

[image:]

Artificial Intelligence

AI Introductory Course 2

[image:]

SIKANDER SULTAN ACA MBA

Publishers Note

First published in Great Britain by Expert Of Course

Edition 2017

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing from the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

Trademarked names, logos, and images may appear in the book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, or images only in an editorial fashion and to the benefit of the trademark stakeholder, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

 Expert Of Course 2017

www.ExpertOfCourse.com

 on behalf of Author

Sikander Sultan

www.Sultan.co.uk

The publisher makes no representation, express or implied, with regard to accuracy of the information in this book and cannot accept any legal responsibility for any error or omissions that may be made.

ABOUT THE AUTHOR

Sikander Sultan is an expert in Advisory, Strategic Growth, Assurance, Corporate Tax Saving, Accounting, Technology, Marketing, Regulatory and Legal issues affecting the IT, High Tech, Real Estate, Construction, E-Commerce, E-Learning, Energy, Management Consulting, Defence and Government Infrastructure sectors.

He has gained extensive management experience in Ernst & Young and KPMG London; where he regularly advised IT start-ups, FTSE listed blue chip Corporates, Private Equity businesses, Funds, SPVs, Venture Capitalists and high profile clients.

He is a genuine Celebrity trusted business advisor as famous for his '1 week business turnaround strategies'. He is the founder and presenter of global professional network and loves to share knowledge with the community.

Apart from high profile consulting and essential business advisory he has conducted regular clients’ workshops and presentations. He is the Go-To Expert for setting up the Corporate Structuring in achieving Tax Savings, Asset Protection and Estate planning.

He is Tech Savvy and passionate in designing algorithms to tackle complex global business platform problems using the 'future technologies today'.

He knows how to maximise business results exponentially, instant performance optimisation and Corporate tax savings with minimum effort. He has a very rare ability to immediately master the business processes, implications, correlations, applications, opportunities, innovation and vulnerabilities in any given situation.

He takes different success concepts from the unrelated industries and adopts them to clients' specific business; resulting in business performance enhancement, and the maximising and multiplying of business assets.

He is an 'Archaeologist of Growth' as he is dedicated to growing businesses, advancing careers, and multiplying bottom lines exponentially.

He is also a qualified ICAEW Chartered Accountant and an MBA.

[image: D:\GT Work\SULTAN LOGO.png]

OTHER BOOKS BY (SIKANDER SULTAN)

Below are other books available online on Amazon:

[image: C:\Users\r51729\Desktop\BIG DATA KINDLE UPLOAD\Quantitative Methods for Business.png]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image: C:\Users\r51729\Desktop\MERGERS & ACQUISITIONS\123.jpg]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image: D:\GT Work\ONLINE COURSE MATERIALS\BIG DATA COURSE\Big Data Analytics Sultan.co.uk ExperOfCourse.com 2017.jpg]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image: C:\Users\r51729\Desktop\BIG DATA KINDLE UPLOAD\PM Psychology.png]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

[image:]

http://amzn.to/2ysDoRh

And Many More !

Artificial Intelligence

Introductory Course 2

[image: http://glistertech.com/wp-content/uploads/2017/04/artificial.intelligence.tegmark.musk_.killer.robots.01_occupycorporatism.jpg]

Course Description

This book is a continuation of the Part 1 of the series.

Artificial intelligence (AI) is a research field in computer science, which studies
 how to
 transfer (or impact) the
 human
 intelligence
 and (/or) logical behaviours to the computer machines
 . The ultimate goal of Artificial intelligence is to make or develop computer systems that can independently and autonomously learn, plan, strategies, and solve real-life problems. Due to the extensive and unrelenting studies that have been carried out in this magnificent field (of computer science) for more than half a century, systems are now built that can stand the test of intelligence with human beings. Examples of such intelligent systems include self-driving cars, online robotic teaching agents, intelligent home service agents, autonomous planning agents, Deep Blue IBM system (famously known for defeating a world chess champion) etc.

This book is Part II of the II Parts series, in this introductory course
 on AI
 , we have studied the most fundamental knowledge for understanding a
 rtificial intelligence, from the part I
 . Also, in the
 first 10 chapters of this introductory course we have covered the fundamental and foundational principles driving the design, development, and implementation of intelligent systems. The topics discussed included AI fundamentals and methodology; historical background; Applications and impact of AI; Intelligent Agents; Problem Solving; Basic and Advanced Search Strategies.

The succeeding chapters in this Part II series, will introduce the reader to more advanced forms of AI, which includes: knowledge representation; First-Order Logic; Uncertain Knowledge and Reasoning; Making Simple and Complex Decisions. Reader will also learn ‘how to’ use Artificial intelligence with the practical case studies and walk-through examples to practice. We will go through usage of Artificial intelligence within Digital World such as using Artificial Intelligence in Online Platforms, Market places Platforms, Social Media Platform, Gaming Platforms and much more.

The main goal of the course is to equip you with the tools to tackle new AI problems you might encounter in life.

Course Objective

The main purpose of this course is to provide the most fundamental knowledge on AI to the reader so that they can understand what the Artificial Intelligence (‘AI’) is all about.

Course Objectives

	
To have an appreciation for artificial intelligence and an understanding of both the triumphs of AI and the principles fundamental to those accomplishments.

	
To have an appreciation for the core principles which are essential to the design of artificial intelligence systems.

	
To have an elementary adeptness in a traditional artificial intelligence language which includes an ability to write simple programs.

	
To have an understanding of the basic search strategies, as well as more advanced search strategies and fundamental issues hovering over intelligent agents and their environments.

	
To have an elementary understanding of (some of the) more advanced topics of artificial intelligence such as knowledge representation, reasoning, first-order logic, and decision-making.

Legal Notes

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd edition. Prentice Hall.

This coursework is developed mainly on the work of Russell and Norvig.

Table of Contents

Chapter 9 Beyond Classical Search

1.1
 Introduction

1.2
 Local Search

1.2.1
 Hill Climbing

1.2.2
 Simulated Annealing

1.2.3
 Local Beam Search

1.2.4
 Genetic Algorithm

1.3
 Searching with non-deterministic action

1.3.1
 The Erratic Vacuum World

1.3.2
 AND-OR Search Tree

1.4
 Online Search Agents and Unknown Environments

1.4.1
 Online Search Problems

1.4.2
 Online Search Agents

1.4.3
 Online Local search

Chapter 10 Adversarial Search and Constraint Satisfaction Problem (CSP)

1.5
 Adversarial Search

1.5.1
 Optimal Decisions in Games

1.5.2
 Optimal Strategies

1.5.3
 Optimal Decisions in Multiplayer Games

1.5.4
 ALPHA-BETA PRUNING

1.5.5
 Imperfect Real-Time Decisions

1.6
 Constraint Satisfaction Problem (CSP)

1.6.1
 Introduction

1.6.2
 An Example of a CSP

1.6.3
 Varieties of Constraint Satisfaction Problem

1.6.4
 Types of Constraints in Constraint Satisfaction Problem

1.6.5
 Backtracking Search for Constraints Satisfactory Problem

Chapter 11 Knowledge Representation

1.7
 Introduction

1.8
 Semantic Networks

1.9
 Propositional Logic

1.9.1
 Introduction

1.9.2
 Rules of operation

1.9.3
 Knowledge-Based Agents

1.10
 The Wumpus world

1.10.1
 PEAS Description of a Wumpus World

1.10.2
 Characteristics of the Wumpus Environment

1.10.3
 Exploring the Wumpus world

1.11
 A Simple Knowledge Base (KB)

1.11.1
 Introduction

1.11.2
 Theorem Proving Concept

1.11.3
 Final Thoughts

Chapter 12 First-Order Logic

1.12
 Facts of Propositional Logic (also referred to as First Order Predicate Calculus)

1.12.1
 Drawback of Propositional Logic

1.13
 Language of First-Order Logic (FOL)

1.13.1
 Components of First-Order Logic

1.13.2
 Models for First-Order Logic

1.13.3
 Symbols and interpretations

1.14
 Quantifiers

1.14.1
 Universal Quantification

1.14.2
 Existential quantification

1.14.3
 Nested quantifiers

1.15
 Using First-Order Logic

1.15.1
 Assertions and Queries in First-Order Logic

1.15.2
 Relationship Domain

1.15.3
 The Wumpus world

1.15.4
 Knowledge Engineering

Chapter 13 Uncertain Knowledge and Reasoning

1.16
 Introduction

1.17
 Quantifying Uncertainty

1.17.1
 Acting under Uncertainty

1.17.2
 Uncertainty and Rational Decisions

1.18
 Basic Probability Notations

1.18.1
 Possible world

1.18.2
 Sample space

1.18.3
 Probability model

1.19
 Language of propositions in probability assertions

1.19.1
 Random variables

1.19.2
 Domain

1.20
 Inference using Full Joint Distribution

1.20.1
 Marginal Probability

1.21
 Independence

1.22
 The Wumpus world

Chapter 14 Making Simple Decisions

1.23
 Introduction

1.24
 Beliefs and Desires under Uncertainty

1.24.1
 Maximum Expected Utility (MEU)

1.25
 Basis of Utility Theory

1.25.1
 Constraint on Rational Preferences

1.25.2
 Preference Lead to Utility

1.25.3
 Utility Functions

1.26
 Decision Network

1.26.1
 Evaluating the decision networks

1.27
 Decision-Theoretic Expert System

Chapter 15 Making Complex Decisions

1.28
 Sequential Decision Problems

1.29
 The Agent World

1.29.1
 Making Plans

1.29.2
 Introduction to Rewards

1.30
 Policy

1.30.1
 Optimal Policy

1.30.2
 Utilities over time

1.30.3
 Finite and Infinite Horizon

1.30.4
 Calculating the Utility of States

1.30.5
 Optimal Policies and the Utilities of states

1.31
 Decisions with Multiple Agents

1.31.1
 Game Theory

1.31.2
 Usage of Game Theory

1.32
 Single-Move Games

1.32.1
 Example

1.32.2
 Analysis of payoff Matrix for Mike

1.32.3
 Mike’s Deductions

Can I Ask A Favour?

LIST OF FIGURES

Figure 1: Expectations from Artificial Intelligence (Mitra, Nandy, Bhattacharya, & Dutta, March 2017)

Figure 2: Types of Intelligence (Founders and Founders, 1983)

Figure 3: Components of Intelligence

Figure 4: Relevant descriptions of artificial intelligence (Honavar, 2006)

Figure 5: Some definitions of artificial intelligence organised into four categories

Figure 6: How humans think (Russell & Norwig, 2010)

Figure 7: Turing Test (Extreme_Tech_Image, 2014)

Figure 8: Qualities to pass Turing Test (Russell & Norwig, 2010)

Figure 9: Comparing the Human brain and Computer

Figure 10: Branches of artificial intelligence (Prof. Rao, Prof. Pradipta, & Prof. Sahu)

Figure 11: (Birth of AI, n.d.)

Figure 12: Developers of the General Problem Solver, Allen Newell and Herbert Simon (http://bit.ly/2tRinOA)

Figure 13: http://bit.ly/2sVs3mT

Figure 14: http://bit.ly/2tywiq9

Figure 15: Chess game between Garry Kasparov and Deep Blue (AI) in 1997 (http://read.bi/2sVAYol)

Figure 16: http://bit.ly/1PBPR3n

Figure 17: IBM Watson defeats Ken Jennings and Brad Rutter, 2011 (http://bit.ly/2vuR7G5)

Figure 18: CAPTCHA example (http://bit.ly/2v1LT47)

Figure 19: A program created by DeepMind to play Atari games (http://bit.ly/2wqJdLg)

Figure 20: Google's self-driving cars (http://bit.ly/2vnn43p)

Figure 21: Example of a robotic vehicle (http://bit.ly/2u9hVMy)

Figure 22: Speech recognition illustration (http://bit.ly/2rJFCH2)

Figure 23: Planning and scheduling (http://bit.ly/2wqzzby)

Figure 24: Two guys playing game (http://bit.ly/2fdzXGV)

Figure 25: Simple Spam filtering analogy (http://bit.ly/2u8FXYi)

Figure 26: Aspects of planning (http://bit.ly/2vnk7zP)

Figure 27: New Technologies in Artificial Intelligence (New Technologies in Transportation, 2014)

Figure 28: Impacts of AI in transportation

Figure 29: Fellow Robots OSHbot (SVR Case Studies: Fellow Robots brings robots to retail, 2016)

Figure 30: Vacuum cleaner robot (Haier Pathfinder Vacuum Cleaner, n.d.)

Figure 31: Example of Home Robot (Amy Robot, n.d.)

Figure 32: Healthcare analysis (http://bit.ly/2trKhNH)

Figure 33: Healthcare Robotics (http://bit.ly/2trX7LR)

Figure 34: Mobile Health (http://bit.ly/2upXHLB)

Figure 35: Nurse attending to an aged woman (Eldercare - http://bit.ly/2upQ7AB)

Figure 36: Ozobots in view (http://bit.ly/2uNL1AI)

Figure 37: Images of Cubelets (http://bit.ly/2vzwCWy)

Figure 38: Wonder Workshop’s Dash and Dot Robots (http://bit.ly/2tssJ3S)

Figure 39:Images Of Pleo Rb (http://bit.ly/2vOipnG)

Figure 40: Online learning environment (http://bit.ly/2aIXzQ2)

Figure 41: An Overview of what learning analytics entail (http://bit.ly/2uOcQsm)

Figure 42: Online Platform in various fields of AI (Jia, 2017)

Figure 43: The birth of "Facebook" (http://read.bi/2uqVhhc)

Figure 44: Facebook user growth rate between 3rd quarter of 2008 to 1st quarter of 2017

Figure 45: Facebook's revenue growth rate between 2012 and 2017

Figure 46: History of Instagram in Infographics

Figure 47: Instagram's monthly user growth rate between 2010 and 2017

Figure 48: Snapchat history from start

Figure 49: Snapchat quarterly user growth rate between 2014 and 2016

Figure 50: Snapchat revenue statistics from 2015 to quarter 4 of 2016

Figure 51: Timeline history of LinkedIn

Figure 52: Improvement in game graphical interface (http://bit.ly/2tEWYsE)

Figure 53: Making games more portable (http://bit.ly/2v1BZQZ)

Figure 54: 3 Dimensional games (http://bit.ly/2tF8vIk)

Figure 55: An example of a multiplayer game showing two players (http://bit.ly/2vU0tbl)

Figure 56: Different types of agent

Figure 57: Agents interact with environments through sensors and actuator

Figure 58: Illustration of a human agent

Figure 59: Illustration of a robotic agent

Figure 60: Illustration of Software agent

Figure 61: A vacuum-cleaner world with just two locations

Figure 62: Dung Beetles rolling dung

Figure 63: Sphex wasp with a prey

Figure 64: A Table Driven Agent program

Figure 65: Schematic diagram of a Simple Reflex Agent

Figure 66: A simple reflex agent program. It acts according to a rule whose condition matches the current state, as defined by the percept

Figure 67: A model-based reflex agent

Figure 68: A model-based reflex agent. It keeps track of the current state of the world, using an internal model. It then chooses an action in the same way as the reflex agent.

Figure 69: A goal-based and model-based agent which maintains a track record of the states of the world as well as the goal set that the agent is attempting to attain, and selects an action that will ultimately lead to the accomplishment of its goals.

Figure 70: A utility-based agent using the world model alongside a utility function which, measures its preferences (favourites) among different states of the world.

Figure 71: A general learning agent

Figure 72: Types of problem

Figure 73: A simplified road map of part of Romania. (Russell & Norwig, 2010)

Figure 74: The sequence of steps done by the intelligent agent to maximise the performance measure

Figure 75: A simple problem solving agent function

Figure 76: The complete state space for Vacuum World

Figure 77: A typical instance of the 8-puzzle

Figure 78: Almost a solution to the 8-queens problem

Figure 79: A solution to the 8-queens problem

Figure 80: missionaries-cannibal image

Figure 81: Romania map

Figure 82: Partial search trees for finding a route from Arad to Bucharest

Figure 83: Tree search example problem

Figure 84: An informal description of the general tree-search and graph-search algorithms.

Figure 85: Tree search example problem using Queuing function

Figure 86: Nodes are the data structures from which the search tree is constructed. Each has a parent, a state, and various bookkeeping fields. Arrows point from child to parent.

Figure 87: Comparison between blind search and heuristic search

Figure 88: Breadth-First Search function

Figure 89: Time and memory requirement for breadth-first search.

Figure 90: Uniform-cost search function

Figure 91: Part of the Romania state space, selected to illustrate uniform-cost search

Figure 92: Using Depth-first search to find a path from A to M. Unexplored area are shown in light grey colour

Figure 93: Depth-Limited-Search Functions

Figure 94: A partially defined (customised) roadmap of Nigeria

Figure 95: The iterative deepening search algorithm

Figure 96: A schematic view of a bidirectional search showing branches from both start and goal nodes about to succeed as they approach each other.

Figure 97: Using an extract from the map of Romania to solve greedy BFS problem

Figure 98: Various applications of Local Search algorithms

Figure 99: Some examples of local search algorithms that will be discussed in this chapter

Figure 100: State space showing the problem with hill climbing. The aim is to find the global maximum (Russell & Norwig, 2010, p. 121)

Figure 101: Basic Hill Climbing Search algorithm (Russell & Norwig, 2010, p. 122)

Figure 102: Simulated Annealing algorithm (Russell & Norwig, 2010, p. 126)

Figure 104: Solution 1 - low cost

Figure 104: Solution 2 - high cost

Figure 105: showing and combining parents one and two on a chess board (Russell & Norwig, 2010, p. 127)

Figure 106: The genetic algorithm, illustrated for digit strings representing 8-queens states (Russell & Norwig, 2010, p. 127)

Figure 107: Genetic Algorithm

Figure 108: All possible states in a vacuum world

Figure 109: First two levels of the search tree for the erratic vacuum world (Russell & Norwig, 2010, p. 135)

Figure 110: An online search agent that uses depth-first exploration (Russell & Norwig, 2010, p. 150)

Figure 111: Five iterations of LRTA* on a one-dimensional state space

Figure 112: LRTA*-AGENT (Russell & Norwig, 2010, p. 152)

Figure 113: Definition of a 2-player game (Russell & Norwig, 2010, p. 162)

Figure 114: A (partial) game tree for the game of tic-tac-toe where the top node is the initial state (Russell & Norwig, 2010, p. 163)

Figure 115: A two-ply game tree

Figure 116: An algorithm for calculating minimax decisions (Russell & Norwig, 2010, p. 166)

Figure 117: The first three plies of a game tree with three players (A, B, C) (Russell & Norwig, 2010, p. 166)

Figure 118: A two-ply game tree used as an example for Alpha-Beta Pruning

Figure 119: The alpha–beta search complete algorithm (Russell & Norwig, 2010, p. 190)

Figure 120: Two chess positions that differ only in the position of the rook at lower right. (Russell & Norwig, 2010, p. 193)

Figure 121: A map of principal states in Australia (Russell & Norwig, 2010, p. 224)

Figure 122: A crypt arithmetic problem (Russell & Norwig, 2010, p. 227)

Figure 123: A simple backtracking algorithm for constraint satisfaction problems. The algorithm is modelled on the recursive depth-first search (Russell & Norwig, 2010, p. 235)

Figure 124: Part of the search tree for the map-colouring problem earlier discussed (Russell & Norwig, 2010, p. 236)

Figure 125: The progress of a map-colouring search with forward checking (Russell & Norwig, 2010, p. 238)

Figure 126: Types of knowledge (Jones, 2008, p. 162)

Figure 127: A simple semantic network

Figure 128: Truth table for the five logical connectives listed above.

Figure 129: Basic structure of a knowledge-based agent

Figure 130: A generic knowledge-based agent (Russell & Norwig, 2010, p. 236)

Figure 131: A typical Wumpus world

Figure 132: Explaining Logical Equivalence using truth table

Figure 133: Explaining Validity using truth table

Figure 134: Explaining Satisfiability using truth table

Figure 135: Algorithm improvements on TT-Entails algorithm (Russell & Norwig, 2010, p. 260)

Figure 136: The DPLL algorithm for checking satisfiability of a sentence in propositional logic (Russell & Norwig, 2010, p. 261)

Figure 137: A model containing five objects, two binary relations, three unary relations (indicated by labels on the objects), and one unary function, left-leg (Russell & Norwig, 2010, p. 291)

Figure 138: The syntax of first-order logic with equality, specified in Backus–Naur form. Operator precedencies are specified, from highest to lowest. (Russell & Norwig, 2010, p. 293)

Figure 139: A decision-theoretic agent that selects rational actions

Figure 140: A full joint distribution for the Toothache, Cavity, and Catch world. (Russel, 2011, p. 492)

Figure 141: A sample Wumpus world (Russel, 2011, p. 500)

Figure 142: Consistent models for the frontier variables
 [image:]
 (Russel, 2011, p. 502)

Figure 143: Properties for estimating world state in a decision theory model.

Figure 144: Constraints required for any reasonable relation to obey

Figure 145: Example of an agent with nontransitive preference.

Figure 146: A cycle of exchanges showing that the nontransitive preferences
 [image:]
 result in irrational behavior

Figure 147: The decomposability axiom.

Figure 148: A simple decision network for the airport-sitting problem

Figure 149: Algorithm for evaluating decision network.

Figure 150: A Simple 4 * 3 environment presenting an agent with a sequential decision problem.

Figure 151: Illustration of the transition model of the environment.

Figure 152: (a) An optimal policy for the stochastic environment with R(s) = − 0.04 in the nonterminal states. (b) Optimal policies for four different ranges of R(s).

Figure 153: The utilities of the states in the 4 3 world, calculated with
 [image:]
 1 and
 [image:]
 for nonterminal states

Figure 154: What happens when uncertainty occurs due to other agent's and the decisions they make?

Figure 155: What happens when the decisions of other agent's rests on our decision?

Figure 156: Components of Single-Move Games

LIST OF TABLES

Table 2: Advantages and Disadvantages of Artificial Intelligence (Fekety, 2015)

Table 3: Introduction of some automated functionalities in cars as cited in (One-Hundred-Year-Study-on-Artificial-Intelligence-(AI100), 2015)

Table 4: Partial tabulation of a simple agent function for the vacuum-cleaner world shown in Figure 61

Table 5: PEAS description of the task environment for a vacuum cleaner.

Table 6: PEAS description of compound task environments

Table 7: Examples of task environments and their characteristics

Table 1: Rule table for solving missionary-cannibal problem

Table 2: Solving the missionary-cannibal problem

Table 10: Comparing the six search strategies against completeness, optimality, time, and space complexity

Chapter 9 Beyond Classical Search

[image:]

This chapter brings us a little closer to the real world. At the end of this chapter, the reader should have learnt about:

	
Local search and its algorithms

	
Different kinds of local search

	
Modification and evaluation of one or more current states rather than systematically exploring paths from an initial state

	
Exploring a state space using online search

1.1

Introduction

In the earlier search strategies that we have discussed in chapter 8, we see that the path to the goal state is critical, as the strategies keep in memory the path to the goal node whenever we find the goal. However, the path to a goal state is not imperative. An excellent example is the 8 Queens problem where the goal is to place eight queens on a chess board making sure that none attacks each other. Here, the path to the goal state is irrelevant, what is important is the final configuration of the queens in which we place all eight queens on the board without any attacking each other. If that is the case, then this chapter will look at other kinds of algorithms, which do not worry about the paths along a solution.

1.2

Local Search

Local search
 algorithms operate using a single current
 node
 (rather than multiple paths) and move only to adjacent nodes. Usually, the search strategy does not retain paths followed during the search.

Advantages

	
Consumption of very little memory when compared with informed search strategies.

	
Generation of reasonable
 solutions in large or continuous state spaces for which systematic algorithms are inappropriate

	
It is suitable for online and offline search where there exists constant search space.

Local search algorithm begins from a potential solution and then move to the nearest solution. It is capable of returning a valid solution even if it is interrupted at any time before ending.

[image:]

Figure 98: Various applications of Local Search algorithms

[image:]

Figure 99: Examples of local search algorithms to discussed in this chapter

1.2.1

Hill Climbing

[image:]

[image:]

Hill climbing search is an iterative algorithm, which begins with a random solution to a problem and tries to find a better solution by altering a single element of the solution incrementally. If we realise a better solution by changing an element, it is perceived that such an incremental modification is a new solution. The algorithm repeats this procedure until there exists no extra or additional improvements.

[image:]

[image:]

Disadvantage

	
The hill climbing search algorithm is not optimal neither is it complete.

	
The hill climbing search may sometimes fail to find a goal when one exists because it can get stuck on
 local maximum
 . A local maximum is used to denote a peak higher than each of its adjacent or neighbouring states but lower than the global maximum. See Figure 100 for more understanding.

	
It is suitable for online and offline search when the search space state is constant

Types of Hill Climbing

	
Stochastic Hill Climbing: This strategy chooses or select random moves from among the available uphill moves; steepness of the uphill move causes varying selection probability values.

	
First-choice Hill Climbing: This strategy implements stochastic hill climbing by randomly generating successors up until a successor state is generated that proves to be a better state than the current state. When a state has several successors, First-choice Hill Climbing is a better strategy.

