern metacharacters, Metacharacters Used in Search Patterns

substitution tricks, More Substitution Tricks

vile editor, The vile Editing Model

substituting text (see changing text)

:sunhide command, Buffer Command Synopsis

sv command,

:sview command, Options During Splits

switching database items (example), Switching Items in a Textual Database

switching words (example), Using the map Command
 , More Examples of Mapping Keys

:syntax command, Getting Started

syntax display mode (elvis), Display Modes

syntax extensions for Vim, Categories of Features

syntax files, Overriding syntax files

syntax folding method, A Few Words About the Other Fold Methods

syntax highlighting, Syntax Highlighting
 , Syntax Highlighting
 –Compiling and Checking Errors with Vim

customizing, Customization

elvis display modes, Syntax Highlighting
 , Display Modes
 –Display Modes

vile editor, Syntax Highlighting

syntax method, creating folds, Folding and Outlining (Outline Mode)

system failure, recovering after, Recovering a Buffer

T

:t (copy) command (ex), Editing with ex

t (search line) command, Current Line Searches

T (search line) command, Current Line Searches

^T command, Tag Stacking

\t metacharacter, Extended Regular Expressions

-t option, Command-Line Options

elvis editor, Important Command-Line Arguments

nvi editor, Important Command-Line Arguments

vile editor, Important Command-Line Arguments

-T option, Command-Line Options

t: Vim variable, Variables

:Ta, Tag commands (nvi), Multiwindow Editing
 , Tag Stacks

ta, tag commands (nvi), Tag Stacks

:ta, tag commands (Solaris vi), Solaris vi

<TAB>, using menu entries, Basic menu customization

:tabclose command, Tabbed Editing

:tabnew command, Tabbed Editing

:tabonly command, Tabbed Editing

tabpages parameter (sessionoptions option), The mksession Command

tabs, editing, Tabbed Editing

:tag (:ta) command

elvis editor, Tag Stacks

vile editor, Tag Stacks

:tag command, Tag Stacks
 –Exuberant ctags and Vim
 , Tag Stacks

:tag command (ex), Using Tags

tag stacks, Tag Stacks
 –Exuberant ctags and Vim
 , Tag Stacking
 –Syntax Highlighting

elvis editor, Tag Stacks

nvi editor, Tag Stacks
 –Tag Stacks

Solaris vi, Using Tags
 , Solaris vi
 –Exuberant ctags and Vim

vile editor, Tag Stacks

tag windowing commands, Playing Tag with Windows

tagignorecase option (vile), Tag Stacks

taglength option, Tag Stacks

elvis editor, Tag Stacks

Solaris vi, Solaris vi

vile editor, Tag Stacks

:tagp, tagpop commands (nvi), Tag Stacks

tagpath option

elvis editor, Tag Stacks

Solaris vi, Solaris vi

tagprg option (elvis), Tag Stacks

tagrelative option (vile), Tag Stacks

:tags command (Solaris vi), Exuberant ctags and Vim

tags file format, The New tags Format
 –The New tags Format
 , Tag Stacks

tags option

elvis editor, Tag Stacks

nvi editor, Tag Stacks

Solaris vi, Solaris vi

vile editor, Tag Stacks

tagstack option

elvis editor, Tag Stacks

Solaris vi, Solaris vi

:tagt, tagtop commands (nvi), Tag Stacks

tagword option (vile), Tag Stacks

TERM environment variable, A Brief Historical Perspective
 , Problems Opening Files

opening files and, Problems Opening Files

termcap entries, Problems Opening Files
 , Customizing vi

“Termcap entry too long” message, Problems Opening Files

termcap library, A Brief Historical Perspective

terminal type, Problems Opening Files

terminfo entries, Problems Opening Files
 , Customizing vi

terminfo library, A Brief Historical Perspective

tex display mode (elvis), Display Modes
 –Display Modes

Tex formatter, The vi Text Editor

text, Review of Basic vi Commands

(see also characters; lines; words)

case conversions, Changing Case
 , Metacharacters Used in Replacement Strings
 –Metacharacters Used in Replacement Strings

copying (yank-and-put), Simple Edits
 , Copying Text

deleting, Simple Edits
 , Deleting Text
 , Current Line Searches

by characters, vi Commands
 , Characters

with ex editor, Search Patterns

by lines, Lines

named buffers for, Copying Text
 , Yanking to Named Buffers
 , Edits Between Files

numbered buffers for, Moving Text
 , Making Use of Buffers

recovering deletions, Recovering Deletions

undoing deletions, Problems with deletions

by words, Words

filtering through Unix commands, Filtering Text Through a Command

finding and deleting parentheses, More Examples of Mapping Keys

indentation control, Indentation Control

inserting, More Ways to Insert Text

a (append) command, Simple Edits
 , Appending Text

handling long insertions, Repeat
 , More Examples of Mapping Keys
 , Arbitrary Length Lines and Binary Data
 , Arbitrary Length Lines and Binary Data
 , Arbitrary Length Lines and Binary Data
 , Arbitrary Length Lines and Binary Data

in insert mode, Modus Operandi
 , vi Commands

moving, Moving Text

switching database items (example), Switching Items in a Textual Database

moving (delete-and-put), Simple Edits

reformatting (vile), Miscellaneous Small Features

replacing (changing), Simple Edits
 , Changing Text
 , Changing through searching

globally, Global Replacement

searching for (see pattern searching)

transposing characters, Transposing two letters

text blocks

filtering through Unix commands, Filtering Text Through a Command

moving by patterns, Block Move by Patterns

range of lines (ex), Defining a Range of Lines
 , Redefining the Current Line Position

saving parts of files, Saving Part of a File

sorting (example), Sorting Text Blocks: A Sample ex Script

text blocks, moving by, Movement by Text Blocks
 , Movement by Text Blocks

text editors, The vi Text Editor

textwidth option, Editing Binary Files

thesaurus option, Completion by thesaurus

tilde (~)

:~ (substitute using last search pattern) command (ex), More Substitution Tricks

along left screen margin, Opening a File

case conversion command, Changing Case

folding, Manual Folding

as last replacement text, Metacharacters Used in Search Patterns

metacharacter, Metacharacters Used in Replacement Strings
 , Extended Regular Expressions

tl (taglength) option

elvis editor, Tag Stacks

Solaris vi, Solaris vi

/tmp (special filename, nvi), Interesting Features

:toggle-buffer-list command (vile), Multiwindow Editing

toggle options (ex), setting, The :set Command

TOhtml command, HTML Your Text

toolbar option, GUI Options and Command Synopsis

toolbar, elvis, The Toolbar

toolbars, Toolbars

tools, programming, Vim Enhancements for Programmers
 –Some Final Thoughts on Vim for Writing Programs

:topleft command, Conditional Split Commands

transitions (state) for Vim, Categories of Features

transparent edition, Categories of Features

transposing characters, Transposing two letters

transposing words, Transposing two letters

transposing words (example), Using the map Command
 , More Examples of Mapping Keys

troff

alphabetizing glossary (example), Sorting Text Blocks: A Sample ex Script

converting glossary to (example), A Complex Mapping Example

formatting package, The vi Text Editor

put emboldening codes around words, More Examples of Mapping Keys

troubleshooting

deleting text, Problems with deletions
 –Characters

:tselect command, Playing Tag with Windows

type-over (see c command)

U

u (undo) command, Problems with deletions
 , Undo
 –Undo

buffer recovery, Recovering Deletions

U (undo) command, Problems with deletions
 , Undo

-U gvimrc option, GUI Options and Command Synopsis

\u metacharacter, Metacharacters Used in Replacement Strings
 –Metacharacters Used in Replacement Strings

\U metacharacter, Metacharacters Used in Replacement Strings

-u option, Command-Line Options

u status flag, Buffers and Their Interaction with Windows

underscore (_), using in file names, Opening a File

undoing, Undo
 –Undo

infinitely (vi clones), Infinite Undo

elvis editor, Infinite Undo

nvi editor, Infinite Undo

vile editor, Infinite Undo

recovering deletions, Problems with deletions
 , Recovering Deletions

text deletions, Problems with deletions

undolevels option, Undoing Undos

elvis editor, Infinite Undo

undolimit option (vile), Infinite Undo

undos, Undoing Undos

:unhide command, Buffer Command Synopsis

Unix

commands, Executing Unix Commands

Vim, installing, Getting Vim for Unix and GNU/Linux

unix parameter (sessionoptions option), The mksession Command

“Unknown terminal type” message, Problems Opening Files

unm command,

uppercase, converting to lowercase, Changing Case
 , Metacharacters Used in Replacement Strings

/usr/tmp directory, Problems Saving Files

V

-v option, Command-Line Options

vile editor, Important Command-Line Arguments

-V option, Command-Line Options

-V option (elvis), Important Command-Line Arguments

v, V commands (elvis block mode), Visual Mode

v: Vim variable, Variables

v:fname_in variable, What’s the Difference?

v:fname_new variable, What’s the Difference?

v:fname_out variable, What’s the Difference?

