

 Web Development with Bootstrap 4 and Angular 2 - Second Edition

Table of Contents

Web Development with Bootstrap 4 and Angular 2 - Second Edition

Credits

About the Authors

About the Reviewer

www.PacktPub.com

eBooks, discount offers, and more

Why subscribe?

Preface

What this book covers

What you need for this book

Who this book is for

Conventions

Reader feedback

Customer support

Downloading the example code

Errata

Piracy

Questions

1. Saying Hello!

Setting up a development environment

Defining a shell

Installing Node.js

Setting up npm

Installing Git

Code editor

A TypeScript crash course

Types

Arrow function

Block scope variables

Template literals

The for-of loop

Default value, optional and rest parameters

Interfaces

Classes

Modules

Generics

What are promises?

Event loop

Asynchronous results via events

Asynchronous results via callbacks

Asynchronous results via promises

Angular 2 concepts

Building blocks of Angular 2

Module

Metadata

Directives

Attribute directives

Structural directives

Component

Template

Data binding

Service

Dependency injection

SystemJS loader and JSPM package manager

SystemJS Loader

JSPM package manager

Writing your first application

TypeScript compile configuration

Task automation and dependency resolution

Creating and bootstrapping an Angular component

Compiling and running

Adding user input

Integrating Bootstrap 4

Summary

2. Working with Bootstrap Components

Bootstrap 4

Introduction to Sass

Setting up of Ruby

Setting up of Sass

Sass crash course

Variables

Mathematical expressions

Functions

Nesting

Imports

Extends

Placeholders

Mixins

Function directives

Example project

The scenario

Gathering customer requirements

Preparing use-cases

Welcome page

Products page

Products page

Cart page

Checkout page

Designing layouts with grids and containers

Using images

Using Cards

Using buttons

General button styles

Outline button styles

Button sizes

Block level button styles

The button with active style

The button with inactive state

Radio buttons and checkboxes

Navs

The base Nav

Inline navigation

Tabs

Pills

Stacked pills

Navigation with dropdowns

Navbars

Content

Colors

Containers

Responsive Navbar

Responsive utilities

The Navbar content alignment

Summary

3. Advanced Bootstrap Components and Customization

How to capture a customer's attention

Displaying content with Jumbotron

Typography

Headings

Sub-headings

Display headings

Lead

Inline text elements

Abbreviations

Blockquotes

Address

Displaying content with a carousel

Carousel container

Carousel inner

Carousel item

Carousel indicators

Carousel controls

Products page layout

Quick Shop component

Input group

Text addons

Sizing

Checkboxes and radio option addons

Button addons

Drop-down menu addons

Segmented buttons

Categories component

List group

Listing with tags

Linked list groups

Button list groups

Contextual classes

Custom content

Creating a product grid

Nested rows

Product component

Images

Responsive images

Image shapes

Image alignment

Tags

Button groups

Sizing

Button toolbars

Nesting drop-downs

Vertical button groups

Drop-down menus

Drop-down containers

Drop-down triggers

Drop-down menus with items

Menu alignment

Menu headers and dividers

Menu dividers

Disabling menu items

Tables

table-inverse

Striped rows

Bordering tables

Making rows hoverable

Table head options

Making table smaller

Contextual classes

Responsive tables

Reflowing tables

Shopping cart component

Summary

4. Creating the Template

Diving deeper into Angular 2

Welcome page analysis

Single responsibility principle

Naming conventions

Barrels

Application structure

Folders-by-feature structure

Shared folder

Navigation component

Decorators

Tree of components

NavItem object

Template expressions

Expression context

Template reference variable

Expression guidelines

Expression operators

The Elvis operator

The pipe operator

The custom pipes

Template statements

Statement context

Statement guidelines

Data binding

HTML attributes versus DOM properties

Interpolation

Property binding

Attribute binding

Class binding

Style binding

Event binding

Custom events

Two-way data binding

Built-in directives

NgClass

NgStyle

NgIf

NgSwitch

NgFor

Structural directives

Custom structural directive

Category product component

Summary

5. Routing

Modern web applications

Routing

Routing path

Installing the router

The base URL

The Angular router

The router configuration

Creating basic routes

Query parameters

Router parameters

Route versus query parameters

Register routing in bootstrap

Redirecting routes

Router outlet

Welcome View

The footer component

The category data

Category card view

The product data

Products View

Quick shop component

List of categories component

Update the CategoryModule

Router links

Product card

Products grid component

Card groups

Card columns

Card desks

Combine them all together

The product module

Update the AllModule

Router change events

Routing strategies

Summary

6. Dependency Injection

What is dependency injection?

A real-life example

Dependency injection

Constructor injection

Other injection methods

Components versus services

ReflectiveInjector

Injectable decorator

Inject decorator

Optional decorator

Configuring the injector

Class providers

Aliased class providers

Value providers

Multiple values

Factory providers

The hierarchy of injectors

Category service

Injector provider for category service

Product service

Injector provider for product service

The shopping cart

The Cart model and CartItem

The CartService

The Cart menu component

Cart module

Update the Navbar

Update the Cart via Service

Summary

7. Working with Forms

HTML form

Bootstrap forms

Form controls

Form layouts

Standard form

Inline form

Hidden labels

Form control size

Help text

Form grid layout

Stacked checkboxes and radios

Inline checkboxes and radios

Static control

Disabled states

Read-only inputs

Validation styles

Formless search

User input from event object

User input from a template reference variable

Product View

Product image

Product information

The CategoryTitle pipe

Cart information in Product View

Quantity and amount

Actions

Product View component

Adding ProductView to the ProductModule

Product View route definition with a parameter

Navigation to Product View

Angular 2 forms

Forms setup

Template-driven forms

The NgForm directive

The NgModel directive

Track change-state and validity with NgModel

The NgModelGroup directive

Model-driven forms

The FormGroup directive

The FormControlName directive

The FormGroupName directive

The FormBuilder class

A FormControl directive

Built-in validators

Creating a custom validator

Creating a custom validator directive

Cart view

Cart view route definition

Navigation to cart view

The Checkout View

Checkout view route definition

Navigation to Checkout View

Summary

8. Advanced Components

Directives

Attribute directives

Structural directives

Components

The directive lifecycle

The Angular lifecycle hooks

Instantiation

Initialization

Change detection and rendering

NgZone service

Change detection

Immutable objects

Change detection strategy

Triggering change detection programmatically

Content projection (only for components)

Component styles

Special selectors

The :host pseudo-class

The :host-context pseudo-class

The /deep/ selector

Non-view encapsulation

Emulated view encapsulation

Native view encapsulation

After view (only for components)

Parent to child communications

Parent to child communication via input binding

Parent to child communication via a local variable

Parent-child communication via a call to ViewChild

Parent-child communication via a service

Destroying

Summary

9. Communication and Data Persistence

Client to server communication

Web API

REST

REST response formats

REST and AJAX

REST API design guidelines

The HttpModule

The in-memory Web API

The HTTP client

The HTTP Promises

RxJS library

Observables versus promises

Observables in search-by-title

Introduction to Firebase

Creating a Firebase project

Installing Firebase CLI tools

Initializing a project directory

Importing data into Firebase

The Firebase database rules

Connecting to Firebase

Installing AngularFire2 and Firebase

The AngularFire2 and Firebase setup

Getting categories from Firebase

Getting products from Firebase

Deploying the application to Firebase

Summary

10. Advanced Angular Techniques

Webpack

Webpack migration

Installing Webpack CLI

Updating packages

Updating TypeScript configuration

Creating Webpack configuration file

Updating the markup

Preparing our project for production

The three main entries

Webpack plugins

The DefinePlugin

The ProvidePlugin

The ProgressPlugin

The LoaderOptionsPlugin

The CommonsChunkPlugin

The UglifyJsPlugin

The extract-text-webpack-plugin

The webpack-md5-hash plugin

The html-webpack-plugin

Loaders

Loader naming conventions and search order

The bootstrap-loader

The css-loader

The file-loader

The postcss-loader

The raw-loader

The resolve-url-loader

The sass-loader

The style-loader

The ts-loader

The url-loader

User authentication

Adding authentication in the application

Enabling authentication provider

AngularFirebase2 authentication

Authentication service

The SignInComponent

Angular Guards

Logout in Navbar

Updating the Firebase database rules

Time to play

The ng2-bootstrap

Updating the slideshow on the welcome page

Update the drop-down cart in Navbar

Angular CLI

Just-in-time compilation

AOT compilation

Summary

 Web Development with Bootstrap 4 and Angular 2 - Second Edition

 Web Development with Bootstrap 4 and Angular 2 - Second Edition

Copyright 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Second edition: November 2016

Production reference: 1221116

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78588-081-0

www.packtpub.com

 Credits

	

Authors

Sergey Akopkokhyants

Stephen Radford

	

Copy Editor

Safis Editing

	

Reviewer

Eslem Alzate

	

Project Coordinator

Ulhas Kambali

	

Commissioning Editor

Wilson D'souza

	

Proofreader

Safis Editing

	

Acquisition Editor

Smeet Thakkar

	

Indexer

Rekha Nair

	

Content Development Editor

Onkar Wani

	

Graphics

Abhinash Sahu

	

Technical Editor

Shivani K. Mistry

	

Production Coordinator

Shraddha Falebhai

 About the Authors

Sergey Akopkokhyants

 is a software architect with more than 20 years of professional experience in designing and developing client and server-side applications. He is also a certified Java developer and project manager. He has general knowledge of many tools, languages, and platforms.

For the last decade, Sergey has been responsible for customizing and producing web-oriented applications for wholesale business management solutions projects for several worldwide mobile communication companies. His responsibilities have included: architecture design and guidance of client software development using Flex, CSS, HTML, JavaScript, TypeScript, and Dart, and client-server integration with Java. He is also the founder and an active contributor to several open source projects on GitHub.

Sergey is passionate about web design and development and likes sharing his expertise with others, helping them to increase their skills and productivity. He is author of the book
Mastering Dart

 and also he was one of reviewers of the books
Learning Dart

 and
Dart Cookbook

 .

First and foremost, thanks to my family for having the patience with me for taking yet another challenge that decreases the amount of time I can spend with them, especially Lada, my wife, who has taken a big part of that sacrifice, and Alexander, my father, who shares credit for every goal I achieve.

Stephen Radford

 is a full-stack web and app developer based in the heart of England--Leicester. Originally from Bristol, Stephen moved to Leicester after studying Graphic Design at college to accept a job at one of the UKs largest online marketing companies.

Whilst working at a number of agencies, Stephen developed several side projects, including FTPloy, a SaaS designed to make continuous deployment available to everyone. The project was subsequently a finalist in the .NET Awards Side Project of the Year category.

He and his business partner now run Cocoon, a web development company that builds and maintains web and mobile apps. Cocoon also works closely with a handful of startups and businesses to develop ideas into websites and apps.

 About the Reviewer

Eslem Alzate

 is a self-taught software engineer who started to program at the age of 11. He has multiple certifications from Sena, an associate degree from FP Mislata, and computer science in an open source society.

At the age of 17, he created his own company of software development, making projects for companies and startups, from apps to algorithms for the stock market.

I want to thank the support that my family always gives me, especially my sister, who has always been with me.

 www.PacktPub.com

 eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
 and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com
 , you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[image: eBooks, discount offers, and more]

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

 Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Preface

This book is about Angular 2 and Bootstrap 4, the two tremendous and most popular names in contemporary web development.

Angular 2 is the successor of AngularJS, but better than the predecessor in many ways. It combines the maximum speed possible on web browsers and scalability when you work with massive data requirements. This makes Angular 2 the first candidate of choice when building new systems or upgrading from the old ones.

Bootstrap 4 is the next evolutionary stage of building responsive, mobile-first web applications. It can easily and efficiently scale awebsite from mobile to desktop with a single codebase.

If you would like to take advantage of Angular 2 power with Bootstrap 4 flexibility to build robust web-scale or enterprise web applications, you are in the right place.

I had the desire to write a book about Angular 2 and Bootstrap 4 that would make no assumptions about the readers prior experience and knowledge. My mind was about the book with full of technical details wherever required. Now, the book you are holding in your hands is that desire realized as it is both beginner-friendly and technically deep at the same time. It covers everything a developer requires to get into serious web development using those two fantastic frameworks.

 What this book covers

Chapter 1
 ,
Saying Hello!

 , guides you through establishing a development environment for the simplest application possible in order to show you how easy it is to get a web application up and running with Angular 2 and Bootstrap 4.

Chapter 2
 ,
Working with Bootstrap Components

 , shows how you can start using Bootstrap 4 by showcasing a demo layout page, and how you can explore the framework and customize it to your requirements.

Chapter 3
 ,
Advanced Bootstrap Components and Customization

 , explains how to use components such as Jumbotron, Carousel, and spend you along the way through input groups.

Chapter 4
 ,
Creating the Template

 , lets you learn how to build a UI template using built-in Angular 2 directives. You'll become familiar with the template syntax, and how to bind properties and events in an HTML page and transform display using pipes.

Chapter 5
 ,
Routing

 , helps you understand how router code manages navigation between views when the user performs application tasks. We will take a look at how we can create static routes as well as routes containing parameters and how to configure them.

Chapter 6
 ,
Dependency Injection

 , teaches the readers how to decouple the requirements of an application and how to create a consistent source of data as a service.

Chapter 7
 ,
Working with Forms

 , shows the readers how to use Angular 2 directives related to form creation and how to use a code-based form component to the HTML form. We will use Bootstrap 4 to enhance the look of the form and to indicate invalid input for our web application.

Chapter 8
 ,
Advanced Components

 , describes the lifecycle of components and the methods that can be used at different stages. We will analyze each stage of this cycle and we will learn how to make the most of the hook methods that are triggered when a component moves from one stage to another.

Chapter 9
 ,
Communication and Data Persistence

 , explains how to use the built-in HTTP library to work with endpoints. We will learn how to work with Firebase as the persistence layer of the application.

Chapter 10
 ,
Advanced Angular Techniques

 , introduces advanced Angular techniques. We will transform our application with help of the Webpack, and we will learn how to install and use the ng2-bootstrap. We will discover the world of Angular CLI and will use AOT to dramatically decrease the size of the code for production.

 What you need for this book

Any modern PC with installed Windows, Linux, or Mac OS should be sufficient to run the code samples in the book. All the software used in the book is open source and freely available on the Web:

	
https://git-scm.com

	
https://nodejs.org

	
https://www.npmjs.com

	
http://v4-alpha.getbootstrap.com

	
https://www.ruby-lang.org

	
https://firebase.google.com

 Who this book is for

Whether you know a little about Bootstrap or Angular or you're a complete beginner, this book will enhance your capabilities in both frameworks and help you build a fully functional web app. A working knowledge of HTML, CSS, and JavaScript is required to fully get to grips with Bootstrap and Angular.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "It supports number
 , boolean
 , and string
 type annotations for the primitive types and any for dynamically-typed structures."

A block of code is set as follows:

function add(first: number, second: number): number {
 return first + second;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

var x = 3;
function random(randomize) {
 if (randomize) {
 // x initialized as reference on function

 var x = Math.random();

 return x;
 }
 return x; // x is not defined
}
random(false); // undefined

Any command-line input or output is written as follows:

npm config list

New terms

 and
important words

 are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking the
Next

 button moves you to the next screen."

 Note

Warnings or important notes appear in a box like this.

 Tip

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mailfeedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide atwww.packtpub.com/authors
 .

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com
 . If you purchased this book elsewhere, you can visit http://www.packtpub.com/support
 and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the
SUPPORT

 tab at the top.

	Click on
Code Downloads & Errata

 .

	Enter the name of the book in the
Search

 box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on
Code Download

 .

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Web-Development-with-Bootstrap-4-and-Angular-2-Second-Edition
 . We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/
 . Check them out!

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata
 , selecting your book, clicking on the
Errata Submission Form

 link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
 and enter the name of the book in the search field. The required information will appear under the
Errata

 section.

 Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us atcopyright@packtpub.comwith a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us atquestions@packtpub.com, and we will do our best to address the problem.

 Chapter1.Saying Hello!

Let's follow several steps to establish a development environment for the simplest application possible, to show you how easy it is to get a web application up and running with Angular 2 and Bootstrap 4. At the end of the chapter, you will have a solid understanding of:

	How to set up your development environment

	How TypeScript can change your development life

	Core concepts of Angular and Bootstrap

	How to create a simple Angular component with Bootstrap

	How to display some data through it

 Setting up a development environment

Let's set up your development environment. This process is one of the most overlooked and often frustrating parts of learning to program because developers don't want to think about it. Developers must know the nuances of how to install and configure many different programs before they start real development. Everyone's computers are different; as a result, the same setup may not work on your computer. We will expose and eliminate all of these problems by defining the various pieces of environment you need to set up.

 Defining a shell

The
shell

 is a required part of your software development environment. We will use the shell to install software and run commands to build and start the web server to bring life to your web project. If your computer has the Linux operating system installed then you will usea shell called
Terminal

 . There are many Linux-based distributions out there that use diverse desktop environments, but most of them use the equivalent keyboard shortcut to open Terminal.

 Note

Use keyboard shortcut
Ctrl

 +
Alt

 +
T

 to open Terminal in Ubuntu, Kali, and Linux Mint. If it doesn't work for you, please check the documentation for your version of Linux.

If you have a Mac computer with OS X installed, then you will use the Terminal shell as well.

 Note

Use keyboard shortcut
command

 +
space

 to open the
Spotlight

 , type Terminal to search and run.

If you have a computer with a Windows operating system installed, you can use the standard
Command Prompt

 , but we can do better. In a minute I will show you how can you install Git on your computer, and you will have Git Bash free.

 Note

You can open a Terminal with the Git Bash
 shell program on Windows.

I will use the Bash shell for all exercises in this book whenever I need to work in Terminal.

 Installing Node.js

Node.js

 is technology we will use as a cross-platform runtime environment to run server-side web applications. It is a combination of a native, platform-independent runtime based on Google's V8 JavaScript engine and a huge number of modules written in JavaScript. Node.js ships with different connectorsand libraries help you use HTTP, TLS, compression, file system access, raw TCP and UDP, and more. You as a developer can write your own modules on JavaScript and run them inside the Node.js engine. The Node.js runtime makes it easy to build a network event-driven application servers.

 Note

The terms
package

 and
library

 are synonymous in JavaScript so we will use them interchangeably.

Node.js is utilizing the
JavaScript Object Notation

 (
JSON

) format widely in data exchanges between the server and client sides because it is readily expressed in several parse diagrams, notably without the complexities of XML, SOAP, and other data exchange formats.

You can use Node.js for the development of service-oriented applications, doing something different than web servers. One of the most popular service-oriented applications is
node package manager

 (
npm

), which we will use to manage library dependencies, deployment systems, and which underlies the many
platform-as-a-service

 (
PaaS

) providers for Node.js.

If you do not have Node.js installed on your computer, you should download the pre-build installer from https://nodejs.org/en/download
 , or you can use the unofficial package managers from https://nodejs.org/en/download/package-manager
 . You can start to useNode.js immediately after installation. Open Terminal and type:

node --version

Node.js will respond with the version number of the installed runtime:

v4.4.3

Bear in mind that the version of Node.js installed on my computer could be different from yours. If these commands give you a version number, you are ready to go with Node.js development.

 Setting up npm

The npm is a package manager for JavaScript. You can use it to find, share, and reuse packages of code from many developers across the world. The number of packages dramatically grows every day and now is more than 250K. The npm is a Node.js package manager and utilizes it to run itself. The npm is included in the setup bundle of Node.js and available just after installation. Open Terminal and type:

npm --version

The npm must respond on your command with a version number:

2.15.1

My Node.js comes with that particular version of npm. The npm gets updated quite frequently, so you'll want to move to the latest version with the following command:

npm install npm@latest -g

You may experience permission problems to search or install packages with npm. If that is the case, I recommend following the instructions from https://docs.npmjs.com/getting-started/fixing-npm-permissions
 and don't use superuser privileges to fix them.

The following command gives us information about Node.js and the npm install:

npm config list

There are two ways to install npm packages: locally or globally. In cases when you would like to use the package as a tool, it's better install it globally:

npm install -g <package_name>

If you need to find the folder with globally installed packages you can use the next command:

npm config get prefix

Installation global packages are important, but best to avoid if not needed. Mostly you will install packages locally.

npm i <package_name>

You may find locally installed packages in thenode_modules
 folder of your project.

 Installing Git

If you're not familiar with Git then you're really missing out! Git is a distributed version control system and each Git working directory is a full-fledged repository. It keeps a complete history of changes and has full version tracking capabilities. Each repository is entirely independent of network access or a central server. You can keep Git repositories on your computer and share it with your mates, or you can take advantage of the many online VCS providers. The big guys you should look at closely are GitHub, Bitbucket, and Gitlab.com. Each has its own benefits, depending on your needs and project type.

Mac computers comes with Git already installed into the operating system but usually the version of Git is not the same as the latest one. You can update or install Git on your computer via a set of pre-build installers available on the official website https://git-scm.com/downloads
 . After installation, you can open Terminal and type:

git -version

Git must respond with a version number:

git version 2.8.1.windows.1

As I said, for developers who use computers with an installed Windows operation system, you now have Git Bash free on your system.

 Code editor

You can imagine how many programs for code editing exist, but we will talk today only about the free, open source, runs everywhere Visual Studio Code from Microsoft. You can use any program you prefer for development, but I will be using only Visual Studio code in our future exercises, so please install it from http://code.visualstudio.com/Download
 .

 ATypeScript crash course

TypeScript is an open source programming language developed and maintained by Microsoft. Its initial public release was in October 2012 and was presented by Anders Hejlsberg, the lead architect of C# and creator of Delphi and Turbo Pascal.

TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. Any existing JavaScript is also valid TypeScript. It gives you type checking, explicit interfaces, and easier module exports. For now, it includes
ES5

 ,
ES2015

 ,
ES2016

 , and, in fact, it's a little like getting some of tomorrow's ECMAScripts early so that we can play with some of those features today.

Here is the relationship between ECMAScripts and TypeScript:

[image: ATypeScript crash course]

Writing code using TypeScript is relatively straightforward if you already have a background in the JavaScript language. Try the TypeScript playground http://www.typescriptlang.org/play
 to play with IntelliSense, find references, and so on, directly from your browser.

 Types

TypeScript provides a static type checking operation that allows many bugs in the development cycle to be caught early. TypeScript enables type checking at compile time via type annotations. Types in TypeScript are always optional, so you can ignore them if you prefer the regular dynamic typing of JavaScript. It supports number
 , boolean
 , and string
 type annotations for primitive types and any
 for dynamically-typed structures. In the following example, I added type annotations to return
 and parameters forfunction
 :

function add(first: number, second: number): number {
 return first + second;
}

In one moment of compilation, a TypeScript compiler can generate a declaration file which contains only signatures of the exported types. The resulting declaration file with the extension .d.ts
 along with a JavaScript library or module can be consumed later by a third-party developer. You can find a vast collection of declaration files for many popular JavaScript libraries at:

	The
DefinitelyTyped

 (https://github.com/DefinitelyTyped/DefinitelyTyped
)

	The
Typings

 registry (https://github.com/typings/registry
)

 Arrow function

Functions in JavaScript are first class citizens, which means they can be passed around like any other values:

var result = [1, 2, 3]
 .reduce(function (total, current) {
 return total + current;
 }, 0); // 6

The first parameter in reduce
 is an anonymous function. Anonymous functions are very useful in many scenarios but too verbose. TypeScript introduced new, less verbose syntax to define anonymous functions called
arrow function

 syntax:

var result = [1, 2, 3]
 .reduce((total, current) => {
 return total + current;
 }, 0); // 6

Or event less:

var result = [1, 2, 3]
 .reduce((total, current) => total + current, 0); // 6

When defining parameters, you can even omit parentheses if the parameters are just a single identifier. So the regular map
 method of array:

var result = [1, 2, 3].map(function (x) {
 return x * x
});

Could be much more concise:

var result = [1, 2, 3].map(x => x * x);

Both syntaxes (x) => x * x
 and x => x * x
 are allowed.

Another important feature of arrow function is that it doesn't shadow this
 and pick it up from the lexical scope. Let's assume we have a constructor function Counter
 which increments the value of an internal variable age
 in timeout and prints it out:

function Counter() {
 this.age = 30;
 setTimeout(() => {
 this.age += 1;
 console.log(this.age);
 }, 100);
}
new Counter(); // 31

As result of using the arrow function, the age
 from the scope of Counter
 is available inside the callback function of setTimeout
 . Here is the converted to JavaScript ECMAScript 5 code:

function Counter() {
 var _this = this;
 this.age = 30;
 setTimeout(function () {
 _this.age += 1;
 console.log(_this.age);
 }, 100);
}

The following variables are all lexical inside arrow functions:

	
arguments

	
super

	
this

	
new.target

 Block scope variables

All variables in ES5 declared with a var
 statement are function-scoped, and their scope belongs to enclosing functions. The result of the following code can be confusing because it returns undefined
 :

var x = 3;
function random(randomize) {
 if (randomize) {
 // x initialized as reference on function
 var x = Math.random();
 return x;
 }
 return x; // x is not defined
}
random(false); // undefined

The x
 is an inner variable of the random
 function and does not have any relation to the variable defined on the first line. The result of calling the random
 function at the last line returned undefined
 , because the JavaScript interprets the code in random
 function like that:

function random(randomize) {
 var x; // x is undefined
 if (randomize) {
 // x initialized as reference on function
 x = Math.random();
 return x;
 }
 return x; // x is not defined
}

This confusing code can be fixed in TypeScript with new block-scope variable declarations:

	The let
 is a block-scope version of var

	The const
 is similar let
 but allows initialize variable only once

The TypeScript compiler throws more errors with new block-scope variable declarations and prevents writing complicated and damaged code. Let's change var
 to let
 in the previous example:

let x = 3;
function random(randomize) {
 if (randomize) {
 let x = Math.random();
 return x;
 }
 return x;
}
random(false); // 3

And now our code works as expected.

 Note

I recommend using const
 and let
 to make the code cleaner and safer.

 Template literals

If we need string interpolation, we usually combine the values of variables and string fragments such as:

let out: string = '(' + x + ', ' + y + ')';

The TypeScript supports template literals--string literals allowing embedded expressions. You can use the string interpolation features of the template literals out of the box:

let out: string = `(${x}, ${y})`;

If you need multiline string, the template literals can help again:

Let x = 1, y = 2;
let out: string = `
Coordinates
 x: ${x},
 y: ${y}`;
console.log(out);

The last line prints results as follow:

Coordinates
 x: 1,
 y: 2

 Note

I recommend using template literals as a safer way of string interpolation.

 The for-of loop

We usually use for
 statement or forEach
 method of Array
 to iterate over elements in JavaScript ES5:

let arr = [1, 2, 3];
// The for statement usage
for (let i = 0; i < arr.length; i++) {
 let element = arr[i];
 console.log(element);
}
// The usage of forEach method
arr.forEach(element => console.log(element));

Each of these methods has its benefit:

	We can interrupt the for
 statement via break
 orcontinue

	The forEach
 method is less verbose

The TypeScript has for-of
 loop as a combination of both of them:

const arr = [1, 2, 3];
for (const element of arr) {
 console.log(element);
}

The for-of
 loop supports break
 and continue
 and can use the index
 and value
 of each array via new Array
 method entries
 :

const arr = [1, 2, 3];
for (const [index, element] of arr.entries()) {
 console.log(`${index}: ${element}`);
}

 Default value, optional and rest parameters

We quite often need to check the input parameters of functions and assign default values to them:

function square(x, y) {
 x = x || 0;
 y = y || 0;
 return x * y;
}
let result = square(4, 5); // Out 20

The TypeScript has syntax to handle default values of parameters to make previous functions shorter and safer:

function square(x: number = 0, y: number = 0) {
 return x * y;
}
let result = square(4, 5); // Out 20

 Note

A default value of a parameter is assigned only by itsundefined
 value.

Each parameter of a function in JavaScript ES5 is optional, so an omitted one equals undefined
 . To make it strict, TypeScript expects a question mark at the end of parameters we want to be optional. We can mark the last parameter of the square
 function as optional and call the function with one or two parameters:

function square(x: number = 0, y?: number) {
 if (y) {
 return x * y;
 } else {
 return x * x;
 }
}
let result = square(4); // Out 16
let result = square(4, 5); // Out 20

 Note

Any optional parameters must follow the required parameters.

In some scenarios, we need to work with multiple parameters as a group, or we may not know how many parameters a function takes. The JavaScript ES5 provides thearguments
 variable in the scope of functions to work with them. In TypeScript, we can use a formal variable to keep the rest of the parameters. The compiler builds an array of the arguments passed in with the name given after the ellipses so that we can use it in our function:

function print(name: number, ...restOfName: number[]) {
 return name + " " + restOfName.join(" ");
}
let name = print("Joseph", "Samuel", "Lucas");
// Out: Joseph Samuel Lucas

 Interfaces

The interface is the way of defining contracts inside and outside the code of your project. We use the interface in TypeScript only to describe a type and the shape of data to help us keep our code error-free. In comparison with many other languages, the TypeScript compiler doesn't generate any code for the interface so that it has not runtime cost. The TypeScript defines interfaces via the interface keyword. Let's define a type Greetable
 :

interface Greetable {
 greetings(message: string): void;
}

It has a member function called greetings
 that takes a string argument. Here is how we can use it as a type of parameter:

function hello(greeter: Greetable) {
 greeter.greetings('Hi there');
}

 Classes

JavaScript has a prototype-based, object-oriented programming model. We can instantiate objects using the object literal syntax or constructor function. Its prototype-based inheritance is implemented on prototype chains. If you come from an object-oriented approach, you may feel uncomfortable when you try to create classes and inheritance based on prototypes. TypeScript allows for writing code based on an object-oriented class-based approach. The compiler translates the class down to JavaScript and works across all major web browsers and platforms. Here is the class Greeter
 . It has a property called greeting
 , a constructor
 , and a method greet
 :

class Greeter {
 greeting: string;
 constructor(message: string) {
 this.greeting = message;
 }
 greet() {
 return "Hello, " + this.greeting;
 }
}

To refer to any member of the class we prepend this
 . To create an instance of the class we use the new
 keyword:

let greeter = new Greeter("world");

We can extend an existing class to create new ones via inheritance:

class EmailGreeter extends Greeter {
 private email: string;
 constructor(emailAddr: string, message: string) {
 super(message);
 this.email = emailAddr;
 }
 mailto() {
 return "mailto:${this.email}?subject=${this.greet()}";
 }
}

In the class EmailGreeter
 , we demonstrate several features of inheritance in TypeScript:

	We use extends
 to create a subclass

	We must call super
 in the first line of the constructor to pass values into base class

	We call the greet
 method of the base class to create a subject for mailto

The TypeScript classes support public
 , protected
 , and private
 modifiers to access the members that we declared throughout our programs. Each member of the class is public by default. There are not a requirement to labeled all public
 members with that keyword but you may mark them explicitly. Use protected modifier if you need to restrict access to members of the class from outside, but bear in mind that they are still available from deriving classes. You can mark the constructor as protected so that we cannot instantiate the class but we can extend it. The private
 modifier restricts access to member only on the class level.

If you look at constructors of EmailGreeter
 , we had to declare a private member email
 and a constructor parameter emailAddr
 . Instead, we can use parameter properties to let us create and initialize a member in one place:

class EmailGreeter extends Greeter {
 constructor(private email: string, message: string) {
 super(message);
 }
 mailto() {
 return "mailto:${this.email}?subject=${this.greet()}";
 }
}

You can use any modifier in parameter properties.

 Note

Use parameter properties to consolidate the declaration and assignment in one place.

TypeScript supports getters and setters to organize intercepting access to members of an object. We can change the original Greeter
 class with the following code:

class Greeter {
 private _greeting: string;
 get greeting(): string {
 return this._greeting;
 }
 set greeting(value: string) {
 this._greeting = value || "";
 }
 constructor(message: string) {
 this.greeting = message;
 }
 greet() {
 return "Hello, " + this.greeting;
 }
}

We check the value
 parameter inside the setter of greeting
 and modify it if necessary to empty string before assigning it to the private member.

TypeScript supports class members via the static modifier as well. Here the class Types
 contains only static members:

class Types {
 static GENERIC: string = "";
 static EMAIL: string = "email";
}

We can access those values through prepending the name of the class:

console.log(Types.GENERIC);

TypeScript gives us supreme flexibility via abstract classes. We cannot create instances of them, but we can use them to organize base classes from which each distinct class may be derived. We can convert the greeting
 class into abstract with just one keyword:

abstract class BaseGreeter {
 private _greeting: string;
 get greeting(): string {
 return this._greeting;
 }
 set greeting(value: string) {
 this._greeting = value || "";
 }
 abstract greet();
}

The method greet
 is marked as abstract
 . It doesn't contain an implementation and must be implemented in derived classes.

 Modules

When we are writing the code, we usually divide it into functions and the blocks inside those functions. The size of a program can increase very quickly, and individual functions start to blend into the background. We can make such a program more readable if we split them into large units of an organization like modules. At the beginning of writing a program, you may not know how to structure it, and you can use structureless principles. When your code becomes stable you can put pieces of functionality into separate modules to make them easy to track, update, and share. We store modules of TypeScript in files, exactly one module per file and one file per module.

The JavaScript ES5 doesn't have built-in support for modules and we used AMD or CommonJS syntax to work with them. TypeScript supports the concept of modules.

How do the scope and module depend on each other? The global scope of JavaScript doesn't have access to the scope of executing modules. It creates its own scope for each individual execution module, so everything declared inside the module is not visible from outside. We need to explicitly export them to make them visible and import them to consume them. The relationship between modules is defined at the file level regarding exports and imports. Any file defines a top-level export
 or import
 and is considered a module. Here is a string-validator.ts
 file which contains the exported declaration:

export interface StringValidator {
 isAcceptable(s: string): boolean;
}

I have created another file zip-validator.ts
 with several members, but exported only one of them to hide another one from outside:

const numberRegexp = /^[0-9]+$/;
export class ZipCodeValidator implements StringValidator {
 isAcceptable(s: string) {
 return s.length === 5 && numberRegexp.test(s);
 }
}

You can re-export declarations if your module extends other modules. Here validators.ts
 contains a module, wraps other validator modules, and combines all their exports in one place:

export * from "./string-validator";
export * from "./zip-validator";

Now we can import validator modules using one of the import forms. Here is a single export from a module:

import { StringValidator } from "./validators";
let strValidator = new StringValidator();

To prevent a naming conflict we can rename an imported declaration:

import { ZipCodeValidator as ZCV } from "./validators";
let zipValidator = new ZCV();

Finally, we can import an entire module into a single variable, and use it to access module exports:

import * as validator from "./validators";
let strValidator = new validator.StringValidator();
let zipValidator = new validator.ZipCodeValidator();

 Generics

The authors of TypeScript put maximaleffort into helping us to write reusable code. One of the tools that helps us to create code that can work with a variety of types rather than a single one is
generics

 . The benefits of generics include:

	Allows you to write code/use methods which are type-safe. An Array<string>
 is guaranteed to be an array of strings.

	The compiler can perform a compile-time check on code for type safety. Any attempt to assign the number
 into an array of strings causes an error.

	Faster than using any
 type to avoid casting into a required reference type.

	Allows you to write code which is applicable to many types with the same underlying behavior.

Here is the class I have created to show you how useful generics can be:

class Box<T> {
 private _value : T;
 set value(val : T) {
 this._value = val;
 }
 get value() : T {
 return this._value;
 }
}

This class keeps the single value of a particular type. To set or return it we can use corresponding getter and setter methods:

var box1 = new Box<string>();
box1.setValue("Hello World");
console.log(box1.getValue());
var box2 = new Box<number>();
box2.setValue(1);
console.log(box2.getValue());
var box3 = new Box<boolean>();
box3.setValue(true);
console.log(box3.getValue());
// Out: Hello World
// Out: 1
// Out: true

 What are promises?

Apromise represents the final result of an asynchronous operation. There are a number of libraries that support the use of promises in TypeScript. But before starting to talk about this, let's talk a bit about the browser environment which executes your JavaScript code.

 Event loop

Each browser tab has an event loop and uses different tasks to coordinate events, user interactions, running scripts, rendering, networking, and so on. It has one or more queues to keep an ordered list of tasks. Other processes run around the event loop and communicate with it by adding tasks to its queue such as:

	The timer waits after a given period and then adds a task to the queue

	We can call a requestAnimationFrame
 function to coordinate DOM updates

	DOM elements can call event handlers

	The browser can request the parsing of an HTML page

	JavaScript can load an external program and perform computation on it

Many of the items in the list above are JavaScript code. They are usually small enough, but if we run any long-running computation it could block execution of other tasks, and as a result it freezes the user interface. To avoid blocking the event loop we can:

	Use the
web worker API

 to execute a long-running computation in a different process of the browser

	Do not wait for the result of a long-running computation synchronously and allow the task to inform us about results via events or callbacks asynchronously

 Asynchronous results via events

The following code uses an event-driven approach to convince us and adds event listeners to execute small code snippets inside:

var request = new XMLHttpRequest();
request.open('GET', url);

request.onload = () => {
 if (req.status == 200) {
 processData(request.response);
 } else {
 console.log('ERROR', request.statusText);
 }
};

request.onerror = () => {
 console.log('Network Error');
};

request.send(); // Add request to task queue

The method send
 in the last line of code just adds another task to the queue. This approach is useful if you receive results multiple times, but this code is quite verbose for a single result.

 Asynchronous results via callbacks

To manage asynchronous results via callbacks, we need to pass a callback function as a parameter into asynchronous function calls:

readFileFunctional('myfile.txt', { encoding: 'utf8' },
 (text) => { // success
 console.log(text);
 },
 (error) => { // failure
 // ...
 }
);

This approach is very easy to understand, but it has its disadvantages:

	It mixes up input and output parameters

	It is complicated to handle errors especially in the code combined many callbacks

	It is more complicated to return result from combined asynchronous functions

 Asynchronous results via promises

As I mentioned earlier, the promise represents the final result of an asynchronous operation happening in the future. Promises have the following advantages:

	You write cleaner code without callback parameters

	You do not adapt the code of the underlying architecture for delivery results

	Your code handles errors with ease

A promise may be in one of the following states:

	

Pending state

 : The asynchronous operation hasn't completed yet

	

Resolved state

 : The asynchronous operation has completed and the promise has a value

	

Rejected state

 : The asynchronous operation failed and the promise has a reason which indicates why it failed

The promise becomes immutable after resolving or rejecting.

Usually, you write the code to return the promise from functions or methods:

function readFile(filename, encode){
 return new Promise((resolve, reject) => {
 fs.readFile(filename, enccode, (error, result) => {
 if (error) {
 reject(error);
 } else {
 resolve(result);
 }
 });
 });
}

We use the new
 keyword with a function constructor to create the promise. We add a factory function with two parameters into the constructor, which does the actual work. Both parameters are callback functions. Once the operation has successfully completed the factory function calls the first callback with the result. If the operation fails it calls the second function with the reason.

The returned promise has several methods such as.then
 and .catch
 to inform us of the result of the execution so that we can act accordingly:

function readJSON(filename){
 return readFile(filename, 'utf8').then((result) => {
 console.log(result);
 }, (error) => {
 console.log(error);
 });
}

We can call another operation returns promise to quickly transform the result of original one:

function readJSON(filename){
 return readFile(filename, 'utf8').then((result) => {
 return JSON.parse(result);
 }, (error) => {
 console.log(error);
 }
}

 Angular 2 concepts

The
Angular 2

 is a development platform for building web, mobile, and desktop applications. It is based on web standards to make web development simpler and more efficient, and entirely different from the Angular JS 1.x. The architecture of Angular 2 builds on top of the web component standard so that we can define custom HTML selectors and program behavior for them. The Angular team develops Angular 2 to use in the ECMAScript 2015, TypeScript, and Dart languages.

 Building blocks of Angular 2

Any web application built on Angular 2 consist of:

	HTML templates with Angular-specific markup

	Directives and components managing the HTML templates

	Services containing application logic

	Special bootstrap
 function which helps to load and start the Angular application

 Module

The Angular 2 application is an assembly of many modules. Angular 2 itself is a set of modules with names beginning with the @angular
 prefix, combined into libraries:

	The @angular/core
 is the primary Angular 2 library and contains all core public APIs

	The @angular/common
 is the library which restricts APIs to reusable components, directives, and form building

	The @angular/router
 is the library that supports navigation

	The @angular/http
 is the library that helps us work asynchronously via HTTP

 Metadata

Metadata is information we can attach to underlying definitions via TypeScript decorators to tell Angular how to modify them. Decorators play a significant role in Angular 2.

 Directives

Directives are the fundamental building block of Angular 2 and allows you to connect behavior to an element in the DOM. There are three kinds of directive:

	Attribute directives

	Structural directives

	Components

A directive is a class with an assigned @Directive
 decorator.

 Attribute directives

The attribute directive usually changes the appearance or behavior of an element. We can change several styles, or use it to render text bold or italic by binding it to a property.

 Structural directives

The structural directive changes the DOM layout by adding and removing other elements.

 Component

The component is a directive with a template. Every component is made up of two parts:

	The class, where we define the application logic

	The view, which is controlled by the component and interacts with it through an API of properties and methods

A component is a class with the assigned @Component
 decorator.

 Template

The component uses the template to render the view. It is regular HTML with custom defined selectors and Angular-specific markups.

 Data binding

The Angular 2 supports
data binding

 to update parts of the template via the properties or methods of a component. The
binding markup

 is part of data binding; we use it on the template to connect both sides.

 Service

Angular 2 has no definition of a service. Any value, function, or feature can be a service, but usually it is a class created for a distinct purpose with an assigned @Injectable
 decorator.

 Dependency injection

Dependency injection is a design pattern that helps configure objects by an external entity and resolve dependencies between them. All elements in the loosely coupled system know little or nothing about definitions of each other. We can replace almost any element with alternative implementation without breaking the whole system.

 SystemJS loader and JSPM package manager

We have discussed TypeScript modules, so it's time to talk about tools we can use for loading modules in our scripts.

 SystemJS Loader

SystemJS

 is a universal dynamic module loader. It hosts the source code on GitHub at the following address https://github.com/systemjs/systemjs
 . It can load modules in the web browser and Node.js in the following formats:

	ECMAScript 2015 (ES6) or TypeScript

	AMD

	CommonJS

	Global scripts

SystemJS loads modules with an exact circle reference, binding support, and assets through the module naming system such as CSS, JSON, or images. Developers can easily extend the functionality of the loader via plugins.

We can add SystemJS loader to our future project:

	Via direct link to a
Content Delivery Network

 (
CDN

)

	By installing via npm manager

In both scenarios, we include a reference to the SystemJS library in our code and configure it via the config
 method:

<!DOCTYPE html>
<html>
 <head>
 <script src="https://jspm.io/system.js"></script>
 <script src="https://jspm.io/system.js"></script>

 <script>
 System.config({
 packages: {
 './': {
 defaultExtension: false
 }
 }
 });
 </script>

 <script>
 System.import('./app.js');
 </script>
 </head>
 <body>
 <div id="main"></div>
 </body>
</html>

We will speak about installation via npm manager a bit later in this chapter.

 JSPM package manager

The developers of the SystemJS followed the single-responsibility principle and implemented a loader for doing only one thing: loading the modules. To make modules available in your project, we need to use the package manager. We spoke about the npm package manager at the beginning, so now we will talk about the JSPM package manager sitting on top of SystemJS. It can:

	Download modules from any registry such as npm and GitHub

	Compile modules into simple, layered, and self-executing bundles with a single command

The JSPM package manager looks like an npm package manager, but it puts the browser loader first. It helps you organize a seamless workflow for installing and using libraries in the browser with minimum effort.

 Writing your first application

Now, when we have everything in place, it's time to create our first project, which is actually an npm module. Open Terminal and create the folder hello-world
 . I intentionally follow the npm package naming conventions:

	The package name length should be greater than zero and cannot exceed 214

	All the characters in the package name must be lowercase

	The package name can consist of/include hyphens

	The package name must contain any URL-safe characters (since the name ends up being part of a URL)

	The package name should not start with dot or underscore letters

	The package name should not contain any leading or trailing spaces

	The package name cannot be the same as a node.js/io.js
 core module or a reserved/blacklisted name like http
 , stream, node_modules
 , and so on.

Move the folder in and run the command:

npm init

npm will ask you several questions to create a package.json
 file. This file keeps important information about your package in JSON format:

	Project information like name, version, author, and license

	Set of packages the project depends on

	Set of pre-configured commands to build and test the project

Here is howpackage.js
 could look:

{
 "name": "hello-world",
 "version": "1.0.0",
 "description": "The Hello World",
 "author": " Put Your Name Here",
 "license": "MIT"
 "scripts": {
 "test": "echo "Error: no test specified" && exit 1"
 }
}

We are ready to configure our project.

 TypeScript compile configuration

Run the Visual Studio code and open the project folder. We need to create aconfiguration file which guides the TypeScript compiler on where to find the source folder and required libraries and how to compile the project. From the
File

 menu create tsconfig.json
 file, and copy/paste the following:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "moduleResolution": "node",
 "sourceMap": true,
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true,
 "removeComments": false,
 "noImplicitAny": false
 },
 "exclude": [
 "node_modules",
 "typings/main",
 "typings/main.d.ts"
]
}

Let's look closer at the compilerOptions
 :

	The target
 option specifies the ECMAScript version such es3
 , es5
 , or es6
 .

	The module
 option specifies the module code generator from one of these: none
 , commojs
 , amd
 , system
 , umd
 , es6
 , or es2015
 .

	The moduleResolution
 option determines how modules get resolved. Use node
 for Node.js/io.js
 style resolution or classic
 .

	The sourceMap
 flag tells the compiler to generate a corresponding map
 file.

	The emitDecoratorMetadata
 emits the design-type metadata for decorated declarations in source.

	The experimentalDecorator
 enables experimental support for ES7 decorators such iterators, generators and array comprehensions.

	The removeComments
 removes all comments except copyright header comments beginning with /*!
 .

	The noImplicitAny
 raises an error on expressions and declarations with an implied any
 type.

You can find the full list of compiler options here: https://www.typescriptlang.org/docs/handbook/compiler-options.html
 .

The TypeScript compiler needs type definition files of JavaScript libraries from node_modules
 of our project because it doesn't recognize them natively. We help it with typings.json
 file. You should create the file and copy/paste the following:

{
 "ambientDependencies": {
 "es6-shim": "registry:dt/es6-shim#0.31.2+20160317120654"
 }
}

We should provide enough information to typings tool to get any typings file:

	The registry dt is located in the DefinitelyTyped source. This value could be npm, git

	The package name in DefinitelyTyped
 source is the es6-shim

	We are looking for the version 0.31.2
 updated 2016.03.17 12:06:54

 Task automation and dependency resolution

Now, it's time to add the libraries into the package.json
 file that the application requires. Please update it accordingly:

{
 "name": "hello-world",
 "version": "1.0.0",
 "description": "The Hello World",
 "author": "Put Your Name Here",
 "license": "MIT",
 "scripts": {
 "start": "tsc && concurrently "npm run tsc:w" "npm run lite" ",
 "lite": "lite-server",
 "postinstall": "typings install",
 "tsc": "tsc",
 "tsc:w": "tsc -w",
 "typings": "typings"
 },
 "dependencies": {
 "@angular/common": "~2.0.1",
 "@angular/compiler": "~2.0.1",
 "@angular/core": "~2.0.1",
 "@angular/http": "~2.0.1",
 "@angular/platform-browser": "~2.0.1",
 "@angular/platform-browser-dynamic": "~2.0.1",
 "@angular/router": "~3.0.1",
 "@angular/upgrade": "~2.0.1",

 "systemjs": "0.19.39",
 "core-js": "^2.4.1",
 "reflect-metadata": "^0.1.8",
 "rxjs": "5.0.0-beta.12",
 "zone.js": "^0.6.25",

 "angular-in-memory-web-api": "~0.1.1",
 "bootstrap": "4.0.0-alpha.4"
 },
 "devDependencies": {
 "concurrently": "^3.0.0",
 "lite-server": "^2.2.2",
 "typescript": "^2.0.3",
 "typings":"^1.4.0"
 }
}

Our configuration includes scripts
 to handle common development tasks such:

	The postinstall
 script runs after the package is installed

	The start
 script runs by the npm start
 command

	The arbitrary scriptslite
 , tsc
 , tsc:w
 , and typings
 are executed by the npm run <script>
 .

You can find more documentation on the following web page: https://docs.npmjs.com/misc/scripts
 .

After finishing the configuration let's run npm
 manager to install the packages required. Go back to Terminal and enter the following command:

npm i

During installation, you may see warning messages in red starting with:

npm WARN

You should ignore them if the installation finishes successfully. After installation, the npm executes the postinstall
 script to run typings
 installation.

 Creating and bootstrapping an Angular component

The Angular 2 application must always have a top-level component, where all other components and logic lie. Let's create it. Go to the Visual Studio code and create a sub-folder app
 of the root directory where we will keep the source code. Create the file app.component.ts
 under app
 folder, and copy/paste the following:

// Import the decorator class for Component
import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: '<h1> Hello, World</h1>'
})
export class AppComponent { }

As you can see, we have added metadata via @Component
 decorator to the class AppComponent
 . This decorator tells Angular how to process the class via configuration with the following options:

	The selector
 defines the name of an HTML tag which our component will link

	We pass in any service in the providers
 property. Any service registered here becomes available to this component and its children

	We give away any number of style files to styles
 a particular component

	The template
 property will hold the template of the component

	The template url
 is a URL to an external file containing a template for the view

We need to export
 the class AppComponent
 to make it visible from other modules and Angular can instantiate it.

The Angular application is a composition of multiple modules marked with NgModule
 decorator. Any application must have at least one root module, so let's create AppModule
 in the app.module.ts
 file:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

@NgModule({
 imports: [BrowserModule]
})
export class AppModule { }

The WebBrowser is a collection of modules and providers specific for web browsers such as documentDomRootRenderer, and so on. We import WebBrowser into the application module to make all of those providers and modules available in our application, thereby reducing the amount of boilerplate code-writing required. Angular contains the ServerModule
 : a similar module for the server side.

Now we need to start up our application. Let's create main.ts
 file under app
 folder, and copy/paste the following:

import { platformBrowserDynamic } from
 '@angular/platform-browser-dynamic';

import { AppModule } from './app.module';

const platform = platformBrowserDynamic();

platform.bootstrapModule(AppModule);

Last but not least, we rely on the bootstrap
 function to load top-level components. We import it from '@angular/platform-browser-dynamic'
 . Angular has a different kind of bootstrap
 function for:

	Web workers

	Development on mobile devices

	Rendering the first page of an application on a server

Angular does several tasks after instantiation of any component:

	It creates a shadow DOM for it

	It loads the selected template into the shadow DOM

	It creates all the injectable objects configured with 'providers'
 and 'viewProviders'

In the end, Angular 2 evaluates all template expressions and statements against the component instance.

Now, create index.html
 file in Microsoft Visual Studio code under the root folder with the following content:

<html>
 <head>
 <title>Angular 2 First Project</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="styles.css">

 <!-- 1. Load libraries -->
 <!-- Polyfill(s) for older browsers -->
 <script src="node_modules/core-js/client/shim.min.js">
 </script>

 <script src="node_modules/zone.js/dist/zone.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js">
 </script>
 <script src="node_modules/systemjs/dist/system.src.js">
</script>

 <!-- 2. Configure SystemJS -->
 <script src="systemjs.config.js"></script>
 <script>
 System.import('app')
 .catch(function(err){ console.error(err); });
 </script>
 </head>

 <!-- 3. Display the application -->
 <body>
 <my-app>Loading...</my-app>
 </body>
</html>

Because we are referencing the systemjs.config.js
 file, let's create it in the root folder with the code:

(function (global) {
 System.config({
 paths: {
 // paths serve as alias
 'npm:': 'node_modules/'
 },
 // map tells the System loader where to look for things
 map: {
 // our app is within the app folder
 app: 'app',
 // angular bundles
 '@angular/core': 'npm:@angular/core/bundles/core.umd.js',
 '@angular/common': 'npm:@angular/common/bundles/common.umd.js',
 '@angular/compiler': 'npm:@angular/compiler/bundles/compiler.umd.js',
 '@angular/platform-browser': 'npm:@angular/platform-browser/bundles/platform-browser.umd.js',
 '@angular/platform-browser-dynamic': 'npm:@angular/platform-browser-dynamic/bundles/platform-browser-dynamic.umd.js',
 '@angular/http': 'npm:@angular/http/bundles/http.umd.js',
 '@angular/router': 'npm:@angular/router/bundles/router.umd.js',
 '@angular/forms': 'npm:@angular/forms/bundles/forms.umd.js',
 // other libraries
 'rxjs': 'npm:rxjs',
 'angular-in-memory-web-api': 'npm:angular-in-memory-web-api',
 },
 // packages tells the System loader how to load when no filename and/or no extension
 packages: {
 app: {
 main: './main.js',
 defaultExtension: 'js'
 },
 rxjs: {
 defaultExtension: 'js'
 },
 'angular-in-memory-web-api': {
 main: './index.js',
 defaultExtension: 'js'
 }
 }
 });
})(this);

 Compiling and running

We are ready to run our first application. Go back to Terminal and type:

npm start

This script runs two parallel Node.js processes:

	The TypeScript compiler in watch mode

	The staticlite-server
 loads index.html
 and refreshes the browser when the application file changes

In your browser you should see the following:

[image: Compiling and running]

 Tip

You can find the source code in the chapter_1/1.hello-world
 folder.