	
Random-restart Hill Climbing: The best kind of Hill Climbing Search happens to be the Random-restart Hill Climbing. It is so because the algorithm conducts a series of hill-climbing searches from randomly generated initial states up until a goal is detected. The uphill here is that generating a random state from an implicitly specified state space can be a challenge.

1.2.2

Simulated Annealing

The up-hill with hill climbing is that it never makes down-hill movements to states with lower values. Therefore, it is incomplete. Simulated annealing is a combination of hill climbing and
 random walk.
 Random walk is used to describe the process of moving to a successor chosen uniformly at random from the set of successors. While hill climbing is efficient but not complete, random walk is complete but not efficient. Thus, a combination of both hill climbing and random walking will yield completeness and efficiency.

Annealing (a process in metal casting) is the process of heating and cooling a metal to change its physical properties. The new structure of the metal, as well as its newly obtained properties (both internal and physical), is maintained when the metal finally cools down. In the simulated annealing process, the solution is to start with a high temperature then gradually reducing the temperature. Here in Simulated Annealing, when the search reaches a local maxima (a point where hill climbing is stuck), the algorithm allows the search to take some downward hill steps to get out of the local maxima. A random node, chosen for examination, is selected and the algorithm checks to see if the new node selected is a better move. If it is, it is executed.

[image:]

[image:]

Example

Task: find a low-cost expedition from a city ‘A’ visiting all cities en route only once and ending at city ‘A’.

Solution

Let us follow the simple algorithm below to solve this problem.

Begin

Find out all (n – 1)! possible solutions, where n is the total number of cities

Determine the minimum cost of each of these (n – 1)! Solutions

Keep the solution with the minimum cost

End

[image:]

Figure 103: Solution 1 - low cost
 Figure 103: Solution 2 - high cost

Applications of simulated annealing include:

[image:]

1.2.3

Local Beam Search

The local beam search is almost the same as the random-restart search algorithm, which performs numerous hill-climbing searches from randomly generated initial states, up to the moment of detecting a goal state. The difference, however, is that local beam search begins with not one random state but ‘k’ (where k > 1) random states. It uses K states and generates successors for ‘k states in parallel instead of one state and its successors in sequence. At each step, we generate the entire successors of every ‘k’ states. If anyone is a goal, the algorithm halts. Otherwise, it selects the ‘k’ best successors from the complete list, and the process goes on and on. Another distinguishing factor between the random-restart search strategy and beam search strategy is that each search process in a random-restart search executes independently of the others.

However, in a local beam search, useful information is passed among the parallel search threads (Russell & Norwig, 2010, p. 126). In order words, if any state generates a better successor state, the information is relayed to neighbouring, adjacent, or parallel threads. Thus, enhancing the search strategy.

Sequence of operation of Local Beam Search

	
Keeps track of ‘k’ states rather than one state

	
It starts with ‘k’ randomly generated states

	
Every successor of all ‘k’ states at each step or stage are generated

	
If any state is a goal, the algorithm terminates. If not, it selects the ‘k’ best successors from the complete list and repeats the iteration process again

Disadvantage of Local Beam Search

	
Local Beam Search has the tendency of suffering from a lack of variety among ‘k’ states. In order words, the threads may become focused quickly on a small area of the state space.

Solution to the drawback of Local Beam Search

	
The problem of Local Beam Search can be tackled through a variant called
 stochastic beam search.
 Stochastic beam search selects at random ‘k’ successors, rather than picking the best ‘k’ from the pond of candidate successors, with the probability of selecting a particular successor being an increasin
 g
 function of its value.

1.2.4

Genetic Algorithm

Genetic Algorithm is a modified version of stochastic beam searc
 h
 , whic
 h
 combines two
 parent states in order to generate successor states rather than by adjusting or altering a single state
 .
 Genetic Algorithm begins with a set of ‘k’ randomly generated states, called the population. Strings are used in symbolising individual states over finite alphabets. For example, an 8-queens state must specify the positions of 8 queens, each in a column of 8 squares. Alternatively, we can use 8 digits to represent the state, each in the range from 1 to 8.

Example of 8 Queens Problem

The state with the value 24748552 is derived as follows.

[image:]

Stage one: Initial Population

‘k’ random states are generated. We assumed that there are four randomly generated states. They are:

[image:]

Stage two: Fitness function

This function returns a higher value for a better state. In the example of the 8 Queens problem, the number of non-attacking pairs of queens is defined as fitness function.

Minimum fitness function: 0

Maximum fitness function: 28

The four states have values 24, 23, 20, and 11 respectively.

[image:]

Stage three: Selection

By considering the probability of the fitness function of each state, a random choice of two pairs is selected for reproduction. There is a direct proportionality between the choice of reproduction and the fitness score. This is revealed under ‘fitness function’ in the image below.

[image:]

Stage four: Cross Over

This is the offspring creation stage where pairs of strings are mated. A
 crossover
 point is selected randomly in order for each pair to be mated, from the locations in the string. The crossover points will be chosen after the third digit in the first pair and after the fifth digit in the second pair. Offspring is created by crossing over the parent strings in the crossover point. That is, the first child of the first pair gets the first 3 digits from the first parent and the continuing numbers from the second parent.

Likewise, the second child of the first pair gets the first three digits from the second parent and the leftover figures from the first parent.

[image:]

[image:]

Figure 105: showing and combining parents one and two on a chess board (Russell & Norwig, 2010, p. 127)

The 8-Queens states are matched to the first two parents in Figure 105 above. The shaded columns are lost in the crossover step, and the unshaded columns are retained.

Stage five: Mutation

With an insignificant independent probability, each location is subject to random or varied
 mutation
 . In the image below, a single digit is mutated in the first, third, and fourth offspring.

[image:]

Next Generation of states production

[image:]

Figure 106: The genetic algorithm, illustrated for digit strings representing 8-queens states (Russell & Norwig, 2010, p. 127)

From Figure 106 above, it is revealed that the
 initial population
 is ranked by the
 fitness function
 , which results in pairs or sets for mating. The offspring produced is further subjected to mutation.

[image:]

[image:]

1.3

Searching with non-deterministic action

Searching with non-deterministic action suggests that the environment is either partially observable or fully non-deterministic or both. In such environments, percepts become very useful. In environments that are partially observable, every single percept aids in narrowing down the set of possible or likely states that the agent might be located, thus the agent can achieve its goals quickly. However, in a nondeterministic environment, the agent’s percepts informs or tells it which of the likely outcomes of its actions has indeed happened. In the cases illustrated above, we cannot determine in advance the upcoming percepts of the agent, and the future percepts will most definitely define the agent's future or upcoming actions.

1.3.1

The Erratic Vacuum World

[image:]

[image:]

Figure 108 shows all the possible states in which the vacuum cleaner can be in at any given point in time. States 7 and 8 are both goal states.

If non-determinism is introduced in the form of a powerful but irregular vacuum cleaner, the suck action of the vacuum cleaner:

	
Cleans the square (if applied on a dirty square) and sometimes extends the cleaning to the neighbouring square.

	
Deposits dirt, occasionally, on the square (if applied on a clean square).

A generalisation that is imperative is that of a
 solution
 to a problem. Take for instance, if we begin the cleaning of dirt in state 1, a single sequence of action that resolves the problem does not exist. As an alternative, a contingency plan, like the one shown below is required:

[
 Suck
 ,
 if
 State = 7
 then
 (
 Right
 ,
 Suck
)
 else
 ()]

Thus, nested
 if
 –
 then
 –
 else
 statements may exist in solutions for non-deterministic problems; this suggests that the algorithm is trees
 instead of sequences
 .
 A lot o
 f
 issues in the real world are contingency or probability problems because accurate forecast or prediction is near to impossible.

1.3.2

AND-OR Search Tree

In a bid to provide workable solutions to problems of non-determinism, search trees are incorporated. In a deterministic environment, the only branching is introduced by the agent’s own choices in each state. We call these nodes
 OR nodes
 . In the vacuum world, for instance, the agent selects
 Left or Right or Suck
 at an OR node. While in a non-deterministic environment, the element branching nodes, known as
 AND nodes,
 is introduced based on the environment’s
 choice of outcome for individual action.

An AND-OR problems solution is a subtree that:

	
has a goal node at every leaf,

	
specifies one action at each of its OR nodes, and

	
consists of every single outcome branch at its respectively AND nodes

[image:]

[image:]

1.4

Online Search Agents and Unknown Environments

While
 offline Search algorithms
 (i.e. algorithms discussed so far
)
 computes (i.e
 .
 works out) an entire solution even before performing or executing such a solution, an
 online search
 agent
 interleaves
 computation and action; first it takes action, then it perceives the surroundings and computes the subsequent action. In nondeterministic domains, online search is exceedingly efficient since it permits the agent to concentrate its computational efforts and energies on the eventualities that indeed arise instead of the ones that have a probability of happening but probably would not occur. An online search can be favourably adopted in a dynamic or semi-dynamic domain as well.

For unknown environments, where the agent does not know what its actions do or what states are available, online search is a crucial and essential
 idea. In this state of unawareness or lack of knowledge, the agent must use its actions as experiments or trials in order for it to acquire sufficient knowledge to make practical deliberation or reflection. In this state, the agent is said to be experiencing an
 exploration problem.
 A typical example is a case of a newborn baby. The child can execute a number of action, but he does not know the outcome of any of his actions. He learns by means of experience. The baby’s gradual unearthing of the manner in which the world works is an online search process.

1.4.1

Online Search Problems

Instead of using pure computation, an agent executes actions when solving an online search problem. An environment that is deterministic and fully observable is assumed, and we specify that the agent knows the following expressions:

	
ACTIONS(s): this returns a list of actions allowed in state s;

	
C(s, a,
 s′
): this is the step-cost function

	
GOAL-TEST(s).

1.4.2

Online Search Agents

When an online agent finishes executing an action, its percept informs it of the state it has gotten to; based on the information received; the agent can supplement its map of the environment as an enhancement. The current map is now used to resolve and select where next to go. A Depth First search agent has the properties of an online search agent. Therefore, it can be posited that an online depth-first search agent:

	
Stores its map in a table, RESULT[s, a] that records the state resulting from executing action ‘a’ in respective states.

	
Tries an action whenever such action has not been explored from the current state.

	
If no action exists from the current state and backtracking is possible and permitted, then backtracking is done with action ‘b’ which, in turn, returns action ‘a’.

	
If the agent has run out of states to which it can backtrack then its search is complete.

[image:]

[image:]

1.4.3

Online Local search

A previously illustrated search that fits an online local search is the hill climbing search.
 Hill climbing search
 has the property of locality in its node expansions. Unfortunately, in its simplest and basic form, it is not very beneficial for the reason that it abandons the agent sitting at local maxima who havenowhere to go. To overcome this hurdle, one may need to consider using a random walk to explore the environment
 .
 It is simple to demonstrate that a random walk will ultimately
 find a goal or complete its expansion or exploration, as long as space is finite. While this process will find a goal, it is extremely slow
 .
 Enhancing hill climbing with
 memory
 rather than randomness turns out to be a more efficient approach. The agent implementing this scheme is called a learning real-time A* (
 LRTA*
).

Sequence of actions of a LRTA*

	
Constructs in the result table, a map of the environment

	
Updates the cost estimate for the state it has just left, and

	
Chooses the seemingly best move according to its current cost estimates

[image:]

[image:]

[image:]

[image:]
 Checklist

The student should be able to discuss:

	
Hill climbing, Local beam, Simulated annealing, and genetic algorithm search as kinds of local search methods under advanced searching method
 s
 .

	
Searching with non-deterministic actions

	
Online search problems in unknown environments and give example
 s
 .

Chapter 10 Adversarial Search
 and Constraint Satisfaction Problem (CSP)

[image:]

Objective of this Chapter:

At the end of this chapter, the reader should have learnt about:

	
The concept of adversarial search

	
Making optimal decisions in games

	
Alpha-Beta Pruning and Backtracking Search approaches

	
The idea of Constraint Satisfactory Problem

	
Varieties and types of constraints in CSP

	
Examples of Adversarial search and constraint satisfactory problem

1.5

Adversarial Search

This section seeks to consider competitive environments in which the agents’ goals are in conflict, giving rise to
 Adversarial Search
 problems. Adversarial Search problems are also known as games. This section seeks to look into the concept of games
 .
 The non-representational nature of games styles them an attractive subject for learning. The state of a game is easy to represent, and agents, usually, are constrained to a small number of choices whose consequences are defined by clear-cut instructions. Outdoor games have much more elaborate explanations, a much larger range of possible actions, and rather imprecise rules defining the legality of actions.

There exist two types of games. We have games in the categories of:

	

 Perfect Information

	
Examples: Chess, Checkers

	

 Imperfect Information

	
Examples: Bridge, Backgammon

Techniques for choosing a good move include:

	
Pruning:
 this allows one to ignore portions of the search tree that make no difference to the final choice.

	
Heuristic Evaluation Function:
 allow us to approximate the real utility of a state without doing a complete search.

1.5.1

Optimal Decisions in Games

A game with two players can be formally defined as a kind of search problem with the following components:

[image:]

Example of a typical Tic-Tac-Toe game

MAX
 and
 MIN
 are both players. MAX moves first, and then they take turns running until the match is over. Play alternates between MAX’s placing an ‘x’ and MIN’s placing an ‘o’ until we reach leaf nodes corresponding to final states such that one player has three in a row or all the squares are filled. At the completion of the game, the player who wins will get some points award while the loser gets penalised.

Initial State

At the initial condition of the match, MAX the first player has nine potential moves. The image below shows an example of the original board position.

[image:]

Successor Function

	
MAX
 placing an ‘x’ in an empty square

	
MIN
 putting an ‘o’ in an empty square

Goal States

The goal state can be any of the three options below

	
If the X’s positioning is such that all appear in one row, one column, or in any continuous diagonal direction, then it is a goal state for player MAX, i.e.
 MAX wins

	
If the O’s positioning is such that all appear in one row, one column, or in any continuous diagonal direction, then it is a goal state for player MIN, i.e.
 MIN wins

	
If all the nine squares are filled up either by ‘x’ or ‘o’ and there is no win condition by either MAX or MIN, then it is a
 draw
 .

Terminal States

	
Option One – Player MAX wins

[image:]

	
Option two – Player MIN wins

[image:]

	
Option three – Draw (neither player MAX nor MIN wins or losses)

[image:]

Utility Function

From the description of the game above, we can give the utility function as:

	
Win = 1

	
Loss = -1

	
Draw = 0

Search Tree

A
 Search tree
 is a tree that appears overlaid on the entire game tree and surveys adequate nodes to allow a player to determine what move to make. The search tree below is used to explain further the tic-tac-toe game described above.

[image:]

1.5.2

Optimal Strategies

An optimal strategy is one that yields the best result as any other strategy would when it is in a contest with an infallible opponent. Given a game tree, we can determine the optimal strategy from the
 minimax value
 of individual nodes, which we describe as MINIMAX (n). The Minimax value of a particular node is defined as the utility (for player MAX) of being in the resultant state, assuming that both players play optimally from there to the end of the game. If MAX prefers to move to a state of the maximum value, whereas MIN prefers a state of the minimum value, we would have the function:

[image:]
 MINIMAX(s)
 =
 {

A simple game like tic-tac-toe is too complicated for us to draw the entire game tree on one page. Therefore, we will change to the small game as shown in Figure 115. Moves a1, a2, and a3 are the possible moves for MAX at the root node. B1, b2, b3, …, b
 n
 are the possible responses to a1 for MIN. This particular game ends after one move each by MAX and MIN. In this game, the tree is one move deep, consisting of two half-moves, each of which is called a
 ply
 . Utilities the of the terminal states in this game range from 2 to 14.

[image:]

Important points

	
▲ → shows the moves by player MAX

	
▼ → shows the moves by player MIN

	
The terminal nodes describe the utility values for MAX

	
Their respective minimax values label the other nodes.

	
At the root of the tree, move a1 is the most appropriate action for player MAX because it generates a state that has the top minimax value

	
The move b1 is the best action for player MIN as it produces a state with the lowest possible minimax value.

The game’s utility function gives the terminal nodes their utility values which show at the bottom. There are three successor states in the first MIN node, labelled B, whose values are 3, 12, and 8, so its minimax value is 3. Similarly, the other two MIN nodes have minimax value 2. MAX node is the root node, and its successor states have respective minimax values of 3, 2, and 2; so, we say that it has a minimax value of 3. The
 minimax decision
 at the root: action a1 is the optimal choice for MAX as it generates a state with the highest possible minimax value.

Minimax Algorithm

Minimax Algorithm, as shown in Figure 116, calculates the minimax decision from the immediate state. A straightforward and modest recursive computation of the minimax values is used for each successor state, directly applying the defining equations. The recursion continues through the leaves of the tree, where minimax values are backed up
 through the tree as the recursion terminates.

[image:]

The algorithm returns the action corresponding to the best possible move, that is, the step that generates the outcome with the best utility, under the assumption that the challenger plays to minimise its utility. The functions MAX-VALUE and MIN-VALUE (shown in Figure 116 above) go through the complete game tree, to determine the stored value of a state.

The minimax algorithm performs a full depth-first exploration of the game tree. Suppose that the maximum depth of the tree is m and there exist b legitimate moves at each point, then the:

	
Time complexity
 for minimax algorithm is O(b
 m
).

	
Space complexity
 is O(bm) for an algorithm that generates all actions at once or O(m) for an algorithm that produces actions one at a time.

	
Completeness:
 It the tree is finite, then it is complete.

	
Optimality:
 It is optimal when played against an optimal opponent

1.5.3

Optimal Decisions in Multiplayer Games

Many popular games in recent times are multiplayer games. Let us examine how to advance the minimax idea to cater for multiplayer games. The minimax approach is straightforward from the practical point of view, but it raises some interesting new conceptual questions. The first being the need to substitute the single value for each node with a vector of values. For example, in a three-player game with players A, B, and C, a vector
 (
 ʋ
 A
 , ʋ
 B
 , ʋ
 C
) is associated with each node. For terminal or final states, this vector gives the utility of the state from individual player’s perspective. (In two-player, zero-sum games, the two-element vector can be reduced to a single value because the values are always opposite.) The simplest and easiest way to implement or apply this is to have the utility function return a vector of utilities.

[image:]

In the game tree presented above, consider the node labelled X. We have revealed that player C decides on what to do and his decisions lead to terminal states with utility vectors
 (
 ʋ
 A
 = 1
 ,
 ʋ
 B
 = 2
 ,
 ʋ
 C
 = 6) and
 (
 ʋ
 A
 = 4
 ,
 ʋ
 B
 = 2
 ,
 ʋ
 C
 = 3). Since value 6 is greater than 3, C should choose the first move. By this action, we mean that if we reach state X, the following actions will lead to a terminal state with utilities
 (
 ʋ
 A
 = 1
 ,
 ʋ
 B
 = 2
 ,
 ʋ
 C
 = 6). Hence, the backed-up value of X is this vector.

1.5.4

ALPHA-BETA PRUNING

The total number of game states that a minimax search is required to scan is its major pitfall because the tree depth is quite exponential
 .
 We can overcome this b
 y
 computing the correct minimax decision without looking at every node in the game tree. The method introduces us to the word
 Pruning.
 When applying
 Alpha-Beta Pruning
 to a standard minimax tree, the moves returned is the same move as would be returned by minimax. It, however, prunes or trims away branches that cannot probably influence the final decision.

[image:]

General Principle of Alpha-Beta Pruning

[image:]

Let us weigh the two successors of node C that has not been evaluated with values
 x
 and
 y
 and let
 z
 be the minimum of x and
 y.
 The illustration below is the value of a root node:

MINIMAX (root)
 = max (min (2, x, y), min (3, 12, 8), min (14, 5, 2))

= max (3, 2, min (x, 2, y))

= max (3, 2, z)
 where z = min (2, y, x
)≤
 2

= 3

This means that the minimax result, as well as the value or cost of the root, do not depend on the values of the pruned or trimmed x and y leaves.

i.
 The first leaf further down to B has three as its value. Therefore, B, which is a MIN node, has a value of at most 3.

[image:]

ii.
 The second leaf B below has 12 as its value; MIN would avoid this move, so B still has a value 3 at the most.

[image:]

iii.
 Leaf number 3 immediately below B has a value of 8; we have gotten all B’s successor states, so, at the moment, the value of B is exactly 3. Now, we can deduce that the value or worth of the root is 3 at the minimum since MAX has a choice worth number 3 at the root.

[image:]

iv.
 A careful look at the leaf node which falls below C has the value 2. From now on, C, described as a MIN node, has a value of 2 at most. But then we know that B is worth 3. Thus MAX would on no occasion choose C. It, therefore, makes no sense for one to explore the other successor states of C. This is an example of alpha-beta pruning.

[image:]

v.
 The first leaf below D has the value 14, so D is worth
 at most
 14. The number as we have it is higher than the best alternative of MAX (i.e., 3). Therefore, we need to keep exploring D’s successor states. Notice also that we now have bounds on all of the successors of the root, so the source value is also at most 14.

[image:]

vi.
 The second successor of D is worth 5, which indicates that we should forge ahead to explore. The third successor which turns out to worth 2, now makes D’s worth precisely 2. MAX’s decision at the root is to move to B, giving a value of 3.

[image:]

Parameters of the pruning technique

	
Alpha
 (α
):
 this denotes
 the value of the best (i.e., highest-value) choice we have found so far at any chosen point along the path for MAX.

	
Beta
 (β
):
 the value of the best (i.e., lowest-value) choice we have found so far at any chosen point beside the lane for MIN.

As Alpha-beta search executes
 ,
 α
 an
 d
 β
 values are updated, and the remaining branches at a node are pruned (i.e., terminates the recursive call) as soon as the value of the current node is known to be worse than the curren
 t
 α
 o
 r
 β
 value for MAX or MIN, respectively.

[image:]

[image:]

Effectiveness of Alpha-Beta Pruning

The efficiency of alpha-beta pruning is extremely reliant on the order in which we examine the states
 .
 For example, in number (v) and (vi) of our general principle of Alpha-Beta pruning, we may perhaps not prune any successors of D at all because we generated the worst successors first. However, if we were able to prune the successors, then it just means tha
 t
 alpha–beta desires to scrutinise only O(b
 m/2
) nodes to select the best move, instead of O(b
 m
) for minimax, saying that the effective branching factor becomes
 [image:]
 instead of b.

1.5.5

Imperfect Real-Time Decisions

The minimax algorithm produces the complete game search space while alpha-beta algorithm permits us to trim or prune huge parts of it. Nonetheless, alpha-beta pruning will need to comb all the way to the last states for the slightest slice of the search space. The depth illustrated here is usually not practical because moves made must appear in a reasonable amount of time, which is typically a few minutes at most.

Claude Shannon’s paper
 Programming, a Computer for Playing Chess
 (Shannon, 1950), suggested altering minimax or alpha–beta in two ways. By implication of his positions that indicates programs ought to cut-off the exploration earlier to apply a heuristic evaluation function
 to states in the search, actually turning non-terminal nodes into terminal leaves. His points are:

	
To replace the utility function by a
 heuristic evaluation function
 EVAL, which estimates the position’s efficiency, and

	
To replace the terminal test by a
 cut-off test
 that decides when to apply EVAL.

Evaluation Function

The evaluation function returns an estimation or approximation
 of the projected utility of the game from a specified point. One need to stress the point that the performance of a game-playing program depends strongly on the quality of its evaluation function.

Example: Chess Game

In chess, we would have features for the number of white pawns, black pawns, white queens, black queens, and so on. These features, taken together, define various categories or equivalence classes of states: the states in each group have the same values for all the features. Also, in a chess problem, each material (Queen, Pawn, etc.) has its value called
 material value.

The evaluation function may not have the knowledge of distinguishing states from states, but it can return a distinct value which depicts the fraction of states with each outcome. For example, suppose our experience suggests that 72% of the states encountered in the two-pawns vs one-pawn category lead to a win (utility+1); 20% to a loss (0), and 8% to a draw (1/2). Then a reasonable evaluation for states in the category is the
 expected value
 : (0.72 +1) + (0.20 0) + (0.08 1/2) = 0.76.

In principle, the expected value can be determined for each category, resulting in an evaluation function that works for any state. As with terminal states, the evaluation function need not return actual expected values as long as the ordering of the states is the same.

For instance, if player MAX has a 100% chance of winning then its evaluation function is 1.0 and if player MAX has a 50% chance of winning, 20% chance of losing, and 30% chance of having a draw then the probability is calculated as; (1 * 0.50) + (–l * 0.20) + (0 * 0.30) = 0.50 – 0.20 = 0.30.

With the above example, player MAX is graded higher than player MIN. The material value of each piece can be calculated independently without considering other pieces on the board. Mathematically, this kind of evaluation function is known as a
 weighted linear function,
 and its expression is:

[image:]

Wher
 e
 each
 [image:]
 is a weight and each
 [image:]
 is a feature of the position.

[image:]

In Figure 120 above:

	
In (a), the black player has an upper hand of two pawns and one Knight, which ought to be sufficient to be victorious.

	
In (b), if the White captures the queen, it has a lead that should be high enough to secure a win.

Cut-off Test

We ought to apply an evaluation function to positions that are quiescent
 to
 perform a cut-off test, that is a position that will not swing in bad value for extended time in the search tree is known as waiting for quiescence.

Terms

	
Quiescence search
 - A search which is restricted to consider only particular types of moves, such as capture moves, that will quickly resolve the uncertainties in the position.