/var/tmp directory, Problems Saving Files

variable display mode (elvis), Syntax Highlighting

variables, Variables
 –Variables

buffer, Buffer Variables

global, using Vim scripts, Tuning a Vim Script with Global Variables

types, More About Variables

Vim, Variables

--version option, Command-Line Options

versions of vi (see clones, vi)

vertical bar (|)

alternation metacharacter, Extended Regular Expressions
 , Extended Regular Expressions

\| metacharacter, Extended Regular Expressions
 , Extended Regular Expressions
 , Extended Regular Expressions

for combining ex commands, Combining ex Commands

cursor movement command, Movement on the current line

manual folding and, Manual Folding

vertically splitting windows, Multiwindow Editing Inside Vim

vi command (Unix)

command-line options, Options When Starting vi

editing multiple files, Invoking vi on Multiple Files

:vi command, Problem Checklist
 , Command-Line Options

vi commands, vi Commands

bottom-line, The vi Text Editor

general form of, Words

numeric arguments for, Numeric Arguments
 , Numeric Arguments for Insert Commands

repeating (see repeating commands)

running when starting vi, Advancing to a Specific Place

undoing (see undoing)

“vi Powered” logo, vi Powered!

vi text editor

clones of (see clones, vi)

customizing editing environment, Customizing vi

Emacs editor versus, Tastes Great, Less Filling

filtering text with, Filtering text with vi

Internet and, vi and the Internet

quotes about, vi Quotes

starting (see invoking vi)

vi.exrc file (nvi), Initialization

view command (Unix), Read-Only Mode

:view-file command (vile), Multiwindow Editing

view mode, Problems Opening Files

vile (vi clone), Recovering a Buffer
 , vile: vi Like Emacs
 –Sources and Supported Operating Systems

documentation and online help, Online Help and Other Documentation

editing model, The vile Editing Model

extended regular expressions, Extended Regular Expressions
 –Extended Regular Expressions

feature summary, Editor Comparison Summary

important command-line arguments, Important Command-Line Arguments
 –Important Command-Line Arguments

improvements over vi, Improved Editing Facilities
 –Visual Mode

infinite undo facility, Infinite Undo

initialization of, Initialization

interesting features, Interesting Features
 –Miscellaneous Small Features

line length, Arbitrary Length Lines and Binary Data

mode indicators, Mode Indicators

multiwindow editing, Multiwindow Editing
 –Multiwindow Editing

obtaining source code, Sources and Supported Operating Systems

procedure language for, The Procedure Language

programming assistance, Programming Assistance
 –Syntax Highlighting

set command options (list), vile 9.6 Options

sideways scrolling, Left-Right Scrolling

tag stacks, Tag Stacks

word abbreviations, Word Abbreviation

VILEINIT environment variable (vile), Initialization

.vilemenu file, Initialization

.vilemenu file (vile), Adding menus

VILE_HELP_FILE environment variable (vile), Online Help and Other Documentation

VILE_STARTUP_FILE environment variable (vile), Initialization

VILE_STARTUP_PATH environment variable (vile), Online Help and Other Documentation

Vim, Vim (vi Improved): An Introduction
 –Summary

extended regular expressions, Extended Regular Expressions
 –Extended Regular Expressions

feature summary, Editor Comparison Summary

infinite undo facility, Infinite Undo

line length, Arbitrary Length Lines and Binary Data

mode indicators, Mode Indicators

multiple windows in, Multiple Windows in Vim
 –Summary

set command options (list), Vim 7.1 Options

sideways scrolling, Left-Right Scrolling

word abbreviations, Word Abbreviation

vimdiff command, A Few Words About the Other Fold Methods
 , What’s the Difference?

viminfo option, The viminfo Option

.vimrc startup file, Starting gvim

VimResized command, Autocommands

visual (block) mode, Visual Mode

elvis editor, Visual Mode

vile editor, Visual Mode

visual match facility (vile), Incremental Searching

visual mode, Using the Mouse

problems getting to, Problems Getting to Visual Mode

“Visual needs addressable cursor or upline capability” message, Problems Opening Files

Visual Studio, Vim Enhancements for Programmers

:viusage command (nvi), Online Help and Other Documentation

:vnew command, Options During Splits

:vsplit command, Multiwindow Editing Inside Vim
 , Options During Splits

W

w (move word) command, Movement by Text Blocks

W (move word) command, Movement by Text Blocks

:w (write) command, Calling in New Files

:w (write) command (ex), Saving and Quitting a File
 , Saving and Exiting Files

renaming buffer, Renaming the Buffer

saving parts of files, Saving Part of a File

:w! command, Saving and Exiting Files

^W command

cursors, moving around in windows and, Moving Around Windows (Getting Your Cursor from Here to There)

^W key sequence, Multiwindow Editing Inside Vim

-w option, Command-Line Options

nvi editor, Important Command-Line Arguments

-W option, Command-Line Options

\w, \W metacharacters, Extended Regular Expressions

^W- command, Resizing Command Synopsis

w: Vim variable, Variables

^W< command, Resizing Command Synopsis

^W= command, Resizing Command Synopsis

^W> command, Resizing Command Synopsis

^Wc command, Closing and Quitting Windows

web sites for vi, vi Web Sites

^Wf command, Playing Tag with Windows

^Wg] command, Playing Tag with Windows

^Wg^J command, Playing Tag with Windows

^WH command, Moving Windows and Changing Their Layout

whitespace

deleting words and, Words

indentation, Indentation Control

newline characters, Movement Within a Line
 , Arbitrary Length Lines and Binary Data

sentence delimiters, Movement by Text Blocks

spaces in filenames, Opening a File
 , ex Commands

windo command, Buffer Commands

:window (:wi) command (elvis), Multiwindow Editing

Window menus, gvim’s Window menu

window option, The :set Command

windows, Opening Windows

(see also multiwindow editing)

closing and quitting, Closing and Quitting Windows

cursors, moving around in, Moving Around Windows (Getting Your Cursor from Here to There)

moving around, Moving Windows Around
 –Resizing Windows

opening, Opening Windows
 –Moving Around Windows (Getting Your Cursor from Here to There)

resizing, Resizing Windows
 –Buffers and Their Interaction with Windows

tag commands, Playing Tag with Windows

Windows (Microsoft) (see MS Windows)

Windows files, editing with vile, Miscellaneous Small Features

WinEnter command, Autocommands

winheight option, Multiwindow Initiation from the Command Line (Shell)
 , Window Sizing Options

WinLeave autocommand, Options During Splits

WinLeave command, Autocommands

winminheight option, Resizing Command Synopsis

winminwidth option, Resizing Command Synopsis

winpos parameter (sessionoptions option), The mksession Command

winsize parameter (sessionoptions option), The mksession Command

winvile editor, Building winvile
 –winvile Basic Appearance and Functionality

winwidth option, Multiwindow Initiation from the Command Line (Shell)
 , Window Sizing Options

^WJ command, Moving Windows and Changing Their Layout
 , Playing Tag with Windows

^WK command, Moving Windows and Changing Their Layout

^WL command, Moving Windows and Changing Their Layout

wm (wrapmargin) option, Movement Within a Line
 , Some Useful Options

disabling for long insertions, More Examples of Mapping Keys

repeating long insertions, Repeat

word abbreviations, Word Abbreviation

word completion, Keyword and Dictionary Word Completion
 –Tag Stacking

words, Review of Basic vi Commands

(see also characters; lines; text)

deleting by, Words

undoing deletions, Problems with deletions

deleting parentheses around (example), More Examples of Mapping Keys

moving by, Movement by Text Blocks
 , Movement by Text Blocks

replacing (changing), Changing Text
 , Words
 –Words

searching for general class of, Search for General Class of Words

to start/end of (see characters)

transposing, Transposing two letters
 , Using the map Command
 , More Examples of Mapping Keys

troff emboldening codes around, More Examples of Mapping Keys

:wq command, Saving and Quitting a File

^Wq command, Closing and Quitting Windows

:wquit command (elvis), Multiwindow Editing

^Wr command, Window Move Commands: Synopsis

^WR command, Window Move Commands: Synopsis

wrap option, What’s My Line (Size)?

elvis editor, Left-Right Scrolling

wrapmargin (wm) option, Movement Within a Line
 , Some Useful Options
 , Editing Binary Files

disabling for long insertions, More Examples of Mapping Keys

repeating long insertions, Repeat

wrapping searches, Movement by Searches
 , Repeating Searches

wrapscan option, Repeating Searches
 , Advancing to a Specific Place
 , Some Useful Options

write-hook option (vile), The Procedure Language

write permission, Problems Opening Files
 , Problems Saving Files

writebackup option, Backups with Vim

writing the buffer

autowrite and autosave options, Recovering a Buffer

overriding read-only mode, Read-Only Mode

“writing the buffer”, saving edits and, Opening and Closing Files

^Ws command, Options During Splits

^WS command, Options During Splits

^WT command, Moving Windows and Changing Their Layout

^Wx command, Window Move Commands: Synopsis

^W^F command, Playing Tag with Windows

^W^J command, Playing Tag with Windows

^W^Q command, Closing and Quitting Windows

^W^R command, Window Move Commands: Synopsis

^W^S command, Options During Splits

^W^X command, Window Move Commands: Synopsis

^W^_ command, Resizing Command Synopsis

^W_ command, Resizing Command Synopsis

^W| command, Resizing Command Synopsis

X

x (delete character) command, Characters
 , Changing and deleting text

xp command, Transposing two letters

X (delete character) command, Characters
 , Changing and deleting text

:x (write and quit) command (ex), Saving and Exiting Files
 , Command-Line Options