 Adding user input

We now need to include our text input and also, specify the model we want to use. When a user types in the text input, our application shows the changed value in the title. Also, we should import the FormsModule
 into the AppModule
 :

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

@NgModule({
 imports: [BrowserModule,
FormsModule

],
 declarations: [AppComponent],
 bootstrap: [AppComponent]

})
export class AppModule { }

Here is the updated version of app.component.ts
 :

import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: `
<h1>Hello, {{name || 'World'}}</h1>

<input type="text" [(ngModel)]="name" placeholder="name">

`})
export class AppComponent {
 name: string = 'World';
}

The ngModel
 attribute declares a model binding on that element, and anything we type into the input box will be automatically bound to it by Angular. Obviously, this isn't going to be displayed on our page by magic; we need to tell the framework where we want it echoed. To show our model on the page, we just need to wrap the name of it in double curly braces:

{{name}}

I popped this in place of World in our <h1>
 tag and refreshed the page in my browser. If you pop your name in the input field, you'll notice that it's automatically displayed in your heading in real time. Angular does all of this for us, and we haven't written a single line of code:

[image: Adding user input]

Now, while that's great, it would be nice if we could have a default in place so it doesn't look broken before a user has entered their name. What's awesome is that everything in between those curly braces is parsed as an Angular expression, so we can check and see if the model has a value, and if not, it can echo 'World'
 . Angular calls this an expression and it's just a case of adding two pipe symbols as we would in TypeScript:

{{name || 'World'}}

It's good to remember that this is TypeScript, and that's why we need to include the quotation marks here, to let it know that this is a string and not the name of a model. Remove them and you'll notice that Angular displays nothing again. That's because both the name and World
 models are undefined.

 Tip

You can find the source code into the chapter_1/2.hello-input
 . folder.

 Integrating Bootstrap 4

Now that we've created our Hello World
 application, and everything is working as expected, it's time to get involved with Bootstrap and add a bit of style and structure to our app. At the time of writing this book Bootstrap 4 was in alpha version, so bear in mind that the code and markup of your application might be slightly different. We need to add the Bootstrap 4 style sheet into the index.html
 file:

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="stylesheet" href="node_modules/bootstrap/dist/css/bootstrap.css">

<link rel="stylesheet" href="styles.css">

The application is currently misaligned to the left, and everything is looking cramped, so let's sort that out first with a bit of scaffolding. Bootstrap comes with a great
mobile first

 responsive grid system that we can utilize with the inclusion of a few div
 elements and classes. First, though, let's get a container around our content to clean it up immediately:

 Note

Mobile first is a way of designing/developing for the smallest screens first and adding to the design rather than taking elements away.

<div class="container">
 <h1>Hello, {{name || 'World'}}</h1>
 <input type="text" [(ngModel)]="name">
</div>

If you resize your browser window, you should start to notice some of the responsiveness of the framework coming through and see it collapsing:

[image: Integrating Bootstrap 4]

Now, I think it's a good idea to wrap this in what Bootstrap calls a Jumbotron (in previous versions of Bootstrap this was a hero unit). It'll make our headline stand out a lot more. We can do this by wrapping our H1
 and input
 tags in a new div
 with the jumbotron
 class:

<div class="container">
 <div class="jumbotron">
 <h1>Hello, {{name || 'World'}}</h1>
 <input type="text" ng-model="name">
 </div>
</div>

[image: Integrating Bootstrap 4]

It's starting to look a lot better, but I'm not too happy about our content touching the top of the browser like that. We can make it look a lot nicer with a page header, but that input field still looks out of place to me.

First, let's sort out that page header:

<div class="container">
 <div class="page-header">
 <h2>Chapter 1 <small>Hello, World</small></h2>
 </div>
 <div class="jumbotron">
 <h1>Hello, {{name || 'World'}}</h1>
 <input type="text" [(ng-model)]="name">
 </div>
</div>

[image: Integrating Bootstrap 4]

I've included the chapter number and title here. The <small>
 tag within our <h2>
 tag gives us a nice differentiation between the chapter number and the title. The page-header class itself just gives us some additional margin and padding as well as a subtle border along the bottom.

The utmost thing I think we could improve upon is that input box. Bootstrap comes with some cool input styles so let's include those. First, we need to add the class of form-control to the text input. This will set the width to 100% and also bring out some beautiful styling such as rounded corners and glowing when we focus on the element:

<input type="text" [(ngModel)]="name" class="form-control">

[image: Integrating Bootstrap 4]

Much better, but to me it looks a little small when you compare it with the heading. Bootstrap provides two additional classes we can include that will either make the element smaller or larger: form-control-lg
 and form-control-sm
 respectively. In our case, the form-control-lg
 class is the one we want, so go ahead and add that to the input.

<input type="text" [(ngModel)]="name"
 class="form-control form-control-lg">

[image: Integrating Bootstrap 4]

 Tip

You can find the source code in the chapter_1/3.hello-bootstrap
 .

 Summary

Our app's looking great and working exactly how it should, so let's recap what we've learnt in the first chapter.

To begin with, we saw just how to setup a working environment and finish the TypeScript crash course.

The Hello World
 app we've created, while being very basic, demonstrates some of Angular's core features:

	Component directives

	Application bootstrapping

	Two-way data binding

All of this was possible without writing a single line of TypeScript, as the component we created was just to demonstrate two-way data binding.

With Bootstrap, we utilized a few of the many available components such as the Jumbotron and the page-header classes to give our application some style and substance. We also saw the framework's new mobile first responsive design in action without cluttering up our markup with unnecessary classes or elements.

In Chapter 2
 ,
Working with Bootstrap Components

 , we're going to explore more Bootstrap fundamentals and introduce the project we're going to be building over the course of this book.

 Chapter2.Working with Bootstrap Components

In the world of web designing and development, we have heard a lot about
Twitter Bootstrap 3

 . The hero of our days is
Bootstrap 4

 , a CSS framework that ultimately helps to design web applications easier and faster.

In this chapter, I will explain how you can start using Bootstrap 4 by showcasing a demo layout page, and how you can explore the framework and customize it to your requirements. At the end of the chapter, you will have a solid understanding of the following:

	How to use
Syntactically Awesome Style Sheets

 (
Sass

)

	How to add Bootstrap 4 into your project

	How to design layouts with grids and containers

	How to add navigation elements

	How to customize selected components

 Bootstrap 4

In the first chapter, we spoke briefly about Twitter Bootstrap 4, but it's time to look at this CSS framework more closely. However, before delving deeper into Bootstrap 4 let's talk about all of the newly introduced features:

	The source CSS files of Bootstrap 4 are based on Sass

	The rem
 is the primary CSS unit instead of px

	Global font size increased from 14px
 to 16px

	New grid tiers have been added for small devices (from ~480px
 and below)

	Bootstrap 4 optionally supports
Flex Box Grid

	Adds improved
Media Queries

	The new
Card

 component replaces the
Panel

 ,
Well

 , and
Thumbnail

	There is the new reset component called Reboot.css

	Everything is customizable with Sass variables

	Dropped support for IE 8 and iOS 6

	It no longer supports non-responsive usage

 Introduction to Sass

If you are not familiar with Sass, I think now is the right moment to introduce to you that fantastic CSS preprocessing framework. It is not a secret that the preprocessing of a CSS file allows you to write more concise and less verbose stylesheets. The syntax of the first version of Sass used indentations, didn't require semi-colons, had shorthand operators, and used .sass
 file extension. It was so different from CSS that Sass version 3 started to support new formats with brackets, semicolons, and .scss
 file extensions. Let's compare the various forms to each other.

Here is a vanilla CSS style:

#container {
 width:100px;
 padding:0;
}
#container p {
 color: red;
}

In files with the .sass
 extension, we should use only indentation, and it is heavily dependent on white spaces:

$red: #ff0000
#container
 width:100px
 padding: 0
 p
 color:$red

In files with .scss
 extension, we use brackets and semicolons:

$red: #ff0000;
#container {
 width:100px;
 padding:0;
 p {
 color :$red;
 }
}

It is ultimately up to you which style you prefer, but I will use the newest one based on .scss
 files in this book.

 Setting up of Ruby

Before you start using Sass, you will need to install Ruby, but first check if you already has it. Open the Terminal and type ruby -v
 .

If you don't get an error, skip install Ruby step. Otherwise, you'll install a fresh Ruby from the official Ruby website https://www.ruby-lang.org/en/documentation/installation
 .

 Setting up of Sass

After finishing the installation of Ruby, open Terminal and type the following commands.

	For Windows:

 gem install sass

	For Linux and Mac:

 sudo gem install sass

This command will install Sass and necessary dependencies for you. Run the following command to check installation of Saas on your PC:

sass -v

The Sass must respond with a version number:

Sass 3.4.22 (Selective Steve)

Bear in mind that the version of Sass installed on my computer could be different from yours. If these commands gave you a version number, you are ready to go with Sass development.

Now, that we have installed Sass, we can explore its files and output them into CSS. You can use CLI or GUI to get you started with Sass. If you prefer a GUI style of development, please use one from the followinglist:

	CodeKit (Mac, Paid): http://incident57.com/codekit

	Compass.app (Windows, Mac, Linux, Paid, Open Source): http://compass.kkbox.com/

	Ghostlab (Web-based, Paid): http://www.vanamco.com/ghostlab

	Hammer (Mac, Paid): http://hammerformac.com

	Koala (Windows, Mac, Linux, Open Source): http://koala-app.com

	LiveReload (Mac, Paid, Open Source): http://livereload.com

	Prepros (Windows, Mac, Linux, Paid): https://prepros.io

	Scout (Windows, Mac, Open Source): https://github.com/scout-app/scout-app

Personally, I prefer the Scout GUI, which runs Sass and Compass in a self-contained Ruby environment; it does all of the heavy lifting, so we will never have to worry about technical issues such as setting up Ruby.

Another interesting option I would recommend is a web-based Sass playground
SassMeister

 which you can find at http://www.sassmeister.com
 . We will use it a bit in our Sass crash course.

 Sass crash course

The main idea behind Sass is that we create reusable, less verbose code which is easy to read, and understand. Let's see what features make that happens. Please open the SassMeister website and prepare for our exercises.

 Variables

We can create variables in Sass, especially to reuse them throughout our document. Acceptable values for variables include:

	number

	string

	color

	null

	list

	map

We use the $
 symbol to define a variable. Switch to SassMeister and create our first variables:

$my-pad: 2em;
$color-primary: red;
$color-secondary: #ff00ed;

The SassMeister compiles them but without output any CSS. We just define variables in the scope, and that is it. We need to use them in the CSS declaration to see the result of compilation:

body {
 background-color: $color-primary;
}

.container {
 padding: $my-pad;
 color: $color-secondary;
}

Here is the result of compilation from Sass to CSS:

body {
 background-color: red;
}

.container {
 padding: 2em;
 color: #ff00ed;
}

 Mathematical expressions

Sass allows us to use the following mathematical operators in arithmetical expressions:

	Addition (+)

	Subtraction (-)

	Division (/)

	Multiplication (*)

	Modulo (%)

	Equality (==)

	Inequality (!=)

Jump to SassMeister and play with some introduced mathematical operations:

$container-width: 100%;
$font-size: 16px;

.container {
 width: $container-width;
}

.col-4 {
 width: $container-width / 4;
 font-size: $font-size - 2;
}

Here is some CSS compiler code:

.container {
 width: 100%;
}

.col-4 {
 width: 25%;
 font-size: 14px;
}

I would like to warn you against the use of incompatible units in mathematical operators. Try the following Sass code in your playground:

 h2 {
 // Error: Incompatible units: 'em' and 'px'.
 width: 100px + 2em;
 // Result: 52px
 height: 50px + 2;
}

However, multiplying two numbers of the same unit produces an invalid CSS value:

h2 {
 // Error: 100px*px isn't a valid CSS value.
 width: 50px * 2px;
}

The forward slash symbol (/) is a part of CSS shorthand properties. For example, here are the font declarations:

font-style: italic;
font-weight: bold;
font-size: .8em;
line-height: 1.2;
font-family: Arial, sans-serif;

It can be shortened to the following:

font: italic bold .8em/1.2 Arial, sans-serif;

To avoid any possible issues, you should always wrap an expression that containing the division operator of non-variable values in parentheses such that:

h2 {
 // Result: Outputs as CSS
 font-size: 16px / 24px;
 // Result: Does division because uses parentheses
 width: (16px / 24px);
}

 Note

You should avoid using different units in mathematical operators.

 Functions

Sass has a reach set of built-in functions and here is the address where you can find all of them:

http://sass-lang.com/documentation/Sass/Script/Functions.html

Here is the simplest example of the use of the rgb($red, $green, $blue)
 function. It creates a color
 from red, green, and blue values:

$color-secondary: rgb(ff,00,ed);

 Nesting

Sass allows us to have a declaration inside another declaration. In the following vanilla CSS code we define two statements:

.container {
 width: 100px;
}

.container h1 {
 color: green;
}

We have a container class and header within container style declarations. In Sass we can create the compact code:

.container {
 width: 100px;
 h1 {
 color: green;
 }
}

Nesting makes code more readable and less verbose.

 Imports

Sass allows you to break styles into separate files and import them into another. We can use @import
 directive with or without the file extensions. There are two lines of code giving the same result:

@import "components.scss";
@import "components";

 Extends

If you need to inherit style from an existing one, Sass has @extend
 directive to help you:

.input {
 color: #555;
 font-size: 17px;
}

.error-input {
 @extend .input;
 color: red;
}

Here is the result of how the Sass compiler properly handled the compiled code:

.input, .error-input {
 color: #555;
 font-size: 17px;
}

.error-input {
 color: red;
}

 Placeholders

In the case when you want to extend a declaration with a set of styles that don't exist, Sass helps with the placeholder selector:

%input-style {
 font-size: 14px;
}

.input {
 @extend %input-style;
 color: #555;
}

We use %
 sign to prefix a class name and with the help of @extend
 , magic happens. Sass doesn't render the placeholder. It renders only the result of its extending elements. Here is the compiled code:

.input {
 font-size: 14px;
}

.input {
 color: #555;
}

 Mixins

We can create reusable chunks of CSS styles with mixins. Mixins always return markup code. We use the @mixin
 directive to define mixins and @include
 to use them in the document. You may have seen the following code quite often before:

a:link { color: white; }
a:visited { color: blue; }
a:hover { color: green; }
a:active { color: red; }

Indeed, changing the color of an element depends on states. Usually we write this code over and over again, but with Sass we can do it like this:

@mixin link ($link, $visit, $hover, $active) {
 a {
 color: $link;
 &:visited {
 color: $visit;
 }
 &:hover {
 color: $hover;
 }
 &:active {
 color: $active;
 }
 }
}

The &
 symbol here points to the parent element, that is, to the anchor element. Let's use this mixin in the following example:

.component {
 @include link(white, blue, green, red);
}

Here is the mixin compiled to CSS code:

.component a {
 color: white;
}
.component a:visited {
 color: blue;
}
.component a:hover {
 color: green;
}
.component a:active {
 color: red;
}

 Function directives

The function directive is another feature of Sass that helps to create reusable chunks of CSS style return values via the @return
 directive. We use the @function
 directive to define it:

@function getTableWidth($columnWidth,$numColumns,$margin){
 @return $columnWidth * $numColumns + $margin * 2;
}

In this function we calculate that the width of the table depends on individual column widths, the number of columns, and margin values:

$column-width: 50px;
$column-count: 4;
$margin: 2px;

.column {
 width: $column-width;
}

.table {
 background: #1abc9c;
 height: 200px;
 width: getTableWidth($column-width,$column-count,$margin);
 margin: 0 $margin;
}

The resulting CSS code looks like this:

.column {
 width: 50px;
}

.table {
 background: #1abc9c;
 height: 200px;
 width: 204px;
 margin: 0 2px;
}

I think it's time to leave our Sass crash course, but please don't think that you know everything about it. Sass is big and incredibly powerful, so if you decide to continue the journey we started here, please get more information here: http://sass-lang.com/documentation/file.SASS_REFERENCE.html
 .

 Example project

Let's talk about what web application we will develop while reading this book. I have decided that an e-commerce application is the best candidate to demonstrate the full flavor of different Bootstrap 4 components tightly in one place.

The term e-commerce, as we think of it today, refers to the buying and selling of goods or services over the Internet, so we design the web application based on a real-world scenario. After the introduction, we will consolidate a high-level list of customer requirements. We will then prepare a series of mockups which will help you get a clearer picture of how the final application will look to an end-user. Finally, we will break down the customer requirements into a set of implementation tasks and structure the application so that the responsibilities and interactions among functional components are clearly defined.

 The scenario

The Dream Bean is a small grocery store which collaborates with several local farms to supply organic food and produce. The store has a long-standing customer base and is bringing increasing profits to the area. The store has decided to investigate the possibility of providing an online delivery service to customers because a recent survey has indicated that 9% of its regular clientele has continuous Internet access, and 83% would be interested in using this service.

The manager of the grocery store has asked you to create a website that will enable their customers to shop online from a broad range of devices includes cell phones, tablets, and desktop computers.

 Gathering customer requirements

Before making any design or implementation decisions, you need to collect information from the client; thus, after direct communication with client, we have the following conditions:

	The customer can buy products available in the physical store. There are the following product categories:

	Meat

	Seafood

	Bakery

	Dairy

	Fruit and vegetables

	Take away

	The customer can browse all the goods or filter them by category

	The customer has a virtual shopping cart

	The customer can add, remove, or update item quantities in the shopping cart

	The customer can view a summary of everything

	The customer can place an order and make payment through a secure checkout process

 Preparing use-cases

Now, when the requirements are in place, it is time to work with managers from the Dream Bean to gain an understanding of how the website should look and behave. We create a set of use-cases that describe how the customer will use the web application:

	The customer visits the welcome page and selects a product by category

	The customer browses products within the selected category page, then adds a product to shopping cart

	The customer clicks on the
Info

 button to open a separate sheet which contains full information about the product and then adds a product to the shopping cart

	The customer continues shopping and selects a different category

	The customer adds several products from this class to the shopping cart

	The customer selects
View Cart

 option and updates quantities for products in the cart

	The client verifies the shopping cart contents and proceeds to checkout

	On the checkout page, the customer views the cost of the order and other information, fills in personal data, then submits the details

We continue to work with staff of Dream Bean and need to create mockups in one of the following ways:

	Using storyboard software

	Creating a set of wireframes

	Using paper prototyping

I use
Balsamiq Mockups

 to help me quickly create wireframes. The fully functional trial version of Balsamiq Mockups works for 30 days and is available from the official website: https://balsamiq.com
 .

 Welcome page

The welcome page is an entry point for the application. It introduces the business and service to the customer and enables him or her to navigate to any of the product categories. We add a slideshow in the middle of the welcome page, as shown here:

[image: Welcome page]

The wireframe of the welcome page

 Products page

The products page provides a listing of all goods within the chosen category. From this page, a customer can view all product information, and add any of the listed products to his or her shopping cart. A user can also navigate to any of the provided categories or use the
Quick Shop

 feature to search products by name, as shown here:

[image: Products page]

The wireframe of the products page

 Products page

The products page displays information about the product. On this page the customer can do the following:

	Check the availability of the product

	Update the quantity of the product

	Add the product to the cart by clicking
Buy it

	Return to the products list by clicking on
Continue Shopping

[image: Products page]

The wireframe of the product page

 Cart page

The cart page lists all items held in the user's shopping cart. It displays product details for each item and from this page, a user can do the following:

	Remove all goodies from his or her cart by clicking
Clear Cart

	Update the quantity for any listed item

	Return to the products list by clicking on
Continue Shopping

	Proceed to checkout by clicking
Checkout

The following is how the cart page might look:

[image: Cart page]

The wireframe of the cart page

 Checkout page

The checkout page displays the customer details form, purchase conditions, and order information. The customer should fill in the form, confirm payment, and click on the
Submit

 button to start the payment process, as shown here:

[image: Checkout page]

The wireframe of the checkout page

We have everything to initiate the journey with Angular 2 and Bootstrap 4. We projected the business requirements onto mockups, and now we need to do the following:

	Open Terminal, create folder ecommerce
 and move in this folder

	Copy the contents of the project from the ecommerce-seed
 folder into the new project

	Run the following script to install npm modules:

npm install

	Start the
TypeScript

 watcher and lite server with the following command:

 npm run start

This script opens the web browser and navigates to the welcome page of the project. We are ready to start development.

 Note

You can find the source code in the chapter_2/1.ecommerce-seed
 folder.

 Designing layouts with grids and containers

Bootstrap includes a powerful mobile-first grid system for building designs of all shapes and sizes, and that sounds very promising because we need to create several pages for our project. We will use the grid systems for creating the page layouts through a series of rows and columns. Since Bootstrap is developed to be mobile first, we use a handful of media queries
 to create sensible breakpoints for our layouts and interfaces. These breakpoints are mostly based on minimum viewport widths and allow us to scale up elements as the viewport changes. There are three main components of the grid system, they are:

	Container

	Row

	Column

The container is the core and requires layout element in Bootstrap. There are two classes to create the containers for all other items:

	You can create a responsive, fixed-width container with a container
 class. This one doesn't have extra space on both sides of the hosting element and it's max-width
 property changes at each breakpoint.

	You can use the full-width container with a container-fluid
 class. This one always has 100% width of a viewport.

To create a simple layout for our project open app.component.html
 file, and insert a div
 element with a container
 class inside:

<div class="container">
</div>

We can nest containers, but most layouts do not require that. The container is just a placeholder for rows, so let's add the row inside:

<div class="container">
 <div class="row">
 </div>
</div>

The row has a row
 class, and the container can contain as many rows as you need.

 Note

I recommend using one or several containers with all of the rows inside to wrap the page content and center elements on the screen.

A row is a horizontal group of columns. It exists only for one purpose: to keep columns lined up correctly. We must put the substance of the page only inside columns and indicate the number of columns to use. Each row can contain up to 12 of them.

We can add the column to the row as a combination of a col
 class, and it prefixes size:

<div class="col-md-12">

Bootstrap 4 supports five different sizes of displays, and the columns classes names depend on them:

	
col-xs
 : For an extra small display (screen width less than 34em or 544px)

	
col-sm
 : For a smaller display (screen width 34em or 544ps and up)

	
col-md
 : For a medium display (screen width 48em or 768px and up)

	
col-lg
 : For a larger display (screen width 62em or 992px and up)

	
col-xl
 : For an extra large display (screen width 75em or 1200px and up)

The column class names always apply to devices with screen widths greater than or equal to the breakpoint sizes.

The width of a column sets in percentage, so it is always fluid and sized about the parent element. Each column has a horizontal padding to create a space between individual columns. The first and last columns have negative margins, and this is why the content within the grid lines up with the substance outside. Here is an example of a grid for extra small devices:

[image: Designing layouts with grids and containers]

Look at the welcome page mockup of our project and imagine splitting it into rows and columns:

[image: Designing layouts with grids and containers]

The wireframe of the welcome page

Our markup has a minimum of three rows. The first has a header with company logo and menu. It spans 12 mid-sized columns marked with col-md-12
 . I have used grid for now, but later I will change it to a more suitable component:

<div class="container">
 <div class="row">
 <div class="col-md-12 table-bordered">
 <div class="product-menu">Logo and Menu</div>
 </div>
 </div>
 <!-- /.row -->
</div>

The second one has a single column, contains an image 1110x480px, and spans all 12 mid-sized columns marked with col-md-12
 like the previous one:

<div class="container">
 <div class="row">
 <div class="col-md-12 table-bordered">
 <img class="img-fluid center-block product-item"
 src="http://placehold.it/1110x480" alt="">
 </div>
 </div>
 <!-- /.row -->

The last one includes the places with six product categories, and each of them occupies a different number of columns depending on the size of the layout:

	Four middle-sized columns marked with col-md-4

	Six small columns marked as col-sm-6

	Twelve extra small columns marked with col-xs-12

The size of each image is 270x171px. The markup of the bottom part of the screen is quite long, so I cut it off:

<div class="row">
 <div class="col-xs-12 col-sm-6 col-md-4 table-bordered">

 <img class="img-fluid center-block product-item"
 src="http://placehold.it/270x171" alt="">

 </div>
 <!-- /.col -->
 <div class="col-xs-12 col-sm-6 col-md-4 table-bordered">

 <img class="img-fluid center-block product-item"
 src="http://placehold.it/270x171" alt="">

 </div>
 <!-- /.col -->
...
 <div class="col-xs-12 col-sm-6 col-md-4 table-bordered">

 <img class="img-fluid center-block product-item"
 src="http://placehold.it/270x171" alt="">

 </div>
 <!-- /.col -->
 </div>
 <!-- /.row -->
</div>
<!-- /.container -->

I intentionally added the Bootstrap class table-bordered
 to display the boundaries of columns. I will remove it later. Here is the result of how the website looks like:

If I change the viewport to a smaller size, Bootstrap immediately transforms columns into rows, as you see on the preceding diagram. I didn't use real images on the page but pointed to http://placehold.it
 . This is a service on the web that generates placeholder images of specified sizes on the fly. The link like this http://placehold.it/270x171
 returns the placeholder image with 270x171px size.

 Using images

In our markup I used images, so pay attention to the img-fluid
 class which opts the image into responsive behavior:

<img class="img-fluid center-block product-item"
 src="http://placehold.it/270x171" alt="">

The logic behind the class will never allow the image to become larger than the parent element. At the same time, it adds lightweight styles management via classes. You can easily design the shape of the picture as follow:

	Rounded it with img-rounded
 class. The border radius is 0.3rem

	Circle it with the help of img-circle
 , so the border radius became to 50%

	Transform it with img-thumbnail

In our example, the center-block
 centered the image, but you can align it with helper float or text alignment classes:

	The class pull-sm-left
 floats left on small or wider devices

	The class pull-lg-right
 floats right on large and bigger devices

	The class pull-xs-none
 prevents floating on all viewport sizes

 Note

You can find the source code in the chapter_2/2.ecommerce-grid
 folder.

Now, I would like to create the plates and change them with images at the bottom of the page. The best one that we can use for this purposes is a
Card

 component.

 Using Cards

A Card component is a very flexible and extensible content container requiring a small amount of markup and classes to make fantastic things. The Cards replaces the following elements that exist in Bootstrap 3:

	Panels

	Wells

	Thumbnails

The simplest way to create it is to add the card
 and card-block
 classes to the element:

<div class="col-xs-12 col-sm-6 col-md-4">
 <div class="
card

">
 <img class="card-img-top center-block product-item"
 src="http://placehold.it/270x171" alt="Bakery">
 <div class="card-block">
 <h4 class="card-title">Bakery</h4>
 <p class="card-text">The best cupcakes, cookies, cakes,
 pies, cheesecakes, fresh bread,
 biscotti, muffins, bagels, fresh coffee
 and more.</p>
 Browse
 </div>
 </div>
</div>

The card-block
 class adds a padding space between the content and the card border. In my example, I moved it inside to allow the card header to line up flush with the card edge. If you need to, you can create a header with card-header
 and footer with card-footer
 classes. As your see, it includes a broad range of components in the Card like images, texts, list groups, and more. Here is how our Card component looks:

[image: Using Cards]

But this is not only a single place where we use Card components. We will use them a lot in the following chapters.

 Note

You can find the source code in the chapter_2/3.ecommerce-cards
 folder.

 Using buttons

I have added a button to the Card component, and I want to talk about it. You can apply the button style to the following elements:

	The standard button
 works correctly across all browsers.

	The input
 element with type="button"
 .

	The anchor element, only behaves like a button with role="button"
 . Use it only to trigger in-page functionality rather than linking to new a page or section within the current one.

	The label when working with checkboxes and radio buttons.

 General button styles

In Bootstrap 4, we can find seven styles for buttons and each of them for a different semantic purpose. The class btn
 adds style for contextual variations, sizes, states of buttons placed standalone, in forms, or dialogs:

[image: General button styles]

The primary actions style provides an extra visual weight:

<button type="button" class="
btn btn-primary

">Primary</button>

The secondary, less important than primary actions style provides for reduced background color:

<button type="button" class="
btn btn-secondary

">Secondary</button>

The success indicates any success operations or position actions:

<button type="button" class="
btn btn-success

">Success</button>

The info is to guide users for informational actions or alerts:

<button type="button" class="
btn btn-info

">Info</button>

The warning one offers warning with cautions actions:

<button type="button" class="
btn btn-warning

">Warning</button>

The danger indicates dangerous or potentially negative actions:

<button type="button" class="
btn btn-danger

">Danger</button>

The link one presents a button as a link:

<button type="button" class="
btn btn-link

">Link</button>

 Outline button styles

You can remove hefty background images and colors on any button of any predefined styles by replacing the default modified classes with the .btn-outline-*
 styles.

[image: Outline button styles]

<button type="button"
 class="
btn btn-outline-primary

">Primary</button>
<button type="button"
 class="
btn btn-outline-secondary

">Secondary</button>
<button type="button"
 class="
btn btn-outline-success

">Success</button>
<button type="button"
 class="
btn btn-outline-info

">Info</button>
<button type="button"
 class="
btn btn-outline-warning

">Warning</button>
<button type="button"
 class="
btn btn-outline-danger

">Danger</button>

 Note

There is no outline for link buttons (that is, there is no btn-outline-link
 class).

 Button sizes

Buttons may have small and big sizes:

[image: Button sizes]

Use btn-sm
 and btn-lg
 classes to make that happen:

<button type="button"
 class="btn btn-primary btn-lg">Large button</button>
<button type="button"
 class="btn btn-primary btn-sm">Small button</button>

 Block level button styles

If you planning to create block level buttons that span the full width of parent element, just add btn-block
 class:

<button type="button"
 class="btn btn-primary btn-lg btn-block">Block</button>

[image: Block level button styles]

 The button with active style

The pseudo-classes in button styles update the visual state of elements according to user actions, but if you need to change the states manually use active
 class:

<a href="#" class="btn btn-primary btn-lg active"
 role="button">Primary link

[image: The button with active style]

 The button with inactive state

We can make button looks inactive with the disabled
 property:

<button type="button" disabled
 class="btn btn-lg btn-primary">Primary button</button>

[image: The button with inactive state]

 Radio buttons and checkboxes

Bootstrap 4 provides button styles with toggle features to input
 elements similar to radio buttons and checkboxes. To achieve that you need to create the massive construction that includes a group element, a label, and the input element itself:

<div class="btn-group" data-toggle="buttons">

 <label class="btn btn-primary active">

 <input type="checkbox" checked autocomplete="off">
 Checkbox 1 (active)
 </label>

<label class="btn btn-primary">

 <input type="checkbox" autocomplete="off"> Checkbox 2
 </label>

 <label class="btn btn-primary">

 <input type="checkbox" autocomplete="off"> Checkbox 3
 </label>
</div>

[image: Radio buttons and checkboxes]

<div class="btn-group" data-toggle="buttons">

 <label class="btn btn-primary active">

 <input type="radio" name="options" id="option1"
 autocomplete="off" checked> Radio 1 (preselected)
 </label>

 <label class="btn btn-primary">

 <input type="radio" name="options" id="option2"
 autocomplete="off"> Radio 2
 </label>

 <label class="btn btn-primary">

 <input type="radio" name="options" id="option3"
 autocomplete="off"> Radio 3
 </label>
</div>

[image: Radio buttons and checkboxes]

 Navs

Bootstrap 4 provides a base style for navigation elements. It exposes the base nav
 class that shares general mark-up and styles by extending it. All navigation components are built on top of this by specifying additional styles. It doesn't have styles for the active state. By the way, you can use these methods for disabled buttons.

 The base Nav

Any
Nav

 component must have the outer navigation element based on ul
 or nav
 elements. Here is a list-based approach displaying navigation elements vertically:

<ul class="nav">
 <li class="nav-item">
 Link

 <li class="nav-item">
 Link

 <li class="nav-item">
 Another link

 <li class="nav-item">
 Disabled

[image: The base Nav]

Our mark-up can be very flexible because all components are based on classes. We can use nav
 with regular anchor elements to layout navigation horizontally:

<nav class="nav">
 Active
 Link
 Another link
 Disabled
</nav>

[image: The base Nav]

I like this approach because it is less verbose than the list-based one.

 Inline navigation

You can easily add inline navigation elements with spacing horizontally as shown in the preceding example with the help of the nav-inline
 class:

<ul class="nav nav-inline">
 <li class="nav-item">
 Link

 <li class="nav-item">
 Link

 <li class="nav-item">
 Another link

 <li class="nav-item">
 Disabled

 Tabs

We can quickly transform Nav components from the preceding, to generate a tabbed interface with the nav-tabs
 class:

<ul class="nav
nav-tabs

">
 <li class="nav-item">
 Active

 <li class="nav-item">
 Link

 <li class="nav-item">
 Another link

 <li class="nav-item">
 Disabled

[image: Tabs]

 Pills

Just change nav-tabs
 to nav-pills
 to display the
pills

 instead:

<ul class="nav
nav-pills

">
 <li class="nav-item">
 Active

 <li class="nav-item">
 Link

 <li class="nav-item">
 Another link

 <li class="nav-item">
 Disabled

[image: Pills]

 Stacked pills

If you need layout pills vertically, use thenav-stacked
 class:

<ul class="nav
nav-pills nav-stacked

">
 <li class="nav-item">
 Active

 <li class="nav-item">
 Link

 <li class="nav-item">
 Another link

 <li class="nav-item">
 Disabled

[image: Stacked pills]

 Navigation with dropdowns

You can add a drop-down menu to inline navigation, tabs, or pills by applying a dropdown
 class to the list item and with a little extra HTML and drop-down JavaScript plugins:

<ul class="nav nav-tabs">
 <li class="nav-item">
 Active

 <li class="nav-item dropdown">
 <a class="nav-link dropdown-toggle" data-toggle="dropdown"
 href="#" role="button" aria-haspopup="true"
 aria-expanded="false">Dropdown
 <div class="dropdown-menu">
 Action
 Another action
 Something else here
 <div class="dropdown-divider"></div>
 Separated link
 </div>

 <li class="nav-item">
 Another link

 <li class="nav-item">
 Disabled

[image: Navigation with dropdowns]

 Navbars

I mentioned earlier the header with company logo and menu, temporarily implemented as a grid. Now we change this construction to the suitable component. Please welcome the
Navbars

 .

The Navbar is just a simple wrapper helping to position containing elements. Usually, it displays as a horizontal bar, but you can configure it to collapse on smaller layouts.

Like many other components of Bootstrap the Navbar container requires a small amount of markup and classes to make it work:

	To create one, you must use a navbar
 class in conjunction with a color scheme

	The topmost must be a nav
 or div
 element with role="navigation"

 Content

We can include built-in sub-components to add the placeholders when necessary:

	Use navbar-brand
 class for your company, product, or project name.

	Use navbar-nav
 class for full-height and lightweight navigation. It includes support for drop-downs as well.

	Use navbar-toggler
 class to organize collapsible behavior.

Let's use what we know about Navbar to build our header. First of all, I use nav
 to create the topmost element:

<nav class="navbar navbar-light bg-faded">

Then, I need navbar-brand
 class for the company name. We can apply this class to most elements, but an anchor works best:

 <a class="
navbar-brand

" href="#">Dream Bean

At the end, I add a set of navigation links with active
 first:

 <ul
class="nav navbar-nav"

>
 <lii
class="nav-tem active"

>
 <a
class="nav-link"

 href="#">
 Home
(current)

 <li
class="nav-item"

>
 <a
class="nav-link"

 href="#">Products

 <li
class="nav-item"

>
 <a
class="nav-link"

 href="#">Checkout

 <li
class="nav-item"

>
 <a
class="nav-link"

 href="#">Sign out

</nav>
<!-- /.navbar -->

Here is our header with branding and a set of links:

[image: Content]

With the help of nav
 classes we can make navigation simple by avoiding the list-based approach entirely:

<nav class="navbar navbar-light bg-faded">
 Dream Bean
 <div class="nav navbar-nav">

 Home (current)

 Products
 Checkout
 Sign out
 </div>
</nav>

 Colors

You can manage the colors of Navbar very elegantly:

	Specify the scheme with navbar-light
 or navbar-dark
 classes

	Add color values via one of the Bootstrap color classes or create your own color with CSS

In my example I used a light scheme and a Bootstrap faded background color. Let's change it to a dark scheme and a custom color:

<nav class="navbar
navbar-dark

" style="
background-color: #666

">
 Dream Bean
 <div class="nav navbar-nav">

 Home (current)

 Products
 Checkout
 Sign out
 </div>
</nav>

[image: Colors]

It looks nice, but Navbar is spanning the full width of the viewport. This is not what managers from Dream Bean want. The header must be centered and have a specific size.

 Containers

We will wrap our Navbar in a container
 class to center it on the page:

<div class="container">

 <nav class="navbar navbar-dark" style="background-color: #666">
 Dream Bean
 <div class="nav navbar-nav">

 Home (current)

 Products
 Checkout
 Sign out
 </div>
 </nav>

</div>

[image: Containers]

Another correction they would like to have is that the header must be statically placed at top of the page. I used the navbar-fixed-top
 class to place it at the top of the viewport:

<div class="container">
 <nav class="navbar navbar-fixed-top navbar-dark"
 style="background-color: #666">
 Dream Bean
 <div class="nav navbar-nav">

 Home (current)

 Products
 Checkout
 Sign out
 </div>
 </nav>
</div>

You can use the navbar-fixed-bottom
 class to reach the same effect but at the bottom of the page.

With these last changes, the header spans the full width of the viewport again. To fix that issue, we need to move container
 inside navbar
 to wrap up its content:

<nav class="
navbar

 navbar-fixed-top navbar-dark"
 style="background-color: #666">

<div class="container">

 Dream Bean
 <div class="nav navbar-nav">

 Home (current)

 Products
 Checkout
 Sign out
 </div>

</div>

</nav>

Our Navbar hides the part of the viewport underneath, so we need to add a padding to compensate this issue:

body {
 padding-top: 51px;
}

If your Navbar was fixed at the bottom add padding for it as well:

body {
 padding-bottom: 51px;
}

 Responsive Navbar

Another issue the staff of Dream Bean would like to fix is that the content must collapse at the given viewport width. Let's do it with navbar-toggler
 class along with navbar-toggleable
 classes, and their prefix sizes:

[image: Responsive Navbar]

As I mentioned earlier, the navbar-toggler
 class helps to organize collapsible behavior. The collapsible plugin uses information from the data-toggle
 property to trigger the action and one element defined in data-target
 . The data-target
 keeps the ID of an element contained with navbar-toggleable
 classes, and it prefixes the size.

The collapsible header will only work responsively with a combination of all of them:

[image: Responsive Navbar]

 Responsive utilities

To make the life of developers easy, Bootstrap provides utility classes for faster mobile-friendly development. They could help in:

	Showing and hiding content by a device via a media query

	Toggling content when printed

I don't want to create entirely different versions of the same web application for different mobile devices. Instead, I will use the following utility classes to complement each device's presentation:

	The utility class hidden-*-up
 hides the element when the viewport is at the given breakpoint or wider

	The utility class hidden-*-down
 hides the element when the viewport is at the given breakpoint or smaller

	We can show an element only on a given interval of screen sizes by combining hidden-*-up
 and hidden-*-down
 utility classes

Bear in mind that there are no exit responsive utility classes to show an element explicitly. Indeed, we do not hide it at the particular breakpoint size.

In our project we show the UI element we like to call the hamburger button only for devices with a screen size less than 544px:

[image: Responsive utilities]

Here is a quick tip table that can help you to choose the right utility class to show elements on screen:

	The hidden-xs-down
 shows elements from small devices (landscape phones) and up (>= 544px)

	The hidden-sm-down
 shows elements from medium devices (tablets) and up (>= 768px)

	The hidden-md-down
 shows elements from large devices (desktops) and up (>= 992px)

	The hidden-lg-down
 shows elements from small devices (desktops) and up (>= 1200px)

	The hidden-sm-up
 shows elements for extra small devices (portrait phones) (< 544px)

	The hidden-md-up
 shows elements for small devices (portrait phones) and down (< 768px)

	The hidden-lg-up
 shows elements for medium devices (tablets) and down (< 992px)

	The hidden-xl-up
 shows elements for large devices (desktops) and down (< 1200px)

 The Navbar content alignment

The last thing we need to fix is the placement of a menu in the Navbar. We can use any of pull-*left
 or pull-*right
 classes to align the menu and all other components in Navbar. The managers of Dream Bean want to add the cart item with a drop-down as the last item of the menu and align it to the right side:

<ul class="nav navbar-nav
pull-xs-right

">
 <li class="nav-item dropdown">
 <a class="nav-link dropdown-toggle"
 data-toggle="dropdown" href="#" role="button"
 aria-haspopup="true" aria-expanded="false">Cart
 <div class="dropdown-menu">
 The Cart Placeholder
 </div>

I have created a separate menu group and aligned it to the right with pull-xs-right
 on all sizes of layout:

[image: The Navbar content alignment]

 Note

You can find the source code in the chapter_2/4.ecommerce-responsive
 folder.

 Summary

In this chapter, we discovered the world of Sass; the CSS preprocessing framework allows you to write more concise stylesheets. The Sass files are formatted nicely and require less repetitive techniques commonly found when writing CSS code. As a result, we had more dynamic styling and saved time developing quality websites and applications. We will use Sass in customizing our project in the following chapters.

We introduced the project we're going to be building over the course of this book. This information includes important aspects about how to start a project development from scratch.

We explored the most fundamental grid component helping us to layout all other elements across the page.

We introduced the flexible Card component and built the plates that contain categories of products from the building project.

We now know how to use Nav and Navbar components to organize responsively collapsible headers with a menu, and how to customize it.

In Chapter 3
 ,
Advanced Bootstrap Components and Customization

 , we're going to explore more Bootstrap fundamentals and continue to build the project we started to develop in this chapter.

 Chapter3.Advanced Bootstrap Components and Customization

In this chapter, we continue to discover the world of Bootstrap 4. You will meet new components, and we will continue to demonstrate the use of Bootstrap 4 by showcasing a project we started to build in the preceding chapter. At the end of the chapter, you will have a solid understanding of:

	How to display content with Jumbotron

	How create a slideshow with Bootstrap

	How use typography in text

	How create input, button, and list groups

	Getting attention with images and labels

	Using drop-down menus and tables

 How to capture a customer's attention

The Welcome page presents core marketing messages to website users, and it needs to get extra attention from them. We can use two different components to make that happen. Let's start with:

	Open Terminal, create folder ecommerce
 and move in.

	Copy the content of the project from the folder chapter_3/1.ecommerce-seed
 into the new project.

	Run the following script to install npm modules:

 npm install

	Start the TypeScript watcher and lite server with the next command:

 npm run start

This script opens a web browser and navigates to the Welcome page of the project. Now, we are ready to start development.

 Displaying content with Jumbotron

We can use the
Jumbotron

 component to draw significant attention to marketing messages. It is a lightweight component, styled with large text and dense padding. We need to show:

	The marketing message

	The slogan

	Essential information for customers

Open the app.component.html
 page, find the first container under Navbar and change its content to the Jumbotron component:

<div class="jumbotron">
 <h1>FRESH ORGANIC MARKET</h1>
 <p>Nice chance to save a lot of money</p>
 <hr>
 <p>We are open 7 Days a Week 7:00am to 10:00pm</p>
</div>

[image: Displaying content with Jumbotron]

You can force Jumbotron to use the full width of the page with the help of the jumbotron-fluid
 class and container
 or the container-fluid
 class within.

I used standard HTML markup elements inside Jumbotron, but it might look better with a different style.

 Typography

In the preceding code, we used text elements without any classes, to see how Bootstrap renders them on the page. It uses the global default font-size
 of 16px
 and line-height1,5
 . Helvetica Neue, Helvetica, Arial, Sans Serf
 are the default font-family
 in Bootstrap 4. Every element has a box-sizing
 to avoid exceeding the width due to padding or borders. The paragraph element has a bottom margin of 1rem
 . The body has a declared white background-color
 . Any page linked to Bootstrap 4 style sheets renders with those page-wide defaults.

 Headings

All heading elements, <h1>
 through <h6>
 , have a weight of 500
 and a line-height
 of 1,1
 . Bootstrap's developers have removed margin-top
 from them, but added the margine-bottom
 of 0,5rem
 for easy spacing.

In cases when you need to display some inline text you can use the h1
 through h6
 classes to style elements that mimic headings:

<p class="h1">.h1 (Semibold 36px)</p>
<p class="h2">.h2 (Semibold 30px)</p>
<p class="h3">.h3 (Semibold 24px)</p>
<p class="h4">.h4 (Semibold 18px)</p>
<p class="h5">.h5 (Semibold 14px)</p>
<p class="h6">.h6 (Semibold 12px)</p>

[image: Headings]

 Sub-headings

If you require the inclusion of a sub-heading or secondary text smaller than the original, you may use the <small>
 tag:

<h1>Heading 1 <small>Sub-heading</small></h1>
<h2>Heading 2 <small>Sub-heading</small></h2>
<h3>Heading 3 <small>Sub-heading</small></h3>
<h4>Heading 4 <small>Sub-heading</small></h4>
<h5>Heading 5 <small>Sub-heading</small></h5>
<h6>Heading 6 <small>Sub-heading</small></h6>

[image: Sub-headings]

We can show faded and smaller text with the help of the text-muted
 class:

<h3>
 The heading
 <small class="text-muted">with faded secondary text</small>
</h3>

[image: Sub-headings]

 Display headings

When the standard heading is not enough and you need to draw the user's attention to something special, I recommend using the display-*
 classes. There are four different sizes, and that means you can render the <h1>
 element with four different styles:

<h1 class="display-1">Display 1</h1>
<h1 class="display-2">Display 2</h1>
<h1 class="display-3">Display 3</h1>
<h1 class="display-4">Display 4</h1>

[image: Display headings]

 Lead

We can add the lead
 class to any paragraph to make it stand out from other text:

<p class="lead">
This is the article lead text.
</p>
<p>
This is the normal size text.
</p>

[image: Lead]

Let's update the Jumbotron component to make it look better:

<div class="jumbotron">
 <h1 class="display-3">FRESH ORGANIC MARKET</h1>
 <p class="lead">Nice chance to save a lot of money</p>
 <hr class="m-y-2">
 <p>We are open 7 Days a Week 7:00am to 10:00pm</p>
</div>

[image: Lead]

The marketing message looks gorgeous, the slogan is in place, but we did not change the essential information for customers because there was no need.

 Inline text elements

Here is a set of different styles we can use as inline text:

<p>The
mark

 tag is <mark>highlight</mark> text.</p>
<p>The
del

 tag marks text as deleted.</p>
<p>The
s

 tag marks <s> text as no longer accurate.</s></p>
<p>The
ins

 tag marks <ins>text as an addition to the document.</ins></p>
<p>The
u

 tag renders <u>text as underlined.</u></p>
<p>The
small

 tag marks <small>text as fine print.</small></p>
<p>The
strong

 tag renders text as bold.</p>
<p>The
em

 tag mark renders text as italicized.</p>

[image: Inline text elements]

 Abbreviations

To mark any text as an abbreviation or acronym, we can use the <abbr>
 tag. It shows the standing out of other text and provides the expanded version when you hover over it with the help of the title
 attribute:

<p>The Ubuntu is <abbr >OS</abbr>.</p>

[image: Abbreviations]

The class initialism
 makes an abbreviation for a slightly smaller font size.

 Blockquotes

We can quote the content from another source within our document with the help of the blockquote
 tag and class:

<
blockquote

 class="
blockquote

">
 <p>Love all, trust a few, do wrong to none.</p>
</
blockquote

>

[image: Blockquotes]

Also, we can add the author at the bottom of the blockquote
 with nested footer
 and cite
 tags.

<blockquote class="blockquote">
 <p>Love all, trust a few, do wrong to none.</p>
 <
footer

 class="blockquote-footer">William Shakespeare in
 <
cite

>All's Well That Ends Well</
cite

>
 </
footer

>
</blockquote>

[image: Blockquotes]

Do you prefer blockquotes aligned to the right side? Let's use the blockquote-reverse
 class:

<blockquote class="blockquote blockquote-reverse">
 <p>Love all, trust a few, do wrong to none.</p>
 <footer class="blockquote-footer">William Shakespeare in
 <cite>All's Well That Ends Well</cite>
 </footer>
</blockquote>

[image: Blockquotes]

 Address

We use the address
 element to display customer contact information at the bottom of the page:

<footer class="footer">
 <div class="container">
 <address>
 Contact Info

 0000 Market St, Suite 000, San Francisco, CA 00000,
 (123) 456-7890, support@dream-bean.com
 </address>
 </div>
</footer>

[image: Address]

 Note

You can find the source code in the chapter_3/2.ecommerce-jumbotron
 folder

 Displaying content with a carousel

Another component we can use to get customers' extra attention is the carousel. It helps us create elegant and interactive images or text slideshows. The carousel is a combination of different components, each of them playing a very specific role.

 Carousel container

The container wraps all other content so the plugin JavaScript code can find it by the carousel
 and slide
 classes. It must have an id
 for the carousel controls and inner components to function properly. If you want the carousel to start an animation when the page loads, use the data-ride="carousel"
 property:

<div id="
welcome-products

"
 class="
carousel slide

" data-ride="
carousel

">

 Carousel inner

This container holds carousel items as scrollable content and marks them with the carousel-inner
 class:

<div class="
carousel-inner

" role="listbox">

 Carousel item

The carousel-item
 class keeps the content of slides such as images, text, or a combination of them. You need to wrap text-based content with a carousel-caption
 container. The active
 class marks the item as initialized and without it the carousel won't be visible.

<div class="
carousel-item active

">

 <div class="
carousel-caption

">
 <h3>Bread & Pastry</h3>
 </div>
</div>

 Carousel indicators

The carousel may have indicators to display and control the slideshow via a click or a tap to select a particular slide. Usually, it is an ordered list marked with a carousel-indicators
 class. Every item on the list must have the data-target
 property keeping the carousel container id
 . Because it's an ordered list, you don't need to sort it. If you need to alter the slide position around the current location use the data-slide
 property to accept the keywords prev
 and next
 . Another option is to use the data-slide-to
 property to pass the index of the slide. Use the active
 class to mark the initial indicator:

<ol class="
carousel-indicators

">
 <li data-target="
#welcome-products" data-slide-to="0"

 class="active">
 <li data-target=
"#welcome-products" data-slide-to="1"

>
 <li data-target=
"#welcome-products" data-slide-to="2"

>

 Carousel controls

You can use an alternative way to display slides via carousel control buttons. In this case, the two anchor elements play the role of the buttons. Add the left
 or the right
 classes to a particular button together with carousel-control
 . Use the carousel container id
 as a link in the href
 property. Set prev
 or next
 to the data-slide
 property:

<a class="
left carousel-control

" href=
"#welcome-products"

 role=
"button" data-slide="prev"

>

 Previous

<a class="
right carousel-control

" href=
"#welcome-products"

 role=
"button" data-slide="next"

>

 Next

[image: Carousel controls]

Let's compare the final result and wireframe of the Welcome page:

[image: Carousel controls]

The wireframe of the Welcome page

As you can see, they look absolutely the same. Actually, we have finished with the Welcome page, and now it's time to move on to the Products page development.

 Note

You can find the source code in the chapter_3/3.ecommerce-carousel
 folder

 Products page layout

Let's have a look at a wireframe of the Products page and imagine splitting it into rows and columns as we did for the Welcome page:

[image: Products page layout]

The first row still contains our navigation header, but I put the other content into another single row. There are two columns with
Quick Shop

 and
Categories

 in one, and the grid includes a set of products in another one. Why have I split the Products page like that? The answer is pretty straightforward. Bootstrap always renders content by rows and then by columns inside them. On devices with a small layout, the header in the first row usually collapses into a hamburger menu. At the bottom, it displays the second row with
Quick Shop

 ,
Categories

 and, below, the set of products aligned vertically.

I cloned the last project and cleaned the code but saved the navigation header and footer, because I don't want to mix the development of the Products page with the original one. Let's talk about the components in the first column.

 Quick Shop component

This component is just a search input with a button. I don't implement business logic, but just design the page. This one is based on the Card element we explored in Chapter 2
 ,
Working with Bootstrap Components

 . I would like to use the input group component, so let's see what it can do.

 Input group

This is a group of form controls and text combined in one line. It was designed to extend form controls by adding text, buttons, or groups of buttons on either side of the input field and aligning them against each other. Creating an input group component is very easy. Just wrap the input
 with an element marked with the input-group
 class and append or prepend another one with an input-group-addon
 class. You can use the input group out of any form, but we need to mark the input element with the form-control
 class to have it width 100%.

 Note

Use the input group for textual input elements only.