	
Horizon problem -
 When the program is facing a move by the opponent that causes severe damage and is ultimately unavoidable.

The Ply Example

	
Initial Stage

[image:]

	
The next image shows that when we generate one level from B, it causes bad value for B.

[image:]

	
When we generate one successor level from E and F, we retain B as a good move. The time that takes to wait for this step is termed ‘waiting for quiescence.

[image:]

1.6

Constraint Satisfaction Problem (CSP)

1.6.1

Introduction

Constraint Satisfaction Problem algorithms take benefit of the organisation of states and use general-purpose rather than problem-specific heuristics to permit the resolution of composite difficulties. The objective is to eradicate huge percentages of the search space all at once by finding variable/value combinations that violate the constraints.

[image:]

Each state in a Constraint Satisfaction Problem is defined by an assignment of values to some or all of the variables.

	
Consistent or Legal Assignment:
 This is an assignment that does not violate any constraints

	
Complete Assignment
 : An assignment that assigns every variable and a solution to a Constraint Satisfaction Problem is a consistent, complete assignment.

	
Partial Assignment
 : An assignment that assigns values to only some of the variables.

[image:]

1.6.2

An Example of a CSP

Example: Map Colouring Problem

[image:]

Task:
 In the map above, colour the regions with colours red, green, or blue in such a way that no adjacent regions have the same colour.

Solution

To formulate this as a CSP, we
 define the variables
 to be the regions. In that case, we have X = {WA, NT, Q, NSW, V, SA, T}.

[image:]

The
 domain
 of each variable is the set D
 i
 = {green, red, blue}.

Adjacent regions are obligatory to have separate colours by the constraints. Since there are nine places where regions border, there are nine constraints:

[image:]

[image:]
 is a shortcut for
 [image:]
 where
 [image:]
 can be fully enumerated in turn as:

[image:]

There are many possible solutions to this problem, such as:

[image:]

Constraint Graph: A constraint graph is a CSP which is often represented as an undirected graph, where the edges are the binary constraints, and the nodes are the variables.

CSP can be viewed as a standard search problem using the points below:

	
Initial state
 : the empty assignment (empty set {}), where all variables are unassigned.

	
Successor function
 : we
 assign
 a value any unassigned variable, provided that it does not conflict with previously assigned variables.

	
Goal test
 : the current assignment is complete.

	
Path cost
 : a constant cost. For instance, we can assume a value or cost of 1 for each step.

Every solution must be a complete assignment and therefore appears at depth n if there are n variables. Therefore, Depth-first search algorithms are popular for CSPs.

1.6.3

Varieties of Constraint Satisfaction Problem

	
Finite Domains

The simplest kind of CSP consists of variables that have discrete, finite domains.
 Map colouring problems and scheduling with time limits are both of this sort. 8-queens’ problem is also an example of a finite-domain CSP, where the symbols Q
 1
 ,…, Q
 8
 are the positions or locations of each queen in columns 1,...,8 and each variable has the domain D
 i
 =
 {1, 2, …, 8}.

In a Constraint Satisfactory Problem, if d is the highest domain size of a variable, it means that O(d
 n
) is the total number of likely complete assignments
 .
 Boolean CSPs
 are examples of finite domain CSPs, whose variables can either be
 true
 or
 false
 .

	
Infinite Domains

A discrete domain can be infinite, such as the set of integers or strings
 .
 To describe constraints by enumerating all allowed combinations of values through infinite domains is no more possible. Instead, a language understands by constraints, e.g.
 constraint language
 must be used such as T
 1
 + D
 1
 ≤
 2
 directly, without specifying the set of pairs of suitable values for (T
 1
 , T
 2
).
 Linear constraints
 on integer variables have unique solution algorithms. We can show that no algorithm exists for solving general
 nonlinear constraints
 on integer variables.

	
Continuous Domains

In the world today, Constraint satisfaction problems with continuous domains are common, and the field of operations research ensures its proper and adequate study. For example, the planning of experiments on the Hubble Space Telescope requires exact timing of observations; the start and finish of each observation and manoeuvre are continuous-valued variables that must obey a variety of astronomical, precedence, and power constraints. The best-known category of continuous-domain Constraint Satisfaction Problems is that of linear programming problems, where constraints must be linear equalities or inequalities. We can solve linear programming problems in time polynomial in the number of variables.

1.6.4

Types of Constraints in Constraint Satisfaction Problem

	
Unary constraints:
 The simplest type is the unary constraint, which restricts the value of a single variable. For example, in the map-colouring problem, it could be the case that South Australians won’t tolerate the colour green; we can express that with the unary constraint
 [image:]

	
Binary constraint:
 When
 we have two variables, a binary constraint is used to relate them. S
 A≠
 NSW is a typical example of a binary constraint. A binary Constraint Satisfaction Problem is one with only binary constraints; its representation can be that of a constraint graph.

	
Global constraint:
 A global constraint is one that involves a random number of variables. One of the most common global constraints is
 Alld
 iff
 , which says that all of the variables participating in the constraint must have different values. An example of a global constraint problem is crypt arithmetic
 puzzles where each letter stands for a distinct digit.

Constraint hypergraph is used to illustrate these constraints. Hypergraph consists of ordinary nodes and hypernodes which represent n-ary constraints. Presented below is a visual example of a hypergraph.

[image:]

	
In (a): Each letter stands for a distinct digit; the aim is to find a substitution of numerals for letters such that the resulting sum is arithmetically correct, with the added restriction that no leading zeroes are allowed.

	
In (b): The constraint hypergraph for the crypt arithmeticproblem, showing the Alld
 iff
 constraint (where we have a square box at the top). We also have the column addition constraints (four square boxes in the middle). The variables C
 1
 , C
 2
 , and C
 3
 represent the carry digits for the three columns.

1.6.5

Backtracking Search for Constraints Satisfactory Problem

Backtracking search
 ,
 an approach used for a depth-first search, selects values for one variable one at a time. It then backtracks this whenever a variable has no permitted values available to assign. It repeatedly selects an unassigned variable, and then tries all values in the domain of that variable, in turn, trying to find a solution. If an inconsistency is detected, then backtrack returns failure, causing the previous call to try another value.

[image:]

[image:]

By adding some level of sophistication to the above function, we would be able to speak to the following questions:

	
Which variable should we assign next (SELECT-UNASSIGNED-VARIABLE), and also, what order should value trials take (ORDER-DOMAIN-VALUES)?

	
What inferences should one perform at each step in the search (INFERENCE)?

	
When the search arrives at an assignment that violates a constraint, can the search avoid repeating this failure?

Explaining the three questions above

	
Variable and Value Ordering

The backtracking algorithms goal is to choose the next unassigned variable in order. This static variable order seldom results in the most efficient search. This intuitive idea of choosing the variable with the fewest “legal” values is called the
 minimum remaining-values
 (MRV) heuristic (also known as “most constrained variable” or “fail-first” heuristic). It is termed fail-first heuristics because the variable selected will most likely cause a breakdown in a little while, thereby pruning the search tree.

Once we select a variable, the algorithm will have to choose the order in which to examine its values. Because of this, the
 least-constraining-value
 heuristic can be effective in some circumstances. It prefers the value that rules out the fewest choices for the neighbouring variables in the constraint graph
 .
 In general, the heuristic is attempting to vacate the maximum flexibility for consequent variable assignments. Of course, if we are trying to find all the solutions to a problem, not just the first one, then we do not need to worry over the ordering since it is required that we examine each value anyway. The same holds if there are no solutions to the problem.

	
Interleaving search and Inference

Forward checking
 is one of the simplest forms of reasoning. Whenever a variable X is allocated, the forward-checking procedure establishes arc consistency for it. For each unassigned variable Y that we connect to X by a constraint, we delete from Y’s domain any value that is inconsistent or varies with the value chosen for X. Because forward checking makes arc consistency inferences only. If arc consistency has been done, there is no reason to perform forward checking as a pre-processing step. The search will be more efficient, for many problems, if MRV heuristic is combined with forward-checking.

Using forward checking on our earlier Australian Map problem

[image:]

Points to note:

	
Notice that after WA = red and Q = green are assigned, the domains of NT and SA becomes reduced to a single value; we have eliminated branching on these variables altogether by propagating information from WA and Q.

	
The domain of SA is empty after V = blue.

	
Hence, forward checking has detected that the partial assignment {WA = red, Q = green, V = blue} is inconsistent with the constraints of the problem, and the algorithm will, therefore, backtrack immediately.

Even though forward checking identifies many irregularities and conflicts, it is not able to detect all of them. The problem is that it makes the current variable arc-consistent, but does not look ahead and make all the other variables arc-consistent.

	
Intelligent backtracking: Looking backwards

The backtracking search algorithm has a straightforward policy for what to do when a branch of the search fails, which is to back up to the other variable and try a different value for it – we identify this as
 chronological backtracking
 because we revisit the most recent decision point. In this subsection, we consider better possibilities.

However, a more intelligent approach to backtracking is to backtrack to a variable that might fix the problem; that is, a variable that was responsible for making one of the possible values impossible. This method is easily implemented by a modification to backtrack such that it accumulates the conflict set while checking for a proper value to assign. If we find no legitimate value, the algorithm should return the most recent element of the conflict set along with the failure indicator.

[image:]

[image:]
 Checklist

The student should be able to discuss:

	
The concept of adversarial search

	
Making optimal decisions in games

	
Alpha-Beta Pruning and Backtracking Search approaches

	
The idea of Constraint Satisfactory Problem

	
Varieties and types of constraints in Constraint Satisfactory Problem

	
Examples of Adversarial search and constraint satisfactory problem

Chapter 11 Knowledge
 Representation

[image:]

Objective of this Chapter:

At the end of this chapter, the reader should have learnt about:

	
The types of knowledge. Semantic networks, and frames

	
Propositional logic as it relates to knowledge representation

	
Rules of operation behind knowledge-based agents

	
An example of knowledge representation – The Wumpus World

	
Constructing a simple knowledge base

	
The concept of knowledge representation

1.7

Introduction

Knowledge representation is primarily representing human knowledge for computer systems. In knowledge representation, the software should be capable of direct manipulation of given knowledge. The critical issue for knowledge representation is “How do people store and manipulate information”?

Types of knowledge

[image:]

Figure 126: Types of knowledge (Jones, 2008, p. 162)

The focus of knowledge representation is to solve problems. The objective is to aid intelligent agents who have a knowledge base to be able to query this knowledge base, find solutions to problems and possibly deduce new knowledge from its knowledge base.

1.8

Semantic Networks

Semantic networks are best used in describing connections between objects. Semantic networks can be illustrated using the term “Free association” which was coined by Sigmund Freud. Free association as a technique or a process where a person continually relates concepts given a starting seed concept.

Figure 126 presents an example of a semantic network showing relationships between different objects. The arcs represent relationships while the rounded rectangle represents objects. Semantic networks also can represent a high number of relationships between large numbers of objects.

[image:]

Figure 127: A simple semantic network

Frames

Frames were developed from the knowledge of semantic networks. Frames have the following characteristics:

	
Frames are well structured, and they follow a more object-oriented abstraction with greater structure.

	
Frame-based knowledge representation is based around the concept of a frame, which represents a collection of slots that can be filled by values or links to other frames.

1.9

Propositional Logic

1.9.1

Introduction

Simply put, a proposition is a statement or a declarative sentence. An example could be: “Carrots are vegetables”. This statement can either be true or false which can be represented in binary terms as either 1 or 0. Propositions can also be negated using th
 e
 ~ negation sign. Using the earlier example given, P(carrots are vegetables), then negating the proposition will give us – ~P(carrots are not vegetables).

[image:]

When propositions joined together, it is known as compound propositions. A compound proposition where the both conjuncts (e.g. propositions P and Q) are true is known as a
 conjunction
 while a compound proposition where at least one conjuncts (e.g. propositions P or Q) is false is known as a
 disjunction
 . Propositions are joined together using parenthesis and logical connectives. An example of logical connectives is
 ‘
 ~’ not or negation connective described in the truth table above. Others include:

	
And (˄)
 : A sentence that has
 ˄
 has its main connective is regarded as a conjunction. The parts (propositions) of the sentence are known as conjuncts. E.g
 . (P ˄ Q)

	
Or (˅)
 : A sentence that has
 ˅
 as its main connective is regarded as a disjunction. The parts (propositions) of the sentence are known as disjuncts. E.g.
 (P ˅ Q)

	
Implies
 (⇒
):
 When a sentence contains the ‘implies’ sign, it is called implication. E.g.
 (P ˄ Q
)⇒
 P
 . The example given has two parts.
 (P ˄ Q)
 is the premise or antecedent while the second part of the sentence is the conclusion or consequent. Implications can be equated for an if-then statements

	
If and only if
 (⇔
):
 When we have a sentence that contain
 s
 ⇔
 , such is called a bidirectional statement.

1.9.2

Rules of operation

	
P
 is true if and only if
 P
 is false.

	
(P ˄ Q)
 is true if and only if both
 P
 and
 Q
 are true.

	
(P ˅ Q)
 is true if and only if any of
 P
 or
 Q
 is true.

	
(
 P⇒
 Q)
 is true if and only if
 P
 is not true and
 Q
 is not false

	
(
 P⇔
 Q)
 is true if and only if
 P
 and
 Q
 are both true or both false.

[image:]

1.9.3

Knowledge-Based Agents

Knowledge-based agents have a knowledge base as a central component. The knowledge base is composed of sentences. A sentence can be equated to propositions we discussed earlier. Knowledge in a knowledge base is expressed in a knowledge representation language. For each knowledge base, there are allowances for adding new sentences, and there are ways to query the knowledge base. Figure 129 illustrates these operations.

[image:]

Figure 129: Basic structure of a knowledge-based agent

Whenever a knowledge-based agent is called, it performs three actions.

[image:]

The three actions carried out by an agent is implemented with three functions shown below.

	
Function MAKE-PERCEPT-SENTENCE

This function performs the action of constructing a sentence stating that the agent has perceived the given percept at a given time.

	
Function MAKE-ACTION-QUERY

This function performs the action of constructing a sentence that asks what actions an agent is to perform at a current time based on the percepts received.

	
Function MAKE-ACTION-SENTENCE

This function performs the task of constructing a sentence that states that the selected action (given by the agent program) has been executed (by the agent)

[image:]

An agent can be designed either from a procedural knowledge perspective or a declarative knowledge perspective.

[image:]

[image:]

1.10

The Wumpus world

The Wumpus world is a cave comprising of different rooms. Inside some rooms are Wumpus, a deadly animal, that will devour anyone that enters its room. However, this terrible Wumpus can be defeated by shooting an arrow at it.

The challenge here is that the agent has only one arrow. Another problem in the cave is that some rooms contain bottomless pits. In other words, anyone who enters these rooms automatically gets drowned in the pit. The only good thing within this cave that may justify someone to get into this cave is that some rooms contain heaps of gold. Figure 131 shows a sample Wumpus world.

[image:]

Figure 131: A typical Wumpus world

1.10.1

PEAS Description of a Wumpus World

In chapter 6, we discussed the concept of environmental model where we pointed out that before an agent is designed, we need to specify the agent's task environment. The agent's task environment can be represented with the acronym PEAS. In other words, before we design an agent, we need to specify the agents:

	
P
 erformance measure

	
E
 nvironment

	
A
 ctuators and,

	
S
 ensors

	
P
 erformance measure

	

 +1000 for getting gold

	

 -1000 for falling into a pit or being eaten by a Wumpus

	

 -1 for each action or step taken

	

 -10 for shooting an arrow

	

 Game ends when the agent gets out of the cave or when the agent dies

	
Environment

	
Each room is a 4 * 4 square

	
The initial state of the agent is square (1,1)

	
The square adjacent to the Wumpus is smelly

	
The squares adjacent to the pit are breezy

	
Sparkle iff gold is in the current square the agent is in

	
Shooting kills Wumpus iff the agent is facing the Wumpus

	
Shooting reduces the amount of arrow by 1 (since the agent has only one arrow, shooting uses up the only arrow)

	
Grabbing picks up gold iff the agent is in the same square

	
Releasing drops gold in the current square where the agent is in

	
Actuators

	
MOVE forward

	
TURN left (by 90
 0
)

	
TURN right (by 90
 0
)

	
GRAB gold

	
RELEASE gold

	
SHOOT arrow (only the first shot is useful because the agent has only one arrow)

	
CLIMB out of the cave iff the agent is in square (1, 1)

	
Sensors

	
Glitter: The agent will perceive sparkling iff it is in a square that contains gold

	
Stench: The agent will perceive a stinking smell when it is in a square adjacent to a square containing dead Wumpus

	
Breeze: The agent will perceive a breeze when it is in a square adjacent to a square containing a pit

	
Bump: The agent will perceive a bump when it walks into a wall

	
Scream: The agent will perceive a scream when a Wumpus dies because it emits a loud scream that can be perceived anywhere

1.10.2

Characteristics of the Wumpus Environment

The next phase is to characterise the Wumpus environment under the categories of task environment discussed in chapter 6.

[image:]

	
Is the environment
 Observable?

The environment is
 not observable
 because the agent does not know which state contains a pit or a Wumpus. However, based on its sensors, some aspect of the environment can be said to be partially observable, e.g. the current location of the agent, a guess of the location to its right, left, up or down, the current health status of the agent, and availability of an arrow.

	
Is the environment
 Deterministic
 ?

The environment is
 deterministic
 because the current state entirely determines the next state. For example, if an agent’s current location is a pit state, the agent knows that the next state is “death state”.

	
Is the environment
 Episodic?

The environment is not an episodic environment but rather a
 Sequential
 environment. This is because the current decision of the agent could affect all future decisions of the agent. For example, if the agent decides to turn right (its future decisions might be to move forward), and the state where the agent turns to has a live Wumpus, the future decisions of the agent is affected already has the agent will be eaten up by the Wumpus.

	
Is the environment
 static
 ?

The environment is a
 static
 environment as the pits and Wumpus do not move around. They maintain their positions from the arrival of the agent till the death or escape of the agent.

	
Is the environment
 discrete
 ?

The environment is a
 discrete
 environment as the agent has a finite number of distinct states. It also has a discrete set of percepts and actions.

	
Is the environment a
 single-agent environment
 ?

The Wumpus environment is a
 single-agent
 environment.

[image:]

1.10.3

Exploring the Wumpus world

In exploring the Wumpus world, we will use a percept set to signify what percepts the agent acquires at a given state. The percept set has five elements {element_1, element_2, element_3, element_4, element_5} which is illustrated below:

	
The first element, element_1, is
 Glitter

	
The second element, element_2, is
 Stench

	
The third element, element_3, is
 Breeze

	
The fourth element, element_4, is
 Bump

	
The fifth element, element_5, is
 Scream

[image:]

The initial state (i.e. start location) of the agent is [1, 1]. Based on the ruleset of the agent’s KB, the agent knows that since nothing is perceived, then moving to either [1, 2] or [2, 1] is safe. The agent then decides to explore [2, 1]. At this current location, the agent does not perceive anything. Therefore, the current percept set of the agent is {None, None, None, None, None}

[image:]

The agent has taken a move to [2, 1] because the location is safe and now, the agent can perceive
 Breeze.
 The current percept set of the agent is {None, None, Breeze, None, None}. According to the agent’s ruleset, the agent knows that when it perceives Breeze, it means that there is a pit in an adjacent location. The adjacent locations here are [1, 1], [3, 1], and [2. 2]. A cautious agent will move to locations that it knows to be safe (OK). The agent does not know whether the pit is in [3, 1], [2, 2], or both locations, however, it does know that [1, 1] is safe because nothing was perceived there.

Likewise, the agent can also approximate that [1, 2] is safe because at [1, 1] nothing is perceived. It would be intelligent for this agent to TURN Left to [1, 1] and move FORWARD to [1, 2].

[image:]

The agent is now in [1, 2] can perceive Stench. The current percept set is {None, Stench, None, None, None}. The agent knows that a stench percept denotes a nearby Wumpus in an adjacent location. In other words, the Wumpus can be in any of locations [1, 3], [2, 2], or [1, 1]. At this point, the agent needs to check its memory for locations visited earlier before it can make an intelligent decision. The agent knows that a Wumpus cannot be in [1, 1]. Also, the Wumpus cannot be [2, 2] because, if that were to be the case, it would have perceived a Stench while in [2, 1]. Another knowledge that the agent has acquired here is that, because it did not sense breeze in [1, 2], definitely [2, 2] does not have a pit.

This inference allows the agent to mark [3, 1] has a location with a pit. Since location [1, 1] and [2, 2] are termed safe (OK) by the agent (based on its ruleset), we are left with [1, 3], and the agent can label [1, 3] has the location that a Wumpus reside. With this inferences, the agent can confidently TURN Right to [2, 2] because it knows it is safe (OK).

[image:]

The agent is in [2, 2] and cannot perceive anything. The current percept set is {None, None, None, None, None}
 .
 The agent combines knowledge gained at different times in different places, and it looks into its memory to check locations which it can explore. It realises that out of the four adjacent locations, two ([1, 2] and [2, 1]) has been visited. It is left to decide on which location to explore between [2, 3] and [3, 2]. Since there is no perception at this current location, the agent concludes that the remaining two locations are safe (OK) and it decides to move FORWARD to [2, 3].

[image:]

The agent is in position [2, 3] and its percept set is {Glitter, Stench, Breeze, None, None}. The agent can perceive Stench, meaning that there is a Wumpus nearby at an adjacent location. It also perceives Breeze which denotes that an adjacent location contains pit. In order to decide which action to take, it needs to look into its KB and make necessary inferences. However, it can also perceive Glitter, meaning that its current state contains Gold. Therefore, according to it ruleset, it knows that it needs to GRAB the gold. After grabbing the gold, it knows that the mission is completed and now it needs to find its way to [1, 1] and CLIMB out of the cave.

1.11

A Simple Knowledge Base (KB)

1.11.1

Introduction

We can use the example of the Wumpus world to explain what a simple knowledge base might constitute. From figure 131, the agent has detected nothing in the state [1,1] and a breeze in the state [2,1]. These percepts, combined with the knowledge of the agent as regards the rules of the Wumpus world, constitute the Knowledge Base. The KB can be understood as a set or series of sentences or as a single sentence that asserts all the individual sentences. The KB is false or wrong in models that refute what the agent knows. For example, the KB is false in any model in which state [1,2] contains a pit since there is no breeze in the state [1,1] (Russell & Norwig, 2010, p. 241).

To construct a simple KB for an agent ready to explore the Wumpus world, we need to represent each location [x, y] with certain symbols (x and y represent finite numbers):

P[x, y]: is true if there is a pit in [x, y]

W[x, y]: is true if there is a Wumpus in [x, y], dead or alive

B[x, y]: is true if the agent perceives a breeze in [x, y]

S[x, y]: is true if the agent perceives a stench in [x, y]

Closely observing the sentence above which constitutes the KB and the Wumpus world earlier discussed, we can correctly deduce that the KB is false in any model in which state [1,2] contains a pit. This can be written as a sentence which would look like; P
 1,2
 i.e. there is no pit in location [1,2]. We can further label each sentence as R
 i
 .

	
There is no pit in [1,1]:

R
 1
 : P
 1,1

	
A square is breezy if and only if there is a pit in an adjacent square. This has to be stated for each square; for now, we include just the relevant squares:

R
 2
 : B
 1,1
 ⇔
 (P
 1,2
 ∨
 P
 2,1
)

R
 3
 : B
 2,1
 ⇔
 (P
 1,1
 ∨
 P
 2,
 2
 ∨
 P
 3,1
)

	
The preceding sentences are true in all Wumpus worlds. Now we include the breeze percepts for the first two squares visited in the specific world the agent is located.

R
 4
 : B
 1,1

R
 5
 : B
 2,1

1.11.2

Theorem Proving Concept

1.11.2.1

 Logical Equivalence

Two sentence
 sα
 an
 dβ
 are logically equivalent if they are true in the same set of models. That is
 ,α
 ≡ β meaning that α ≡ β if and only if α╞ β and β╞ α.

[image:]

1.11.2.2

 Validity

A sentence is valid if it is true (or correct) in
 all
 models. Every valid sentence is logically equivalent to true. Valid sentences can also be described as tautologies because the sentence and its equivalent are always the same, i.e. true. This means that, for any sentence
 sα
 an
 dβ,α
 |
 =β
 if and only if the sentence
 (α
 ⇒
 β
) is valid.

[image:]

1.11.2.3

 Satisfiability

A sentence is satisfiable if it is true in, or satisfied by, some model. Satisfiability can be checked by computing the possible models until we find one sentence that is true. There are a lot of satisfiability problems in computer science, and a perfect example is the constraint satisfactory problem. An excellent analogy is tha
 tα
 |
 =β
 if and only if the sentence
 (α
 ∧

 β
) is unsatisfiable.

[image:]

1.11.3

Final Thoughts

1.11.3.1

 Limitations of propositional logic

	
Propositional logic cannot be used to represent general-purpose logic compactly and briefly.

	
Propositional logic truth tables can be problematic because its propositions are syntactically correct.

1.11.3.2

 Effective Propositional Model Checking - Backtracking Algorithm

The backtracking algorithm is similar to the backtracking search method that we have discussed, and it is essentially a recursive depth-first listing of likely models.