-x option, Command-Line Options

X resources for elvis, Options

X Window System, The vi Text Editor

using gvim, Graphical Vim (gvim)
 , gvim in the X Window System

X11 interface

elvis, Initialization Steps
 , GUI Interfaces
 , Options

vile, GUI Interfaces

XEmacs text editor, The vi Text Editor

xscrollbar option (elvis), Options

xvile editor, GUI Interfaces
 –Adding menus

XVILE_MENU environment variable (vile), Initialization

Y

Y (yank line) command, Copying Text
 , Copying and moving

y (yank) command, Simple Edits
 , Copying Text

examples of use, Review of Basic vi Commands
 , More Command Combinations

with named buffers, Copying Text
 , Yanking to Named Buffers
 , Edits Between Files

numbered buffers for, Moving Text
 , Making Use of Buffers

yy command, Copying Text

y (yank) command (ex), Edits Between Files

-y option, Command-Line Options

y$ command, Copying and moving

yanking text, Simple Edits

named buffers for, Copying Text
 , Yanking to Named Buffers
 , Edits Between Files

numbered buffers for, Moving Text
 , Making Use of Buffers

ye command, Copying and moving

yw command, Copying and moving

yy command, Copying and moving

Z

z command, Repositioning the Screen with z

-Z option, Command-Line Options

zA fold command, The Fold Commands

za fold command, The Fold Commands

zC fold command, The Fold Commands

zc fold command, The Fold Commands
 , Manual Folding
 , Manual Folding

zD fold command, The Fold Commands
 , A Few Words About the Other Fold Methods

zd fold command, The Fold Commands

zE fold command, The Fold Commands

zf fold command, The Fold Commands

cursors, creating folds from, Manual Folding

zi fold command, The Fold Commands

Zintz, Walter, Using :g to Repeat a Command

zj fold command, The Fold Commands

zk fold command, The Fold Commands

zM fold command, The Fold Commands

zm fold command, The Fold Commands
 , Outlining

zN fold command, The Fold Commands

zn fold command, The Fold Commands

zo command, Manual Folding

zO fold command, The Fold Commands

zo fold command, The Fold Commands

zr fold command, The Fold Commands
 , Outlining

ZZ (quit vi) command, Saving and Quitting a File

ZZ command, Saving and Exiting

About the Authors

Arnold Robbins, an Atlanta native, is a professional programmer and technical author. He has been working with Unix systems since 1980, when he was introduced to a PDP-11 running a version of Sixth Edition Unix. His experience also includes multiple commercial Unix systems, from Sun, IBM, HP and DEC. He has been working with GNU/Linux systems since 1996. He likes his Macintosh laptop, but it has been commandeered by one of his daughters.

Arnold has also been a heavy awk user since 1987, when he became involved with gawk, the GNU project's version of awk. As a member of the POSIX 1003.2 balloting group, he helped shape the POSIX standard for awk. He is currently the maintainer of gawk and its documentation.

O'Reilly has been keeping him busy: He is author and/or coauthor of the bestselling titles: Unix In A Nutshell, Effective awk Programming, sed & awk, Classic Shell Scripting, and several pocket references.

Elbert is a professional software engineer and software architect recently finishing a 21-year career in the telcom industry. He wrote a full screen editor in assembler in 1983 as his first professional assignment, and has had special interest in editors since. He loves connecting Unix to anything and once wrote a stream editor program to automate JCL edits for mainframe monthly configurations by streaming mainframeJCL to a stream editor on an RJE connected Unix box.

He loves tinkering with everything Unix and considers any environment incomplete without his suite of Unix work-alike tools and the latest version of vim. He is a Unix Shell specialist, writing entire applications with only the shell.

His telcom honored him with their highest award for money-saving applications that he authored using a set of mainframe screen-scraping tools he wrote himself. They continue to use those applications today. He was also one of three founding team members that brought web 1.0 to the corporate consciousness in his telco position, and his team featured on the cover of CIO Magazine for their innovative and pioneering works.

He also served a brief stint on the original Microsoft NT beta support team in 1992.

He loves bicycling, music, and reading. Today he lives in the Chicago area where he occasionally takes on short term projects and works on personal software products.

Linda Lamb is a former employee of O'Reilly Media, where she worked in various capacities, including technical writer, editor of technical books, and marketing manager. She also worked on O'Reilly's series of consumer health books, Patient Centered Guides.

Colophon

The animal on the cover of Learning the vi and Vim Editors
 , Seventh Edition, is a tarsier, a nocturnal mammal related to the lemur. Its generic name, Tarsius, is derived from the animal’s very long ankle bone, the tarsus. The tarsier is a native of the East Indies jungles from Sumatra to the Philippines and Sulawesi, where it lives in the trees, leaping from branch to branch with extreme agility and speed.

A small animal, the tarsier’s body is only 6 inches long, followed by a 10-inch tufted tail. It is covered in soft, brown or gray silky fur, and has a round face and huge eyes. Its arms and legs are long and slender, as are its digits, which are tipped with rounded, fleshy pads to improve its grip on trees. Tarsiers are active only at night, hiding during the day in tangles of vines or in the tops of tall trees. They subsist mainly on insects and, though very curious animals, tend to be loners.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The cover font is Adobe’s ITC Garamond. The text font is Linotype Birka, the heading font is Adobe Myriad Condensed, and the code font is LucasFont’s TheSansMonoCondensed.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here
 .

Learning the vi and Vim Editors

Arnold Robbins

Elbert Hannah

Linda Lamb

Editor

Andy Oram

Copyright © 2009 Arnold Robbins and Elbert Hannah

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safari.oreilly.com
). For more information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com

 .

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc.
Learning the vi and Vim Editors

 , 7th Edition, the image of a tarsier, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

O’Reilly Media

1005 Gravenstein Highway North

Sebastopol
 , CA
 95472

2014-07-07T08:52:26-07:00

Learning the vi and Vim Editors

Table of Contents

Dedication

Special Upgrade Offer

Preface

Scope of This Book

How the Material Is Presented

Discussion of vi Commands

Conventions

Keystrokes

Problem Checklist

What You Need to Know Before Starting

Comments and Questions

Safari® Books Online

About the Previous Editions

Preface to the Seventh Edition

What’s New

Versions

Acknowledgments from the Sixth Edition

Acknowledgments for the Seventh Edition

I. Basic and Advanced vi

1. The vi Text Editor

A Brief Historical Perspective

Opening and Closing Files

Opening a File

Problems Opening Files

Modus Operandi

Saving and Quitting a File

Quitting Without Saving Edits

Problems Saving Files

Exercises

2. Simple Editing

vi Commands

Moving the Cursor

Single Movements

Numeric Arguments

Movement Within a Line

Movement by Text Blocks

Simple Edits

Inserting New Text

Appending Text

Changing Text

Words

Lines

Characters

Substituting text

Changing Case

Deleting Text

Words

Lines

Characters

Problems with deletions

Moving Text

Transposing two letters

Copying Text

Repeating or Undoing Your Last Command

Repeat

Undo

More Ways to Insert Text

Numeric Arguments for Insert Commands

Joining Two Lines with J

Problem Checklist

Review of Basic vi Commands

3. Moving Around in a Hurry

Movement by Screens

Scrolling the Screen

Repositioning the Screen with z

Redrawing the Screen

Movement Within a Screen

Movement by Line

Movement on the current line

Movement by Text Blocks

Movement by Searches

Repeating Searches

Changing through searching

Current Line Searches

Movement by Line Number

The G (Go To) Command

Review of vi Motion Commands

4. Beyond the Basics

More Command Combinations

Options When Starting vi

Advancing to a Specific Place

Read-Only Mode

Recovering a Buffer

Making Use of Buffers

Recovering Deletions

Yanking to Named Buffers

Marking Your Place

Other Advanced Edits

Review of vi Buffer and Marking Commands

5. Introducing the ex Editor

ex Commands

Exercise: The ex Editor

Problem Checklist

Editing with ex

Line Addresses

Defining a Range of Lines

Line Addressing Symbols

Search Patterns

Redefining the Current Line Position

Global Searches

Combining ex Commands

Saving and Exiting Files

Renaming the Buffer

Saving Part of a File

Appending to a Saved File

Copying a File into Another File

Editing Multiple Files

Invoking vi on Multiple Files

Using the Argument List

Calling in New Files

Switching Files from vi

Edits Between Files

6. Global Replacement

Confirming Substitutions

Context-Sensitive Replacement

Pattern-Matching Rules

Metacharacters Used in Search Patterns

POSIX Bracket Expressions

Metacharacters Used in Replacement Strings

More Substitution Tricks

Pattern-Matching Examples

Search for General Class of Words

Block Move by Patterns

More Examples

A Final Look at Pattern Matching

Deleting an Unknown Block of Text

Switching Items in a Textual Database

Using :g to Repeat a Command

Collecting Lines

7. Advanced Editing

Customizing vi

The :set Command

The .exrc File

Alternate Environments

Some Useful Options

Executing Unix Commands

Filtering Text Through a Command

Filtering text with ex

Filtering text with vi

Saving Commands

Word Abbreviation

Using the map Command

Protecting Keys from Interpretation by ex

A Complex Mapping Example

More Examples of Mapping Keys

Mapping Keys for Insert Mode

Mapping Function Keys

Mapping Other Special Keys

Mapping Multiple Input Keys

@-Functions

Executing Buffers from ex

Using ex Scripts

Looping in a Shell Script

Here Documents

Sorting Text Blocks: A Sample ex Script

Comments in ex Scripts

Beyond ex

Editing Program Source Code

Indentation Control

A Special Search Command

Using Tags

8. Introduction to the vi Clones

And These Are My Brothers, Darrell, Darrell, and Darrell

Multiwindow Editing

GUI Interfaces

Extended Regular Expressions

Enhanced Tags

Exuberant ctags

The New tags Format

Tag Stacks

Solaris vi

Exuberant ctags and Vim

Improved Facilities

Command-Line History and Completion

Arbitrary Length Lines and Binary Data

Infinite Undo

Incremental Searching

Left-Right Scrolling

Visual Mode

Mode Indicators

Programming Assistance

Edit-Compile Speedup

Syntax Highlighting

Editor Comparison Summary

Nothing Like the Original

A Look Ahead

II. Vim

9. Vim (vi Improved): An Introduction

Overview

Author and History

Why Vim?