 Text addons

Here is an example of a text field with an appended addon:

<div class="input-group">
 <input type="text" class="form-control"
 placeholder="Pricein USD">
 <span class="
input-group-addon

">.00
</div>

[image: Text addons]

Another example with a prepended addon is:

<div class="input-group">
 <span class="
input-group-addon

">https://
 <input type="text" class="form-control"
 placeholder="Your address">
</div>

[image: Text addons]

And finally we can combine all of them together:

<div class="input-group">
 <span class="
input-group-addon

">$
 <input type="text" class="form-control"
 placeholder="Price per unit">
 <span class="
input-group-addon

">.00
</div>

[image: Text addons]

 Sizing

There are two form sizing classes, input-group-lg
 and input-group-sm
 , which make an input group bigger or smaller than the standard one. You need to apply one to the element marked with input-group
 class, and the content within will automatically resize:

<div class="input-group
input-group-lg

">
 <input type="text" class="form-control"
 placeholder="Large">
 .00
</div>
<div class="input-group">
 <input type="text" class="form-control"
 placeholder="Standard">
 .00
</div>
<div class="input-group
input-group-sm

">
 <input type="text" class="form-control"
 placeholder="Small">
 .00
</div>

[image: Sizing]

 Checkboxes and radio option addons

We can use a checkbox or radio option instead of text addons:

<div class="input-group">

 <input type="checkbox">

 <input type="text" class="form-control"
 placeholder="Select">
</div>

<div class="input-group">

 <input type="radio">

 <input type="text" class="form-control"
 placeholder="Choose">
</div>

[image: Checkboxes and radio option addons]

 Button addons

The most familiar elements are buttons, and you can use them within the input group. Just add one extra level of complexity:

<div class="input-group">
 <input type="text" class="form-control"
 placeholder="Search for...">

 <button class="btn btn-secondary" type="button">Go!</button>

</div>

[image: Button addons]

 Drop-down menu addons

We can use buttons to show drop-down menus. We will speak about drop-down menus a bit later in this chapter. The following code demonstrates the use of drop-down menus:

<div class="input-group">
 <input type="text" class="form-control">
 <div class="input-group-btn">
 <button type="button"
 class="btn btn-secondary dropdown-toggle"
 data-toggle="dropdown">
 Action
 </button>
 <div class="dropdown-menu dropdown-menu-right">
 Action
 Another action
 Something else here
 <div role="separator" class="dropdown-divider"></div>
 Separated link
 </div>
 </div>
</div>

[image: Drop-down menu addons]

 Segmented buttons

Sometimes it can be useful to split button and drop-down menus, so that the layout is available as well:

<div class="input-group">
 <input type="text" class="form-control">
 <div class="input-group-btn">
 <button type="button" class="btn btn-secondary">Action</button>
 <button type="button" class="btn btn-secondary dropdown-toggle"
 data-toggle="dropdown">
 Toggle Dropdown
 </button>
 <div class="dropdown-menu dropdown-menu-right">
 Action
 Another action
 Something else here
 <div role="separator" class="dropdown-divider"></div>
 Separated link
 </div>
 </div>
</div>

[image: Segmented buttons]

Now that we know how to use input groups, let's create a
Quick Shop

 component:

<div class="container">
 <div class="row">
 <div class="col-md-3">
 <div class="card">
 <div class="card-header">
 Quick Shop
 </div>
 <div class="card-block">
 <div class="input-group">
 <input type="text" class="form-control"
 placeholder="Search for...">

 <button class="btn btn-secondary"
 type="button">Go!</button>

 </div>
 </div>
 </div>
 <!-- /.card -->
 </div>
 <!-- /.col -->
 </div>
 <!-- /.row -->
</div>
<!-- /.container -->

[image: Segmented buttons]

 Note

You can find the source code in the chapter_3/4.ecommerce-input-group
 folder.

 Categories component

The Categories component lies under the
Quick Shop

 . I would like to use the list group component to hold categories from which the customer can choose.

 List group

This one is a flexible component for displaying an unordered list of elements, such as simple items or custom content, with ease. Just mark any unordered list element with the list-group
 class and every item with list-group-item
 to quickly create the
list group

 component:

<ul class="list-group">
 <li class="list-group-item">Apple
 <li class="list-group-item">Banana
 <li class="list-group-item">Grapefruit
 <li class="list-group-item">Carrot

[image: List group]

 Listing with tags

Sometimes we need to display a bit more information about every item such as counts, activities, and others. For that purpose we can add
tag

 to each item and list group automatically to position it to the right:

<ul class="list-group">
 <li class="list-group-item">
 <span class="tag tag-default tag-pill
 pull-xs-right">15
 Apple

 <li class="list-group-item">
 <span class="tag tag-default tag-pill
 pull-xs-right">5
 Banana

 <li class="list-group-item">
 <span class="tag tag-default tag-pill
 pull-xs-right">0
 Grapefruit

 <li class="list-group-item">
 <span class="tag tag-default tag-pill
 pull-xs-right">3
 Carrot

[image: Listing with tags]

 Linked list groups

We can quickly create a vertical menu with a linked list group component. This kind of list is based on the div
 tag instead of ul
 . The whole item of this list is an anchor element, and it can be:

	Clickable

	Hoverable

	Highlighted with the help of an active
 class

	Disabled with the aid of a class with the same name

<div class="list-group">
 Apple
 Banana
 <a href="#" class="list-group-item
disabled

">Grapefruit
 Carrot
</div>

[image: Linked list groups]

 Button list groups

If you prefer, use buttons instead of anchor elements, then you need to change the tag name of each item and add the list-group-item-action
 class into it. We can use active
 or disabled
 to make the item appear different:

<div class="list-group">
 <button type="button" class="list-group-item list-group-item-action active ">Apple</button>
 <button type="button" class="list-group-item item list-group-item-action ">Banana</button>
 <button type="button" class="list-group-item item list-group-item-action disabled">Grapefruit</button>
 <button type="button" class="list-group-item item list-group-item-action ">Carrot</button>
</div>

[image: Button list groups]

 Note

Using the standard btn
 class in list groups is prohibited.

 Contextual classes

You can also style individual list items with contextual classes. Just add a contextual class suffix to the list-group-item
 class. The item with the active
 class displays as a darkened version:

<div class="list-group">
 <a href="#" class="list-group-item
 list-group-item-success">Apple
 <a href="#" class="list-group-item
 list-group-item-success active">Watermelon
 <a href="#" class="list-group-item
 list-group-item-info">Banana
 <a href="#" class="list-group-item
 list-group-item-warning">Grapefruit
 <a href="#" class="list-group-item
 list-group-item-danger">Carrot
</div>

[image: Contextual classes]

 Custom content

Finally, you can add HTML within every item of a list group component, and make it clickable with an anchor element. Bootstrap 4 provides the list-group-item-heading
 and list-group-item-text
 classes for heading and text content. Any item with the active
 class displays custom content as a darkened version:

<div class="list-group">

 <h4 class="
list-group-item-heading

">Apple</h4>
 <p class="
list-group-item-text

">It is sweet.</p>

 <a href="#" class="list-group-item list-group-item-success
active

">
 <h4 class="
list-group-item-heading

">Watermelon</h4>
 <p class="
list-group-item-text

">
 It is a fruit and a vegetable.
 </p>

</div>

[image: Custom content]

Now, it's time to create our
Categories

 component:

<div class="card">
 <div class="card-header">
 Categories
 </div>
 <div class="card-block">
 <div class="list-group">
 All
 Meat
 Seafood
 Bakery
 Dairy
 Fruit & Vegetables
 </div>
 </div>
</div>

[image: Custom content]

We are finished with the first column, so let's go on to develop the second one, which contains the grid with a set of products.

 Note

You can find the source code in the chapter_3/5.ecommerce-list-group
 folder.

 Creating a product grid

We need to display a set of products in a grid of rows and columns inside the second column.

 Nested rows

We can nest additional rows inside any column to create a more complex layout similar to the one we have:

<div class="col-md-9">
 <div class="row">
 <div class="col-xs-12 col-sm-6 col-lg-4">
 <!-- The Product 1 -->
 </div>
 <!-- /.col -->
 <div class="col-xs-12 col-sm-6 col-lg-4">
 <!-- The Product 2 -->
 </div>
 <!-- /.col -->
 <div class="col-xs-12 col-sm-6 col-lg-4">
 <!-- The Product N -->
 </div>
 <!-- /.col -->
 </div>
</div>

We create as many columns as we need within one row and Bootstrap will display them properly, based on the viewport size:

	One column takes the whole size on an extra small viewport

	Two columns on a small viewport

	Three columns on large and bigger viewports

 Product component

In a similar way, we use the Card to display information and controls in the product component:

<div class="card">
 <img class="card-img-top img-fluid center-block product-item"
 src="http://placehold.it/270x171" alt="Product 1">
 <div class="card-block text-xs-center">
 <h4 class="card-title">Product 1</h4>
 <h4 class="card-subtitle">
 $10
 </h4>
 <hr>
 <div class="btn-group" role="group">
 <button class="btn btn-primary">Buy</button>
 <button class="btn btn-info">Info</button>
 </div>
 </div>
</div>
<!-- /.card -->

[image: Product component]

Let's talk a bit about the elements we have used here.

 Note

You can find the source code in the chapter_3/6.ecommerce-grid-in-grid
 folder.

 Images

To the extent that we use images in the Card element, I think it's a good idea to talk about images with responsive behavior and image shapes.

 Responsive images

You can make any image responsive with the img-fluid
 class. It applies the following to the picture and scales it with the parent element:

	Sets the max-width
 property to 100%

	Sets the height
 property to auto

<div class="container">
 <div class="row">
 <div class="col-md-3">

 </div>
 </div>
</div>

[image: Responsive images]

 Image shapes

In cases when you need to render images:

	With rounded corners, use the img-rounded
 class

	Within a circle, use the img-circle
 class

	As a thumbnail, use the img-thumbnail
 class

[image: Image shapes]

 Image alignment

To align images horizontally, we can use either text alignment or helper float classes:

	Use text-*-center
 classes on the parent of the picture to center it

	Use the center-block
 class on an image to center it

	Use the pull-*-left
 or pull-*-right
 classes to float the image to the left or right respectively

<div class="container">
 <div class="row">
 <div class="col-md-6 table-bordered">
 This is text around pull image to left
 <img class="img-rounded
pull-xs-left

"
 src="http://placehold.it/270x171">
 </div>
 <div class="col-md-6 table-bordered">
 This is text around pull image to right
 <img class="img-circle
pull-xs-right

"
 src="http://placehold.it/270x171">
 </div>
 <div class="col-md-6 table-bordered">
 This is text around center block image
 <img class="img-thumbnail center-block"
 src="http://placehold.it/270x171">
 </div>
 <div class="col-md-6
text-xs-center

 table-bordered">
 This is centered

 <img class="img-thumbnail"
 src="http://placehold.it/270x171">
 </div>
 </div>
</div>

[image: Image alignment]

I used the table-border
 class in the preceding code only to display borders.

 Tags

If I need to highlight some information in a text string, I will use a tag. To create a tag I need to apply the tag
 class together with a contextual tag-*
 to span
 the element:

<div class="container">
 <div class="row">
 <div class="col-md-12">
 <h1>Example heading
 <span class="
tag tag-default

">Default
 </h1>
 <h2>Example heading
 <span class="
tag tag-primary

">Primary
 </h2>
 <h3>Example heading
 <span class="
tag tag-success

">Success
 </h3>
 <h4>Example heading
 <span class="
tag tag-info

">Info
 </h4>
 <h5>Example heading
 <span class="
tag tag-warning

">Warning
 </h5>
 <h6>Example heading
 <span class="
tag tag-danger

">Danger
 </h6>
 </div>
 </div>
</div>

[image: Tags]

The tag uses the relative font size of the parent element so it always scales to match its size. If you need tag to looks like a badge use the tag-pill
 class to achieve this:

<div class="container">
 <div class="row">
 <div class="col-md-12">
 <span class="label
label-pill

 label-default">Default
 <span class="label
label-pill

 label-primary">Primary
 <span class="label
label-pill

 label-success">Success
 <span class="label
label-pill

 label-info">Info
 <span class="label
label-pill

 label-warning">Warning
 <span class="label
label-pill

 label-danger">Danger
 </div>
 </div>
</div>

[image: Tags]

 Button groups

We can group buttons together either horizontally or vertically with the
button group

 component. Buttons are oriented horizontally by default. To create a button group use buttons with the btn
 class in a container with the btn-group
 class:

<div class="container">
 <div class="row">
 <div class="col-md-12">
 <div class="
btn-group

" role="group">
 <button type="button" class="
btn btn-default

">Left</button>
 <button type="button" class="
btn btn-secondary

">Middle</button>
 <button type="button" class="
btn btn-danger

">Right</button>
 </div>
 </div>
 </div>
</div>

[image: Button groups]

 Sizing

There are two sizes to make the button group bigger or smaller than the standard size. Add either the btn-group-lg
 or btn-group-sm
 class to the button group to resize all buttons in the group at once:

<div class="btn-group btn-group-lg" role="group">
 <button type="button" class="btn btn-default">Left</button>
 <button type="button" class="btn btn-secondary">Middle</button>
 <button type="button" class="btn btn-danger">Right</button>
</div>

<div class="btn-group" role="group">
 <button type="button" class="btn btn-default">Left</button>
 <button type="button" class="btn btn-secondary">Middle</button>
 <button type="button" class="btn btn-danger">Right</button>
</div>

<div class="btn-group btn-group-sm" role="group">
 <button type="button" class="btn btn-default">Left</button>
 <button type="button" class="btn btn-secondary">Middle</button>
 <button type="button" class="btn btn-danger">Right</button>
</div>

[image: Sizing]

 Button toolbars

We can combine button groups into a
button toolbar

 for more complex components:

<div class="btn-toolbar" role="toolbar">
 <div class="btn-group" role="group">
 <button type="button" class="btn btn-primary">Create</button>
 <button type="button" class="btn btn-secondary">Edit</button>
 <button type="button" class="btn btn-danger">Delete</button>
 </div>
 <div class="btn-group" role="group">
 <button type="button" class="btn btn-default">Fetch</button>
 </div>

</div>

[image: Button toolbars]

 Nesting drop-downs

We can make a drop-down as a part of a button group by nesting it into another button group:

<div class="
btn-group

" role="group">
 <button type="button" class="btn btn-secondary">Create</button>
 <button type="button" class="btn btn-secondary">Delete</button>

 <div class="
btn-group

" role="group">
 <button id="
btnGroupDrop1

" type="button"
 class="btn btn-secondary
dropdown-toggle

"

data-toggle="dropdown"

 aria-haspopup="true"
 aria-expanded="false">
 Actions
 </button>
 <div class="
dropdown-menu

" aria-labelledby="
btnGroupDrop1

">
 Get One
 Get Many
 </div>
 </div>
</div>

[image: Nesting drop-downs]

Also, you can create a split drop-down menu component with a button group:

<div class="btn-group" role="group">
 <button type="button" class="btn btn-secondary">Actions</button>
 <button id="btnGroupDrop1" type="button"
 class="btn btn-secondary dropdown-toggle"
 data-toggle="dropdown" aria-haspopup="true"
 aria-expanded="false">
 Toggle Dropdown
 </button>
 <div class="dropdown-menu" aria-labelledby="btnGroupDrop1">
 Get One
 Get Many
 </div>
</div>

[image: Nesting drop-downs]

 Vertical button groups

If you need to orient a button group vertically, replace btn-group
 with the btn-group-vertical
 class:

<div class="btn-group-vertical" role="group">
 <button type="button"
 class="btn btn-default">Left</button>
 <button type="button"
 class="btn btn-secondary">Middle</button>
 <button type="button"
 class="btn btn-danger">Right</button>
</div>

[image: Vertical button groups]

The vertical button group doesn't support split drop-down menus.

 Drop-down menus

We talk a lot about drop-down menus, so let's have a closer look at them. A drop-down menu is a toggle overlay for displaying a list of links. It is a combination of several components.

 Drop-down containers

This one wraps all other elements. Usually, it is a div
 element with a dropdown
 class, or another one uses position: relative
 .

 Drop-down triggers

This is any item that the user can click or tap to expand the drop-down. We need to mark it with a dropdown-toggle
 class and set the data-toggle="dropdown"
 property.

 Drop-down menus with items

A drop-down menu itself is a combination of elements with dropdown-item
 classes, and the wrapper contains all of them marked with the dropdown-menu
 class. It is a list-less component. For menu items, you can use anchor or button elements:

<div class="
dropdown

">
 <button class="btn btn-secondary
dropdown-toggle

" type="button"
 id="dropdownMenu1"
data-toggle="dropdown"

 aria-haspopup="true"
 aria-expanded="false">
 Action
 </button>
 <div class="
dropdown-menu

" aria-labelledby="dropdownMenu1">
 <a class="
dropdown-item

" href="#">Create
 <a class="
dropdown-item

" href="#">Edit
 <a class="
dropdown-item

" href="#">Delete
 </div>
</div>

[image: Drop-down menus with items]

 Menu alignment

Drop-down menus are aligned to the left by default. If you need align one to the right, then you need to apply the dropdown-menu-right
 class to it. I have added the text-xs-right
 class to the parent element to align the whole component to the right:

<div class="col-md-3
text-xs-right

">
 <div class="dropdown">
 <button class="btn btn-secondary dropdown-toggle"
 type="button" id="dropdownMenu1"
 data-toggle="dropdown" aria-haspopup="true"
 aria-expanded="false">
 Action
 </button>
 <div class="dropdown-menu
dropdown-menu-right

"
 aria-labelledby="dropdownMenu1">
 Create
 Edit
 Delete
 </div>
 </div>
</div>

[image: Menu alignment]

 Menu headers and dividers

A drop-down menu may have several header elements. You can add them with the help of heading elements and the dropdown-header
 classes:

<div class="dropdown">
 <button class="btn btn-secondary dropdown-toggle" type="button"
 id="dropdownMenu1" data-toggle="dropdown"
 aria-haspopup="true" aria-expanded="false">
 Action
 </button>
 <div class="dropdown-menu" aria-labelledby="dropdownMenu1">
 <h6 class="dropdown-header">Document</h6>
 Create
 Edit
 Delete
 <h6 class="dropdown-header">Print</h6>
 Print Now
 Configuration
 </div>
</div>

[image: Menu headers and dividers]

 Menu dividers

We can segregate groups of menu items not only with headers but also with dividers. Use the dropdown-divider
 class to mark menu items as dividers:

<div class="dropdown">
 <button class="btn btn-secondary dropdown-toggle" type="button"
 id="dropdownMenu1" data-toggle="dropdown"
 aria-haspopup="true" aria-expanded="false">
 Action
 </button>
 <div class="dropdown-menu" aria-labelledby="dropdownMenu1">
 Create
 Edit
 Delete
 <div class="
dropdown-divider

"></div>
 Print Now
 Configuration
 </div>
</div>

[image: Menu dividers]

 Disabling menu items

If necessary we can disable menu items via the disabled
 class:

<div class="dropdown">
 <button class="btn btn-secondary dropdown-toggle" type="button"
 id="dropdownMenu1" data-toggle="dropdown"
 aria-haspopup="true" aria-expanded="false">
 Action
 </button>
 <div class="dropdown-menu" aria-labelledby="dropdownMenu1">
 Create
 Edit
 <a class="dropdown-item
disabled

" href="#">Delete
 </div>
</div>

[image: Disabling menu items]

 Tables

There are new classes to build consistently styled and responsive tables. Because we need
table

 to design the shopping cart component I would like to look at it now. It is an opt-in, so it's very easy to transform any table to a Bootstrap table by adding a table
 class. As a result we have a basic table with horizontal dividers:

<table class="
table

">
 <thead>
 <tr>
 <th>#</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Username</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th colspan="4">Number 2</th>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <th scope="row">1</th>
 <td>Mark</td>
 <td>Otto</td>
 <td>@mdo</td>
 </tr>
 <tr>
 <th scope="row">2</th>
 <td>Jacob</td>
 <td>Thornton</td>
 <td>@fat</td>
 </tr>
 </tbody>
</table>

[image: Tables]

 table-inverse

The table-inverse
 class inverts the colors of a table:

<table class="table
table-inverse

">

[image: table-inverse]

 Striped rows

We can alter the background colors of rows with the table-striped
 class:

<table class="table
table-striped

">

[image: Striped rows]

 Bordering tables

If you need a table with borders all around, use the table-bordered
 class:

<table class="table
table-bordered

">

[image: Bordering tables]

 Making rows hoverable

To achieve a
hover

 effect while hovering the mouse over table rows, use the table-hover
 class:

<table class="table
table-hover

">

[image: Making rows hoverable]

 Table head options

There are two classes to change the thead
 element of table
 . Add the thead-default
 class to apply a slightly gray background color:

<table class="table">
 <thead class="
thead-default

">

[image: Table head options]

The thead-inverse
 class inverts the text and background colors of thead
 :

<table class="table">
 <thead class="
thead-inverse

">

[image: Table head options]

 Making table smaller

We can halve the padding of a table to make it smaller with the table-sm
 class:

<table class="table table-sm">

[image: Making table smaller]

 Contextual classes

There are five contextual classes to apply to individual rows or cells: table-active
 , table-success
 , table-info
 , table-warning
 , and table-danger
 .

 Responsive tables

Responsive tables support horizontal scrolling on small and extra small devices (under 768px). On devices bigger than small you won't see any difference. Wrap a table with the div
 element with the table-responsive
 class to achieve this effect:

<div class="table-responsive">
 <table class="table">
 ...
 </table>
</div>

 Reflowing tables

There is a table-reflow
 class to help make the contents of a table reflow:

<table class="table
table-reflow

">
 <thead>
 <tr>
 <th>#</th>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Username</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <th scope="row">1</th>
 <td>Mark</td>
 <td>Otto</td>
 <td>@mdo</td>
 </tr>
 <tr>
 <th scope="row">2</th>
 <td>Jacob</td>
 <td>Thornton</td>
 <td>@fat</td>
 </tr>
 </tbody>
</table>

[image: Reflowing tables]

 Shopping cart component

We haven't yet touched on the last component on the wireframe of the Products page: the shopping cart. This is the union of the cart information and the dropdown contains a table of items the customer has added to the cart:

We display the cart information as button text:

<button class="btn btn-primary dropdown-toggle" type="button"
 id="cartDropdownMenu" data-toggle="dropdown"
 aria-haspopup="true" aria-expanded="false">
 Cart: 2 item(s) - $20.00
</button>

I used an inversed, bordered table to print out a set of products the cusomer added to the cart:

<div class="dropdown-menu dropdown-menu-right"
 aria-labelledby="cartDropdownMenu">
 <table class="table table-bordered table-inverse">
 <thead>
 <tr>
 <th>Name</th><th>Amount</th><th>Qty</th><th>Sum</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <td colspan="4" style="text-align:center">
 Total:$20.00

 <div class="btn-group">
 <button class="btn btn-primary">View Cart</button>
 <button class="btn btn-success">Checkout</button>
 </div>
 </td>
 </tr>
 </tfoot>
 <tbody>
 <tr>
 <td >Product 1</td><td >$10</td><td >x1

 Del
 </td>
 <td >$10.00</td>
 </tr>
 <tr>
 <td >Product 2</td><td >$5.00</td><td >x2

 Del
 </td>
 <td >$10.00</td>
 </tr>
 </tbody>
 </table>
</div>

I combined everything we have learned and here is what the Products page looks like for now:

[image: Shopping cart component]

 Note

You can find the source code in the chapter_3/7.ecommerce-dropdown
 folder.

 Summary

We've covered a lot in this chapter, and it's time to interrupt our journey, take a break, and recap it all.

Bootstrap allowed us to capture our customer's attention with Jumbotron and carousel slideshow quite easily.

We also looked at the powerful responsive grid system included with Bootstrap and created a simple two-column layout. While we were doing this, we learned about the five different column class prefixes and also nested our grid. To adapt our design, we discovered some of the helper classes included with the framework to allow us to float, center, and hide elements.

In this chapter, we saw in detail how to use input, button, and list groups in our project. A simple but powerful component such as dropdowns and tables helped us to create our components quickly and more efficiently.

In Chapter 4
 ,
Creating the Template

 , we're going to explore more Bootstrap fundamentals and continue to build the project we started to develop in this and the previous chapter.

In the next chapter, the readers will learn how to create a UI template using some built-in Angular 2 directives. Readers will become familiar with the template syntax. We will show you how to bind properties and events in an HTML page and transform displays using pipes.

 Chapter4.Creating the Template

In this chapter, we'll learn how to build a UI template using built-in Angular 2 directives. You'll become familiar with the template syntax, and how to bind properties and events in an HTML page, and transform displays using pipes. Of course, we need to discuss the design principles behind Angular 2.

At the end of the chapter, you will have a solid understanding of:

	Template expressions

	Various binding types

	Input and output properties

	Using built-in directives

	Local template variables

	Pipe and Elvis operators

	Custom pipes

	Design components of our application

 Diving deeper into Angular 2

We've read three chapters and haven't touched Angular 2 yet. I think it's time to invite Angular 2 on stage to demonstrate how this framework can help us in creating components for our project. As I mentioned in Chapter 1
 ,
Saying Hello!

 , the architecture of Angular 2 builds on top of standard web components so we can define custom HTML selectors and program them. That means we can create a set of Angular 2 elements to use in the project. In previous chapters, we designed and developed two pages, and you can find many repetitive markups so that we can reuse our Angular 2 components there as well.

Let's, start:

	Open the Terminal, create the folder ecommerce
 and move in

	Copy the contents of the project from the folder chapter_4/1.ecommerce-seed
 into the new project

	Run the following script to install npm
 modules:

 npm install

	Start the TypeScript watcher and lite server with the following command:

 npm run start

This script opens the web browser and navigates to the welcome page of the project. Now open Microsoft Visual Studio code and open app.component.html
 from the app
 folder. We are ready to analyze the welcome page.

 Welcome page analysis

The welcome page has quite a simple structure, so I would like to create the following Angular 2 components to encapsulate inside the current markup and future business logic:

	
Navbar
 with menus

	Slideshow based on the carousel Bootstrap component

	Grid of Products based on the card Bootstrap component

I will follow the Angular 2
Style Guide

 (https://angular.io/docs/ts/latest/guide/style-guide.html
) while developing our project to keep our application code cleaner, and easy to read and maintain. I recommend following my example on your plans, otherwise, the development results could be unpredictable and extremely costly.

 Single responsibility principle

We will apply the
single responsibility principle

 to all aspects of the project, so whenever we need to create a component or service, we will create the new file for it and try to keep inside maximum 400 lines of code. The benefits of keeping one component per file are evident:

	Makes code more reusable and less error prone

	Easy to read, test and maintain

	Prevents collisions with team in source control

	Avoids unwanted code coupling

	The component router can lazily load it at runtime

 Naming conventions

It is no secret that
naming conventions

 are crucial to readability and maintainability. The ability to find files and understand what they contain may have a significant impact on future development, so we should be consistent and descriptive in naming and organizing files to find content at a glance. The conventions comprise the following rules:

	The recommended pattern for all features describes the name then its type: feature.type.ts

	The words in descriptive name should be separated by dashes: feature-list.type.ts

	There are well-known types of names including service
 , component
 , directive
 , and pipe: feature-list.service.ts

 Barrels

There are barrel modulesTypeScript files that import, aggregate, and re-export other modules. They have one purposeto reduce the number of import
 statements in code. They provide a consistent pattern introducing everything that is exported in the barrel from a folder. The conventional name for this file is index.ts
 .

 Application structure

We keep application code in the app
 folder. For easy and quick access to files, it is recommended to maintain a flat folder structure for as long as possible until there is clear value in creating a new folder.

 Folders-by-feature structure

For small projects, you can save all files in the app
 folder. Our project has many features, so we put each of them in their folders, including TypeScript, HTML, Style Sheet, and Spec files. The name of each folder represents the feature it has.

 Shared folder

There are some features we can use in multiple places. Better move them into the shared
 folder and separate them into folders if necessary. If features exist in your project, define the overall layout to save them here as well.

 Navigation component

There is a navigation component needed for the entire application, so we need to create files navbar.component.ts
 and navbar.component.html
 into the navbar
 folder. Here is the folder structure of our project as it stands now:

[image: Navigation component]

Open the navbar.component.ts
 file and paste the following content:

import { Component } from '@angular/core';

@Component({
 selector: 'db-navbar',
 templateUrl: 'app/navbar/navbar.component.html'
})
export class NavbarComponent {}

In the code, we just defined the NavbarComponent
 class with a @Component
 decorator to tell Angular that the class, which it attached to, is a component. We use an import
 statement here to specify the module, where the TypeScript compiler can find the @Component
 decorator.

 Decorators

The decorators are a proposed standard for ECMAScript 2016 and available as a crucial part of TypeScript defining a reusable structural pattern. Each decorator follows the form of @expression
 . The expression
 is a function that evaluates at runtime with information about the decorated statement to change the behavior and state of it. We can use a
decorator function

 , which returns as a result of evaluation of the expression
 , to customize how decorator applies to a declaration. It is possible to attach one or multiple decorators to any class, method, accessor, property, or parameter declarations.

The @Component
 is a class decorator applied at compile time to the constructor of NavbarComponent
 class for the following purposes:

	To modify the class definition with a set of parameters passing through

	To add proposed methods organizing the component lifecycle

We must define the selector
 parameter for every @Component
 decorator and use kebab-case
 for naming it. The
style guide

 recommends identifying components as elements via the selector
 because it provides consistency for components that represent the content with a template. I use the db-navbar
 selector name for NavigationComponent
 as a combination of:

	The db
 prefix displays the Dream Bean company name abbreviations

	The navbar
 as the name of the feature

 Note

Always use the prefix for selector names to prevent name collision with components from other libraries.

The template is a required part of the @Component
 decorator because we associate it with putting content on the page. You can supply the template
 as an inline string in the code or templateUrl
 as an external resource. It is better to keep the content of the template as an external resource:

	When it has more than three lines

	Because some editors do not support the syntax hints for inline templates

	As it is easier to read the logic of a component when not mixed with inline templates

Now, open the app.component.html
 and find the nav
 element on the top. Cut it with content and paste into navbar.component.html
 and replace it with:

<db-navbar></db-navbar>

Now we need to add the NavbarComponent
 into AppModule
 . Open app.module.ts
 to add a reference on NavbarComponent
 there:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

/*
 * Components
 */
import { AppComponent } from './app.component';

import { NavbarComponent } from './navbar/navbar.component';

@NgModule({
 imports: [BrowserModule],
 declarations: [AppComponent,
NavbarComponent

],
 bootstrap: [AppComponent]
})
export class AppModule { }

 Tree of components

Every Angular application has a top level element to display the content. In our application, it is an AppComponent
 . In Chapter 3
 ,
Advanced Bootstrap Components and Customization

 , we split the welcome page into Bootstrap components, now we move them into separate modules, and compose them back with the help of an Angular framework. The Angular framework renders an application as a tree of components, from a top level element, its children, and further down. When we need to add a child to any component, we register it via the declarations
 property of Angular module. The NavigatorComponent
 does not belong to any Angular feature module, so I register it in the top most module which is the AppModule
 .

Let's come back to the navbar.component.html
 to find other repetitive elements. In the place where we display the navigation bar we have navigation items:

<div class="nav navbar-nav">

 Home (current)

 Checkout
 Create Account
 Login
</div>

Because we have duplicates in the markup, I propose creating an array of links and keeping them inside the NavbarComponent
 as a property, so Angular can display them here.

 NavItem object

I suggest you create a separate NavItem
 interface to keep information about navigation, because each item should have href
 , label
 , and active
 properties:

export interface NavItem {
 // Navigation link
 href: string;
 // Navigation Label
 label: string;
 // Status of Navigation Item
 active: boolean;
}

Copy and paste the code in between the top of NavbarComponent
 class and the last import statement. Now we can add the navItems
 property into NavbarComponent
 which exposes the navigation items:

@Component({
 selector: 'db-navbar',
 templateUrl: 'app/navbar/navbar.component.html'
})
export class NavbarComponent {
 // App name
 appName: string = 'Dream Bean';
 // Navgation items
 navItems: NavItem[] = [
 {href: '#', label: 'Home', active: true},
 {href: '#', label: 'Products', active: false},
 {href: '#', label: 'Checkout', active: false},
 {href: '#', label: 'Sign out', active: false}
];
}

I add the appName
 property to keep the application name out of the template as well. We are ready to use the data binding, but before we do, let's take a closer look at template expressions and statements.

 Template expressions

The
template expression

 is the central part of data binding. Its primary purpose is to execute expressions to produce a value so that Angular can assign it to a binding property of an HTML element, directive, or component. We can put expressions into the template in two forms:

	Within the interpolation curly braces. Angular first evaluates the content inside the braces and then converts to a string: {{a + 1 - getVal()}}.

	Within the quotes when setting a property of view element to the value of template expression: <button [disabled]="isUnchanged">Disabled</button>.

The template expression is based on a JavaScript-like language. We can use any JavaScript expressions with the following restrictions:

	It is prohibited to use assignments like =
 , +=
 , -=

	Do not use the new
 keyword

	Do not create chaining expressions with ;
 or ,

	Avoid the use of increment ++
 and decrement --
 operators

	Bitwise operators |
 and &
 and new template expression operators |
 and ?
 are not supported

 Expression context

The content of template expressions only belongs to the component instance and cannot refer to variables or functions in the global context. The component instance provides everything the template expression can use. It is usually the context of the expressionbut can include objects other than components, like a template reference variable.

 Template reference variable

The
template reference variable

 is a reference to a DOM element or directive within a template. You can use it as a variable with any native DOM element and Angular 2 component. We can reference it on someone, on a sibling or any child elements. There are two forms in which we can define it:

	Within prefix hash (#
) and variable name:

 <input
#product

 placeholder="Product ID">
 <button (click)="findProduct(product.value)">Find</button>

	The canonical alternative with ref-
 prefix and variable name:

 <input
ref-product

 placeholder="Product ID">
 <button (click)="findProduct(product.value)">Find</button>

In both places, the variable product
 passes its value
 to the findProduct
 method. The (click)
 is the form of data binding, which we will talk about shortly.

 Expression guidelines

Authors of the Angular framework recommend following these guidelines in your template expressions:

	They should change only the value of the target property. Changes to other application states are prohibited.

	They must be as quick as possible because they execute more often than other code. Consider caching values of computation for better performance when the computation is expensive.

	Please avoid creating complex template expressions. Usually, you can get value from the property or call the method. Move complex logic into the method of the component.

	Please create idempotent expressions that always return the same thing until one of its dependent values changes. It is not allowed to change dependent values in the period of the event loop.

 Expression operators

Template expression language includes a few operators for specific scenarios.

 The Elvis operator

There are very common situations where the data we want to bind to the view is undefined temporarily. Say we render a template and simultaneously fetch data from the server. There is a period where the data is unclear since the fetch call is asynchronous. As Angular doesn't know this by default, it throws an error. In the following markup we see that the product
 can be equals null
 :

<div>Product: {{product.name | uppercase}}</div>

The render view may fail with a null
 reference error, or worse yet, entirely disappear:

TypeError: Cannot read property 'name' of null in [null]

Every time you write markup, you need to analyze it. If you decide that the product
 variable must never be null
 , but it is null
 , you find the programming error that should be caught and fixed, so this is the reason to throw an exception. Contrariwise, a null
 value can be on the property from time to time, since the fetch call is asynchronous. In the last case, the view must render without exceptions, and the null
 property path must display as blank. We can solve this problem in a few ways:

	Include undefined checks

	Make sure that data always has an initial value

Both of them are useful and have merit but look cumbersome. As an example, we can wrap code in ngIf
 and check the existence of product
 variable and its properties:

<div
*ngIf="product && product.name">

 Product: {{product.name | uppercase}}
</div>

This code is noteworthy, but it becomes cumbersome and looks ugly especially if the path is long. No solution is as elegant as the
Elvis

 operator. The Elvis or
safe navigation operator

 is a convenient way to protect template expression evaluation out of null
 or undefined
 exceptions in the property path.

<div>Product: {{product?.name | uppercase}}</div>

Angular stops expression evaluation when it hits the first null value, displays blank, and the application doesn't crash.

 The pipe operator

One of the primary purposes of the template is displaying data. We can show the raw data with string values directly to the view. But most of the time we need to transform the raw dates into a simple format, add currency symbols to raw floats, and so on, so we understand that some values need a bit of message before display. I feel like we desire lot of the same transformations in many applications. The Angular framework gives us pipes, a way to write display-value transformations that we can declare in templates.

Pipes are simple functions that accept an input value and return a transformed value. We can use them within template expressions, using the pipe operator (|
):

<div>Product: {{product.name |
uppercase

}}</div>

The uppercase
 is a pipe function we placed after the pipe operator. It is possible to chain expressions through multiple pipes:

<div>Product: {{product.name |
uppercase

 |
lowercase

}}</div>

Pipe chains always start the transformation from when the first pipe converts the product name into uppercase
 , then to lowercase
 . It is possible to pass the parameters to a pipe:

<div>Expiry Date: {{product.expDate |
date:'longDate'

}}</div>

Here we have a pipe with configuration argument dictates to transform the expiry date into the long date format: August 2, 1969
 . There is a list of common pipes available in Angular 2:

	The async
 pipe subscribes to an observable or promise and returns the latest value it has emitted.

	The date
 formats a value to a string based on the requested format.

	The i18nSelect
 is a generic selector that displays the string that matches the current value.

	
percent
 formats a number as a local percent.

	
uppercase
 implements uppercase transforms to text.

	The number
 formats a number as local text. i.e. group sizing and the separator and other locale-specific configurations base on the active locale.

	The json
 transforms any input value using JSON.stringify
 . Useful for debugging.

	
replace
 creates a new string with some or all of the matches of a pattern replaced by a replacement.

	
currency
 formats a number as local currency.

	
i18nPlural
 maps a value to a string that pluralizes the value correctly.

	
lowercase
 transforms text to lowercase.

	
slice
 creates a new list or string containing only a subset (slice) of the elements.

 The custom pipes

We can create a custom pipe similar to json
 for our needs as follows:

	Import Pipe
 and PipeTransform
 from the Angular core module

	Create a JsonPipe
 class which implements PipeTransform

	Apply the @Pipe
 decorator to the JsonPipe
 class and give it a name db-json

	Write the transform
 function with input values of string
 type

Here is the final version of our pipe:

import {Pipe, PipeTransform} from '@angular/core';

@Pipe({name: 'db-json'})
export class JsonPipe implements PipeTransform {
 transform(value: any): string {
 return JSON.stringify(value);
 }
}

Now we need a component to demonstrate our pipe:

import {Component} from '@angular/core';
import {
JsonPipe

} from './shared/json.pipe';

@Component({
selector: 'receiver',
template: `
<h2>Receiver</h2>
<p>Received: {{data | db-json}}</p>
`
})
export class PowerBoosterComponent {
 data: any = {x: 5, y: 6};
}

 Template statements

The
template statement

 is another important part of data binding. We use template statements to respond to an event raised by binding targets like element, directive or component. It is based on a JavaScript-like language like the template expression, but Angular parses it differently because:

	It supports the basic assignment =

	It supports chaining expressions with ;
 or ,

 Statement context

The statement expression, like the template expression, can refer only to the component instance to which it is a binding event or to a template reference variable. You may use reserved $event
 in an event binding statement that represents the payload of the raised event.

 Statement guidelines

Authors of the Angular framework recommend avoiding creating the complex statement expressions. Usually, you can assign a value to the property or call the method. Move complex logic into the method of the component.

 Data binding

I mentioned
data binding

 in Chapter 1
 ,
Saying Hello!

 , in passing, but now we dive deeper into this crucial tool of the Angular framework. The data binding is the mechanism for updating parts of the template with binding markup via properties or methods of a component.

The data binding flow supports three directions between data sources and targets HTML elements:

	One-way binding from the data source to target HTML. This group includes interpolation, property, attribute, class, and style binding types:

 {{expression}}
 [target] = "expression"
 bind-target = "expression"

	One-way binding from the target HTML to the data source. This one is event data binding:

 (target) = "statement"
 on-target = "statement"

	Two-way data binding:

 [(target)] = "expression"
 bindon-target = "expression"

The target
 is the directive or component input property that receives data from outside. We must explicitly declare any input property before starting to use it. There are two ways to do that:

Mark the property with @Input
 decorator:

@Input()

 product: Product;

Identify the property as an element of inputs
 array of directive or component metadata:

@Component({

 inputs:

 ['product']
})

The hosting parent element can use product
 property name:

<div>
 <db-product [
product

]="product"></db-product>
</div>

It is possible to use
alias

 for the property to get it a different public name from the internal one to meet conventional expectations:

@Input(
'bestProduct'

) product: Product;

Now any hosting parent element can use the bestProduct
 property name instead of product
 :

<div>
 <db-product
[bestProduct]

="product"></db-product>
</div>

 HTML attributes versus DOM properties

HTML attributes and DOM properties are not the same thing. We are using HTML attributes only to initialize DOM properties, and we cannot change their values later.

 Note

Template binding works with DOM properties and events, not HTML attributes.

 Interpolation

When we need to show the property value of a component on the page we use double curly brackets markup to tell Angular how to display it. Let's update our code inside the navbar.component.html
 in such a way:

{{appName}}

Angular automatically pulls the value of the property appName
 from the NavbarComponent
 class and inserts it into the page. When the property changes, the framework updates the page. Interpolation is just syntactic sugar to make our life easy. In reality, it is one of the forms of property binding.

 Property binding

Property binding

 is a technique to set the property of an element, component, or directive. We can change the preceding markup in this way:

<a class="navbar-brand" href="#" [
innerHTML

]="appName">

We can change the classes via the ngClass
 property:

<div [
ngClass

]="classes">Binding to the classes property</div>

Here is how can we change the property of the component or directive:

<product-detail [
product

]="currentProduct"></product-detail>

For the reason that template expressions may contain malicious content, Angular sanitizes the values before displaying them. Neither interpolation nor property binding allows the HTML with script tags to leak into the web browser.

 Attribute binding

There are several attributes of an HTML element that do not have corresponding DOM properties like ARIA
 , SVG
 , and table span. If you try to write code like this:

<tr><td colspan="{{1 + 1}}">Table</td></tr>

You will immediately get the following exception because the table data tag has a colspan
 attribute, but does not have a colspan
 property:

browser_adapter.js:77 EXCEPTION: Error: Uncaught (in promise): Template parse errors:
Can't bind to 'colspan' since it isn't a known native property ("
<tr><td [ERROR ->]colspan="{{1 + 1}}">Three-Four</td></tr>
")

In this particular case, we can use
attribute binding

 as part of property binding. It uses the prefix attr
 followed by the dot (.
) and the name of the attribute. Everything else is the same:

<tr><td [attr.colspan]="1 + 1">Three-Four</td></tr>

 Class binding

Angular provides support for
class binding

 . By analogy to attribute binding, we use the prefix class
 , optionally followed by a dot (.
) and the name of a CSS class.

<div class="meat special">Meat special</div>

We can replace it with binding to a string of the desired class name meatSpecial
 :

<div [
class

]="meatSpecial">Meat special</div>

Or add the template expression isSpecial
 to evaluate true or false to tell Angular to add or remove the special
 class from the target elements:

<div [
class.special

]="isSpecial">Show special</div>

 Note

Use the
NgClass

 directive for managing multiple class names at the same time.

 Style binding

It is possible to manage the styles of the target element via
style binding

 . We use the prefix style
 , optionally followed by a dot (.
) and the name of a CSS style property:

<button
[style.color]

="isSpecial?'red':'green'">Special</button>

 Note

Use the
NgStyle

 directive when setting several inline styles at the same time.

The data always flows in one direction in property binding, from the data property of the component to the target element. We cannot use property binding to get the value from the target element or call a method on the target element. If the element raises the events, we can listen to them via an event binding.

 Event binding

Any user action on the page generates events, so the authors of Angular framework introduced
event binding

 . The syntax of this binding is quite simple and it consists of a
target event

 within the parentheses, equal sign, and a quoted template statement. The target event is the name of the event:

<button
(click)

="onSave()">Save</button>

You can use the canonical format of event binding if you prefer. It supports the prefix on-
 in front of the name without parentheses in such a way:

<button
on-click

="onSave()">Save</button>

In cases where the name of an event does not exist on the element or the output property is unknown, Angular reports this as an unknown directive
 error.

We can use the information event binding transfers about the event via an
event object name

 $event
 . Angular uses the target event to determine the shape of the $event
 whereby if the DOM element generates an event, the $event
 is a DOM event object, and it contains target
 and target.value
 properties. Check this code:

<div #product>
 <input [value]="product.name"
 (input)="product.name=$event.target.value">

 {{product.name}}
</div>

We define the local variable product and bind the value of the input element to its name, and we attach the input event to listen to changes. When the user starts to type, the component generates the DOM input event, and the binding executes the statement.

 Custom events

JavaScript provides a dozen events for a whole bunch of scenarios out of the box, but sometimes we want to fire our own custom events for particular needs. It would be good to use them because custom events provide an excellent level of decoupling in the application. JavaScript provides CustomEvent
 that does all sorts of awesome things, but Angular exposes an EventEmitter
 class we can use in
directives

 and
components

 to emit custom events. What we need to do is to create a property of type EventEmitter
 and call the emit
 method to fire the event. It is possible to pass in a message payload that can be anything. This property regarding Angular works as output because it fires events from the directive or component to outside. We must explicitly declare any output property before we start to use it. There are two ways to do that:

Mark the property with the @Output
 decorator:

@Output()

 select:EventEmitter<Product>

Identify the property as an element of outputs
 array of directive or component metadata:

@Component({

outputs:

 ['select']
})

If necessary, we can use
alias

 for the property to give it a different public name from the internal one to meet conventional expectations:

@Output('selected')

 select:EventEmitter<Product>

Assume the customer selects the product in the grid of products. We can listen to mouse click
 events in markup and handle them in the browse
 method of the component:

Browse

When the method handles the mouse event, we can fire the custom event with the selected product
 :

import {Component, Input, Output, EventEmitter} from
 '@angular/core';

export class Product {
 name: string;
 price: number;
}

@Component({
 selector: 'db-product',
 templateUrl: 'app/product/product.component.html'
})
export class ProductComponent {
 @Input product: Product;

 @Output() select:EventEmitter<Product> =
 new EventEmitter<Product>();

 browse($event) {
 this.select.emit(<Product>$event);
 }
}

From now on, any hosting parent component can bind to the select
 event firing by the ProductComponent
 :

<db-product [product]="product"
 (select)="productSelected($event)"></db-product>

When the select
 event fires, Angular calls the productSelected
 method in the parent component and passes the Product
 in the $event
 variable.

 Two-way data binding

Most of the time we need only one-way binding, where data follows from component to view or vice verse. Usually, we do not capture input that needs to be applied back to the DOM, but in some scenarios, it might be very useful. This is why Angular supports
two-way data binding

 . As shown previously, we can use the property binding to input the data into directive or component properties with the help of square brackets:

<input
[value]

="product.selected"></input>

The opposite direction is denoted by surrounding an event name with parentheses:

<input
(input)

="product.selected=$event.target.value">Browse

We can combine those techniques to have the best of both worlds with the help of the ngModel
 directive. There are two forms of two-way data binding:

	Where the parentheses go inside the brackets. It is easy to remember as it shapes like "banana in a box":

 <input
[(ngModel)]

="product.selected"></input>

	Using the canonical prefix bindon-
 :

 <input
bindon-ngModel

="product.selected"></input>

When Angular parses the markup and meets one of these forms, it uses the ngModel
 input and ngModelChange
 output to create two-way data binding and hide the details behind the scene.

 Note

The ngModel
 directive only works for HTML elements supported by a ControlValueAccessor
 .

We cannot use ngModel
 in a custom component until we implement a suitable value accessor.

 Built-in directives

Angular has a small number of powerful built-in directives to cover many routine operations we need to do in templates.

 NgClass

We use a class binding to add and remove a single class:

<div [
class.special

]="isSpecial">Show special</div>

In scenarios when we need to manage many classes at once it's better to use the NgClass
 directive. Before use, we need to create a key:value
 control object, where the key is a CSS class name and the value is a boolean. If the value is true
 , Angular adds the class from the key to the element and if it is false
 then it removes it. Here is the method that returns the key:value
 control object:

getClasses()

 {
 let classes = {
 modified: false,
 special: true
 };
 return classes;
}

So, it's time to add the NgClass
 property and bind it to the getClasses
 method:

<div [
ngClass

]="
getClasses

()">This is special</div>

 NgStyle

The style binding helps set inline styles, based on the state of the component.

<button [
style.color

]="isSpecial?'red':'green'">Special</button>

If we need to set many inline styles it's better to use the NgStyle
 directive, but before using it we need to create the key:value
 control object. The key of the object is the style name, the value is anything appropriated for the particular style. Here is the key:value
 control object:

getStyles() {
 let styles = {
 'font-style': 'normal',
 'font-size': '24px'
 };
 return styles;
}

Let's add the NgStyle
 property and bind it to the getStyles
 method:

<div [
ngStyle

]="
getStyles

()">
 This div has a normal font with 8 px size.
</div>

 NgIf

We can use different techniques to manage the appearance of elements in DOM. One of them uses hidden
 property to hide any unwanted part of the page:

<h3 [
hidden

]="!specialName">
 Your special is: {{specialName}}
</h3>

In the preceding code, we bind the specialName
 variable to the HTML hidden
 property. Another one uses a built-in directive like NgIf
 to add or remove the element from the page entirely:

<h3 *
ngIf

="specialName">
 Your special is: {{specialName}}
</h3>

The difference between hiding and deleting is material. The benefits of invisible elements are evident:

	It shows very quickly

	It preserves the previous state and is ready to display

	It is not necessary to reinitialize

The side effects of a hidden element are that:

	It still exists on the page and its behavior continues

	It ties up resources, utilizes connections to the backend, etc.

	Angular keeps listening to events and checking for changes that could affect data bindings and so on

The NgIf
 directive works differently:

	It removes the component and all children entirely

	Removed elements do not utilize resources

	Angular stops change detection, detaches the element from DOM and destroys it.

 Note

I recommend you use ngIf
 to remove unwanted components rather than hide them.

 NgSwitch

If we want to display only one element tree from many element trees based on some condition, we can use the NgSwitch
 directive. To make it work we need:

	To define a container element which contains the NgSwitch
 directive with a switch expression

	Define inner elements with a NgSwitchCase
 directive per element

	Establish no more than an item with the NgSwitchDefault
 directive

The NgSwitch
 inserts nested elements based on which match expressions in NgSwitchCase
 and which match the value evaluated from the switch expression:

<div [
ngSwitch

]="condition">
 <p *
ngSwitchWhen

="true">The true value</p>
 <p *
ngSwitchWhen

="false">The false value</p>
 <p *
ngSwitchDefault

>Unknown value</p>
</div>

If a matching expression is not found, then an element with a NgSwitchDefault
 directive is displayed.

 NgFor

The NgFor
 directive, in contrast to NgSwitch
 , renders each item in the collection. We can apply it to simple HTML elements or components with the following syntax:

<div
*ngFor

="let product of products">{{product.name}}</div>

The text assigned to the NgFor
 directive is not a template expression. It is
microsyntax

 the language that Angular interprets how to iterate over the collection. Further, Angular translates an instruction into a new set of elements and bindings. The NgFor
 directive iterates over the products
 array to return the instance of the Product
 and stamps out instances of the DIV element to which it is applied. The let
 keyword in an expression creates a
template input variable

 called the product
 , available in the scope of host and its children elements, so we can use its properties like we are doing in interpolation {{product.name}}
 .

 Note

A template input variable is neither the template nor the state reference variables.

Sometimes it can be useful to know a bit more about the currently iterated element. The NgFor
 directive provides several exported index-like values:

	The index
 value sets to the current loop iteration from 0 to the length of collection

	The first
 is the boolean value indicating whether the item is the first in the iteration

	The last
 is the boolean value indicating whether the item is the last one in the collection

	The even
 is the boolean value indicating whether the item has an even index

	The odd
 is the boolean value indicating whether the item has an odd index

So we can use any of those values to capture one in a local variable and use it inside an iteration context:

<div *ngFor="let product of products; let
i=index

">
 {{
i

 + 1}} - {{product.name}}
</div>

Now, let's imagine an array of products we query from the backend. Each refresh operation returns the list containing some, if not all, of thenumber of changed items. Because Angular doesn't know about changes, it discards the old DOM elements and rebuilds a new list with new DOM elements. With a huge number of items in the list, the NgFor
 directive can perform poorly, freeze the UI, and make a web application entirely unresponsive. We can fix the problem if we give Angular a function to track items inside thecollection, and so avoid this DOM rebuild nightmare. The tracking relies on object identity so that we can use any one or many properties to compare new and old items inside the collection. The term
object identity

 refers to object equality based on the ===
 identity operator. Here is an example of track by the ID property of product:

<div *ngFor="let product of products; trackBy: product.id; let i=index">
 {{i + 1}} - {{product.name}}
</div>

Hence, we can use the tracking function such that:

trackByProductId(index: number, product: Product): any {
 return product.id;
}

It's time to add the tracking function to the NgFor
 directive expression:

<div *ngFor="let product of products; trackBy:trackByProductId;
 let i=index">
 {{i + 1}} - {{product.name}}
</div>

The tracking function cannot remove the DOM changes but it can reduce the number of them and make the UI smoother and more responsive.

 Structural directives

We quite often see the asterisk prefix in built-in directives, but I haven't explain the purpose. It's time to unveil the
secret

 Angular developers keep from us.

We are developing single page applications and at some time, we end up with the necessity to manipulate DOM efficiently. The Angular framework helps with appearing and disappearing portions of the page according to the application state with several built-in directives. In general, Angular has three kinds of directives:

	

Component

 : This is a directive with a template, and we will create a lot of them in our project.

	

Attribute directive:

 This kind of directive changes the appearance or behavior of an element.

	

Structural directive

 : This changes the DOM layout by adding or removing DOM elements.