There are three improvements on this algorithm discussed below:

[image:]

[image:]

[image:]

[image:]
 Checklist

The student should be able to discuss:

	
The types of knowledge. Semantic networks, and frames

	
Propositional logic as it relates to knowledge representation

	
Rules of operation behind knowledge-based agents

	
An example of knowledge representation – The Wumpus World

	
Constructing a simple knowledge base

	
The concept of knowledge representation

Chapter 12 First-Order Logic

[image:]

Objective of this Chapter:

At the end of this chapter, the reader should have learnt about:

	
The drawbacks of propositional logic

	
Representation language in First-Order Logic

	
Semantics and syntax of First-Order Logic

	
The usage of First-Order Logic for basic or simple representations

1.12

Facts of Propositional Logic (also referred to as First Order Predicate Calculus)

	
Propositional logic is declarative in nature, i.e. its propositions corresponds to facts which can either be
 true
 or
 false

	
Propositional logic is the most intellectual level at which logic can be studied

	
Propositional logic has sufficient expressive power to deal with partial information, using disjunction and negation

	
Meaning in propositional logic is context independent

	
In propositional logic, the meaning of a sentence is a function of the meaning of its parts. This is known as
 Compositionality.

For instance, the meaning of “S
 1,
 4
 ∧
 S
 1,2
 ” is connected to the meanings of “S
 1,4
 ” and “S
 1,2
 ”. It would be bizarre if “S
 1,4
 ” meant that there is a stench in square [1,4] and “S
 1,2
 ” meant that there is a stench in square [1,2], but “S
 1,4
 ∧
 S
 1,2
 ” meant that France and Poland drew 1–1 in last week’s ice hockey qualifying match (Russell & Norwig, 2010, p. 286)
 .

1.12.1

Drawback of Propositional Logic

	
Propositional logic does not represent structure of atoms

	
Propositional logic cannot be used to represent complex environments concisely.

	
Propositional logic is perfect for describing only the elementary theories or models of logic and knowledge-based agents.

1.13

Language of First-Order Logic (FOL)

The language of
 First-Order Logic
 can be described as natural language. Natural language is our day-to-day language of communication as humans, and it is very expressive. In natural language, the meaning of a sentence depends both on the sentence and on the context in which the sentence is used. A general or major problem that arises from the use of natural language is
 ambiguity
 (Steven, 1995)
 .

In propositional logic, we had a variable (only) that were used to represent facts, which may be true, or not. In other words, propositional logic contains Boolean variables. Because this kind of knowledge representation is limited, First Order logic evolved as an improvement to propositional logic. First order logic has variables that refer to things in the world which can be qualified (explicitly).

Example: The expression below illustrates a statement that can be made in First Order Logic that cannot be made in propositional logic.

“When you sterilise an equipment, all the bacteria die.”

In propositional logic, a statement would be required for every single bacterium. For example, in propositional logic, one would need to say, bacterium 1 is dead, bacterium 2 is dead, …, bacterium n is dead. Each of the bacteria is dead. All of the bacteria are dead. In short, one cannot make a general statement about all blocks.

The good thing about First Order logic is that things can be quantified. One can make reference to an item, some items, or all of an item without naming them explicitly.

1.13.1

Components of First-Order Logic

	
Object:
 Considering the syntax and composition of natural language, the most visible elements are nouns and noun phrases, and we use this to denote objects.

	
Relations:
 Verbs and verb phrases refer to the relationship that exists between objects.

	
Functions:
 functions are relations in which there is only one value for a given input.

[image:]

Example

[image:]

Objects: Objects in the example include one, two, one plus two (the name of the object obtained by using the function “plus” on objects “one” and “two.), three (another name for this object “one plus two”)

Relation: Relations in the example include equals

Function: plus

1.13.2

Models for First-Order Logic

Models of a logical and rational language are the formal and proper structures that establish the possible worlds under deliberation. Each model relates the vocabulary of the reasonable sentences to elements of the potential world so that the veracity of any sentence can be determined and certified. The domain
 of a model is the set of objects or domain elements
 it contains. The domain is required to be non-empty, i.e. every possible world must include at least one object.

Example

Objects:
 Richard the Lionheart, the King of England whose reign was from 1189 to 1199; Younger brother to Richard the Lionheart, evil King John, whose reign was from 1199 to 1215; Richards and Johns left leg; and a crown.

Relation

	
Binary relations: brother, on head (Binary relations relate pairs of objects)

	
Unary relations: person, king, crown (Unary relations relates single objects)

Function
 : [Richard the Lionheart] → Richard’s left leg; [King John] → John’s left leg

[image:]

1.13.3

Symbols and interpretations

	
symbols

We have discussed the components of first-order logic which are objects, relations and functions. The basic syntactic elements of first-order logic are symbols that represent the components of first-order logic. We have:

	
Constant symbols:
 representing
 objects

	
Predicate symbols:
 representing
 relations

	
Function symbols:
 representing
 functions

The convention to be used assumes that symbols are, to begin with, uppercase letters (e.g.
 Crown, King
) and for symbols with more than one word, the words should be joined together with each words starting with an uppercase letter (e.g.
 OnHead
).

	
Interpretation

Interpretation specifies exactly which objects, relations and functions are referred to by the constant, predicate, and function symbols. Every model must make available the information necessary to determine if any given sentence is true or false.

Example of interpretation

Using the example given in figure 137, we can infer that:

	

 Richard
 denotes Richard the Lionheart

	

 OnHead
 indicates relation that holds between the crown and King John

	

 LeftLeg
 denotes left leg function

Other possible interpretations are bound to exist because since we have five objects in the model, there should be up to twenty-five possible interpretations for each object.

[image:]

In first-order logic, a model entails of a set or group of objects and an interpretation that plots constant symbols against objects, predicate symbols against relations on the objects, and function symbols against functions on the objects.

Terms

A term is a logical expression used to denote an object. For example,
 LeftLeg(John).
 A complex term, however, is made up of a function symbol, then a parenthesised set of terms given as arguments to the function symbol. For example,
 [image:]
 could be said to be a complex term. The function symbol
 f
 denotes functions in the model, the argument terms
 [image:]
 refers to objects in the domain, and the term as a whole
 [image:]
 signifies objects that is the cost of the function
 f
 applied to
 [image:]
 .

Atomic Sentences

An atomic sentence is a sentence derived from a predicate symbol which is optionally followed by a parenthesised list of terms
 .
 A
 n atomic sentence is termed
 true
 in a given model if and only if the relation mentioned by the predicate symbol is binding among the objects denoted to by the arguments.

For example,
 Brother(Richard, John).
 Using
 the
 interpretations given above, the example given simply means that Richard the Lionheart is the brother of King John.an atomic sentence can also include complex terms as its argument. In that case, an example would look like;
 Married (Father (Richard), Mother (John))
 which means that Richard the Lionheart’s father married the mother to King John.

Complex Sentences

We have learnt earlier that to join propositions; we make use of connectives. Logical connectives are used to build more complex sentences with the same syntax and semantics. Some examples of complex sentences are:

	

 Brother (LeftLeg (Richard), John). This sentence means that “Richard the Lionheart’s
 LeftLeg
 is NOT a
 brother to King John”.

	
Brother (Richard, John
)∧
 Brother (John, Richard). This sentence means that “Richard the Lionheart
 is a
 brother to King John AND King John
 is a
 brother to Richard the King”.

	
King (Richard
)∨
 King(John). This sentence means that “Richard the Lionheart
 is a
 king OR King John
 is a
 King”.

	

 King (Richard
)⇒
 King(John). This sentence means that “
 IF
 Richard the Lionheart
 is NOT a
 King
 THEN
 John the King
 is a
 King”.

1.14

Quantifiers

In quantification, first-order logic seeks to improve on the challenges of propositional logic. There are two standard quantifiers in first-order logic which are universal and existential logic.

1.14.1

Universal Quantification

A challenge in propositional logic relates to its rules. Using the Wumpus environmental rules as an example, we have a rule stating that “Squares neighbouring the Wumpus are smelly” while another example states that “All kings are persons”. These examples pose a lot of challenges when being handles under propositional logic, whereas they are handled with ease under first-order logic. Examining the latter rule example, “All kings are persons” if written in first-order logic will be written as:

[image:]

Explaining statement ‘i’

The symbol
 [image:]
 denotes “For all” while the symbol
 [image:]
 represents a variable. Substituting
 [image:]
 for “For all” in sentence ‘i’ will derive the sentence that says, “For every
 [image:]
 ,
 if
 [image:]
 is a
 king,
 then
 [image:]
 is a
 person. A variable is a term all by itself, and as such can also serve as the argument of a function. For example,
 LeftLeg
 (
 [image:]
). A term without any variables is known as
 ground term
 .

Universal quantification supports extended interpretations. For
 [image:]
 is a sentence where P represents logical expression for individual object x. That is,
 [image:]
 is true or correct in a given model if P is true in every possible
 extended interpretations
 designed from the interpretation stated in the model, everywhere each extended interpretation identifies a domain element to which
 [image:]
 denotes. Sentence ‘ii’ can be extended in five ways:

[image:]

The universally quantified sentence
 [image:]
 is true in the original model in the sentence
 [image:]
 is true under each of the five extended interpretations. By implication, the universally quantified sentence given in sentence ‘iii’ is comparable to declaring the five sentences below:

[image:]

The above possible sentence interpretation extensions will now to tested to verify validity. We will use our model example of Figure 138 as the basis for the test.

	
Option ‘ii’ from above seems to agree very well with our model. In our model example, the only king is King John, and the second option also affirms that he is a person.

	
Our sentence ‘i’ (under universal quantification) suggests that if ‘x’ is a king, then ‘x’ is a person. And it is that angle that sentence options ‘iii’ to ‘v’ gets its support. This means that while these objects (crown, left leg) are not ‘kings’, the assertions are valid in the model.

	
To solve a challenge that may spring out from these statements, the ideal is to construct the truth table for implication (
 [image:]
).The truth table for implication (
 [image:]
) fizzles out all controversies as it turns out to be perfect for writing general rules with universal quantifiers.

	
Conclusively, the example clearly shows that implication (
 [image:]
) approach is better of a solution to solve problems like this than a conjunction (
 [image:]
) approach. A conjunction approach, for example, would state that: “Richard’s left leg is a king
 [image:]
 Richard’s left leg is a person”. While this is not entirely wrong, it does not explicitly give us the required result of what we want.

1.14.2

Existential quantification

While universal quantification makes statements about every object, existential quantification makes statement about some object in the universe without naming it. From our model example of Figure 138, we can deduce a statement that says:

[image:]

The symbol “
 [image:]
 ” denotes “There exists a/an” or “For some”. If we substitute this into what we have in sentence ‘v’, we would have a sentence that reads: “There exists an object ‘x’ such that, object ‘x’ is a crown AND object ‘x’ is on the head of King John”.

Given the statement
 [image:]
 , we can intuitively say that P is true for at least one object x. Another possible assertion here is that the statement is true in a particular model if P is true in
 at least a single
 extended interpretation that allocates x to a domain element. This means that, at least one of the statements below must be true:

[image:]

Deductions from the statements above

	
We can see that logically and morally, only the fifth option is true in the model. This means that the original existentially quantified sentence is true in the model.

	
Just a
 s⇒
 appears to be the natural connective to use wit
 h∀,∧
 is the natural connective to use wit
 h
 ∃.

	
Usin
 g⇒
 wit
 h∃
 frequently leads to a very frail statement. An example is seen in the sentence below because an implication is true if and only if both premise (evidence) and conclusion (inference) are true, or if the premise is false.

	
An existentially quantified implication sentence is true whenever
 any
 object fails to satisfy the premise.

1.14.3

Nested quantifiers

In order to express complex sentences, we need to incorporate multiple quantifiers. There are, however, both simple and complex cases in nested quantification. A simple case is where the quantifiers are of the same type. For example, “Brothers are siblings” can be written as:

[image:]

Sentence ‘vi’ would simply be read as, “For all ‘x’ and “For all ‘y’, ‘x’ is a brother of ‘y’ which by implication means that ‘x’ is a sibling of ‘y’.”

There are also cases of complex sentences with different quantifiers. An example is “Everybody loves somebody”. This statement can be presented and written in two distinct ways.

1.14.3.1

 First interpretation

The statement above, “everybody loves somebody” is interpreted to mean “for every person, there exists someone that that person likes”. This statement would be written as:

[image:]

1.14.3.2

 Second interpretation

A second interpretation of the statement above “everybody loves somebody” is “there exists someone that is loved by everyone”. Below is how we can write this statement:

[image:]

The two interpretations above show the use of more than one quantifier. But most importantly, it depicts the importance of quantification order. Although the two sentences (vii & viii) mean the same thing, there would be a confusion and different meaning if parenthesis is added. For example,
 [image:]
 suggests that “For every ‘x’, there is a property P (let us assume P =
 [image:]
) that is, an attribute that they love someone.” The statement and interpretation agrees with our earlier interpretation in sentence ‘vii’. However, adding parenthesis to sentence ‘viii’ derives a separate meaning.
 [image:]
 suggests that “There exists a ‘y’ who has a property P (let us assume P =
 [image:]
), a tendency of being loved by everybody”.

1.14.3.3

 Connections between
 [image:]
 and
 [image:]

	
Intimately connected through negation

[image:]

	
Both quantifiers conform to De Morgan’s Rules

The De Morgan rules for unquantified and quantified sentences are given below:

[image:]

1.15

Using First-Order Logic

1.15.1

Assertions and Queries in First-Order Logic

From our description of how knowledge base is updated (in chapter 11) for propositional logic, recall that we mentioned that sentences are added to the KB using TELL. It is the same process for FOL, but sentences here are referred to as assertions. Examples of assertions are given below:

[image:]

Similarly, when we need to query the KB, all we need to do is ask questions from the KB using ASK. Whenever we query the KB, it definitely must return a response. Examples of queries where KB returns a True/False value are given below:

[image:]

The example above returns
 True.
 Questions asked with ASK keyword are known as Queries or goals. But True/False is not adequate to be solutions/answers to certain questions. For example:

[image:]

The answer to the question above is
 true
 . However, what if we want to know what value of ‘
 [image:]
 ’ certify the sentence true. At this point, we need to append the keyword
 VARS
 with
 ASK
 in asking the question. Thus we have:

[image:]

The question above does not return a true. It returns two different answers:
 [image:]
 and :
 [image:]
 . We have this answers because, in our example of updating the KB, we stated that: John is a king, Richard is a person, and if John is a King, then by implication, John is a person. In order words, there are two persons in our KB currently and that is exactly what is returned by the query. Such an answer is termed
 substitution
 or
 binding list
 . The function AskVars is a reserved function for KB’s comprising solely of Horn Clauses, for the reason that in such knowledge bases (KB), every way of constructing the query true will bind the variables to some particular values. That is not the case with first-order logic; if the knowledge base has been told
 [image:]
 , then there exist no form of binding to
 [image:]
 for the query
 [image:]
 , even if the query is true (Russell & Norwig, 2010, p. 301).

1.15.2

Relationship Domain

Here we want to look at how we can use first-order logic to explain the relationships that exist between family members. For example, how do we write a statement like “Gabriel is the father Juliana while Juliana is the mother of Peter”. This requires us to relate elements in a family to a valid component in first-order logic. Using the relationship between families as examples below is a simple categorisation of items in a family under a component in first-order logic.

[image:]

Usage examples are shown below:

	
One’s mother is referred to as one’s female parent

[image:]

	
One’s husband is referred to as one’s male spouse

[image:]

	
A grandparent is referred to as a parent of one’s parent

[image:]

	
A sibling is referred to as another child of one’s parent

[image:]

	
Male and female are disjoint categories

[image:]

	
Parent and child are inverse relations

[image:]

1.15.3

The Wumpus world

[image:]

To illustrate the agent’s environment using first-order logic is not difficult once we need to identify the objects, relations and functions in the Wumpus environment.

Our objects in the Wumpus environment are squares (i.e. the location), pits, and the Wumpus itself. To represent the square, we use rows and columns (for convenience), and these rows and columns would again be represented with an integer list, e.g. [2, 2] (which denotes row 2, column 2). The sentence is shown below:

[image:]

[image:]
 would be represented as unary predicate while we will use a constant
 [image:]
 since there is only one Wumpus. To say that the agent is at a particular square at a particular time, we will write:

[image:]

This means that the agent is at square
 [image:]
 at a particular time
 [image:]
 . In order to make sure that we do not run into a problem (or in order to prevent a situation) where an agent would be at two different square at a single time, we need to write a sentence to ensure that the agent is at one location at a particular time.

[image:]

If the agent is in a square, it is able to deduce the properties of the square based on what it can perceive in the square. Let us say for example, while at square
 [image:]
 , the agent perceive
 [image:]
 , the agent is able to deduce that the square is breezy. The sentence for this deduction is shown below:

[image:]

Notice that the sentence implication does not include time. It binds the square with the breeze percept. This is necessary for the agent's navigation because it tells the agent that a pit is nearby. More so, since pits do not move, the agent does not need to keep track of the time.

First order logic allows concise sentences, which capture, naturally (so to speak), what exactly we wish to say. Remember that the Wumpus agent receives five percepts element from the environment. Whenever the Wumpus agent is updating its KB, in first-order logic, the sentence does not only include the percept element received; it also appends the time the percept was received. Omitting the time that a percept is received will make the agent’s memory sought of scrambled as it would not know at which state/location a percept was received which will ultimately affect the agent's judgment. An example of an ideal sentence (in first-order logic) is given below:

[image:]

The likely actions that the agent can execute are:

[image:]

When the agent wants to ascertain which action is best at any particular location, all it needs to do is query the KB using the AskVars function. For example:

[image:]

The query above returns, for example,
 [image:]
 which is a binding list. When this is returned, the agent program itself will then return
 [image:]
 to the agent as the best action to take.

Assuming the agent
 [image:]
 , and the percepts it receives now are:
 [image:]
 and
 [image:]
 . Then the raw percept data of the current state is depicted below:

[image:]

This means that at there exist percepts
 [image:]
 and
 [image:]
 at time
 [image:]
 , which implies that the percept list [
 [image:]
] is binded to time
 [image:]
 .

1.15.4

Knowledge Engineering

[image:]

[image:]

[image:]

[image:]
 Checklist

The student should be able to discuss:

	
The drawbacks of propositional logic

	
Representation language in First-Order Logic

	
Semantics and syntax of First-Order Logic

	
The usage of First-Order Logic for basic or simple representations

Chapter 13 Uncertain Knowledge and Reasoning

[image:]

Objective of this Chapter:

At the end of this chapter, the reader should have learnt about:

	
The concept of uncertainty in knowledge

	
How agents act under uncertainty

	
Basic notations in probability

	
Full joint distribution

	
Independence

	
Examples of an agent with uncertain knowledge

1.16

Introduction

In chapter 6 and 7, we discussed problem-solving agents and different task environments. Given the various task environments, it was realised that some task environments are easier to navigate than others. Easy to navigate environments include fully observable environments and deterministic environments. Likewise, we also have difficulty to navigate environments, which often are unobservable or partially observable environments and non-deterministic environments. Because of the nature of these environments, an agent may need to handle some level of uncertainty. This is so because an agent may never know for sure what state it is in currently or where it will end up after taking some series of actions even though these agents are designed to handle some level of uncertainty by keeping track of the group of all likely world states that it might be located.

1.17

 [image:]
 Quantifying Uncertainty

1.17.1

Acting under Uncertainty

An example of diagnosing a dental patient’s toothache is used here as an illustration to depict uncertainty. To set up a dental diagnostic agent, we begin by setting up its rules. In order words, we need to map symptoms with the possible affected area. This is a big challenge as we would see soon. Let’s consider the rule below:

[image:]

This rule simply says that, if the symptom is
 [image:]
 , then the problem is with the
 [image:]
 . But we know that, not all patients with toothaches have cavities. It may be gum diseases, boil, or any of several other problems. This new idea will lead to the statement below:

[image:]

This rule seems like a workable rule. However, before this rule is termed perfect in diagnosing toothache, we need to add an almost unlimited list of possible problems. If we change the order, then we would have:

[image:]

The obvious problem here is that not all cavities cause pain. The single way to conquer this challenge is to extend the left-hand side with all the qualification required for a cavity to cause a toothache.

So far, we have attempted to use logic (propositional logic) to solve the medical diagnosis problem which has failed thus far. A brilliant question to ask is, why is it difficult to use logic with a domain like Medical Diagnosis. The answer is given in the image below.

[image:]

What can be deduced from the answer provided above is that:

	
Domains which are judgmental are difficult for us to use logical propositions alone.

	
The agent’s knowledge can at its best provide only a degree of belief in relevant sentences

A logical (or reasonable) agent accepts each sentence to be true or false or has no view or opinion, while a probabilistic agent may have a statistical degree of belief or acceptance between 0 (for certainly false sentences) and 1 (for definitely true or correct sentences)
 .
 Probability offers a way of shortening
 the doubt or uncertainty that comes from our laziness and ignorance, thereby solving the qualification problem (Russell & Norwig, 2010).

For example, one might not know sure what exact problem a patient is having, but we accept as true that there is, say, an 80% likelihood (probability) that the patient that has a toothache has a gum problem
 .
 That is, we anticipate that out of all the conditions that are indistinguishable or vague from the current situation as far as our knowledge or understanding goes, the patient will have a cavity in 80% of them. This belief could be realised from arithmetical data—80% of the toothache patients seen so far have had cavities or holes—or from some broad-spectrum dental knowledge, or from a blend of evidence sources.

[image:]

An important point to note is that, at the time of diagnosis, there is no uncertainty, i.e. the patient either has a cavity, gum problem or it does not have any problem at all. The probability referred to, is not made concerning the real world but rather concerning an agent’s knowledge state. The virtuous thing about this method is that more assertions can be made as new knowledge or insight is learnt to improve our degree or level of certainty.

For example, the initial diagnosis of the patient using probability is: “the chance (probability) that the patient has a hole or cavity,
 given that she has a toothache problem
 , is 0.8.” If we, at a later time, learn that the patient has a history of gum disease, we can decide to coin a different statement: “The probability that our patient has a cavity is 0.4, assuming that he has a toothache as well as a history of gum disease.” If we have access to additional conclusive evidence or fact against a cavity, we can say that “the probability or chance that the patient has a cavity, assuming all that we now know, is just about 0.”

1.17.2

Uncertainty and Rational Decisions

[image:]

Exercise

Assuming an agent leaves his house for the airport, the image above shows different routes, which the agent can take. Let us also assume that there are two travel plans which the agent can choose from.

The plans are given and weighed below:

	
Plan A (Do not miss the flight)

If the present time at the agent’s home is 7 a.m., the agent knows that it will take only 1 hour to get to the airport. So the agent decides to take route 5 which is 1 hour away from the airport. The probability of getting to the airport early to catch its flight is assumed to be 85%. The question here is that, is the agent’s decision rational? The answer is “not really”. Why? For the reason that there are additional roads, like Route 7, with much higher probability degree since the distance is shorter than route 5.

	
Plan B (Get to the airport early)

If it is vital that the agent does not miss its flight, then the agent can decide to get to the airport early. Meaning that the agent believes that staying long at the airport is better than getting late to the airport, which might, in turn, make you miss your flight. Assuming that the agent goes along with plan b, which is to get to the airport early, and decides to leave the house 24 hours early. It does not matter which route the agent takes at this moment because even the longest distance has a probability of almost 100% of getting early to the airport. What happens here is that, in most situations, this is not a good selection, because while it almost guarantees to reach there early, it involves an excruciating wait.

In order to deal with issues like this, an agent must have preferences
 between the different possible outcomes of the various plans. An outcome is a completely specified state which takes into cognisance performance measures. Utility theory is introduced herein to represent and reason with preferences.

Utilit
 y
 theory states that each state has a percentage of utility, or usefulness, to an agent and that the agent will have a preference for states with higher utility.

[image:]

The chess game example given above shows the utility of a state in which Black has checkmated White. From the image, it is evident that the state that Black is has high utility for the agent playing while the state has low utility for the agent playing White. The twist here is that; utility states are different with agents. For example, in the game of chess given above, an agent may be happy (high utility) with a draw, whereas another agent is sad (small utility) with a draw.

A utility function can account for any set or series of preferences—unusual or usual, noble or stubborn. Assume that utilities may justify altruism, merely by including the well-being and benefit of others as a factor. Preferences are joined with probabilities, as expressed by utilities, in the overall theory of rational decisions or choices called
 decision theory
 :

[image:]

The fundamental concept with the notion of decision theory is given that an agent is rational or logical if and only if it selects the action or moves that yields or produces the highest expected utility, which is an average of all the possible outcomes or results of the action. This concept is often referred to as the principle of maximum expected utility (MEU).

A decision-theoretic agent is different from a problem-solving agent or a logical agent in the sense that while the latter maintains a belief state reflecting the history of percepts to date, the former maintains a belief state that represents not just the possibilities for worl
 d
 states but also their probabilities. Because of the structure of the decision-theoretic agent’s belief state, the agent can decide on probabilisti
 c
 predictions or forecasts of action outcomes and therefore choose the action with highest projected utility.

1.18

Basic Probability Notations

[image:]

Figure 139: A decision-theoretic agent that selects rational actions

	
Facts about probability assertions

[image:]

1.18.1

Possible world

Possible worlds are likely states or environment that an agent can find itself after performing certain actions. Possible worlds are mutually exclusive and exhaustive, i.e. two possible worlds cannot both be the case, only one possible world must be the case. The image below is used to explain possible worlds further.