Compare and Contrast with vi

Categories of Features

Philosophy

Where to Get Vim

Getting Vim for Unix and GNU/Linux

Getting Vim for Windows Environments

Getting Vim for the Macintosh Environment

Other Operating Systems

Aids and Easy Modes for New Users

Summary

10. Major Vim Improvements over vi

Built-in Help

Startup and Initialization Options

Command-Line Options

Behaviors Associated to Command Name

System and User Configuration Files

Environment Variables

How to set environment variables

Environment variables relevant to Vim

New Motion Commands

Visual Mode Motion

Extended Regular Expressions

Customizing the Executable

11. Multiple Windows in Vim

Initiating Multiwindow Editing

Multiwindow Initiation from the Command Line (Shell)

Multiwindow Editing Inside Vim

Opening Windows

New Windows

Options During Splits

Conditional Split Commands

Window Command Summary

Moving Around Windows (Getting Your Cursor from Here to There)

Moving Windows Around

Moving Windows (Rotate or Exchange)

Moving Windows and Changing Their Layout

Window Move Commands: Synopsis

Resizing Windows

Window Resize Commands

Window Sizing Options

Resizing Command Synopsis

Buffers and Their Interaction with Windows

Vim’s Special Buffers

Hidden Buffers

Buffer Commands

Buffer Command Synopsis

Playing Tag with Windows

Tabbed Editing

Closing and Quitting Windows

Summary

12. Vim Scripts

What’s Your Favorite Color (Scheme)?

Conditional Execution

Using the strftime() function

Variables

The execute Command

Defining Functions

A Nice Vim Piggybacking Trick

Tuning a Vim Script with Global Variables

Arrays

Dynamic File Type Configuration Through Scripting

Autocommands

Checking Options

Buffer Variables

The exists() Function

Autocommands and Groups

Deleting Autocommands

Some Additional Thoughts About Vim Scripting

A Useful Vim Script Example

More About Variables

Expressions

Extensions

A Few More Comments About autocmd

Internal Functions

Resources

13. Graphical Vim (gvim)

General Introduction to gvim

Starting gvim

Using the Mouse

Useful Menus

gvim’s Window menu

gvim’s right-click pop-up menu

Customizing Scrollbars, Menus, and Toolbars

Scrollbars

Menus

Basic menu customization

More menu customization

Putting it all together

Toolbars

Tooltips

gvim in Microsoft Windows

gvim in the X Window System

GUI Options and Command Synopsis

14. Vim Enhancements for Programmers

Folding and Outlining (Outline Mode)

The Fold Commands

Manual Folding

Outlining

A Few Words About the Other Fold Methods

Auto and Smart Indenting

Vim autoindent Extensions to vi’s autoindent

smartindent

cindent

The cinkeys option

The cinwords option

The cinoptions option

indentexpr

A Final Word on Indentation

Keyword and Dictionary Word Completion

Insertion Completion Commands

Completing whole lines

Completion by keyword in file

Completion by dictionary

Completion by thesaurus

Completion by keyword in current file and included files

Completion by tag

Completion by filename

Completion by macro and definition names

Completion method with Vim commands

Completion by user functions

Completion by omni function

Completion for spelling correction

Completion with the complete option

Some Final Comments on Vim Autocompletion

Tag Stacking

Syntax Highlighting

Getting Started

Customization

Syntax groups

The colorscheme command

Setting the background option

The highlight command

Overriding syntax files

Rolling Your Own

Compiling and Checking Errors with Vim

More Uses for the Quickfix List Window

Some Final Thoughts on Vim for Writing Programs

15. Other Cool Stuff in Vim

Editing Binary Files

Digraphs: Non-ASCII Characters

Editing Files in Other Places

Navigating and Changing Directories

Backups with Vim

HTML Your Text

What’s the Difference?

Undoing Undos

Now, Where Was I?

The viminfo Option

The mksession Command

What’s My Line (Size)?

Abbreviations of Vim Commands and Options

A Few Quickies (Not Necessarily Vim-Specific)

More Resources

III. Other vi Clones

16. nvi: New vi

Author and History

Important Command-Line Arguments

Online Help and Other Documentation

Initialization

Multiwindow Editing

GUI Interfaces

Extended Regular Expressions

Improvements for Editing

Command-Line History and Completion

Tag Stacks

Infinite Undo

Arbitrary Length Lines and Binary Data

Incremental Searching

Left-Right Scrolling

Programming Assistance

Interesting Features

Sources and Supported Operating Systems

17. Elvis

Author and History

Important Command-Line Arguments

Online Help and Other Documentation

Initialization

The Session File

Initialization Steps

Multiwindow Editing

GUI Interfaces

The Basic Window

Mouse Behavior

The Toolbar

Options

Extended Regular Expressions

Improved Editing Facilities

Command-Line History and Completion

Tag Stacks

Infinite Undo

Arbitrary Length Lines and Binary Data

Left-Right Scrolling

Visual Mode

Programming Assistance

Edit-Compile Speedup

Syntax Highlighting

Interesting Features

Display Modes

Pre- and Post-Operation Control Files

elvis Futures

Sources and Supported Operating Systems

18. vile: vi Like Emacs

Authors and History

Important Command-Line Arguments

Online Help and Other Documentation

Initialization

Multiwindow Editing

GUI Interfaces

Building xvile

xvile Basic Appearance and Functionality

Scrollbars

Setting the cursor position and mouse motions

Selections

Clipboard

Resources

Adding menus

Building winvile

winvile Basic Appearance and Functionality

Extended Regular Expressions

Improved Editing Facilities

Command-Line History and Completion

Tag Stacks

Infinite Undo

Arbitrary Length Lines and Binary Data

Locale support

File formats

Incremental Searching

Left-Right Scrolling

Visual Mode

Programming Assistance

Edit-Compile Speedup

Syntax Highlighting

Interesting Features

The vile Editing Model

Major Modes

The Procedure Language

Miscellaneous Small Features

Sources and Supported Operating Systems

IV. Appendixes

A. The vi, ex, and Vim Editors

Command-Line Syntax

Command-Line Options

Review of vi Operations

Command Mode

Insert Mode

Syntax of vi Commands

Examples

Visual mode (Vim only)

Status-Line Commands

vi Commands

Movement Commands

Character

Text

Lines

Screens

Searches

Line numbering

Marks

Insert Commands

Edit Commands

Changing and deleting text

Copying and moving

Saving and Exiting

Accessing Multiple Files

Window Commands (Vim)

Interacting with the System

Macros

Miscellaneous Commands

vi Configuration

The :set Command

Example .exrc File

ex Basics

Syntax of ex Commands

Addresses

Address Symbols

Options

Alphabetical Summary of ex Commands

B. Setting Options

Solaris vi Options

nvi 1.79 Options

elvis 2.2 Options

Vim 7.1 Options

vile 9.6 Options

C. Problem Checklists

Problems Opening Files

Problems Saving Files

Problems Getting to Visual Mode

Problems with vi Commands

Problems with Deletions

D. vi and the Internet

Where to Start

vi Web Sites

The vi Lover’s Home Page

The Vi Pages

vi Powered!

vi for Java Lovers

Online vi Tutorial

A Different vi Clone

Amaze Your Friends!

Tastes Great, Less Filling

vi Quotes

Index

About the Authors

Colophon

Special Upgrade Offer

Copyright

OEBPS/Image00056.gif
o (2

pr—
el |
Split s

SsitTos was

Spitverticaly Ay
Spit Fie Explorer

Close e
Close Other(s) ~Wo

MoveTo »
Rotate Up AR
RotateDown AVir

Equal sze
MaxHeight AW_
Min Height Wi
Max Width ~w|
Min Width ~wil

iaob)ect>

OEBPS/Image00055.gif
-autocnd neuFileDetection

IPress ENTER or type command to continuell

OEBPS/Image00058.gif
Undo
Paste

Select Word
Select Sentence

Select Paragraph
Selectline
Select Block
Select Al

OEBPS/Image00057.gif
i
g
2

2

foitTo = A
[Spit vertcaly__~w
[Spit i Explorer

[Gose Other® ~wo

foveTo
otate Up ~WR
otateDown__ Vi

qual Sze ~i=
Maxreght
pnreght ~wy
[Max wadth ~wl
i Width ~wil

!

OEBPS/Image00059.gif
Paste
Dekete

Select Blodavise

Select Word
Select Sentence
Select Paragraph
Selectline
Select Block
Select Al

OEBPS/Image00050.gif
d ol
Error detected while processing function CheckFileType
Tineliii -

E121: Undefined variable: b:countCheck

OEBPS/Image00052.gif
1 #¢ /bin/sh
2
3 inputFile

OEBPS/Image00051.gif
1 ut /bin/sh
2
3 inputFil|

OEBPS/Image00054.gif
e A T B S T SIS
autocnd newFileDetection

x call CheckFileType()
ress ENTER or type command to continuel

OEBPS/Image00053.gif
Script¥ithoutSuffix[+
Filetypi

OEBPS/Image00067.gif

OEBPS/Image00066.gif
Syntax_Buffers

Spit-Open. s
OpenTab.

New

Close

Save
Save As.

SpitDif with.
SpitPatched By.

HML syntax=htm
print

Save it
Edt

action</tit]

OEBPS/Image00069.gif

OEBPS/Image00068.gif

OEBPS/Image00061.gif
¥. ch12.xml + (~\OReilly\vim\seventhEd) - GVIM

Buffers

PutBefore
Put After

Select Al

Find.
Find and Replace,

Settings Window
Startup Setings
Giobal Settngs
File Settings
Color Scheme
Keymap

Select Font.