Structural directives use the HTML 5 template
 tag to manage the appearance of components on the page. Templates allow the declaration of fragments of HTML markup as prototypes. We can insert them into the page anywherethe head, body, or frameset, but without display:

<template id="special_template">
 <h3>Your are special</h3>
</template>

To use the template we must clone and insert it into the DOM:

// Get the template
var template: HTMLTemplateElement =
 <HTMLTemplateElement>document.
 querySelector("#special_template");
// Find place where
var placeholder: HTMLElement =
 <HTMLElement>document.
 querySelector("place");
// Clone and insert template into the DOM
placeholder.appendChild(template.content.cloneNode(true));

Angular keeps the content of structural directives in the template
 tag, replaces it with a script
 tag, and uses it when it is necessary. Because the template form is verbose, the Angular developers introduced the
syntactic sugar

 asterisk (*
) prefix for directives to hide verbosity:

<h3 *ngIf="condition">Your are special</h3>

When Angular reads and parses the above HTML markup, it replaces the asterisk back to template form:

<template [ngIf]="condition">
 <h3>Your are special</h3>
</template>

 Custom structural directive

Let's create the structural directive similar to NgIf
 that we can use to display the content on the page dependent on the condition. Open the project in Microsoft Studio Code and create if.directive.ts
 file with the following content:

import {Directive, Input} from '@angular/core';

@Directive({ selector: '[dbIf]' })
export class IfDirective {
}

We import Directive
 to apply it to the IfDirective
 class. We can use our directive in any HTML element or component as a property. Because we manipulate it with the content of the template, we need TemplateRef
 . Moreover, Angular uses a special renderer ViewContainerRef
 to render the content of template, so we need to import both of them and inject them into constructor as private variables:

import {Directive, Input} from '@angular/core';
import {TemplateRef, ViewContainerRef} from '@angular/core';

@Directive({ selector: '[dbIf]' })
export class IfDirective {
 constructor(
 private templateRef: TemplateRef<any>,

private viewContainer: ViewContainerRef

) { }
}

And lastly, the property to keep the boolean condition so that the directive adds or removes the template based on that value: it must have the same name as the directive, plus we can make it read-only:

@Input() set dbIf(condition: boolean) {
 if (condition) {

this.viewContainer.createEmbeddedView(this.templateRef);

 } else {

this.viewContainer.clear();

 }
}

If the condition
 is true
 , the preceding code calls the view container to create an embedded view that references the template content, or otherwise, removes it. Here is the final version of our directive:

import {Directive, Input} from '@angular/core';
import {TemplateRef, ViewContainerRef} from '@angular/core';

@Directive({ selector: '[dbIf]' })
export class IfDirective {
 constructor(
 private templateRef: TemplateRef<any>,
 private viewContainer: ViewContainerRef
) { }

 @Input() set dbIf(condition: boolean) {
 if (condition) {
 this.viewContainer.
 createEmbeddedView(this.templateRef);
 } else {
 this.viewContainer.clear();
 }
 }
}

Now we can add our directive into the directives
 array of the host component to use it instead of NgIf
 .

 Tip

You can find the source code at chapter_4/2.ecommerce-navbar
 .

 Category product component

We will continue to create Angular components for our application. Now, we know everything about templates, it's time to create the Category
 product. Let's create the category
 directory and the file category.ts
 . Copy and paste the following code:

export class Category {
 // Unique Id
 id: string;
 // The title
 title: string;
 // Description
 desc: string;
 // Path to image
 image: string;
}

So, each category of product has a unique identifier, title, description, and image. Now create the file category-card.component.ts
 , copy and paste the following code:

import {Component, Input, Output, EventEmitter}
from '@angular/core';

import {Category} from './category';

@Component({
 selector: 'db-category-card',
 templateUrl:
 'app/category/category-card.component.html'
})
export class CategoryCardComponent {
 @Input() category: Category;
 @Output() select: EventEmitter<Category> =
 new EventEmitter<Category>();

 browse() {
 this.select.emit(this.category);
 }
}

This is a Category component that we use in a grid of categories. It has the input property category
 and output event select
 . Let's have a look at what the markup looks like:

<div class="col-xs-12 col-sm-6 col-md-4">
 <div class="card">
 <img class="card-img-top img-fluid center-block product-item"
 src="{{category.image}}" alt="{{category.title}}">
 <div class="card-block">
 <h4 class="card-title">{{category.title}}</h4>
 <p class="card-text">{{category.desc}}</p>
 Browse
 </div>
 </div>
</div>
<!-- /.col -->

It is an exact copy of the markup from app.component.html
 . We use interpolation data binding everywhere. Now create category-slide.component.ts
 , copy and paste the following code:

import {Component, Input, Output, EventEmitter} from '@angular/core';

import {Category} from './category';

@Component({
 selector: 'db-category-slide',
 templateUrl:
 'app/category/category-slide.component.html'
})
export class CategorySlideComponent {
 @Input() category: Category;
 @Output() select: EventEmitter<Category> =
 new EventEmitter<Category>();

 browse() {
 this.select.emit(this.category);
 }
}

The source code of this file looks very similar to the card category, but the markup is not:

<div class="carousel-caption">
 <h2>{{category.title}}</h2>
</div>

This one is a copy of HTML from the carousel component. It's time to create our first Angular feature module. Create the file category.module.ts
 with the following content:

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import { RouterModule } from '@angular/router';

import { CategoryCardComponent } from './category-card.component';
import { CategorySlideComponent } from './category-slide.component';

@NgModule({
 imports: [CommonModule, RouterModule],
 declarations: [CategoryCardComponent, CategorySlideComponent],
 exports: [CategoryCardComponent, CategorySlideComponent]
})
export class CategoryModule { }

As we know, an Angular module is a class decorated with an NgModule
 decorator. Let's see what we are defining with it:

	There are the CategoryCardComponent
 and CategorySlideComponent
 components which belong to the module, so we must declare them as well as other components, directives, and pipes inside the declarations
 property

	We make the CategoryCardComponent
 and CategorySlideComponent
 components available publicly via the exports
 property so that other component templates can use them

	And lastly, we import the CommonModule
 and RouterModule
 inside the imports
 property because we use their components and services in this module

Now we can include this module file in other modules or in the application module, to make the export available there. Open the app.module.ts
 file and update it accordingly:

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

/**
 * Modules
 */

import { CategoryModule } from './category/category.module';

/*
 * Components
 */
import { AppComponent } from './app.component';
import { NavbarComponent } from './navbar/navbar.component';

@NgModule({
 imports: [BrowserModule, CategoryModule],
 declarations: [AppComponent, NavbarComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

This changemakes the CategoryCardComponent
 and CategorySlideComponent
 components available immediately for the application component. I defined two variables slideCategories
 and cardCategories
 to keep data for cards in grid and slides.

Here are the changes in app.component.html
 :

<!-- Indicators -->
<ol class="carousel-indicators">
 <li data-target="#welcome-products"
*ngFor="let category of slideCategories; let first=first; let i=index"
 attr.data-slide-to="{{i}}" [ngClass]="{active: first}">

We use the NgFor
 directive here with first
 and index
 values to initialize the data-slide-to
 attribute and active
 class of the first component:

<!-- Content -->
<div class="carousel-inner" role="listbox">
 <div *ngFor="let category of slideCategories; let first=first"
 class="carousel-item" [ngClass]="{active: first}">
 <db-category-slide
 [category]="category" (select)="selectCategory($event)">
 </db-category-slide>
 </div>
</div>

In this markup, we form the content of carousel images, so we use the NgFor
 directive in the carousel-inner
 component. We use the first value to manage the active class of the first component:

<div class="row">
 <db-category-card *ngFor="let category of cardCategories"
 [category]="category" (select)="selectCategory($event)">
 </db-category-card>
 </div>

Here are the last changes where we create the cards grid with help of the NgFor
 directive.

 Tip

You can find the source code at chapter_4/3.ecommerce-category
 .

 Summary

We have been speaking about the structure of the Angular application and how important it is to maintain a flat folder structure. Because we are following the single responsibility principles, we create only one component per file and keep it as small as possible. It is best practice for every angular application to have a shared folder.

We have spoken a lot about decorators, tree of components, and templates. We know that template expressions and template statements are the crucial part of data binding. Both of them are based on a restricted version of the JavaScript-like language.

Template expression includes the Elvis and pipe operators for specific scenarios. Data binding supports three flow directions and includes interpolation, property binding, attribute binding, class binding, style binding, event binding, and two-way binding.

Angular has several very powerful directives that help us to manipulate DOM elements like NgFor
 , NgIf
 , NgClass
 , NgStyle
 , and NgSwitch
 . We learned why we use the asterisk prefix and what Structural Directives are.

In Chapter 5
 ,
Routing

 , we will set up the top navigation with Bootstrap. You will become familiar with Angular's component router and how to configure it. Plus we will continue to build the project that we started to develop in previous chapters.

 Chapter5.Routing

Many web applications require more than one page or view, and Angular is well equipped to handle this with its router. The router uses JavaScript code and manages the navigation between views as users perform application tasks. In this chapter, we will take a look at how we can create static routes, as well as routes containing parameters, and how to configure them. We will also discover some of the pitfalls we might face. In this chapter, we will set up the top navigation with Angular.

At the end of the chapter, you will have a solid understanding of the following:

	Component router

	Router configuration

	Router link and router outlet

	Creating components and navigation for our application

 Modern web applications

You've heard about
Single-Page Applications

 (
SPA

) many times, but why develop web applications like that? What are the benefits?

The main idea for using SPAs is quite simpleusers would like to use web applications which look like and behave like native applications. An SPA is a web application that loads a single HTML page and dynamically updates it as the user interacts with multiple components on it. Some of the components support many states, such as open, collapsed, and so on. Implementing all of these features with server-side rendering is hard to do, therefore much of the work happens on the client side, in JavaScript. This is achieved by separating data from the presentation of data by having a model layer that handles data and a view layer that reads from the models.

This idea brings some level of complexity to the code and often results in changing people's minds about the development process. Now we start thinking about the conceptual parts of the application, file and module structures, performance issues over bootstrapping, and so on.

 Routing

Since we are making an SPA and we don't want any page refreshes, we'll use the routing capabilities of Angular. The routing module is a crucial part of Angular. From one side it helps to update the URL of the browser as the user navigates through the application. From another side, it allows changes to the URL of the browser to drive navigation through the web application, thus allowing the user to create bookmarks to locations deep within the SPA. As a bonus, we can split the application into multiple bundles and load them on demand.

With the introduction of HTML 5, browsers acquired the ability to create programmatically new browser history entries that change the displayed URL without the need for a new request. This is achieved using the pushState
 method of history that exposes the browser's navigational history to JavaScript. So now, instead of relying on the anchor hack to navigate routes, modern frameworks can count on pushState
 to perform history manipulation without reloads.

The Angular router uses this model to interpret a browser URL as an instruction to navigate to a client-generated view. We can pass optional parameters along to the view component to help it decide what specific content to present.

Let's start with the following:

	Open Terminal, create the folder ecommerce
 and move in.

	Copy the content of the project from the folder chapter_5/1.ecommerce-seed
 into the new project.

	Run the following script to install NPM modules:

 npm install

	Start the TypeScript watcher and lite server with following command:

npm run start

This script opens the web browser and navigates to the welcome page of the project.

 Routing path

Before we begin, let's plan out exactly what routes we're going to need for the Dream Bean grocery store website:

	The welcome view uses the /#/welcome
 path. It is going to be our entry point for the application, which will list all categories in a grid and slideshow.

	The products view utilizes the /#/products
 path. We'll be able to see the goodies within the chosen category there.

	We show the products view on /#/product/:id
 . Here, we will display information about the product. The :id
 here and in the next example is a token for a route parameter. We will talk about it later in this chapter.

	The /#/cart
 path is where we will see the cart view list all items in the user's shopping cart.

	In the checkout view with the /#/checkout/:id
 path, we will include a form that will allow a user to add contact information; it also provides the order information and purchase conditions.

These are all of our essential routes; now let's take a look at how we can create them.

 Installing the router

The router is packaged as a module inside Angular, but it is not a part of the Angular core, so we need to manually include it inside the bootstrapping configuration in the systemjs.config.js
 file:

// angular bundles
'@angular/core': 'npm:@angular/core/bundles/core.umd.js',
'@angular/common': 'npm:@angular/common/bundles/common.umd.js',
'@angular/compiler': 'npm:@angular/compiler/bundles/compiler.umd.js',
'@angular/platform-browser': 'npm:@angular/platform-browser/bundles/platform-browser.umd.js',
'@angular/platform-browser-dynamic': 'npm:@angular/platform-browser-dynamic/bundles/platform-browser-dynamic.umd.js',
'@angular/http': 'npm:@angular/http/bundles/http.umd.js',

'@angular/router': 'npm:@angular/router/bundles/router.umd.js',

'@angular/forms': 'npm:@angular/forms/bundles/forms.umd.js',

 The base URL

If we have decided to use routing, then we should add the base
 element as the first child in the head
 tag. The reference in this tag resolves relative URLs and hyperlinks, and tells the router how to compose navigation URLs. For our project, I assigned the "/"
 to the href
 of the base
 element, because the app
 folder is the application root:

<base href="/">

If we deploy the application to the server within a particular context, such as portal
 , then we must change this value accordingly:

<base href="/portal">

 The Angular router

The actual routing from one view to another happens with the help of the
Angular router

 . It is an optional service, and represents the component view for a specific URL. It has its own library package, and we must import from it before use:

import { RouterModule } from '@angular/router';

 The router configuration

The application must have only one router. We should configure it so that it knows how to map the browser's URL to the corresponding Route
 and determine the component to display. The primary way to do that uses the RouterModule.forRoot
 function with an array of routes which bootstraps the application with it.

 Creating basic routes

Create the file app.routes.ts
 and import necessary elements from the router package:

import { Routes, RouterModule } from
'@angular/router'

;

Now create the constants to keep the application routes:

const routes: Routes = [
 { path: 'welcome', component: WelcomeComponent },
 { path: 'products', component: ProductListComponent },
 // { path: 'products/:id', component: ProductComponent }
];

We define the array of route objects that describe how to navigate. Each route maps a URL path
 to a component
 to display. The router parses and constructs the URL, helping us to use the following:

	Path references to the base element, eliminating the necessity of using leading splashes

	Absolute path

 Query parameters

The second item in the router configuration points only to products
 , but as I mentioned earlier, we'll be able to see the goodies within the chosen category there. It sounds like the information we would like to include in our URL is optional:

	We can leave the request without extra information to get all the products

	We can use the particular category to fetch the products belonging to it

These kinds of parameters do not fit easily into a URL path, so, usually, it is complicated or impossible to create the pattern matching required to translate an incoming URL to a named route. Fortunately, the Angular router supports the
URL

query string

 for conveying any arbitrary information during navigation.

 Router parameters

The third element in the routes
 array has an id
 in its path. It is a token for a
route

parameter

 ; the value corresponding with the view component will use it to find and present the product information. In our example, the URL 'product/20'
 keeps the value 20
 of the id
 parameter. The ProductComponent
 can use this value to find and display the product with an ID equaling 20
 . This route is commented out because we don't have the ProductComponent
 implemented yet.

 Route versus query parameters

Here are the general rules to help you choose what parameters to use. Use the route parameters when the following conditions are met:

	The value is required

	The value is necessary for navigation to another route

Use the query parameters when the following conditions are met:

	The value is optional

	The value is complex or contains multivariance

 Register routing in bootstrap

In the end, we should use the RouterModule.forRoot
 method to return a new instance of RouterModule
 containing the configured and ready-to-use router service provider and required routing libraries:

export const routing = RouterModule.forRoot(routes);

After that, we need to register the returned module in AppModule
 :

/*
 * Routing
 */
import {routing} from './app.routes';

@NgModule({
 imports: [BrowserModule, FormsModule,
 routing, CategoryModule],
 declarations: [AppComponent, NavbarComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

 Redirecting routes

Usually, when a user types the address of the Dream Bean website, he/she provides the website domain name: http://www.dreambean.com
 .

This URL does not match any configured routes, and Angular cannot show any component at that moment. The user must click on some link to navigate to the view, or we can teach the configuration to display the particular route with the help of the redirectTo
 property:

const routes: Routes = [
 { path: '', redirectTo: 'welcome', pathMatch: 'full' },
 { path: 'welcome', component: WelcomeComponent },
 { path: 'products', component: ProductListComponent },
 //{ path: 'products/:id', component: ProductComponent }
];

After those changes, if the user navigates to the original URL, the router translates from the initial URL (''
) to the default URL ('welcome'
) and displays the Welcome View.

The redirected route has a required property, pathMatch
 , to tell the router how to match the URL to the path. We have two options for this value:

	The full
 shows that the selected route must match the entire URL

	The prefix
 dictates to the router to match the redirect route to any URL that begins with the prefixed value in the path
 .

 Router outlet

Now, once we have settled the router configuration, it's time to present some components on the screen. But waitwe need a place for them, and this is why the router outlet is coming to the stage.

The RouterOutlet
 is a placeholder that Angular dynamically fills based on the application's route. The RouterOutlet
 is the part of the RouterModule
 imported before, so we don't need to import it elsewhere. Here is a wireframe that splits the SPA into three rows:

[image: Router outlet]

The wireframe of the SPA

In the first row, we keep the NavigationComponent
 ; in the last row, the footer container. All space in between is the place where the RouterOutlet
 will display the corresponding view.

 Welcome View

We configured the application routes and added them to the AppModule
 , so now we need to create the Welcome View because it is a crucial part of the routing. Create a welcome
 folder and two files inside welcome.component.html
 and welcome.component.ts
 . Now move the content of app.component.html
 between the navbar
 and the footer into welcome.component.html
 and replace it. Markup represents the RouterOutlet
 as a component:

<db-navbar></db-navbar>
<router-outlet></router-outlet>
<footer class="footer">
 <div class="container">
 <address>
 Contact Info

 0000 Market St, Suite 000, San Francisco, CA 00000, (123) 456-7890,
 support@dream-bean.com
 </address>
 </div>
</footer>

Copy and paste the following content into the welcome.component.ts
 :

/*
 * Angular Imports
 */
import {Component} from '@angular/core';

@Component({
 selector: 'db-welcome',
 templateUrl: 'app/welcome/welcome.component.html'
})
export class WelcomeComponent { }

I moved almost all code from the AppComponent
 into WelcomeComponent
 , and it dramatically reduced its size:

/*
 * Angular Imports
 */
import {Component} from '@angular/core';

@Component({
 selector: 'my-app',
 templateUrl: 'app/app.component.html',
})
export class AppComponent { }

I used the link to navigate from Welcome View to the products view with a selected category instead of making a call to the selectCategory
 method, so I deleted the last one as well.

 The footer component

Now, when you have an idea how to create a component, you can do it yourself. Create the footer
 folder, footer.component.ts
 , and footer.component.html
 . Here, the source code of the footer.component.ts
 is the following :

/*
 * Components
 */
import {Component} from '@angular/core';

@Component({
 selector: 'db-footer',
 templateUrl: 'app/footer/footer.component.html'
})
export class FooterComponent {}

As you can see, it looks the same as other components that we created before. Move the content of the footer container from the application.component.html
 into the footer.component.html
 and replace it with the FooterComponent
 tag, so now the HTML of our application looks pretty neat:

<db-navbar></db-navbar>

<router-outlet></router-outlet>

<db-footer></db-footer>

 The category data

I kept the category data as part of the AppComponent
 because it was a quick and obvious way at the moment when we started development. Now, as application grows, it's time to move all category data into the category file. Open the category.ts
 file and copy the following source code there:

export interface Category {
 // Unique Id
 id: string;
 // The title
 title: string;
 // Description
 desc: string;
 // Path to small image
 imageS: string;
 // Path to large image
 imageL: string;
}

var categories: Category[] = [
 { id: '1', title: 'Bread & Bakery', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'The best cupcakes, cookies, cakes, pies, cheesecakes, fresh bread, biscotti, muffins, bagels, fresh coffee and more.' },
 { id: '2', title: 'Takeaway', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'It's consistently excellent, dishes are superb and healthily cooked with high quality ingredients.' },
 { id: '3', title: 'Dairy', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'A dairy product is food produced from the milk of mammals, primarily cows, water buffaloes, goats, sheep, yaks.' },
 { id: '4', title: 'Meat', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Only superior quality beef, lamb, pork.' },
 { id: '5', title: 'Seafood', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Great place to buy fresh seafood.' },
 { id: '6', title: 'Fruit & Veg', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'A variety of fresh fruits and vegetables.' }
];

export function getCategories() {
 return categories;
}

export function getCategory(id: string): Category {
 for (let i = 0; i < categories.length; i++) {
 if (categories[i].id === id) {
 return categories[i];
 }
 }
 throw new CategoryNotFoundException(`Category ${id} not found`);
}

export class CategoryNotFoundException extends Error {
 constructor(message?: string) {
 super(message);
 }
}

The getCategories
 function returns the list of categories. The getCategory
 returns the category found by the ID or throws a CategoryNotFoundException
 .

 Category card view

Let's open the category-card.component.html
 file and change the markup as follows:

<div class="col-xs-12 col-sm-6 col-md-4">
 <div class="card">
 <img class="card-img-top center-block product-item"
 src="{{category.image}}" alt="{{category.title}}">
 <div class="card-block">
 <h4 class="card-title">{{category.title}}</h4>
 <p class="card-text">{{category.desc}}</p>
 <a class="btn btn-primary"

 (click)="filterProducts(category)">Browse

 </div>
 </div>
</div>

When a user clicks on the
Browse

 button, Angular calls the filterProducts
 method with a category specified as a parameter.

Open the category-card.component.ts
 file, import the Router
 from the library, and add the reference in the constructor of the component:

import {Component, Input} from '@angular/core';

import {Router} from '@angular/router';

import {Category} from './category';

@Component({
 selector: 'db-category-card',
 templateUrl:
 'app/shared/category/category-card.component.html'
})
export class CategoryCardComponent {
 @Input() category: Category;

 constructor(
private router: Router

) {}

 filterProducts(category: Category) {

 this.router.navigate(['/products'],

 {queryParams: { category: category.id} });

 }
}

Pay attention to the filterProducts
 method. We use a router configured in the bootstrapping of the application and available in this component. Because we decided to use query parameters, I invoked a navigation method and passed the same name as the second parameter object. We can convey any information and Angular will convert it into the query string of URL like so:

/products?category=1

We are done with the Welcome View and are now moving to the Products View.

 The product data

We don't use the back end server to return the products data yet, so let's create the product.ts
 file with the following content:

export interface Product {
 // Unique Id
 id: string;
 // Ref on category belongs to
 categoryId: string;
 // The title
 title: string;
 // Price
 price: number;
 // Mark product with specialproce
 isSpecial: boolean;
 // Description
 desc: string;
 // Path to small image
 imageS: string;
 // Path to large image
 imageL: string;
}

var products: Product[] = [
 // Bakery
 { id: '1', categoryId: '1', title: 'Baguette/French Bread', price: 1.5, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Great eaten fresh from oven. Used to make sub sandwiches, etc.' },
 { id: '2', categoryId: '1', title: 'Croissants', price: 0.5, isSpecial: true, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'A croissant is a buttery, flaky, viennoiserie-pastry named for its well-known crescent shape.' },
 // Takeaway
 { id: '3', categoryId: '2', title: 'Pizza', price: 1.2, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Pizza is a flatbread generally topped with tomato sauce and cheese and baked in an oven.' },
 // Dairy
 { id: '4', categoryId: '3', title: 'Milk', price: 1.7, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Milk is a pale liquid produced by the mammary glands of mammals' },
 { id: '5', categoryId: '3', title: 'Cream Cheese', price: 2.35, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Cream cheese is a soft, mild-tasting fresh cheese with a high fat content.' },
 // Meat
 { id: '6', categoryId: '4', title: 'Pork Tenderloin', price: 5.60, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'The pork tenderloin, in some countries called pork fillet, is a cut of pork. ' },
 { id: '7', categoryId: '4', title: 'Ribs, Baby Back', price: 4.85, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Pork ribs are a cut of pork popular in North American and Asian cuisines. ' },
 { id: '8', categoryId: '4', title: 'Ground Beef', price: 9.20, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Ground beef, beef mince, minced beef, minced meat is a ground meat made of beef that has been finely chopped with a large knife or a meat grinder.' },
 // Seafood
 { id: '9', categoryId: '5', title: 'Tuna', price: 3.45, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'A tuna is a saltwater finfish that belongs to the tribe Thunnini, a sub-grouping of the mackerel family - which together with the tunas, also includes the bonitos, ackerels, and Spanish mackerels.' },
 { id: '10', categoryId: '5', title: 'Salmon', price: 4.55, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Salmon is the common name for several species of ray-finned fish in the family Salmonidae.' },
 { id: '11', categoryId: '5', title: 'Oysters', price: 7.80, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'The word oyster is used as a common name for a number of different families of saltwater clams, bivalve molluscs that live in marine or brackish habitats.' },
 { id: '12', categoryId: '5', title: 'Scalops', price: 2.70, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Scallop is a common name that is primarily applied to any one of numerous species of saltwater clams or marine bivalve mollusks in the taxonomic family Pectinidae, the scallops.' },
 // Fruit & Veg
 { id: '13', categoryId: '6', title: 'Banana', price: 1.55, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'The banana is an edible fruit, botanically a berry, produced by several kinds of large herbaceous flowering plants in the genus Musa.' },
 { id: '14', categoryId: '6', title: 'Cucumber', price: 1.05, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Cucumber is a widely cultivated plant in the gourd family, Cucurbitaceae. ' },
 { id: '15', categoryId: '6', title: 'Apple', price: 0.80, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'The apple tree is a deciduous tree in the rose family best known for its sweet, pomaceous fruit, the apple.' },
 { id: '16', categoryId: '6', title: 'Lemon', price: 3.20, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'The lemon is a species of small evergreen tree native to Asia.' },
 { id: '17', categoryId: '6', title: 'Pear', price: 4.25, isSpecial: false, imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'The pear is any of several tree and shrub species of genus Pyrus, in the family Rosaceae.' }
];

export function getProducts() {
 return products;
}

export function getProduct(id: string): Product {
 for (let I = 0; I < products.length; i++) {
 if (products[i].id === id) {
 return products[i];
 }
 }
 throw new ProductNotFoundException(`Product ${id} not found`);
}

export class ProductNotFoundException extends Error {
 constructor(message?: string) {
 super(message);
 }
}

If you look closely, you will find a similarity to the category.ts
 file. I'm just following the naming conventions.

 Products View

The Products View provides a listing of all goodies within the chosen category. From it, a customer can see all product information, and add any of the listed products to his or her shopping cart. A user can also navigate to any of the provided categories or use the
Quick Shop

 feature to search products by name.

[image: Products View]

The wireframe of the products view

The layout of this component is a composition of two columns:

	The first column contains the
Quick Shop

 and list of
Categories

	The second column is a nested column combined into rows

 Quick shop component

This one is an input-group
 field for searching and using Quick Shop
 to see the products available in the grocery. We use the URL query string for conveying the search information as we did for the category because we don't know what the user will type into the search field. Create the product
 folder where we will add all components and services belonging to product.

Let's create product-search.component.html
 in the product
 folder with the following markup:

<div class="card">
 <div class="card-header">Quick Shop</div>
 <div class="input-group">
 <input #search type="text" class="form-control"
 placeholder="Search for...">

 <button class="btn btn-secondary" type="button"
 (click)="searchProduct(search.value)">Go!
 </button>

 </div>
</div>

I use the Bootstrap 4 input-groups
 with a button inside the Card
 component. The template reference variable search
 grants us direct access to an input element so that we can use the text value in the searchProduct
 method when a user types the product name and clicks on the
Go!

 button. Create the product-search.component.ts
 file and create the ProductSearch
 component similar to a CategoryCard
 one:

import {Component} from '@angular/core';
import {Router} from '@angular/router';

import {Product} from './product';

@Component({
 selector: 'db-product-search',
 templateUrl: 'app/product/product-search.component.html'
})
export class ProductSearchComponent {

 constructor(private router: Router) {}

 searchProduct(value: string) {

 this.router.navigate(['/products'],

 { queryParams: { search: value} });

 }
}

I use the navigation method of Router
 to search for a product by name with the following URL:

/products?search=Apple

[image: Quick shop component]

Now, we are ready to create the CategoryList
 component so that the user can use it to select the category.

 List of categories component

In Chapter 3
 ,
Advanced Bootstrap Components and Customization

 , we introduced the flexible Bootstrap 4 list-group
 component. Categories
 is a list of unordered items, so we can use this particular one to render categories quickly. I use the same mechanism to update the URL with the specific category that we used in CategoryCard
 component. Create category-list.component.html
 in the category
 folder with the following markup:

<div class="card">
 <div class="card-header">Categories</div>
 <div class="card-block">
 <div class="
list-group list-group-flush

">

 <a class="list-group-item"

 *ngFor="let category of categories"

 (click)="filterProducts(category)">

 {{category.title}}

 </div>
 </div>
</div>

The Card
 component wraps the list-group
 . The built-in NgFor
 directive helps to organize iteration through categories to display the items. Create the category-list.component.ts
 , and copy and paste the following code:

/*
 * Angular Imports
 */
import {Component} from '@angular/core';
import {Router} from '@angular/router';

/*
 * Components
 */
import {Category, getCategories} from './category';

@Component({
 selector: 'db-category-list',
 templateUrl: 'app/category/category-list.component.html'
})
export class CategoryListComponent {

 categories: Category[] = getCategories();

 constructor(private router: Router) {}

 filterProducts(category: Category) {
 this.router.navigate(['/products'], {
 queryParams: { category: category.id}
 });
 }
}

We use the getCategories
 function from the category
 file to assign all of them to the categories
 variable.

 Update the CategoryModule

You should update the CategoryModule
 with the new component as follows:

import {NgModule} from '@angular/core';
import {CommonModule} from '@angular/common';
import {FormsModule} from '@angular/forms';
import {RouterModule} from '@angular/router';

import {CategoryListComponent} from './category-list.component';

import {CategoryCardComponent} from './category-card.component';
import {CategorySlideComponent} from './category-slide.component';

@NgModule({
 imports: [CommonModule, FormsModule, RouterModule],
 declarations: [CategoryListComponent, CategoryCardComponent, CategorySlideComponent],
 exports: [CategoryListComponent, CategoryCardComponent, CategorySlideComponent]
})
export class CategoryModule {}

I have exported the CategoryListComponent
 because we will use it in other modules.

 Router links

Most of the time, the users navigate between views as a result of an action that they have performed on a link, such as a click happening on an anchor tag. We can bind the router to the links on a page, so that when the user clicks on the link, it will navigate to the appropriate application view.

 Note

The router logs activity in the history journal of the browser so that the back and forward buttons work as expected.

The Angular team introduced a RouterLink
 directive to the anchor tag to bind it to the template expression containing the array of route link parameters. Let's create the Product Card
 component with the help of RouterLink
 .

 Product card

I suppose it is a good idea to present the product as a card. I create the product-card.component.html
 in the product
 folder with the following markup:

<div class="col-xs-12 col-sm-6 col-md-4">
 <div class="card">
 <img class="card-img-top center-block product-item"
 src="{{product.imageS}}" alt="{{product.title}}">
 <div class="card-block">
 <h4 class="card-title">{{product.title}}</h4>
 <p class="card-text">{{product.desc}}</p>
 <a class="btn btn-primary"

 [routerLink]="['/product', product.id]">Browse

 </div>
 </div>
</div>

In our code, the RouterLink
 binds in the anchor tag. Pay attention to the template expression we bind to the routerLink
 . Obviously, it is an array, which means that we can add more than one item, and Angular will combine them to build the URL. We can specify all the pieces of the route exclusively, like "product/1"
 , but I intentionally leave them as separated items of an array as it's easy to maintain. Let's parse it:

	The first item identifies the parent root "/product"
 path

	There are no parameters for this parent element, such as "product/groups/1"
 , so we are done with it

	The second item identifies the child route for the product and requires the ID

The navigation with RouterLink
 is very flexible, so we can write an application with multiple levels of routing with a link parameters array.

Create a product-card.component.ts
 in the product
 folder. The RouterLink
 belongs to RouterModule
 , so it's available on markup now. Copy and paste the following code into the product-card.component.ts
 :

import {Component, Input} from '@angular/core';

import {Product} from './product';

@Component({
 selector: 'db-product-card',
 templateUrl: 'app/product/product-card.component.html'
})
export class ProductCardComponent {
 @Input() product: Product;
}

We will bind the data from ProductGreedComponent
 into the instance of ProductCardComponent
 via the product
 property.

 Products grid component

We need to show the products as a grid with three columns and multiple rows. The card component is the most suitable one to display the product information and navigate to the product view. All of the cards in the row must have the same width and height. How can we display them in a particular place inside the parent grid layout? Let's create product-grid.component.html
 and product-grid.component.ts
 files in the product
 folder. Copy and paste the following code into the product-grid.component.ts
 file:

/*
 * Angular Imports
 */
import {Component} from '@angular/core';

/*
 * Components
 */
import {Product, getProducts} from './product';

@Component({
 selector: 'db-product-grid',
 templateUrl: 'app/product/product-grid.component.html'
})
export class ProductGridComponent {
 products: Product[] = getProducts();
}

 Card groups

We can use the
Bootstrap 4 Card

 groups to present multiple cards as a single attached element with equal width and height. We need only include all cards within a parent element marked with the card-group
 class. Copy and paste the following code into the product-grid.component.html
 file:

<div class=
"card-group"

>
 <db-product-card *ngFor="let product of products"
 [product]="product"></db-product-card>
</div>

The result is not what I want because some cards are attached to each other:

[image: Card groups]

 Card columns

Another layout is card-columns
 from Bootstrap 4. It allows you to display multiple cards in each column. Each card inside a column is stacked on top of another. Include all cards within a card-columns
 class. Copy and paste the following code into the product-grid.component.html
 file:

<div class=
"card-columns"

>
 <db-product-card *ngFor="let product of products"
 [product]="product"></db-product-card>
</div>

The result looks quite funny:

[image: Card columns]

 Card desks

The last layout is a card desk from Bootstrap 4. It is similar to the Card group, except the cards aren't attached to each other. This one requires two wrapping elements: card-deck-wrapper
 and a card-deck
 . It uses table styles for the sizing and the gutters on card-deck
 . The card-deck-wrapper
 is used to negative margin out the border-spacing on the card-deck
 .

Let's move back to the product-card.component.html
 file and update it with thefollowing content:

<div class=
"card-deck-wrapper"

>
 <div class=
"card-deck"

>
 <div class="card" *ngFor="let product of products">
 <div class="card-header text-xs-center">
 {{product.title}}
 </div>
 <img class="card-img-top center-block product-item"
 src="{{product.imageS}}" alt="{{product.title}}">
 <div class="card-block text-xs-center"
 [ngClass]="setClasses(product)">
 <h4 class="card-text">
 Price: ${{product.price}}
 </h4>
 </div>
 <div class="card-footer text-xs-center">
 <a class="btn btn-primary"
 (click)="buy(product)">Buy Now
 <a class="btn btn-secondary"
 [routerLink]="['/product', product.id]">
 More Info

 </div>
 <div class="card-block">
 <p class="card-text">{{product.desc}}</p>
 </div>
 </div>
 </div>
</div>

The Card Desk works perfectly enough with one row, so we expose the products
 input in ProductCardComponent
 :

import {Component, Input} from '@angular/core';

import {Product} from './product';

@Component({
 selector: 'db-product-card',
 templateUrl: 'app/product/product-card.component.html',
 directives: [ROUTER_DIRECTIVES]
})
export class ProductCardComponent {
 @Input() products: Product[];

 setClasses(product: Product) {
 return {
 'card-danger': product.isSpecial,
 'card-inverse': product.isSpecial
 };
 }

 buy(product: Product) {
 console.log('We bought', product.title);
 }
}

The setClasses
 method helps change the card's background if the product has a special
 price. We call the buy
 method when the user clicks on the
Buy Now

 button.

With all of that in place, we can update the markup of the ProductGridComponent
 :

<db-product-card *ngFor="let row of products"
 [products]="row"></db-product-card>

Quite neat, isn't it?

But before we use our pretty component, we need to transform an array of products into an array of rows with three products per line. Please pay attention to the code in the constructor of the ProductGridComponent
 :

import {Component} from '@angular/core';

import {Product, getProducts} from './product';

@Component({
 selector: 'db-product-grid',
 templateUrl: 'app/product/product-grid.component.html'
})
export class ProductGridComponent {
 products: any = [];

 constructor() {
 let index = 0;
 let products: Product[] = getProducts();
 let length = products.length;

 this.products = [];

 while (length) {
 let row: Product[] = [];
 if (length >= 3) {
 for (let i = 0; i < 3; i++) {
 row.push(products[index++]);
 }
 this.products.push(row);
 length -= 3;
 } else {
 for (; length > 0; length--) {
 row.push(products[index++]);
 }
 this.products.push(row);
 }
 }
 }
}

We split the products into multiple rows containing a maximum of three columns.

 Combine them all together

Now we create the component that will combine all of our other product components to display them in a place provided by the router outlet tag. Will you please welcome the ProductListComponent
 !

Create a product-list.component.ts
 file with the following content:

/*
 * Angular Imports
 */
import {Component} from '@angular/core';

/*
 * Components
 */

@Component({
 selector: 'db-products',
 templateUrl: 'app/product/product-list.component.html'
})
export class ProductListComponent {}

Now, create the product-list.component.html
 , and copy and paste the next markup:

<div class="container">
 <div class="row">
 <div class="col-md-3">
 <db-product-search></db-product-search>
 <db-category-list></db-category-list>
 </div>
 <div class="col-md-9">
 <db-product-grid></db-product-grid>
 </div>
 </div>
</div>

As you can see, it draws the ProductSearchComponent
 and CategoryListComponent
 in the first column and the ProductGridComponent
 in the second one, which corresponds to our wireframe.

 The product module

The last two cents in the product
 folder are the ProductModule
 . Create the product.module.ts
 file as follows:

import {NgModule} from '@angular/core';
import {CommonModule} from '@angular/common';
import {FormsModule} from '@angular/forms';
import {RouterModule} from '@angular/router';

import {ProductListComponent} from './product-list.component';
import {ProductCardComponent} from './product-card.component';
import {ProductSearchComponent} from './product-search.component';
import {ProductGridComponent} from './product-grid.component';

import {CategoryModule} from '../category/category.module';

@NgModule({
 imports: [CommonModule, FormsModule, RouterModule, CategoryModule],
 declarations: [ProductListComponent, ProductCardComponent, ProductSearchComponent, ProductGridComponent],
 exports: [ProductListComponent, ProductCardComponent, ProductSearchComponent, ProductGridComponent]
})
export class ProductModule {}

It imports the CategoryModule
 as well as system modules. We declare and export all of the four components that we created before.

 Update the AllModule

Now, with CategoryModule
 and ProductModule
 in place, we need make all of their components available to the application so that we can import them into the AppModule
 :

import {NgModule} from '@angular/core';
import {BrowserModule} from '@angular/platform-browser';
import {FormsModule} from '@angular/forms';

/**
 * Modules
 */

import {CategoryModule} from './category/category.module';

import {ProductModule} from './product/product.module';

/*
 * Components
 */
import {AppComponent} from './app.component';
import {NavbarComponent} from './navbar/navbar.component';
import {FooterComponent} from './footer/footer.component';
import {WelcomeComponent} from './welcome/welcome.component';

/*
 * Routing
 */
import {routing} from './app.routes';

@NgModule({
 imports: [BrowserModule, FormsModule, routing,

 CategoryModule, ProductModule],

 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

The NavbarComponent
 , FooterComponent
 , and WelcomeComponent
 belong to the AppModule
 directly.

 Tip

You can find the source code at chapter_5/2.ecommerce-router
 .

 Router change events

As we mentioned when looking at router configuration, the ProductListComponent
 can represent the Product View when a user navigates to the URL like the following:

/products?category=1

Or

/products?search=apple

The ActivatedRouter
 class contains the information about a route associated with a component loaded in an outlet. We can subscribe to route change events to inform the ProductGridComponent
 about the changes happening in the query parameters of the URL. Open the product-grid.component.ts
 file, import ActivatedRouter
 from the library, and inject it into the router
 property of the constructor. Now we can subscribe to the route changes:

constructor(private router: ActivatedRouter) {
 this.router
 .queryParams
 .subscribe(params => {
 let category: string = params['category'];
 let search: string = params['search'];
 // Return filtered data from getProducts function
 let products: Product[] =
 getProducts(category, search);
 // Transform products to appropriate data
 // to display
 this.products = this.transform(products);
 });
 }

In the preceding code, we are listening to the changes that happen only in queryParams
 and using them to filter data in the getProducts
 function. Later, with the help of the transform
 method, we will translate the filtered products in the data appropriate to the display.

transform(source: Product[]) {
 let index = 0;
 let length = source.length;

 let products = [];

 while (length) {
 let row: Product[] = [];
 if (length >= 3) {
 for (let i = 0; i < 3; i++) {
 row.push(source[index++]);
 }
 products.push(row);
 length -= 3;
 } else {
 for (; length > 0; length--) {
 row.push(source[index++]);
 }
 products.push(row);
 }
 }

 return products;
}

Lastly, we must change the signature of the getProducts
 function because now we may pass two parameters:

 export function getProducts(category?: string, search?: string) {
 if (category) {
 return products.filter(
 (product: Product, index: number, array: Product[]) => {
 return product.categoryId === category;
 });
 } else if (search) {
 let lowSearch = search.toLowerCase();
 return products.filter(
 (product: Product, index: number, array: Product[]) => {
 return product.title.toLowerCase().
 indexOf(lowSearch) != -1;
 });
 } else {
 return products;
 }
}

This function filters data by category, searches text, or leaves it as is, depending on the parameters that we send to the function. Save the code, and try to play with the filtered data:

[image: Router change events]

 Routing strategies

All of our essential routes have been configured, and we now have access to a separate view for all of them. That's great, but maybe you are not happy with the path following the #
 symbol in the URL. As I mentioned, modern web browsers support the pushState
 technique to help change a location and history in the browser without a request to the server. The Router
 uses this method to build the URL. The Angular router uses a different LocationStrategy
 to provide support for both old and new ways:

	The PathLocationStrategy
 provides the default, HTML 5 style based on pushState

	The HashLocationStrategy
 utilizes the hash in the URL style

Choosing the strategy is crucial for future development because it won't be easy to change it later, so it is better do it at the right time. You can use the HashLocationStrategy
 if your server doesn't support the ability to redirect to a fallback page when a route is not found. Likely, the lite-server
 we use in our development supports this feature.

Open the app.module.ts
 file and import the strategy from the common module:

import {LocationStrategy, HashLocationStrategy ,
 PathLocationStrategy} from '@angular/common';

We are registering the PathLocationStrategy
 or HashLocationStrategy
 as a provider to the LocationStrategy
 :

@NgModule({
 imports: [BrowserModule, FormsModule,
 routing, CategoryModule, ProductModule],
 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent],

 providers: [{provide: LocationStrategy, useClass: HashLocationStrategy}],

 bootstrap: [AppComponent]
})
export class AppModule { }

Save it and check how the application works within and without hash in the browser's URL.

[image: Routing strategies]

 Tip

You can find the source code at chapter_5/3.ecommerce-router-search
 .

 Summary

In this chapter, we transformed our application from a single page into a multipage view and multiroute app that we can build on the Dream Bean grocery store. We started by planning out the essential routes in our application before writing any lines of code.

We then built static and dynamic routes containing parameters.

Finally, we looked at how we can remove the #
 symbol from the URL using HTML 5's pushState
 and how we can link both types of routes.

In Chapter 6
 ,
Dependency Injection

 , we will talk about dependency injection, which teaches the readers how to decouple the requirements of an application and how to create a consistent source of data as a service. Plus, we will continue to build the project we started to develop in previous chapters.

 Chapter6.Dependency Injection

This chapter is about dependency injection that teaches you how to decouple the requirements of an application and how to create a consistent source of data as a service. You will learn about Injector and Provider classes. We will also discuss Injectable decorator that is required for the creation of an object.

At the end of the chapter, you will have a solid understanding of:

	What is dependency injection?

	Separation of concerns

	Creating a service

	The injector and provider classes

	Injectable and inject decorators

	Creating data services for our application

 What is dependency injection?

Here, I will talk about the concept of
dependency injection

 with some concrete examples that will hopefully demonstrate the problems it tries to solve and the benefits it gives to the developer. Angular is mostly based on dependency injection, which you may or may not be familiar with. If you already know the concept of dependency injection, you can safely skip this chapter and just read the next one.

Dependency injection is probably one of the most famous design patterns I know, and you have probably already used it. I think it is one of the most difficult ones to explain well, partly due to the nonsense examples used in most introductions to dependency injection. I have tried to come up with examples that fit the Angular world better.

 Areal-life example

Imagine, you start your own business, and tend to travel a lot by air, so you need to arrange flights. You are always booking the flight yourself using the phone number of the airline agency.

Thus your typical travel planning routine might look like the following:

	Decide the destination, and desired arrival date and time

	Call up the airline agency and convey the necessary information to obtain a flight booking

	Pick up the tickets and be on your way

Now, if you suddenly change the preferred agency, and its contact mechanisms, you would be subject to the following relearning scenarios:

	The new agency, and its new contact mechanisms (say the new agency offers Internet based services and the way to make the bookings is over the Internet instead of over the phone)

	The typical conversational sequence through which the necessary bookings get done (data instead of voice)

You need to adjust yourself to the new scenario. It could lead to a substantial amount of time spent on the readjustment process.

Assume your business is growing and you get a secretary in thecompany, so whenever you needed to travel, you send an email to him or her to just state the destination, desired arrival date and time. The flight reservations are made for you and the tickets get delivered to you.

Now if the preferred agency gets changed, the secretary would become aware of the change, and would perhaps readjust his or her workflow to be able to communicate with the agency. However, you would have no relearning required. You still continue to follow the same protocol as before, since the secretary makes all the necessary adaptation in a manner that means you do not need to do anything differently.

In both the scenarios, you are the client and are dependent upon the services provided by the agency. However, the second scenario has a few differences:

	You don't need to know the contact point of the agencythe secretary does it for you

	You don't need to know the exact conversational sequence by which the agency conducts its activities via voice, email, website, and so on, as you are aware of a particular standardized conversational series with the secretary

	The services you are dependent upon are provided to you in a manner that you do not need to readjust should the service provider change

That is dependency injection in
real life

 .

 Dependency injection

Both, the Angular and custom components we used in our project are a part of a set of collaborating components. They depend upon each other to complete their intended purpose, and they need to know:

	Which components to communicate with?

	Where to locate them?

	How to communicate withthem?

When the way to access is changed, such changes can potentially require the source of a lot of components to be modified. Here are the plausible solutions we can use to prevent dramatic changes of components:

	We can embed the logic of location and instantiation as part of our usual logic of components

	We can create the
external

 piece of code to assume the responsibility of location and instantiation and supply the references when necessary

We can look at the last solution as the
secretary

 from our
real life

 example. We don't need to change the code of components when the way to locate any external dependency changes. This solution is the implementation of dependency injection, where an
external

 piece of code is part of Angular Framework.

The use of dependency injection requires the declaration of the components and lets the framework work out of the complexities of instantiation, initialization, sequencing, and supplying the references as needed.

Passing of a dependency into a dependent object that would use it is a dependency injection. A component can accept a dependency in at least three common ways:

	

Constructor injection

 : In this, the dependencies are provided through a class constructor.

	

Setter injection

 : In this, the injector utilizes the component exposed setter methods to inject the dependency.

	

Interface injection

 : In this, the dependency provides a method that will inject the dependency into any component passed to it.

 Constructor injection

This method requires the component to provide a parameter in a constructor for the dependency. We injected the Router
 instance in the code of the ProductGridService
 component:

constructor(private router: ActivatedRoute) {

 this.router
 .queryParams
 .subscribe(params => {
 let category: string = params['category'];
 let search: string = params['search'];
 // Return filtered data
 let products: Product[] =
 getProducts(category, search);
 // Transform products to appropriate data
 // to display
 this.products = this.transform(products);
 });
}

Constructor injection is the most preferable method and can be used to ensure the component is always in a valid state, but its lacks the flexibility of being able to changeits dependencies later.

 Other injection methods

Setter and interface methods are not implemented in the Angular framework.

 Components versus services

Angular 2 distinguishes the code of a web application on:

	The components that represent the visual part

	The reusable data services

The data service is a simple class that provides methods for returning or updating some data.

 ReflectiveInjector

AReflectiveInjector
 is an injection container that we use as a replacement for a new
 operator we are using to resolve the constructor dependencies automatically. When code in an application asks about dependencies in the constructor, the ReflectiveInjector
 resolves them.

import {Injectable, ReflectiveInjector} from '@angular/core';

@Injectable()
export ProductGridService {
 constructor(private router: ActivatedRoute) {...}
}

const injector = ReflectiveInjector.resolveAndCreate
 ([ActivatedRoute, ProductGridService]);
const service = injector.get(ProductGridService);

With a resolveAndCreate
 method, the ReflectiveInjector
 creates an instance of Injector
 . We are passing the array of service providers into the injector to configure it, or it won't know how to create them.

With an Injector
 , creating a ProductGridService
 is very easy, because it takes full responsibility of providingand injecting the ActivatedRoute
 into the ProductGridService
 .

Let's talk about why we imported and applied the Injectable
 decorator to the class?

 Injectable decorator

We create multiple types in the application for particular needs. Some of them may have dependencies to others. We must mark any type available for an injector with an Injectable
 decorator. Injector uses class constructor metadata to get the parameter types and determine dependent types for instantiation and injection. Any dependent type must be marked with Injectable
 decorator or injector will report an error when trying to instantiate it.

 Note

Add @Injectable()
 to every service class to prevent dependency injection errors.

We must import and apply the Injectable
 decorator to all class of our services explicitly to make them available to an injector for instantiation. Without this decorator, the Angular doesn't know about the existence of those types.

 Inject decorator

As I mentioned, the Injector uses a class constructor metadata to determine dependent types:

constructor(private router: ActivatedRoute) {...}

Injector uses the TypeScript generated metadata to inject the instance of ActivatedRoute
 type into the constructor. For injecting the TypeScript primitives such as string
 , boolean
 , or array we should define and use the Opaque Token:

import { OpaqueToken } from '@angular/core';

export let APP_TITLE = new OpaqueToken('appTitle');

Now, with the APP_TITLE
 token defined we can use it in the registration of dependency provider:

providers: [{ provide: APP_TITLE, useValue: 'Dream Bean' }]

We use the @Inject
 decorator when we inject the application title into any constructor of our application:

import {Inject} from '@angular/core';

constructor(@Inject('APP_TITLE') private appTitle) {...}

We will talk about tokens shortly.

 Optional decorator

In cases when class has optional dependencies, we can use the @Optional
 decorator to mark the constructor parameters:

import {Optional} from '@angular/core';

constructor(@Optional('config') private config) {
 if (config) {
 // Use the config
 ...
 }
}

I added the conditional statement into the code above because I expected that config
 property will equal null
 .

 Configuring the injector

In the preceding example, I used the resolveAndCreate
 method of the ReflectiveInjector
 to create Injector
 , but in real life, it's not necessary:

const injector = ReflectiveInjector.resolveAndCreate
 ([ActivatedRoute, ProductGridService]);

The Angular framework creates an application-wide injector for us during the Bootstrap of the application:

platformBrowserDynamic().bootstrapModule(AppModule);

We must configure the injector via registering the providers that create the services our application requires. We can do that in two ways:

	Register a provider within an NgModule

	Register a provider in an AppComponent

Which one is best? The services injected into the AppModule
 are widely available in the entire application and can be injected into lazy-loading modules and their components. The services injected into the AppComponent
 are available only to this component and its children and are not available to lazy-loading modules.

 Note

Register application-wide providers in the root AppModule
 , not in the AppComponent
 .

We can configure injector with alternative providers under the right circumstances:

	Provided an object behaves or looks like the original one

	Provides a substitute class

	Provides a factory function

For example for AppModule
 class:

@NgModule({
 imports: [BrowserModule, FormsModule,
 routing, CategoryModule, ProductModule],
 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent],

 providers: [ProductService],

 bootstrap: [AppComponent]
})
export class AppModule { }

We used a short-hand expression when registering the provider in the injector. Angular transforms it into the following verbose format:

[{provide: Router, useClass: Router]

The provide
 property in the first place is the
token

 that serves as the key for:

	Locating a dependency value

	Registering the provider

The second property, useClass
 , is a definition object similar to many other
use

 things such useValue
 , useExisting
 , and others. and tells the framework how to create the dependency. With the help of the
use

 definitions, we can quickly switch implementations, define constants and factory functions. Let's look at all of them.

 Class providers

Most of the time we will utilize the useClass
 definition to ask the different class to provide the service. We can create our own BetterRouter
 class as an extension of the original one and register it such that:

[{ provide: Router,
useClass: BetterRouter

 }]

The injector knows how to build BetterRouter
 and will sort it out.

 Aliased class providers

In scenarios when we need to use many providers of the same singleton, we can use the useExisting
 definition:

class BetterRouter extends Router {}

var injectorClass = ReflectiveInjector.resolveAndCreate([
 BetterRouter, {provide: Router,
useClass:

 BetterRouter}
]);
var injectorAlias = ReflectiveInjector.resolveAndCreate([
 BetterRouter, {provide: Router,
useExisting:

 BetterRouter}
]);

Look at the following example where useExisting
 helps organize mock requests:

var injector = Injector.resolveAndCreate([
 HTTP_PROVIDERS,
 MockBackend,
 { provide: XHRBackend, useExisting: MockBackend }
]);
var http = injector.get(Http);
var backend = injector.get(MockBackend);

The code below demonstrates how to use the MockBackend
 instead of the real one, making AJAX requests:

var people = [{name: 'Jeff'}, {name: 'Tobias'}];

// Listen for any new requests

backend.

connections.observer({
 next: connection => {
 var response = new Response({body: people});
 setTimeout(() => {
 // Send a response to the request
 connection.mockRespond(response);
 });
 }
});

http.

get('people.json').observer({
 next: res => {
 // Response came from mock backend
 console.log('first person', res.json()[0].name);
 }
});

Another useful place for useExisting
 is in providing multiple values of custom pipes, custom directives, or custom validators:

@Directive({
 selector: '[custom-validator]',
 providers: [{ provide: NG_VALIDATORS,

 useExisting: CustomValidatorDirective, multi: true }]

})
class CustomValidatorDirective implements Validator {
 validate(c: Control): { [key: string]: any } {
 return { "custom": true };
 }
}

With the help of the multi
 option, it is possible to add the CustomValidatorDirective
 to the default collections to have it available globally in the application.