[image:]

1.18.2

Sample space

Sample space is simply the set of all possible worlds. Taking the case of rolling two distinct dice at once as an illustration, we see that the possible worlds that can emerge are 36. The set of this possible world is termed sample space. For example:

[image:]

However, these sets are often described by propositions using formal language. The probability associated with a proposition is defined to be the sum of the probabilities of the worlds in which it holds:

That is, for any proposition
 [image:]
 .

1.18.3

Probability model

A fully specified probability model
 associates a numerical probability
 [image:]
 with each possible world. The elementary axioms of probability theory suggests that every single possible or likely world has a probability that is between 0 and 1 and that the aggregate probability of the set of the possible worlds is given as 1. The logical sentence is given as:

[image:]

Types of probabilities

	
Unconditional or prior probability

Unconditional probabilities refer to the degrees of belief in propositions in the absence of any other information. For example, when two dice are rolled, and they are still spinning, one has no information or knowledge of what the outcome will be. One is interested in the unconditional probability of rolling a given set, say doubles.

	
Conditional or posterior probability

This is a situation where there exists some information. This kind of information is known as evidence which might have been revealed somehow. Take, for instance; we rolled two dice. The first die may already be showing a 2, and we are waiting with utmost patience for the other die to stop spinning. In cases like this, let’s assume that we want to have doubles of 2 rolled, it suggests that we not interested in the unconditional probability of rolling doubles of 2. However, since the first die is a 2, i.e. we have part evidence, we are now interested in the conditional or posterior probability.

1.19

Language of propositions in probability assertions

1.19.1

Random variables

Random variables are variables in probability theory. The names of these variables begin with an uppercase letter. In our example of a dice game, examples of variables are;
 [image:]
 ,
 [image:]
 , and
 [image:]
 .

[image:]

1.19.2

Domain

Every random variable has a domain. The domain is defined as the set of possible or likely values that can be chosen.

[image:]

At some time, we might want to illustrate the probabilities of all the possible values of a random variable. Using the dice case as an example, we will use die1 as an illustration which is expressed below as:

[image:]

The statements above can be expressed as a whole in the form:

[image:]

Where the
 [image:]
 specifies that the outcome is a vector of numbers, and where we adopt the suggestion of a predefined ordering (1, 2, 3, 4, 5, 6) on the domain of
 [image:]
 . We then say that the
 [image:]
 statement defines a probability distribution
 for the random variable
 [image:]
 .

The examples given above show finite domains. Aside from finite domains, we also have variables that have infinite domains. A perfect example is the case of a patient that is to be diagnosed of a toothache. We have seen that the possible causes are numerous and infinite as even the medical field itself is not certain to have all the possible causes. However, if we have some other information about the patient, it can go a long way in improving our level of certainty. Take for example, “the probability that the patient has a cavity, given that she is a teenager with no toothache, is 0.1”. This statement can be written as:

[image:]

So far, we have looked at distributions of single variables. Let us now discuss distribution across multiple variables. For example,
 [image:]
 denotes probability of all combinations of the values of
 [image:]
 and
 [image:]
 . This is a six by 2 (6 * 2) table of probability which is called
 joint probability distribution of Die1 and Cavity.
 We can also have mix of variables with and/or without values. For example:

[image:]

This is a 2 element vector which gives a probability of a cavity with a 4 as the outcome of a rolled die 4. Below are the 12 (6 * 2) equations. Note, we use
 D
 to represent
 Die1
 and
 C
 to represent
 Cavity
 .

[image:]

However, the product rules for all possible values of Die1 and Cavity can be written as a single equation:

[image:]

1.20

Inference using Full Joint Distribution

Probabilistic inference is the calculation of posterior probabilities intended for query propositions given observed or perceived evidence or facts. Full joint distribution is used as the KB from the answers or solutions to all questions or queries may be retrieved. Assuming we have three variables; Cavity, Toothache, and Die1, then the full joint distribution is represented in the given equation below:

[image:]

Another example of a full joint distribution is shown in the image below:

[image:]

It is imperative to point out that the probabilities in the joint distribution sum to 1. For example, if you add up the probability values in the image above, one finds out that the result equals to one. i.e.

[image:]

1.20.1

Marginal Probability

The concept of actuaries of writing the sums of observed frequencies in the margins of insurance tables is known as marginal probability. A common practice in distribution is to extract distribution over some subset of variables or a single variable. For instance, if we add the entries in the first row (cavity row of figure 140), what we get is an unconditional or marginal probability of cavity:

[image:]

The process above is known as marginalisation or summing out because we had to sum up the probabilities for each possible value of the other variables, thereby taking them out of the equation. A general marginalisation rule for any sets of variables
 Y
 and
 Z
 :

[image:]

where
 [image:]
 represents the cumulative of all likely combinations of values of the set or group of variables
 Z
 .

The alternative to this rule encompasses conditional probabilities instead of joint probabilities. This rule, which is termed conditioning, is made possible by using the product rule, whose equation is shown below:

[image:]

Both marginalisation and conditioning turn out to be expedient rules for all varieties of derivations involving probability expressions.

Probability examples (
 Use image 2 as probability reference point
)

	
Compute the probability of a cavity, given the evidence of a toothache.

[image:]

[image:]

	
Compute the probability that there is no cavity, given the evidence of a toothache

[image:]

[image:]

[image:]

Recall that while discussing probabilities joint distribution, we said that the sum of the probabilities must equal to 1. If we add up the probabilities of
 [image:]
 which is 0.4 and
 [image:]
 which is 0.6, we find out that the rule for joint distribution probability is a valid one as the sum of the two probability examples equals 1.

1.21

Independence

So far, we have been dealing with full joint distribution using three examples. If we decide to expand the joint distribution for allowance of a fourth variable,
 Weather
 , then the full joint distribution becomes
 [image:]
 .

Before we go further since we had earlier looked at the possible values of the other 3 variables, let us examine the probabilities of all the possible values of the variable
 Weather:

[image:]

Below is a little analysis of the four variables possible worlds or entries:

	[image:]

	[image:]

	[image:]

	[image:]

With the analysis above, we see that the probability
 [image:]
 has (4 * 2 * 2 * 2) 32 entries. What we are doing now basically is to expand the world as shown in Figure 140 to accommodate for the
 Weather
 variable. In trying to formulate a product rule, we may ask the logical questions, how is
 [image:]
 and
 [image:]
 connected? This in turn will help us formulate a product rule to approach this question. This product rule is given below:

[image:]

Logically, it’s a reasonable thought to say that weather does not affect nor influence dental variables. This idea is represented with the assertion below:

[image:]

The property used in the equation above is known as
 independence.
 From the assertion above, we can make the deduction that:

[image:]

We can also write a general equation for every possible entry in
 [image:]
 such that:

[image:]

In other words, the 32 table for the four variables can be constructed from one 8 entry table and one 4 element table. This is known as decomposition.

From our assertions, we see that the
 Weather
 variable is independent of one’s dental problems. We can summarise the independence of two variables
 a
 and
 b
 as:

[image:]

Relevant facts

[image:]

1.22

The Wumpus world

In chapter 11 where we discussed the Wumpus agent, its environment, logical decisions and probabilistic reasoning problems it may encounter based on uncertainty. Assuming an agent is in state ‘x’, our aim is to determine the probability that each of the neighbouring squares contains a pit. Figure 141 shows a Wumpus environment and thus would be used for our example.

Properties of the Wumpus world

	
A pit causes breezes in all adjacent or neighbouring squares

	
Respective squares other than [1,1] contains a pit with probability 0.2

[image:]

Rules

	
We need a Boolean variable
 [image:]
 for each square, which is true if and only if (iff) square [I, j] indeed contains a pit.

	
We require a second Boolean variable
 [image:]
 which is true if and only if (iff) square [I, j] is breezy.

Deductions from Figure 141

	
Image (a) shows that after finding a breeze in both squares [1,2] and [2,1], the agent is trapped, i.e. there is no safe place to explore further.

	
Image (b) shows that there is a division of squares into
 Known
 ,
 Frontier
 , and
 Other
 for a query about square [1, 3].

The next action that we need to take is to state the full joint distribution. This encompasses the whole set of the possible worlds of the Wumpus world. The full joint distribution is shown below:

[image:]

If we apply our product rule, what we have is:

[image:]

The decomposition makes it laid back to see what the joint probability values ought to be. The first term is the conditional probability distribution of a breeze configuration, given a pit configuration; its values are 1 if the breezes are neighbouring to the pits but 0 if otherwise. The second term is the previous or prior probability of a pit configuration. Respective squares contain a pit with probability 0.2, independently of the other squares; this generates:

[image:]

Next, we need to ask questions. For example, how likely is it that square [1, 3] contains a pit? This question can be answered by doing an aggregate of all the entries that were captured in the full joint distribution.

[image:]

[image:]

Deductions from Figure 142

	
For (a)

We have three models with
 [image:]
 showing two or three pits

	
For (b)

We have two models with
 [image:]
 showing one or two pits

What we have been able to understand from this fragment is that complex problem can be expressed accurately in probability theory and resolved with a simple set of rules. To get efficient elucidations, independence and conditional independence relationships can be used to streamline the summations that are essential.

[image:]

[image:]
 Checklist

The student should be able to discuss:

	
The concept of uncertainty in knowledge

	
How agents act under uncertainty

	
Basic notations in probability

	
Full joint distribution

	
Independence

	
Examples of an agent with uncertain knowledge

Chapter 14 Making Simple Decisions

[image:]

Objective of this Chapter:

At the end of this chapter, the reader should have learnt about:

	
The basic principles of decision theory

	
How the behaviour of rational agents and utility maximisation works?

	
The nature and impact of utility function using money as an example

	
Implementation of decision-making systems using decision network

1.23

Introduction

In making simple decisions, a decision-theoretic agent makes decisions in situations in which uncertainty and conflicting goals leave a logical agent with no way to decide. Where a goal-based agent has a binary distinction between happy (goal) and sad (non-goal) states, a decision-theoretic agent has an unceasing measure of outcome quality.

1.24

Beliefs and Desires under Uncertainty

To actualise desires and beliefs, we follow a sort of decision theory. Decision theory in its simplest form entails choosing among actions based on the desirability of their immediate
 outcomes assuming that the environment is episodic.

[image:]

The environments to be discussed in the chapter includes episodic, nondeterministic, and partially observable environments. Because agents in this type of environments usually do not know the current state in which they are in, the current state is omitted from our equations. Therefore, we denote an agents outcome as
 [image:]
 which is defined according to (Russell & Norwig, 2010)“… as a
 random variable
 whose values are the possible outcome states. The probability of outcome
 [image:]
 , given evidence observations
 e
 .

[image:]

From the equation, the ‘
 a
 ’ on the right-hand side of the conditioning bar stands for the event that action a is executed. We use a utility function
 [image:]
 to capture the agent’s preferences. The utility functions assign a single number to express the desirability of a state.

The estimated utility
 of an action or move given the evidence
 [image:]
 , is the average utility value of the outcomes, weighted by the probability that the outcome follows:

[image:]

1.24.1

Maximum Expected Utility (MEU)

The principle of MEU states that a rational agent should choose the action that maximises the agent's expected utility.

[image:]

From the analysis of the principle of the Maximum Expected Utility, it can be deduced that everything an intelligent agent needs to do is basically to calculate the various quantities, maximise utility over its actions, and its success is guaranteed.

The MEU principl
 e
 formalises
 the general notion that the agent should do the right thing which involves an agent being able to estimate the state of the world.

[image:]

Figure 143: Properties for estimating world state in a decision theory model.

Decision theory model provides a useful framework for solving artificial intelligence. This is so because the decision theory does not include searching or planning. Computing outcome utility
 [image:]
 requires either searching or planning for the reason that an agent may not know how good a state is until it knows where it can get to from that state.

The concept of maximum expected utility is similar to the concept of performance measure introduced in chapter 13. The justification of Maximum Expected Utility (MEU) principle according to (Russell & Norwig, 2010) is that “
 If an agent acts so as to maximise a utility function that correctly reflects the performance measure, then the agent will attain the highest likely performance score (averaged over all the possible environments)”.

1.25

Basis of Utility Theory

Utility theory was founded based on popular questions about agents, which it rose to answer. Some of the questions are revealed in the image below:

[image:]

The questions above are all answered within the content of the subsections below, and it sums up to prove the verity of Utility Theory.

1.25.1

Constraint on Rational Preferences

The important question that we deal with in this section is:

[image:]

These questions can be answered by lettering down some constraints on the preferences that a rational agent ought to have and then to show that the Maximum Expected Utility standard can be derived from the constraints.

Representing the agent’s preference

[image:]

From the assertions above, one could ask the logical question; What does ‘A’ and ‘B’ represent?” A and B are basically statements. Let us take, for example, a person is on board of an aeroplane and is offered two dishes to pick one. ‘A’ is used to denote the first dish which is a pasta dish while we use ‘B’ to represent the second dish which is the “chicken dish”. The person is required to choose a single dish or none, but this decision is not an easy decision as:

	
The person does not know if choosing the pasta dish is a right decision. This is so because he does not know if the pasta will be delicious or congealed.

	
The person does not know if choosing the chicken dish is a right decision. This is so because he does not know if the chicken is well cooked or charred.

We can further relate this to a lottery game. A lottery game is simply a game of chance and luck with a whole lot of critical thinking. In the game of lottery, we use tickets to play the game while the outcome of the game we play solely depends on the cards we pick. In relating the game of lottery with the analysis given above of an agent, we can deliberate on the set of outcomes for each action as a lottery while the actions the agent performs denotes ticket. A lottery
 [image:]
 with possible outcomes
 [image:]
 that occur with probabilities
 [image:]
 is formally written as:

[image:]

A concern for utility theory is understanding how preferences between complex lotteries are related to preferences between the underlying states in those lotteries. To counter this problem, checks have been set up in which any reasonable preference relation ought to obey. These constraints are discussed below:

[image:]

The constraints shown above are regarded as axioms of utility theory. To enforce these constraints, we may decide to set up another rule which suggests that an agent that violates any of the given constraints in any way will display flagrantly illogical and irrational behaviour in some situations.

[image:]

The image above shows two agents, A and B in which agent A has a Sony Phone and agent B has a Windows phone as well as a Samsung phone. In the previous paragraph, we stated the importance of enforcing the six constraints given because there are dire consequences for violating this rules. A consequence which Figure 145 depicts is that the agent ends up displaying irrational decisions.

1.25.1.1

 Explaining nontransitive preference with Figure 145

A transitive preference suggests that an agent that prefers item/object A to B and also prefers item/object B to C will definitely (by implication) prefer item/object A to C. in Figure 145, we have two agents. Agent A is having a Sony phone denoted with
 [image:]
 while agent B has two phones; a Windows phone denoted with ‘B’ and a Samsung phone denoted with a ‘C.

In other to con an agent with nontransitive preference (which is the opposite of transitive preference), we can influence transitivity on such agent so that the agent give us all its money.

We assume that agent A has the nontransitive preferences
 [image:]
 . That is, agent A (all things been equal) will prefer a Windows phone to Sony phone, Samsung phone to a Windows phone, and finally a Sony phone to a Samsung phone.

Agent A has a Sony phone, but he prefers the Windows phone of Agent B. Agent B is willing to trade his Windows phone for Agent’s A Sony phone with the agreement that Agent A adds a token of
 N
 1000. After the trade, Agent A has a Windows phone but has lost
 N
 1000 while Agent B has a Sony phone, a Samsung phone and an extra
 N
 1000.

Agent A prefers a Samsung phone to a Windows phone and thus decides to trade his Windows phone for agent B’s Samsung phone. Agent B agrees to trade his Samsung phone for Agent’s A Windows phone with the agreement that Agent A adds a token of
 N
 1000. After the trade, Agent A has a Samsung phone but has lost
 N
 1000 while Agent B has a Sony phone, a Windows phone and an extra
 N
 1000.

Agent A prefers a Sony phone to a Samsung phone and thus decides to trade his Samsung phone for agent B’s Sony phone. Agent B agrees to trade his Sony phone for Agent’s A Samsung phone with the agreement that Agent A adds a token of
 N
 1000. After the trade, Agent A has a Sony phone but has lost
 N
 1000 while Agent B has a Samsung phone, a Windows phone and an extra
 N
 1000.

At this juncture, we see that we are back to the initial starting point where Agent A has a Sony phone, and Agent B has both a Windows phone and a Samsung phone. However, at this time, Agent A has lost
 N
 3000 while Agent B has gained
 N
 3000. The trade, if continued, will follow this trend up until Agent A has no money again. It is then logical and reasonable to conclude that Agent A’s action has been irrational.

1.25.2

Preference Lead to Utility

[image:]

For an intelligent agent, we can say that preference leads to utility. Since the axioms of utility theory are actually axioms about preferences, therefore they need not approximate anything about a utility function. However, from the axioms of utility, we are able to derive certain consequences which are discussed below:

	
Existence of Utility Function

If the preference of an individual agent, obey the axioms of utility, then there exists a function
 [image:]
 such that
 [image:]
 . This will occur if and only if A is preferred to B. The same goes for
 [image:]
 which will only happen if and only if the agent is indifferent between A and B.

[image:]

	
Expected Utility of Lottery Game

The utility of the lottery game is the aggregate of the probabilities of each outcome multiplied by the utility of that outcome.

[image:]

[image:]

For the reason that the outcome of a nondeterministic action is a lottery, it means that the agent can act rationally and consistently with its preferences only by selecting an action that enables it to maximise expected utility.

1.25.3

Utility Functions

The term utility is a function that maps lotteries to real numbers. It is a known fact that axioms on utility ought to be obeyed by all rational agents, and that is basically all that there is about utility function. Frankly speaking, an agent can have any preference it desires and it does not matter if the preferences seem absurd or strange, the most important thing is that these preferences are viewed as rational axioms. For example, a man who prefers even numbers accounts balance would give out
 N
 79 if he had
 N
 5879 to in order to maintain an even number balance. So also, a lady would prefer a used iPhone 6S to a brand new Samsung S5. The preferences of real agents, however, are ordinarily more logical and therefore easier to deal with.

In order to build a decision-theoretic system, which will help an agent in making decisions, the utility function of such an agent must be understood and designed accordingly. This process is termed preference elicitation, and may also involve offering choices to the agent and using the perceived preferences to punch down the underlying utility function.

The whole concept of utility has its foundation in economics because there is obviously one contender for a utility measure in economics, which is money. The universality of money for various forms of transaction of goods and services suggests that money plays a substantial role in human utility function. The term monotonic preference for money suggests that all things being equal, an agent will prefer more money to less money.

Human Judgment and Irrationality

[image:]

1.26

Decision Network

[image:]

[image:]

Explaining the nodes in Figure 148

	
Chance nodes:
 Chance nodes are the nodes represented by oval shapes. These represent random domains.

	
Decision nodes:
 Decision nodes are represented with rectangle shapes, and they represent points where the decision maker has a choice action.

	
Utility nodes:
 Utility nodes are represented with diamond shapes, and they denote the agent’s utility function.

For every chance node that exists, there is a link with a conditional distribution, whichis indexed by the current state of the parent nodes. In decision networks, the parent nodes can include decision nodes as well as chance nodes. The choice influences the cost, safety, and noise that will result
 .
 The utility node has as parents all variables describing the outcome that directly affects utility. Associated with the utility node is a description of the agent’s utility as a function of the parent attributes. The depiction could be just a tabularisation of the function, or it could be a parameterized additive or linear function of element values.

1.26.1

Evaluating the decision networks

An important question to ask is, how does one evaluate decision networks? This question is answered in the image below.

[image:]

Figure 149: Algorithm for evaluating decision network.

1.27

Decision-Theoretic Expert System

	
Decision Analysis

Decision analysis as a field is obligated with the study of applications of decision theory to actual decision problems
 .
 It is used to make rational and logical decisions in important domains where the stakes are high. The process or procedure involves a careful and cautious study of the possible or likely actions and outcomes, as well as the preferences placed on each outcome. As more and more decision processes become automated, decision analysis is increasingly used to ensure that the automated processes are behaving as desired.

An example of a Decision-Theoretic Expert System problem

In our example, we seek to consider the challenges of choosing a medical treatment for a kind of congenital heart disease in children.

Aortic coarctation is a kind of heart anomaly found in children which can be treated either with surgery or medication. The problem is in deciding what treatment to use and when to do it.

The problem is approached using the algorithm below. However, note that in executing this solution, a tea
 m
 consisting of at least one domain expert (a paediatric cardiologist) and one knowledge engineer should be created.

[image:]

[image:]

[image:]
 Checklist

The student should be able to discuss:

	
The basic principles of decision theory

	
How the behaviour of rational agents and utility maximisation works?

	
The nature and impact of utility function using money as an example

	
Implementation of decision-making systems using decision network

Chapter 15 Making Complex Decisions

[image:]

Objective of this Chapter:

In this chapter, we are concerned with
 sequential decision problems
 , in which the agent’s utility depends on a sequence of decisions. Sequential decision problems incorporate utilities, uncertainties, and sensing, and include search and planning problems as individual cases. At the end of this chapter, the student should have learned about:

	
How sequential decisions problems are defined.

	
The relationship between sequential decisions problems and partially observable environments.

	
How sequential decisions problems can be solved to produce optimal behaviour that balances the risks and rewards of acting in an uncertain environment.

	
The design of a decision-theoretic agent in a partially observable environment.

	
Decision making in a multi-agent environment.

	
Introduction to the concept and main ideas of game theory

1.28

Sequential Decision Problems

This chapter deals with the issue of handling complex decision-making. The environment that tackles the issue of a difficult decision is a stochastic environment. In a stochastic environment, the actions performed in a current state does not determine the following states. Most often, stochastic environments are partially observable making it difficult to navigate.

To begin our discussion, we commence with an example of an agent in an atmosphere that is faced with a sequential decision problem. The Figure 150 below illustrates an agent beginning at an initial start state, and to move on, the agent needs to select an action. The agent ends interfacing with the environment when the agent successfully gets to its goal or target state that is indicated as -1 or +1 in Figure 150 below.

[image:]

[image:]

For a deterministic environment, the solution is not far-fetched as the agent is aware of the sequence of actions that will make it get to the goal state. The solution for a deterministic agent could be a simple series as
 [image:]
 .

Unfortunately, this is not so in a stochastic environment as actions cannot be relied upon to return the required or desired result. The particular model adopted for navigating our stochastic environment is illustrated in figure 151. Summarised in the bullet points below are the rules guiding the agent’s action in the stochastic environment.

	
Respective action accomplishes the proposed effect with probability 0.8

	
Assuming the agent bumps into a wall, it stays in the same square

If our agent in Figure 150 decides to
 [image:]
 from the initial state [1, 1], the action leads the agent to state [1, 2] with a probability of 0.8 based on some unforeseen navigation problems in the environment. However, probability 0.1 moves the agent towards the right direction to state [2, 1] while probability 0.1 moves the agent towards the right direction. We assume that there is a wall at the boundary of state [1, 1] to the left. With this assumption, as the agent attempts to move to the next location to the left of state [1, 1], it bumps into a wall and maintains its position.

Note that in a stochastic environment, the agent’s action has uncertain results. If we go ahead to use the solution that a deterministic agent offers, which is:

[image:]

We end up moving around the barrier and reach the goal state at [4, 3] after 5 actions have been taken i.e.
 [image:]
 . We also can slightly arrive at the goal state by following the 0.1 probability, which will take 4 actions i.e.
 [image:]
 .

1.29

The Agent World

Let us review the transition model in our stochastic decision problem. Recall that a transition model describes the outcome of each action in respective states. To tackle the given task of a stochastic environment, we use the model of Markov Decision Process, which consists of:

	
A set of possible world state
 [image:]

	
A set of possible action
 [image:]

	
A real value reward function
 [image:]

	
A description T of each of the action effects in individual state

	
Markov Property Assumption: the effects or impact of an action taken in a state depends only on that state and not on prior experience or history.

The next thing to do now is to define explicitly, the agent’s actions. We will review the actions of both deterministic and the stochastic agent.

	
Deterministic Agents Actions: For individual state and action, we specify a new state.

[image:]

	
Stochastic Agents Actions: For individual state and action, we determine a probability distribution over the next states, i.e. the probability of reaching
 [image:]
 if action
 [image:]
 is executed in state
 [image:]
 .

[image:]

We can go ahead to make necessary plans since the core backgrounds have been laid by stating the required properties of the environment.

1.29.1

Making Plans

[image:]

	
The action or moves which the agent has for directions navigation are denoted by the set of steps given below:

[image:]

	
The plan that we will use to execute the given moves from the initial state is:

[image:]

	
The goal or target of the agent is to reach state +1

A deterministic agent, as we have seen earlier will likely use the plan,
 [image:]
 [image:]
 , to successfully reach the goal state +1 with probability 1.

The valid question is that, will the plan
 [image:]
 get our stochastic agent to the goal state +1?

[image:]

Recall that in a stochastic environment, when an agent decides to move in a particular direction, the intended route is a probability in which often times is less than 1. In our environment depicted in figure 150, planned actions have the probability value of 0.8 while non-intended actions have probabilities of 0.1 each. One can be quick to assume that the solution is
 [image:]
 which is wrong because
 [image:]
 is the probability that we reach state +1 by using the intended plan
 [image:]
 . If we follow the intended plan which derives a probability of
 [image:]
 , what is learnt is that we do not even get to the state +1 one time out of three times.