</mediad
</informa

</sect3>

Window Help

BRASSA

®

ion>guioptions</option> <.

yes, you <emphasisycan</e
 tinet Actually, it can
on both sides.</para>

h>Recall that options like
i control behaviors of <co
o renember to use the '<ci
nput>:set guioptions...
set guioptions+-1</useris
onnand>quin</connand> 1le:
ion>guioptions</option> s
s
Toggle Patern Highight :set it
Toggl Ignore-case setic!
Toggle Showmatch
Contextines
Virtual Edit
Toggle InsertMode
Toge Vi Compatile
Search Path,
Tag Fles.

setsm!

setim!
setcpt

Toagle Toobar
‘Toggle Bottom Scrolbar
Toagle Left Srolbar
‘Toagle Right Scrolbar

OEBPS/Image00060.gif
ptions. 'P)
Edt_Toos SyntsxBuffers Window Help

& 9@ A0k BRRB AILA T@a ? 2

OEBPS/Image00063.gif
Spit-Open.
OpenTab.
New
Close

Save
Save As.

SpitDif with.
SpitPatched 8y.

ML
print

Save it

OEBPS/Image00062.gif
s
e

2 Fies.

foggle Toobar

foggle Bottom Scrolbar.

foggle Left Sarolbar
oggle Right Scrolbar

OEBPS/Image00065.gif
bbb s b b B il el
Go1:37 55% hid ~

OEBPS/Image00064.jpg

OEBPS/Image00034.jpg
ENTER

OEBPS/Image00156.gif
USER FRIENDLY by J.D. "llliad™ Frazer

OH...OH, HERE WE GO.
ANOTHER DWEEBICUS REX
TRYING TO ARGUE THAT
EMACS IS BETTER THAN

VI. WHEN WILL THEY LEARN?

"COPYRIGHTE 2008 .. “Wiiad" Frazer WTTP://WWW.USERFRIENDLY.ORG/

I'M GETTING SO SICK
OF THIS. EVERY FEW
MONTHS SOME FATUOUS
MOUTH-BREATHER HAS
TO START WHINING ABOUT
HOW “EMACS IS BETTER
AND WHY DOES ANYONE
BOTHER WITH VI?”

£

UM. THEN WHY ARE YOU
SUBSCRIBED TO THE
“EMACS VS. VI"
MAILING LIST?

TO KEEP AN EYE
ON THOSE EMACS
REPROBATES.

\

OEBPS/Image00033.jpg

OEBPS/Image00036.jpg

OEBPS/Image00154.gif
USER FRIENDLY by Illiad

OH STOP! SEE WHAT:
HAPPENS WHEN YOU

CLICK ON A LICENSE

AGREEMENT WITHOUT
READING IT?

itp:www-userfriendlyora/

Copyright (c) 2000 Mad

OEBPS/Image00035.jpg

OEBPS/Image00155.gif
USER FRIENDLY by Illiad
BE HONEST GUY'S. HAVE ANY
OF YOU EVER ACTUALLY READ
A LICENSE AGREEMENT?

1

http:/www.userfriendly.org/

J HAVEL 4
FEWWORDS

Copyright (c) 2000 llliad

OEBPS/Image00038.jpg

OEBPS/Image00037.jpg

OEBPS/Image00159.jpg
omeur .

OEBPS/Image00039.jpg

OEBPS/Image00030.jpg

OEBPS/Image00152.gif
USER FRIENDLY by Illiad

£

T WELL | GLESS ILL GO
2 A0 A

§ WITHMCROSOFT WORD...
H

]

Copyright (c) 2000 liad

OEBPS/Image00153.gif
USER FRIENDLY by Illiad

E
8
2
H
MKE? WHAT 2 PrOTESTORS?
ARE you £ IS THIS ABOUT HAVE A LOOK CAN YOU READ
BONG? 2 PITR'S VIGOR FOR YOURSELF. THE PLACARDS
PROJECT? FROM HERES
KEEPING AN_EYE E \
ONALL OF THE |5 \ YES. MKE. WHAT

WORD

PROTESTERS Ve deE:
PICKETING OUR by e " >
OFFICE OUTSIDE. 'JHAD* MEAN?

Copyright (0) 2000 iad

OEBPS/Image00032.jpg

OEBPS/Image00150.gif
USER FRIENDLY by Illiad

PITR. ARE YOU ACTUALLY
HELPING STEF WITH HIS
"COLLECTABLE UNIX TEXT
EDITORS" PROJECT?!

ROPE HE WANTS,
TO BE HANGINK
HIMSELF.

Tttphwww.userfriondly.orgl

Copyright (c) 2000 liad

YOURE CODING ONE OF
‘THOSE ANNOYING
WHAT DO HAVE SUGGESTINK
TO M | MAKE A
VOUMEAN? pApERCLIP® BUDDY | COMPLETELY MAD?!

lzgR VI. HE IS OF IS A MASTERPIECE!

R oSN I CALL IT. "VIGOR!"
/ SHALL | HELP YOU

WRITE A NAUGHTY.
LETTER, MEEEASTER?

OEBPS/Image00031.jpg

OEBPS/Image00151.gif
USER FRIENDLY by Illiad

STEF, DO YOU HAVE ANY IDEA_ |2 YOU'VE UPSET
HAT'S HAPPENING OUT THERE? | = IT MOST CERTANLY IS NOT THE BALANCE OF
S0 LR Wiore. : EIERRNVOIR s bRt O
WROTE THE SELF-REPLICATION | § HAVE CREATED CHAOS OUT SOUNDS LIKE g rHiNG OVER
ALGORTHM A LITTLE TOO WELL. é THERE IN THE LKIX WORLD! | SRESTNEWS 70 emaCs s
THAT'S \ i I \
GREAT F £ v
NEWS. .
/ 1
TYPE E
TYPE %
E
2
H
8

OEBPS/Image00045.gif
e MyMenu Edt Tools Syntax Buffers Window Help
8 9@ B AR $IA Taa 22

114.m | \eltermcap | ~\vinre | ~\guimrc | helo.c | word.c | DNo Name] [VYOV i\ 12.xml | o Nam
<chapter label

i
2
i
"

OEBPS/Image00044.gif
Command

CTRL-W

<DOWN>/

CTRL-W

CIRL]

CTRL-W

CTRL-W

<UP>|

CTRL-W

CTRL-K|

CTRL-W

k

CTRL-W

<LEFT>

CTRL-W

CTRL-H

CTRL-W

h

CTRL-W

<BS>|

CTRL-W

<RIGHT>

CTRL-W

CTRL-L/

CTRL-W

i

CTRL-W

w]

CTRL-W

CTRL-W

CTRL-W

CTRL-W

[l

CTRL-W]

CTRL-T

CTRL-W

b

CTRL-W

CTRL-B!

CTRL-W

CTRL-W]

CTRL-P:

Description
Move to the next window down.

Note that this command does not cycle through the windows; it simply
moves down to the next window below the current window. If the cursor is
in a window at the bottom of the screen, this command has no effect. Also,
this command bypasses adjacent windows on its “way down”; for example,
if there is a window to the right of the current window, the command does
not jump across to the adjacent window. (Use[CTRL-W][CTRL-W]to cycle
through windows.)

Move to the next window up. This is the opposite-direction counterpart to

the [CTRL-W][j] command.

Move to the window to the left of the current window.

Move to the window to the right of the current window.

Move to the next window below or to the right. Note that this command,
unlike [CTRL-WJ[]}, will cycle through all of the Vim windows. When the
lowermost window is reached, Vim restarts the cycle and moves to the top
lefemost window.

Move to next window above or to the left. This is the upward counterpart to
the [CTRL-W][w] command.

Move cursor to the top leftmost window.

Move cursor to the bottom rightmost window.

Move to the previous (last accessed) window.

OEBPS/Image00047.gif
E121: Undefined variable: g:colors nane
[Press ENTER or tupe command to continu

OEBPS/Image00046.gif
miin i

arentiour s 16

setting coor scheme to shine
Erordetectedwhde pocessng c: e ghamnsh giec
E185: Cannot ind coor scheme colorScheme:

OEBPS/Image00049.gif
ScriptiithoutSuffix(
Filetype=conf

OEBPS/Image00048.gif
Bl deloh 2ils
2
3 inputFil

DailyReceiptsf]

OEBPS/Image00041.jpg
QEES 9@ +» U0 Sina o098 T

el

=8 x
x H e
X H %

Wk omE Ok xes X
% SO B - =
H O T
5 5B E %
X I T < -

RKEOKKEKK KEKRK KKAKK XRKAK

2) 710/ 20 1120819 an

XX
X%
RAKEXRK
q %
R
KKK KKK REKEKXKAKK

20271072008 112816 _

OEBPS/Image00040.jpg

OEBPS/Image00043.gif

OEBPS/Image00042.jpg
=l AT i d et B s B N L I B B L

"o X TR
55 [x
X xxo %
g
x
x
X xo x
8 5 8 &

X e X
0F 2) 2/10/2005 12:10:21 Pii

(Mo ane] —((3) oF 2) 2/10/2008

tmm

(o Hane] (i) oF 2) 2/10/2008 12:19:29 Pl

[Ho Hane]~ ((5) oF

OEBPS/Image00019.jpg

OEBPS/Image00012.gif
i screen|[ESC|— X— i seeing the|ESC|

With a editor you can scrooll the page,

i T T~ CW
move the cursor, delete llnFs, nisret insert
characters, and more while results of [Eeh

rs |your edits as you make tham. | re
P Since they allow you to make changes
as you read through a file, much as

you would edit a printed copy,—— L.

dd- screen editors are very popular.— 1 X

s

OEBPS/Image00134.gif

OEBPS/Image00011.gif
Seeingthe

M““j insert:
With aleditor you can scr ll the page,
move the cursor, delete lineg,
characters, and more, whlle,\results of
your edits as you make t

#ince they allow you to make changes
as you read through a file, much as
you would edit a printed copygp.e @

screen editors are very popula@_u
&

e.