 Value providers

Sometimes we need to use a configuration object, string or function in our application is not always an instance of a class. Here the interface defines the structure of configuration:

export interface
Config

 {
 url: string;
 title: string;
}

export const
CUSTOM_CONFIG:

 Config = {
 url: 'www.dreambean.com',
 title: 'Dream Bean Co.'
};

We can register the ready-made objects with the useValue
 definition. There is no Config
 class, so we cannot use it for the token. Instead, we can use a string literal to register and resolve dependencies:

providers: [{ provide:
'app.config', useValue: CUSTOM_CONFIG

}]

And now we can inject it into any constructor with the help of @Inject
 decorator:

constructor(@Inject(
'app.config'

) config:
Config

) {
 this.title = config.title + ':' + config.url;
}

Unfortunately, using string tokens opens up a potential for naming collisions. Angular comes to the rescue and provides an elegant solution with Opaque Token
 for non-class dependencies:

import { OpaqueToken } from '@angular/core';

export let
CONFIG

 = new
OpaqueToken

('app.config');

We are registering the CUSTOM_CONFIG
 in the injector with the value provider:

providers: [{ provide:
CONFIG, useValue:

CUSTOM_CONFIG

 }]

Inject it into any constructor:

constructor(@Inject(
CONFIG

) config:
Config

) {
 this.title = config.title + ':' + config.url;
}

 Multiple values

With the help of the multi
 option it is possible to add other values to the same binding later:

bootstrap(AppComponent, [
 provide('languages', {useValue: 'en', multi:true }),
 provide('languages', {useValue: 'fr', multi:true })
);

Somewhere in the code we can get multiple values of the languages
 :

constructor(@Inject('languages') languages) {
 console.log(languages);
 // Logs: "['en','fr']"
}

 Factory providers

In cases when we need to create the dependent value dynamically based on information changed at any moment after the Bootstrap has happened, we can apply the useFactory
 definition.

Let's imagine we useSecurityService
 to authorize the user.CategoryService
 must know facts about the user. The authorization can change during the user session because he or she can log in and log out at any moment many times. The direct injectionSecurityService
 into CategoryService
 creates a precedent to inject it into all services of the application.

The solution is quite neat, use the primitive Boolean authorization
 property instead of SecurityService
 to control CategoryService
 :

categories: Category[] = [...];

constructor(private
authorized:

 boolean) { }

getCategories() {

 return this.authorized ? this.categories : [];

}

The authorized property will update dynamically, so we cannot use a value provider, but we have to take over the creation of a new instance of the CategoryService
 with a factory function:

let categoryServiceFactory = (securityService: SecurityService) => {
 return new CategoryService(securityService.authorized);
}

In the factory provider we inject the SecurityService
 along with the factory function:

export let categoryServiceProvider = {
 provide: CategoryService,
 useFactory: categoryServiceFactory,
 deps: [
SecurityService

]
};

 The hierarchy of injectors

Angular 1 has only one injector across the application, and it manages the creation and resolving of all dependencies quite nicely. Every registered dependency becomes a singleton, so only one instance of it is available across the application. That solution has a side effect where you need to have more than one instance of the same dependency injecting into different parts of the application. Because the Angular 2 application is a tree of components, the framework has a
hierarchical dependency injection

 systemthe tree of injectors exists in parallel to the component tree of the application. Every component has an injector of its own or shared with other components at the same level in the tree. When the component at the bottom of the tree requests a dependency, Angular tries to find it with a provider registered in that component's injector. If the provider doesn't exist on this level, the injector passes the request to its parent injector and so on until finding the injector that can handle the request. Angular throws an exception if it runs out of ancestors. This solution helps us to create different instances of the same dependency on various levels and components. The particular service instance is still a singleton, but only in the scope of the host component instance and its children.

Let's start:

	Open Terminal, create folder ecommerce
 and move in

	Copy the contents of the project from the folder chapter_6/1.ecommerce-seed
 into the new project

	Run the following script to install npm
 modules:

npm install

	Start the TypeScript watcher and lite server with next command:

npm start

This script opens the web browser and navigates to the welcome page of the project.

 Category service

I mentioned in Chapter 5
 ,
Routing

 , about the necessity to decouple the data from the presentation logic when implementing SPA. I partially realized it in the category and product views. The CategoryListComponent
 and WelcomeComponent
 use category returns from thegetCategories
 function. Right now it is not suffering, but when we start getting and updating data from the server, we will need more functions. Better hide the implementation detail inside the single reusable data service class to use it in multiple components.

Let's refactor the category data acquisition business to a single service that provides categories, and share that service with all components that need them.

Rename the category.ts
 to category.service.ts
 to follow a name convention in which we spell the name of a service in lowercase followed by .service
 . If the service name is multi-word, we will spell the base filename in lower dash-case
 . Add an import statement to the top of the file:

import {
Injectable

} from '@angular/core';

Now create the CategoryService
 class and move the categories
 variable, getCategories
 and getCategory
 functions inside:

@Injectable()

export class
CategoryService

 {

categories:

 Category[] = [
 { id: '1', title: 'Bread & Bakery', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'The best cupcakes, cookies, cakes, pies, cheesecakes, fresh bread, biscotti, muffins, bagels, fresh coffee and more.' },
 { id: '2', title: 'Takeaway', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'It's consistently excellent, dishes are superb and healthily cooked with high quality ingredients.' },
 { id: '3', title: 'Dairy', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'A dairy product is food produced from the milk of mammals, primarily cows, water buffaloes, goats, sheep, yaks, horses.' },
 { id: '4', title: 'Meat', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Only superior quality beef, lamb, and pork.' },
 { id: '5', title: 'Seafood', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'Great place to buy fresh seafood.' },
 { id: '6', title: 'Fruit & Veg', imageL: 'http://placehold.it/1110x480', imageS: 'http://placehold.it/270x171', desc: 'A variety of fresh fruits and vegetables.' }
];

 getCategories()

 {
 return this.categories;
 }

getCategory

(id: string): Category {
 for (let i = 0; i < this.categories.length; i++) {
 if (this.categories[i].id === id) {
 return this.categories[i];
 }
 }
 throw new CategoryNotFoundException(
 `Category ${id} not found`);
 }
}

Don't forget to add this
 to all references to categories
 property.

 Injector provider for category service

We must register a service provider with the injector to tell Angular how to create the service. The best place to do that is in the providers
 property of a NgModule
 . We need only one instance of categories per application, so when we import the CategoryModule
 into the AppModule
 , Angular will register and create the singleton from the CategoryService
 class available across the whole application. Open the category.module.ts
 file, import the CategoryService
 and change @NgModule
 decorator with the following code:

import {CategoryService} from './category.service';

@NgModule({
 imports: [CommonModule, FormsModule, RouterModule],
 declarations: [CategoryListComponent, CategoryCardComponent, CategorySlideComponent],
 exports: [CategoryListComponent, CategoryCardComponent, CategorySlideComponent],

 providers: [CategoryService]

})
export class CategoryModule {}

Move to your web browser and open the browser console. We get a full bunch of issues, mostly about the wrong name of file category.ts
 wasrenamed to category.service.ts
 . We can easily fix that issue. Another problem is the use of the functions getCategory
 and getCategories
 . To fix that issue we need to import the CategoryService
 :

import {Category,
CategoryService

} from './category.service';

And inject it into constructors in all the necessary places such that:

export class CategoryListComponent {

 categories: Category[];

 constructor(private router: Router,

 private categoryService: CategoryService) {

 this.categories = this.categoryService.getCategories();

 }

 filterProducts(category: Category) {
 this.router.navigate(['/products'],
 { queryParams: { category: category.id} });
 }
}

Move initialization of all variables inside the constructor for now, similar to categories
 in the preceding example.

 Product service

Rename the product.ts
 to product.service.ts
 . Create the class ProductService
 and move the products
 variable, getProducts
 and getProduct
 functions into it:

export class ProductService {

 private
products:

 Product[] = [
 // ...
];

getProducts

(category?: string, search?: string) {
 if (category) {
 return this.products.filter((product: Product, index: number, array: Product[]) => {
 return product.categoryId === category;
 });
 } else if (search) {
 let lowSearch = search.toLowerCase();
 return this.products.filter((product: Product, index: number, array: Product[]) => {
 return product.title.toLowerCase().indexOf(lowSearch) != -1;
 });
 } else {
 return this.products;
 }
 }

 getProduct

(id: string): Product {
 for (let i = 0; i < this.products.length; i++) {
 if (this.products[i].id === id) {
 return this.products[i];
 }
 }
 throw new ProductNotFoundException(`Product ${id} not found`);
 }
}

Fix the import
 in all classes to have references on old methods.

 Injector provider for product service

We follow the same procedure for ProductService
 to register a service provider. Because we need only one instance of service per application, we can register it in the ProductModule
 . Open the product.module.ts
 file, import the ProductService
 and change the @NgModule
 decorator with the following code:

import {ProductService} from './product.service';

@NgModule({
 imports: [CommonModule, FormsModule, ReactiveFormsModule, RouterModule, CategoryModule],
 declarations: [ProductListComponent, ProductCardComponent, ProductSearchComponent, ProductGridComponent],
 exports: [ProductListComponent, ProductCardComponent, ProductSearchComponent, ProductGridComponent],

 providers: [ProductService]

})
export class ProductModule {}

Now restart the application to see all of your products and categories again:

[image: Injector provider for product service]

 Tip

You can find the source code for this atchapter_6/2.ecommerce-di
 .

 The shopping cart

A shopping cart is a piece of software that acts as an online store's catalog and allows users to select items for eventual purchase. It's known as a shopping basket. A shopping cart (or basket) allows a user to collect items while browsing an online catalog of products. The user should click on the
Buy Now

 button to add the selected item to the cart. The total amount and number of items in the cart presents in the navigation bar component. The user is able to move to a checkout or view the cart to manage the number of purchased items.

The cart must store the items the user puts in the cart. The items should be:

	Fetchable to be able to display the cart content

	Updatable tobe able to change the quantity of an item in the cart

	Removable

With this in mind, let's first create the basic cart functionality: adding, updating, and deleting items and defining a barebones item class and walk through the code usage.

Let's create the cart
 folder and cart.service.ts
 file inside. We will keep the model definition implemented as the Cart
 and the CartItem
 inside that file as well as the CartService
 .

 The Cart model and CartItem

At the beginning, the Cart
 class needs an internal array for storing all the items
 in the cart:

export class Cart {
 count: number = 0;
 amount: number = 0;
 items: CartItem[] = [];
}

Next, it must count
 the number and keep the amount
 of all items. The CartItem
 is an interface defining the structure of data the cart can use:

import {Product} from '../product/product.service';

export interface CartItem {
 product: Product;
 count: number;
 amount: number;
}

 The CartService

The CartService
 keeps the cart
 instance to make it available across the whole application:

cart:

 Cart = new Cart();

The addProduct
 method should add items to the cart:

addProduct

(product: Product) {
 // Find CartItem in items
 let item: CartItem = this.findItem(product.id);
 // Check was it found?
 if (item) {
 // Item was found.
 // Increase the count of the same products
 item.count++;
 // Increase amount of the same products
 item.amount += product.price;
 } else {
 // Item was not found.
 // Create the cart item
 item = {
 product: product,
 count: 1,
 amount: product.price
 };
 // Add item to items
 this.cart.items.push(item);
 }
 // Increase count in the cart
 this.cart.count++;
 // Increase amount in the cart
 this.cart.amount += product.price;
}

The method takes one argument of type Product
 and tries to find the item containing the same one. The method needs to increment the number of products and increase the amount of the found cart item. Otherwise, it creates the new CartItem
 instance and assigns the product to it. After all, it is growing the total number of items and amount in the shopping cart.

Next, the removeProduct
 method of the class can be used to remove the product quickly from the cart:

removeProduct

(product: Product) {
 // Find CartItem in items
 let item: CartItem = this.findItem(product.id);
 // Check is item found?
 if (item) {
 // Decrease the count
 item.count--;
 // Check was that the last product?
 if (!item.count) {
 // It was last product
 // Delete item from items
 this.remove(item);
 }
 // Decrease count in the cart
 this.cart.count--;
 // Decrease amount in the cart
 this.cart.amount -= product.price;
 }
}

The method takes one argument of product type and tries to find the item containing the same one. The method needs to decrement the number of goods associated with this item cart. It removes the cart item which includes no one product. In the end, it reduces the total number of items and amount in the shopping cart.

Method removeItem
 removes the particular item and reduces the total number of items and amount in the shopping cart:

removeItem(item: CartItem) {
 // Delete item from items
 this.remove(item);
 // Decrease count in the cart
 this.cart.count -= item.count;
 // Decrease amount in the cart
 this.cart.amount -= item.amount;
}

The following private method findItem
 helps to find CartItem
 by Product
 id:

private
findItem

(id: string): CartItem {
 for (let i = 0; i < this.cart.items.length; i++) {
 if (this.cart.items[i].product.id === id) {
 return this.cart.items[i];
 }
 }
 return null;
}

The last private method, remove
 , decreases the number of items in the cart:

private
remove

(item: CartItem) {
 // Find the index of cart item
 let indx: number = this.cart.items.indexOf(item);
 // Check was item found
 if (indx !== -1) {
 // Remove element from array
 this.cart.items.splice(indx, 1);
 }
}

 The Cart menu component

The key aspect that I find must present on the shopping cart design is that, at first glance, the user should be able to find out how many items there are in the shopping cart. You need to keep your user informed about how many items are in the shopping cart so that users are aware of what they have added to the cart without having to use the dropdown.

 Note

Make sure shoppers can easily see the items in their cart and that they appear above the fold rather than on another page.

That is quite a significant UX design pattern. If you keep the shopping cart content somewhere in the sidebar or near the top right of your pages, you are removing extra steps in the checkout process and making it easier for shoppers to move throughout the site and keep track of items and order totals the whole time.

[image: The Cart menu component]

With this in mind, let's create the cart-menu.component.ts
 and cart-menu.component.html
 . Copy and paste the following code into the cart-menu.component.ts
 file:

import {Component, Input} from '@angular/core';

import {Cart, CartService} from './cart.service';

@Component({
 selector: 'db-cart-menu',
 templateUrl: 'app/cart/cart-menu.component.html'
})
export class CartMenuComponent {

 private cart: Cart;

 constructor(private cartService: CartService) {
 this.cart = this.cartService.cart;
 }
}

The purpose of the local cart
 variable is to represent on view the content and update it with changes that happen after the user adds or removes the product to the cart.

We display the total number of items and amount in the label of the drop-down menu:

<ul class="nav navbar-nav float-xs-right">
 <li class="nav-item dropdown">
 <a class="nav-link dropdown-toggle" data-toggle="dropdown"
 href="#" role="button" aria-haspopup="true"
 aria-expanded="false">
 Cart: {{cart.
amount | currency:'USD':true:'1.2-2'

}}
 ({{cart.count}} items)

 <div class="dropdown-menu dropdown-menu-right"
 aria-labelledby="cart">
 <!-- ... -->

Pay attention to the currency pipe with the following parameters:

	The first parameter is the ISO 4217 currency code, such as USD
 for the US dollar and EUR
 for the euro.

	* At the second place is a Boolean indicating whether to use the currency symbol (example $
) or the currency code (example USD
) in the output

	At the last place we add the digit info in the next format:minIntegerDigits.minFractionDigits-maxFractionDigits

I recommend using this pipe here and in all other places where you need to display the amount of currency.

We display the contents of the cart inside a Bootstrap 4 table:

<div class="table-responsive">
 <table class="table table-sm table-striped table-bordered
 table-cart">
 <tbody>
 <tr>
 <td class="font-weight-bold">Title</td>
 <td class="font-weight-bold">Price</td>
 <td class="font-weight-bold">Count</td>
 <td class="font-weight-bold">Amount</td>
 </tr>
 <tr *ngFor="let item of cart.items">
 <td>{{item.product.title}}</td>
 <td>{{item.product.price |
 currency:'USD':true:'1.2-2'}}</td>
 <td>{{item.count}}</td>
 <td>{{item.amount |
 currency:'USD':true:'1.2-2'}}</td>
 </tr>
 </tbody>
 </table>
</div>

At the bottom of the menu, we display the total amount and two buttons to navigate to Cart
 and Checkout
 :

<div class="row">
 <div class="col-md-12">
 <div class="total-cart float-xs-right">
 Total:
 {{cart.amount | currency:'USD':true:'1.2-2'}}

 </div>
 </div>
</div>
<div class="row">
 <div class="col-md-12">
 <a [routerLink]="['/cart']"
 class="btn btn-primary float-xs-right btn-cart">
 <i class="fa fa-shopping-cart" aria-hidden="true"></i>

 Cart

 <a [routerLink]="['/checkout']"
 class="btn btn-success float-xs-right btn-cart">
 <i class="fa fa-credit-card" aria-hidden="true"></i>

 Checkout

 </div>
</div>

 Cart module

Let's add the CartManuComponent
 and Cart Service
 into the CartModule
 to make them easily accessible in the entire application:

import {NgModule} from '@angular/core';
import {CommonModule} from '@angular/common';
import {RouterModule} from '@angular/router';

import {CartMenuComponent} from './cart-menu.component';
import {CartService} from './cart.service';

@NgModule({
 imports: [CommonModule, RouterModule],
 declarations: [CartMenuComponent],
 exports: [CartMenuComponent],
 providers: [CartService]
})
export class CartModule {}

We need to add the CartModule
 into the AppModule
 :

//...
import {
CartModule

 } from './cart/cart.module';
//...
@NgModule({
 imports: [
 BrowserModule, FormsModule, ReactiveFormsModule,
 routing,
CartModule

, CategoryModule, ProductModule],
 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

 Update the Navbar

Open the navbar.component.html
 and find the cart placeholder:

<ul class="nav navbar-nav float-xs-right">
 <li class="nav-item dropdown">
 <a class="nav-link dropdown-toggle" data-toggle="dropdown"
 href="#" role="button" aria-haspopup="true"
 aria-expanded="false">Cart
 <div class="dropdown-menu">
 The Cart Placeholder
 </div>

Change it to look more elegant:

<db-cart-menu></db-cart-menu>

 Update the Cart via Service

And the last thing we must to do is inject the CartService
 into the ProductGrid
 component and start to listen to addToCart
 events. In the method with the same name we call the addProduct
 of CartService
 to add the selected goodie into the shopping cart:

addToCart

(product:Product) {
 this.cartService.
addProduct

(product);
}

Now, try to click on
Buy Now

 on different products and see changes happen in the navigation bar. Click the dropdown to display the shopping cart content:

[image: Update the Cart via Service]

 Tip

You can find the source code at chapter_6/3.ecommerce-cart
 .

 Summary

You will now be familiar with the dependency injection that Angular relies heavily on. As we've seen, we split our Angular code into visual components and services. Each of them dependupon one another, and dependency injection provides referential transparency. Dependency injection allows us to tell Angular what services our visual components depend on, and the framework will resolve these for us.

We created the classes for products and categories to hide the functionality into reusable services. Plus, we created the shopping cart component and service and wired the last to products, so the user can add the products to the cart.

In Chapter 7
 ,
Working with Forms

 , we will talk about how to use Angular 2 directives related to form creation and how to link a code based form component to the HTML form. Plus we will continue to build the project we started to develop in previous chapters.

 Chapter7.Working with Forms

This chapter will show readers how to use Angular 2 directives related to form creation and how to use a code-based form component to the HTML form. The chapter will use Bootstrap 4 to enhance the look of the form and to indicate invalid input for our web application.

At the end of the chapter, you will have a solid understanding of:

	Bootstrap 4 forms

	Angular 2 form directives

	One-way and two-way data bindings

	How to add validation to a form

	Joining the pieces of our application

Let's start with the following steps:

	Open the Terminal, create a folder called ecommercem
 and open it.

	Copy the content of the project from the folder, chapter_7/1.ecommerce-seed,
 into the new project.

	Run the following script to install NPM modules:

 npm install

	Start the TypeScript watcher and lite server with the following command:

 npm start

This script opens the web browser and navigates to the welcome page of the project.

 HTML form

An HTML form is a section of a web document containing:

	Text

	Images

	Markups

	Special elements such as controls, like checkboxes, radio buttons, and so on

	Labels on those controls that describe their purposes

The user modifies the controls by entering text or selecting the drop-down menu to complete the form and submits it to the backend for processing. Every control has a name
 attribute the form uses to collect a specific piece of data. Those names are important because:

	On the client side, it tells the browser which names to give each piece of data

	On the server side, it lets the server handle each piece of data by name

The form defines where and how to send the data to the server via action
 and method
 attributes accordingly. The form usually has a submit button to allow the user to send data to the server.

 Bootstrap forms

Bootstrap 4 provides default style form controls and layout options to create the customs forms for consistent rendering across browsers and devices.

 Note

For proper rendering, all inputs must have a type
 attribute.

 Form controls

Bootstrap supports specific classes to customize the following form controls:

	The form-group
 class uses any group of form controls. You can use it with any block-level element such as fieldset
 or div
 .

	The form-control
 class uses textual inputs, select menus, and text areas.

	The form-control-file
 is the only one applicable to the file inputs.

	There are form-check
 and formcheck-inline
 classes we can use with checkboxes and radio buttons.

 Form layouts

All forms by default are stacked vertically because Bootstrap 4 applies display: block
 and width: 100%
 to all form controls. We can use additional classes to vary this layout.

 Standard form

Use the form-group
 class to create the form quickly:

<form>
 <div class="form-group">
 <label for="user_name">User Name</label>
 <input type="text" class="form-control" id="user_name">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password">
 </div>
</form>

This class adds margin-bottom
 around a label and control for optimum spacing:

[image: Standard form]

 Inline form

Use the form-inline
 class if you need to lay out the form elements in a single horizontal row aligned to the left.

 Note

The form aligns controls inline only in viewports wider than 768px.

Form controls behave differently because they receive width:auto
 instead of width: 100%
 . To provide the vertical alignment with all of them use the display: inline-block
 . You may need to manually address the width and alignment of individual controls:

<form class="form-inline">
 <div class="form-group">
 <label for="user_name">User Name</label>
 <input type="text" class="form-control" id="user_name">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password">
 </div>
</form>

 Note

Each form control should have the pair label
 element.

I only added the form-inline
 class to the form element to lay out the element horizontally:

[image: Inline form]

 Hidden labels

You can hide away the labels in respect of placeholders for the standard and inline forms:

<form class="form-inline">
 <div class="form-group">
 <label class="sr-only" for="user_name">User Name</label>
 <input type="text" class="form-control" id="user_name"

 placeholder="User Name">

 </div>
 <div class="form-group">
 <label class="sr-only" for="password">Password</label>
 <input type="password" class="form-control" id="password"

 placeholder="Password">

 </div>
</form>

We just add the sr-only
 class to each label:

[image: Hidden labels]

Why can we not remove labels from the form to make them invisible? The answer to this question lies in the use of assistive technologies such as screen readers for people with limited abilities. The screen readers will render the form incorrectly if we do not include a label for every input. The Bootstrap authors intentionally designed the sr-only
 class to hide information from the layout of the rendering page only for screen readers.

 Form control size

There are two extra sizes of form controls, in addition to the default one, that we can use to increase or decrease the size of the form:

	Use the form-control-lg
 to increase the size of input control

	Use the form-control-sm
 to decrease the size of input control

 Help text

Sometimes we need to display the help text for associated form controls. Bootstrap 4 supports help text for standard and inline forms.

You can use the form-text
 class to create the block level help. It includes the display: block
 and adds some top margin for easy spacing from the preceding inputs:

<form>
 <div class="form-group">
 <label for="user_name">User Name</label>
 <input type="text" class="form-control" id="user_name">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password">

 <p id="passwordHelpBlock" class="form-text text-muted">

 The password must be more than 8 characters long.

 </p>

 </div>
</form>

[image: Help text]

Use the text-muted
 class with any typical inline element (like span
 or small
) to create help text for inline forms:

<form class="form-inline">
 <div class="form-group">
 <label for="user_name">User Name</label>
 <input type="text" class="form-control" id="user_name">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password">

 <small id="passwordHelpInline" class="text-muted">

 Must be 8-20 characters long.

 </small>

 </div>
</form>

[image: Help text]

 Form grid layout

We can use Bootstrap 4 grids to create more structured layouts for forms. Here are some guidelines:

	Wrap the form in an element with the container
 class

	Add the row
 class to form-group

	Use col-*-*
 classes to specify the width of labels and controls

	Add col-form-label
 class to all labels to vertically align them to corresponding controls

	Add col-form-legend
 to legend elements to help them appear similar to regular labels

Let's update our markup with grids:

<div class="container">
 <form>
 <div class="form-group row">
 <label for="user_name" class="col-sm-2 col-form-label">
 User Name
 </label>
 <div class="col-sm-10">
 <input type="text" class="form-control" id="user_name">
 </div>
 </div>
 <div class="form-group row">
 <label for="password" class="col-sm-2 col-form-label">
 Password
 </label>
 <div class="col-sm-10">
 <input type="password" class="form-control" id="password">
 </div>
 </div>
 <div class="form-group row">
 <label class="col-sm-2">Connection</label>
 <div class="col-sm-10">
 <div class="form-check">
 <label class="form-check-label">
 <input class="form-check-input" type="checkbox">
 Secure (SSL)
 </label>
 </div>
 </div>
 </div>
 <div class="form-group row">
 <div class="offset-sm-2 col-sm-10">
 <button type="submit" class="btn btn-primary">Sign in
 </button>
 </div>
 </div>
 </form>
</div>

[image: Form grid layout]

 Stacked checkboxes and radios

Bootstrap 4 improves the layout and behavior of checkboxes and radio buttons with the help of form-check*
 classes. There is only one class for both types to help vertically stack and space the sibling elements. The labels and inputs must have appropriate form-check-label
 and form-check-input
 classes to make that magic happens.

<div class="container">
 <form>
 <div class="form-group row">
 <label for="user_name" class="col-sm-2 col-form-label">
 User Name
 </label>
 <div class="col-sm-10">
 <input type="text" class="form-control" id="user_name">
 </div>
 </div>
 <div class="form-group row">
 <label for="password"
 class="col-sm-2 col-form-label">Password</label>
 <div class="col-sm-10">
 <input type="password" class="form-control" id="password">
 </div>
 </div>
 <fieldset class="form-group row">
 <legend class="col-form-legend col-sm-2">Language</legend>
 <div class="col-sm-10">
 <div class="form-check">

<label class="form-check-label">
 <input class="form-check-input" type="radio"
 name="language" id="lngEnglish" value="english"
 checked>
 English
 </label>

 </div>
 <div class="form-check">

<label class="form-check-label">
 <input class="form-check-input" type="radio"
 name="language" id="lngFrench" value="french">
 French
 </label>

 </div>
 <div class="form-check disabled">

<label class="form-check-label">
 <input class="form-check-input" type="radio"
 name="language" id="lngSpain" value="spain"
 disabled>
 Spain
 </label>

 </div>
 </div>
 </fieldset>
 </form>
</div>

[image: Stacked checkboxes and radios]

 Inline checkboxes and radios

In scenarios when you need checkboxes or radio buttons to be layed out on a horizontal row you can:

	Add the form-check-inline
 class to the label element

	Add the form-check-input
 to the input

<form class="form-inline">
 <div class="form-group">
 <label for="user_name">User Name</label>
 <input type="text" class="form-control" id="user_name">
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password">
 <small id="passwordHelpInline" class="text-muted">
 Must be 8-20 characters long.
 </small>
 </div>
 <div class="form-group">

 <label class="form-check-inline">

 <input class="form-check-input" type="radio" name="language"

 id="lngEnglish" value="english" checked>

 English

 </label>

 <label class="form-check-inline">

 <input class="form-check-input" type="radio" name="language"

 id="lngFrench" value="french">

 French

 </label>

 <label class="form-check-inline">

 <input class="form-check-input" type="radio" name="language"

 id="lngSpain" value="spain" disabled>

 Spain

 </label>

 </div>
</form>

[image: Inline checkboxes and radios]

 Static control

In the cases when you need to display the plain text instead of input fields you can use the paragraph element marked with the form-control-static
 class:

<div class="container">
 <form>
 <div class="form-group row">
 <label for="user_name" class="col-sm-2 col-form-label">
 User Name
 </label>
 <div class="col-sm-10">

 <p class="form-control-static">Admin</p>

 </div>
 </div>
 <div class="form-group row">
 <label for="password" class="col-sm-2 col-form-label">
 Password
 </label>
 <div class="col-sm-10">
 <input type="password" class="form-control" id="password">
 </div>
 </div>
 </form>
</div>

[image: Static control]

 Disabled states

We can disable the input on one or many controls with an attribute of the same name:

<form>
 <div class="form-group">
 <label for="user_name">User Name</label>

<input type="text" class="form-control" id="user_name"
 value="Admin" disabled>

 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password">
 <p id="passwordHelpBlock" class="form-text text-muted">
 The password must be more than 8 characters long.
 </p>
 </div>
</form>

The disabled input field is shown lighter and with the not-allowed
 cursor:

[image: Disabled states]

 Note

Use custom JavaScript code to disable the anchor and fieldset because browsers such as IE 11 and below don't fully support this property.

 Read-only inputs

To prevent modification of any input field you can use a read-only attribute:

<form>
 <div class="form-group">
 <label for="user_name">User Name</label>

<input type="text" class="form-control" id="user_name"
 value="Admin" readonly>

 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input type="password" class="form-control" id="password">
 <p id="passwordHelpBlock" class="form-text text-muted">
 The password must be more than 8 characters long.
 </p>
 </div>
</form>

These fields appear lighter with the standard cursor:

[image: Read-only inputs]

 Validation styles

Bootstrap supports three validation states and appropriate styles for the form controls:

	The has-success
 class defines the success state

	The has-danger
 class defines the danger state

	The has-warning
 class defines the warning state

We should apply those classes to the parent element, so all control-label
 , form-control
 , or text-muted
 elements will inherit the validation styles. We can use the feedback icons within the textual inputs such as form-control-success
 , form-control-warning
 , and form-control-danger
 . To give extra attention to validation, we can use contextual validation text with the help of form-control-feedback
 style. It adapts color to the parent has-*
 class:

<form>
 <div class="form-group
has-success

">
 <label class="control-label" for="username">Success
 </label>
 <input type="text" class="form-control

form-control-success

" id="username">
 <div class="
form-control-feedback

">That username's is
 ok.</div>
 </div>

 <div class="form-group
has-warning

">
 <label class="control-label" for="password">Warning
 </label>
 <input type="password" class="form-control

form-control-warning

" id="password">
 <div class="
form-control-feedback

">The password is
 weak</div>
 </div>

 <div class="form-group
has-danger

">
 <label class="control-label" for="card">Card</label>
 <input type="card" class="form-control

 form-control-danger

"
 id="card">
 <div class="
form-control-feedback

">We accept only VISA and
 Master cards</div>
 </div>
</form>

[image: Validation styles]

 Formless search

Look at the markup in the product-search.component.html
 file:

<div class="card">
 <div class="card-header">Quick Shop</div>
 <div class="input-group">

 <input #search type="text" class="form-control"

 placeholder="Search for...">

 <button class="btn btn-secondary" type="button"

 (click)="searchProduct(search.value)">Go!</button>

 </div>
</div>

I didn't use the form
 tag here. Why? The answer is quite tricky. The form tag is required mostly for the following scenarios:

	You want to execute a non-AJAX request or post file to the server

	You need to programmatically capture the submit
 or reset
 events

	You want to add validation logic to the form

For others, we could abandon it. The logic behind the search field is to update URL with appropriate information without any request to the server. So this is why the search is formless.

The search form has one issue; the
Go

 button is always enabled even when the search field is empty. This results in inappropriate search results. We need to add validation to fix this issue and we have two options here:

	Start listening to the key events from search field to manage the enabled
 property of the
Go

 button

	Add validation and let Angular manage the enabled
 property of the
Go

 button

Let's do both of them to see the difference.

 User input from event object

The user interacts with the web page, modifying the controls, and this results in triggering the DOM events. We use event binding to listen to those events that update components and models with the help of some simple syntax:

<div class="card">
 <div class="card-header">Quick Shop</div>
 <div class="input-group">
 <input #search type="text" class="form-control"
 placeholder="Search for..."

 (keyup)="searchChanged($event)">

 <button class="btn btn-secondary" type="button"

 [disabled]="disabled"

 (click)="searchProduct(search.value)">Go!</button>

 </div>
</div>

The shape of $event
 depends on which element raises the event. When the user types something on the input element it triggers the keyboard events and listens in the searchChanged
 method of the ProductSearchComponent
 :

import {Component} from '@angular/core';
import {Router} from '@angular/router';

@Component({
 selector: 'db-product-search',
 templateUrl: 'app/product/product-search.component.html'
})
export class ProductSearchComponent {

 disabled: boolean = true;

 constructor(private router: Router) {}

 searchProduct(value: string) {
 this.router.navigate(['/products'], { queryParams: {
 search: value} });
 }

 searchChanged(event: KeyboardEvent) {

 // Get an input element

 let element:HTMLInputElement =

 <HTMLInputElement>event.target;

 // Update the disabled property depends on value

 if (element.value) {

 this.disabled = false;

 } else {

 this.disabled = true;

 }

 }

}

Firstly, we find the input element from the event target
 and change the disabled
 property of the component bound to the same name attribute of the submit
 button. By default, the disabled value equals true and the submit button is grayed out:

[image: User input from event object]

When the user inputs the text to search, the triggered events enable the button to update the URL:

[image: User input from event object]

 User input from a template reference variable

We can use the #search
 template reference variable to get value directly from the input element like this:

<div class="card">
 <div class="card-header">Quick Shop</div>
 <div class="input-group">
 <input #search type="text" class="form-control"
 placeholder="Search for..."

 (keyup)="searchChanged(search.value)">

 <button class="btn btn-secondary" type="button"
 [disabled]="disabled"
 (click)="searchProduct(search.value)">Go!</button>

 </div>
</div>

The code of the searchChanged
 method becomes a bit smaller:

searchChanged(value: string) {
 // Update the disabled property depends on value
 if (value) {
 this.disabled = false;
 } else {
 this.disabled = true;
 }
}

 Note

Opt to use the template reference variable to pass values instead of DOM events into the component listening methods.

You can find the source code atchapter_7/2.ecommerce-key-event-listenning
 .

 Product View

The product card component displayed in the products grid has a
More Info

 button. When the user clicks the button, it navigates to the Product View where you can do the following:

	Display the product information

	Check the availability of the product

	Update the quantity of the product by clicking
Add to Cart

 or
Remove from Cart

	Return to the products list by clicking on
Continue Shopping

[image: Product View]

The wireframe of the Product View

Let's create the product-view.component.html
 . The content of this view is quite big, so I will explain it per columns.

 Product image

In the first column, we show the image of the product. The product interface has reference to large images, so it is simple to present it on screen:

<div class="container">
 <div class="row">
 <div class="col-md-5">

 <img class="center-block product-img" src="{{product.imageL}}"

 alt="{{product.title}}">

 </div>
 <!-- ... -->

Here is what this column looks like:

[image: Product image]

 Product information

The second column keeps the information about the product. I decided to use a Bootstrap 4 card component to present the information on screen:

<div class="col-md-4">
 <div class="card">
 <div class="card-block">
 <h4 class="card-title">{{product.title}}</h4>
 <p class="card-text">{{product.desc}}</p>
 </div>
 <ul class="list-group list-group-flush">
 <li class="list-group-item">ID: {{product.id}}
 <li class="list-group-item">Category:
 {{product.categoryId | categoryTitle}}

 <div class="card-footer">
 <p class="card-text">Availability: In Stock</p>
 </div>
 </div>
 <div class="card" *ngIf="!product.isSpecial">
 <div class="card-block">
 <h4 class="card-title">Price:
 {{product.price | currency:'USD':true:'1.2-2'}}</h4>
 </div>
 </div>
 <div class="card card-inverse card-danger"
 *ngIf="product.isSpecial">
 <div class="card-block">
 <h4 class="card-title">Price:
 {{product.price | currency:'USD':true:'1.2-2'}}</h4>
 </div>
 </div>
</div>

We have three cards here. The first one contains the product's general information such as the title
 and description
 . The following list keeps the product id
 and category
 . We use the categoryTitle
 pipe to print out the category title. At the end, we print out the availability information with the fake data. We will update this block in the next chapter, so leave it as it is for now.

[image: Product information]

The second and third cards work against each other and present information depending on the value of the isSpecial
 property of the product. When this property is true
 we show the price in an altering color:

[image: Product information]

 The CategoryTitle pipe

As was mentioned in Chapter 4
 ,
Creating the Template

 , the Angular Framework gives us pipes: a way to write display-value transformations that we can declare in templates. The pipe is a simple function that accepts an input value and returns a transformed value. In our case, we keep the category ID in the cart item, but we need to display the title of the category. For that reason we created the file category.pipe.ts
 with the following content:

import {Pipe, PipeTransform} from '@angular/core';
import {Category, CategoryService} from './category.service';

/*
 * Return category title of the value
 * Usage:
 * value | categoryTitle
 * Example:
 * {{ categoryId | categoryTitle }}
 * presume categoryId='1'
 * result formats to 'Bread & Bakery'
*/
@Pipe({ name: 'categoryTitle' })
export class CategoryTitlePipe implements PipeTransform {

 constructor(private categoryService: CategoryService) { }

 transform(value: string): string {
 let category: Category = this.categoryService.getCategory(value);
 return category ? category.title : '';
 }
}

Plus, we updated the CategoryModule
 to declare and export the CategoryTitlePipe
 :

import {NgModule} from '@angular/core';
import {CommonModule} from '@angular/common';
import {RouterModule} from '@angular/router';

import {CategoryListComponent} from './category-list.component';

import {CategoryTitlePipe} from './category.pipe';

import {CategoryCardComponent} from './category-card.component';
import {CategorySlideComponent} from './category-slide.component';

import {CategoryService} from './category.service';

@NgModule({
 imports: [CommonModule, RouterModule],
 declarations: [CategoryListComponent, CategoryTitlePipe,
 CategoryCardComponent, CategorySlideComponent],
 exports: [CategoryListComponent, CategoryTitlePipe,
 CategoryCardComponent, CategorySlideComponent],
 providers: [CategoryService]
})
export class CategoryModule {}

Now, the CategoryTitlePipe
 is available across the application.

 Cart information in Product View

I used the Bootstrap 4 Form laid out inside the cart component in the last column to keep and manage information from the shopping cart as explained as follows.

 Quantity and amount

The quantity and amount of the product are crucial for the user doing the shopping. To present them on the view, I bound the component properties of the same name to the template:

<div class="form-group row">
 <label for="first_name" class="col-xs-3 form-control-label">Quantity</label>
 <div class="col-xs-9">
 <h4 class="form-control-static">{{quantity}}</h4>
 </div>
</div>

<div class="form-group row">
 <label for="last_name" class="col-xs-3 form-control-label">Amount</label>
 <div class="col-xs-9">
 <h4 class="form-control-static">{{amount | currency:'USD':true:'1.2-2'}}</h4>
 </div>
</div>

 Actions

The user uses
Add to Cart

 and
Remove from Cart

 buttons to increase and decrease the quantity of the product on the shopping cart. These buttons call the appropriate methods of the CartService
 to make the necessary changes in the shopping cart:

 <div class="form-group row">
 <div class="col-xs-12">

 <a class="btn btn-primary btn-block"

 (click)="addToCart()">Add to Cart

 <a class="btn btn-warning btn-block"

 (click)="removeFromCart()">Remove from Cart

 </div>
 </div>
 <div class="form-group row">
 <div class="col-xs-12">

 <a class="btn btn-secondary btn-block"

 [routerLink]="['/products']">Continue Shopping

 </div>
 </div>
</form>

At the end, we have a
Continue Shopping

 button to help the user navigate back to the Products View.

[image: Actions]

Every time a user adds or removes a product from the shopping cart, the changes happen in the Product View, which updates information in the Cart Menu present in the navigation bar.

 Product View component

Now let's create product-view.component.ts
 with the following code:

import { Component } from '@angular/core';
import { ActivatedRoute } from '@angular/router';

import { Product, ProductService } from './product.service';
import { Cart, CartItem, CartService } from
 '../cart/cart.service';

@Component({
 selector: 'db-product-view',
 templateUrl: 'app/product/product-view.component.html'
})
export class ProductViewComponent {
 product: Product;
 cartItem: CartItem;

 get quantity(): number {
 return this.cartItem ? this.cartItem.count : 0;
 }

 get amount(): number {
 return this.cartItem ? this.cartItem.amount : 0;
 }

 constructor(private route: ActivatedRoute,
 private productService: ProductService,
 private cartService: CartService) {
 this.route
 .params
 .subscribe(params => {
 // Get the product id
 let id: string = params['id'];
 // Return the product from ProductService
 this.product = this.productService.getProduct(id);
 // Return the cart item
 this.cartItem = this.cartService.findItem(id);
 });
 }

 addToCart() {
 this.cartItem = this.cartService.addProduct(this.product);
 }

 removeFromCart() {
 this.cartItem = this.cartService.removeProduct(this.product);
 }
}

There are two properties, product
 and cartItem,
 available in ProductViewComponent
 to get information to the template. We use the product
 property to display information in the second column of the Product View. The cartItem
 property keeps the reference on the item in the shopping cart linked to the product:

export interface CartItem {
 product: Product;
 count: number;
 amount: number;
}

We need only show count
 and amount
 in the third column of the Product View but it is impossible without extra work:

The first problem is that we cannot show information from the CartItem
 until adding the product to the shopping cart. To solve it, we introduced the getter methods for count
 and amount
 properties:

get quantity(): number {
 return this.cartItem ? this.cartItem.count : 0;
}

get amount(): number {
 return this.cartItem ? this.cartItem.amount : 0;
}

Another issue happens when the user adds a product to the shopping cart for the first time or removes the last one from it. As a solution, we need to reassign the cartItem
 from the shopping cart whenever we call the addToCart
 and removeFromCart
 methods:

addToCart() {
 this.cartItem = this.cartService.addProduct(this.product);
}

removeFromCart() {
 this.cartItem = this.cartService.removeProduct(this.product);
}

We use the ActivatedRoute
 service to retrieve the parameters for our route in the constructor. Since our parameters are provided as an Observable
 , we subscribe to them for the id
 parameter by name and tell productService
 and cartService
 to fetch appropriate information. We'll keep a reference to this Subscription
 so we can tidy things up later.

 Adding ProductView to the ProductModule

Open the product.module.ts
 file to reference the ProductView
 there:

import {NgModule} from '@angular/core';
import {CommonModule} from '@angular/common';
import {RouterModule} from '@angular/router';

import {ProductListComponent} from './product-list.component';

import {ProductViewComponent} from './product-view.component';

import {ProductCardComponent} from './product-card.component';
import {ProductSearchComponent} from './product-search.component';
import {ProductGridComponent} from './product-grid.component';

import {ProductService} from './product.service';

import {CategoryModule} from './category/category.module';

@NgModule({
 imports: [CommonModule, RouterModule, CategoryModule],
 declarations: [ProductListComponent,
ProductViewComponent

,
 ProductCardComponent, ProductSearchComponent,
 ProductGridComponent],
 exports: [ProductListComponent,
ProductViewComponent

,
 ProductCardComponent, ProductSearchComponent,
 ProductGridComponent],
 providers: [ProductService]
})
export class ProductModule {}

The ProductView
 is now available in the entire application.

 Product View route definition with a parameter

We must update the router configuration in the app.routes.ts
 so, when a user selects the product, Angular navigates to the ProductViewComponent
 :

/*
 * Angular Imports
 */
import {Routes, RouterModule} from '@angular/router';

/*
 * Components
 */
import {WelcomeComponent} from './welcome/welcome.component';
import {ProductListComponent} from
 './product/product-list.component';

import {ProductViewComponent} from

 './product/product-view.component';

/*
 * Routes
 */
const routes: Routes = [
 { path: '', redirectTo: 'welcome', pathMatch: 'full' },
 { path: 'welcome', component: WelcomeComponent },
 { path: 'products', component: ProductListComponent },

 { path: 'products/:id', component: ProductViewComponent },

];

/*
 * Routes Provider
 */
export const routing = RouterModule.forRoot(routes);

The id
 in the third route is a token for a route parameter. In a URL such as /product/123
 , the 123
 is the value of the id
 parameter. The corresponding ProductViewComponent
 uses that value to find and present the product whose id
 equals 123
 .

 Navigation to Product View

When the user clicks on the
More Info

 button on the card in the Products View, the router uses information provided as an array to the routerLink
 to build the navigation URL to the Product View:

<div class="card-deck-wrapper">
 <div class="card-deck">
 <div class="card" *ngFor="let product of products">
 <div class="card-header text-xs-center">
 {{product.title}}
 </div>
 <img class="card-img-top center-block product-item"
 src="{{product.imageS}}" alt="{{product.title}}">
 <div class="card-block text-xs-center"
 [ngClass]="setClasses(product)">
 <h4 class="card-text">Price:
 ${{product.price}}</h4>
 </div>
 <div class="card-footer text-xs-center">
 <button class="btn btn-primary"
 (click)="buy(product)">Buy Now</button>

 <a class="btn btn-secondary"

 [routerLink]="['/products', product.id]">

 More Info

 </div>
 <div class="card-block">
 <p class="card-text">{{product.desc}}</p>
 </div>
 </div>
 </div>
</div>

Here are how all three columns of the Product View look:

[image: Navigation to Product View]

 Tip

You can find the source code atchapter_7/3.ecommerce-product-view
 .

 Angular 2 forms

We didn't use Angular 2 forms in our project before, so now it's time to unveil those predominantly flexible tools. Based on the nature of the information of the web application requesting from the user, we can split it into static and dynamic forms:

	We use the template-driven approach to build static forms

	We use the model-driven approach to build dynamic forms

 Forms setup

Before we use the new Angular 2 forms module, we need to install it. Open the Terminal window, navigate to the web project, and run the npm package manager with the following command:

$ npm install @angular/forms --save

Now, when the forms module is installed, we enable it during the application bootstrap. Open the app.module.ts
 file and update it with the following code:

/*
 * Angular Imports
 */
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';

import { FormsModule, ReactiveFormsModule } from '@angular/forms';

import { RouterModule } from '@angular/router';

/**
 * Modules
 */
import { CartModule } from './cart/cart.module';
import { CategoryModule } from './category/category.module';
import { ProductModule } from './product/product.module';

/*
 * Components
 */
import { AppComponent } from './app.component';
import { NavbarComponent } from './navbar/navbar.component';
import { FooterComponent } from './footer/footer.component';
import { WelcomeComponent } from './welcome/welcome.component';

/*
 * Routing
 */
import { routing } from './app.routes';

@NgModule({
 imports: [
 BrowserModule,
FormsModule, ReactiveFormsModule,

 routing, CartModule, CategoryModule, ProductModule],
 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

We registered two different modules in AppModule
 because:

	The FormsModule
 is for template-driven forms

	The ReactiveFormsModule
 is for reactive or dynamic forms

We will discover both of them shortly.

 Template-driven forms

This way is the simplest one to build forms and requires little to no application code. We create the form declaratively in the template with the help of built-in Angular 2 directives doing all the magic behind the scene for us. Let's talk about the Angular 2 specific directives we can use in the forms.

 The NgForm directive

The NgForm
 directive creates a top-level FormGroup
 instance, providing information about the current state of the form, such as:

	The form value in JSON format

	The form validity state

Look at the directive definition of the class FormGroupDirective
 in the form_group_directive.ts
 from the source code of Angular 2:

@Directive({
 selector: '[formGroup]',
 providers: [formDirectiveProvider],
 host: {'(submit)': 'onSubmit()', '(reset)': 'onReset()'},

 exportAs: 'ngForm'

})
export class FormGroupDirective extends ControlContainer implements Form, OnChanges { //

The property exportAs
 of the directive metadata exposes an instance of FormGroupDirective
 to the template via the name ngForm
 so in any template we can use the template variable referencing on it:

<form #myForm="ngForm">
 ...
</form>

The template variable myForm
 has access to the form value, so we can use the handle function to manage submitting values like this:

<form #myForm="ngForm" (ngSubmit)="handle(myForm.value)">
 ...
</form>

The ngSubmit
 is an event signal where the user triggers a form submission.

 The NgModel directive

The NgModel
 directive helps register form controls on a NgForm
 instance. We must specify the name
 attribute to every form control. With the combination of ngModel
 and name
 attributes, the form control will automatically appear in the value
 of the form:

<form #myForm="ngForm" (ngSubmit)="handle(myForm.value)">
 <label>User Name:</label>
 <input type="text" name="name"
ngModel

>
 <label>Password:</label>
 <input type="password" name="password"
ngModel

>

 <button type="submit">Submit</button>
</form>

Let's print out the value
 of the form in the handle
 function:

handle(value) {
 console.log(value);
}

The result is printed in JSON format:

{
 name: 'User',
 password: 'myPassword'
}

We can use the ngModel
 as an attribute directive with an expression to bind the existing model to the form controls. There are two ways we can approach this.

The
one-way binding

 applies an existing value to the form control via property binding:

<form #myForm="ngForm" (ngSubmit)="handle(myForm.value)">
 <label>User Name:</label>
 <input type="text" name="name" [ngModel]="name">
 <label>Password:</label>
 <input type="password" name="password" [ngModel]="password">
 <label>Phone:</label>
 <input type="text" name="phone" [ngModel]="phone">
 <label>Email:</label>
 <input type="email" name="email" [ngModel]="email">

 <button type="submit">Submit</button>
</form>

In the MyForm
 class we have properties of the same name:

@Component({...})
export class MyForm {

 name: string = 'Admin';

 password: string;

 phone: string;

 email: string = 'admin@test.com';

 handle(value) {
 console.log(value);
 }
}

The
two-way binding

 reflects changes on form control to an existing value of the property and vice versa:

<form #myForm="ngForm" (ngSubmit)="handle(myForm.value)">
 <label>User Name:</label>
 <input type="text" name="name" [(ngModel)]="name">
 <p>Hi {{name}}</p>
 <button type="submit">Submit</button>
</form>

 Track change-state and validity with NgModel

Every time we manually or programmatically manipulate form controls, NgModel
 tracks the state changes that happen on them. Based on that information, NgModel
 updates the control with specific classes. We can use those classes to organize visual feedback to reflect the state of components:

	Class ng-untouched
 marks the control that was not visited yet

	Class ng-touched
 marks the visited control

	Class ng-pristine
 marks the control with the unchanged value

	Class ng-dirty
 marks the control with the changed value

	Class ng-invalid
 marks an invalid control

	Class ng-valid
 marks a valid control

So, we should be able to use the ng-valid
 or ng-invalid
 class for feedback to the user about invalid form control. Let's open the ecommerce.css
 file and add the following styles:

.ng-valid[required], .ng-valid.required {
 border-left: 2px solid green;
}

.ng-invalid:not(form) {
 border-left: 2px solid red;
}

Now, all controls marked as required fields will show the green left borders while all invalid fields will have the red left borders.

 The NgModelGroup directive

We can group the form controls into the control group. The form itself is a control group. It is possible to track the validity state of the controls in the group. Like the control uses a ngModel
 directive, the group utilizes a NgModelGroup
 directive:

<form #myForm="ngForm" (ngSubmit)="handle(myForm.value)">
 <fieldset
ngModelGroup="user"

>
 <label>User Name:</label>
 <input type="text" name="name" ngModel>
 <label>Password:</label>
 <input type="password" name="password" ngModel>
 </fieldset>
 <fieldset
ngModelGroup="contact"

>
 <label>Phone:</label>
 <input type="text" name="phone" ngModel>
 <label>Email:</label>
 <input type="email" name="email" ngModel>
 </fieldset>
 <button type="submit">Submit</button>
</form>

We can use fieldset
 or div
 elements to group controls. With the help of ngModelGroup,
 we semantically group controls into user
 and contact
 information:

{
 user: {
 name: 'User',
 password: 'myPassword'
 },
 contact: {
 phone: '000-111-22-33',
 email: 'test@test.com'
 }
}

 Model-driven forms

This approach helps to build forms without DOM requirements and makes them easy to test. It doesn't mean we don't need the templates. We need them in conjunction with the model-driven way. We are creating the form in a template and create the form model that represents the DOM structure. We can use two different APIs here:

	The low-level API based on FormGroup
 and FormControl
 classes

	The high-level API based on FormBuilder
 class

Any form is a FormGroup
 . Any FormGroup
 represents a set of FormControls
 . Let's imagine we have the following template:

<form>
 <label>User Name:</label>
 <input type="text" name="name">
 <label>Password:</label>
 <input type="password" name="password">
 <label>Phone:</label>
 <input type="text" name="phone">
 <label>Email:</label>
 <input type="email" name="email">

 <button type="submit">Submit</button>
</form>

Now create a model for our form:

import { Component } from '@angular/core';
import { FormGroup, FormControl } from '@angular/forms';

@Component({...})
export class MyForm {

 myForm:FormGroup = new FormGroup({
 name: new FormControl('Admin'),
 password: new FormControl(),
 contact: new FormGroup({
 phone: new FormControl(),
 email: new FormControl()
 })
 });
}

The myForm
 represents our form from the template. We create the FormControl
 for every field of the form and FormGroup
 for each group. In the first property, we assign the default value to the name. The FormGroup
 can contain another group and helps to create the hierarchy to replicate the DOM structure.