Is it possible that the intended plan
 [image:]
 accidentally gets us to the goal state by actually going the other way round? The probability of this happening is
 [image:]
 . Therefore, the overall probability that
 [image:]
 takes us to the goal state +1 is
 [image:]
 .

In this scenario, the probability of accidental or unintended successes does not play a substantial role. However, it might very well lead to success, under different decision models, rewards, environments, etc.

1.29.2

Introduction to Rewards

To give our agent more robustness, we introduce the concept of rewards. Since the decision problem is sequential in nature, the utility function will be determined not by a single state, but rather, by a sequence of states otherwise known as an
 environment history
 . The utility function is represented as:

[image:]

Where
 [image:]
 stands for rewards. Other important representations are:

	
Rewards
 for local utilities assigned to states is denoted by
 [image:]

	
Values
 for global high utilities that is allocated to states is indicated by
 [image:]

	
Utility and expected utility
 applied to states and sequences of states is denoted by
 [image:]

Below is the reward that we are considering for our stochastic environment.

	
+1 point for the agent at state +1

	
–1 point for the agent at state –1

	
–0.04 point for the agent in all other states

The utility of an environment history is the aggregate of the rewards so far received. A sequential decision problem designed for a fully observable, stochastic environment with a Markovian transition model and additive rewards is known as a
 Markov Decision Process (MDP),
 which consists of a set of states, a set
 [image:]
 of actions in each state, a transition model
 [image:]
 , and a reward function
 [image:]
 .

1.30

Policy

Since we are aware that in a stochastic environment, fixed actions are not guaranteed to solve any given problem, it is imperative to specify what the agent should do for any state that the agent might reach. Such a solution is known as a policy. A policy is denoted by the symbol
 [image:]
 while any action recommended by the policy ‘
 [image:]
 for a state ‘
 [image:]
 ’ is given as
 [image:]
 . For an agent that has complete policy i.e., a completely certified solution, whatever the outcome of any action, such an agent will always know what actions to perform next.

Whenever one executes a given policy, beginning from the initial state, the stochastic nature of the environment may lead to a different environment history. Therefore, we measure the quality of a policy by the expected
 utility of the possible environment histories generated by that policy.

1.30.1

Optimal Policy

An optimal policy
 is a policy that yields the highest expected utility. We use
 [image:]
 to denote an optimal policy. Given
 [image:]
 , the agent chooses what actions to carry out by looking up its current percept, which informs it the current state ‘
 [image:]
 ’, and then executing the action
 [image:]
 . A policy signifies the agent function clearly and is thus a depiction of a simple reflex agent, calculated from the information used for a utility-based agent.

An optimal policy for our example given in Figure 152 is shown below. Notice that, because the cost of taking a step is objectively small compared with the consequence for ending up in (4, 2) by accident, the optimal policy for the state (3, 1) is conservative. The policy recommends taking the long way round, rather than taking the shortcut and thereby risking entering (4, 2).

[image:]

The balance of risk and reward changes depending on the value of R(s) for the non-terminal states. Figure 152(b) illustrates optimal policies for four different sorts of R(s). When R(s) =-1.6284, life is so painful that the agent heads straight for the nearest exit, even if the exit is worth –1. When -0.4278 = R(s) =-0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and is willing to risk falling into the –1 state by accident. In particular, the agent takes the shortcut from (3,1). When life is only slightly dreary (-0.0221 <R(s) < 0), the optimal policy takes
 no risks at all
 . In (4,1) and (3,2), the agent heads directly away from the –1 state so that it cannot fall in by accident, even though this means banging its head against the wall quite a few times.

Finally, if R(s) > 0, then life is positively enjoyable, and the agent avoids
 both
 exits. As long as the actions in (4,1), (3,2)
 ,
 and (3,3) are as shown, every policy is optimal, and the agent obtains infinite total reward because it never enters a terminal state. Surprisingly, it turns out that there are six other optimal policies for various ranges of R(s); Exercise 17.5 asks you to find them. The careful balancing of risk and reward is a characteristic of MDPs that does not arise in deterministic search problems; moreover, it is a feature of many real-world decision problems.

1.30.2

Utilities over time

In the preceding sections, we saw that the efficiency or performance of an agent is measured by the aggregate of rewards for states that have been visited. The utility function on environment histories is written as
 [image:]
 , however, since the choice of performance measure is not arbitrary, there are many other possibilities for the utility function on environment histories which could lead to modifications of the initial formulation for enhancement.

1.30.3

Finite and Infinite Horizon

A finite horizon suggests that the agent has a fixed time or move N to navigate the world. This means that, when the agent exhausts the stipulated time or number of moves, the game is over. Our utility function on environment histories for this type of situation is given as
 [image:]
 .

[image:]

Consider the image above. If the agent starts at state (1, 4) and its allotted number of moves
 [image:]
 . The agent heads directly to the state +1 if it ever wants to get an opportunity to reach the goal state (+1). The action or move required by the agent is to
 [image:]
 .

[image:]

Notice that, in this kind of situation, the agent is only concerned about reaching the goal state before its number of moves gets exhausted even if the route taken cost the agent a lot of ‘pain’.

However, if we assume
 [image:]
 . Then the agent has plenty of time to find the shortest and safest route.

[image:]

A finite horizon, therefore, does not have a fixed optimal action in a given state as its action is subject to change over time
 .
 We thus conclude that the optimal policy for a finite horizon is
 nonstationary.
 A policy that is certain to arrive at a terminal state is called a proper policy.

An infinite horizon, on the other hand, does not have a fixed timeline or deadline. Its move and actions are endless so to speak.

1.30.4

Calculating the Utility of States

From our understanding of multi-attribute utility theory, each state
 [image:]
 can be viewed as an a
 ttribute
 of the state sequence
 [image:]
 . In order to construct a simple expression in terms of the attribute, some kind of preference independence assumptions needs to be considered. We assume therefore that between sequences of states, the agent’s preference remains stationary. Stationary for preference suggests that, if for instance, two state sequences
 [image:]
 , starts at the same state (e.g.
 [image:]
), then the two sequences should be preference-ordered the same way as the sequences
 [image:]
 . There are two ways to assign utilities to sequences under stationarity:

	
Additive Rewards

The utility of the agent in Figure 152 is derived using additive rewards. Additive reward basically adds up the rewards in respective states. The utility of a state sequence is:

[image:]

	
Discounted Rewards

The utility of a state sequence is:

[image:]

Where
 [image:]
 denotes the discounted factor which is a number between 0 and 1. The discount factor describes the preference of an agent for current rewards over future rewards. When
 [image:]
 is close to 0, rewards in the distant future are viewed as insignificant. When
 [image:]
 is 1, discounted rewards are exactly equivalent to additive rewards, so additive rewards are a special case of discounted rewards. Discounting appears to be a good model of both animal and human preferences over time. A discount factor of
 [image:]
 is equivalent to an interest rate of
 [image:]
 .

In this chapter, we have chosen to follow the route of discounted rewards for calculating the utility of states.

1.30.5

Optimal Policies and the Utilities of states

Since we have determined that the utility of a given state sequence is the aggregate of discounted rewards attained during the course, we can relate policies by comparing the
 expected
 utilities obtained when executing them.

Assuming that the agent is in start state
 [image:]
 and
 [image:]
 denotes the state an agent get to at time
 [image:]
 when performing a given policy
 [image:]
 . The probability distribution over state sequences
 [image:]
 , is determined by the initial or start state
 [image:]
 , the policy
 [image:]
 , and the transition model for the environment.

The expected or projected utility realised by executing or performing
 [image:]
 starting in
 [image:]
 is represented as:

[image:]

Where the expectation is with respect to the probability distribution over state sequences determined by
 [image:]
 and
 [image:]
 . At this stage, the agent has a number of policies from which it could choose from. Below is a representation of one of these policies:

[image:]

Recall that
 [image:]
 is a policy, and the essence of such a policy is to recommend a suitable action for every state. The relationship with state
 [image:]
 , is that, when
 [image:]
 is a start state, then the policy is optimal. A good reason for using the discounted utilities along with infinite horizons is that the optimal policy is independent
 of the starting state. Therefore, an optimal policy can simply be written as
 [image:]
 .

With the above statements, one can derive the actual utility of a state as
 [image:]
 which is the estimated sum of discounted rewards if and only if an agent executes or performs an optimal policy. We can further simplify that to
 [image:]
 . The challenge here is in mixing up
 [image:]
 . While
 [image:]
 refers to short term rewards,
 [image:]
 refers to long term aggregate of rewards from state
 [image:]
 onwards.

[image:]

Figure 153: The utilities of the states in the 4 3 world, calculated with
 [image:]
 and
 [image:]
 for nonterminal states

1.31

Decisions with Multiple Agents

This section seeks to explore more on what could cause uncertainties in an agent’s decision-making. Two possible questions may suffice when considering decision making in an uncertain environment. The image below explains these two issues.

[image:]

[image:]

1.31.1

Game Theory

The questions and pictures above introduce us to the concept of Game Theory. The game theory discussed in this section is concerned with analysing games with simultaneous moves and other sources of partial observability. In game theory, we represent fully observable with
 perfect information
 , while partial or incomplete information is described as
 imperfect information
 .

1.31.2

Usage of Game Theory

	
Agent
 Design

Game theory is capable of analysing agent
 s
 ’ decision and computing the estimated utility for individual decisions with the assumption that other agents act optimally with respect to game theory. Consider the game of two—finger Morra illustrated in the flowchart shown below:

[image:]

Game theory can define the best strategy for an intelligent player and the expected return for each player.

	
Mechanism Design

This suggests that in an environment where many agents exist, rules need to be put in place to guide the actions of agent’s so that the mutual good of all agents is maximised when each agent adopts and approves the game-theoretic solution that maximises its own utility.

Example

[image:]

Mechanism design can also be used to construct intelligent
 multi-agent systems
 that solve complex problems in a distributed fashion.

1.32

Single-Move Games

In single-move games, we consider a restricted set of games where the entire composition of the players act simultaneously (not necessarily at the same time but in such a way that no player has no knowledge of other player’s decision or choices). The final result of the game solely rests on this single set (or series) of actions.

[image:]

Figure 156: Components of Single-Move Games

Important points

	
Strategy
 : Every single player in the game must accept and then execute a strategy (a strategy in game theory is equivalent to policy).

	
Pure Strategy
 : This is otherwise classified as deterministic policy and for a single-move game; a pure strategy is used to denote a single action.

	
Mixed Strategy
 : This is a set of random policies, from which an agent selects necessary actions based on defined probability distribution.

	
Strategy Profile
 : This is a process of assigning strategies to every single player in the game.

	
Solution
 : A solution
 to a game is a strategy profile in which each player adopts a rational strategy. Solutions are theoretical constructs which are used for game analysis.

	
Outcome
 : The outcome of a match is a numeric value specified for each player. Outcomes are actual results derived from playing a game.

1.32.1

Example

Two boys are staring in front of a mango tree with ripe mangoes. The community has laid down strict instruction on whoever wants to pluck mangoes, which is 2 mangoes for each person that climb a tree. However, in a situation where more than one person wants to climb the tree to pluck mangoes, and they take turns in climbing, then anyone can pluck up to 4 mangoes. The two boys, Mike and John, are deep in thought as regards what to do. If Mike climbs the tree and John do not, only Mike gets 2 mangoes. Likewise, if John climbs the tree and Mike do not, only John gets 2 mangoes. However, if neither Mike nor John climbs the tree, then they both have no mangoes. Similarly, if both Mike and John climbs the tree, they both get 2 mangoes each.

[image:]

1.32.2

Analysis of payoff Matrix for Mike

	
Assuming John and I climbs the tree, then I get 4 mangoes. This is a good option.

	
If John decides to climb the tree, but I do not, then John gets 2 mangoes while I get nothing. This is a bad decision, as I do not profit anything.

	
If I climb the tree, but John does not, it is still a good move for me as I go home with 2 mangoes.

	
Assuming also that both John and I refrain from climbing the tree, then we both get no mangoes at all. This also is a bad decision.

From Mike’s payoff analysis, Mike can deduce that whatever action John decides to execute, if he climbs the tree, then he is at no loss.

1.32.3

Mike’s Deductions

	
Mike has learnt that
 climbing
 is a
 dominant strategy
 for the game.



 We approximate that a strategy ‘
 [image:]
 ’ for a particular player ‘
 [image:]
 ’
 strongly dominates
 strategy ‘
 [image:]
 ’ (i.e. the opposite of strategy or action ‘
 [image:]
 ’) if the outcome for
 [image:]
 is better for player
 [image:]
 than the outcome for
 [image:]
 regardless of the choice of strategy by the other players.



 Strategy
 [image:]
 weakly dominates
 [image:]
 if
 [image:]
 is a better option than
 [image:]
 on at least one strategy profile and no worse on any other.



 A
 dominant strategy
 is a strategy that dominates all others.

	
Mike (is a rational person and therefore) opts for the dominant strategy which in turn yields an outcome termed
 Pareto Optimal
 .



 An outcome is
 Pareto Optimal
 if there does not exist any other outcome that all players would prefer.



 An outcome
 [image:]
 is
 Pareto dominated
 by outcome
 [image:]
 if all players would prefer outcome
 [image:]
 .

	
Mike (as a rational and bright being) will continue to reason and think that, all things being equal, John’s dominant strategy will be to
 climb
 the tree. Therefore, both of them will get a whopping total of 8 mangoes.



 When each player possesses a dominant strategy, the blend of those strategies is called a
 dominant strategy equilibrium.

[image:]

[image:]
 Checklist

The student should be able to discuss:

	
How sequential decisions problems are defined

	
The relationship between sequential decisions problems and partially observable environments.

	
How sequential decisions problems can be solved to produce optimal behaviour that balances the risks and rewards of acting in an uncertain environment

	
The design of a decision-theoretic agent in a partially observable environment

	
Decision making in a multi-agent environment

	
Introduction to the concept and main ideas of game theory

Can I Ask A Favour?

If you enjoyed this book, found it useful or otherwise then I’d really appreciate it if you'd post a short review on Amazon. I do read all the reviews individually so that I can continually write what people are wanting.

If you’d like to leave a review then please visit the link below:

http://amzn.to/2ysDoRh

Thanks for your support!

OEBPS/Image00102.jpg
Figure 121: Amap of principal states in Australia (Russell & Norwig, 2010, p. 224)

OEBPS/Image00223.jpg
Diel

OEBPS/Image00344.jpg

OEBPS/Image00101.jpg
Map Colouring
Problem

OEBPS/Image00222.jpg
Total

OEBPS/Image00343.jpg

OEBPS/Image00104.jpg
={S\ # WA, SA Z NI SA # Q SA F NSW, SA F V., WA F NLNT #
Q. Q # NSW, NSW # V}

OEBPS/Image00225.jpg

OEBPS/Image00346.jpg

OEBPS/Image00103.jpg

OEBPS/Image00224.jpg
Die2

OEBPS/Image00345.jpg
7(s)

OEBPS/Image00106.jpg
(SA, WA), SA # WAD

OEBPS/Image00227.jpg
P(Diel = 1) = 0.06
P(Diel = 2) = 011
P(Diel = 38) = 0.2
P(Diel = 4) = 0.1
P(Diel = 5) = 0.3
P(Die! 6) = 04

OEBPS/Image00105.jpg
SA F WA

OEBPS/Image00226.jpg
mm/\ (1,2,3,4,5,6)
m 2,3, 4,...,10,11, 12}

OEBPS/Image00347.jpg
" (s)

OEBPS/Image00107.jpg
{(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}

OEBPS/Image00338.jpg

OEBPS/Image00098.jpg

OEBPS/Image00219.jpg
)

OEBPS/Image00340.jpg
Actions(s)

OEBPS/Image00218.jpg
Dice sample world = {(1, 1), (1, 2), -, (6, 6)}

OEBPS/Image00339.jpg

OEBPS/Image00100.jpg
I A constraint satisfaction problem consists of three components, X, D, and C

X is a set of variables, {X;,... X.}

D is a setof domains, {D,,...,D,} one
for each variable

C is a setof constraints that specify
allowable combinations of values.

Constraint Satisfaction Problem are mathematical problems
where one must find states or objects that satisfy a number of
constraints or criteria. A constraint is a restriction of the feasible
solutions in an optimization problem.

OEBPS/Image00221.jpg
0 < P@) < tfor every @ and D, P@) = 1
o & &

OEBPS/Image00342.jpg
R(s)

OEBPS/Image00099.jpg

OEBPS/Image00220.jpg
P(e)

OEBPS/Image00341.jpg
P(s’ |s, a)

OEBPS/Image00113.jpg
WA N Q NSW Vv

Initial domains
After WA=red _Eﬂﬂm@
AfterQ=green |[® | B] © |R B|RGB| B|RG B
AfterV=blue |® | Bl @ |[R | ® [RGB

FlgureI 3: The progress of a map-colouring search with forward checking (Russell & Norwig, 2010, p. 2 238)|

OEBPS/Image00234.jpg
P(Cavity, 4)

OEBPS/Image00355.jpg

OEBPS/Image00112.jpg
NT=green
Q=blue

OEBPS/Image00233.jpg
Cavity

OEBPS/Image00354.jpg
- -
.

OEBPS/Image00115.jpg
Intraduction

Definition

Characteristics of the
Wornpus Environment

Semantic Networks
Explaining the Wumpus World

Introduction

Introduction

Logical
Equivalence

Theorem Proving

Satsfiabiity

Proposiional
Model Checkin

L C— j
mm\ e
s
Uttt
Pripeatin (o

OEBPS/Image00236.jpg
P(Diel, Cavity) = P(Diel | Cavity) P(Cavity)

OEBPS/Image00357.jpg

OEBPS/Image00114.jpg
SUMMARY

I'his chapter considers competitive environments in which the agents™ goals are in conflict, Some important

points revealed are:

o

o

Adyersarigl Scarch problems can be classitied as games, A game ¢an be defined by the initial state
(i.¢. the initial setup of the game). the legal actions that are contained in respective states. the resulting
state ol cach action taken. a terminal test (i.c. the end state of a game). and a utility function that
relates 1o the lerminal states.

perfeet infurmation |)

A Search tree describes @ tree on the full game free that is superimposed, and examines ciough nodes
to allow a player to determine what move to make

\lpha Beta se: srithm calculates t 1e optimal m as minima t atrai

Consiraint Satisfaction Problem search algorithms (ake benefit of the organization of states and use
seneral-purpose rather than problem-specific heuristics to permit (he resolution of composite

dilficulties.

The objective of Constraint Satisfaction Problem is 1o eradicae huge percentages of Lhe search space
all at once by finding variable/valuc combinations that violate the constraints.

Varictics of constraint satisfactory problem are finite, infinite, and continuous domains while we have

unary. binary. and global constraints as types of constraint

OEBPS/Image00235.jpg
PO =1
PO =2
PO =3
P =4
PO =5
P =6
P(D =
P(D = 2
P(D = 3
P(D = 4
POD = 5
P(D =

>>>>>>
a6 o6aaan

D D
aaaaaoa

= true) = P(D = 1| C = true) P(C
= true) = PO = 2| C = true) P(C
= true) = P(D = 3| C = true) P(C
= true) = P(D = 4 | C = true) P(C
= true) = P(D = 5| C = true) P(C
= true) = P(D = 6 | C = true) P(C

false) = P(D = 1| C = false) P(C
false) = P(D = 2 | C = false) P(C
false) = P(D = 3| C = false) P(C
false) = P(D = 4 | C = false) P(C
false) = P(D = 5| C = false) P(C
false) = P(D = 6 | C = false) P(C

= true)
= true)
= true)
= true)
= true)
= true)
= false)
false)
false)

false)
false)

false)

OEBPS/Image00356.jpg

OEBPS/Image00117.jpg
city_of
X
Colorado Caae
is_a ok
% part_of part_of v
U.S. State —-l UsA —-| North America -
4 = = . * J
ise connected_to
city_of
NewMexico | SantaFe South America
) A
cy._of country_of
city_of
Albaquerque Caracas —DL Venezuala

OEBPS/Image00116.jpg
B Types of knowledge

Declaratie know ledge is also Procedural knowledge is
known as factual knowledge. This regarded as a type of knowledge
type of knowledge are expressed used in realising goals.
as declaration of propositions.
Procedural knowledge is often
represented using productions,
very easy to use but difficult fo
manpulate.

Declarative knowledge is often
represented using logic. It is
flexible and it & easier to
manipulate

OEBPS/Image00237.jpg
P(Cavity, Toothache, Diel)

OEBPS/Image00228.jpg
P(Diel) = (0.06, 0.11, 0.2, 0.1, O.]

, 0.4)

OEBPS/Image00349.jpg
. s,)

OEBPS/Image00348.jpg
(a)

-|-|=|E=
4 -|=
-

R(s) <-1.6284 (s)i — 0.0850
R [+|4+|= |m
== ==
' +++[

~00221 < R(s)e 0

(b)

Ris)m 0

OEBPS/Image00109.jpg
(SA), SA # greenl

OEBPS/Image00230.jpg

OEBPS/Image00351.jpg

OEBPS/Image00108.jpg
{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = red}

OEBPS/Image00229.jpg

OEBPS/Image00350.jpg
Ullsg s e D) = vllsy s s 8D forant k> 0

OEBPS/Image00111.jpg
function BACKTRACKING-SEARCH (csp) returns a solution, or failure
return BACKTRACK ({}, esp)
function BACKTRACK (assignment, csp) returns a solution, or failure
if assignment is complete then return assigmment
var + SELECT-UNASSIGNED-VARIABLE (csp)
for each value in ORDER-DOMAIN-VALUES (var, assignment, ¢sp) do
if vaiue is consistent with assignment then
add {var = value} to assignment
inferences +— INFERENCE (csp, var, vaiue)
if inferences # failure then
add inferences to assignment
result «— BACKTRACK (assignment, csp)
if result # failure then
return result

remove {var = value} and iyferences from assignment

return failure

Flg'ure 123: A simple backtracking algorithm for constraint satisfaction problems. The algorithm is
| modelled on the recursive depth-first search (Russell & Norwig, 2010, p. 233)

OEBPS/Image00232.jpg
P(Diel, Cavity)

OEBPS/Image00353.jpg
Go UP

OEBPS/Image00110.jpg
Figure 122: A crypt arithmetic problem (Russell & Norwig, 2010, p. 227)

OEBPS/Image00231.jpg
P(cavity | —toothache /\ teen) = 0.1

OEBPS/Image00352.jpg
N

OEBPS/Image00201.jpg
S}

All professors are people

Deans are professors

All the professors view the dean as a colleague or do not know him atall
Everyone is a friend of someone

People only criticize people that are not their friends

General
Knowledge

Lucy is a professor
John is a dean
Lucy criticized John

Is John a friend of Lucy?

Specific
Problem

OEBPS/Image00322.jpg

OEBPS/Image00200.jpg
‘ Decide on a vocabulary of predicates, functions, and constants

@

Pose queries to the inference procedure and get answers
Debug the wledge Base

OEBPS/Image00321.jpg
R (s, a)

OEBPS/Image00203.jpg
Sample Space.

| Probability
__ Model

\ Possible World

Acting under
Uncertainty

Marginal
Probabi

Rules

Deductions

OEBPS/Image00324.jpg

OEBPS/Image00202.jpg
SUMMARY

In this chapter, we study First Order Logic, a representation langnage that is significantly

powerful than propositional logic and which is indeed sulficiently expressive for

representing the human common sense knowledge. The important points are expressed

below:

Knowledge representation languages ought to be declarative. expressive.

compositional, context independent, and unambiguous.

The syntax of first-order logic constructs on that of propositional logic. It adds terms
to represent objects, and has universal and existential quantifiers to construct

assertions about all or somc of the possible values of the quantificd variables,

moeng obje ons ¢
An atomic sentence is true just when the relation named by the predicate holds
between the objeets named by the terms. Bxtended interpretations, which map
quantifier variables to objects in the model, define the truth of quantified sentences.

OEBPS/Image00323.jpg

OEBPS/Image00205.jpg
Toothache [Cavity

OEBPS/Image00326.jpg

OEBPS/Image00204.jpg
B Major drawbacks of problem-solving and logical agents approach

When interpreting partial sensor information, a
logical agent must consider every logically

possible explanation for the observations, no
matter how unlikely. This leads to impossible large
and complex belief-state representations

A correct contingent plan that handles every
eventuality can grow arbitrarily large and must
consider arbitrarily unlikely contingencies.

Sometimes there is no plan that is guaranteed to
achieve the goal—yet the agent must act. It must
have some way to compare the merits of plans
that are not guaranteed.