OEBPS/Image00135.gif
- 15 ines: sam\.
26 co#132: Life6:
G er=1l: do="0: £1="LiTe="s

31 # See near the end of this file for
52 # Don't mess with these entries! Lot
53 4

54 # This section Lists entries in a le:
5 £ if you're i doubt sbout what AN
56 # order and back of from the first t

7
56 # (ansis changed gt to *it -
59 ansi-wind any ansi terminal with pess
0 anis

a1 co#80: 148 LiA24
12 ce\E[K: €=\ E[H\E[2); cue\E[
5 o=\ E[H: Le=\ELD: e\ £[C:up=
1

S Eo i

erminal are the Lowest common deno
he Last one, "other”, is Like unkn:
hat insists that a “real® unknoun |

29 o ANST terminals and terninal enil:
0%

31 # See near_the end of this file for d
324 Don't [llbess with these entries! |
EL)

34 # This section Lists entries in a lea
35 # if you're in doubt about what ANST
36 # order and back off fron the first
37

38 # (ansi: changed "ipt: " to "iithg:” -
39 ansi-mini [any ansi terminal. with pes
a anibs

@ o=\ E[H: Le=\E[D: nde\E[C:up=\

AP R IR S

OEBPS/Image00014.jpg

OEBPS/Image00132.gif
B 2
L 12
v 22

a2
124
184
1un
154
163 164
173 Rg®@ 174
183, 184
193 A> A 194
203 1 204
213 214
223 at 3 224 a
233 e> & 234 e:
oRY e A onn no

c 3
Ho13
“u 23
a5
125
185
145
155
165
175
185
195
205
215
225
235
one

11
21
_ 31

123
133
143
153

E

s

s

om0 aam
2 0 X Dt -

OEBPS/Image00013.jpg

OEBPS/Image00133.gif
Fle MyMenu Edt Took Syntax Buffers Window Netw Help

G og iad BRRASSA Ta@a 7?2

Netrw Directory Listing (netru u98)
c:/home/ehannan/dounloads/ex-050325

“ Sorted by name

“ Sort sequence: [\/1§,,\-bak$,\.0§,\.S,\ info$,\ _swp$,\ . obj$

“ Quick Help: <F1>:help -:go up dir D:delete enane

/

;
catd/
libtern/
libuxre/
Changes
LICENSE
Hakefile
READHE
ToDo
ex.1
g

OEBPS/Image00016.jpg

OEBPS/Image00138.jpg
16

OEBPS/Image00015.jpg

OEBPS/Image00139.gif
Guit] Ecit] spi] ave Save asl Reloa] - Prev next At Back -

n);

/* chelp exname +/
Section = relvise

else

/* Can’t tell what user is looking for; perhaps the user

+ doesn’t know the
*/

topic = toCHAR(help");

section - "elvige:

¥

/* iF help text not found, then give up */
buf - bufpath(o_elvispath, section, toCHAR(section));

if (!buf)
{

msg(MSG_ERROR, "[s]help not available; couldn’t load $1", sectiol

tiake] Ere] Search| - Mormall Hex|[Syntax Other Display Options| -] Man] Heipl

g

syntax of :help ? Teach them!

g

return RESULT_ERROR;
¥

/* help text uses "html" display mode */
if (optflags(o_bufdisplay(buf)) & OPT_FREE)
{

safefree(o_bufdisplay(buf));
optflags (o_bufdisplay(buf))

1
o_bufdisplay(buf) = toCHAR('html");

/* combine section name and
if (topic)
{

~OPT_FREE;

topic name to form a tag */

/

o help

760,16 | Command

OEBPS/Image00018.jpg

OEBPS/Image00136.gif
11 <ext This is a very long line exceeding width of screen. text >
S

OEBPS/Image00017.jpg

OEBPS/Image00137.gif
11 text text This is a very long line exceeding width of screen. t
ext text more text than a line should ever have unless you're j
ust doing it for the sake of an example but even in that case i
t's an awful lot of text for just one linet :-)

12

OEBPS/Image00130.gif
169
170
171
172
173
174
175
176
177
178
179
180
181

chB9.xml|62 col 39| executables and enjoy all
chB9.xnl|65 col 24| stripped down <emphasis>ui
chB9.xnl|67 col 31| <para>Users may need <emph
chB9.xnl|75 col 32| install Full featured <emp
chB9.xnl|78 col 37| re-compile, and re-install
chB9.xnl|82 col 20| <para><emphasis>uin</empha
chB9.xnl|119 col 23| version, <emphasis>vin</e
chB9.xnl[127 col 53| <para>As mentioned in the
chB9.xnl[130 col 15| from <emphasis>uin</empha
©€hB9.xn1[133 col 10| <emphasis>uin</emphasis>"
€hB9.xnl[137 col 55| understanding <emphasis>v
chB9.xnl|165 col 27| <para>Thankfully <emphasi
©ch89.xn1[172 col 48] branch out by using TAB c

OEBPS/Image00131.gif

OEBPS/Image00010.jpg

OEBPS/Image00023.jpg

OEBPS/Image00145.gif
O 21X

Fort: Fort e
Fegiar
Lucida Sans Typenie
T MingLiU
B 1S Gotic Boid kel
T MS Mincho [|
8 UTFT6LE. o B Nt
UP/DOWN arrow keys, the first letter of | Temnd |
hot key, or the number keys 1-9 to choc
Press SPACE to toggle an option on/off [Sampl vy
which of the following are fruits?" 2
Tt's an Ap b L
“NG,_that's not m ablv2Z
Veah, that's J
Normally 7
o 5"‘"—_'
UtFB-UTF-16LE. txt" settings, 17 a1
Buffer: .
byteorder-mark=none fence-elif=A\sM\<elTF\> Tence-TT-Ms\<T\> =
comment-prefix=A\s*[:#] fence-else=A\s*\<else\> file-encoding=utf-16
comments=A\s*[:#]\: fence-fi=A\s*\<fi\> recordseparator=1f

nodos

-~ Global settings -

Universa’
noalt-tabpos

OEBPS/Image00022.jpg

OEBPS/Image00146.gif
& Restore.
Move
£

— Mrimize
O Maximize

X Close AtiFe

Open.
Save As.
.
Favorites.
Font,
About.

Page Setup.

Recent Folders

v Menu
vTrCyywTITIONETUTCY

(released 777 77 7

anges to provide usable Unicode suppor
percent-utf8 to set a threshold for file-encoding mode
etection of UTF-16/UTF-37 Files

oding mode can be set to “auto", to detect UTF-16 files,
e loaded as UTF-5.

les are detected based on the file-encoding mode as well.

values are displayed (where no locale controls) as “\UXKKX"
adecinal digits.

ode-as-hex mode to override locale, forcing Unicode values

ay as “\UXKEX".

ers uith UTF-§ encoding, show illegal bytes as “\?5X".

values can be inserted into buffers using “UUXXXX form.

s

drivers support Unicode display in varying degrees:

e - nulticolumn characters, depends on Font selection

p/terminfo - relies on terminal enulator, knows about
vinome icketh playvie-3:

Ds/cyguinhomedickethjpayjie-w32foo bat

Ds/cyguinhomedicethjpay vie-w32/make-vc7 log

Ds/cyguinhomedicethpay vie-w32/nmake-vcé.og

Ds/cyguinhomedickethpiayvie-w32/Trace.out

D:feyguinjhome dicketh/play vie-32/binsamples-utfs bitise bdspro]
D:feyguin/home dicketh/play vie-w32/bin/samples-utfs atin1.txt
D:feyguinjhome ickethjplayvie-w32/vie.ip

Dx/cyguinjhome icketh/play vie-n32/ntwinio.

D:/cyguinjhome dicketh/play vie-n32jvwrap.cop

=loix|

OEBPS/Image00025.jpg

OEBPS/Image00143.gif
- [Completions] - vile

Xvile Editing Buffers Fixed Fonts Nice Fonts

Getting along with vile (version 9.5)

Use Ctrl1-D and Ctrl1-U to scroll through this help information.

Type Ctr1-0 to make this the only window on the screen.
Type Ctr1-K to get rid of this window.

First, to leave vile, use any of the following:
:q

Buffer name Contents

12425 charset.c ./charset.c
11286 <vile.1>

0
1
2 89340 misc.c ./misc.c
3 0 color.c ./color.c

create_mail_save_dirs
create_newsrc
create_normal_article_headers
create_path
create_save_active_file
created_rcdir
ct
curr_cnt
curr_group
curr_info_line
cmdline_nntpserver curr_line
code current_bcol
collate_subjects current_fcol
color_dft currmenu
colorp cursoroff

Tag name: <@ [

OEBPS/Image00024.jpg

OEBPS/Image00144.gif
Font syle: Size

Regis I o
Crm—
talic: ° E=

T GungsunChe Bod
0 Lucda Consde | [Boi e
0 Licda Sans Typete

B fingLU

T WS Gothic |

UP/DOUN arrou keys. the first letter

hot _key. or the number keys 1-9 to ch
Press SPACE to toggle an option on/of
Which of the following are fruits?
“\UFF21\UFF30\uFF30\UFF2C\UFF. faBbYyZz
T\UFF2U\UFF2FAUFF27" o
T\UFF2F\UFF32\uFF 21\ UFF2E\UFE,
T\UFF23\UFF28\UFF 20\ UFF23\uFF. Scipt

T\UFF23\UFF21\uFF3! |

- Sample

S-S RutF8-UTF-16LE.txt" settings, if
Buffer:
byteorder-nar Fence-elif="\sx\<elif\> Fence-if="\sx\<if\>
comment-prefi Fence-else="\sx\else\> File-encoding-utf-16
comments="\sx[:#]\s%§ Fence-Fi="\sx\<Fi\> recordseparator-1¢
nodos

--- Global settings -

Universal

OEBPS/Image00027.jpg

OEBPS/Image00149.gif
USER FRIENDLY by Illiad

PITR, | NEED YOU TO

HELP ME WITH A NEW

MARKETING PROJECT, WELL THAT wAs

REMARKABLY

PAINLESS. \vET, YOUR PAN. SHE
15 JUST BEGINNINK.