 The FormGroup directive

Now we need to bind the model to the form elements with the help of an Angular 2 FormGroup
 directive. We need to assign the expression evaluations into the FormGroup
 instance:

<form [formGroup]="myForm">
 ...
</form>

 The FormControlName directive

The next very important step is to associate the model properties with form elements. We use the FormControlName
 instead of the name attribute to register the controls:

import {Component} from '@angular/core';
import {FormControl, FormGroup, Validators} from '@angular/forms';

@Component({
 selector: 'logon-form',
 template: `
 <form [formGroup]="form" (ngSubmit)="onSubmit()">
 <div *ngIf="userName.invalid">Name is too short. </div>
 <input formControlName="userName" placeholder="User name">
 <input formControlName="password" placeholder="Password">
 <input formControlName="phone" placeholder="Phone">
 <input formControlName="email" placeholder="Email">
 <button type="submit">Submit</button>
 </form>`
})
export class LogonFormGroup {
 form = new FormGroup({
 userName: new FormControl('', Validators.minLength(2)),
 password: new FormControl('', Validators.minLength(5)),
 phone: new FormControl(''),
 email: new FormControl('')
 });

 get userName(): any { return this.form.get('userName'); }
 get password(): any { return this.form.get('password'); }

 constructor() {
 this.form.setValue({userName: 'admin', password: '12345', phone: '123-123', email: 'mail@example.com'});
 }

 onSubmit(): void {
 console.log(this.form.value);
 // Will print {userName: 'admin', password: '12345',
 // phone: '123-123', email: 'main@example.com'}
 }
}

This directive keeps the userName
 of FormControl
 and password
 from FormGroup
 in sync with DOM elements of the same name. Any changes happen programmatically and the FormGroup
 properties will immediately be written into the DOM elements and vice versa. We usethe get
 and set
 methods to access and update the form properties.

 The FormGroupName directive

In cases when we have a group of controls, we can use the FormGroupName
 directive to associate a group of controls with a parent FormGroupDirective
 (formally a FormGroup
 selector). You should specify via the name attribute to which nested FormGroup
 element you would like to link, so it might be quite handy to organize a validation of sub-group elements separately:

import {Component} from '@angular/core';
import {FormControl, FormGroup, Validators} from '@angular/forms';

@Component({
 selector: 'logon-form',
 template: `
 <form [formGroup]="form" (ngSubmit)="onSubmit()">
 <p *ngIf="userName.invalid">Name is invalid.</p>
 <input formControlName="userName" placeholder="User name">
 <input formControlName="password" placeholder="Password">
 <fieldset
formGroupName

="contact">
 <input formControlName="phone">
 <input formControlName="email">
 </fieldset>
 <button type="submit">Submit</button>
 </form>`
})
export class LogonFormComponent {
 form = new FormGroup({
 userName: new FormControl('', Validators.minLength(2)),
 password: new FormControl('', Validators.minLength(5)),

 contact: new FormGroup({
 phone: new FormControl(''),
 email: new FormControl('')
 })
 });
 get userName(): any { return this.form.get(userName'); }
 get password(): any { return this.form.get('password'); }
 get phone(): any { return this.form.get('contact.phone'); }
 get email(): any { return this.form.get('contact.email'); }

 constructor() {
 this.form.setValue({userName: 'admin', password: '12345',
 phone: '123-123', email: 'mail@example.com'});
 }

 onSubmit() {
 console.log(this.form.value);
 // Will print: {userName: 'admin', password: '12345',
 // phone: '123-123', email: 'main@example.com'}
 console.log(this.form.status);
 // Will print: VALID
 }
}

We use the get method of the FormGroup
 to get access to properties. Individual controls are available via dot syntax as shown in the preceding code.

 The FormBuilder class

The FormBuilder
 creates an AbstractControl
 form object from a user-specified configuration. So, instead of creating FormGroup
 , FormControl
 , and FormArray
 elements, we build the configuration to construct the model. We need only inject it in the constructor and call the group
 method to create the form group:

import {Component} from '@angular/core';
import {FormBuilder, FormGroup} from '@angular/forms';

@Component({...})
export class MyForm {
 myForm:FormGroup;

 constructor(private
formBuilder: FormBuilder

) {}

 ngOnInit() {
 this.myForm =
this.formBuilder.group

({
 name: [],
 password: ,
 contect: this.formBuilder.group({
 phone: [],
 email: []
 })
 });
 }
}
import {Component, Inject} from '@angular/core';
import {FormBuilder, FormGroup, Validators} from '@angular/forms';

@Component({
 selector: 'logon-form',
 template: `
 <form [formGroup]="form">
 <div formGroupName="name">
 <input formControlName="first" placeholder="First">
 <input formControlName="last" placeholder="Last">
 </div>
 <input formControlName="email" placeholder="Email">
 <button>Submit</button>
 </form>
 <form [formGroup]="form" (ngSubmit)="onSubmit()">
 <p *ngIf="userName.invalid">Name is invalid.</p>
 <input formControlName="userName" placeholder="User name">
 <input formControlName="password" placeholder="Password">
 <fieldset
formGroupName

="contact">
 <input formControlName="phone">
 <input formControlName="email">
 </fieldset>
 <button type="submit">Submit</button>
 </form>
 <p>Value: {{ form.value | json }}</p>
 <p>Validation status: {{ form.status }}</p>
 `
})
export class LogonFormComponent {
 form: FormGroup;
 constructor(@Inject(FormBuilder) fb: FormBuilder) {
 this.form = fb.group({
 userName: ['', Validators.minLength(2)],
 password: ['', Validators.minLength(5)],

 contact: fb.group({
 phone: [''],
 email: ['']
 })
 });
 }

 get userName(): any { return this.form.get(userName'); }
 get password(): any { return this.form.get('password'); }
 get phone(): any { return this.form.get('contact.phone'); }
 get email(): any { return this.form.get('contact.email'); }

 constructor() {
 this.form.setValue({userName: 'admin', password: '12345',
 phone: '123-123', email: 'mail@example.com'});
 }

 onSubmit() {
 console.log(this.form.value);
 // Will print: {userName: 'admin', password: '12345',
 // phone: '123-123', email: 'main@example.com'}
 console.log(this.form.status);
 // Will print: VALID
 }
}

As a result, we have a less verbose code.

 A FormControl directive

At the beginning of this chapter, we talked about the formless search form. This form has only one element, and we don't need a FormGroup
 at all. Angular has a FormControl
 directive which doesn't have to be inside FormGroup
 . It only adds it to a single form control:

<div class="card">
 <div class="card-header">Quick Shop</div>
 <div class="input-group">
 <input #search type="text" class="form-control"
 placeholder="Search for..."

 [formControl]="seachControl">

 <button class="btn btn-secondary" type="button"
 [disabled]="disabled"
 (click)="searchProduct(search.value)">Go!</button>

 </div>
</div>

The updated version of the script looks like this:

import {Component} from '@angular/core';
import {Router} from '@angular/router';

import {FormControl} from '@angular/forms';

@Component({
 selector: 'db-product-search',
 templateUrl: 'app/product/product-search.component.html'
})
export class ProductSearchComponent {

 disabled: boolean = true;

 seachControl: FormControl;

 constructor(private router: Router) {}

 ngOnInit() {

 this.seachControl = new FormControl();

 this.seachControl.valueChanges.subscribe((value: string) => {

 this.searchChanged(value);

 });

 }

 searchProduct(value: string) {
 this.router.navigate(['/products'], { queryParams:
 { search: value} });
 }

 searchChanged(value: string) {
 // Update the disabled property depends on value
 if (value) {
 this.disabled = false;
 } else {
 this.disabled = true;
 }
 }
}

 Built-in validators

I cannot image the form without validators. Angular 2 comes with several built-in validators we can use declaratively as directives or imperatively with FormControl
 , FormGroup
 , or FormBuilder
 classes. Here is a list of them:

	The form control with a required
 validator must have a non-empty value

	The form control with a minLength
 must have the value of the minimum length

	The form control with a maxLength
 must have the value of a maximum length

	The form control with a pattern
 must have the value to match the given regular expression

Here is an example of how to use all of them declaratively:

<form novalidate>
 <input type="text" name="name" ngModel
required

>
 <input type="password" name="password" ngModel
minlength="6"

>
 <input type="text" name="city" ngModel
maxlength="10"

>
 <input type="text" name="phone" ngModel

 pattern="^(\+\d{1,2}\s)?\(?\d{3}\)?[\s.-]\d{3}[\s.-]\d{4}$">

</form>

Bear in mind that the novalidate
 is not a part of Angular 2. It is an HTML5 Boolean form attribute. The form will not validate input fields on submission when it presents.

We can use the same validators imperatively with FormGroup
 and FormControl
 :

@Component({...})
export class MyForm {
 myForm: FormGroup;

 ngOnInit() {
 this.myForm = new FormGroup({
 name: new FormControl('', Validators.required)),
 password: new FormControl('', Validators.minLength(6)),
 city: new FormControl('', Validators.maxLength(10)),
 phone: new FormControl('', Validators.pattern(
 '[^(\+\d{1,2}\s)?\(?\d{3}\)?[\s.-]\d{3}[\s.-]\d{4}$'))
 });
 }
}

As mentioned, we can use the FormBuilder
 and less verbose code:

@Component({...})
export class MyForm {
 myForm: FormGroup;

 constructor(private fb: FormBuilder) {}

 ngOnInit() {
 this. myForm = this.fb.group({
 name: ['', Validators.required],
 password: ['', Validators.minLength(6)],
 city: ['', Validators.maxLength(10)],
 phone: ['', Validators.pattern(
 '[^(\+\d{1,2}\s)?\(?\d{3}\)?[\s.-]\d{3}[\s.-]\d{4}$')]
 });
 }
}

In both scenarios, we must use the formGroup
 directive to associate the myForm
 model with a form element in the DOM:

<form novalidate [
formGroup

]="
myForm

">
...
</form>

 Creating a custom validator

Angular 2 has an interface Validator
 that can be implemented by classes that can act as validators:

export interface Validator {
 validate(c: AbstractControl): {
 return [key: string]: any
 };
}

Let's create a function to validate the correctness of a ZIP code. Create the file zip.validator.ts
 in the shared
 folder with the following code:

import {FormControl} from '@angular/forms';

export function validateZip(c: FormControl) {
 let ZIP_REGEXP:RegExp = new RegExp('[A-Za-z]{5}');

 return ZIP_REGEXP.test(c.value) ? null : {
 validateZip: {
 valid: false
 }
 };
}

The function validateZip
 expects the FormControl
 as an argument and must return an error object if the value doesn't match the regular expression or null if the value is valid. Now, we can import the validateZip
 function and use it in our class:

import {Component} from '@angular/core';
import {
validateZip

} from '../shared/zip.validator';
import {FormBuilder, FormGroup, Validators} from '@angular/forms';

@Component({...})
export class MyForm {
 form: FormGroup;

 constructor(private
fb: FormBuilder

) {}

 ngOnInit() {
 this.form = this.fb.group({
 name: ['', Validators.required],
 password: ['', Validators.minLength(6)],
 city: ['', Validators.maxLength(10)],
 zip: ['',
validateZip

]
 });
 }
}

 Creating a custom validator directive

We can use Angular 2 built-in validators imperatively, or declaratively, with the help of some internal code to execute the validators on form controls. All built-in and custom validators must be registered in a multi-provider dependency token, NG_VALIDATORS
 . As you will remember from Chapter 6
 ,
Dependency Injection

 , the multi-property of the provider allows the injection of multiple values to the same token. Angular injects NG_VALIDATORS
 , instantiates the form, and performs validation on the form control. Let's create the custom validation directive we can use in template-driven forms. Open zip.valdator.ts
 and copy and paste the following code:

import {FormControl} from '@angular/forms';
import {Directive,forwardRef} from '@angular/core';
import {NG_VALIDATORS} from '@angular/forms';

export function validateZip(c: FormControl) {
 let ZIP_REGEXP:RegExp = new RegExp('[A-Za-z]{5}');

 return ZIP_REGEXP.test(c.value) ? null : {
 validateZip: {
 valid: false
 }
 };
}

@Directive({
 selector: '[validateZip][ngModel],[validateZip][formControl]',
 providers: [
 {provide: NG_VALIDATORS, useExisting: forwardRef(() =>
 ZipValidator), multi: true}
]
})
export class ZipValidator {

 validator: Function = validateZip;

 validate(c: FormControl) {
 return this.validator(c);
 }
}

And now in the form we can use ZipValidator
 as a directive:

<form novalidate>
 <input type="text" name="name" ngModel
required

>
 <input type="password" name="password" ngModel
minlength="6"

>
 <input type="text" name="city" ngModel
maxlength="10"

>
 <input type="text" name="zip" ngModel
validateZip

>
</form>

 Cart view

The cart view lists all items held in the user's shopping cart. It displays product details for each item and, from this page, a user can:

	Remove all goodies from his or her cart by clicking
Clear Cart

	Update the quantity for any listed item

	Return to the products list by clicking on
Continue

 shopping

	Proceed to checkout by clicking
Checkout

[image: Cart view]

The wireframe of the cart view

The significant part of the cart view is formed with dynamic content laid out in the grid. Look at the first column of the wireframe. There are rows of similar data we can use to display, modify, and validate. For this purpose, we can use Angular static forms to present the content of the shopping cart on the view.

Let's create cart-view.component.html
 . In the first column, we need to print out information about products added to the shopping cart:

<div *ngIf="cart.count">
 <form #form="ngForm">
 <div class="table-responsive">
 <table class="table table-sm table-striped
 table-bordered table-cart">
 <tbody>
 <tr>
 <td class="font-weight-bold">Title</td>
 <td class="font-weight-bold">Price</td>
 <td class="font-weight-bold">Count</td>
 <td class="font-weight-bold">Amount</td>
 </tr>
 <tr *ngFor="let item of cart.items">
 <td>{{item.product.title}}</td>
 <td>{{item.product.price |
 currency:'USD':true:'1.2-2'}}</td>
 <td>
 <input type="number"
 name="{{item.product.id}}" min="1"
 [ngModel]="item.count"
 (ngModelChange)="item.count = update($event, item)">
 </td>
 <td>{{item.amount |
 currency:'USD':true:'1.2-2'}}</td>
 </tr>
 </tbody>
 </table>
 </div>
 </form>
</div>
<div class="emty-cart" *ngIf="!cart.count">The cart is empty!</div>

We use the template-driven approach here and assign a form variable to the exposed ngForm
 . I split the double-way binding format into two statements:

	
[ngModel]="item.count"
 : This is used as property binding.

	
(ngModelChange)="item.count = update($event, item)"
 : This is used as event binding.

Every time a user updates the count
 value, this code calls the update
 method to add or remove products from the cart:

import {Component, Input} from '@angular/core';
import {Cart, CartItem, CartService} from './cart.service';

@Component({
 selector: 'db-cart-view',
 templateUrl: 'app/cart/cart-view.component.html'
})
export class CartViewComponent {

 private cart: Cart;

 constructor(private cartService: CartService) {
 this.cart = this.cartService.cart;
 }

 clearCart() {
 this.cartService.clearCart();
 }

 update(value, item: CartItem) {

 let res = value - item.count;

 if (res > 0) {

 for (let i = 0; i < res; i++) {

 this.cartService.addProduct(item.product);

 }

 } else if (res < 0) {

 for (let i = 0; i < -res; i++) {

 this.cartService.removeProduct(item.product);

 }

 }

 return value;

 }

}

Because we have a button,
Clear Cart

 , we need to implement the method of the same name in CartService
 :

clearCart() {
 this.cart.items = [];
 this.cart.amount = 0;
 this.cart.count = 0;
}

 Cart view route definition

I updated the router configuration in the app.routes.ts
 to reflect the changes necessary to apply to navigate to the CartViewComponent
 :

const routes: Routes = [
 { path: '', redirectTo: 'welcome', pathMatch: 'full' },
 { path: 'welcome', component: WelcomeComponent },
 { path: 'products', component: ProductListComponent },
 { path: 'products/:id', component: ProductViewComponent },

 { path: 'cart', component: CartViewComponent }

];

 Navigation to cart view

When the user clicks on the
Cart

 button in the markup of the Cart Menu, the router uses information from the link to navigate to the cart view:

<div class="row">
 <div class="col-md-12">

 <a [routerLink]="['/cart']"

 class="btn btn-primary pull-xs-right btn-cart">
 <i class="fa fa-shopping-cart" aria-hidden="true"></i>
 Cart

 <a [routerLink]="['/checkout']"
 class="btn btn-success pull-xs-right btn-cart">
 <i class="fa fa-credit-card" aria-hidden="true"></i>
 Checkout

 </div>
</div>

We need to update the CartModule
 to add the CartViewComponent
 into the declarations
 property of NgModule
 :

import {NgModule} from '@angular/core';
import {CommonModule} from '@angular/common';
import {FormsModule, ReactiveFormsModule} from '@angular/forms';
import {RouterModule} from '@angular/router';

import {CartMenuComponent} from './cart-menu.component';

import {CartViewComponent} from './cart-view.component';

import {CartService} from './cart.service';

@NgModule({
 imports: [CommonModule, FormsModule, ReactiveFormsModule, RouterModule],
 declarations: [CartMenuComponent,
CartViewComponent

],
 exports: [CartMenuComponent,
CartViewComponent

],
 providers: [CartService]
})
export class CartModule {}

Here is the screenshot of the cart view:

[image: Navigation to cart view]

 Tip

You can find the source code atchapter_7/4.ecommerce-cart-view
 .

 The Checkout View

The Checkout View displays the customer details form, purchase conditions, and the order information. The customer should fill in the form, accept payment, and click on the
Submit

 button to start the payment process.

[image: The Checkout View]

The wireframe of the Checkout View

Create the checkout
 folder and checkout-view.component.ts
 file:

import {Component, Input} from '@angular/core';
import {FormGroup, FormBuilder, Validators} from '@angular/forms';

import {Cart, CartItem, CartService} from '../cart/cart.service';

@Component({
 selector: 'db-checkout-view',
 templateUrl: 'app/checkout/checkout-view.component.html'
})
export class CheckoutViewComponent {

 private cart: Cart;
 form: FormGroup;

 constructor(private cartService: CartService,
 private fb: FormBuilder) {
 this.cart = this.cartService.cart;
 }

 ngOnInit() {
 this.form = this.fb.group({
 firstName: ['', Validators.required],
 lastName: ['', Validators.required],
 email: ['', Validators.required],
 phone: ['', Validators.required],
 address: []
 });
 }

 submit() {
 alert('Submitted');
 this.cartService.clearCart();
 }
}

I used the model-driven approach here to create the definition of the form. When the user clicks on the
Submit

 button it shows the message and clears the shopping cart. Create the checkout-view.component.html
 and copy the following content there:

<form [formGroup]="form">
 <div class="form-group row">
 <label for="firstName"
 class="col-xs-2 col-form-label">First Name:</label>
 <div class="col-xs-10">
 <input class="form-control" type="text" value=""
 id="firstName" formControlName="firstName">
 <p [hidden]="form.controls.firstName.valid ||
 form.controls.firstName.pristine"
 class="form-text alert-danger">
 The First Name is required
 </p>
 </div>
 </div>
 <div class="form-group row">
 <label for="lastName" class="col-xs-2 col-form-label">
 Last Name:</label>
 <div class="col-xs-10">
 <input class="form-control" type="text" value=""
 id="lastName" formControlName="lastName">
 <p [hidden]="form.controls.lastName.valid ||
 form.controls.lastName.pristine"
 class="form-text alert-danger">
 The Last Name is required
 </p>
 </div>
 </div>
 <div class="form-group row">
 <label for="email"
 class="col-xs-2 col-form-label">Email:</label>
 <div class="col-xs-10">
 <input class="form-control" type="email" value=""
 id="email">
 <p [hidden]="form.controls.email.valid ||
 form.controls.email.pristine"
 class="form-text alert-danger">
 The Email is required
 </p>
 </div>
 </div>
 <div class="form-group row">
 <label for="phone"
 class="col-xs-2 col-form-label">Phone:</label>
 <div class="col-xs-10">
 <input class="form-control" type="phone" value=""
 id="phone">
 <p [hidden]="form.controls.phone.valid ||
 form.controls.phone.pristine"
 class="form-text alert-danger">
 The Phone is required
 </p>
 </div>
 </div>
 <div class="form-group row">
 <label for="address"
 class="col-xs-2 col-form-label">Address:</label>
 <div class="col-xs-10">
 <input class="form-control" type="text" value=""
 id="address">
 </div>
 </div>
</form>

We have several required fields, so when they are empty Angular 2, via NgModel,
 turns their bars red. That's OK to indicate the problem but not enough to say what exactly is wrong. We can use the validation error message to display if the control is invalid or was not touched. Look at the markup I copied from the preceding code:

<input class="form-control" type="text" value=""
 id="firstName" formControlName="firstName">
<p [hidden]="form.controls.firstName.valid ||
 form.controls.firstName.pristine"
 class="form-text alert-danger">
 The First Name is required
</p>

We read information about FormControl
 status directly from the form model. We check if the firstName
 field is valid or if it's pristine and show or hide the error message.

At the end, we bind the disabled property of the
Submit

 button to the validity of the form, so the user will have the chance to send the data to the server only if all the fields of the form are valid:

<div class="col-xs-9">
 <button class="btn btn-primary" (click)="submit()"

[disabled]="!form.valid"

>Submit</button>
 <button class="btn btn-secondary"
 [routerLink]="['/products']">Continue Shopping</button>
</div>

 Checkout view route definition

Update the router configuration in the app.routes.ts
 to add the CheckoutViewComponent
 :

const routes: Routes = [
 { path: '', redirectTo: 'welcome', pathMatch: 'full' },
 { path: 'welcome', component: WelcomeComponent },
 { path: 'products', component: ProductListComponent },
 { path: 'products/:id', component: ProductViewComponent },
 { path: 'cart', component: CartViewComponent },

 { path: 'checkout', component: CheckoutViewComponent }

];

 Navigation to Checkout View

When the user clicks on the
Checkout

 button in the markup of the Cart Menu, the router navigates to the view:

<div class="row">
 <div class="col-md-12">
 <a [routerLink]="['/cart']"
 class="btn btn-primary pull-xs-right btn-cart">
 <i class="fa fa-shopping-cart" aria-hidden="true"></i>
 Cart

 <a [routerLink]="['/checkout']"

 class="btn btn-success pull-xs-right btn-cart">
 <i class="fa fa-credit-card" aria-hidden="true"></i>
 Checkout

 </div>
</div>

The CheckoutViewComponent
 does not belongs to any module, so we need to add it to the AppModule
 :

/*
 * Components
 */
import {AppComponent} from './app.component';
import {NavbarComponent} from './navbar/navbar.component';
import {FooterComponent} from './footer/footer.component';
import {WelcomeComponent} from './welcome/welcome.component';

import {CheckoutViewComponent} from

 './checkout/checkout-view.component';

/*
 * Routing
 */
import {routing} from './app.routes';

@NgModule({
 imports: [BrowserModule, FormsModule, ReactiveFormsModule,
 routing, CartModule, CategoryModule, ProductModule],
 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent,
CheckoutViewComponent

],
 bootstrap: [AppComponent]
})
export class AppModule { }

Here is the screenshot of the Checkout View with validation error messages:

[image: Navigation to Checkout View]

 Tip

You can find the source code atchapter_7/5.ecommerce-checkout-view
 .

 Summary

In this chapter, we discovered how to create forms with Bootstrap 4. We know that Bootstrap supports different layouts from simple to complex.

We investigated the Angular 2 forms module and can now create model-driven and template-driven forms.

We joined all the pieces of our application, and now it looks very nice.

In Chapter 8
 ,
Advanced Components

 , we will talk about the life cycle of a component and the methods that can be used at different stages of a component. This chapter also discusses how to create a multi-component application. As usual, we will continue to build the project we started to develop in previous chapters.

 Chapter8.Advanced Components

This chapter describes the lifecycle of components and the methods that can be used at different stages of the lifecycle. In this chapter, we will analyze each stage of this cycle and we will learn how to make the most of the hook methods that are triggered when a component moves from one stage to another. This chapter also discusses how to create a multi-component application. Readers will be able to add more features to the app using Bootstrap.

At the end of the chapter, you will have a solid understanding of:

	Component lifecycle hooks interfaces

	Lifecycle hook methods

	Implementing hook interfaces

	Change detection

	Communication between components

 Directives

The directive is the fundamental building block of Angular 2 and allows you to connect behavior to an element in the DOM. There are three kinds of directives:

	Attribute directives

	Structural directives

	Components

A directive is a class with an assigned @Directive
 decorator.

 Attribute directives

The attribute directive usually changes the appearance or behavior of an element. We can change several styles or use it to render text bold or italic by binding to a property.

 Structural directives

The structural directive changes the DOM layout by adding and removing other elements.

 Components

The component is a directive with a template. Every component is made up of two parts:

	The class, where we define the application logic

	The view controlled by the component which interacts with it through an API of properties and methods

A component is a class with an assigned @Component
 decorator.

 The directive lifecycle

To develop custom directives for any project, you should understand the basics of the Angular 2 directive lifecycle. A directive goes through a number of distinct stages between when it is created and when it is destroyed:

	Instantiation

	Initialization

	Change detection and rendering

	Content projection (only for components)

	After view (only for components)

	Destruction

 The Angular lifecycle hooks

Angular offers directive lifecycle hooks that give us the ability to act when these key moments occur. We can implement one or more of the lifecycle hook interfaces in the Angular core
 library. Each interface has a single method whose name is the interface name prefixed with ng
 . Interfaces are optional for TypeScript and Angular calls the hook methods if they are defined.

 Note

I recommend implementing the lifecycle hook interfaces to directive classes to benefit from strong typing and editor tooling.

 Instantiation

The Injector creates the directive instance with the new
 keyword. Each directive may contain, at most, one constructor declaration. If a class contains no constructor declaration, an automatic constructor is provided. The primary purpose of the constructor is to create a new instance of an object and to set initial properties for it. Angular 2 uses constructor for dependency injection, so we can save references to dependent instances for later use:

export class CategoryListComponent {

 categories: Category[];

 constructor(private router: Router,
 private categoryService: CategoryService) {
 this.categories = this.categoryService.getCategories();
 }

 filterProducts(category: Category) {
 this.router.navigate(['/products'], {
 queryParams: { category: category.id}
 });
 }
}

In the preceding example, the class, CategoryListComponent
 , has a constructor with two parameters referencing on Router
 and CategoryService
 .

 Initialization

There are data-bound input properties in every directive, and Angular saves the values of bounded properties at the initialization stage:

export class CategorySlideComponent {
 @Input() category: Category;
 @Output() select: EventEmitter<Category> =
 new EventEmitter<Category>();
}

The class CategorySlideComponent
 has a category-bounded to the property with the same name in the template.

We can implement OnInit
 and OnChanges
 interfaces to respond accordingly:

	Angular calls the ngOnChanges
 method when data-bound input property values change

	Angular calls the ngOnInit
 method after the first ngOnChanges
 and signals to us that the component has initialized

In the following code, we implement theOnInit
 interface to create the form controls and start listening to its value changes:

@Component({
 selector: 'db-product-search',
 templateUrl: 'app/product/product-search.component.html',
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class ProductSearchComponent implements OnInit {

 disabled: boolean = true;
 seachControl: FormControl;

 constructor(private router: Router,
 private changeDetection: ChangeDetectorRef) {}

 ngOnInit() {

 this.seachControl = new FormControl();

 this.seachControl.valueChanges.subscribe((value: string)

 => {

 this.searchChanged(value);

 this.changeDetection.markForCheck();

 });

 }

...
}

Mostly we relying on the ngOnInit
 method for the following reasons:

	We need to perform an initialization after the constructor

	To finalize the component setup after Angular sets the input properties

This method is a perfect location for the heavy initialization logic to fetch data from the server or to update the internal state depending on input properties.

 Change detection and rendering

This stage intentionally combines two important techniques that Angular 2 uses to bring life to the application. From one side, the change detection module of the framework looks after changes to the internal state of a program. It can detect changes in any data structure, from primitive to an array of objects. From the other side, the rendering part of Angular makes these changes visible in the DOM. Angular combines these two techniques in one stage to minimize the workload because rebuilding DOM trees is expensive.

 NgZone service

Most of the time the application state changes because the following asynchronous tasks happen in the application:

	An event triggered by a user or application

	Directive and pipe properties change

	Callback functions calling from AJAX responses

	Callback functions calling from timers

Angular uses NgZone
 , an execution context from the Zone library, to hook into those asynchronous tasks to detect changes, error handling, and profiling. Zone can perform several significant operations whenever code enters or exits a zone such as:

	Starting or stopping a timer

	Saving a stack trace

	Overriding methods of execution code

	Association of data with individual zones, and so on

Every Angular application has a global zone object wrapping the executable code, but we can use the NgZone
 service for executing work inside or outside of the Angular zone as well. NgZone
 is a forked zone that extends the standard zone API and adds some additional functionality to the execution context. Angular uses NgZone
 to monkey-patch the global asynchronous operations such as setTimeout
 and addEventListener
 to update the DOM.

 Change detection

Each directive in the Angular framework has a change detector, so we can define how change detection is performed. The hierarchical structure of directives brings change to the detector tree on the stage, so Angular always uses unidirectional data flow as a tool to deliver data from parents to children.

Most of the time, Angular's change detection occurs on properties and updates the view accordingly, independent of the structure of data:

@Component({
 selector: 'db-product-card',
 templateUrl: 'app/product/product-card.component.html'
})
export class ProductCardComponent {

 @Input() products: Product[];

 @Output() addToCart: EventEmitter<Product> =

 new EventEmitter<Product>();

 setClasses(product: Product) {
 return {
 'card-danger': product.isSpecial,
 'card-inverse': product.isSpecial
 };
 }

 buy(product: Product) {
 this.addToCart.emit(product);
 }
}

Property binding is used to supply data to a product
 , and event binding is used to inform other components of any updates, which it delegates to the store. The product
 is a reference to a real object with many fields:

export interface Product {
 // Unique Id
 id: string;
 // Ref on category belongs to
 categoryId: string;
 // The title
 title: string;
 // Price
 price: number;
 // Mark product with special price
 isSpecial: boolean;
 // Description
 desc: string;
 // Path to small image
 imageS: string;
 // Path to large image
 imageL: string;
}

Even though any field can be changed, the product
 reference itself stays the same. Angular will perform lots of check changes for properties of directives every time without performance degradation because the framework change detection system can execute hundreds and thousands of them within just a few milliseconds. Sometimes this massive change detection can be quite expensive so we can select a change detection strategy on a per-directive basis.

The internal state of a directive only depends on its input properties, so if these properties have not changed from one check to the next, then the directive doesn't need to be re-rendered. Bear in mind that all JavaScript objects are mutable, so change detection should check all input property fields to re-render a directive when necessary. If we use immutable structures, then change detection can be much faster. Let's have a look how that might happen.

 Immutable objects

An immutable object can't change. It always has only one internal state, and if we want to make a change to such an object, we'll always get a new reference to that change.

 Change detection strategy

Angular supports the following change detection strategies:

	The Default
 strategy means that the change detector will check the properties deeply per dirty check

	The OnPush
 strategy means that the change detector will check the changes of references on properties per dirty check

We can instruct Angular as to which change detection strategy it can use for specific directives via the changeDetection
 property of the decorator:

@Component({
 selector: 'db-product-card',
 templateUrl: 'app/product/product-card.component.html',

 changeDetection: ChangeDetectionStrategy.OnPush

})
export class ProductCardComponent {
...
}

The OnPush
 strategy will only work properly if all the values supplied to a directive via input properties are immutable.

 Note

Don't use mutable values with the OnPush
 check detection strategy because it can take the Angular application into an inconsistent or unpredictable state.

Angular automatically triggers the change detector to check the directive in OnPush
 mode if any of the followings happen:

	When any directive input property changes

	Whenever a directive fires an event

	When any observable belonging to this directive fires an event

 Triggering change detection programmatically

As mentioned earlier, every directive has a change detector that works automatically. In cases when we need to trigger the change detection programmatically we can use the ChangeDetectionRef
 class. We can call the markForCheck
 method of this class in the place where changes happen, so it marks the path from this directive to the root, to be checked for the next change detection run:

import {Component, ChangeDetectionStrategy, ChangeDetectorRef}
 from '@angular/core';
import {Router} from '@angular/router';
import {FormControl} from '@angular/forms';

@Component({
 selector: 'db-product-search',
 templateUrl: 'app/product/product-search.component.html',
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class ProductSearchComponent {

 disabled: boolean = true;
 seachControl: FormControl;

 constructor(private router: Router,
 private changeDetection: ChangeDetectorRef) {}

 ngOnInit() {
 this.seachControl = new FormControl();
 this.seachControl.valueChanges.subscribe((value: string)
 => {
 this.searchChanged(value);

 this.changeDetection.markForCheck();

 });
 }

 searchProduct(value: string) {
 this.router.navigate(['/products'], {
 queryParams: { search: value}
 });
 }

 searchChanged(value: string) {
 // Update the disabled property depends on value
 if (value) {
 this.disabled = false;
 } else {
 this.disabled = true;
 }
 }
}

In the preceding code, we triggered change detection because the string value came from searchControl
 which is always immutable.

As we mentioned, we can implement OnChanges
 interfaces to detect changes to input the properties of a directive to respond accordingly on:

	Angular calls the ngOnChanges
 method when a data-bound input property value changes. Most of the time, we do not use this method, but if you need to change the internal state dependence on the input properties, that's the right place to do so.

In the following code, we use the OnChanges
 interface to look after changes that happen to the category
 input property:

import {Component, Input, OnChanges, SimpleChanges}
 from '@angular/core';
import {Router} from '@angular/router';

import {Category} from './category.service';

@Component({
 selector: 'db-category-card',
 templateUrl: 'app/category/category-card.component.html'
})
export class CategoryCardComponent implements OnChanges {

 @Input() category: Category;

 constructor(private router: Router) {}

 ngOnChanges(changes: SimpleChanges): void {

 for (let propName in changes) {

 let change = changes[propName];

 let current = JSON.stringify(change.currentValue);

 let previous = JSON.stringify(change.previousValue);

 console.log(`${propName}: currentValue = ${current},

 previousValue = ${previous}`);

 }

 }

 filterProducts(category: Category) {
 this.router.navigate(['/products'], {
 queryParams: { category: category.id}
 });
 }
}

When the value assigns to the category
 the ngOnChanges
 method prints the following information:

category: currentValue = {"id":"1", "title":"Bread & Bakery", "imageL":"http://placehold.it/1110x480", "imageS":"http://placehold.it/270x171", "desc":"The best cupcakes, cookies, cakes, pies, cheesecakes, fresh bread, biscotti, muffins, bagels, fresh coffee and more."}, previousValue = {}

The SimpleChanges
 class keeps the current and previous values of each changed property name, so we can iterate through and log them.

We can implement the DoCheck
 interface in our directive to detect and act upon changes that Angular doesn't catch on its own. Angular calls the ngDoCheck
 method during every change detection cycle. Please use this method with caution, because Angular calls it with enormous frequency, so an implementation must be very lightweight.

 Content projection (only for components)

In general, the component is an HTML element and may have content such as text or markup. Angular 2 uses specific entry points marked with a ng-content
 tag to inject the content into the component template. This technique is known as a
content projection

 and Angular uses Shadow DOM to achieve that.

Angular 2 takes advantages of web component standards and uses a set of the following technologies:

	Templates for structural DOM changes

	Shadow DOM for styles and DOM encapsulation

We used templates in our project, so now it's time to talk about how Angular uses Shadow DOM in different encapsulation types.

The Shadow DOM allows us to hide DOM logic behind other elements and apply styles in the scope of it. Everything inside the Shadow DOM is unavailable to other components, so we call it encapsulation. In fact, the Shadow DOM is a new technique, and not all web browsers support it, so Angular uses emulation to mimic how Shadow DOM behaves.

There are three encapsulation types in Angular:

	
ViewEncapsulation.None
 : Angular doesn't use Shadow DOM and style encapsulation

	
ViewEncapsulation.Emulated
 : Angular doesn't use Shadow DOM but emulates the style encapsulation

	
ViewEncapsulation.Native
 : Angular uses Native Shadow DOM with all the benefits

We will use the encapsulation
 property of the @Component
 decorator to instruct Angular what encapsulation type to use.

 Component styles

In Angular 2, we can apply styles for the whole document and for specific components. That change brings another level of granularity and helps organize more modular designs than regular style sheets. The component styles are different to any global styles. Any selector inside a component style is applied within the scope of this component and its children. The component styles bring the following benefits:

	We can use any name of CSS classes or selectors within the context of the component without fear of getting name conflicts with classes and selectors used in other parts of the application.

	The styles encapsulated in the component are invisible to the rest of the application and cannot be changed elsewhere. We can change or remove the component styles without affecting the styles of the whole application.

	Component styles can be taken to separate files and can co-locate with TypeScript and HTML codes, which makes the project code more structured and organized.

 Special selectors

The component styles may include several special selectors. All of these came from the Shadow DOM world.

 The :host pseudo-class

Any element that hosts the component calls the host. The only one way to target the styles of the host element from the hosted component is to use the :host
 pseudo-class selector:

:host {
 display: block;
 border: 1px solid black;
}

In the preceding code snippet, we changed the display and border styles in the parent's component template. In cases when we need to apply the host styles conditionally, use another selector as a parameter of the styles function form:

:host(.active) {
 border-width: 3px;
}

The preceding styles will apply to the host only when it has an active
 class.

 The :host-context pseudo-class

Just imagine a situation where you are creating a theme for your web application and you would like to apply specific styles to your component, dependent on the presence or absence of other selectors. You could easily implement it with the help of the :host-context
 function:

:host-context(.theme-dark) p {
 background-color: gray;
}

The logic behind the preeding code is looking for a theme-dark
 CSS class in any ancestor from the component host element up to the document root and applying gray
 to the background-color
 style to all the paragraph elements inside the component.

 The /deep/ selector

The styles of the component apply only to its template. If we need to apply them to all child elements then we need to use the /deep/
 selector:

:host /deep/ h4 {
 font-weight: bold;
}

The /deep/
 selector from the preceding code snippet will apply the bold
 to the font-weight
 style of all h4
 header elements from the component through the child components tree down to all the child component views.

The /deep/
 selector has an alias >>>
 we can use interchangeably for an emulated view encapsulation.

 Non-view encapsulation

Angular doesn't use Shadow DOM and style encapsulation for this type. Let's imagine we have a ParentComponent
 in our project:

import {Component, Input, ViewEncapsulation} from '@angular/core';

@Component({
 selector: 'my-parent',
 template: `
 <div class="parent">
 <div class="parent__title">
 {{title}}
 </div>
 <div class="parent__content">
 <ng-content></ng-content>
 </div>
 </div>`,
 styles: [`
 .parent {
 background: green;
 color: white;
 }
 `],

 encapsulation: ViewEncapsulation.None

})
export class ParentComponent {
 @Input() title: string;
}

In the code of an AppComponent
 , we have the following:

import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: `

 <my-parent >

 <my-child></my-child>

 </my-parent>`

})
export class AppComponent { }

The ParentComponent
 has its own style and it could override it with another component because it will be applied to the document head later:

<head>
 ...
 <style>
 .parent {
 background: green;
 color: white;
 }
 </style>
 <style>.child[_ngcontent-ced-3] {
 background: red;
 color: yellow;
 }</style>
</head>

Angular generates the following HTML code which runs in the browser:

<my-app>
 <my-parent ng-reflect->
 <div class="parent">
 <div class="parent__title">
 Parent
 </div>
 <div class="parent__content">
 <my-child _nghost-fhc-3="">
 <div _ngcontent-fhc-3="" class="child">
 Child
 </div>
 </my-child>
 </div>
 </div>
 </my-parent>
</my-app>

There is no Shadow DOM involvement, and the application applied styles to the entire document. Angular replaced ng-content
 with the contents of the child component.

[image: Non-view encapsulation]

 Emulated view encapsulation

The emulated view is the default view encapsulation which Angular uses to create components. Angular doesn't use Shadow DOM but emulates the style encapsulation. Let's change the value of the encapsulation
 property to see the difference. Here is the style Angular generates for the emulated view encapsulation:

<head>
 ...
 <style>.parent[_ngcontent-xdn-2] {
 background: green;
 color: white;
 }</style><style>.child[_ngcontent-xdn-3] {
 background: red;
 color: yellow;
 }</style>
</head>

The style of the parent component looks different and belongs to a specific element. This is how Angular emulates the style encapsulation:

<my-app>
 <my-parent _nghost-xdn-2=""
 ng-reflect->
 <div _ngcontent-xdn-2="" class="parent">
 <div _ngcontent-xdn-2="" class="parent__title">
 Parent
 </div>
 <div _ngcontent-xdn-2="" class="parent__content">
 <my-child _nghost-xdn-3="">
 <div _ngcontent-xdn-3="" class="child">
 Child
 </div>
 </my-child>
 </div>
 </div>
 </my-parent>
</my-app>

The markup part of the page looks very similar to the non-view encapsulation.

 Native view encapsulation

The native view is one of the simplest encapsulations. It uses the native Shadow DOM to encapsulate content and style. Angular doesn't need to generate any styles for the parent component:

<head>
 ...
 <style>.child[_ngcontent-sgt-3] {
 background: red;
 color: yellow;
 }</style>
</head>

Now, the styles for the parent component are unavailable for other applications as well as the markup code:

<my-app>
 <my-parent ng-reflect->

 #shadow-root

 <style>.child[_ngcontent-sgt-3] {
 background: red;
 color: yellow;
 }</style>
 <style>.parent {
 background: green;
 color: white;
 }</style>
 <div class="parent">
 <div class="parent__title">
 Parent
 </div>
 <div class="parent__content">
 <my-child _nghost-sgt-3="">
 <div _ngcontent-sgt-3="" class="child">
 Child
 </div>
 </my-child>
 </div>
 </div>
 </my-parent>
</my-app>

If we need to project more than one child content, we can use ng-content
 with a dedicated select
 attribute:

import {Component, Input, ViewEncapsulation} from '@angular/core';

@Component({
 selector: 'my-parent',
 template: `
 <div class="parent">
 <div class="parent__title">
 {{title}}
 </div>
 <div class="parent__content">

 <ng-content></ng-content>

 </div>
 <div class="parent__content">

 <ng-content select=".another"></ng-content>

 </div>
 </div>`,
 styles: [`
 .parent {
 background: green;
 color: white;
 }
 `],
 encapsulation: ViewEncapsulation.Native
})
export class ParentComponent {
 @Input() title: string;
}

Bear in mind that the select
 attribute expects string values that Angular can use in the document.querySelector
 . In the application component, we have something similar:

import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: `
 <my-parent >

 <my-child></my-child>

 <my-child class="another"></my-child>

 </my-parent>`
})
export class AppComponent { }

Here is the resulting markup generated by Angular:

<div class="parent">
 <div class="parent__title">
 Parent
 </div>
 <div class="parent__content">

 <my-child _nghost-cni-3="">

 <div _ngcontent-cni-3="" class="child">

 Child

 </div>

 </my-child>

 </div>
 <div class="parent__content">

 <my-child class="another" _nghost-cni-3="">

 <div _ngcontent-cni-3="" class="child">

 Child

 </div>

 </my-child>

 </div>
</div>

[image: Native view encapsulation]

 Tip

You can find the source code at chapter_8/1.view-encapsulation
 .

Now, we know that content projection is the way Angular imports HTML content from outside of the component and inserts it into the designed part of the template. When Angular projects the external content into a component it calls the hook methods of the AfterContentInit
 and AfterContentChecked
 interfaces:

	After Angular projects the external content into its view and the content has been initialized, it calls the ngAfterContentInit
 method

	After Angular checks the bindings of the external content that it has projected into its view, it calls the ngAfterContentChecked
 hook method

We can use any of those to manipulate properties of the content's elements. To organize access to one or many content elements, we must take the parent component's property and decorate it with @ContentChild
 or @ContentChildren
 . Angular uses parameters passing into the decorator to select the content's elements:

	If the parameter is a type, Angular will find an element bounded to a directive or a component with the same type

	If the parameter is a string, Angular will interpret it as a selector to find corresponding elements

Angular sets the value of the decorated property before calling the ngAfterContentInit
 method so that we can access it within the method. Later, when Angular checks and updates the content elements, it calls ngAfterContentChecked
 to inform us that the containing elements were updated. Let's have a look at how can we use it. Here is the child component we will use as a content of the parent component:

import {Component, Input} from '@angular/core';

@Component({
 selector: 'my-child',
 template: `
 <div class="child">
 Child is {{status}}
 </div>`,
 styles: [`
 .child {
 background: red;
 color: yellow;
 }
 `]
})
export class ChildComponent {
 @Input() status: string = 'Not Ready';
}

We will look at the status
 property of the child component and print out the values on the console from the parent component:

import {Component, Input, AfterContentInit, AfterContentChecked,
 ContentChild} from '@angular/core';

import {ChildComponent} from './child.component';

@Component({
 selector: 'my-parent',
 template: `
 <div class="parent">
 <div class="parent__title">
 {{title}}
 </div>
 <div class="parent__content">
 <ng-content></ng-content>
 </div>
 </div>`,
 styles: [`
 .parent {
 background: green;
 color: white;
 }
 `]
})
export class ParentComponent implements
 AfterContentInit, AfterContentChecked {
 @Input() title: string;

 // Query for a CONTENT child of type ChildComponent`

 @ContentChild(ChildComponent) contentChild: ChildComponent;

 ngAfterContentInit() {

 // contentChild is set after the content has been initialized
 console.log('AfterContentInit. Child is',
 this.contentChild.status);
 this.title = 'Parent';
 }

 ngAfterContentChecked() {

 console.log('AfterContentChecked. Child is',
 this.contentChild.status);
 // contentChild is updated after the content has been checked
 if (this.contentChild.status == 'Ready') {
 console.log('AfterContentChecked (no change)');
 } else {
 this.contentChild.status = 'Ready';
 }
 }
}

Let's combine them together inside the application component template:

import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: `

 <my-parent >

 <my-child></my-child>

 </my-parent>`

})
export class AppComponent { }

Now, run the application and we will get the following login console:

AfterContentInit. Child is Not Ready

AfterContentChecked. Child is Not Ready

AfterContentChecked. Child is Ready

AfterContentChecked (no change)

 Tip

You can find the source code for this at chapter_8/2.after-content
 .

 After view (only for components)

When Angular finishes the initialization of the component's view and its children's views, it calls the methods of the two hook interfaces,AfterViewInit
 and AfterViewChecked
 . We can use the moment of initialization to update or manipulate view elements:

	Angular calls the ngAfterViewInit
 method when it finishes initialization of the component's view and its children's view

	Angular calls the ngAfterViewChecked
 method after every check on the bindings of the component's view and the view of its children's view

We can use either of these to manipulate view elements. To organize access to one or many view elements, we must have the property in the parent component and decorate it with @ViewChild
 or @ViewChildren
 . Angular uses parameters passing into the decorator to select view elements:

	If the parameter is a type, Angular will find an element bounded to a directive or a component with the same type

	If the parameter is a string, Angular will interpret it as a selector to find corresponding elements

Angular sets the value of the decorated property before calling the ngAfterViewInit
 method. Later, after every check and update of the view elements, it calls ngAfterViewChecked
 to inform us that the viewing elements were updated. Let's have a look at how we can use it. Here is the child component we will use in the template of the parent component:

import {Component, Input} from '@angular/core';

@Component({
 selector: 'my-child',
 template: `
 <div class="child">
 Child is {{status}}
 </div>`,
 styles: [`
 .child {
 background: red;
 color: yellow;
 }
 `]
})
export class ChildComponent {
 @Input() status: string = 'Not Ready';
}

We are watching the status
 property of the child component and will print out the values on the console from parent component:

import {Component, Input, AfterViewInit, AfterViewChecked,
 ViewChild, ChangeDetectionStrategy} from '@angular/core';

import {ChildComponent} from './child.component';

@Component({
 selector: 'my-parent',

 changeDetection: ChangeDetectionStrategy.OnPush,

 template: `
 <div class="parent">
 <div class="parent__title">
 {{title}}
 </div>
 <div class="parent__content">

 <my-child></my-child>

 </div>
 </div>`,
 styles: [`
 .parent {
 background: green;
 color: white;
 }
 `]
})
export class ParentComponent implements

 AfterViewInit, AfterViewChecked {

 @Input() title: string;

 // Query for a VIEW child of type `ChildComponent`

 @ViewChild(ChildComponent) viewChild: ChildComponent;

 ngAfterViewInit() {
 // viewChild is set after the view has been initialized
 console.log('AfterViewInit. Child is', this.viewChild.status);
 this.title = 'Parent';
 }

 ngAfterViewChecked() {
 console.log('AfterViewChecked. Child is',
 this.viewChild.status);
 // viewChild is updated after the view has been checked
 if (this.viewChild.status == 'Ready') {
 console.log('AfterViewChecked (no change)');
 } else {
 this.viewChild.status = 'Ready';
 }
 }
}

Bear in mind that we use OnPush
 change detection in this code to prevent cycling invocation of the ngAfterViewChecked
 method. Here is the application component template:

import { Component } from '@angular/core';

@Component({
 selector: 'my-app',
 template: `

 <my-parent >

 </my-parent>`

})
export class AppComponent { }

Now, run application and we will get the following login console:

AfterViewInit. Child is Not Ready

AfterViewChecked. Child is Not Ready

AfterViewChecked. Child is Ready

AfterViewChecked (no change)

 Tip

You can find the source code for this at the chapter_8/3.after-view
 .

 Parent to child communications

Organizing the communication between parent and child components is not trivial, so let's talk about different techniques we can use to achieve that.

 Parent to child communication via input binding

Every directive may have one or more input properties. We can bind any property of a child component with static string or the parent component variables to organize communication between them. Here is the child component:

import {Component, Input, Output, EventEmitter, OnInit }
 from '@angular/core';

@Component({
 selector: 'my-child',
 template: `
 <div class="child">

 {{desc}} belongs to {{parent}} with {{emoji}}

 </div>`,
 styles: [`
 .child {
 background: red;
 color: yellow;
 }
 `]
})
export class ChildComponent {

 @Input() desc: string;

 @Input('owner') parent: string;

 private _emoji: string;

 @Input() set emoji(value: string) {

 this._emoji = value || 'happy';

 }

 get emoji(): string {

 return this._emoji;

 }

@Output() status: EventEmitter<string> =
 new EventEmitter<string>();

 ngOnInit(): void {
 this.status.emit('Ready');
 }
}

It has three input properties marked with @Input
 decorators:

	The property desc
 is decorated by its natural name

	The property parent
 is decorated with an alias name so that the parent component will see it by name owner

	The property emoji
 is a combination of getter/setter methods so that we can add some logic to assign values to a private variable

It has one output property status
 to communicate from child to parent. I intentionally added an OnInit
 hook interface so that we can send a message back to the parent after the creation of a child. Here is the parent component:

import {Component, Input} from '@angular/core';

@Component({
 selector: 'my-parent',
 template: `
 <div class="parent">
 <div class="parent__title">
 {{title}}. Child is {{status}}
 </div>
 <div class="parent__content">

 <my-child [desc]="'Child'"

 [owner]="title"

 [emoji]="'pleasure'"

 (status)="onStatus($event)" ></my-child>

 </div>
 </div>`,
 styles: [`
 .parent {
 background: green;
 color: white;
 }
 `]
})
export class ParentComponent {
 @Input() title: string;
 status: string;

 onStatus(value: string) {
 this.status = value;
 }
}

The parent component sets all the input properties of the child and listens to the status
 event in the onStatus
 method. After creation, the child component emits the status eventand the parent component prints that information close to the title.

[image: Parent to child communication via input binding]

 Tip

You can find the source code for this at chapter_8/4.parent-child-input-binding
 .

 Parent to child communication via a local variable

The parent element has no access to properties or methods of the child component. We can create a template reference variable within the parent template to organize access to child component class members:

import {Component, Input} from '@angular/core';

@Component({
 selector: 'my-parent',
 template: `
 <div class="parent" [ngInit]="child.setDesc('You are mine')">
 <div class="parent__title">
 {{title}}
 </div>
 <div class="parent__content">
 <my-child #child></my-child>
 </div>
 </div>`,
 styles: [`
 .parent {
 background: green;
 color: white;
 }
 `]
})
export class ParentComponent {
 @Input() title: string;
}

In the preceding parent component, we created the child
 local template variable and used it within the NgInit
 directive to call the setDesc
 method of the child component:

import {Component, Input} from '@angular/core';

@Component({
 selector: 'my-child',
 template: `
 <div class="child">
 {{desc}}
 </div>`,
 styles: [`
 .child {
 background: red;
 color: yellow;
 }
 `]
})
export class ChildComponent {
 @Input() desc: string;

 setDesc(value: string) {
 this.desc = value;
 }
}

There is aNgInit
 directive we used to initialize the desc
 property of the child component:

import {Directive, Input} from '@angular/core';

@Directive({
 selector: '[ngInit]'
})
export class NgInit {
 @Input() ngInit;

 ngOnInit() {
 if(this.ngInit) {
 this.ngInit();
 }
 }
}

 Tip

You can find the source code for this at chapter_8/5.parent-child-local-variable
 .