OEBPS/Image00325.jpg
I: S * A — Prob(s)
P(s'|s a)

OEBPS/Image00207.jpg
Cavity

OEBPS/Image00206.jpg
Toothache

OEBPS/Image00327.jpg
{Move UP, Move DOWN, Go RIGHT, Go LEFT}

OEBPS/Image00318.jpg

OEBPS/Image00199.jpg
Stench, Breeze

OEBPS/Image00320.jpg

OEBPS/Image00198.jpg
IG1, St, Br, Bu, Sc Percept([G1, Stench, Breeze, Bu, Scl, t)
0 [Stench, Breezel(t)

OEBPS/Image00319.jpg

OEBPS/Image00212.jpg

OEBPS/Image00333.jpg
01" * 0.8 = 0.00008

OEBPS/Image00211.jpg
The patient is
. likely to have a
‘ Statistical data

‘ There are
several

A patient indistinguishable
complains of causes
toothache

patients have
had cavities

OEBPS/Image00332.jpg
0.8

OEBPS/Image00214.jpg
Decision theory = probability theory + utility theory

OEBPS/Image00335.jpg
32768 + 0.00008

OEBPS/Image00213.jpg

OEBPS/Image00334.jpg
[Move UP, Move UP, Go RIGHT, Go RIGHT, Go RIGHT]

OEBPS/Image00216.jpg
probabilistic assertions talk about how probable the

various worlds are

OEBPS/Image00337.jpg

OEBPS/Image00215.jpg
Function DT-AGENT (percept) returns an action
Persistent: belief_state, probabilistic beliefs about the current state of the world

action, the agent’s action

Update belief_state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief_state
select action with highest expected utility

given probabilities of outcomes and utility information

return action

OEBPS/Image00336.jpg

OEBPS/Image00217.jpg

OEBPS/Image00208.jpg
Toothache (Cavity V Boil V' GumProblem

OEBPS/Image00329.jpg
[Move UP, Move UP,

OEBPS/Image00328.jpg
[Move UP, Move DOWN, Move UP, Go RIGHT]

OEBPS/Image00210.jpg
Theoretical

Ignorance

Practical Ignorance

Laziness

Medical science
has no complete
theory for the
domain

Even if we know all
the rules, we might
be uncertain about
a particular patient
because not all the

necessary tests
have been or can
be run

It is too much
work to list the
complete set of
antecedents or
consequents
needed to ensure
an exceptionless
rule and too hard
to use such rules

OEBPS/Image00331.jpg

OEBPS/Image00209.jpg
Cavity DToothache

OEBPS/Image00330.jpg
Go RIGHT, Go RIGHT, Go RIGHT]

OEBPS/Image00307.jpg
Information
about agent's
current state

Agent's
possible
actions

»

The state that
will result
from the

agent's action

The utility of
the agent's
new state

OEBPS/Image00300.jpg

OEBPS/Image00299.jpg
l¢

Figure 146: A cycle of exchanges showing that the nontransitive
preferences A > B > C result in irrational behaviour

OEBPS/Image00302.jpg
U(A) = U(B)

OEBPS/Image00301.jpg
U(A) > U(B)

OEBPS/Image00304.jpg
ulp, spip,s) = > P, U(s)

OEBPS/Image00303.jpg
A > uB0 A 0 B
UA) = UB)D A ¢ B

OEBPS/Image00306.jpg
Normative Theory Decsriptive Theory

This describes how a This describes how actual
rational agent should act agents really acts

OEBPS/Image00305.jpg
(1-p)

(1-9)
is equivalent to
P

-2 p

(I-p)l—q) ~C

OEBPS/Image00298.jpg
Sony phone [Windows phone [Samsung phone [Sony phone

OEBPS/Image00311.jpg
SUMMARY

This chapler brings Logether as a whole whal we have discussed so far in some preceding
chapters. 1n this chapter, we see how utility theory combines with probability theory to vield
a decision-theoretic agent. A decision theoretic agent is an agent that can make rational

decisions based on what it believes and what it wants. Some important points are

Probability theory delines whal an agent ought to believe on the grounds of evidence,
utility theory relers to what an agent desires, and decision theory combines the two
concepts together to describe what an agent should do.

Utility theory indicates that an agent whose prelerences or inclinations between
lotteries are steady and reliable with a set or series of simple axioms can be labelled
as having a utility function

tilitics t T

Decision networks offers a simple and basic lormalism for stating and cracking

decision problems

Expert systems that integrate utility information have supplementary capabilities
associated with pure inference systems. Other than making decisions, expert systems

make use of the value of information to sclect which questions to ask, if there is any;

they can suggest contingency plans; and they can compute the thoughtfulness of their

decisions to little variations in probability and utility cvaluations

OEBPS/Image00310.jpg
Il Solution Flowchart

Create a causal model

Determine the possible
symptoms, disorders,
treatments, and outcomes

implify to a qualitative
decision model

simplification can be done

by removing variables that

are notinvolved in
treatment decisions.

Probabilities can come
from patient databases,
literature studies, or the
expert’s subjective
assessments

02

05

Create a scale from best to worst
outcome and give each a numeric
value. Place the other outcomes
on this scale.

Verify and refine the
model
To certify the efficiency of the system,
gather medical experts, present them
with a couple of cases, and ask them for
their diagnosis and recommended
treatment plan

“This important step checks whether the
best decision is sensitive to small changes
in the assigned probabilities and utilties by
systematically varying those parameters
and running the evaluation again

OEBPS/Image00313.jpg
Figure 150: A Simple 4 * 3 environment presenting an agent with a
sequential decision problem.

OEBPS/Image00312.jpg
Complex
Decisions

Introduction

Optimal Policies
and the
Utilities of States,

" Infinite
_Horizon

OEBPS/Image00315.jpg
[Move UP, Move UP, Go RIGHT, Go RIGHT, Go RIGHT]

OEBPS/Image00314.jpg
03

01 0.1

T

Figure 151: Illustration of the transition
model of the environment.

OEBPS/Image00317.jpg

OEBPS/Image00316.jpg
Move UP

OEBPS/Image00309.jpg
Set the evidence variables for the current state.

Set the decision node to that value.

Calculate the posterior probabilities for the parent nodes of the
utility node, using a standard probabilistic inference algorithm.

Calculate the resulting utility for the action.

Return the action with the highest utility.

OEBPS/Image00308.jpg
Figure 148: A simple decision network for the airport-sitting problem

OEBPS/Image00182.jpg
A Typical Wumpus World

OEBPS/Image00181.jpg
Ip, ¢ Parent(p, ¢) OChild(c, p)

OEBPS/Image00184.jpg
Pit

OEBPS/Image00183.jpg
0%, ¥, @ b

Adjacent([x, v]. [a, b]) 0
ANlkx=a-1 Vx

1

a Aly=b-1
a+1)

Vy=b+D) Vi

OEBPS/Image00186.jpg
At (Agent, s, t)

OEBPS/Image00185.jpg
Wumpus

OEBPS/Image00187.jpg

OEBPS/Image00178.jpg
Jg, ¢ Grandparent(g, c)lp Parent(g, p) /\ Parent(p, c)

OEBPS/Image00180.jpg
Ix Male(x) (~Female(x)

OEBPS/Image00179.jpg
Ix, y Sibling(x, yIx # y /A [Op Parent(p, x) /A Parent(p, y)

OEBPS/Image00193.jpg
Turn(Right), Turn(Left), Move(Forward), Shoot, Grab, Climb

OEBPS/Image00192.jpg
Percept ([Glitter, Stench, Breeze, None, None |, 5)

OEBPS/Image00097.jpg

OEBPS/Image00195.jpg
{a / Turn(Left)}

OEBPS/Image00194.jpg
. ASK VARS (3a BestAction(a, 5))

-
/\

OEBPS/Image00095.jpg

OEBPS/Image00197.jpg
Stench

OEBPS/Image00096.jpg
(a) White to move (b) White to move

Figure 120: Two chess positions that differ only in the position of the rook at lower right
(Russell & Norwig, 2010, p. 193)

OEBPS/Image00196.jpg
Turn(Left)

OEBPS/Image00093.jpg
Bralls) = wEs + wihs+ b wEs = Dwfs

OEBPS/Image00094.jpg

OEBPS/Image00189.jpg
I, s, syt At s, t) A Al s, 90 s,

OEBPS/Image00188.jpg

OEBPS/Image00191.jpg
Js, t At(Agent, s, t) /\ Breeze(t) [Breezy(s)

OEBPS/Image00190.jpg
Breeze

OEBPS/Image00091.jpg
h complete algorithn (Russell & Norwig, 2010,
b 190)

Figure he alpha—beta s

OEBPS/Image00092.jpg

OEBPS/Image00167.jpg
— S ___|

e TELL (KB, Person (Richard))

All kings

are persons ||

OEBPS/Image00089.jpg

OEBPS/Image00090.jpg
function ALPHA-BETA-SEARCH(state) returns an action
v+~ MAX-VALUE(state, — o0, +00)
return the action in ACTIONS(state) with value v

function MAX-VALUE(state, a, 7) returns a utility valuc
If TERMINAL-TEST(state) then return UTILITY(state)
v &= =00
for each a in ACTIONS(state) do
v — MAX(v, MIN-VALUE(RESULT(s,a), a, 3))
if v > Jthen return v
a+— Max(a, v)
return v

function MIN-VALUE(state, o, 3) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v & +00
for each a in ACTIONS(state) do
v« MIN(v, MAX-VALUE(RESULT(s,a) , a0, 7))
if v < o then return v
F—MIN(3, v)
return v

OEBPS/Image00088.jpg

OEBPS/Image00160.jpg
Sentence 'viii® Oy 0Ox Loves (x, y)

OEBPS/Image00281.jpg
PResult (a) = s | a, e)

OEBPS/Image00159.jpg
Sentence 'vii: 0Ox [0y Loves (x, y)

OEBPS/Image00280.jpg

OEBPS/Image00086.jpg

OEBPS/Image00162.jpg
Jy Loves(x, y)

OEBPS/Image00283.jpg
EL(ale)

OEBPS/Image00087.jpg

OEBPS/Image00161.jpg
Ix (Oy Loves(x, y))

OEBPS/Image00282.jpg
U(s)

OEBPS/Image00084.jpg

OEBPS/Image00164.jpg
Ix Loves(x, y)

OEBPS/Image00285.jpg
argmax (ale)

action
a

OEBPS/Image00085.jpg

OEBPS/Image00163.jpg
Iy (Ox Loves(x, y))

OEBPS/Image00284.jpg
f0al = 2 plResutt@) = s la o U6

OEBPS/Image00082.jpg
Components of Game Playing

The evaluation function should order the terminal states in the
same way as the true utility function: states that are wins must
evaluate better than draws, which in turn must be better than
losses. Otherwise, an agent using the evaluation function might err
even if it can see ahead all the way to the end of the game.

The computation must not take too long. The goal is to make the
search process faster.

For nonterminal states, the evaluation function should be
strongly correlated with the actual chances of winning.

OEBPS/Image00166.jpg
¥x -P = -=x P —=(PVQ)=-P A-Q

—-¥x P = =x —P -PAQ)=-PV-Q
Vx P = -=x -P PAQ =—(-PV-Q)
=x P = —-v¥x —P PVQ =-(-PA-Q)

OEBPS/Image00287.jpg
U(s)

OEBPS/Image00083.jpg

OEBPS/Image00165.jpg
Vx —Likes (x, Parsnips) is equivalent to -3x Likes (x,Parsnips)

OEBPS/Image00286.jpg
Knowledge
Representation

OEBPS/Image00158.jpg
Sentence vi: 0 x D0y Brother (x, y) OSibling (x, y)

OEBPS/Image00279.jpg
Result (a)

OEBPS/Image00278.jpg
Desirability of immediate

outcomes

Decision

OEBPS/Image00080.jpg
function MINIMAX-DECISION(state) returns an action
return argmax, . Acrions(.) MIN-VALUE(RESULT(state, a))

function MAX-VALUE(state) returns a utility value
If TERMINAL-TEST(state) then return UTILITY(state)
v & —-00
for each « In ACTIONS(state) do
v+ MAaX(v, MIN-VALUE(RESULT(s, a)))
return v

function MIN-VALUE(state) returns a utility value
If TERMINAL-TEST(state) then return UTILITY(state)
ve=00
for each a In ACTIONS(state) do
v« MIN(v, MAX-VALUE(RESULT(s, a)))
return v

OEBPS/Image00081.jpg
to move

(L2.6) @“4.2.3) 612 (T4H GL) (L5 1) (549

OEBPS/Image00078.jpg
UTILITY () if TERMINAL-TEST(s)
Max cé actions(9 MINIMAXRESULT(s. a)) if PLAYER(s) = MAX

Min e¢acionsty MINIMAXRESULT(s, 2)) if PLAYER(s) = MIN

OEBPS/Image00079.jpg
Z Z
=

OEBPS/Image00077.jpg
MAX (x)

MIN (o)

MAX (x)

MIN (0)

OEBPS/Image00171.jpg
{x/ John}

OEBPS/Image00292.jpg

OEBPS/Image00170.jpg
. ASK VARS (KB, Person (x))

L
/\

OEBPS/Image00291.jpg

OEBPS/Image00075.jpg

OEBPS/Image00173.jpg
King(John) V King(Richard)

OEBPS/Image00294.jpg

OEBPS/Image00076.jpg

OEBPS/Image00172.jpg
{x/ Richard}

OEBPS/Image00293.jpg

OEBPS/Image00073.jpg

OEBPS/Image00175.jpg
Male and Female

Parent, Husband, Wife, Brother,
Sister, Son, Daughter, Spouse,
Cousin, Sibling, Aunt, Uncle etc.

Father and Mother

OEBPS/Image00296.jpg
A B c
Sony Phone Windows Phone Samsung Phone

OEBPS/Image00074.jpg

OEBPS/Image00174.jpg
] x King(x)

OEBPS/Image00295.jpg
B Constraints required for any reasonable relation to obey

Continuity

vity

Given any three lotteries, if an
agent prefers A to B and prefers B
to C, then the agent must prefer
At C.(A>BIA(B>C)=(A>C)

Given any two lotteries, a rational agent must

either prefer one to the other or else rate the two

as equally preferable. That is, the agent cannot
avoid deciding. As we said on page 490, refusing
to bet is like refusing to allow time to pass
Exactly one of (A > B), (8> A), or (A~ B) holds

Compound lotteries can be reduced to simpler
ones using the laws of probability. This has.
been called the "no fun in gambling” rule
because It says that two consecutive botterles
can be compressed into a single equivaknt
lottery [p, A:1-p, [q.B,1-p, Cl)~ [p. A: (1
- P B:(1-p)1-9).C]

Monotonicity

Suppose two lotteries have the same
two possible outcomes, A and B. If an
agent prefers A to B, then the agent
must prefer the lottery that has a

higher probability for A (and vice
versa). A>B=>(p>q<>[p,Ail-p,
B]>[g,A: 1-q,B])

Substitutability

If an agent s indifferent between two lotteries
Aand B, then the agent is indifferent between
two more complex lotteries that are the same
‘except that B is substituted for A in one of
them. This holds regardiess of the probabilities
and the other outcome(s) in the lotteries, A - B

= A1-pCl-[p,B;1-p,C]

Figure 144: Constraints required for any reasonable relation to obey

OEBPS/Image00071.jpg
Optimal
Decisions in
Mulfiplayer
Games

Optimal
Strategies

can_be_solved using i, o cqarch rechniaue

Optimal

Decisions

Adversarial Search
and
Constraint Satisfactory
Problem

General
Principles

an_example_of

Pruning
Techniques,

OEBPS/Image00177.jpg
w, h Husband(h, w) OMale(h) /\ Spouse(h, w)

OEBPS/Image00072.jpg
—0’ Components of game playing H

Initial State

This specifies how the game is setup at the start and also identifies which
player is to move

Successor Function

This is @ functon that returrs o st (move, state) represerting @ legel move and the
resulting state. It is lso known os Transitional Model, which defines the result of o
legal move.

Terminal States

This determines the end state of a game. It returns 'true’ when the game is over
and 'false’ othenwise. States where the game has ended are called terminal states

Utility Function

A utility function (zlso clled an objective function or payoff function), defines
the final numeric value for 3 game that ends in terminal state s’ for a player p.

Lo g o

OEBPS/Image00176.jpg
Im, ¢ Mother(c) OFemale(m) /\ Parent(m, c)

OEBPS/Image00297.jpg

OEBPS/Image00288.jpg
N\

\ |
What's wrong with an agent that maximizes weighted sum of
possible utilities? |

\

|
What'’s wrong with an agent that tries to minimize the worst
possible loss?
]

\
Could an agent act rationally just by expressing preferences

between states, without giving them numeric values?

/

=
‘ Why should a utility function with the required properties exist
atall?

/

OEBPS/Image00169.jpg
ASK (KB, 3x Person (x))

i.e. Does there exist
some/a/an ‘X’ thatisa

person?

OEBPS/Image00290.jpg
A OB e the agent prefers A over B

A 0B ie the agent is indifferent between A and B

0B ie the agent prefers A over B or the agent is indifferent between them

OEBPS/Image00168.jpg
ASK (KB, King (John))
i.e.Is John aKing?

-
/ o\

OEBPS/Image00289.jpg
“Should a rational agent have any constraints on preferences?

OEBPS/Image00069.jpg
SUMMARY

n this chapler, we lry (o examine and study search algorithms for problems that are beyond just finding

the shottest path to a goal in an environment that is observable, deterministic. andior discrete. Major

points reviewed in this chapter is shown below

Hill climbing operates on a complete-state formulation, and koeps only a minute mumber of nodes

in memory

Simulated annealing, a of stochastic algorithms. which ns best solutions when given a

Local search algorithms also apply to problems in continuous spaces.

climbing search that maintains a vast population

Agents in non-deterministic cnvironments ean apply AND OR scarch to produce dependent plans
that gets to the goal notwithstanding which results oceur in the course of exceution

sorithm can he d to solve common partia

Sensor less problems can be approached by applying typical search algorithms directly to belief:
state space. ncremental algorithms that build solutions step-by-stcp within a belicf state are most

times more efficient

OEBPS/Image00146.jpg
] x Kings (x) DPerson (x) —*sentence 'i'

OEBPS/Image00267.jpg

OEBPS/Image00070.jpg

OEBPS/Image00145.jpg

OEBPS/Image00266.jpg

OEBPS/Image00387.jpg

OEBPS/Image00068.jpg
fanction LRTA*-AGENT (s") returns an action

imputs: 5, a percept that identifies the current state

persistent: result, a table, indexed by state and action, initially empty
'H, a table of cost estimates indexed by state, initially empty
5,3, the previous state and action, initially null

if GOAL-TEST (s') then return stop

if 5" is 2 new state (notin H) then H [s'] « h(s")

if sis not n\l]]_

result[s,a] s’

H[s] « min LRTA*-COST (s, b, result[s, b], H)
b € ACTIONS(s)
3 +—an action b in ACTIONS (") that minimizes LRTA*-COST (s', b, result[s’, b], H)

‘returm a

function LRTA*-COST (s, 3, 5", H) returns a cost estimate

if 5" is undefined then return h(s)

else return c(s,2,s)+H[s]
RTA*-AGENT (Russell & Norwig, 201

OEBPS/Image00147.jpg

OEBPS/Image00066.jpg
Figure 109: An online search agent that uses depth-(l'st exploration (Russell &

Norwig, 2010, p. 150)

OEBPS/Image00138.jpg
SUMMARY

This chapter introduces knowledge representation and knowledge-based agents. The chapler

explains the semantics, [rames, and rules ol operation of knowledge-b

ed agents and the

logic with which they reason. ‘I'he main points arc given below:

Intelligent agents need knowledge about the world in order 1o reach good decisions.
Kn i eI 1 & the fi yf sentenees Know ledpe

cpresentation languag I Know ledge ha

A knowledge-based agent is composed of a knowledge basc and an inference
mechanism, 1t operates by storing sentences about the world in its knowledge base.
using the interence mechanism to infer new sentences, and using these sentences to

decide what action to take.

A representation language is defined by ifs syntax, which specifies the structure

W sentenee nd its semantics, which defines the truth of each sentence in each

possible world or niodel
The relationship of entailment between sentenees is erucial to our understanding of
reasoning. A sentence o entails another sentence B ifB is true in all worlds where o is

true, Bquivalent definitions include the validity of the sentence u = [and the

unsatisfiability of the sentence a A—f.

Tnfere he process of deriving new senlences from vld ones. Sound

Propos

logical connectives, It can handlc propositions that arc known truc, known fals

completely unknown.

Inference rules are paticms of sound inference that can be used to find proofs. The
resolution rule yields & complete inference algorithm for knowledge bases that are
expressed in conjunctive normal form. Forward chaining and backward chaining arc

very natural reasoning algorithims for knowledge bascs in [om form.

OEBPS/Image00259.jpg
P(toothache, catch, cavity, cloudy = P(cloudy | toothache, catch, cavity)
P(toothache, catch, cavity)

OEBPS/Image00380.jpg
B Components of Single-Move Games

Players or agents are saddles with the task of
making decisions. In singgle-move games, we have
n-players where n > 2. Players names in singgle-
move games are capitalised e.g. Mike, John

This summarizes the set of actions that an
agent can choose from. Actions in singgle-
move games are denoted with lowercase
letters e.g. up, down

Payoff function gives individual players utility for each
combination of actions by all the players. Payoff
function for single-move games can be represented
using a matrix otherwise known as strategic or normal

form,

OEBPS/Image00067.jpg

OEBPS/Image00258.jpg
P(catch, toothache, cavity)

OEBPS/Image00379.jpg
Desugn

based on anm

glm incentive for
high throughput

from

Router

OEBPS/Image00064.jpg
o

OEBPS/Image00140.jpg
Father of, best friend, second half of,
one more than, beginning of

Functions Functions

OEBPS/Image00261.jpg
P(toothache, catch, cavity, cloudy) = P(cloudy) P(toothache, catch, cavity)

OEBPS/Image00382.jpg

OEBPS/Image00065.jpg
function ONLINE-DFS-AGENT (s') returns anaction
inputs: s', a percept that identifies the curent state
persistent: result, a table indexed by state and action, initially empty
untried, a table that bists, foreach state, the actionsnot yet tried
unbacktracked. a table that lists, for each state, the backtracks not yet tried
s, a, the previous state and action, initially null
if Goal TEST (') then return stop
ifs' is a new state (not in untried) then untriedls’] «+— ACTIONS(s")
if s is notnull then
result [s, 2]« s’
add s to the front of unbacktracked [s]
if untried [s] is empty then
if unbacktracked [s]is empty then return stop

else a — anactionb such that result [s', b] = POP (unbacktracked[s'])

else a «POP (untried [s)

ses'

return a

OEBPS/Image00139.jpg
Using First
Order Logic

/
6

oy

Inlerprelaklon
Symbols

OEBPS/Image00260.jpg
P(Cloudy | toothache, catch, cavity) = P(cloudy)

OEBPS/Image00381.jpg
Mike is denoted with 'M;

John is denoted with 'J";

OEBPS/Image00062.jpg
Figure 107:

111 possible states in a vacuum world|

OEBPS/Image00142.jpg
Figure 137: A model containing five objects, two binary relations, three unary relations (indicated
by labels on the objects), and one unary function, lefi-leg (Russell & Norwig, 2010, p. 291)

OEBPS/Image00263.jpg
P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity) P(Weather)

OEBPS/Image00384.jpg

OEBPS/Image00063.jpg
P
= | §

Suck

'] 4

LoopP GOAL

i
=

LOOP

OEBPS/Image00141.jpg

OEBPS/Image00262.jpg
P(Toothache, catch, Cavity, Weather

OEBPS/Image00383.jpg

OEBPS/Image00060.jpg
Figure 106: Gonotic Algorithm

OEBPS/Image00144.jpg

OEBPS/Image00265.jpg
01 Independence assertions can dramatically reduce the amount
of information necessary to specify the full joint distribution.

03 Independence assertions can help in reducing the size of the domain
representation and the complexity of the inference problem.

05 \ Independence assertions are usually based on \\)
/,/ knowledge of the domain. /4

OEBPS/Image00386.jpg

OEBPS/Image00061.jpg

OEBPS/Image00143.jpg
Sentence — AtomicSentence | ComplexSentence
AtomicSentence — Predicate | Predicate(Term,...) | Term = Term
ComplexSentence — (Sentence) | [Sentence |
| - Sentence
| Sentence A Sentence
| Sentence V Sentence
| Sentence = Sentence
| Sentence ¢ Sentence
| Quantifier Variable,... Sentence

Function(Term,...)
Constant
Variable

V|3
A| Xy | John | ---

alz|s| -
True | False | After | Loves | Raining | ---
Mother | LeftLeg | ---

OPERATOR PRECEDENCE : -, =, A, V.=, &

OEBPS/Image00264.jpg
Pla|b) = Pla) or P(b|a) or Pla A b)= Pla) P(b)

OEBPS/Image00385.jpg
SUMMARY

Ultimately, in this chapter, we studied the methods available for deciding what actions ©
perform now by an agent while forecasting that another of such decision will be made m
future. The main points are mentioned below:

o

A transition model stating the probabilistic outcomes of actions and a reward function
specifying the reward in each state illustrates sequential decision problems that arises
in uncertain environments, otherwise knownas Markov decision processes, or MDPs.
The utility of the state sequence is the ageregate of the entire rewards over the

sequence, perhaps discounted over time. The solution ofa Markov decision processes

15 2 policy that connects a decision with every single state that the agent might get to.
An optimal policy take full advantage of the utility of the state sequences chanced
upon when it is implemented.