PLEASE TO BE PRICKI

FINGER WITH PN TO
SIGN DOCUMENT.

Tttpiwww.userfriondly.orgl

Copyright (c) 2000 liad

OEBPS/Image00026.jpg

OEBPS/Image00029.jpg
CTRL

OEBPS/Image00147.gif
This Site
powered

OEBPS/Image00028.jpg

OEBPS/Image00148.gif
USER FRIENDLY by Illiad
S0 I'VE BEEN DOING SOME
\RCH AND I ICE!

GETTING. IT'S INSANE. THE
KIND OF MONEY THEY MAKE.
WE NEED TO SELL A LINE OF
PRODUCTS THE SAME WAY.

ttp:/www.userfriendly.orgl

Copyright (c) 2000 fiad

| WAS THINKING THAT
WE COULD MARKET
COLLECTABLE UNIX
TEXT EDITORS. START
WITH PICO AND CALL IT
“PICO-CHU"...

STEF. | HATE TO PUT A
DAMPER ON YOUR GRAND
PLANS. BUT WE'RE A

DEAR LORD. IT

OEBPS/Image00141.gif
<chapter label="12" id="vi6-ch-12">
vile:dochookmode

—>

 vile vi Like Emacs

It started out as a copy of Version 3.9 of MicroEMACS
that was modified to have the "finge:
and Paul Fox are the m

DOCTYPE book PUBLIC “~7/0ASTS//DTD DocBook XML V4.4//EN
http: //usu.oasis-open.org/docbook /xal/4.4/docbookx .dtd”
<CIENTITY latex “IILATEX!I®>

IENTITY tex “"I1TEX!1®

<IENTITY ch12 SYSTEM “ch12.xml">

»

<book fpi="9780596529833">

<titledLearning the vi and vim Editors</title>
<bookinfo>

<para><emphasis>vile</emphasis> stands for “vi Like Emacs.

" of <emphasisdvi</emphasis>

C

[lzcat chapter.xml.] [xmlmode read-onlyl is lzcat chapter.xml.gz (2.1) 3%

|

OEBPS/Image00142.gif
- [Completions] - vile

Xvile Editing Buffers Fixed Fonts Nice Fonts

VILECT)

vile, xvile - VI Like Emacs

ISYNOPSIS
vile [@cmdfile] [+command] [-hIiRVv] [-gNNN] [-kcryptkey] [-spattern]
[-ttag] [filename]...

DESCRIPTION
vile is a text editor. This man page is fairly terse. More informa-
tion can be obtained from the internal help, available with the -h

int line,
const char *cond)

my_fprintf(stderr, txt_error_asfail, tin_progname, file, Tine, cond);
my_fflush(stderr);

7
* create a core dump

#1fdef HAVE_COREFILE
ifdef SIGABRT
sigdisp(SIGABRT, SIG_DFL);
kiT1(process_id, SIGABRT);
else

Completions prefixed by /usr/build/tin/tin-1.9.2+/src/m:
1. makecfg.c mimetypes.c my_tmpfile.c
memory.c misc.c

OEBPS/Image00021.jpg

OEBPS/Image00020.jpg
‘- J

OEBPS/Image00140.gif
&

f1 gﬁ Search

Search for pain text —— not a regulr expression

an test o it

drestion
igrorecase
wrapscan

[forwara baskward]

OEBPS/Image00118.gif
18
1

12
3]
R,

mmmen

CRERES
This
This
This
This
This

ZECRIHBL I BELY BSEECAE BHE LMY -4
section lists entries in a least-capable to most-cap
should only be used when the terminal emulator canno
entry is good for the 1.1.47 version of the Linux co
trick could work with other Intel consoles like the
terninal widely used in our company...
e

OEBPS/Image00119.gif
somNouEw

R TRIRLAA) NIHELY HSEE M S SONalg
rxvt-unicode|rxvt-unicode terminal (X Window Systen]
am:bu:e0:hs:kn: mi ;RS2 Xn:X0:\

:cONBO:tES:11824: 1

This terninal widely used in our company
rxvt-unicode?|rxvt-unicode2 terminal (X Window System)2:\
SAL=\E[ZdL - DE=\E[%dl E[%dH:DO=\E [%dB - IC=\F [%d@

OEBPS/Image00112.gif
52
53 [--257 ines

OONPIL(4) =N ELOPIME)

e
Ntivenpin{6)n i

ool

Procomm and soms other ANSI emulations don't recognize all of the ANSI-
standard capabilities. This entry doletes cuu, cuf, cud, cub, and vpa/hpa
£ use repetitions of cuul, cufl, cudl and cubi.
Also deleted ich and chi, a5 GHodem up to 5.03 dossn't recognize these.
Finally, we delete rep and ri, which seem to confuse many emilators
On the other hand, we can count on these programs doing rmacs/smacs/sgr.
From: Eric . Raysond <esrasnark. thyrsus com> July 25 1995
pe torminal programs claising to be ansi (sono mode):\
an:ba i st

corso:ites:Liezei\:

e s o i e iy el
ansi-miniany ansi terminal with pessimistic assusptions:\

 Cu\ it MaH: do=\ [
CupeELA:

Color controls corresponding to the ANSL.SYS de-facto standard
(This is not a standatone entry)
ansi-pe-colos

[shp1hdn: AF= € [Sup1ncin:

ELNTAPIA{L Nk LNEAPIA (SN N APIA{ A NP (B S
et sttt o A phvr O R et P
ope\EL37; dom:

Procoms and some other AUSI emulations don't recognize all of the ANSI

standard capabilities. This entry deletes cuu, cuf, cud, cub, and vpa/hpa

+ N o u= repetitions of cul, cufl, cudl and cul

Also deleted ich and ichi, 45 GHodem up to 5.03 dossn't recognize these.

Finally, we delete rep and ri, which seen to confuse many emilators.

0n the other hand, we can count on thase programs doing rmacs/smacs/sgr.

From: Eric 5. Raymond <esrgsnark.thyrsus.coms July 25 1995

peansi-mono| iba-peterminal programs claiming to be ansi (momo o
am: bt st |

#2257 Uines: :co#s0:ites:Lin2e:\-

)\

OEBPS/Image00113.gif
7bin/sh

if [$xyz —eq 0]
then

this block of comments I typed
with option textwidth set to 4,
autoindent on, and
(autonatically), syntax-sh.
Notice how each line has the *#
with a separating space, all
courtesy of vin's autoindent.
now I will type the same text but
instead with the option
“compatible” (with vi) set.

smmzsssssn

this block of comments I typed with option textwidth
and (automatically), syntax-sh. Notice how each line h
separating space, all courtesy of vim's autoindent... n
text but instead with the option “compatible” (with vi)

OEBPS/Image00110.gif
1. This is Headline ONE with NO indentation and NO fold level.
1.1 This is sub-headline ONE under headline ONE
This is a paragraph under the headline. Its fold
level is 2.
1.2 This is sub-headline TWO under headline ONE.
2. This is Headline TWO0. No indentation, so no folds:
2.1 This is sub-headline ONE under headline THO.
Like the indented paragraph above, this has fold level 2
3 lines: - Here is a bullet at fold level 3
And, another set of bullets
2 lines: - Bullet one
2.2 This is heading TWO under Headline THO.
3. This is Headline THREER

OEBPS/Image00111.gif
o E e

nt v1, int v2)
26 lines: (-

OEBPS/Image00116.gif
PRV

» PELUNSAEMEARN VA AN LRI XM s A ERELLEEIENL L E R AL
(untranslatable capabilities removed to it entry within 1023
Thils terninal widely used in our company
rxvt-unicode|rxvt-unicode terminal (X Window System):\
am:bu:e0:hs:kn:wi:ws:Xn:X0:\

OEBPS/Image00117.gif
SRR E SR 8 N

S R ST DL SRS SN N
rxvt-unicode|rxvt-unicode terminal (X Wi

Thi
rxvt-unicode?|rxvt-unicode2 terminal (X
E[%dL - DE=\F [%dP - DL=\F [%d

OEBPS/Image00114.jpg
19
20
21
22
23
2u
25
26

while (condition)

<

if (someothercondition)

<
¥

printf(“looks like I've got both conditionst\n“);

OEBPS/Image00115.jpg
27 while (condition)

28«

29 if (someothercondition)

an <

31 printf(“looks like I've got both condition
a2 >

33 >

3u |

OEBPS/Image00129.gif
<
current = nitinusTuo + nHinusOne;
c 69/63/2687 81:31:48 PH

Il cc Fibonacci.c -0 Fibonacci
|| fibonacci.c: In function “main
[fibonacci.c|31] error: “longish undeclared (First use in this

Fibonacci.c|31] error
Fibonacci.c|31] error

(Each undeclared identifier is reported
For each function it appears in.)
Fibonacci.c|31] error: parse error before “int"
Fibonacci.c|40] error: parse error before “second
Fibonacci.c|42| error: ‘nMinusTwo' undeclared (First use in th
Fibonacci.c|42| error: “xFirst' undeclared (First use in this