 Parent-child communication via a call to ViewChild

When we need to have access to the child component from the parent we can use AfterViewInit
 and AfterViewChecked
 hooks. Angular calls them after it creates the child views of a component. Here is the child component:

import {Component, Input} from '@angular/core';

@Component({
 selector: 'my-child',
 template: `
 <div class="child">
 {{desc}}
 </div>`,
 styles: [`
 .child {
 background: red;
 color: yellow;
 }
 `]
})
export class ChildComponent {
 @Input() desc: string;
}

The parent component imports the necessary classes and implements the AfterViewInit
 interface:

import {Component, Input, AfterViewInit, ViewChild}
 from '@angular/core';

import {ChildComponent} from './child.component';

@Component({
 selector: 'my-parent',
 template: `
 <div class="parent">
 <div class="parent__title">
 {{title}}
 </div>
 <div class="parent__content">

 <my-child></my-child>

 </div>
 </div>`,
 styles: [`
 .parent {
 background: green;
 color: white;
 }
 `]
})
export class ParentComponent implements AfterViewInit {
 @Input() title: string;

 @ViewChild(ChildComponent)

 private child: ChildComponent;

 ngAfterViewInit()
 {

 this.child.desc = "You are mine";

 }

}

We are injecting the child component into the parent with the help of the @ViewChild
 decorator introduced previously. The AfterViewInit
 interface is very important in this scenario because the child
 component is unavailable until the Angular displays the parent view and calls the ngAfterViewInit
 method.

 Tip

You can find the source code for this at chapter_8/6.parent-child-viewchild
 .

 Parent-child communication via a service

Another possible way to organize parent-child communication is via a common service. We assign the service to a parent component and lock the scope of the service instance between this parent component and its children. No single component outside of this subtree will have access to the service or their communications. Here, the child component has access to the service injectable via the constructor:

import {Component, Input, OnDestroy} from '@angular/core';
import {Subscription} from 'rxjs/Subscription';
import {CommonService} from './common.service';

@Component({
 selector: 'my-child',
 template: `
 <div class="child">
 {{desc}}
 </div>`,
 styles: [`
 .child {
 background: red;
 color: yellow;
 }
 `]
})
export class ChildComponent implements OnDestroy {
 @Input() desc: string;

 subscription: Subscription;

 constructor(private common: CommonService) {
 this.subscription = this.common.childQueue.subscribe(
 message => {
 this.desc = message;
 }
);
 }

 ngOnDestroy() {
 // Clean after yourself
 this.subscription.unsubscribe();
 }
}

We run a subscription on messages coming from the parent component in the constructor. Please be careful of the OnDestroy
 interface at implementation. The code in the ngOnDestroy
 method is a memory-leak guard step. The parent component has a CommonService
 registered as a provider and injected through the constructor:

import {Component, Input, OnInit} from '@angular/core';
import {CommonService} from './common.service';

 @Component({
 selector: 'my-parent',
 template: `
 <div class="parent">
 <div class="parent__title">
 {{title}}
 </div>
 <div class="parent__content">
 <my-child></my-child>
 </div>
 </div>`,
 styles: [`
 .parent {
 background: green;
 color: white;
 }
 `],

 providers: [CommonService]

})
export class ParentComponent implements OnInit {
 @Input() title: string;

 constructor(private common: CommonService) {

 this.common.parentQueue.subscribe(

 message => {

 this.title = message;

 }

);

 }

 ngOnInit() {

 this.common.toChild("You are mine");

 }
}

We don't need the memory-leak guard step here because the parent component controls the lifetime of the registered provider.

 Tip

You can find the source code for this at chapter_8/7.parent-child-service
 .

 Destroying

This stage is the last one whilst a directive still exists. We can implement the OnDestroy
 interface to catch this moment:

	Angular calls the ngOnDestroy
 method before destroying the directive

	Angular adds cleanup logic to this method to unsubscribe observables and detach event handlers to avoid memory leaks

We can notify another component (parent or sibling) about the fact that the directive will disappear soon. We must free allocated resources, unsubscribe from observables and DOM event listeners, and unregister all callbacks from services.

 Summary

In this chapter, we discovered the lifecycle of components and the methods that can be used at different stages of them. We learned that Angular has interfaces with hook methods and how to make the most of the hook methods that are triggered when a component moves from one stage to another.

We unveiled how Angular change detection works and how we can manage it. We discussed how to organize communication between components.

In Chapter 9
 ,
Communication and Data Persistence

 , we will work at HTTP requests and store data on the Firebase platform. We will learn how to use the built-in HTTP library to work with endpoints. Also, we will learn how to use observables to work with data. At the end of the chapter, we will learn how to work with Firebase as the persistence layer of the app. As usual, we will continue to build the project that we started to develop in previous chapters.

 Chapter9.Communication and Data Persistence

This chapter is about working with HTTP requests and storing data on the server. We will learn how to use the built-in HTTP library to work with endpoints. Also, we will learn how to use
Observables

 to work with data. At the end of the chapter, we will learn how to work with Firebase as the persistence layer of the app. As usual, we will continue to build the project we started to develop in previous chapters.

At the end of the chapter, you will have a solid understanding of the following:

	HttpModule

	Creating connections

	Observables

	Installing Firebase tools

	Connecting to Firebase

Let's begin:

	Open the Terminal, create the folder ecommerce
 , and move into the folder.

	Copy the contents of the project from the folder chapter_9/1.ecommerce-seed
 into the new project.

	Run the following script to install the npm modules:

npm install

	Start the TypeScript watcher and lite server with the following command:

npm start

This script opens the web browser and navigates to the welcome page of the project.

 Client to server communication

The web browsers and servers function as a
client-server system

 . In general, the web server keeps the data and shares it with any number of web browsers on request. The web browsers and servers must have a common language, and they must follow rules so that both know what to expect. The language and rules of communication are defined in communications protocols. The
Transmission Control Protocol

 (
TCP

) is a standard that defines how to establish and maintain a network conversation via which application programs can exchange data. TCP works with the
Internet Protocol

 (
IP

), which defines how computers send packets of data to each other. Together, TCP and IP are the basic rules defining the Internet. The web browsers and servers communicate via
TCP/IP

 stack. To send data over a TCP/IP network requires four steps or layers:

	The
Application layer

 encodes the data being sent. It does not care about how the data gets between two points, and it knows very little about the status of the network. Applications pass data to the next layer in the TCP/IP stack and then continue to perform other functions until a reply is received.

	The
Transport layer

 splits the data into manageable chunks, and adds port number information. The Transport Layer uses port numbers for addressing, which range from 1 to 65,535. Port numbers from 0 to 1,023 are called
well-known ports

 . The numbers below 256 are reserved for public services that run on the Application layer.

	The
Internet layer

 adds IP addresses stating where the data is from and where it is going. It's the
glue

 that holds networking together. It permits the sending, receiving, and routing of data.

	The
Link layer

 adds
Media Access Control

 (
MAC

) address information to specify which hardware device the message came from, and which hardware device the message is going to. The MAC address is fixed at the time the interface was manufactured and cannot be changed.

All client-server protocols operate in the Application layer. Application-layer protocol states the basic communication patterns. For the data exchange format to be formalized, the server implements an
Application Program Interface

 (
API

), such as a web service. The API is an abstraction layer for resources like databases and custom software. The
Hypertext Transfer Protocol

 (
HTTP

) is the Application-layer protocol that implements the
World Wide Web

 (
WWW

). While the web itself has many different facets, the primary purpose of HTTP is to transfer hypertext documents and other files from web servers to web clients.

 Web API

The interaction between web clients and servers' assets happens via the defined interface called the
Web API

 . It is a server architectural approach providing programmable interfaces to a set of services serving different types of consumers. The Web API is typically defined as a set of HTTP request and response messages. In general, the structure of the reply message is represented in an
Extensible Markup Language

 (
XML

) or
JavaScript Object Notation

 (
JSON

) format.

In the epoch of Web 1.0, the Web API was synonymous for
Simple Object Access

Protocol

 (
SOAP

) based web services and
Service-Oriented Architecture

 (
SOA

). In Web 2.0, this term ismoving towards
Representational State Transfer

 (
REST

) style web resources and
Resource-Oriented Architecture

 (
ROA

).

 REST

REST

 is an architectural style of the World Wide Web and is used for design networked applications. There is not a standard or W3C recommendation for REST. The term REST was introduced and defined in 2000 by
Roy Fielding

 in his doctoral dissertation. Later, he used REST to design HTTP 1.1 and
Uniform Resource Identifiers

 (
URIs

).

REST as a programming approach is:

	

Platform-independent

 so that the server can be installed on Linux, Windows, and so on

	

Language-independent

 , so we can use C#, Java, JavaScript, and so on

	Standards-based and can run on top of HTTP standards

REST uses simple HTTP protocol to make calls between clientsand servers rather than using a complicated mechanism such as a
Remote Procedure Call

 (
RPC

),
Common Object Request Broker Architecture

 (
CORBA

), or
SOAP

 . Any application calls RESTful makes conforms to the constraints of REST:

	The
client-server constraint

 means that the client and server are separated so that they may be replaced and developed independently

	The client and server communication is based on
stateless constraint

 , so there is no client context stored on the server between requests and each request contains all the information necessary to service the request

	The
cacheable constraint

 defines whether the server responses must implicitly or explicitly mark themselves as cacheable, or not

	To comply with
layer systems constraints

 , the client and serveruse the layered architecture to improve the overall system capability and scalability

	The server can follow the
code on demand optional constraints

 to customize the functionality of the client by the transfer of executable code such as JavaScript

RESTful applications use HTTP requests for all four
CRUD

 (
Create, Read, Update,

 and
Delete

) operations. REST doesn't include security, encryption, session management, and so on but we can build them on the top of HTTP.

Let's have a look at a typical endpoint we used to read the product:http://localhost:9000/product/123
 .

There is just a URL sent to the server using a simple HTTP GET request. The product
 here is the resource in the URL. There is a standard convention in REST design to use nouns to identify resources. REST can handle more complex requests, like: http://localhost:3000/products?category=1
 .

If necessary, we can utilize the HTTP POST
 method to send long parameters or binaries inside the POST body.

 REST response formats

For most of the time, the server responds with XML,
Comma-Separated Values

 (
CSV

), or JSON formats in REST. The choice depends on the format's advantages:

	XML is easily expandable and type safe

	CSV is very compact

	JSON is easy to parse

 REST and AJAX

We use the
Asynchronous JavaScript and XML

 (
AJAX

) client-side technique to create asynchronous web applications. AJAX uses XMLHttpRequest
 objects to send requests to the server to dynamically change the web page. The AJAX and REST requests are similar.

 REST API design guidelines

What is the next step we need to take to create the proper REST API? That question has no simple answer, and since there's no one widely adopted standard that works in all cases I recommend we get the answer from well-known sources such as Microsoft REST API Guidelines, available at: https://github.com/Microsoft/api-guidelines
 .

 The HttpModule

So far, we have developed only the frontend of our application and it is therefore pretty useless. We need somewhere to store our products and categories so that we can fetch them later on. To do this, we're going to connect to a server, which is going to house a RESTful API that serves up JSON.

Out of the box, Angular 2 includes HttpModule
 to organize some low-level methods of fetching and posting our data.

To use the new HttpModule
 in our project, we have to import it as a separate add-on module called @angular/http
 , shipped in a separate script file as part of the Angular npm package. We import the @angular/http
 in the systemjs.config.js
 file configured SystemJS
 to load that library when we need it:

var ngPackageNames = [
 'common',
 'compiler',
 'core',
 'forms',

 'http',

 'platform-browser',
 'platform-browser-dynamic',
 'router',
 'router-deprecated',
 'upgrade',
];

Our application will access HttpModule
 services from anywhere in the application, so we should register them by adding the HttModule
 to the list of imports
 of the AppModule
 . After the bootstrap, all the HttpModule
 services become available to the root level of AppComponent
 :

import {NgModule} from '@angular/core';
import {BrowserModule} from '@angular/platform-browser';
import {FormsModule, ReactiveFormsModule} from '@angular/forms';

import {HttpModule} from '@angular/http';

/**
 * Modules
 */
import {CartModule} from './cart/cart.module';
import {CategoryModule} from './category/category.module';
import {ProductModule} from './product/product.module';

/*
 * Components
 */
import {AppComponent} from './app.component';
import {NavbarComponent} from './navbar/navbar.component';
import {FooterComponent} from './footer/footer.component';
import {WelcomeComponent} from './welcome/welcome.component';
import {CheckoutViewComponent} from
'./checkout/checkout-view.component';

/*
 * Routing
 */
import {routing} from './app.routes';

@NgModule({
 imports: [
HttpModule

, BrowserModule, FormsModule,
 ReactiveFormsModule, routing, CartModule,
 CategoryModule, ProductModule],
 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent, CheckoutViewComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

 The in-memory Web API

Because we don't have a real web server that can handle our requests, we will use a mock service to mimic the behavior of the real one. That approach has the following advantages:

	It rapidly stubs out API designs and new endpoints.
Service mocking

 gives you the ability to use
Test Driven Development

 (
TDD

).

	It shares APIs between team members. We won't have downtime whilst the frontend team waits for the other team to finish. This approach makes the financial argument for mocking unusually high.

	It takes control of simulated responses and performance conditions. We can use mocks to create a proof of concept, as a wireframe, or as a demo, so they can be very cost efficient to use.

It has disadvantages that we should know about:

	We have to do double the work and sometimes this can mean quite a lot

	It has deployment constraints if you need to deploy it somewhere

	The mocking code is subject to bugs

	The mock is only a representation of what it is mocking, and it can misrepresent the real service

The in-memory Web API is an optional service in the angular-in-memory-web-api
 library. It's not part of Angular 2, so we need to install it as a separate npm package and register for module loading by SystemJS
 inside thesystemjs.config.js
 file:

// map tells the System loader where to look for things
var map = {
 'app': 'app',
 'rxjs': 'node_modules/rxjs',

'angular-in-memory-web-api':
 'node_modules/angular-in-memory-web-api',

 '@angular': 'node_modules/@angular'
 };

 // packages tells the System loader how to load when no filename
 // and/or no extension
 var packages = {
 'app': { main: 'main.js', defaultExtension: 'js' },
 'rxjs': { defaultExtension: 'js' },

'angular-in-memory-web-api':
 { main: 'index.js', defaultExtension: 'js' },

 };

Next, we need to create an InMemoryDataService
 class which implements InMemoryDbService
 , to create an in-memory database:

import {InMemoryDbService} from 'angular-in-memory-web-api';

import {Category} from './category/category.service';
import {Product} from './product/product.service';

export class InMemoryDataService implements InMemoryDbService {
 createDb() {
 let categories: Category[] = [
 { id: '1', title: 'Bread & Bakery',
 imageL: 'http://placehold.it/1110x480',
 imageS: 'http://placehold.it/270x171',
 desc: 'The best cupcakes, cookies, cakes, pies,
 cheesecakes, fresh bread, biscotti, muffins,
 bagels, fresh coffee and more.' },
 { id: '2', title: 'Takeaway',
 imageL: 'http://placehold.it/1110x480',
 imageS: 'http://placehold.it/270x171',
 desc: 'It's consistently excellent, dishes are superb
 and healthily cooked with high quality
 ingredients.' },
 // ...
];

 let products: Product[] = [
 // Bakery
 { id: '1', categoryId: '1', title: 'Baguette',
 price: 1.5, isSpecial: false,
 imageL: 'http://placehold.it/1110x480',
 imageS: 'http://placehold.it/270x171',
 desc: 'Great eaten fresh from oven. Used to make sub
 sandwiches, etc.' },
 { id: '2', categoryId: '1', title: 'Croissants',
 price: 0.5, isSpecial: true,
 imageL: 'http://placehold.it/1110x480',
 imageS: 'http://placehold.it/270x171',
 desc: 'A croissant is a buttery, flaky,
 viennoiserie-pastry named for its well-known
 crescent shape.' },
 //
];
 return {
 categories,
 products
 };
 }
}

The createDb
 method should create a
database

 object hash whose keys are collection names and whose values are arrays of the group objects. It is safe to call it again because it returns new arrays with new objects. That allows InMemoryBackendService
 to morph the arrays and objects without touching the source data. I moved the datasets from ProductService
 and CategoryService
 in this file.

Analogous with the HttModule
 , we are importing the InMemoryWebApiModule
 and InMemoryDataService
 into the list of imports
 of the AppModule
 . They replace the default Http
 client backend within in-memory Web API alternative services:

import {HttpModule} from '@angular/http';
// Imports for loading & configuring the in-memory web api
import {
InMemoryWebApiModule

} from 'angular-in-memory-web-api';
import {
InMemoryDataService

} from './in-memory-data.service';
And finally, we need to link the InMemoryWebApiModule to use the InMemoryDataService:
@NgModule({
 imports: [HttpModule,

 InMemoryWebApiModule.forRoot(InMemoryDataService),

 BrowserModule, FormsModule, ReactiveFormsModule,

The method forRoot
 prepares the in-memory Web API in the root application module to create an in-memory database in the moment of bootstrapping. It has a second parameter of InMemoryBackendConfigArgs
 type and keeps InMemoryBackend
 configuration options such as delay (in milliseconds) to simulate latency, host for this service, and so on.

Now everything is ready to change both ProductService
 and CategoryService
 to start them using an HTTP
 service.

 The HTTP client

The Angular
HTTP client

 communicates with a server via AJAX requests using an HTTP protocol. Components of our project will never talk directly to HTTP client services. We delegate data access to service classes. Let's update the imports in ProductService
 as shown in the following:

import {Injectable} from '@angular/core';

import {Headers, Http, Response} from '@angular/http';

import 'rxjs/add/operator/toPromise';

Next, fetch the products with theHttp
 service:

getProducts(category?:string, search?:string):Promise<Product[]> {
 let url = this.productsUrl;
 if (category) {
 url += `/?categoryId=${category}`;
 } else if (search) {
 url += `/?title=${search}`;
 }
 return this.http
 .get(url)
 .toPromise()
 .then((response:Response) => response.json().data as Product[])
 .catch(this.handleError);
 }

As you see, we are using a standard HTTP GET request to fetch the set of products. The InMemoryWebApiModule
 quite cleverly understands the query parameters in the requested URL. Here, the ProductGridComponent
 utilizes the ProductService
 to display our grid of products on the web page:

@Component({
 selector: 'db-product-grid',
 templateUrl: 'app/product/product-grid.component.html'
})
export class ProductGridComponent implements OnInit {

 products: any = [];

 constructor(private route: ActivatedRoute,
 private productService: ProductService,
 private cartService: CartService) {}

 ngOnInit(): void {
 this.route
 .queryParams
 .subscribe(params => {
 let category: string = params['category'];
 let search: string = params['search'];
 // Clear view before request
 this.products = [];
 // Return filtered data from getProducts function
 this.productService.getProducts(category, search)

 .then((products: Product[]) => {

 // Transform products to appropriate data
 // to display
 this.products = this.transform(products);
 });
 });
 }
 //
}

The products
 property here is just an array of products. We use a simple NgFor
 directive to iterate through them:

<db-product-card
 *ngFor="let row of products"

 [products]="row" (addToCart)="addToCart($event)">
</db-product-card>

The source code changes in CategoryService
 a bit differently because of the nature of the categories data. The set of categories is static, so we don't need to fetch them every time and can keep them in the cache insideCategoryService
 :

@Injectable()
export class CategoryService {
 // URL to Categories web api
 private categoriesUrl = 'app/categories';
 // We keep categories in cache variable

 private categories: Category[] = [];

 constructor(private http: Http) {}

 getCategories(): Promise<Category[]> {
 return this.http
 .get(this.categoriesUrl)
 .toPromise()
 .then((response: Response) => {
 this.categories = response.json().data as Category[];
 return this.categories;
 })
 .catch(this.handleError);
 }

 getCategory(id: string): Category {
 for (let i = 0; i < this.categories.length; i++) {
 if (this.categories[i].id === id) {
 return this.categories[i];
 }
 }
 return null;
 }

 private handleError(error: any): Promise<any> {
 window.alert(`An error occurred: ${error}`);
 return Promise.reject(error.message || error);
 }
}

In the getCategory
 method, we can easily find the category by ID because we simply fetch it from the cache.

 The HTTP Promises

Carefully look at how we return the data from an HTTP GET request. We use the toPromise
 method just after the get
 method of theHttp
 class:

getCategories(): Promise<Category[]> {
 return this.http
 .get(this.categoriesUrl)

.toPromise()

 .then((response: Response) => {
 this.categories = response.json().data as Category[];
 return this.categories;
 })
 .catch(this.handleError);
}

So, why do we need this method and what exactly does it do?

Almost all the Http
 service methods return a RxJS Observable
 . Observables are a powerful way to manage asynchronous data flows. To convert a RxJS Observable
 into aPromise
 , we use the toPromise
 operator. It just fetches a single chunk of data and returns it immediately. Before using the toPromise
 operator, we need to import it from RxJS implicitly because the library is quite extensive and we should include only those features that we need:

import 'rxjs/add/operator/toPromise';

Let's talk about Observable
 and why Http
 uses them everywhere.

 Tip

You can find the source code for this at chapter_9/2.ecommerce-promise
 .

 RxJS library

The
RxJS

 is a project actively developing by Microsoft in collaboration with many open source developers. There is a set of libraries organized as an API for asynchronous and event-based programming. We use Observables to represent the asynchronous data streams. There are many operators to query and Schedulers to parameterize the concurrency in them. In short--the RxJS is a combination of Observer and Iterator patterns and functional programming.

Before use we can import all core modules:

import * as Rx from 'rxjs/Rx';

Better import only necessary functionality if you care about the size of your application:

import { Observable } from 'rxjs/Observable';
import 'rxjs/add/operator/map';

Observable.of(1,2,3).map(x => x * x); // Result: [1, 4, 9]

The RxJs is huge, and I suggest to refer to the official website to learn more: http://reactivex.io

 Observables versus promises

In our days the
Observables

 are a proposed feature for JavaScript version ES2016 (ES7), so we use the RxJS as the polyfill library to bring them into the project until the next new version of JavaScript is released. Angular 2 has basic support for Observables and we use RxJS to extend this functionality. Promises and Observables bring the abstractions that help us deal with the asynchronous nature of our applications with several key differences:

	Observables emit multiple values over time, in contrast to Promises which can return only one value or error

	Observables are treated like arrays and allow us to use operators, collection-like methods to manipulate values

	Observables can be cancelled

	Observables can be retried with one of the retry operators

So we use toPromise
 specially to convert the stream of data from a request into a single value. Do we really need that? I've made some changes in the project to show you how easy it is to use Observables in Angular 2 applications. Just have a look at the modified version of ProductService
 :

getProducts(category?:string,search?:string):Observable<Product[]>{
 let url = this.productsUrl;
 if (category) {
 url += `/?categoryId=${category}`;
 } else if (search) {
 url += `/?title=${search}`;
 }
 return this.http
 .get(url)
 .map((response:Response) => response.json().data as Product[])
 .catch(this.handleError);
}

getProduct(id: string): Observable<Product> {
 return this.http
 .get(this.productsUrl + `/${id}`)
 .map((response: Response) => response.json().data as Product)
 .catch(this.handleError);
}

We use several transformation operators from the RxJS package in the preceding code, so don't forget to import them from the package. There are many operators in RxJS helping us to organize different sorts of transformations:

	The map
 operator transforms the items by applying a function to each of them.

	TheflatMap
 , concatMap
 , and flatMapIterable
 operators transform the items into Observables or Iterables and flatten them into one.

	The switchMap
 operator transforms the items into Observables. The items emitted from the most-recently transformed Observable will be mirrored.

	The scan
 operator sequentially applies a function to each emitted item to emit only successive values.

	The groupBy
 operator helps divide and organize Observables by key to emit the groups of items from the original one.

	The buffer
 operator combines emitted items into bundles. It emits bundles instead of emitting one item at a time.

	The
cast

 casts all items from the source Observable into a particular type before reemitting them.

RxJS is really big and I recommend starting to learn more about it from the official website: https://github.com/Reactive-Extensions/RxJS
 .

When successful a request returns an instance of the Response
 class. The response data is in JSON string format, so we must parse that string into JavaScript objects which we do by calling the json
 method of the Response
 class. As usual, we should deal with errors because we have to be prepared for something to go wrong, as it surely will. We catch errors by calling the handleError
 method of our class. Bear in mind, we must transform the error into a user-friendly message, and return it in a new, failed observable via Observable.throw
 :

private handleError(error: any): Promise<any> {
 window.alert(`An error occurred: ${error}`);
 return Promise.reject(error.message || error);
}

There are two different techniques to display Observable data on the web page. The first approach is organizing a subscription of Observable data as implemented in:

ProductViewComponent:
@Component({
 selector: 'db-product-view',
 templateUrl: 'app/product/product-view.component.html'
})
export class ProductViewComponent implements OnInit {

 product: Product;

 constructor(private route: ActivatedRoute,
 private productService: ProductService,
 private cartService: CartService) { }

 ngOnInit(): void {
 this.route
 .params
 .subscribe(params => {
 // Get the product id
 let id: string = params['id'];
 // Return the product from ProductService

 this.productService.getProduct(id)
 .subscribe((product:Product) =>
 this.product = product);

 // Return the cart item
 this.cartItem = this.cartService.findItem(id);
 });
 }
 }
}

We subscribed to all changes that happen in ProductService
 and immediately assign them to theproduct
 property, so Angular delivers them into the template.

Another approach is to forward the Observable result to the template as implemented in:

ProductGridComponent:
@Component({
 selector: 'db-product-grid',
 templateUrl: 'app/product/product-grid.component.html'
})
export class ProductGridComponent implements OnInit {

products: Observable<Product[]>;

 constructor(private route: ActivatedRoute,
 private productService: ProductService,
 private cartService: CartService) {}

 ngOnInit(): void {
 this.route
 .queryParams
 .debounceTime(300) // wait for 300ms pause in events
 .subscribe(params => {
 let category: string = params['category'];
 let search: string = params['search'];

 this.products = this.productService
 .getProducts(category, search)
 .map(this.transform);

 });
 }
 //
}

We then forward the Observable result to the template via the product
 property where the async
 pipe in the NgFor
 handles the subscription:

<db-product-card
*ngFor="let row of products | async"

 [products]="row" (addToCart)="addToCart($event)">
</db-product-card>

Sometimes, we may need to start one request, then cancel it and make a different request before the server has responded to the first one. It is complicated to implement such a sequence with Promises, so let's have a look how Observables can help us.

 Observables in search-by-title

We have a feature to search products by title. The user types the title and then presses the
Go

 button to request data from the server. We can improve the user experience here, so that when the user types a title into the search box, we will make repeated HTTP requests for products filtered by title. Look at the updated markup of ProductSearchComponent
 :

<div class="card">
 <div class="card-header">Quick Shop</div>
 <input #search type="text" class="form-control"
 placeholder="Search for..."
 (keyup)="searchProduct(search.value)">
</div>

We removed the
Go

 button. An input element gathers the search title from the user and calls the searchProduct
 method after each keyup
 event. The searchProduct
 method updates the query parameters of the URL:

@Component({
 selector: 'db-product-search',
 templateUrl: 'app/product/product-search.component.html'
})
export class ProductSearchComponent {

 constructor(private router: Router) {}

 searchProduct(value: string) {
 this.router.navigate(['/products'], {
 queryParams: { search: value} });

 }

}

The ProductGridComponent
 listens to the stream of query parameters change in the route
 and manipulates the stream before it reaches the productService
 :

ngOnInit(): void {

 this.route
 .queryParams
 .debounceTime(300) // wait for 300ms pause in events
 .distinctUntilChanged() // only changed values pass
 .subscribe(params => {

 let category: string = params['category'];
 let search: string = params['search'];
 this.products = this.productService
 .getProducts(category, search)
 .map(this.transform);
 });
}

In the preceding code, we wait for the user to stop typing for at least 300 milliseconds with the debounceTime
 operator. Only changed search values make it through to the service via the distinctUntilChanged
 operator. Later, we fetch category and search query parameters and request products from productService
 .

We can quickly start the server and open our web application in the browser to check that all works as expected. From that point, we can demonstrate our project to colleagues or stakeholders as a proof of concept that we will use in future development.

Next, we need a real database and hosting server to finish development and test everything in the real environment. Let's use Firebase to store and sync our data in real time and deliver web content faster.

 Tip

You can find the source code for this at chapter_9/3.ecommerce-promise
 .

 Introduction to Firebase

Firebase

 is a
Realtime NoSQL JSON Database

 . Any piece of data is accessible by URL. Firebase contains SDK for different platforms, such as JavaScript for the Web, IOS, Android, and so on. It includes authentication baked inside core libraries, so we can quickly authenticate users directly from clients via OAuth provided by GitHub, Google, Twitter, and Facebook. It also supports anonymous and password authentication. Firebase provides a hosting service for static assets through the Firebase Console or CLI. Firebase uses web sockets to update data on all connected clients in real time.

If you've never used Firebase before you need to register an account first. Open your web browser and navigate tohttps://firebase.google.com/
 . Click on
SIGN IN

 and use your Google account to set up your Firebase account.

 Creating a Firebase project

We are planning to use the Firebase SDK library to access and store data. However, before that, we need to add Firebase to our web application. We'll need a Firebase project, the Firebase SDK, and a short snippet of initialization code that has a few details about our project. Click
Go to console

 or open the
Firebase Console

 from the following address: https://firebase.google.com/console
 .

Click on the
Create New Project

 button and add a project name and your country of origin:

[image: Creating a Firebase project]

In less than a minute, we will have access to the Firebase relative database, authentication, storage, and so on.

 Installing Firebase CLI tools

We will use the Firebase CLI tools to manage, view, and deploy our project to Firebase from a Terminal. Let's open the Terminal, navigate to our project, and run the following command:

npm install -g firebase-tools

After installation, we will have a globally available Firebase command. Now, we can sign into Firebase from the Terminal. Remember you must already have set up a Google account to proceed:

firebase login

This command establishes connection to your remote Firebase account and grants access to our projects:

[image: Installing Firebase CLI tools]

If you interested in knowing what commands the Firebase CLI supports, please go to the official website: https://firebase.google.com/docs/cli/
 .

 Initializing a project directory

We will use the Firebase CLI to perform many trivial tasks, such as running the local server or for deployment. Before using it, we need to initialize a project directory for the folder which will contain the firebase.json
 file. Usually we use the root folder of the Angular project as the Firebase project directory. Open the Terminal, navigate to the root folder of our project and execute the following command:

firebase init

This command will guide you through setting up the project directory. If necessary, you can run this command again safely.

[image: Initializing a project directory]

Please answer Yes
 to the question: Configure as a single-page app (rewrite all URLs to /index.html)?
 The Firebase CLI creates the rewrites
 settings inside the firebase.json
 file. We use a rewrite because we want to show the same content for multiple URLs. This is applicable for our application because we configured the Angular Component Router using the default HTML 5 pushState
 strategy. It produces URLs that are easier for users to understand and it preserves the option to do server-side rendering later.

 Importing data into Firebase

Before use, we need to import our data into the Firebasedatabase. Open the Firebase console, find your project and click to move it in:

[image: Importing data into Firebase]

Find the
Database

 menu item on the sidebar and click it. That brings the Firebase Realtime Database instance onto the stage. Click the context menu button on the right side and, from the drop-down menu, choose
Import JSON

 . I prepared the firebase.import.json
 file for import, so just select it from the root folder of our project and click on
Import

 :

[image: Importing data into Firebase]

The Firebase Realtime Database stores the data as JSON objects. It looks like a cloud-hosted JSON tree. In contradistinction to an SQL database, there are no tables or records. Each data incorporated to the JSON tree becomes a node in the existing JSON structure with an associated key. We can provide our own keys, such as category
 or product
 IDs, or Firebase can provide them for us in a moment when we save data with a POST request.

 Note

The keys must be UTF-8 encoded and cannot be longer than 768 bytes. They can't contain ., $, #, [,], /, or ASCII control characters such as 0-31 or 127.

The data structure of the Dream Bean website is quite simple and contains only two entities with a product to category relationship. The Firebase Realtime Database supports nesting data up to 32 levels deep, and the first temptation is to add category
 into product
 , but be careful doing that because, when you retrieve data later, Firebase will return the product and all of its child nodes as well. Plus, we will have trouble when we try to grant someone read or write access to nodes. The best solution here is denormalize our data to keep the structure as flat as possible. We can follow these recommendations:

	Split data into separate paths

	Add an index or key to your data

	Use an index or key to fetch relational data

At the beginning stage, we deliberately added categoryId
 into the product entity to quickly and efficiently fetch data by index:

[image: Importing data into Firebase]

 The Firebase database rules

Firebase always creates default rules for each new database:

[image: The Firebase database rules]

The rules of the Firebase Realtime Database are quite flexible and expression based. We can use JavaScript-like language to define:

	The structure of data

	The data indexes

	Secure data with the Firebase Authentication service

By default, the database rules require Firebase authentication and grant full read and write permissions only to authenticated users, so it isn't accessible to everyone. We will change the rules to organize read access to everyone but keep write access to authenticated users. Rules can be configured in two different ways. The easiest way to create an immediate effect is to use the Firebase console, so let's open it, select the
Database

 menu from the side bar and choose the
Rules

 tab. You should see the text area with the current rules. You can manually change them or copy the following rules and paste them into the text area:

{
 "rules": {

 ".read": true,

 ".write": "auth != null"
 }
}

Click
Publish

 to apply the new rules on the database. Another way to manage database rules is to create a special JSON file, so the Firebase CLI will use this file when we deploy our project into Firebase. Open the Terminal, navigate into our project and run the following command:

firebase init

Now, choose the
Database: Deploy Firebase Realtime Database Rules

 option. Leave the default answer to all the questions:

[image: The Firebase database rules]

Open the database.rules.json
 and update it:

{
 "rules": {

".read": true,

 ".write": "auth != null"
 }
}

Now, once the data's been imported into the database, its time to connect our project to it.

 Connecting to Firebase

To organize communication, we need the
AngularFire2

 library to integrate Firebase Realtime observers and authentication with Angular2.

 Installing AngularFire2 and Firebase

First of all, install the AngularFire2 and Firebase SDK libraries as npm modules:

npm install -save angularfire2 firebase

The next step is to install Typescript 2 locally because AngularFire2 depends on it:

npm install -save-dev typescript@2.0.0

Now, update the systemjs.config.js
 file with those two libraries because they need to be mapped with SystemJS
 for module loading:

// map tells the System loader where to look for things
var map = {
 'app': 'app',
 'rxjs': 'node_modules/rxjs',
 '@angular': 'node_modules/@angular',

'firebase': 'node_modules/firebase',
 'angularfire2': 'node_modules/angularfire2'

 };

// packages tells the System loader how to load
// when no filename and/or no extension
var packages = {
 'app': {main: 'main.js', defaultExtension: 'js'},
 'rxjs': {defaultExtension: 'js'},

 'firebase': {main: 'firebase.js', defaultExtension: 'js'},
 'angularfire2': {main: 'angularfire2.js', defaultExtension: 'js'}

};

 The AngularFire2 and Firebase setup

We need to set up the AngularFire2 module and Firebase configuration before use. Open the app.module.ts
 file and import the AngularFireModule
 . Now open the web browser, navigate to the Firebase console, and select your project (if it was not already open). Next, click on the
Add Firebase to your app

 link:

[image: The AngularFire2 and Firebase setup]

Firebase creates the initialization code snippet, which we will use in our application:

[image: The AngularFire2 and Firebase setup]

Select the initialization configuration and copy to the clipboard. Switch back to our project and paste it so our code will look like the following:

/*
 * Angular Firebase
 */
import {AngularFireModule} from 'angularfire2';

// Initialize Firebase
export var firebaseConfig = {
 apiKey: "AIzaSyDDrc42huFLZqnG-pAg1Ly9VnFtVx3m-Cg",
 authDomain: "ecommerce-a99fc.firebaseapp.com",
 databaseURL: "https://ecommerce-a99fc.firebaseio.com",
 storageBucket: "ecommerce-a99fc.appspot.com",
};

@NgModule({
 imports: [HttpModule,

 AngularFireModule.initializeApp(firebaseConfig),

 BrowserModule, FormsModule, ReactiveFormsModule,
 routing, CartModule, CategoryModule, ProductModule],
 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent, CheckoutViewComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

We are ready to use Firebase in our project.

 Getting categories from Firebase

AngularFire2 syncs data as lists with the help of FirebaseListObservable
 , so open the category.service.ts
 file and import it:

import {Injectable} from '@angular/core';

import {AngularFire, FirebaseListObservable} from 'angularfire2';

import {Observable} from 'rxjs/Observable';
import 'rxjs/add/operator/catch';
//
@Injectable()
export class CategoryService {

 // URL to Categories Firebase api
 private categoriesUrl = 'categories';
 // We keep categories in cache variable
 private categories: Category[] = [];

 constructor(
private af: AngularFire

) {}

 getCategories(): Observable<Category[]> {

 return this.af.database
 .list(this.categoriesUrl)
 .catch(this.handleError);

 }

 getCategory(id: string): Category {
 for (let i = 0; i < this.categories.length; i++) {
 if (this.categories[i].id === id) {
 return this.categories[i];
 }
 }
 return null;
 }

 //
}

We inject the AngularFire
 service into the constructor. It creates the FirebaseListObservable
 through the AngularFire.database
 service, as we call it in the getCategories
 method with the relative URL.

 Getting products from Firebase

It's a different story for fetching data for the products. It is not enough to have only one URL, we need to use query parameters. The list method of the AngularFire.database
 service has a second parameter object that we can use to specify the query parameters:

import {Injectable} from '@angular/core';
import {AngularFire, FirebaseListObservable} from 'angularfire2';

import {Observable} from 'rxjs/Observable';

import 'rxjs/add/operator/catch';
import 'rxjs/add/observable/empty';
//...
export class ProductService {

 // URL to Products web api
 private productsUrl = 'products';

 constructor(
private af: AngularFire

) {}

 getProducts(category?: string, search?: string):
 Observable<Product[]> {
 if (category || search) {
 let query = <any>{};
 if (category) {
 query.orderByChild = 'categoryId';
 query.equalTo = category;
 } else {
 query.orderByChild = 'title';
 query.startAt = search.toUpperCase();
 query.endAt = query.startAt + '\uf8ff';
 }
 return
this.af.database
 .list(this.productsUrl, {
 query: query
 })

 .catch(this.handleError);
 } else {
 return Observable.empty();
 }
 }

 getProduct(id: string): Observable<Product> {
 return this.af.database
 .object(this.productsUrl + `/${id}`)
 .catch(this.handleError);
 }
 //...
}

We use Firebase Realtime Database queries to retrieve data based on various factors selectively. To construct a query for products
 , we start by specifying how we want the data to be ordered using one of the ordering functions:

	The orderByChild
 retrieves ordered nodes by a child key

	The orderByKey
 retrieves ordered nodes by their keys

	The orderByValue
 retrieves ordered nodes by the value of their children

	The orderByPriority
 retrieves ordered nodes by priority value

The result of the orderByChild
 function for a specified child key will be ordered as follows:

	Children with a null value

	Children with a false Boolean value

	Children with a true Boolean value

	Children with a numeric value sorted in ascending order

	Children with a string sorted lexicographically in ascending order

	Children with objects sorted lexicographically by key name in ascending order

 Note

The Firebase database keys can only be strings.

The result of the orderByKey
 function will be returned in ascending order by key name as follows:

	Children with a key that can be parsed as a 32-bit integer come first and are sorted in ascending order

	Children with a string value key come next and are sorted in ascending order lexicographically

The result of the orderByValue
 function will be ordered by its value.

 Note

The Firebase database priority values can only be numbers and strings.

The result of the orderByPriority
 function will be the ordering of children, and is determined by their priority and key as follows:

	Children with no priorities are sorted by key

	Children with a number are sorted numerically

	Children with a string are sorted lexicographically

	Children who have the same priority are sorted by key

After we've decided how the retrieved data should be ordered, we can use the limit or range methods to conduct complex queries:

	The limitToFirst
 creates a query limited to the first set number of children

	The limitToLast
 creates a query limited to the last set number of children

	The startAt
 creates a query with a particular starting point

	The endAt
 creates a query with a specific ending point

	The equalTo
 creates a query with a particular matching value

We use the limitToFirst
 and limitToLast
 queries to set a maximum number of children the Firebase will return. Using startAt
 and endAt
 queries helps us to choose the arbitrary starting and ending points in the JSON tree. The equalTo
 query filters data based on
exact matching

 .

When we select the category we create a query based on a combination,orderByChild
 and equalTo
 , because we know the exact value of categoryId
 to filter:

let query = <any>{};
query.orderByChild = 'categoryId';
query.equalTo = category;
return this.af.database
 .list(this.productsUrl, {
 query: query
 })
 .catch(this.handleError);

When the user searches by inputting the title, we use a combination of orderByChild
 , startAt
 , and endAt
 :

let query = <any>{};
query.orderByChild = 'title';
query.startAt = search.toUpperCase();
query.endAt = query.startAt + '\uf8ff';
return this.af.database
 .list(this.productsUrl, {
 query: query
 })
 .catch(this.handleError);

The \uf8ff
 character used in the preceding query helps us create a trick. It's a very high value in the Unicode range, and because it's after most regular characters in Unicode, the query matches all values that start with the user's input value.

 Deploying the application to Firebase

Our application has only static content, and that means that we can deploy it to Firebase Hosting. We can do this with a single command:

firebase deploy

The Firebase CLI deploys our web application to the domain: https://<your-firebase-app>.firebaseapp.com
 .

We can manage and rollback deployments from the Firebase console:

[image: Deploying the application to Firebase]

 Tip

You can find the source code for this chapter at chapter_9/4.ecommerce-firebase
 .

 Summary

In this chapter, we discovered what data persistence is, and how important it is in client to server communications. We started with a brief tour of the Web APIs before diving deeper into REST to provide a reminder of the main principles of both.

We looked at Angular 2's departure from the HttpModule
 and we discussed how to use it to organize client to server communications. As a bonus, we learnt that we can use the in-memory web API to create proofs of concept, wireframes, or demos.

Observables are a proposed feature for JavaScript version ES2016 (ES7), and we talked about the RxJS polyfill library used in Angular 2 with Observables to help us deal with the asynchronous nature of our applications.

Firebase is a real-time no-SQL JSON database which keeps any piece of data accessible by URL. Firebase contains SDK for different platforms, such JavaScript for the Web, IOS, and Android. We demonstrated how to use it as a persistence layer of our application.

In Chapter 10
 ,
Advanced Angular Techniques

 , we will secure our data with the help of the Firebase platform. We will learn how to install ng2-bootstrap
 and how this will enable us to create directives in an easier way. Finally, we will end by building the project we started to develop in previous chapters.

 Chapter10.Advanced Angular Techniques

This chapter is about advanced Angular techniques. We will learn about how to create client-side authentication, and how to test it on Firebase. We will introduce Webpack to manage modules and their dependencies and transform static assets to build bundles. We will learn how to install ng2-bootstrap
 and how it will enable readers to create an application in an easier way. Finally, we will finish building the project we started to develop in previous chapters.

At the end of the chapter, you will have a solid understanding of:

	Webpack

	Firebase authentication

	The ng2-bootstrap
 components

	Angular CLI

	JIT versus AOT compilation

Let's begin:

	Open the Terminal, create the folder ecommerce
 , and move in to it

	Copy the contents of the project from the chapter_10/1.ecommerce-seed
 folder into the new project

	Run the following script to install npm
 modules:

 npm install

	Start the TypeScript watcher and lite server with the next command:

 npm start

This script opens the web browser and navigates to the welcome page of the project.

 Webpack

Until now, we've used SystemJS to dynamically load the modules in our application. Now we will start using Webpack's approach to compare it with SystemJS. Our code is growing dramatically along with the chapters of this book, and we must decide what strategy we will use to load the modules shaping our web application. Webpack comes with core functionality and supports many bundle strategies out of the box or with extensions using specific loaders and plugins. It traverses through the required statements of the project to generate the bundles we have defined. We can use plugins for specific tasks such as minification, localization, and so on. Here is a small list of supported features:

	The
hot module reloading

 instantly updates Angular 2 components without refresh

	Load bundles as you need them via the
lazy loading

 mechanism

	Separate application code on bundles

	Use
hashing

 to cache bundles of your web application efficiently in the browser

	Generate
source maps

 for bundles to easily debug minified versions of bundles, and so on

 Webpack migration

Of course, using Webpack require a little commitment of time, but we get all of the benefits of managing separate dependencies and performance improvements. I've prepared a detailed migration plan to move from SystemJS to Webpack painlessly.

 Installing Webpack CLI

Before using it, we must install Webpack globally. Run the following command in the Terminal to make the command available:

npm install -g webpack

 Updating packages

We've used the lite-server
 to serve our application until now. Webpack has its own webpack-dev-server
 , a little Node.js Express server to serve bundles via Webpack middleware. The webpack-dev-server
 is a separate npm package, so we need to update devDependencies
 in the package.json
 accordingly:

"devDependencies": {
 "typescript": "^2.0.0",
 "typings": "^1.0.5",

 "ts-loader": "^0.8.2",
 "webpack": "^1.12.2",

 "webpack-dev-server": "^1.12.1"

 }

The webpack-dev-server
 will serve the files in the current directory, unless we configure it. Change the scripts
 section in the package.json
 as defined in the following code:

"scripts": {
 "start": "webpack-dev-server",
 "build": "webpack",
 "postinstall": "typings install"
 }

 Updating TypeScript configuration

From one side, Webpack is a module bundler, and it uses CommonJS or AMD formats to resolve dependencies between modules. From the other side, the Typescript compiler supports several module code generations. We need to choose one module format compatible for both, so I've decided to use the CommonJS as it's much more convenient. Please open the tsconfig.json
 file and update it with the following:

{
 "compilerOptions": {
 "target": "es5",

 "module": "commonjs",

 "moduleResolution": "node",
 "sourceMap": true,
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true,
 "removeComments": false,
 "noImplicitAny": false
 }
}

Now, it's time to install all necessary npm
 modules and typings
 . Open the Terminal and run the following command:

npm install

 Creating Webpack configuration file

There are two ways to configure Webpack:

	Via CLI when Webpack reads a file webpack.config.js
 or we specify it as a --config
 option

	Via Node.js API where we pass the configuration object as a parameter

The first approach is more convenient for us, so let's create the webpack.config.js
 file. A configuration file in Webpack is a CommonJS module. We put all of our configuration, loaders, and other specific information relating to the build, into this file. There are two main properties each configuration file must have:

	The entry point for one or many bundles.

	The output affecting the results of the compilation which tells Webpack how to write compiled files to disk. There is only one output property, even if we have multiple entry points.

Let's add the following content into the webpack.config.js
 file:

module.exports = {
 entry: "./app/main",
 output: {
 path: __dirname,
 filename: "./dist/bundle.js"
 },
 resolve: {
 extensions: ['', '.js', '.ts']
 },
 devServer: {
 historyApiFallback: true,
 open: true,
 watch: true,
 inline: true,
 colors: true,
 port: 9000
 },
 module: {
 loaders: [{
 test: /\.ts/, loaders: ['ts-loader'],
 exclude: /node_modules/
 }]
 }
};

We will use the main.js
 file in the app folder as an entry point. We are planning to save the results of the compilation into the bundle.js
 file under the dist
 directory. The __dirname
 is the name of the directory that the currently executing script resides in. I added the array of extensions
 that Webpack will use to resolve
 the modules.

Webpack can only handle JavaScript natively, so we need to add the ts-loader
 into the loaders
 to process TypeScript files.
Loaders

 allow us to preprocess files as we request them. Loaders can be chained together and they are always applied right to left. We can specify loaders in the module request
 but if we want to avoid repetitiveness, there is a better method. Just add them into the Webpack configuration file and specify how to apply them to the different file types. Webpack uses the test
 property of the loader to find the specific files and transform their content respectively. We can add extra conditions to find the files via include
 and exclude
 conditional properties. The condition is always tested against an absolute path and can be one of the following:

	A regular expression

	A string with a path

	A function getting the path as a parameter and returning a Boolean result

	An array of one of the above combined with and

And last but not least is the development server configuration. We can configure the webpack-dev-server
 via CLI, but a more elegant way is to add the devServer
 section into the webpack.config.js
 file where we can put all the properties the server needs:

	The historyApiFallback
 helps in using the HTML5 history API

	The open
 flag just opens the backend server URL in the web browser

	The watch
 flag tells runtime to watch the source files and recompile bundles whenever they are changed

	The inline
 flag embeds the webpack-dev-server
 runtime into the bundle

	The colors
 option adds some colors to the output

	The port
 contains the backend server URL port number

	The host
 keeps the server URL host

Let's test how Webpack builds the project with the following command:

npm run build

Webpack should create the bundle.js
 file inside the dist
 folder.

 Updating the markup

The next thing to do is to update the index.html
 file. We need to delete all code belonging to SystemJS and insert the new code:

<html>
 <head>
 <title>The Dream Bean Grocery Store</title>
 <base href="/">
 <meta charset="UTF-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
 href="node_modules/bootstrap/dist/css/bootstrap.css">
 <link rel="stylesheet"
 href="https://maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css">
 <link rel="stylesheet" href="assets/ecommerce.css">
 </head>

 <body>
 <my-app>Loading...</my-app>
 </body>

 <script src="node_modules/zone.js/dist/zone.js"></script>
 <script src="node_modules/reflect-metadata/Reflect.js"></script>

 <script src="node_modules/jquery/dist/jquery.min.js"></script>
 <script
 src="node_modules/tether/dist/js/tether.min.js"></script>
 <script
 src="node_modules/bootstrap/dist/js/bootstrap.js"></script>

 <script src="dist/bundle.js"></script>

</html>

Now we are ready to start the webpack-dev-server
 server. Open the Terminal and run the following command:

npm start

Webpack opens the web browser and navigates to the following web address: http://localhost:9000
 .

 Tip

You can find the source code for this at chapter_10/2.ecommerce-webpack
 .

 Preparing our project for production

We can use the project as it is but it's better to make some changes to improve the build pipeline so we can produce it ready to deploy the project structure. Let's create a source folder and move our source code, styles, and template files inside. I would like to include all my resources into the bundles and show you the full potential usage of Webpack via plugins.

 The three main entries

The code of our project is still far from production status. We've left references on our JavaScript resources inside the index.html
 file, plus we need to consider how to load style files, Angular 2, and other third-party modules. The plan is quite simple: we need to split all dependencies into their own bundles:

	The main
 file will keep references on our application

	The polyfill
 file contains references on all necessary polyfills

	The vendor
 file contains all the vendors we use

One of the benefits of this approach is that we can add and remove polyfills and vendors independently of our code, so we don't need to recompile it.

 Webpack plugins

Webpack has a set of built-in plugins. We need to add them into the plugins
 property in the Webpack configuration file. Webpack splits plugins by groups such as configuration, output, optimize, dependency injection, localization, debugging, and others. You can find the list of built-in Webpack plugins here: https://webpack.github.io/docs/list-of-plugins.html
 .

 The DefinePlugin

It's obvious that we need to separate development and production configurations because they have different global constants and behaviors. This plugin allows us to create global constants configurable at compile time and available across all other plugins:

const NODE_ENV = process.env.NODE_ENV;
//...
config.plugins = [
 new DefinePlugin({
 'process.env.NODE_ENV': JSON.stringify(NODE_ENV)
 }),
//...
];

Now the process.env.NODE_ENV
 is available in the global scope and the following code in main.ts
 file will work:

if (process.env.NODE_ENV === 'production') {
 enableProdMode();
}

 The ProvidePlugin

The Bootstrap module requires several third-party libraries, such as
jQuery

 and
Tether

 , to be included in our application. We will use the ProvidePlugin
 to automatically load those modules and make them available in Bootstrap:

new ProvidePlugin({
 jQuery: 'jquery',
 $: 'jquery',
 jquery: 'jquery',
 "Tether": 'tether',
 "window.Tether": "tether"
})

 The ProgressPlugin

We use this plugin to show the progress of compilation in the Terminal.

 The LoaderOptionsPlugin

This plugin allows us to add options to some specific loaders:

new LoaderOptionsPlugin({
 debug: false,
 minimize: ENV_PRODUCTION
})

If you develop your own loader, you can activate the debug
 mode for it to set it to equals true
 . In our case, we use the ENV_PRODUCTION
 global constant to activate loaders into minimize mode only for production.

 The CommonsChunkPlugin

Webpack has an opt-in feature helping to split the code into chunks and load them on demand. Furthermore, we need to define split points and Webpack will take care of everything, such as dependencies, output, and runtime stuff:

new CommonsChunkPlugin({
 name: ['vendor', 'polyfills'],
 minChunks: Infinity
})

In our project, I've explicitly isolated the vendor and polyfills files in their bundles. The minChunks
 option is the minimum number of chunks which need to contain a module before it can move to common chunks. It can contain a number, callback function, or the Infinity
 keyword. Passing the Infinity
 creates a common chunk without moving the modules into it.

 The UglifyJsPlugin

This plugin minimizes all the JavaScript output of chunks:

new UglifyJsPlugin({
 comments: false,
 compress: {
 dead_code: true, // eslint-disable-line camelcase
 screw_ie8: true, // eslint-disable-line camelcase
 unused: true,
 warnings: false
 },
 mangle: {
 screw_ie8: true // eslint-disable-line camelcase
 }
})

We use it only for production, where it deletes the comments, and compresses and mangles variables names in JavaScript files.