The utility of a state is the projected utility of the state sequences stumbled upon whan
an optimal policy is executed, which starts at that particular state

Partially observable Markov decision processes are more difficult to answer than are
ordinary Markov decision processes. They can be solved by converting it into a
Markov decision processes in the continuous space of belief states.
Optimal behaviour in partially observable Markov decision processes

information assembly to reduce uncertainty and consequently make better decisions

and choices in the future

A decision-theoretic agent can be built or constructed for partially observable Markov
decision processes environments. The agent uses a dynamic decision network to
characterise the transition and sensor models, to bringup-to-date its belief state, and
to proffer possible action sequences.

Game theory refers to rational behaviour foragents in circumstances in which several

agents interact at the same time

OEBPS/Image00378.jpg
Flowchart of two-finger Morra Game

Game Begins

Mike John

displays displays

. |

2 fingers 1 finger

OEBPS/Image00058.jpg
24748552 | 24 31% 3275“11 32748552 327481b2
32752411 [23 29% 247548552 24752411 24752411
24415124 2 2% ~[32752411 32752124 3gb2124
32543213 11 % ~| 24415124 244154811 244154109
(@ (b) © @ (e)
Initial Population Fitness Function Selection Crossover Mutation

OEBPS/Image00157.jpg
Richard the Lionheart is a Crown A Richard the Lionheart is on John's head
King John is a Crown A King John is on John's head
Richard's left leg is a Crown A Richard's left leg is on John's head

John's left leg is a Crown A John's left leg is on John's head

The crown is a Crown A The crown is on John's head

OEBPS/Image00059.jpg
function GENETIC-ALGORITHM (population, FITNESS-FN) returns an individual

inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of anindividual
repeat
‘new_population < emptyset

fori=1 to SIZE(population)do

v «<RANDOM-SELECTION (population FITNESS-FN)
child <~ REPRODUCE (x, y)
if (smallrandom probability) then child «<-MUTATE (child }
add child to new_population
population < new_population
until some individualis fit enoush.orenough time haselapsed

return the best individualin population, according to FITNESS-FN

fanction REPRODUCE (x, y) returns an individual
inputs:x, y, parent individuals
1+ LENGTH (x); ¢ + random number from J ton
return APPEND (SUBSTRING (x,1, ¢), SUBSTRING (y, c +1, n))

OEBPS/Image00156.jpg
Sentence 'v: [x Crown(x) /\ OnHead (x, John)

OEBPS/Image00277.jpg
&H | Introduction to the
basic principles of
decision theory

> Behaviour of rational
agents as it relates to the
Nature of utility

maximisation of utility
I i function
function as it

impacts individual
quantities such as
money &

—
—_ - =7
— .. o Decision
oo Network
Of =
Handling of utility 3
function that depends Introduction to the

on several quantities concept and

implementation of
Decision Making Systems

OEBPS/Image00055.jpg
iyl
1[5

OEBPS/Image00149.jpg
] x P —>sentence 'ii'

OEBPS/Image00270.jpg
P

OEBPS/Image00056.jpg

OEBPS/Image00148.jpg

OEBPS/Image00269.jpg

OEBPS/Image00390.jpg

OEBPS/Image00053.jpg
24 =(24+23+20+11)=31%
23 = (24 +23 + 20 + 11) = 29%
20 = (24 + 23 + 20 + 11) = 26%
1= (24 + 23 + 20 + 11) = 14%

OEBPS/Image00151.jpg
iv.

Xx — Richard the Lionheart
x — King John

X — Richard's left leg

x — John's left leg

x — The crown

OEBPS/Image00272.jpg
WP, | Kknown, b) = a = PP, unknown, known, b)

—

OEBPS/Image00054.jpg
4

5

4

3

Initial population

24 3%

29%

26%
1 14
Fitness

function

OEBPS/Image00150.jpg
1 x P

OEBPS/Image00271.jpg

OEBPS/Image00393.jpg
ARTIFICIAL
INTELLIGENCE

OEBPS/Image00051.jpg
2 4 7 4 8 5 5 2 = 24748552

OEBPS/Image00153.jpg
King (x)IPerson (x)

OEBPS/Image00274.jpg

OEBPS/Image00052.jpg
BOHa00008
alzfrs|z]a]a]t

OEBPS/Image00152.jpg
] x King (x) OPerson (x) —*sentence 'iii'

OEBPS/Image00273.jpg
B
OK

OK| oK

2 "%

02x02=004

02x08=0.16

(@)

3

x02=0.106

B B8
OK OK
L8 Al g
OK OK| oK
02x02 02x08=016

Figure 142: Consistent models for the frontier variables P, , and P, ; (Russel, 2011, p. 502)

OEBPS/Image00049.jpg

OEBPS/Image00155.jpg

OEBPS/Image00276.jpg
SUMMARY

In this chapter. we discussed how an agent could overcome uncertainty with certain degrees
of belief. We also proposed probability theory as an apposite base for uncertain reasoning
and introduced its use. Some important points within the chapter is given below:

Uncertainty rises for two reasons; laziness and ignorance. This is inevitable in
complex, nondeterministic environments, or partially abseryable environments

Decision theory puts together the agent’s desires and beliefs, defining the finest action
as the one. which maximises anticipated or estimated utility
Elementary probability men! ! t tional prob
babilities over simple and compc oposi
The axioms of probability coerce the likely tasks of probabilities to propositions, An
nt that interrupts or violates the axioms must act irrationally in some situations.
int probabi L i explains (he probability or likelihoo: secl

Absolute (or total) independence between divisions of random variables permits the

tull joint distribution to be grouped into smaller or little joint distributions,

significantly reducing its complexity

An agent in the Wumpus world can caleulate probabililies or chances [or unobserved
lacets of the world, thus improving on ils decisions or choices as a purcly logical

agent.

OEBPS/Image00050.jpg

OEBPS/Image00154.jpg
Richard the Lionheart is a King = Richard the Lionheart

OEBPS/Image00275.jpg

OEBPS/Image00057.jpg

OEBPS/Image00268.jpg

OEBPS/Image00389.jpg

OEBPS/Image00388.jpg

OEBPS/Image00124.jpg
A Knowledge
Based agent

must be able to

Abilities of a Knowledge
Based agent

OEBPS/Image00245.jpg
=06

OEBPS/Image00366.jpg

OEBPS/Image00048.jpg
Figure 101 Simulated Annealing algorithm (Russell & Norwig, 2010, p. 126)

OEBPS/Image00123.jpg
(Declarative
\\ Knowledge)

e e Ve

When an agent is deigned with an
empty - "Tabularasa " knowledge
base.The agent drsigner can TELL

sentences one by one until the

agent knows how to operate in its
environment.

Procedural

Knowledge

'The procedural approach
encodes desired behaviors

directly as program code.

OEBPS/Image00244.jpg
P(Cavity /\ Toothache)

P(Cavity | Toothache) =
. P(Toothache)

0108 + 0,012

0108 + 0.016 + 0.012 + 0.064

OEBPS/Image00365.jpg
/y) -1

OEBPS/Image00126.jpg
Observable?

Episodic?

Task
environment

Single agent?

OEBPS/Image00247.jpg
0016 + 0.064

0.064 + 0.016 + 0012 + 0108

OEBPS/Image00125.jpg
A Typical Wumpus World

OEBPS/Image00246.jpg
P(-Cavity /\ Toothache)

P(~Cavity | Toothache) =
P(Toothache)

OEBPS/Image00367.jpg
10

OEBPS/Image00127.jpg
Characteristics of Wumpus world

Single-agent? - Yes

Q Discrete? - Yes

OEBPS/Image00044.jpg
Figure 99: State space showing the problem with hill climbing, T

TR S

OEBPS/Image00358.jpg

OEBPS/Image00045.jpg
function HILL-CLIMBING (problem) returns a state thatisa local maximum
cusrent «<MAKE-NODE (problem INITIAL-STATE)
loopdo
neighbour « a highest-valued successor of current

if neighbour. VALUE = cusrent VALUE then return current STATE

current «— neighbour

OEBPS/Image00042.jpg
Simlutated
Annealing

OEBPS/Image00118.jpg

OEBPS/Image00239.jpg
(Cavity V —Cavity V = Toothache V ~Toothache V ~ Catch V ~Catch)
0108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 + 0144 + 0.576 = 1

OEBPS/Image00360.jpg

OEBPS/Image00043.jpg
objective function

global maximum

local maximum

—

“flat” local maximum

=

state space

OEBPS/Image00238.jpg
_v toothache ‘ toothache
I I T I

o | om | on | om | om |
oy | o o | om

Figure 140: A full joint distribution for the Toothache, Cavity, and Catch world (Russel, 2011, p.
492)

OEBPS/Image00359.jpg
=D

OEBPS/Image00040.jpg
Beyond Classical Search \,jE:

Problem
Solving

Discuss

Genetic Algorithm

) IETETETER Local Beam Search

—0

simulated Annealing

HIll Climbing
The erratic
Searching with vacuum workd
non-deterministic actions AND - OR
Search tree

Discuss offline search.
Online search problems
Online search agents

Online local search

OEBPS/Image00120.jpg
Define what

follows from

the facts in
the KB

Inference Engine

Knowledge-based Agent

OEBPS/Image00241.jpg
V)= D RY,)
Sk 2

OEBPS/Image00362.jpg
)= r(s) + R(s) + R(s,) + -

OEBPS/Image00041.jpg
Integrated
Circuit Design

Job Shop
Scheduling

OEBPS/Image00119.jpg

OEBPS/Image00240.jpg
P(Cavity) = 0108 + 0.012 + 0.072 + 0.008 = 0.2

OEBPS/Image00361.jpg
] and [s'.

OEBPS/Image00038.jpg

OEBPS/Image00122.jpg
fanction KB-AGENT (percept) returns an action
perzistent: KB, a knowledge base
t, a counter, mitially 0, ndicating time
TELL (KB, MAKE-PERCEPT-SENTENCE (percept, t))
action « ASK (KB, MAKE-ACTION-QUERY (1))
TELL (KB, MAKE-ACTION-SENTENCE (action, t))

te—t+1

return action

OEBPS/Image00243.jpg
PY) = LAY 1) P

OEBPS/Image00364.jpg

OEBPS/Image00039.jpg
R(s) =

OEBPS/Image00121.jpg
The AGENT
program tells the
knowledge base
what action was
' Ask the knawlgdge S
— base what actions e

it should perform :
knowledge base the action

what it perceives

OEBPS/Image00242.jpg
“

OEBPS/Image00363.jpg
U(sp s 55) = R(s) + 7R(s) + #R(s) +

OEBPS/Image00046.jpg
Figure 100 Basic #ill Climbing Search algorithm (Russell & Norwig, 2010, p. 122)

OEBPS/Image00047.jpg
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
inputs: problem_a problem
schedule, a mapping from time to “temperature™
current «— MAKE-NODE (problem INITIAL-STATE)
fort=1to wdo
T « schedule (t)
if T =0 then return curent
next < a randomly selected successorof current
AE « next VALUE — cumrent VALUE

if AE > 0 then curmrent < next

else cumrent «— nextonly with probability e2=7

OEBPS/Image00135.jpg

OEBPS/Image00256.jpg
P(Toothache) {toothache, —toothache}

OEBPS/Image00377.jpg
waiting_on

Decision of
Agent Paul

waiting_on

OEBPS/Image00134.jpg

OEBPS/Image00255.jpg
P(Catch) {catch, —catch}

OEBPS/Image00376.jpg
Action
repository
of other
uncertainty due to agents

ons when uncertainty due to other agent's and cisions they make

OEBPS/Image00137.jpg
Function DPLL-SATI SFI ABLE? (s) returns true or false
inputs: 5, a sentence in propositional logic
clauses —the set of clauses in the CNF representation of s
symbols «—a list of the proposition symbols in s
return DPLL (clauses, symbols, {})

Function DPLL (clauses, symbols, model) returns true or false
if every clause in clauses 1s true in model then return true
1f some clause in clauses is false in model then return false
P, value «— FIND-PURE-SYMBOL (symbols, clauses, model)
P is non-null then return DPLL (clauses, symbols — P, model U (P=value})
P, value «—FIND-UNIT-CLAUSE (clauses, model)
if P is non-null then return DPLL (clauses, symbols ~ P, model U {P=value})
P —FIRST (symbols); rest —REST (symbols)
return DPLL (clauses, rest, model U {P=true}) or
DPLL (clauses, rest, model U {P=false}))

i gorithon for checl

OEBPS/Image00136.jpg

OEBPS/Image00257.jpg
P(toothache,cavity, catch, cloudy)

OEBPS/Image00033.jpg
SIIRATEGIC
CHANGE

SIKANDER SULTAN

STRATEGIC CHANGE (2017)

Explore and examine key concepts,
methods, and techniques used in
developing the change management
skills. Gain deeper level understanding
of the Strategic Change, both at the
individual and at the Corporate level.
Develop the right leadership
competencies to manage the
Corporate change process effectively.

OEBPS/Image00248.jpg

OEBPS/Image00369.jpg
* _ argmax U” ()

s P

OEBPS/Image00034.jpg
Artificial Intelligence

|N"\|'|E|r_l|_li=§:5"h\|%;g (Al Course Book 2) (2017)

Explore and examine key concepts,
methods, and techniques used in the
used in the Artificial Intelligence
practical usage and also to look at the
organisation, the group, the individual
and their interaction within the
confines of the artificial intelligence

implementation lifecycle.

OEBPS/Image00368.jpg
U(s) = E [2 r‘x(sl)}

v=0

OEBPS/Image00031.jpg
FINANCIAL
STATEMENTS

SIKANDER SULTAN

Financial Statements: Create
Visual Financial Reports (2017)

This book has been designed to give
users a step by step detailed approach
on building professional well-structured
financial statements namely Statement
of Financial Performance, Statement of
Financial Position, Statement of
Changes in Equity, Cash Flow
statement, Ratio Analysis and more.

OEBPS/Image00129.jpg
TR

mlcm

OEBPS/Image00250.jpg
P(Cavity | Toothache)

OEBPS/Image00371.jpg
iz (s)

OEBPS/Image00032.jpg
DATA ANALYSIS
USING STATA

BY SIKANDER SULTAN

DATA ANALYSIS USING STATA
(2017)

Explore and examine key concepts,
methods, and techniques used in
addressing the basics of STATA in
Economics, to build foundation for
economic analysis and making
informed managerial decisions.

Develop an ‘economic way of thinking
within the business context.

OEBPS/Image00128.jpg
g<mwgnwE

111
i §§§§

OEBPS/Image00249.jpg
P(~Cavity | Toothache)

OEBPS/Image00370.jpg

OEBPS/Image00029.jpg
ZERO COST
MARKETING

LN

SIKANDER SULTAN

ZERO COST MARKETING
(2017)

Explore and examine key concepts,
methods, and techniques used in Zero
Cost Marketing Master the art of
internet marketing, mobile marketing,
or social media marketing on a limited
budget. Get more informed about
targeted customers and Sell More!

OEBPS/Image00131.jpg
mw §11

mlcﬂrsvw

OEBPS/Image00252.jpg
P(Veather = sunny) = 06
P(Weather = rain) = 01
P(Weather = cloudy) = 0.29
P(Weather = snow) = 0.01

OEBPS/Image00373.jpg
n osss | 0915

OEBPS/Image00030.jpg
PROJECT
MANAGEMENT IN
CONSTRUCTION

PROJECT MANAGEMENT IN
CONSTRUCTION (2017)

Explore and examine key concepts,
methods, and techniques used in the
construction project management and
also to look at the organisation, the
group, the individual and their
interaction within the confines of the
construction project lifecycle.

OEBPS/Image00130.jpg
mw i

mlcmrsvw

OEBPS/Image00251.jpg
P(Toothache, Catch, Cavity, Weather)

OEBPS/Image00372.jpg
U(s) and R(s)

OEBPS/Image00133.jpg
T e firsal]

OEBPS/Image00254.jpg
P(Cavity) {cavity, ~—cavity}

OEBPS/Image00375.jpg
R(s)

0.04

OEBPS/Image00028.jpg
MANAGEMENT
CONSULTING

BY SIKANDER SULTAN

Management Consulting:
Complete Course Part Il (2017)

Explore and examine key concepts,
methods, and techniques used in the
Management Consulting. Master the
art of establishing, developing,
managing, and evaluating a successful
management consulting project from
start to finish in any corporation or
government agency.

OEBPS/Image00132.jpg
H mm

mncmrsvw

OEBPS/Image00253.jpg
P(Weather) = {sunny, rain, snow, cloudy}

OEBPS/Image00374.jpg

OEBPS/Image00037.jpg
A DB OC

OEBPS/Image00035.jpg

OEBPS/Image00036.jpg
P2, 2 and P3,

OEBPS/Image00022.jpg
........................

SORPORATESORIN
ISPASLT

00 ® cq

[T

SIEANDER SULTAN

CORPORATE SOCIAL
RESPONSIBLITY (2017)

Explore and examine key concepts,
methods, and techniques used in
addressing the various aspects of the
CSR impacting environment, society
and the economics. Learn to improve
the company’s image and value of the
business by adopting CSR policies in
the business Manifesto.

OEBPS/Image00023.jpg
PROPERTY Property Management (2017)

MANAGEMENT
A QUICK GUIDE 7O MARAGING FROPERTIES Explore and examine key concepts,

methods, and techniques used in
managing properties efficiently and
also to look at the various real life

examples to bring out the best possible
management performance. Goldmine

Sikan

ultan for RE Investors and increase expertise.

OEBPS/Image00020.jpg
PERFORMANCE
MANAGEMENT

SIKANDER SULTAN

Performance Management
(2017)

Explore and examine key concepts,
methods, and techniques used in the
understanding employees performance
thoroughly and also to look at the
various real life examples to bring out
the best possible performance using
the current abilities of the team.

OEBPS/Image00021.jpg
INTERNATIONAL FINANCIAL
MANAGEMENT (2017)

Explore and examine key concepts,
methods, and techniques used in
addressing the basics of Financial
Management, to build foundation for
analysis and making informed
managerial decisions in the evolving
global financial landscape.

OEBPS/Image00018.jpg
Corporate Cash
Management

—_
/

Corporate Cash Management
(2017)

Explore and examine key concepts,
methods, and techniques used in
understanding in the process of
management and control of the
Corporate Cash. Using the real life
examples to master all aspects of the
Cash Management and control within

an organisation.

OEBPS/Image00019.jpg
SIKANDER SULTAN

BASIC TO ADVANCED

MatLab (2017)

Explore and examine key concepts,
methods, and techniques used in the
various toolboxes and built-in
functions of MatLab for solving
different numerical and technical
computing problems. Use the
graphical functions to communicate
your results effectively.

OEBPS/Image00026.jpg
RESEARCH
METHODS

SIKANDER SULTAN

RESEARCH METHODS (2017)

Explore and examine key concepts,
methods, and techniques used in
understanding research methodology
thoroughly and also to look at the
various real life examples within the
confines of conducting the
professional research.

OEBPS/Image00027.jpg
T STATISTICS FOR BIG DATA
: (2017)

STATISTICS
FORBIGC DATA .
Explore and examine key concepts,
methods, and techniques used in
analysing the Big Data Analysis using
Statistics, lifecycle, tools, techniques,

data governance, data privacy and

tackling the business security
SIKANDER SULTAN compliance issues.

TOLLLLLLRRLLERLrrrrrren

OEBPS/Image00024.jpg
SIKANDER SULTAN

MICRO ECONOMICS (2017)

Explore and examine key concepts,
methods, and techniques used in
addressing the basics of Micro
Economics, to build foundation for
economic analysis. Learn to improve
the corporate’s image by developing
an ‘economic way of thinking’” within
the business context.

OEBPS/Image00025.jpg
=7 |
[O55 K

Sarie

COMPUTER
FORENSICS

BY SIKANDER SULTAN

COMPUTER FORENSICS
(2017)

Explore and examine key concepts,
methods, and techniques used in
understanding and applying Computer
Forensics thoroughly. Learn to
identify, collect, preserve, examine &
analyse the digital information.
Establish, develop, manage, and
evaluate the forensics baseline.

OEBPS/Image00003.jpg
QUANTITATIVE METHODS
FOR BUSINESS

(2017)

Explore and examine

key concepts, and

techniques used in quantitative
methods, quantitative data
analysis using Excel 2016 and
for preparing business
presentations.

OEBPS/Image00002.jpg

OEBPS/Image00005.jpg
MERGERS AND

MERGERS AND
ACQUISITIONS (2017)

Explore and examine key concepts,
methods, and techniques used in M&A
process. Mastering M&A five phases,
learning the alternative strategies to
M&A; deriving practical benefits from
the hostile take-overs, past M&A deals
and recent trends in M&As markets.

OEBPS/Image00004.jpg
EXCEL FOR
ACCOUNTANTS

EXCEL FOR ACCOUNTANTS
VOLUME I (2017)

Explore and examine key concepts,
methods, and techniques used in Excel
2016. Master the art of developing
Financial Statements, Monthly
Management accounts, Forecasts,
Ratios and Trend Analysis using Excel.
Make your numbers talk the right way.

OEBPS/Image00007.jpg
- : SUSTAINABILTY RISK
SUSTAINABILITY

RISK MANAGEMENT (2017)
MANAGEMENT

Explore and examine key concepts,
methods, and techniques used in
addressing the risks relating to the
Corporate Sustainability. Learning
regulatory implications in various
industries; addressing <IR>
Framework, Materiality and

Sustainability Reporting.

OEBPS/Image00006.jpg
ARTIFICIAL
INTELLIGENCE

Artificial Intelligence
(Al Course Book 1) (2017)

Explore and examine key concepts,
methods, and techniques used in the
used in the Artificial Intelligence
practical usage and also to look at the
organisation, the group, the individual
and their interaction within the
confines of the artificial intelligence
implementation lifecycle.

OEBPS/Image00011.jpg
Project Management Psychology
(2017)

Explore and examine key concepts,
methods and techniques used in
project management,

the organisation, group, individual
and their interaction within the
confines of a project from a

| psychological point of view.

OEBPS/Image00012.jpg
NEGOTIATION
SKILLS

SIKANDER SULTAN

NEGOTIATION SKILLS (2017)

Explore and examine key concepts,
methods, and techniques used in
addressing the core attributes of the
Negotiation Skills. This course book is
about nurturing and developing
business negotiation skills; by
analysing the real-life case studies in a
systematic way following a step by
step approach.

OEBPS/Image00009.jpg
BIG DATA ANALYTICS (2017)

Explore and examine key concepts
of Big Data Analytics, lifecycle,
tools, techniques, data governance,
data privacy and tackling the
business security compliance
issues; using the real life project
case studies.

OEBPS/Image00010.jpg
EXCEL FOR
ACCOUNTANTS,

EXCEL FOR ACCOUNTANTS
VOLUME Il (2017)

Explore and examine key concepts,
methods, and techniques used in Excel
2016. Master the art of developing
Financial Statements, Monthly
Management accounts, Forecasts,
Ratios and Trend Analysis using Excel.
Make your numbers talk the right way.

OEBPS/Image00008.jpg
MANAGENENT
“CONSULTING

BY SIKANDER SULTAN

Management Consulting:
Complete Course Part 1 (2017)

Explore and examine key concepts,
methods, and techniques used in the
Management Consulting. Master the
art of establishing, developing,
managing, and evaluating a successful
management consulting project from
start to finish in any corporation or
government agency.

OEBPS/Image00017.jpg
DELEGATION
SKILLS

e

DELEGATION SKILLS (2017)

Explore and examine key concepts,
methods, and techniques used in
addressing the core attributes of the
Staff Management. Learn to delegate
effectively. Understand the delegation
principles, emotional intelligence and
the key time management tools that
guide the process of delegation
effectively.

OEBPS/Image00015.jpg
INTERNATIONAL CORPORATE

INTERNATIONAL
PRGN A GOVERNANCE (2017)

Explore and examine key concepts,
methods, and techniques used in
International Corporate Governance.
Master the various aspects of the
global Corporate Governance lifecycle,
including designing and
implementation of an effective

management framework.

OEBPS/Image00016.jpg
A Guide to
FINANCIAL
RATIOS

FINANCIAL RATIOS: QUICK
GUIDE (2017)

Explore and examine key concepts,
methods and techniques used in
understanding financial ratios and also
to look at the various Corporate
examples within the confines of the
financial ratios throughout the
business lifecycle.

OEBPS/Image00001.jpg

OEBPS/Image00013.jpg
EXCEL FOR
ACCOUNTANTS

EXCEL FOR ACCOUNTANTS
VOLUME Il (2017)

Explore and examine key concepts,
methods, and techniques used in Excel
2016. Master the art of developing
Financial Statements, Monthly
Management accounts, Forecasts,
Ratios and Trend Analysis using Excel.
Make your numbers talk the right way.

OEBPS/Image00000.jpg

OEBPS/Image00014.jpg
PROJECT
MANAGEMENT

IN THE

OIL AND GAS
INDUSTRY

Sikander Sultan

PROJECT MANAGEMENT IN

THE OIL AND GAS INDUSTRY
(2017)

Explore and examine key concepts,
methods, and techniques used in
Project Management in petroleum
industry. Master the various aspects of
an oil and gas project lifecycle,
including financing methods & proven
techniques of curtailing project costs.

OEBPS/Image00391.jpg
ARTIFICIAL
INTELLIGENCE

Al INTRODUCTORY COURSE
VoL

Og IKANDER SULTAN