OEBPS/Image00123.gif
i Identifier
dentifier xxx tern-underline cternfg=
'ress ENTER or type command to continue[]

quifg=barkCya

OEBPS/Image00124.gif
BRIENE
Special
Identifier
Statement
Preproc
type
inderlined
Ignore
Error
String
character
Number
Boolean
Float
cunction

o
o
xx
o
xx
xxx

e

nderline cternf
old cternfg=3 gu

tern-underline cternfg-5 guifg-Purple

nderline cternf

gui-bold guife

tern-underline ctern-underline cternfg-

to
to
to
to
to
to

5 quifg-bg

everse cternfg=15 cternbg=9 guif

Constant.
Constant
Constant
Constant
Hunber
Tdentifier

OEBPS/Image00121.gif
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Braniy A
retrieve
retrieve
getchar
getcud
getdirentries
geteny
getgrent
getgrgid
getgrnan
gethostbyaddr
gethostbynane
getmntent
getnetbyadar
getnetbynane
getnetent
getopt
getopt_long
getpass
getprotobynane

c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\home\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus
c:\home\ehannah\ .nythesaurus
c:\home\ehannah\ .nythesaurus
c:\hone\ehannah\ .nythesaurus

getprotobynunber c:\home\ehannah\ .mythesaurus

getprotoent

¢ :\home\ehannah\ .nythesaurus

OEBPS/Image00122.gif
highlight Conment

Connent: xxx tern-bold cternfg=s guifg-Blue
MEORSIRA RO R R A

OEBPS/Image00127.gif
Loren ipsun dolor Sit amet, consectetuer adipiscing e
tellus. Suspendisse ac magna at elit pulvinar aliquan.
iaculis augue sit amet massa. Aliquan erat volutpat.
massa aliquet molestie. Ut vel augue id tellus hendre:
condinentun tempor arcu. Aenean pretium suscipit feli:
eleifend lectus. Praesent vitae sapien. Ut ornare tem
ornare sapien congue tortor.

Nan adipiscing ligula at loren. Uestibulum gr-

OEBPS/Image00128.gif
22
23
2u
25
26
2

Fibonacci.c
Bl cc

e R S
dnt count = atoi(argu[3]);

7% index - which to print =/
long int index;

/x First and second passed in on command line x/
©9/63/2067 81:18:18 PH
Fibonacci.c -0 Fibonacci

[Quickfix List][-] ©9/03/2807 61:86:58 Pl

OEBPS/Image00125.gif
> 0@ NO v E NS

Loren ipsum dolor sit amet, consectetuer adipis
tellus. Suspendisse ac magna at elit pulvinar a
iaculis augue sit amet massa. Aliquan erat volu
massa aliquet molestie. Ut vel augue id tellus
condinentun tempor arcu. fenean pretium suscipi
eleifend lectus. Praesent vitae sapien. Ut orna
ornare sapien congue tortor.

Nam adipiscing ligula at loren. Uestibu

OEBPS/Image00126.gif
Loren ipsum dolor sit amet, consectetuer adipiscil
tellus. Suspendisse ac magna at elit pulvinar ali
iaculis augue sit amet massa. Aliquan erat volutp
massa aliquet molestie. Ut vel augue id tellus he
condinentun tempor arcu. fenean pretium suscipit
eleifend lectus. Praesent vitae sapien. Ut ornare
ornare sapien congue tortor.

In dui. Nam adipiscing ligula at loren. Uestibulu
justo. Integer a ipsum ac est cursus gravida. Eti
ligula mollis dian. In aliquam semper nisi. Nunc
erat. Ut purus. Hulla venenatis pede ac erat.x

OEBPS/Image00120.gif
1674 Unix</emphasis>. While installati
1675 Fun
1676/ Fun hone\ehannah\ .nythesaurus ot i

1677 enjoyable c:\home\ehannah\.nythesaurus mph:
1678 desirable c:\home\ehannah\.nythesaurus y.<;
1679 Funny hone\ehannah\ .nythesaurus
1680 hilarious c:\home\ehannah\.mythesaurus
1681 1ol c:\home\ehannah\ .nythesaurus
1682 FOLFL hone\ehannah\ .nythesaurus
1683 1nao hone\ehannah\ .nythesaurus
1684 <title><enphasis>completion method
1685 (<keycap>CTL-X CTL-T</keycap>) </t

OEBPS/Image00004.jpg

OEBPS/Image00003.gif
USER FRIENDLY by Illiad

HLIue Li . . LOOK. TS THE
I'™M SORRY M'AM, BUT !
2 . You
LDON'T KNOW WH
EDITOR THIS IS THAT O kROl
40w Th G52 s YOU'RE TALKING ABOUT. ?

‘SIX* EDITOR.

r

Titpiwww.userfriendly.orgl

|

Copyright (c) 2000 liad

OEBPS/Image00006.gif
0 b 2k $

With a scrieen editor you can scroll\the
age, move|the cursor, delete lines,

Ond more, ®Whil@ seeing the @esults off)
your edits as yo%i\ make them.

21 i 2w

OEBPS/Image00005.jpg

OEBPS/Image00008.jpg

OEBPS/Image00007.gif
4l

1
WithOa screen editor you can scroll the

OEBPS/Image00009.jpg

OEBPS/Image00000.jpg
OREILLY®

OEBPS/Image00002.jpg

OEBPS/Image00001.jpg

OEBPS/Image00099.gif
RESSA

[Find Previous|

OEBPS/Image00092.gif

OEBPS/Image00091.gif

OEBPS/Image00094.gif

OEBPS/Image00093.gif

OEBPS/Image00096.gif

OEBPS/Image00095.gif

OEBPS/Image00098.gif
AEDa 9@ BERERRSSA TEAQ(22 @

OEBPS/Image00097.gif

OEBPS/Image00090.gif

OEBPS/Image00103.gif
13

14 iF (thiscode
15

16

17 printf (s

18 +-- 3 lines: printf (08 some other line\n");-
2

22 >

23

B ik b An"):

anysense)

OEBPS/Image00102.gif
int fon (int vi, int

v2)

printf some linen");
printf some line\n*);
printf some Line\n);
printf some linen");
printf some linen);
if (thiscode -- anysense)

<

printf (67 sone
priffee (08 sone
printf (09 sone
printf (10 sone

¥

printf
printf
printf
printf
printf

3

some Line\n:
some Line\n:
some Line\n:
some Line\n:
some Line\n:
printf (12 some line\n

other Line\n");
other Line\n");
other Line\n");
other Line\n");

OEBPS/Image00105.gif
3
u
5 +-- 21 lines: int fen (int u1, int v2)-

26 9 some line\n”);
27 0 some Line\n");
28 1 some line\n”);
29 2 some linewn”);
38

a1

OEBPS/Image00104.gif
18
1

12
13
14

2u
25
SR

PEIIL Y X Me P TNEA X
printf some Line\n:
printf some Line\n:
printf Some Line\n")

printf (05 some line\n

if (thiscode
8 lines: {

printf (07 sone linen");
8 some line\n

OEBPS/Image00107.gif
T (int v1, int v2)

<
printf (n)
printf (n)
printf (n)
printf (An)
printf (An)
if (thiscode -- anysense)
<
printf (

An") 3

= 3 lines: printf (“08 some other line\n“);

OEBPS/Image00106.gif
ETEE Cint vi1, int
<

printf (
printf (
printf (
printf (

if (thiscode
<

printf (07 sone
printf (08 sone
printf (69 sone
printf (10 sone

¥

some Lineyn:
some Line\n:
some Line\n:
some Line\n:
printf (06 some line\n

v2)

other
other
other
other

anysense)

linewn”);
linevn”);
linewn”);
linewn");

printf (07 sone linein“)
printf (88 some linen")

OEBPS/Image00109.gif
. This is Headline ONE with NO indentation and NO fold level.
*-- 4 lines: 1.1 This is sub-headline ONE under headline ONE
2. This is Headline TWO. No indentation, so no folds

-~ 5 lines: 2.1 This is sub-headline ONE under headline THO
+-- 4 lines: And, another set of bullets
3. This is Headline THREE.

OEBPS/Image00108.gif
1
15
16
e
18
19
20
21
22
23
155

if (thiscode -- anysense)
<
printf (07 some other
PRINTF (08 SOME OTHER
PRINTF (09 SOME OTHER
PRINTF (10 SOHE OTHER

¥

N BN N

linewn’
LINE
LINE
LINE

OEBPS/Image00101.gif
int fon (int v1, int v2)

]
printf ()3
printf ()5
+--= 2 lines: printf ("04 some linevn“);
printf (OH
if (thiscode -- anysense)
+-- 8 lines: {
printf ()5
printf (An);
4= 4 lines: printf (09 some line\n");
¥

OEBPS/Image00100.gif
{{fOpen up 2 DOS window

between

OEBPS/Image00078.gif

OEBPS/Image00077.gif

OEBPS/Image00079.gif

OEBPS/Image00070.gif

OEBPS/Image00072.gif

OEBPS/Image00071.gif

OEBPS/Image00074.gif

OEBPS/Image00073.gif

OEBPS/Image00076.gif

OEBPS/Image00075.gif
tenu. HTHL vy
fenu _XHT

<para>Did you notice the extra commar
B g e R T

OEBPS/Image00089.gif

OEBPS/Image00088.gif

OEBPS/Image00081.gif

OEBPS/Image00080.gif

OEBPS/Image00083.gif

OEBPS/Image00082.gif

OEBPS/Image00085.gif

OEBPS/Image00084.gif

OEBPS/Image00087.gif

OEBPS/Image00086.gif

OEBPS/Image00157.jpg
Unix Text Processing

Editors

OJP\E"_I_YQa Arnold Robbins, Elbert Hannah & Linda Lamb