The following are several third-party plugins I've used in our project. All of them must be installed as separate npm modules:

 The extract-text-webpack-plugin

I imported the style file of our project in the main.ts
 file as follows:

/**
 * Import styles
 */
import './assets/ecommerce.scss';

Webpack will include the code for the ecommerce.scss
 file in the bundle.js
 file. That solution worked perfectly for development, but I would like to keep the styles as a separate file in production for the following reasons:

	The CSS is not a part of JavaScript bundle

	The CSS bundle requests in parallel to the JavaScript bundle

	The CSS is cached separately

	Runtime is faster because of less code and DOM operations

The ExtractTextPlugin
 must be added into two places:

	In the loader to extract the CSS file

	In the plugin to specify the resulting filename and the necessary behavior of the compiler:

 config.module.loaders.push({
 test: /\.scss$/,
 loader: ExtractTextPlugin
 .extract('css?-autoprefixer!postcss!sass'),
 include: path.resolve('src/assets/ecommerce.scss')
 });
 config.plugins.push(
 new ExtractTextPlugin('styles.[contenthash].css')
)

After compilation we will have style and source map files ready for production.

 The webpack-md5-hash plugin

Whenever Webpack compiles resources into bundles, it calculates the hash
 sum of each bundle and uses this number as a chunkhash
 string in the names of files:

[chunkhash].[id].chunk.js

I prefer to use the Md5 based hash generator plugin to replace a standard Webpack chunkhash
 with Md5 for our project.

 The html-webpack-plugin

As we've said, Webpack calculates and generates the hash for filenames of bundles every time, so we must somehow update that information in our index.html
 file. The html-webpack-plugin
 helps make this process painless and adds all HTML generated bundles to an application quickly:

new HtmlWebpackPlugin({
 chunkSortMode: 'dependency',
 filename: 'index.html',
 hash: false,
 inject: 'body',
 template: './src/index.html'
})

I used the index.html
 from the source file as a template
 that the plugin will use to generate the final HTML file inside the dist
 folder. We can inject
 generated JavaScript bundles into the head
 , but usually, we add them to the bottom of the page, just before closing the body
 tag. This plugin will add the chunks bundles by order of dependencies. The format of the template is based on the
Embedded JavaScript

 (
EJS

) templating system, so we can pass values into the plugin, and it will retrieve them directly into the HTML.

 Loaders

The newest version of the project uses a wider number of loaders. Loaders, like modules, can be installed via npm. We use loaders to teach Webpack new functionality. You can find the list of Webpack loaders here: https://webpack.github.io/docs/list-of-loaders.html
 .

 Loader naming conventions and search order

Usually, loaders are named as <context-name>-loader
 for easily referencing them in configuration by their full or short name. You can change the loaders' naming convention and precedence search order via the moduleTemplates
 property of resolveLoader
 in the Webpack configuration:

["*-webpack-loader", "*-web-loader", "*-loader", "*"]

 The bootstrap-loader

The bootstrap-loader
 loads the Bootstrap styles and scripts in the Webpack bundle. By default, it's preconfigured to load Bootstrap 3. We can use a special configuration file, .bootstraprc
 , to tweak many details of the loading process. The bootstrapVersion
 option tells the loader which major version of Bootstrap to load. Authors of the plugin recommend using the default configuration as a starting point to prevent unwanted upgrades or mistakes. You can write it in YAML or JSON formats. You can find the full documentation on the official website: https://github.com/shakacode/bootstrap-loader
 .

 The css-loader

The css-loader
 can download CSS files as a part of bundle. It resolves and interprets the imports
 and url
 statements as a require
 :

url(image.png) => require("./image.png")

By default, the css-loader
 minimizes the CSS files if specified to do so by the module system. The web address of the project on GitHub ishttps://github.com/webpack/css-loader
 .

 The file-loader

The file-loader
 copies the file in the output folder and returns the public URL:

var url = require("file!./file.png");

It processes the content of the file to sum the MD5 hash and uses it as a filename of the resulting file:

/public-path/0dcbbaa701328a3c262cfd45869e351f.png

You can configure a custom filename template via query parameters such as name
 , ext
 , path
 , hash
 :

require("file?name=js/[hash].script.[ext]!./javascript.js");
// => js/0dcbbaa701328a3c262cfd45869e351f.script.js

You can find documentation on the official website: https://github.com/webpack/file-loader
 .

 The postcss-loader

Over 200 PostCSS plugins exist to solve global CSS problems, to use future CSS today, or to improve the readability of CSS files. The official list of plugins to discover can be found at: http://postcss.parts/
 .

The postcss-loader
 uses PostCSS JS plugins to transform styles:

const autoprefixer = require('autoprefixer');
//...
config.module.loaders.push({
 test: /\.scss$/,
 loader:
 ExtractTextPlugin.extract('css?-autoprefixer!postcss!sass'),
 include: path.resolve('src/assets/ecommerce.scss')
 });

You can find full documentation about how to use it here: https://github.com/postcss/postcss-loader
 .

 The raw-loader

This loader just reads the file content and returns it as a string:

var fileContent = require("raw!./file.txt");
// => returns file.txt content as string

Check the official website here: https://github.com/webpack/raw-loader
 .

 The resolve-url-loader

Usually, we use this file in conjunction with other loaders. It resolves relative paths in the url
 statement based on the original source file:

var css = require('!css!resolve-url!./file.css');

Follow the link on the official website: https://github.com/bholloway/resolve-url-loader
 .

 The sass-loader

It loads the SASS file for processing:

var css = require("!raw!sass!./file.scss");
// returns compiled css code from file.scss, resolves Sass imports

Find full documentation here: https://github.com/jtangelder/sass-loader
 .

 The style-loader

You can forget about adding CSS files into HTML files manually with the help of the style-loader. It adds CSS to the DOM by injecting the style tag. It can be very useful for development, but I recommend you extract the contents of CSS into a separate file or bundle if you build for production. The web address for full information is: https://github.com/webpack/style-loader
 .

 The ts-loader

You must install TypeScript before using this loader. It loads the TypeScript files and runs the compile:

module.exports.module = {
 loaders: [
 // all files with a `.ts` or `.tsx` extension
 // will be handled by `ts-loader`
 { test: /\.tsx?$/, loader: 'ts-loader' }
]
 }
}

Visit the official website for more information: https://github.com/TypeStrong/ts-loader
 .

 The url-loader

This loader is similar to file loader, but it just returns a data URL, if the file size is smaller than the limit:

require("url?limit=10000!./file.png");
// => DataUrl if "file.png" is smaller that 10kb

Find more information here: https://github.com/webpack/url-loader
 .

 Tip

You can find the source code at chapter_10/3.ecommerce-webpack-advanced
 .

 User authentication

Authentication

 is a process of providing identity to the user. Without that, we can't provide the user specific services to grant permission to the user's data. It's a high risk to security sensitive information such as credit card details, so we need to save the user data securely.

 Adding authentication in the application

Firebase brings easy authentication, so we can integrate it with any existing login server or clear cloud-based solutions. It supports third-party authentication from GitHub, Google, Twitter, and Facebook as well as built-in authentication via e-mail. Each provider has their own steps to set it up. I will use the
password authentication provider

 , but you can add others at any time. Please find the official documentation from the following web page: https://firebase.google.com/docs/auth
 .

 Enabling authentication provider

When we created the instance of our web application, Firebase disabled all providers, so we need to enable one before use. Open the web browser, navigate to the Firebase console, and go into our application. Click on the
Auth

 menu item on the left sidebar:

[image: Enabling authentication provider]

Click on
SET UP SIGN-IN METHOD

 to enter. Click on
Email/Password

 and activate the provider in the popup dialog:

[image: Enabling authentication provider]

The following
OAuth redirect domains

 section keeps only those domains that we whitelisted to initiate authentication for our application:

[image: Enabling authentication provider]

When we registered our application, Firebase added the following origins:

	The localhost
 so that we can develop and test locally

	The https://<your-project-id>.firebaseapp.com
 so that we can use Firebase hosting

If you plan to host your application in other authorized origins, you need to add all of them to enable authentication from their domains here.

 AngularFirebase2 authentication

The
AngularFire2 authentication

 works without configuration, but it's good practice to configure it before use. The best place to do that is the app.module.ts
 file file where we defined the AppModule
 :

/*
 * Angular Firebase
 */
import {AngularFireModule, AuthProviders, AuthMethods}
 from 'angularfire2';
import * as firebase from 'firebase';

// Initialize Firebase
export var firebaseConfig = {
 apiKey: "AIzaSyDDrc42huFLZqnG-pAg1Ly9VnFtVx3m-Cg",
 authDomain: "ecommerce-a99fc.firebaseapp.com",
 databaseURL: "https://ecommerce-a99fc.firebaseio.com",
 storageBucket: "ecommerce-a99fc.appspot.com",
};
// Initialize Firebase Authentication

const firebaseAuthConfig = {

 provider: AuthProviders.Password,

 method: AuthMethods.Redirect

}

@NgModule({
 imports: [HttpModule,

 AngularFireModule.initializeApp(firebaseConfig,

 firebaseAuthConfig),

 BrowserModule, FormsModule, ReactiveFormsModule,
 routing, CartModule, CategoryModule, ProductModule],
 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent, CheckoutViewComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

In the firebaseAuthConfig
 , we indicated that we use password authentication and Firebase will redirect to the login page for sign-in.Create the auth
 folder and auth.service.ts
 file inside it.

 Authentication service

The AuthService
 is an adapter class that hides implementation details of how Firebase authenticates the user. It uses the FirebaseAuth
 class to do all the work for us:

constructor(public auth$: FirebaseAuth) {
 auth$.subscribe((state: FirebaseAuthState) => {
 this.authState = state;
 });
}

Some components of our application need to know the authentication status of the user in real time, so I subscribed to listening to the FirebaseAuthState
 events from the FirebaseAuth
 service. Our class consists of two main methods to manage authentication of the user:

signIn(email: string, password: string):
 firebase.Promise<FirebaseAuthState> {
 return this.auth$.login({
 email: email,
 password: password
 }, {
 provider: AuthProviders.Password,
 method: AuthMethods.Password,
 });
}

signOut(): void {
 this.auth$.logout();
}

The signIn
 method expects user credentials, such as an e-mail and password, to log in and returns the FirebaseAuthState
 in a Firebase promise. The signOut
 helps us to log out from the application

 The SignInComponent

Create the sign-in.component.ts
 file to keep the code of
SignInComponent

 . It is a form where the user inputs his or her credentials and clicks on
Sign In

 to pass the e-mail and password into the authentication service. It listens to the response that Firebase returns to redirect the user to the welcome page:

onSubmit(values:any): void {
 this.submitted = true;
 this.auth.signIn(values.email, values.password)
 .then(() => this.postSignIn())
 .catch((error) => {
 this.error = 'Username or password is incorrect';
 this.submitted = false;
 });
}

private postSignIn(): void {
 this.router.navigate(['/welcome']);
}

The code shows an error message if the e-mail and password combination is incorrect. To protect the routes of the application from unauthorized users, we will use the Angular 2 feature called Guards.

 Angular Guards

The Angular 2 router provides a feature called
Guard

 that returns either Observable<boolean>
 , Promise<boolean>
 , or boolean
 to allow it to activate, deactivate, or load a component. It can be registered in dependency injection as a function or class. The class registration has benefits if we need dependency injection capabilities. To register the Guard as a class, we need to implement one of the interfaces provided by Angular.

There are four Angular Guards interfaces:

	The CanActivate
 Guard checks if a route can be activated

	The CanActivateChild
 Guard checks if the children routes of a particular route can be activated

	The CanDeactivate
 Guard checks if a route can be deactivated

	The CanLoad
 Guard checks if a module can be loaded

Because our Guard code will use the authentication service, I created the auth.guard.ts
 file and the AuthGuard
 as a class that implements the CanActivate
 interface:

export class AuthGuard implements CanActivate {

 constructor(private auth: AuthService, private router: Router)
 { }

 canActivate(): Observable<boolean>|boolean {
 return this.auth.auth$.map((authState: FirebaseAuthState)=>{
 if (authState) {
 return true;
 } else {
 this.router.navigateByUrl('/login');
 return false;
 }
 }).first();
 }
}

The Angular router will call the canActivate
 method of the interface to decide if a route can be activated by listening to the FirebaseAuthState
 event. If a user is successfully authenticated the method returns true
 , then the component registered in the route will be activated. If not, it returns false
 and redirects the user to the login page.

 Logout in Navbar

I think it's a good idea if our users have the option to sign-out from a web application. We should inject the authentication service into the Navbar
 component and create the logout method to call it to sign-out the user:

export class NavbarComponent {
 constructor(private authService: AuthService,
 private router: Router) { }

 logout() {
 this.authService.signOut();
 this.router.navigateByUrl("/login");
 }
}

As you'll remember, we have an authenticated
 property in AuthService
 which changes the state when the user signs in or out of the application. We will use it to manage the appearance of the
Sign Out

 and
Cart

 components in the markup:

<div class="collapse navbar-toggleable-xs"
 id="exCollapsingNavbar">
 Dream Bean

 <div class="nav navbar-nav">
 <a class="nav-item nav-link" (click)="logout()"

*ngIf="authService.authenticated"

>Sign out
 </div>

 <db-cart-menu
*ngIf="authService.authenticated"

></db-cart-menu>
</div>

When the user is signed-in to the application, those two components becomes visible.

 Updating the Firebase database rules

Now, when we secure our application on the client side, we must change the Firebase database rules so that only authenticated users have access to the data:

{
 "rules": {

 ".read": "auth != null",

 ".write": "auth != null",
 "products": {
 ".indexOn": ["categoryId", "title"]
 }
 }
}

 Time to play

Open the Terminal and run the following command to make a production build:

npm run build

After successfully doing this, we can deploy our application onto Firebase hosting:

firebase login

firebase deploy

Open a web browser and navigate to the web application: https://<your-project-id>.firebaseapp.com
 .

Any combination of e-mail and password brings the exception authorization message on the screen:

[image: Time to play]

Our application doesn't have a registration form so that we can add the
test user

 directly into the Firebase via console. Open the Firebase console and navigate to our application. Click on the
Auth

 link on left sidebar to open the
Authentication

 page:

[image: Time to play]

Click on
Add User

 to open the popup dialog:

[image: Time to play]

Fill in the blank fields and click
Add User

 . Now that we have the registered test user we can go back to our application and use the e-mail and password to successfully sign-in.

 Tip

You can find the source code for this at chapter_10/ 4.ecommerce-firebase-auth
 .

 The ng2-bootstrap

There is the ng2-bootstrap
 library which has no dependencies on jQuery and Bootstrap JavaScript files. It has a set of native Angular 2 directives for Bootstrap versions 3 and 4, so it costs nothing to try it out. For more information about how to use different components please go to the official website: https://valor-software.com/ng2-bootstrap/index-bs4.html
 .

Firstly, we will clean the project out of the bootstrap-centric modules:

npm uninstall -save bootstrap bootstrap-loader jquery tether

Then, remove Bootstrap 4 modules from the vendors.js
 file:

// Bootstrap 4
import "jquery";
import "bootstrap-loader";

Now, we are ready to install, so open the Terminal and install ng2-bootstrap
 :

npm install ng2-bootstrap --save

The ng2-bootstrap
 module must be imported into AppModule
 . After installation, ng2-bootstrap
 supports Bootstrap version 3, so it's necessary to set the theme to Bootstrap 4 before use:

import {Ng2BootstrapModule, Ng2BootstrapConfig, Ng2BootstrapTheme}

 from 'ng2-bootstrap';

Ng2BootstrapConfig.theme = Ng2BootstrapTheme.BS4;

@NgModule({
 imports: [
 AngularFireModule.initializeApp(firebaseConfig,
 firebaseAuthConfig), AuthModule,
 BrowserModule, FormsModule, ReactiveFormsModule,
 routing, CartModule, CategoryModule, ProductModule,

 Ng2BootstrapModule],

 declarations: [AppComponent, NavbarComponent, FooterComponent,
 WelcomeComponent, CheckoutViewComponent],
 bootstrap: [AppComponent]
})
export class AppModule { }

Finally, we will add the link on Bootstrap 4 CSS referencing on CDN inside the index.html
 :

<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.2/css/bootstrap.min.css" crossorigin="anonymous">

The migration plan is clear enough: find all the places where we can use ng2-bootstrap
 and change the Bootstrap 4 based code to the appropriate components.

 Updating the slideshow on the welcome page

On the welcome page, we use the slideshow component for cycling through images as a carousel. ng2-bootstrap
 has a native component carousel doing the same thing. The main benefit of using the new component is writing less markup code:

<carousel>
 <slide *ngFor="let category of slideCategories; let i=index"
 [active]="category.active">
 <db-category-slide [category]="category"></db-category-slide>
 </slide>
</carousel>

The carousel has the following properties we can use to manage the slideshow:

	The interval
 property is an amount of time in milliseconds to delay between automatically cycling an item. By default, this amount equals 5,000. If you change it to false
 , the carousel will not automatically cycle.

	The noTransition
 property will disable transition between slides. It is false
 by default.

	The noPause
 property will disable pausing on the carousel mouse hover. It's false
 by default.

	The noWrap
 property will prevent continuous cycling. By default, it's set to false
 .

 Update the drop-down cart in Navbar

We use the drop-down component in Navbar to display the user's cart information. Let's update this component on analog from ng2-bootstrap
 .

First of all, we need import the DropdownModule
 into the CartModule
 :

import {DropdownModule} from 'ng2-bootstrap';

@NgModule({
 imports: [CommonModule, FormsModule, ReactiveFormsModule,
 RouterModule, DropdownModule],
 declarations: [CartItemCountComponent, CartMenuComponent,
 CartViewComponent],
 exports: [CartMenuComponent, CartViewComponent,
 CartItemCountComponent],
 providers: [CartService]
})
export class CartModule {}

After that, open the cart-menu.component.html
 and update the markup code wrapping the cart's content:

<div class="nav navbar-nav float-xs-right">
 <div class="nav-item">
 <div dropdown>
 <a href class="nav-link" id="cart-dropdown"
 dropdownToggle>
 Cart: {{cart.amount | currency:'USD':true:
 '1.2-2'}} ({{cart.count}} items)

 <div class="dropdown-menu dropdown-menu-right"
 dropdownMenu aria-labelledby="cart-dropdown">
 <!-- cart content -->
 </div>
 </div>
 </div>
</div>

Any ng2-bootstrap
 drop-down based solution should include the following component:

	A drop-down root element marked with a dropdown
 directive

	An optional toggle element marked as dropdownToggle

	A drop-down menu holding the content marked with dropdownMenu

We can use the isOpen
 property to manage the opened state of a dropdown.

 Tip

You can find the source code for this at chapter_10/5.ecommerce-ng2-bootstrap
 .

 Angular CLI

Now you have some knowledge about how to create a web application with SystemJS or Webpack and you understand that this is not a trivial process. Remember that all of the configurations belonging to different module loaders is too complicated and sometimes you will spend too much time on routine tasks. We've managed everything by ourselves until now, but it would be worth adding the Angular CLI to the scaffold to handle tedious tasks and build Angular applications.

The following command will install the Angular CLI:

npm install -g angular-cli

Run the following command to get the use commands:

ng --help

We will create the new Angular project with the following command:

ng new ecommerce

After several minutes you will be ready to start the Angular 2 project with the installed NPM modules. Move into the project folder and start the development server:

cd ecommerce

ng serve

Now open localhost:4200
 in the web browser. The Angular CLI follows the recommended application structure and style guide when generating the source code and folders. We followed the same principles when we developed our project so that we can smoothly move the code from the previous project into the new one.

Stop the server and install the following modules:

npm i angularfire2 firebase @types/request ng2-bootstrap

Find the angular-cli.json
 file in the root of the project and make the following changes in styles
 and scripts
 to add references on our ecommerce.scss
 style and ng2-bootstrap
 bundle:

"styles": [
 "assets/ecommerce.scss"
],
"scripts": [
 "../node_modules/ng2-bootstrap/bundles/ng2-bootstrap.umd.js"
],

Copy the database.rules.json
 , firebase.json
 , and firebase.import.json
 files from the previous project, so we can use Firebase CLI to deploy our project to the host.

Delete all files from the src/app
 folder except for the index.ts
 file. Copy all the files from the src/app
 folder of the previous project into the new one.

Now run the development server, and open or refresh the localhost:4200
 in the web browser to see how our project is back online.

From now, you can generate new components, routes, services, and pipes with a simple command as well as run tests and builds. Please check the official website of Angular CLI to get more information: https://cli.angular.io
 .

 Just-in-time compilation

My big concern is the size of our application. Look at the stats Webpack usually prints at the time of building the chunk files:

[image: Just-in-time compilation]

The bundle files are more than 4 Mbytes. Why is the application so huge?

When the application loads in the browser, Angular compiles it at runtime using the
Just-In-Time

 (
JIT

) compiler. That compiler is the part of the code we load whenever we bootstrap the application. Note, we used this approach for building our project based on SystemJS or Webpack module loaders. That solution has the following drawbacks:

	Performance penalty, because code always compiles before use

	Rendering penalty, because each view is compiling before display

	Size penalty, because the code includes JIT compile

	Code quality penalty, because JIT compilation discovers errors at runtime

We can solve many of those issues if we start using the
Ahead-Of-Time

 (
AOT

) compilation.

 AOT compilation

In an AOT approach, we compile all resources upfront, so we don't need to download the compiler into a web browser. This has the following benefits:

	Smaller application size, because the code doesn't include the compiler

	Blazing rendering, because the browser code and templates are precompiled

	Fewer resource requests, because the styles and templates are compiled into the code

	Better template bindings error detection at the moment of compilation

	Fever possibilities for injection attack, because the web browser doesn't need to evaluate precompiled templates and components

So, how can we use this fantastic approach? The answer is very simple: use Angular CLI. It supports AOT out of the box, so we need only add the following commands into the scripts of package.json
 :

"scripts": {
 "start": "ng serve",
 "lint": "tslint "src/**/*.ts"",
 "test": "ng test",
 "pree2e": "webdriver-manager update",
 "e2e": "protractor",

 "prod:build": "ng build --prod --aot",

 "prod:serve": "ng serve --prod --aot"

},

Save the changes, open the Terminal and run AOT build:

npm run prod:build

The size of the bundle files after gzip
 compression are less than 400 Kbytes:

[image: AOT compilation]

You may start the development server with AOT and check the resulting size of the application your web browser:

npm run prod:serve

 Tip

You can find the source code at chapter_10/6.ecommerce-aot-compilation
 .

 Summary

In this chapter, we learned how to create a client-side solution for account management and authentication, and how to test it on Firebase. We introduced Webpack and migrated our application from SystemJS. We know that it traverses through the required statements of the project to generate the bundles we have defined. Later we rediscovered our project and made more changes to use Webpack plugins. We now know that Webpack has a set of built-in plugins we can split by groups, such as configuration, output, optimize, dependency injection, localization, debugging, and others.

We learned that authentication is a process of providing identity to the user, and without that, we can't provide user specific services to grant permission to the user's data. We learned that Firebase brings easy authentication with any existing login server or uses a clear cloud-based solution. It supports third-party authentication from GitHub, Google, Twitter, and Facebook as well as built-in authentication via e-mail. Now we know that the AngularFire2 authentication works without configuration.

The ng2-bootstrap
 library has a set of native Angular 2 directives for Bootstrap versions 3 and 4 and it has no dependencies on jQuery and Bootstrap JavaScript files. We quickly integrated it into our project.

The Angular CLI helps to easy create an application, generate components, routes, services, and pipes out of the box. It supports the Ahead-Of-Time compilation to dramatically decrease the size of theapplication and improve the performance and security.

Finally, we ended by building the project we started to develop in previous chapters.

OEBPS/Image00112.jpg
User Name Password

OEBPS/Image00111.jpg
User Name

Password

The password must be more than 8 characters long

OEBPS/Image00114.jpg
User Name

Password

Language ® English

French

OEBPS/Image00113.jpg
User Name

Password

Connection

admin@admin.com

Secure (SSL)

OEBPS/Image00116.jpg
User Name

Password

Admin

OEBPS/Image00115.jpg
User Name

® English

French

Spain

Password

OEBPS/Image00108.jpg
User Name

Password

OEBPS/Image00107.jpg
Dream Bean Home Cart: $2.00 (2items) -

Title Price Count Amount
Quick Shop Pork Tenderloin Ribs.
Baguette $150 1 $150
earch for Got Croissants $050 1 $050
Total: $2.00
S 270-171 270171
Broad & Bakery
Takeaway
Price: $5.6 Price: $4.85 Price: $9.2
Dairy
Seatood The pork tenderloin, in some Pork ibs are a cut of pork Ground beef, beef mince,
countries called pork filet, is popular in North American minced beef, minced meat is
Fruit & Veg acutof pork and Asian cuisines. a ground meat made of beaf
that has boon finoly
chopped with a large knife
or a meat grinder.
Contact Info
0000 Market S, Suite 000, San Francisco, CA 00000, (123) 456-7890, support@dream-bean.com

OEBPS/Image00110.jpg

OEBPS/Image00109.jpg
User Name

Password

OEBPS/Image00002.jpg
Angular 2 First Project

4 @ localhost3000 ¢ || Q search

Hello, World

OEBPS/Image00123.jpg

OEBPS/Image00001.jpg
TypeScript

OEBPS/Image00122.jpg
st row

| Price: $25.89 Ex Tox: $20.33

Occaecat cupidatat non

Brand: Magna lorem
Product Code: Product 16

Ament s072]

| Add to Cart | !

|
Availability: | In Stock I

| [Remove from Gart II

1st col

2nd col

' Continue Shopping ||

N 3rd col 1

OEBPS/Image00004.jpg
Angular 2 First Project

‘\(- @ localhost:3000 ‘ Q Search

Hello, World
fora

OEBPS/Image00125.jpg
Croissants

Acroissant is a buttery, flaky, viennoiserie-
pastry named for its well-known crescent
shape

ID:2
Category: Bread & Bakery

Availability: In Stock

Price: $0.50

OEBPS/Image00003.jpg
Angular 2 First Project

€ @ localhost3000 c HQ;emch

Hello, Sergey
serge

OEBPS/Image00124.jpg
Pear

The pear is any of several tree and shrub
species of genus Pyrus, in the family
Rosaceae

ID:17
Category: Fruit & Veg

Availability: In Stock

Price: $4.25

OEBPS/Image00006.jpg
Angular 2 First Project

€ O localhost3000 < HQSemch ‘ wBa » =

Chapter 1 Hello, World

Hello, World
—

OEBPS/Image00005.jpg
Angular 2 First Project

‘\(- @ localhost:3000 ‘ Q Search

Hello, World
fora

OEBPS/Image00126.jpg
Quantity 3

Amount $1.50

Add to Cart

Remove from Cart

Continue Shopping

OEBPS/Image00117.jpg
User Name

Admin

Password

The password must be more than 8 characters long

OEBPS/Image00119.jpg
Success

l admin@admin.com

That username's is ok.

Warning

The password is weak

Card

l 1231-32123DSSAN23-321231A23

We accept only VISA and Master cards

OEBPS/Image00118.jpg
User Name

Admin

Password

The password must be more than 8 characters long

OEBPS/Image00000.jpg
Mapt

OEBPS/Image00121.jpg
Quick Shop

apple|

Gol

OEBPS/Image00120.jpg
Quick Shop

OEBPS/Image00090.jpg
First Name Last Name Username

Mark Otto @mdo

Jacob Thornton @fat

Number 2

OEBPS/Image00089.jpg
First Name Last Name Username

Mark Otto @mdo

Jacob Thornton @fat

Number 2

OEBPS/Image00092.jpg
First Name Last Name Username

Mark Otto @mdo

Jacob Thornton @fat

Number 2

OEBPS/Image00091.jpg
First Name Last Name Username

Mark otto @mdo

Jacob Thornton @fat

Number 2

OEBPS/Image00094.jpg
FirstName Last Name Username

1 Mark Otto @mdo

2 Jacob Thornton @fat

Number 2

OEBPS/Image00093.jpg
Last Name

Otto

Thornton

OEBPS/Image00096.jpg
Dream Bean Home Products C

Quick Shop

Search fol Go! 270x17 70x

Categories
Product 1 Product 2

Al $10 $20 > $5

Meat

Seafood

Bakery

Dairy 7017 270171

Fruits & Vegetables

Product 4 Product 5
$75 $120

Contact Info
0000 Market St, Suite 000, San Francisco, CA 00000, (123) 456-7890, support@dream-bean.com

Cart: 2 item(s) - $20.00 -

Name Amount Qty Sum

Product $10 X1 $1000
Del

$500 x2 $10.00
Del

Total:$20.00
View Cart | Checkout

Buy [lnfo

27017

Product 6
$1500

Buy [info

OEBPS/Image00095.jpg
First Name Jacob

Last Name Thornton

Username @fat

OEBPS/Image00088.jpg
First Name Last Name Username
1 Mark Otto @mdo

2 Jacob Thornton @fat

Number 2

OEBPS/Image00087.jpg
First Name Last Name Username

Mark Otto @mdo

Jacob Thornton @fat

Number 2

OEBPS/Image00101.jpg
Dream Bean Home

Quick Shop
270171 270x17 2704171
Gatogories
Bread & Bakery
Banana Cucumber Apple
Takeaway
The banana s an edible Cucurmber s a widely The appl troe s
— frut, botanicaly a bory cultvatod plat n tho gourd dociduous roa n th roso
produced by sovera knds famiy, Cucurbiacsan amiy bost known or s

of farge herbaceous Swee, pomaceous fru, the

e = b

food

270=171 270%1
Lemon Pear
The lemonis a species of The pear s any ofseveral
smal evergreen tree natve tree and shrub species of
1o Asia genus Pyrus, in the family
Rosaceae

Contact Info
0000 Market St, Suita 000, San Francisco

00000, (123) 456-7890, suppori@dream. bean com

OEBPS/Image00100.jpg
Quick Shop

OEBPS/Image00103.jpg
Categories

Bread & Bakery,

Takeaway

Dairy

Meat

Seafood

Fruit & Veg

Contact Info

Go!

Pork Tenderloin

Price: $5.6

The pork tenderloin, in some.
countries called pork filt, is
acutof pork.

Ribs, Baby Back

Price: $4.85

Porkribs are a cut of pork
popular in North American
and Asian cuisines.

0000 Market St, Suite 000, San Francisco, CA 00000, (123) 456-7890, support@dream-bean.com

Ground Beef

270<171

Price: $9.2

Ground bee, beef mince,
minced beef, minced meat is
3 ground meat made of beef
that has been finely
chopped with 2 large knife
or a meat grinder.

OEBPS/Image00102.jpg
Dream Bean Home

of for emon pear
Got farga s s s
¥ herbaceous sweet, a any
e pomacec species of
i, of soveral
e & akery n the smal o
the apple evergreer and
Banar Cucun Apple genus e shiidh

Takeavay

© of

e bt n Rosace
Fruit & Veg ”

by Cucurbite family

saveral ot Lemor Pear

0000 Market

t0.000, San Francisco, CA 00000, (123) 456.7890, support@dream-boan com

OEBPS/Image00105.jpg
Categories

Bread & Bakery,

Takeaway

Dairy

Meat

Seafood

Fruit & Veg

Contact Info

Go!

Pork Tenderloin

Price: $5.6

The pork tenderloin, in some.
countries called pork filt, is
acutof pork.

Ribs, Baby Back

Price: $4.85

Porkribs are a cut of pork
popular in North American
and Asian cuisines.

0000 Market St, Suite 000, San Francisco, CA 00000, (123) 456-7890, support@dream-bean.com

Ground Beef

270<171

Price: $9.2

Ground bee, beef mince,
minced beef, minced meat is
3 ground meat made of beef
that has been finely
chopped with 2 large knife
or a meat grinder.

OEBPS/Image00104.jpg
C O localhost:3000/#/we

Dream Bean Home Frod

Bread & Bakery

The best cupcakes, cookies, cakes,
ples, cheesecakes, fresh bread, biscott,
muffins, bagels, fresh coffee and more.

Takeaway

It's consistently excellent, dishes are
superb and healthily cooked with high
quality ingredients.

Browse

Dairy

A dairy product is food produced from
the mik of mammals, primarily cow
water buffaloes, goats, sheep, yaks.

Browse

OEBPS/Image00106.jpg
Cart: $3.50 (3 items) ~

Title Price Count Amount

Baguette $150 2 $3.00

Croissants $0.50 1 $0.50

Total: $3.50

OEBPS/Image00097.jpg
4 2.ECOMMERCE-CAROUSEL
app
4 navbar
navbar.component.htm
navbar.component.ts
» shared
app.component.html
app.component.ts
app.module.ts
maints
» assets
» node_modules
» typings
index.html
package.json
systemjs.config js
tsconfigjson
typings.json

OEBPS/Image00099.jpg
Quick Shop
sl

Product $5 Product $5 Product $5
Categories

Buy it | Info | Buy it | Info | Buy it | Info |
al
meat R — — —
ondrow | | seafood
bakery
dairy Product $5 Product $5 Product $5 2nd row

|
L Buy it | Info | Buy it | Info | Buy it | Info |

st col 2nd col

OEBPS/Image00098.jpg
A Welcome Page

QD XN

istrow | Dream Bean Home Products Checkout Sign out

2nd row <router-outlet></router-outiet>

- |Contact Info

7 "% 10000 Market St, Suite 000, San Francisco, CA 00000, (123) 456-7890, support@dream-bean.com

0

1st col

OEBPS/Image00071.jpg

OEBPS/Image00070.jpg
Product 1

OEBPS/Image00073.jpg
-nmsmmmrﬂwmm.mm Ymsmnmdaumbvnm.

et arouns cene bk mage s s coneros

OEBPS/Image00072.jpg

OEBPS/Image00075.jpg

OEBPS/Image00074.jpg
Example heading [CEZT
Example heading
Example heading g

Example heading [
Example heading [

Example heading

OEBPS/Image00076.jpg
Left Middle

OEBPS/Image00067.jpg
Apple

Watermelon

Banana

Grapefruit

Carrot

OEBPS/Image00069.jpg
Categories

Al

Meat

Seafood

Bakery

Dairy

Fruit & Vegetables

OEBPS/Image00068.jpg
Apple

Itis sweet

Watermelon

Itis a fruitand a
vegetable

OEBPS/Image00082.jpg

OEBPS/Image00081.jpg
Left

Middle

OEBPS/Image00084.jpg
| Acton ~ |

Document
Create
Edit
Delete
Print

Print Now

Configuration

OEBPS/Image00083.jpg

OEBPS/Image00154.jpg
Web Development
with Bootstrap 4
and Angular 2

Second Edition

Combine the power of Bootstrap 4 and Angular 2

to build cutting-edge web apps that truly stand out
from the crowd

B -

OEBPS/Image00086.jpg

OEBPS/Image00085.jpg
| Acton ~ |

Create
Edit

Delete

Print Now

Configuration

OEBPS/Image00078.jpg

OEBPS/Image00077.jpg
Left Middle -

Left Middle Rig

Left Middle |GG

OEBPS/Image00080.jpg
Actions

Get One

Get Many

OEBPS/Image00079.jpg
Create Delete Actions ~

Get One

Get Many

OEBPS/Image00056.jpg
00

OEBPS/Image00049.jpg
Love all, trust a few, do wrong to none.

William Shakespeare in All's Well That Ends Well —

OEBPS/Image00048.jpg
Love all, trust a few, do wrong to none.

— William Shakespeare in All's Well That Ends Well

OEBPS/Image00051.jpg
Bakery

The best cupcakes, cookies, cakes,
pies, cheesecakes, fresh bread, biscotti,
muffins, bagels, fresh coffee and more.

Browse

Takeaway

It's consistently excellent, dishes are
superb and healthily cooked with high
quality ingredients.

Browse

Dairy
A dairy product is food produced from
the milk of mammals.

Browse

OEBPS/Image00050.jpg
Meat Seafood Fruit & Veg

Only superior quality beef, Great place to buy fresh and A variety of fresh fruits and
lamb, and pork. organic seafood at reasonable vegetables.
prices!

Browse Browse Browse

Contact Info
0000 Market St, Suite 000, San Francisco, CA 00000, (123) 456-7890, support@dream-bean.com

OEBPS/Image00053.jpg
A Products Page.

QA X) (I roducts

fotrow || DreamBean Home Products Checkout ~ Sign out

I P 1 — |
T Product $5 Product $5 Product $5
|| Ceteseres |,
- Buy it | Info | Buy it | Info | Buy it | Info |
nrow ||| | I
meat
[seetees |
bakery
|| oy || produetss Product $5 Product $5
o | o 1]
e

| 18t col | 2nd col |

OEBPS/Image00052.jpg
A Welcome Page

QDX o — &

Dream Bean Home Products Checkout Sign out Cart:§ items - $250]w]

€ >
O |[O 0

Category Category Category

OEBPS/Image00055.jpg
https.

OEBPS/Image00054.jpg
00

OEBPS/Image00047.jpg
Love all, trust a few, do wrong to none

OEBPS/Image00060.jpg
Action
Another action

Something else here

Separated link

OEBPS/Image00059.jpg
Gol

OEBPS/Image00062.jpg
Quick Shop

‘ Gol ‘

OEBPS/Image00061.jpg
Action

Action
Another action

Something else here

Separated link

OEBPS/Image00064.jpg
Apple

Banana

Grapefruit

Carrot

OEBPS/Image00063.jpg
Apple

Banana

Grapefruit

Carrot

OEBPS/Image00066.jpg
Apple

Banana
Grapefruit

Carrot

OEBPS/Image00065.jpg
Apple

Banana

Grapefruit

Carrot

OEBPS/Image00058.jpg

OEBPS/Image00057.jpg
.00

OEBPS/Image00035.jpg
[]

Dream Bean Home
Products

Checkout

Sign out

OEBPS/Image00156.jpg

OEBPS/Image00034.jpg
<nav class="navbar navbar-fixed-top navbar-dark bg-inverse">
<div class="container">
<button class="navbar-toggler hidden-sm-up"
type="button" data-toggle="collapse"
data-target="#exCollapsingNavbar">☰
</button>
<div class="collapse navbar-toggleable-xs"
id="exCollapsingNavbar">
Dream Bean
<div class="nav havbar-nav">

Home (current)

Products
Checkout
Sign out
</div>
</div>
</div>
</nav>

OEBPS/Image00155.jpg

OEBPS/Image00036.jpg
<button class="navbar-toggler hidden-sm-up"
type="button" data-toggle="collapse"
data-target="#exCollapsingNavbar">☰
</button>

OEBPS/Image00027.jpg
Active Link Another link

led

OEBPS/Image00148.jpg
OAuth redirect domains @

Authorised domain

localhost

ecommerce-ag9fc.firebaseapp.com

Type

Default

Default

D DOMAIN

OEBPS/Image00147.jpg
Sign-in providers
Provider Status,

Email/Pas: Enabled

G Google

B Facebook
W Tuitter
©) ot

2, Anonymous

OEBPS/Image00029.jpg
Link

Another link

Disabled

OEBPS/Image00150.jpg
hentication WEBSETUP @

USERS SIGN-IN METHOD EMAIL TEMPLATES

earch by email address or user UID ADD USER c

Signed

Email Providers Created B

v

User UID

No users for this project yet

OEBPS/Image00028.jpg
Link Another link Disabled

OEBPS/Image00149.jpg
Sign in to Dream Bean

New to Dream Bean? Sign up!

test@test.com

Forgot password?

Username or password is incorrect

OEBPS/Image00031.jpg
Dream Bean Home

OEBPS/Image00152.jpg
Asset Size Chunks
main.bundle.js 3.84 MB o,
styles.bundle.js 11.1 kB 1,
scripts.bundle.js 254 kB x
inline.js 5.53 kB
main.map 4.18 MB (-]
styles.map 16.1 kB 1
scripts.map 299 kB 2
inline.map 5.59 kB
index.html 799 bytes

WWwwwwwww

[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]

Child html-webpack-plugin for "index.html":
Chunk Names

Asset Size Chunks
index.html 3.08 kB (]
webpack: bundle is now VALID.

Chunk Names
main

styles
scripts
inline

main

styles
scripts
inline

OEBPS/Image00030.jpg
Dropdown~ | Another link

Action
Another action

Something else here

Separated link

Disabled

OEBPS/Image00151.jpg
Add an Email/Password user

Email

admin@dreambean.com

Password

123456

CANCEL ADD USER

OEBPS/Image00033.jpg
Dream Bean Home

Bakery

The best cupcakes, cookies, cakes,
pies, cheesecakes, fresh bread, biscoltti
muffins, bagels, fresh coffee and more.

Takeaway

It's consistently excellent, dishes are
superb and healthily cooked with high
quality ingredients.

Dairy

A dairy product is food produced from
the milk of mammals.

OEBPS/Image00032.jpg
Dream Bean Home Products Checkout Sign out

OEBPS/Image00153.jpg
Asset
styles.7486365d13c64872036e.bundle.map
main.db3924218d853c8d28cd.bundle. js
scripts.84d279fe3f7a3de7eabc.bundle. js
inline.js

main.db3924218d853c6d28cd. bundle.map
styles.7486365d13c6487a0306e.bundle.js
scripts.84d279fe3f7a3de7eabc.bundle.map
inline.d41d8cd98f60b264e980 . bundle.map
scripts.84d279fe3f7a3de7eabc.bundle. js.gz
main.db3924218d853c8d28cd.bundle. js.gz
index.html

Size

32.3
1.37

254
1.47
7.85
4.87

531
13.5
41.5

331

kB
MB
kB
kB
MB
kB
kB
kB
kB
kB

862 bytes

Chunks
1,3

WWwwwwww

[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]
[emitted]

Chunk Names
styles

main
scripts
inline

main

styles
scripts
inline

OEBPS/Image00046.jpg
The Ubuntu is OSI}
?

Operation System

OEBPS/Image00045.jpg
he mark tag is highlight text

he del tag marks text-as-deleted:
he s tag marks textas-ne-longer-aceurate:

he ins tag marks text as an addition to the document
he u tag renders text as underiined

he small tag marks text as fine print

he strong tag renders text as bold.

he em tag mark renders text as italicized.

OEBPS/Image00038.jpg
FRESH ORGANIC MARKET

o 00pn

OEBPS/Image00159.jpg

OEBPS/Image00037.jpg
eam Bean Home Products Checl

Bakery

The best cupcakes, cookies, cakes,
pies, cheesecakes, fresh bread, biscotti,
muffins, bagels, fresh coffee and more.

Browse

Takeaway

It's consistently excellent, dishes are
superb and healthily cooked with high
quality ingredients.

Browse

Dairy

A dairy product is food produced from
the milk of mammals.

Browse

OEBPS/Image00158.jpg

OEBPS/Image00040.jpg
Heading 1 Sub-heading

Heading 2 Sub-heading

Heading 3 Sub-heading

Heading 4 Sub-heading

Heading 5 Sub-heading
Heading 6 Sub-heading

OEBPS/Image00039.jpg
.h1 (Semibold 36px)

.h2 (Semibold 30px)

.h3 (Semibold 24px)

.h4 (Semibold 18px)

lh5 (Semibold 14px)
h6 (Semibold 12px)

OEBPS/Image00161.jpg
‘Web Development
‘with Bootstrap 4
and Angular2

OEBPS/Image00042.jpg
Display 1
Display 2

Display 3
Display 4

OEBPS/Image00041.jpg
The heading with faded secondary text

OEBPS/Image00044.jpg
FRESH ORGANIC MARKET

Nice chance to save a ot of money,

7 00am 0 1000pm

OEBPS/Image00043.jpg
his is the normal size text.

OEBPS/Image00157.jpg

OEBPS/Image00013.jpg
A Checkout Page

QDX o —) &

Dream Bean Home Products Checkout ~Sign out

L—] Amount - $152.16
Last Name

Plaase reod thase terme carsfuly bafore using

ne
onine poyment facilty Using th anine payment acity
Phone Number on this webaite indicats that you acoap thess terma If

Jou do not accept these terms do not use ths facilty
Physical Address

-
K [Eroiagoress Terms and Conditions

@

O Accept

OEBPS/Image00134.jpg
IParent. Child is Ready

OEBPS/Image00012.jpg
A Cart Page

QD X Er e

Dream Bean Home Products Checkout ~Sign out

Total $152.16
Occaecat cupidatat
hosi s

Continue
Ij::aecalcup\dalal $2589 $5072

OEBPS/Image00133.jpg
Parent

OEBPS/Image00015.jpg
A Welcome Page

QDX dcome

strow | PreamBean Home Products Checkout Sign out

anmwe *I
o | O | O

Category

i Category Category

| 1ot ol i 2nd col § 3rd ool |

OEBPS/Image00136.jpg
Firebase login succeeded

You're now signed in to the Firebase CLI.

You may immediately close this window and continue
using Firebase from the terminal

OPEN CLI DOCUMENTATION

OEBPS/Image00014.jpg
col- col- col- col- col- col- col- col- col- o
xSEH xS S| [BxsEl ST |xs xs—||xs=| [Bxs=H | st [ixst
1 1 1 1 1 1 1 1 1 1

col-xs-12

OEBPS/Image00135.jpg
Create a project X

Project name

ecommerce

Country/region @

United States v

By default, your Firebase Analytics data will enhance other Firebase
features and Google products. You can control how your Firebase Analytics
data is shared in your settings at any time. Learn more.

CANCEL CREATE PROJE

OEBPS/Image00016.jpg
270=171

Bakery

The best cupcakes, cookies, cakes, pies,
cheesecakes, fresh bread, biscotti, muffins,
bagels, fresh coffee and more.

Browse

OEBPS/Image00007.jpg
Angular 2 First Project

€ localhost3000 C || Q Search

Chapter 1 Hello, World

Hello, World

OEBPS/Image00128.jpg
fstrow || DreamBean Home Products Checkout ~ Sign out |

] o $t6216
Occaecat cupidatat
2]3]
[| non #2589 35072 (] Checkout l
[[Continue |
— Occaecat cupidatat 2589 ag $5072 |,
non Ciear Cart I
! [
1| | 0ccaecat cupidatat =
b $2589 2[3]| ss072 |
! |

| 1ot col I 2ndeol

OEBPS/Image00127.jpg
Dream Bean Home

1110+480

Contact Info

0000 Market St, Suito 000, San Francisco, GA 00000, (123) 456-7890, support@dr

Croissants

Acroissant s a buttery, flaky, viennoissrie-
pastry named for ts wel-known crescent
shape.

02
Category: Bread & Bakery

Availabity. In Stock

Price: $0.50

m-bean com

Quantity 2
Amount $1.00

Addto

Remove from Cart

Continue Shopping

art

OEBPS/Image00009.jpg
A Welcome Page

QDX o — &

Dream Bean Home Products Checkout Sign out Cart:§ items - $250]w]

€ >
O |[O 0

Category Category Category

OEBPS/Image00130.jpg
Last Name

Order 1231212
Amount - $152.16

'y
a
S e —
.

N
1@

Terms and Conditions
Plaase reod thase terms carsfuly bafore using

ine poyment acityUsin 0= orine porment hcmly
on i wehste ot ot you ccept Dese eme
Jou do not accept these terms do not

O Accept

OEBPS/Image00008.jpg
Angular 2 First Project

€ @ localhost3000 c HQ;gmch

Chapter 1 Hello, World

Hello, World

World

OEBPS/Image00129.jpg
Dream Bean Home

Baguette $1.50 2 $3.00 $27.75

OEBPS/Image00011.jpg
A Product Page.

QA X O or T3 ze) @)

Dream Bean Home Products Checkout ~Sign out

Cart 5 items - $250]w]

Occaecat cupidatat non

Brand: Magna lorem
Product Code: Product 16

ay. 23]

Amount: 5072

Avaiabiity. [1n stock |

Continue Shopping]|

Price: $2589 Ex Tax: $20.33

OEBPS/Image00132.jpg
Parent

OEBPS/Image00010.jpg
A Products Page.

QD X Er

Dream Bean Home Products Checkout ~Sign out

Quick Shop

Product $5 Product $5 Product $5
Categories
sy (e] || [e] || [][]
o
meat
seafood
bakery
iy Product $5 Product $5 Product $5
fritand P (B3 |

OEBPS/Image00131.jpg
|
|
—
e |
Ao

0000 Market St, Suite 000, San Francisco, CA 00000, (123) 456-7890, support@dream-bean.com

Order 1002

Amount $7.20

Please read these terms carefully before using the online payment
facility. Using the online payment facility on this website indicates that
you accept these terms. If you do not accept these terms do not use.
this faciliy.

Accept Continue Shopping

OEBPS/Image00024.jpg
Radio 1 (preselected)

Radio 2

Radio 3

OEBPS/Image00145.jpg
Hosting

DASHBOARD

Domain

(s ccommerce-a99fc

hitos:/ecommerce-399fc firebaseapp.com &5

CONNECT CUSTOM DOMAIN

Deployment history

Status

H cument

Time:

11Sep 2016
129

Deploy,

akserg@gmail.com

Rows perpage; 10

Files

13134

v e < >

OEBPS/Image00023.jpg
Checkbox 1 (active) Checkbox 2 Checkbox 3

OEBPS/Image00144.jpg
Add Firebase to your web app x

Copy and paste the snippet below at the bottom of your HTML or before other script tags.

<script sre="NTtps://wew.gstatic.con/firebase]s/3.3.0/firebase.)5 ></script>
<script>
1/ Inttialize Firebase
var config = {
apiKey: *ATzaSyDDrc4ZhuFLZqnG-pAgILYSVAFtVx3n-Cg' ,
authDoman: "ecommerce-a99fc. firebaseapp.con’,
databaseURL: “https://ecommerce-ad9fc. firebaseio.con’,
storageBucket: "ecommerce-ag9fc.appspot.con”,
B
firebase. 1n1t1al1zeADp(config) ;

</script>

et Started with irehase for Web Apps &
leain more bouLFrebase 01 a0 e SDIC APY Reference 7

web apps
Fitebase Web Samples 2

OEBPS/Image00026.jpg
Active Link Another link Di

OEBPS/Image00025.jpg
Link
Link

Another link
Disabled

OEBPS/Image00146.jpg
Authentication WEBSETUP @

USERS IGN-IN METHOD EMAIL TEMPL

Q Search by exact email address (email@domain.com) oruser UD | ADDUSER | G
Emai Providers Crested Sgnedin UserUD
Authenticate and manage users from a

variety of providers without server-side code

B Learn more

= SET UP SIGN-IN METHOD

OEBPS/Image00137.jpg
Sergeys-MacBook-Pro:ecommerce-component-firebase aksergs firebase init

You're about to inftialize a Firebase project in this directory:

IUsers/akserg/Documents/ts/earning_bootstrap_angular?/chapter_9/ecommerce-component-firebase

7 What Firebase CLI features do you want to setup for this folder? Kosting: Configure and deploy Firebase Hosting sites

Project Setup

First, let's associate this project directory with a Firebase project.
You can create multiple project aliases by running firebase use --add
but for now we'll just set up a default project

7 What Firebase project do you want to associate as default? ecomnerce (ecommerce-a997c)

Hosting Setup

Your public directory is the folder (relative to your project directory) that
Will contain Hosting assets to uploaded with firebase deploy. If you
have a build process for your assets. use your build's output directory

2 What do you want to

v Wrote public/index.htal

as lic directory? public

Yes

i Writing configuration info to firebase.json.
1 Writing project information to .firebaserc...

¥ Sirebase initialization complete!

OEBPS/Image00018.jpg
uccs

s || o ||

H Danger ‘

OEBPS/Image00139.jpg
Realtime Database

DATA RULES USAGE

GD https://ecommerce-ad9fc firebaseio.com/

Y Default security rules require users to be authenticated.

ecommerce-a99fc: null

Export JSON
Import JSON

Show legend

OEBPS/Image00017.jpg
Link

OEBPS/Image00138.jpg
C' | @ https://console.firebase.google.com

Your projects using Firebase CREATE NEW PROJE

ecommerce

2 ecommerce-a99fc.firebaseio.com

OEBPS/Image00020.jpg

OEBPS/Image00141.jpg
rules
read
write

auth
auth

null
ull

OEBPS/Image00019.jpg

OEBPS/Image00140.jpg
ecommerce-a99fc

o000
A owon

a-5

=~ products

- id:

=-- categories

desc: "The best cupcakes, cookies, cakes, pies, cheese..

imageL: "http://placehold.it/1118x480"
imageS: "http://placehold.it/270x171"
title: "Bread & Bakery"

categoryld: "1"
desc: "Great eaten fresh from oven. Used to make sub s..

1

imageL: "http://placehold.it/1116x480"

imageS: "http://placehold.it/276x171'
isSpecial: false

price: 1.5

- title: "Baguette”

OEBPS/Image00022.jpg

OEBPS/Image00143.jpg
Welcome to Firebase! Get started here.

Add Firebase to Add Firebase to Add Firebase to
your i0S app your Android app your web app

OEBPS/Image00021.jpg
| Primary link

OEBPS/Image00142.jpg
Sergeys-MacBook-Pro:4.ecommerce-firebase akserg$ firebase init

You're about to initialize a Firebase project in this directory:

Iusers/akserg/Documents/ts/learning_bootstrap_angular2/chapter_9/4.ecommerce-firebase

Before we get started, keep in mind:
* You are initializing in an existing Firebase project directory

? What Firebase CLI features do you want to setup for this folder? Database: Deploy Firebase Realtime Database Rules

— Project Setup

First, let's associate this project directory with a Firebase project.

You can create multiple project aliases by running firebase use --add,

but for now we'll just set up a default project.

i .firebaserc already has a default project, skipping

Database Setup

Firebase Realtime Database Rules allow you to define how your data should be
structured and when your data can be read from and written to.

? What file should be used for Database Rules? database.rules.json

v/ Database Rules for undefined have been downloaded to database.rules.json.

Future modifications to database.rules.json will update Database Rules when you run
firebase deploy.

i Writing configuration info to firebase.json...
i Writing project information to .firebaserc

v Firebase initialization complete!

